1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 /* 24 * Ring initialization rules: 25 * 1. Each segment is initialized to zero, except for link TRBs. 26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 27 * Consumer Cycle State (CCS), depending on ring function. 28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 29 * 30 * Ring behavior rules: 31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 32 * least one free TRB in the ring. This is useful if you want to turn that 33 * into a link TRB and expand the ring. 34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 35 * link TRB, then load the pointer with the address in the link TRB. If the 36 * link TRB had its toggle bit set, you may need to update the ring cycle 37 * state (see cycle bit rules). You may have to do this multiple times 38 * until you reach a non-link TRB. 39 * 3. A ring is full if enqueue++ (for the definition of increment above) 40 * equals the dequeue pointer. 41 * 42 * Cycle bit rules: 43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 44 * in a link TRB, it must toggle the ring cycle state. 45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 46 * in a link TRB, it must toggle the ring cycle state. 47 * 48 * Producer rules: 49 * 1. Check if ring is full before you enqueue. 50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 51 * Update enqueue pointer between each write (which may update the ring 52 * cycle state). 53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 54 * and endpoint rings. If HC is the producer for the event ring, 55 * and it generates an interrupt according to interrupt modulation rules. 56 * 57 * Consumer rules: 58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 59 * the TRB is owned by the consumer. 60 * 2. Update dequeue pointer (which may update the ring cycle state) and 61 * continue processing TRBs until you reach a TRB which is not owned by you. 62 * 3. Notify the producer. SW is the consumer for the event ring, and it 63 * updates event ring dequeue pointer. HC is the consumer for the command and 64 * endpoint rings; it generates events on the event ring for these. 65 */ 66 67 #include <linux/scatterlist.h> 68 #include <linux/slab.h> 69 #include "xhci.h" 70 71 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, 72 struct xhci_virt_device *virt_dev, 73 struct xhci_event_cmd *event); 74 75 /* 76 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 77 * address of the TRB. 78 */ 79 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 80 union xhci_trb *trb) 81 { 82 unsigned long segment_offset; 83 84 if (!seg || !trb || trb < seg->trbs) 85 return 0; 86 /* offset in TRBs */ 87 segment_offset = trb - seg->trbs; 88 if (segment_offset > TRBS_PER_SEGMENT) 89 return 0; 90 return seg->dma + (segment_offset * sizeof(*trb)); 91 } 92 93 /* Does this link TRB point to the first segment in a ring, 94 * or was the previous TRB the last TRB on the last segment in the ERST? 95 */ 96 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring, 97 struct xhci_segment *seg, union xhci_trb *trb) 98 { 99 if (ring == xhci->event_ring) 100 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) && 101 (seg->next == xhci->event_ring->first_seg); 102 else 103 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 104 } 105 106 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring 107 * segment? I.e. would the updated event TRB pointer step off the end of the 108 * event seg? 109 */ 110 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 111 struct xhci_segment *seg, union xhci_trb *trb) 112 { 113 if (ring == xhci->event_ring) 114 return trb == &seg->trbs[TRBS_PER_SEGMENT]; 115 else 116 return TRB_TYPE_LINK_LE32(trb->link.control); 117 } 118 119 static int enqueue_is_link_trb(struct xhci_ring *ring) 120 { 121 struct xhci_link_trb *link = &ring->enqueue->link; 122 return TRB_TYPE_LINK_LE32(link->control); 123 } 124 125 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 126 * TRB is in a new segment. This does not skip over link TRBs, and it does not 127 * effect the ring dequeue or enqueue pointers. 128 */ 129 static void next_trb(struct xhci_hcd *xhci, 130 struct xhci_ring *ring, 131 struct xhci_segment **seg, 132 union xhci_trb **trb) 133 { 134 if (last_trb(xhci, ring, *seg, *trb)) { 135 *seg = (*seg)->next; 136 *trb = ((*seg)->trbs); 137 } else { 138 (*trb)++; 139 } 140 } 141 142 /* 143 * See Cycle bit rules. SW is the consumer for the event ring only. 144 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 145 */ 146 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring, bool consumer) 147 { 148 union xhci_trb *next = ++(ring->dequeue); 149 unsigned long long addr; 150 151 ring->deq_updates++; 152 /* Update the dequeue pointer further if that was a link TRB or we're at 153 * the end of an event ring segment (which doesn't have link TRBS) 154 */ 155 while (last_trb(xhci, ring, ring->deq_seg, next)) { 156 if (consumer && last_trb_on_last_seg(xhci, ring, ring->deq_seg, next)) { 157 ring->cycle_state = (ring->cycle_state ? 0 : 1); 158 } 159 ring->deq_seg = ring->deq_seg->next; 160 ring->dequeue = ring->deq_seg->trbs; 161 next = ring->dequeue; 162 } 163 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue); 164 } 165 166 /* 167 * See Cycle bit rules. SW is the consumer for the event ring only. 168 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 169 * 170 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 171 * chain bit is set), then set the chain bit in all the following link TRBs. 172 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 173 * have their chain bit cleared (so that each Link TRB is a separate TD). 174 * 175 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 176 * set, but other sections talk about dealing with the chain bit set. This was 177 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 178 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 179 * 180 * @more_trbs_coming: Will you enqueue more TRBs before calling 181 * prepare_transfer()? 182 */ 183 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 184 bool consumer, bool more_trbs_coming, bool isoc) 185 { 186 u32 chain; 187 union xhci_trb *next; 188 unsigned long long addr; 189 190 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 191 next = ++(ring->enqueue); 192 193 ring->enq_updates++; 194 /* Update the dequeue pointer further if that was a link TRB or we're at 195 * the end of an event ring segment (which doesn't have link TRBS) 196 */ 197 while (last_trb(xhci, ring, ring->enq_seg, next)) { 198 if (!consumer) { 199 if (ring != xhci->event_ring) { 200 /* 201 * If the caller doesn't plan on enqueueing more 202 * TDs before ringing the doorbell, then we 203 * don't want to give the link TRB to the 204 * hardware just yet. We'll give the link TRB 205 * back in prepare_ring() just before we enqueue 206 * the TD at the top of the ring. 207 */ 208 if (!chain && !more_trbs_coming) 209 break; 210 211 /* If we're not dealing with 0.95 hardware or 212 * isoc rings on AMD 0.96 host, 213 * carry over the chain bit of the previous TRB 214 * (which may mean the chain bit is cleared). 215 */ 216 if (!(isoc && (xhci->quirks & XHCI_AMD_0x96_HOST)) 217 && !xhci_link_trb_quirk(xhci)) { 218 next->link.control &= 219 cpu_to_le32(~TRB_CHAIN); 220 next->link.control |= 221 cpu_to_le32(chain); 222 } 223 /* Give this link TRB to the hardware */ 224 wmb(); 225 next->link.control ^= cpu_to_le32(TRB_CYCLE); 226 } 227 /* Toggle the cycle bit after the last ring segment. */ 228 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 229 ring->cycle_state = (ring->cycle_state ? 0 : 1); 230 } 231 } 232 ring->enq_seg = ring->enq_seg->next; 233 ring->enqueue = ring->enq_seg->trbs; 234 next = ring->enqueue; 235 } 236 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue); 237 } 238 239 /* 240 * Check to see if there's room to enqueue num_trbs on the ring. See rules 241 * above. 242 * FIXME: this would be simpler and faster if we just kept track of the number 243 * of free TRBs in a ring. 244 */ 245 static int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 246 unsigned int num_trbs) 247 { 248 int i; 249 union xhci_trb *enq = ring->enqueue; 250 struct xhci_segment *enq_seg = ring->enq_seg; 251 struct xhci_segment *cur_seg; 252 unsigned int left_on_ring; 253 254 /* If we are currently pointing to a link TRB, advance the 255 * enqueue pointer before checking for space */ 256 while (last_trb(xhci, ring, enq_seg, enq)) { 257 enq_seg = enq_seg->next; 258 enq = enq_seg->trbs; 259 } 260 261 /* Check if ring is empty */ 262 if (enq == ring->dequeue) { 263 /* Can't use link trbs */ 264 left_on_ring = TRBS_PER_SEGMENT - 1; 265 for (cur_seg = enq_seg->next; cur_seg != enq_seg; 266 cur_seg = cur_seg->next) 267 left_on_ring += TRBS_PER_SEGMENT - 1; 268 269 /* Always need one TRB free in the ring. */ 270 left_on_ring -= 1; 271 if (num_trbs > left_on_ring) { 272 xhci_warn(xhci, "Not enough room on ring; " 273 "need %u TRBs, %u TRBs left\n", 274 num_trbs, left_on_ring); 275 return 0; 276 } 277 return 1; 278 } 279 /* Make sure there's an extra empty TRB available */ 280 for (i = 0; i <= num_trbs; ++i) { 281 if (enq == ring->dequeue) 282 return 0; 283 enq++; 284 while (last_trb(xhci, ring, enq_seg, enq)) { 285 enq_seg = enq_seg->next; 286 enq = enq_seg->trbs; 287 } 288 } 289 return 1; 290 } 291 292 /* Ring the host controller doorbell after placing a command on the ring */ 293 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 294 { 295 xhci_dbg(xhci, "// Ding dong!\n"); 296 xhci_writel(xhci, DB_VALUE_HOST, &xhci->dba->doorbell[0]); 297 /* Flush PCI posted writes */ 298 xhci_readl(xhci, &xhci->dba->doorbell[0]); 299 } 300 301 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 302 unsigned int slot_id, 303 unsigned int ep_index, 304 unsigned int stream_id) 305 { 306 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 307 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 308 unsigned int ep_state = ep->ep_state; 309 310 /* Don't ring the doorbell for this endpoint if there are pending 311 * cancellations because we don't want to interrupt processing. 312 * We don't want to restart any stream rings if there's a set dequeue 313 * pointer command pending because the device can choose to start any 314 * stream once the endpoint is on the HW schedule. 315 * FIXME - check all the stream rings for pending cancellations. 316 */ 317 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) || 318 (ep_state & EP_HALTED)) 319 return; 320 xhci_writel(xhci, DB_VALUE(ep_index, stream_id), db_addr); 321 /* The CPU has better things to do at this point than wait for a 322 * write-posting flush. It'll get there soon enough. 323 */ 324 } 325 326 /* Ring the doorbell for any rings with pending URBs */ 327 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 328 unsigned int slot_id, 329 unsigned int ep_index) 330 { 331 unsigned int stream_id; 332 struct xhci_virt_ep *ep; 333 334 ep = &xhci->devs[slot_id]->eps[ep_index]; 335 336 /* A ring has pending URBs if its TD list is not empty */ 337 if (!(ep->ep_state & EP_HAS_STREAMS)) { 338 if (!(list_empty(&ep->ring->td_list))) 339 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 340 return; 341 } 342 343 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 344 stream_id++) { 345 struct xhci_stream_info *stream_info = ep->stream_info; 346 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 347 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 348 stream_id); 349 } 350 } 351 352 /* 353 * Find the segment that trb is in. Start searching in start_seg. 354 * If we must move past a segment that has a link TRB with a toggle cycle state 355 * bit set, then we will toggle the value pointed at by cycle_state. 356 */ 357 static struct xhci_segment *find_trb_seg( 358 struct xhci_segment *start_seg, 359 union xhci_trb *trb, int *cycle_state) 360 { 361 struct xhci_segment *cur_seg = start_seg; 362 struct xhci_generic_trb *generic_trb; 363 364 while (cur_seg->trbs > trb || 365 &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) { 366 generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic; 367 if (generic_trb->field[3] & cpu_to_le32(LINK_TOGGLE)) 368 *cycle_state ^= 0x1; 369 cur_seg = cur_seg->next; 370 if (cur_seg == start_seg) 371 /* Looped over the entire list. Oops! */ 372 return NULL; 373 } 374 return cur_seg; 375 } 376 377 378 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 379 unsigned int slot_id, unsigned int ep_index, 380 unsigned int stream_id) 381 { 382 struct xhci_virt_ep *ep; 383 384 ep = &xhci->devs[slot_id]->eps[ep_index]; 385 /* Common case: no streams */ 386 if (!(ep->ep_state & EP_HAS_STREAMS)) 387 return ep->ring; 388 389 if (stream_id == 0) { 390 xhci_warn(xhci, 391 "WARN: Slot ID %u, ep index %u has streams, " 392 "but URB has no stream ID.\n", 393 slot_id, ep_index); 394 return NULL; 395 } 396 397 if (stream_id < ep->stream_info->num_streams) 398 return ep->stream_info->stream_rings[stream_id]; 399 400 xhci_warn(xhci, 401 "WARN: Slot ID %u, ep index %u has " 402 "stream IDs 1 to %u allocated, " 403 "but stream ID %u is requested.\n", 404 slot_id, ep_index, 405 ep->stream_info->num_streams - 1, 406 stream_id); 407 return NULL; 408 } 409 410 /* Get the right ring for the given URB. 411 * If the endpoint supports streams, boundary check the URB's stream ID. 412 * If the endpoint doesn't support streams, return the singular endpoint ring. 413 */ 414 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 415 struct urb *urb) 416 { 417 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id, 418 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id); 419 } 420 421 /* 422 * Move the xHC's endpoint ring dequeue pointer past cur_td. 423 * Record the new state of the xHC's endpoint ring dequeue segment, 424 * dequeue pointer, and new consumer cycle state in state. 425 * Update our internal representation of the ring's dequeue pointer. 426 * 427 * We do this in three jumps: 428 * - First we update our new ring state to be the same as when the xHC stopped. 429 * - Then we traverse the ring to find the segment that contains 430 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass 431 * any link TRBs with the toggle cycle bit set. 432 * - Finally we move the dequeue state one TRB further, toggling the cycle bit 433 * if we've moved it past a link TRB with the toggle cycle bit set. 434 * 435 * Some of the uses of xhci_generic_trb are grotty, but if they're done 436 * with correct __le32 accesses they should work fine. Only users of this are 437 * in here. 438 */ 439 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, 440 unsigned int slot_id, unsigned int ep_index, 441 unsigned int stream_id, struct xhci_td *cur_td, 442 struct xhci_dequeue_state *state) 443 { 444 struct xhci_virt_device *dev = xhci->devs[slot_id]; 445 struct xhci_ring *ep_ring; 446 struct xhci_generic_trb *trb; 447 struct xhci_ep_ctx *ep_ctx; 448 dma_addr_t addr; 449 450 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 451 ep_index, stream_id); 452 if (!ep_ring) { 453 xhci_warn(xhci, "WARN can't find new dequeue state " 454 "for invalid stream ID %u.\n", 455 stream_id); 456 return; 457 } 458 state->new_cycle_state = 0; 459 xhci_dbg(xhci, "Finding segment containing stopped TRB.\n"); 460 state->new_deq_seg = find_trb_seg(cur_td->start_seg, 461 dev->eps[ep_index].stopped_trb, 462 &state->new_cycle_state); 463 if (!state->new_deq_seg) { 464 WARN_ON(1); 465 return; 466 } 467 468 /* Dig out the cycle state saved by the xHC during the stop ep cmd */ 469 xhci_dbg(xhci, "Finding endpoint context\n"); 470 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 471 state->new_cycle_state = 0x1 & le64_to_cpu(ep_ctx->deq); 472 473 state->new_deq_ptr = cur_td->last_trb; 474 xhci_dbg(xhci, "Finding segment containing last TRB in TD.\n"); 475 state->new_deq_seg = find_trb_seg(state->new_deq_seg, 476 state->new_deq_ptr, 477 &state->new_cycle_state); 478 if (!state->new_deq_seg) { 479 WARN_ON(1); 480 return; 481 } 482 483 trb = &state->new_deq_ptr->generic; 484 if (TRB_TYPE_LINK_LE32(trb->field[3]) && 485 (trb->field[3] & cpu_to_le32(LINK_TOGGLE))) 486 state->new_cycle_state ^= 0x1; 487 next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr); 488 489 /* 490 * If there is only one segment in a ring, find_trb_seg()'s while loop 491 * will not run, and it will return before it has a chance to see if it 492 * needs to toggle the cycle bit. It can't tell if the stalled transfer 493 * ended just before the link TRB on a one-segment ring, or if the TD 494 * wrapped around the top of the ring, because it doesn't have the TD in 495 * question. Look for the one-segment case where stalled TRB's address 496 * is greater than the new dequeue pointer address. 497 */ 498 if (ep_ring->first_seg == ep_ring->first_seg->next && 499 state->new_deq_ptr < dev->eps[ep_index].stopped_trb) 500 state->new_cycle_state ^= 0x1; 501 xhci_dbg(xhci, "Cycle state = 0x%x\n", state->new_cycle_state); 502 503 /* Don't update the ring cycle state for the producer (us). */ 504 xhci_dbg(xhci, "New dequeue segment = %p (virtual)\n", 505 state->new_deq_seg); 506 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); 507 xhci_dbg(xhci, "New dequeue pointer = 0x%llx (DMA)\n", 508 (unsigned long long) addr); 509 } 510 511 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 512 * (The last TRB actually points to the ring enqueue pointer, which is not part 513 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 514 */ 515 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 516 struct xhci_td *cur_td, bool flip_cycle) 517 { 518 struct xhci_segment *cur_seg; 519 union xhci_trb *cur_trb; 520 521 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb; 522 true; 523 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 524 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) { 525 /* Unchain any chained Link TRBs, but 526 * leave the pointers intact. 527 */ 528 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN); 529 /* Flip the cycle bit (link TRBs can't be the first 530 * or last TRB). 531 */ 532 if (flip_cycle) 533 cur_trb->generic.field[3] ^= 534 cpu_to_le32(TRB_CYCLE); 535 xhci_dbg(xhci, "Cancel (unchain) link TRB\n"); 536 xhci_dbg(xhci, "Address = %p (0x%llx dma); " 537 "in seg %p (0x%llx dma)\n", 538 cur_trb, 539 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb), 540 cur_seg, 541 (unsigned long long)cur_seg->dma); 542 } else { 543 cur_trb->generic.field[0] = 0; 544 cur_trb->generic.field[1] = 0; 545 cur_trb->generic.field[2] = 0; 546 /* Preserve only the cycle bit of this TRB */ 547 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 548 /* Flip the cycle bit except on the first or last TRB */ 549 if (flip_cycle && cur_trb != cur_td->first_trb && 550 cur_trb != cur_td->last_trb) 551 cur_trb->generic.field[3] ^= 552 cpu_to_le32(TRB_CYCLE); 553 cur_trb->generic.field[3] |= cpu_to_le32( 554 TRB_TYPE(TRB_TR_NOOP)); 555 xhci_dbg(xhci, "TRB to noop at offset 0x%llx\n", 556 (unsigned long long) 557 xhci_trb_virt_to_dma(cur_seg, cur_trb)); 558 } 559 if (cur_trb == cur_td->last_trb) 560 break; 561 } 562 } 563 564 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id, 565 unsigned int ep_index, unsigned int stream_id, 566 struct xhci_segment *deq_seg, 567 union xhci_trb *deq_ptr, u32 cycle_state); 568 569 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, 570 unsigned int slot_id, unsigned int ep_index, 571 unsigned int stream_id, 572 struct xhci_dequeue_state *deq_state) 573 { 574 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 575 576 xhci_dbg(xhci, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), " 577 "new deq ptr = %p (0x%llx dma), new cycle = %u\n", 578 deq_state->new_deq_seg, 579 (unsigned long long)deq_state->new_deq_seg->dma, 580 deq_state->new_deq_ptr, 581 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr), 582 deq_state->new_cycle_state); 583 queue_set_tr_deq(xhci, slot_id, ep_index, stream_id, 584 deq_state->new_deq_seg, 585 deq_state->new_deq_ptr, 586 (u32) deq_state->new_cycle_state); 587 /* Stop the TD queueing code from ringing the doorbell until 588 * this command completes. The HC won't set the dequeue pointer 589 * if the ring is running, and ringing the doorbell starts the 590 * ring running. 591 */ 592 ep->ep_state |= SET_DEQ_PENDING; 593 } 594 595 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, 596 struct xhci_virt_ep *ep) 597 { 598 ep->ep_state &= ~EP_HALT_PENDING; 599 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the 600 * timer is running on another CPU, we don't decrement stop_cmds_pending 601 * (since we didn't successfully stop the watchdog timer). 602 */ 603 if (del_timer(&ep->stop_cmd_timer)) 604 ep->stop_cmds_pending--; 605 } 606 607 /* Must be called with xhci->lock held in interrupt context */ 608 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 609 struct xhci_td *cur_td, int status, char *adjective) 610 { 611 struct usb_hcd *hcd; 612 struct urb *urb; 613 struct urb_priv *urb_priv; 614 615 urb = cur_td->urb; 616 urb_priv = urb->hcpriv; 617 urb_priv->td_cnt++; 618 hcd = bus_to_hcd(urb->dev->bus); 619 620 /* Only giveback urb when this is the last td in urb */ 621 if (urb_priv->td_cnt == urb_priv->length) { 622 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 623 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 624 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 625 if (xhci->quirks & XHCI_AMD_PLL_FIX) 626 usb_amd_quirk_pll_enable(); 627 } 628 } 629 usb_hcd_unlink_urb_from_ep(hcd, urb); 630 631 spin_unlock(&xhci->lock); 632 usb_hcd_giveback_urb(hcd, urb, status); 633 xhci_urb_free_priv(xhci, urb_priv); 634 spin_lock(&xhci->lock); 635 } 636 } 637 638 /* 639 * When we get a command completion for a Stop Endpoint Command, we need to 640 * unlink any cancelled TDs from the ring. There are two ways to do that: 641 * 642 * 1. If the HW was in the middle of processing the TD that needs to be 643 * cancelled, then we must move the ring's dequeue pointer past the last TRB 644 * in the TD with a Set Dequeue Pointer Command. 645 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 646 * bit cleared) so that the HW will skip over them. 647 */ 648 static void handle_stopped_endpoint(struct xhci_hcd *xhci, 649 union xhci_trb *trb, struct xhci_event_cmd *event) 650 { 651 unsigned int slot_id; 652 unsigned int ep_index; 653 struct xhci_virt_device *virt_dev; 654 struct xhci_ring *ep_ring; 655 struct xhci_virt_ep *ep; 656 struct list_head *entry; 657 struct xhci_td *cur_td = NULL; 658 struct xhci_td *last_unlinked_td; 659 660 struct xhci_dequeue_state deq_state; 661 662 if (unlikely(TRB_TO_SUSPEND_PORT( 663 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])))) { 664 slot_id = TRB_TO_SLOT_ID( 665 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])); 666 virt_dev = xhci->devs[slot_id]; 667 if (virt_dev) 668 handle_cmd_in_cmd_wait_list(xhci, virt_dev, 669 event); 670 else 671 xhci_warn(xhci, "Stop endpoint command " 672 "completion for disabled slot %u\n", 673 slot_id); 674 return; 675 } 676 677 memset(&deq_state, 0, sizeof(deq_state)); 678 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3])); 679 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 680 ep = &xhci->devs[slot_id]->eps[ep_index]; 681 682 if (list_empty(&ep->cancelled_td_list)) { 683 xhci_stop_watchdog_timer_in_irq(xhci, ep); 684 ep->stopped_td = NULL; 685 ep->stopped_trb = NULL; 686 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 687 return; 688 } 689 690 /* Fix up the ep ring first, so HW stops executing cancelled TDs. 691 * We have the xHCI lock, so nothing can modify this list until we drop 692 * it. We're also in the event handler, so we can't get re-interrupted 693 * if another Stop Endpoint command completes 694 */ 695 list_for_each(entry, &ep->cancelled_td_list) { 696 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list); 697 xhci_dbg(xhci, "Removing canceled TD starting at 0x%llx (dma).\n", 698 (unsigned long long)xhci_trb_virt_to_dma( 699 cur_td->start_seg, cur_td->first_trb)); 700 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 701 if (!ep_ring) { 702 /* This shouldn't happen unless a driver is mucking 703 * with the stream ID after submission. This will 704 * leave the TD on the hardware ring, and the hardware 705 * will try to execute it, and may access a buffer 706 * that has already been freed. In the best case, the 707 * hardware will execute it, and the event handler will 708 * ignore the completion event for that TD, since it was 709 * removed from the td_list for that endpoint. In 710 * short, don't muck with the stream ID after 711 * submission. 712 */ 713 xhci_warn(xhci, "WARN Cancelled URB %p " 714 "has invalid stream ID %u.\n", 715 cur_td->urb, 716 cur_td->urb->stream_id); 717 goto remove_finished_td; 718 } 719 /* 720 * If we stopped on the TD we need to cancel, then we have to 721 * move the xHC endpoint ring dequeue pointer past this TD. 722 */ 723 if (cur_td == ep->stopped_td) 724 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, 725 cur_td->urb->stream_id, 726 cur_td, &deq_state); 727 else 728 td_to_noop(xhci, ep_ring, cur_td, false); 729 remove_finished_td: 730 /* 731 * The event handler won't see a completion for this TD anymore, 732 * so remove it from the endpoint ring's TD list. Keep it in 733 * the cancelled TD list for URB completion later. 734 */ 735 list_del_init(&cur_td->td_list); 736 } 737 last_unlinked_td = cur_td; 738 xhci_stop_watchdog_timer_in_irq(xhci, ep); 739 740 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ 741 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { 742 xhci_queue_new_dequeue_state(xhci, 743 slot_id, ep_index, 744 ep->stopped_td->urb->stream_id, 745 &deq_state); 746 xhci_ring_cmd_db(xhci); 747 } else { 748 /* Otherwise ring the doorbell(s) to restart queued transfers */ 749 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 750 } 751 ep->stopped_td = NULL; 752 ep->stopped_trb = NULL; 753 754 /* 755 * Drop the lock and complete the URBs in the cancelled TD list. 756 * New TDs to be cancelled might be added to the end of the list before 757 * we can complete all the URBs for the TDs we already unlinked. 758 * So stop when we've completed the URB for the last TD we unlinked. 759 */ 760 do { 761 cur_td = list_entry(ep->cancelled_td_list.next, 762 struct xhci_td, cancelled_td_list); 763 list_del_init(&cur_td->cancelled_td_list); 764 765 /* Clean up the cancelled URB */ 766 /* Doesn't matter what we pass for status, since the core will 767 * just overwrite it (because the URB has been unlinked). 768 */ 769 xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled"); 770 771 /* Stop processing the cancelled list if the watchdog timer is 772 * running. 773 */ 774 if (xhci->xhc_state & XHCI_STATE_DYING) 775 return; 776 } while (cur_td != last_unlinked_td); 777 778 /* Return to the event handler with xhci->lock re-acquired */ 779 } 780 781 /* Watchdog timer function for when a stop endpoint command fails to complete. 782 * In this case, we assume the host controller is broken or dying or dead. The 783 * host may still be completing some other events, so we have to be careful to 784 * let the event ring handler and the URB dequeueing/enqueueing functions know 785 * through xhci->state. 786 * 787 * The timer may also fire if the host takes a very long time to respond to the 788 * command, and the stop endpoint command completion handler cannot delete the 789 * timer before the timer function is called. Another endpoint cancellation may 790 * sneak in before the timer function can grab the lock, and that may queue 791 * another stop endpoint command and add the timer back. So we cannot use a 792 * simple flag to say whether there is a pending stop endpoint command for a 793 * particular endpoint. 794 * 795 * Instead we use a combination of that flag and a counter for the number of 796 * pending stop endpoint commands. If the timer is the tail end of the last 797 * stop endpoint command, and the endpoint's command is still pending, we assume 798 * the host is dying. 799 */ 800 void xhci_stop_endpoint_command_watchdog(unsigned long arg) 801 { 802 struct xhci_hcd *xhci; 803 struct xhci_virt_ep *ep; 804 struct xhci_virt_ep *temp_ep; 805 struct xhci_ring *ring; 806 struct xhci_td *cur_td; 807 int ret, i, j; 808 unsigned long flags; 809 810 ep = (struct xhci_virt_ep *) arg; 811 xhci = ep->xhci; 812 813 spin_lock_irqsave(&xhci->lock, flags); 814 815 ep->stop_cmds_pending--; 816 if (xhci->xhc_state & XHCI_STATE_DYING) { 817 xhci_dbg(xhci, "Stop EP timer ran, but another timer marked " 818 "xHCI as DYING, exiting.\n"); 819 spin_unlock_irqrestore(&xhci->lock, flags); 820 return; 821 } 822 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) { 823 xhci_dbg(xhci, "Stop EP timer ran, but no command pending, " 824 "exiting.\n"); 825 spin_unlock_irqrestore(&xhci->lock, flags); 826 return; 827 } 828 829 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); 830 xhci_warn(xhci, "Assuming host is dying, halting host.\n"); 831 /* Oops, HC is dead or dying or at least not responding to the stop 832 * endpoint command. 833 */ 834 xhci->xhc_state |= XHCI_STATE_DYING; 835 /* Disable interrupts from the host controller and start halting it */ 836 xhci_quiesce(xhci); 837 spin_unlock_irqrestore(&xhci->lock, flags); 838 839 ret = xhci_halt(xhci); 840 841 spin_lock_irqsave(&xhci->lock, flags); 842 if (ret < 0) { 843 /* This is bad; the host is not responding to commands and it's 844 * not allowing itself to be halted. At least interrupts are 845 * disabled. If we call usb_hc_died(), it will attempt to 846 * disconnect all device drivers under this host. Those 847 * disconnect() methods will wait for all URBs to be unlinked, 848 * so we must complete them. 849 */ 850 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n"); 851 xhci_warn(xhci, "Completing active URBs anyway.\n"); 852 /* We could turn all TDs on the rings to no-ops. This won't 853 * help if the host has cached part of the ring, and is slow if 854 * we want to preserve the cycle bit. Skip it and hope the host 855 * doesn't touch the memory. 856 */ 857 } 858 for (i = 0; i < MAX_HC_SLOTS; i++) { 859 if (!xhci->devs[i]) 860 continue; 861 for (j = 0; j < 31; j++) { 862 temp_ep = &xhci->devs[i]->eps[j]; 863 ring = temp_ep->ring; 864 if (!ring) 865 continue; 866 xhci_dbg(xhci, "Killing URBs for slot ID %u, " 867 "ep index %u\n", i, j); 868 while (!list_empty(&ring->td_list)) { 869 cur_td = list_first_entry(&ring->td_list, 870 struct xhci_td, 871 td_list); 872 list_del_init(&cur_td->td_list); 873 if (!list_empty(&cur_td->cancelled_td_list)) 874 list_del_init(&cur_td->cancelled_td_list); 875 xhci_giveback_urb_in_irq(xhci, cur_td, 876 -ESHUTDOWN, "killed"); 877 } 878 while (!list_empty(&temp_ep->cancelled_td_list)) { 879 cur_td = list_first_entry( 880 &temp_ep->cancelled_td_list, 881 struct xhci_td, 882 cancelled_td_list); 883 list_del_init(&cur_td->cancelled_td_list); 884 xhci_giveback_urb_in_irq(xhci, cur_td, 885 -ESHUTDOWN, "killed"); 886 } 887 } 888 } 889 spin_unlock_irqrestore(&xhci->lock, flags); 890 xhci_dbg(xhci, "Calling usb_hc_died()\n"); 891 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); 892 xhci_dbg(xhci, "xHCI host controller is dead.\n"); 893 } 894 895 /* 896 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 897 * we need to clear the set deq pending flag in the endpoint ring state, so that 898 * the TD queueing code can ring the doorbell again. We also need to ring the 899 * endpoint doorbell to restart the ring, but only if there aren't more 900 * cancellations pending. 901 */ 902 static void handle_set_deq_completion(struct xhci_hcd *xhci, 903 struct xhci_event_cmd *event, 904 union xhci_trb *trb) 905 { 906 unsigned int slot_id; 907 unsigned int ep_index; 908 unsigned int stream_id; 909 struct xhci_ring *ep_ring; 910 struct xhci_virt_device *dev; 911 struct xhci_ep_ctx *ep_ctx; 912 struct xhci_slot_ctx *slot_ctx; 913 914 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3])); 915 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 916 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 917 dev = xhci->devs[slot_id]; 918 919 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); 920 if (!ep_ring) { 921 xhci_warn(xhci, "WARN Set TR deq ptr command for " 922 "freed stream ID %u\n", 923 stream_id); 924 /* XXX: Harmless??? */ 925 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 926 return; 927 } 928 929 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 930 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); 931 932 if (GET_COMP_CODE(le32_to_cpu(event->status)) != COMP_SUCCESS) { 933 unsigned int ep_state; 934 unsigned int slot_state; 935 936 switch (GET_COMP_CODE(le32_to_cpu(event->status))) { 937 case COMP_TRB_ERR: 938 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because " 939 "of stream ID configuration\n"); 940 break; 941 case COMP_CTX_STATE: 942 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due " 943 "to incorrect slot or ep state.\n"); 944 ep_state = le32_to_cpu(ep_ctx->ep_info); 945 ep_state &= EP_STATE_MASK; 946 slot_state = le32_to_cpu(slot_ctx->dev_state); 947 slot_state = GET_SLOT_STATE(slot_state); 948 xhci_dbg(xhci, "Slot state = %u, EP state = %u\n", 949 slot_state, ep_state); 950 break; 951 case COMP_EBADSLT: 952 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because " 953 "slot %u was not enabled.\n", slot_id); 954 break; 955 default: 956 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown " 957 "completion code of %u.\n", 958 GET_COMP_CODE(le32_to_cpu(event->status))); 959 break; 960 } 961 /* OK what do we do now? The endpoint state is hosed, and we 962 * should never get to this point if the synchronization between 963 * queueing, and endpoint state are correct. This might happen 964 * if the device gets disconnected after we've finished 965 * cancelling URBs, which might not be an error... 966 */ 967 } else { 968 xhci_dbg(xhci, "Successful Set TR Deq Ptr cmd, deq = @%08llx\n", 969 le64_to_cpu(ep_ctx->deq)); 970 if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg, 971 dev->eps[ep_index].queued_deq_ptr) == 972 (le64_to_cpu(ep_ctx->deq) & ~(EP_CTX_CYCLE_MASK))) { 973 /* Update the ring's dequeue segment and dequeue pointer 974 * to reflect the new position. 975 */ 976 ep_ring->deq_seg = dev->eps[ep_index].queued_deq_seg; 977 ep_ring->dequeue = dev->eps[ep_index].queued_deq_ptr; 978 } else { 979 xhci_warn(xhci, "Mismatch between completed Set TR Deq " 980 "Ptr command & xHCI internal state.\n"); 981 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 982 dev->eps[ep_index].queued_deq_seg, 983 dev->eps[ep_index].queued_deq_ptr); 984 } 985 } 986 987 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 988 dev->eps[ep_index].queued_deq_seg = NULL; 989 dev->eps[ep_index].queued_deq_ptr = NULL; 990 /* Restart any rings with pending URBs */ 991 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 992 } 993 994 static void handle_reset_ep_completion(struct xhci_hcd *xhci, 995 struct xhci_event_cmd *event, 996 union xhci_trb *trb) 997 { 998 int slot_id; 999 unsigned int ep_index; 1000 1001 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3])); 1002 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1003 /* This command will only fail if the endpoint wasn't halted, 1004 * but we don't care. 1005 */ 1006 xhci_dbg(xhci, "Ignoring reset ep completion code of %u\n", 1007 GET_COMP_CODE(le32_to_cpu(event->status))); 1008 1009 /* HW with the reset endpoint quirk needs to have a configure endpoint 1010 * command complete before the endpoint can be used. Queue that here 1011 * because the HW can't handle two commands being queued in a row. 1012 */ 1013 if (xhci->quirks & XHCI_RESET_EP_QUIRK) { 1014 xhci_dbg(xhci, "Queueing configure endpoint command\n"); 1015 xhci_queue_configure_endpoint(xhci, 1016 xhci->devs[slot_id]->in_ctx->dma, slot_id, 1017 false); 1018 xhci_ring_cmd_db(xhci); 1019 } else { 1020 /* Clear our internal halted state and restart the ring(s) */ 1021 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; 1022 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1023 } 1024 } 1025 1026 /* Check to see if a command in the device's command queue matches this one. 1027 * Signal the completion or free the command, and return 1. Return 0 if the 1028 * completed command isn't at the head of the command list. 1029 */ 1030 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, 1031 struct xhci_virt_device *virt_dev, 1032 struct xhci_event_cmd *event) 1033 { 1034 struct xhci_command *command; 1035 1036 if (list_empty(&virt_dev->cmd_list)) 1037 return 0; 1038 1039 command = list_entry(virt_dev->cmd_list.next, 1040 struct xhci_command, cmd_list); 1041 if (xhci->cmd_ring->dequeue != command->command_trb) 1042 return 0; 1043 1044 command->status = GET_COMP_CODE(le32_to_cpu(event->status)); 1045 list_del(&command->cmd_list); 1046 if (command->completion) 1047 complete(command->completion); 1048 else 1049 xhci_free_command(xhci, command); 1050 return 1; 1051 } 1052 1053 static void handle_cmd_completion(struct xhci_hcd *xhci, 1054 struct xhci_event_cmd *event) 1055 { 1056 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1057 u64 cmd_dma; 1058 dma_addr_t cmd_dequeue_dma; 1059 struct xhci_input_control_ctx *ctrl_ctx; 1060 struct xhci_virt_device *virt_dev; 1061 unsigned int ep_index; 1062 struct xhci_ring *ep_ring; 1063 unsigned int ep_state; 1064 1065 cmd_dma = le64_to_cpu(event->cmd_trb); 1066 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1067 xhci->cmd_ring->dequeue); 1068 /* Is the command ring deq ptr out of sync with the deq seg ptr? */ 1069 if (cmd_dequeue_dma == 0) { 1070 xhci->error_bitmask |= 1 << 4; 1071 return; 1072 } 1073 /* Does the DMA address match our internal dequeue pointer address? */ 1074 if (cmd_dma != (u64) cmd_dequeue_dma) { 1075 xhci->error_bitmask |= 1 << 5; 1076 return; 1077 } 1078 switch (le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]) 1079 & TRB_TYPE_BITMASK) { 1080 case TRB_TYPE(TRB_ENABLE_SLOT): 1081 if (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_SUCCESS) 1082 xhci->slot_id = slot_id; 1083 else 1084 xhci->slot_id = 0; 1085 complete(&xhci->addr_dev); 1086 break; 1087 case TRB_TYPE(TRB_DISABLE_SLOT): 1088 if (xhci->devs[slot_id]) { 1089 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1090 /* Delete default control endpoint resources */ 1091 xhci_free_device_endpoint_resources(xhci, 1092 xhci->devs[slot_id], true); 1093 xhci_free_virt_device(xhci, slot_id); 1094 } 1095 break; 1096 case TRB_TYPE(TRB_CONFIG_EP): 1097 virt_dev = xhci->devs[slot_id]; 1098 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event)) 1099 break; 1100 /* 1101 * Configure endpoint commands can come from the USB core 1102 * configuration or alt setting changes, or because the HW 1103 * needed an extra configure endpoint command after a reset 1104 * endpoint command or streams were being configured. 1105 * If the command was for a halted endpoint, the xHCI driver 1106 * is not waiting on the configure endpoint command. 1107 */ 1108 ctrl_ctx = xhci_get_input_control_ctx(xhci, 1109 virt_dev->in_ctx); 1110 /* Input ctx add_flags are the endpoint index plus one */ 1111 ep_index = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)) - 1; 1112 /* A usb_set_interface() call directly after clearing a halted 1113 * condition may race on this quirky hardware. Not worth 1114 * worrying about, since this is prototype hardware. Not sure 1115 * if this will work for streams, but streams support was 1116 * untested on this prototype. 1117 */ 1118 if (xhci->quirks & XHCI_RESET_EP_QUIRK && 1119 ep_index != (unsigned int) -1 && 1120 le32_to_cpu(ctrl_ctx->add_flags) - SLOT_FLAG == 1121 le32_to_cpu(ctrl_ctx->drop_flags)) { 1122 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 1123 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 1124 if (!(ep_state & EP_HALTED)) 1125 goto bandwidth_change; 1126 xhci_dbg(xhci, "Completed config ep cmd - " 1127 "last ep index = %d, state = %d\n", 1128 ep_index, ep_state); 1129 /* Clear internal halted state and restart ring(s) */ 1130 xhci->devs[slot_id]->eps[ep_index].ep_state &= 1131 ~EP_HALTED; 1132 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1133 break; 1134 } 1135 bandwidth_change: 1136 xhci_dbg(xhci, "Completed config ep cmd\n"); 1137 xhci->devs[slot_id]->cmd_status = 1138 GET_COMP_CODE(le32_to_cpu(event->status)); 1139 complete(&xhci->devs[slot_id]->cmd_completion); 1140 break; 1141 case TRB_TYPE(TRB_EVAL_CONTEXT): 1142 virt_dev = xhci->devs[slot_id]; 1143 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event)) 1144 break; 1145 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status)); 1146 complete(&xhci->devs[slot_id]->cmd_completion); 1147 break; 1148 case TRB_TYPE(TRB_ADDR_DEV): 1149 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status)); 1150 complete(&xhci->addr_dev); 1151 break; 1152 case TRB_TYPE(TRB_STOP_RING): 1153 handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue, event); 1154 break; 1155 case TRB_TYPE(TRB_SET_DEQ): 1156 handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue); 1157 break; 1158 case TRB_TYPE(TRB_CMD_NOOP): 1159 break; 1160 case TRB_TYPE(TRB_RESET_EP): 1161 handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue); 1162 break; 1163 case TRB_TYPE(TRB_RESET_DEV): 1164 xhci_dbg(xhci, "Completed reset device command.\n"); 1165 slot_id = TRB_TO_SLOT_ID( 1166 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])); 1167 virt_dev = xhci->devs[slot_id]; 1168 if (virt_dev) 1169 handle_cmd_in_cmd_wait_list(xhci, virt_dev, event); 1170 else 1171 xhci_warn(xhci, "Reset device command completion " 1172 "for disabled slot %u\n", slot_id); 1173 break; 1174 case TRB_TYPE(TRB_NEC_GET_FW): 1175 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1176 xhci->error_bitmask |= 1 << 6; 1177 break; 1178 } 1179 xhci_dbg(xhci, "NEC firmware version %2x.%02x\n", 1180 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1181 NEC_FW_MINOR(le32_to_cpu(event->status))); 1182 break; 1183 default: 1184 /* Skip over unknown commands on the event ring */ 1185 xhci->error_bitmask |= 1 << 6; 1186 break; 1187 } 1188 inc_deq(xhci, xhci->cmd_ring, false); 1189 } 1190 1191 static void handle_vendor_event(struct xhci_hcd *xhci, 1192 union xhci_trb *event) 1193 { 1194 u32 trb_type; 1195 1196 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3])); 1197 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1198 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1199 handle_cmd_completion(xhci, &event->event_cmd); 1200 } 1201 1202 /* @port_id: the one-based port ID from the hardware (indexed from array of all 1203 * port registers -- USB 3.0 and USB 2.0). 1204 * 1205 * Returns a zero-based port number, which is suitable for indexing into each of 1206 * the split roothubs' port arrays and bus state arrays. 1207 */ 1208 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd, 1209 struct xhci_hcd *xhci, u32 port_id) 1210 { 1211 unsigned int i; 1212 unsigned int num_similar_speed_ports = 0; 1213 1214 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[], 1215 * and usb2_ports are 0-based indexes. Count the number of similar 1216 * speed ports, up to 1 port before this port. 1217 */ 1218 for (i = 0; i < (port_id - 1); i++) { 1219 u8 port_speed = xhci->port_array[i]; 1220 1221 /* 1222 * Skip ports that don't have known speeds, or have duplicate 1223 * Extended Capabilities port speed entries. 1224 */ 1225 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY) 1226 continue; 1227 1228 /* 1229 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and 1230 * 1.1 ports are under the USB 2.0 hub. If the port speed 1231 * matches the device speed, it's a similar speed port. 1232 */ 1233 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3)) 1234 num_similar_speed_ports++; 1235 } 1236 return num_similar_speed_ports; 1237 } 1238 1239 static void handle_port_status(struct xhci_hcd *xhci, 1240 union xhci_trb *event) 1241 { 1242 struct usb_hcd *hcd; 1243 u32 port_id; 1244 u32 temp, temp1; 1245 int max_ports; 1246 int slot_id; 1247 unsigned int faked_port_index; 1248 u8 major_revision; 1249 struct xhci_bus_state *bus_state; 1250 __le32 __iomem **port_array; 1251 bool bogus_port_status = false; 1252 1253 /* Port status change events always have a successful completion code */ 1254 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) { 1255 xhci_warn(xhci, "WARN: xHC returned failed port status event\n"); 1256 xhci->error_bitmask |= 1 << 8; 1257 } 1258 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1259 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id); 1260 1261 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1262 if ((port_id <= 0) || (port_id > max_ports)) { 1263 xhci_warn(xhci, "Invalid port id %d\n", port_id); 1264 bogus_port_status = true; 1265 goto cleanup; 1266 } 1267 1268 /* Figure out which usb_hcd this port is attached to: 1269 * is it a USB 3.0 port or a USB 2.0/1.1 port? 1270 */ 1271 major_revision = xhci->port_array[port_id - 1]; 1272 if (major_revision == 0) { 1273 xhci_warn(xhci, "Event for port %u not in " 1274 "Extended Capabilities, ignoring.\n", 1275 port_id); 1276 bogus_port_status = true; 1277 goto cleanup; 1278 } 1279 if (major_revision == DUPLICATE_ENTRY) { 1280 xhci_warn(xhci, "Event for port %u duplicated in" 1281 "Extended Capabilities, ignoring.\n", 1282 port_id); 1283 bogus_port_status = true; 1284 goto cleanup; 1285 } 1286 1287 /* 1288 * Hardware port IDs reported by a Port Status Change Event include USB 1289 * 3.0 and USB 2.0 ports. We want to check if the port has reported a 1290 * resume event, but we first need to translate the hardware port ID 1291 * into the index into the ports on the correct split roothub, and the 1292 * correct bus_state structure. 1293 */ 1294 /* Find the right roothub. */ 1295 hcd = xhci_to_hcd(xhci); 1296 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3)) 1297 hcd = xhci->shared_hcd; 1298 bus_state = &xhci->bus_state[hcd_index(hcd)]; 1299 if (hcd->speed == HCD_USB3) 1300 port_array = xhci->usb3_ports; 1301 else 1302 port_array = xhci->usb2_ports; 1303 /* Find the faked port hub number */ 1304 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci, 1305 port_id); 1306 1307 temp = xhci_readl(xhci, port_array[faked_port_index]); 1308 if (hcd->state == HC_STATE_SUSPENDED) { 1309 xhci_dbg(xhci, "resume root hub\n"); 1310 usb_hcd_resume_root_hub(hcd); 1311 } 1312 1313 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) { 1314 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1315 1316 temp1 = xhci_readl(xhci, &xhci->op_regs->command); 1317 if (!(temp1 & CMD_RUN)) { 1318 xhci_warn(xhci, "xHC is not running.\n"); 1319 goto cleanup; 1320 } 1321 1322 if (DEV_SUPERSPEED(temp)) { 1323 xhci_dbg(xhci, "resume SS port %d\n", port_id); 1324 xhci_set_link_state(xhci, port_array, faked_port_index, 1325 XDEV_U0); 1326 slot_id = xhci_find_slot_id_by_port(hcd, xhci, 1327 faked_port_index); 1328 if (!slot_id) { 1329 xhci_dbg(xhci, "slot_id is zero\n"); 1330 goto cleanup; 1331 } 1332 xhci_ring_device(xhci, slot_id); 1333 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1334 /* Clear PORT_PLC */ 1335 xhci_test_and_clear_bit(xhci, port_array, 1336 faked_port_index, PORT_PLC); 1337 } else { 1338 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1339 bus_state->resume_done[faked_port_index] = jiffies + 1340 msecs_to_jiffies(20); 1341 mod_timer(&hcd->rh_timer, 1342 bus_state->resume_done[faked_port_index]); 1343 /* Do the rest in GetPortStatus */ 1344 } 1345 } 1346 1347 if (hcd->speed != HCD_USB3) 1348 xhci_test_and_clear_bit(xhci, port_array, faked_port_index, 1349 PORT_PLC); 1350 1351 cleanup: 1352 /* Update event ring dequeue pointer before dropping the lock */ 1353 inc_deq(xhci, xhci->event_ring, true); 1354 1355 /* Don't make the USB core poll the roothub if we got a bad port status 1356 * change event. Besides, at that point we can't tell which roothub 1357 * (USB 2.0 or USB 3.0) to kick. 1358 */ 1359 if (bogus_port_status) 1360 return; 1361 1362 spin_unlock(&xhci->lock); 1363 /* Pass this up to the core */ 1364 usb_hcd_poll_rh_status(hcd); 1365 spin_lock(&xhci->lock); 1366 } 1367 1368 /* 1369 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 1370 * at end_trb, which may be in another segment. If the suspect DMA address is a 1371 * TRB in this TD, this function returns that TRB's segment. Otherwise it 1372 * returns 0. 1373 */ 1374 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg, 1375 union xhci_trb *start_trb, 1376 union xhci_trb *end_trb, 1377 dma_addr_t suspect_dma) 1378 { 1379 dma_addr_t start_dma; 1380 dma_addr_t end_seg_dma; 1381 dma_addr_t end_trb_dma; 1382 struct xhci_segment *cur_seg; 1383 1384 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 1385 cur_seg = start_seg; 1386 1387 do { 1388 if (start_dma == 0) 1389 return NULL; 1390 /* We may get an event for a Link TRB in the middle of a TD */ 1391 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 1392 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 1393 /* If the end TRB isn't in this segment, this is set to 0 */ 1394 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 1395 1396 if (end_trb_dma > 0) { 1397 /* The end TRB is in this segment, so suspect should be here */ 1398 if (start_dma <= end_trb_dma) { 1399 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 1400 return cur_seg; 1401 } else { 1402 /* Case for one segment with 1403 * a TD wrapped around to the top 1404 */ 1405 if ((suspect_dma >= start_dma && 1406 suspect_dma <= end_seg_dma) || 1407 (suspect_dma >= cur_seg->dma && 1408 suspect_dma <= end_trb_dma)) 1409 return cur_seg; 1410 } 1411 return NULL; 1412 } else { 1413 /* Might still be somewhere in this segment */ 1414 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 1415 return cur_seg; 1416 } 1417 cur_seg = cur_seg->next; 1418 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 1419 } while (cur_seg != start_seg); 1420 1421 return NULL; 1422 } 1423 1424 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, 1425 unsigned int slot_id, unsigned int ep_index, 1426 unsigned int stream_id, 1427 struct xhci_td *td, union xhci_trb *event_trb) 1428 { 1429 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 1430 ep->ep_state |= EP_HALTED; 1431 ep->stopped_td = td; 1432 ep->stopped_trb = event_trb; 1433 ep->stopped_stream = stream_id; 1434 1435 xhci_queue_reset_ep(xhci, slot_id, ep_index); 1436 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index); 1437 1438 ep->stopped_td = NULL; 1439 ep->stopped_trb = NULL; 1440 ep->stopped_stream = 0; 1441 1442 xhci_ring_cmd_db(xhci); 1443 } 1444 1445 /* Check if an error has halted the endpoint ring. The class driver will 1446 * cleanup the halt for a non-default control endpoint if we indicate a stall. 1447 * However, a babble and other errors also halt the endpoint ring, and the class 1448 * driver won't clear the halt in that case, so we need to issue a Set Transfer 1449 * Ring Dequeue Pointer command manually. 1450 */ 1451 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 1452 struct xhci_ep_ctx *ep_ctx, 1453 unsigned int trb_comp_code) 1454 { 1455 /* TRB completion codes that may require a manual halt cleanup */ 1456 if (trb_comp_code == COMP_TX_ERR || 1457 trb_comp_code == COMP_BABBLE || 1458 trb_comp_code == COMP_SPLIT_ERR) 1459 /* The 0.96 spec says a babbling control endpoint 1460 * is not halted. The 0.96 spec says it is. Some HW 1461 * claims to be 0.95 compliant, but it halts the control 1462 * endpoint anyway. Check if a babble halted the 1463 * endpoint. 1464 */ 1465 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1466 cpu_to_le32(EP_STATE_HALTED)) 1467 return 1; 1468 1469 return 0; 1470 } 1471 1472 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 1473 { 1474 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 1475 /* Vendor defined "informational" completion code, 1476 * treat as not-an-error. 1477 */ 1478 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 1479 trb_comp_code); 1480 xhci_dbg(xhci, "Treating code as success.\n"); 1481 return 1; 1482 } 1483 return 0; 1484 } 1485 1486 /* 1487 * Finish the td processing, remove the td from td list; 1488 * Return 1 if the urb can be given back. 1489 */ 1490 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, 1491 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1492 struct xhci_virt_ep *ep, int *status, bool skip) 1493 { 1494 struct xhci_virt_device *xdev; 1495 struct xhci_ring *ep_ring; 1496 unsigned int slot_id; 1497 int ep_index; 1498 struct urb *urb = NULL; 1499 struct xhci_ep_ctx *ep_ctx; 1500 int ret = 0; 1501 struct urb_priv *urb_priv; 1502 u32 trb_comp_code; 1503 1504 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1505 xdev = xhci->devs[slot_id]; 1506 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1507 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1508 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1509 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1510 1511 if (skip) 1512 goto td_cleanup; 1513 1514 if (trb_comp_code == COMP_STOP_INVAL || 1515 trb_comp_code == COMP_STOP) { 1516 /* The Endpoint Stop Command completion will take care of any 1517 * stopped TDs. A stopped TD may be restarted, so don't update 1518 * the ring dequeue pointer or take this TD off any lists yet. 1519 */ 1520 ep->stopped_td = td; 1521 ep->stopped_trb = event_trb; 1522 return 0; 1523 } else { 1524 if (trb_comp_code == COMP_STALL) { 1525 /* The transfer is completed from the driver's 1526 * perspective, but we need to issue a set dequeue 1527 * command for this stalled endpoint to move the dequeue 1528 * pointer past the TD. We can't do that here because 1529 * the halt condition must be cleared first. Let the 1530 * USB class driver clear the stall later. 1531 */ 1532 ep->stopped_td = td; 1533 ep->stopped_trb = event_trb; 1534 ep->stopped_stream = ep_ring->stream_id; 1535 } else if (xhci_requires_manual_halt_cleanup(xhci, 1536 ep_ctx, trb_comp_code)) { 1537 /* Other types of errors halt the endpoint, but the 1538 * class driver doesn't call usb_reset_endpoint() unless 1539 * the error is -EPIPE. Clear the halted status in the 1540 * xHCI hardware manually. 1541 */ 1542 xhci_cleanup_halted_endpoint(xhci, 1543 slot_id, ep_index, ep_ring->stream_id, 1544 td, event_trb); 1545 } else { 1546 /* Update ring dequeue pointer */ 1547 while (ep_ring->dequeue != td->last_trb) 1548 inc_deq(xhci, ep_ring, false); 1549 inc_deq(xhci, ep_ring, false); 1550 } 1551 1552 td_cleanup: 1553 /* Clean up the endpoint's TD list */ 1554 urb = td->urb; 1555 urb_priv = urb->hcpriv; 1556 1557 /* Do one last check of the actual transfer length. 1558 * If the host controller said we transferred more data than 1559 * the buffer length, urb->actual_length will be a very big 1560 * number (since it's unsigned). Play it safe and say we didn't 1561 * transfer anything. 1562 */ 1563 if (urb->actual_length > urb->transfer_buffer_length) { 1564 xhci_warn(xhci, "URB transfer length is wrong, " 1565 "xHC issue? req. len = %u, " 1566 "act. len = %u\n", 1567 urb->transfer_buffer_length, 1568 urb->actual_length); 1569 urb->actual_length = 0; 1570 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1571 *status = -EREMOTEIO; 1572 else 1573 *status = 0; 1574 } 1575 list_del_init(&td->td_list); 1576 /* Was this TD slated to be cancelled but completed anyway? */ 1577 if (!list_empty(&td->cancelled_td_list)) 1578 list_del_init(&td->cancelled_td_list); 1579 1580 urb_priv->td_cnt++; 1581 /* Giveback the urb when all the tds are completed */ 1582 if (urb_priv->td_cnt == urb_priv->length) { 1583 ret = 1; 1584 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 1585 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 1586 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs 1587 == 0) { 1588 if (xhci->quirks & XHCI_AMD_PLL_FIX) 1589 usb_amd_quirk_pll_enable(); 1590 } 1591 } 1592 } 1593 } 1594 1595 return ret; 1596 } 1597 1598 /* 1599 * Process control tds, update urb status and actual_length. 1600 */ 1601 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, 1602 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1603 struct xhci_virt_ep *ep, int *status) 1604 { 1605 struct xhci_virt_device *xdev; 1606 struct xhci_ring *ep_ring; 1607 unsigned int slot_id; 1608 int ep_index; 1609 struct xhci_ep_ctx *ep_ctx; 1610 u32 trb_comp_code; 1611 1612 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1613 xdev = xhci->devs[slot_id]; 1614 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1615 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1616 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1617 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1618 1619 switch (trb_comp_code) { 1620 case COMP_SUCCESS: 1621 if (event_trb == ep_ring->dequeue) { 1622 xhci_warn(xhci, "WARN: Success on ctrl setup TRB " 1623 "without IOC set??\n"); 1624 *status = -ESHUTDOWN; 1625 } else if (event_trb != td->last_trb) { 1626 xhci_warn(xhci, "WARN: Success on ctrl data TRB " 1627 "without IOC set??\n"); 1628 *status = -ESHUTDOWN; 1629 } else { 1630 *status = 0; 1631 } 1632 break; 1633 case COMP_SHORT_TX: 1634 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1635 *status = -EREMOTEIO; 1636 else 1637 *status = 0; 1638 break; 1639 case COMP_STOP_INVAL: 1640 case COMP_STOP: 1641 return finish_td(xhci, td, event_trb, event, ep, status, false); 1642 default: 1643 if (!xhci_requires_manual_halt_cleanup(xhci, 1644 ep_ctx, trb_comp_code)) 1645 break; 1646 xhci_dbg(xhci, "TRB error code %u, " 1647 "halted endpoint index = %u\n", 1648 trb_comp_code, ep_index); 1649 /* else fall through */ 1650 case COMP_STALL: 1651 /* Did we transfer part of the data (middle) phase? */ 1652 if (event_trb != ep_ring->dequeue && 1653 event_trb != td->last_trb) 1654 td->urb->actual_length = 1655 td->urb->transfer_buffer_length 1656 - TRB_LEN(le32_to_cpu(event->transfer_len)); 1657 else 1658 td->urb->actual_length = 0; 1659 1660 xhci_cleanup_halted_endpoint(xhci, 1661 slot_id, ep_index, 0, td, event_trb); 1662 return finish_td(xhci, td, event_trb, event, ep, status, true); 1663 } 1664 /* 1665 * Did we transfer any data, despite the errors that might have 1666 * happened? I.e. did we get past the setup stage? 1667 */ 1668 if (event_trb != ep_ring->dequeue) { 1669 /* The event was for the status stage */ 1670 if (event_trb == td->last_trb) { 1671 if (td->urb->actual_length != 0) { 1672 /* Don't overwrite a previously set error code 1673 */ 1674 if ((*status == -EINPROGRESS || *status == 0) && 1675 (td->urb->transfer_flags 1676 & URB_SHORT_NOT_OK)) 1677 /* Did we already see a short data 1678 * stage? */ 1679 *status = -EREMOTEIO; 1680 } else { 1681 td->urb->actual_length = 1682 td->urb->transfer_buffer_length; 1683 } 1684 } else { 1685 /* Maybe the event was for the data stage? */ 1686 td->urb->actual_length = 1687 td->urb->transfer_buffer_length - 1688 TRB_LEN(le32_to_cpu(event->transfer_len)); 1689 xhci_dbg(xhci, "Waiting for status " 1690 "stage event\n"); 1691 return 0; 1692 } 1693 } 1694 1695 return finish_td(xhci, td, event_trb, event, ep, status, false); 1696 } 1697 1698 /* 1699 * Process isochronous tds, update urb packet status and actual_length. 1700 */ 1701 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 1702 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1703 struct xhci_virt_ep *ep, int *status) 1704 { 1705 struct xhci_ring *ep_ring; 1706 struct urb_priv *urb_priv; 1707 int idx; 1708 int len = 0; 1709 union xhci_trb *cur_trb; 1710 struct xhci_segment *cur_seg; 1711 struct usb_iso_packet_descriptor *frame; 1712 u32 trb_comp_code; 1713 bool skip_td = false; 1714 1715 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1716 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1717 urb_priv = td->urb->hcpriv; 1718 idx = urb_priv->td_cnt; 1719 frame = &td->urb->iso_frame_desc[idx]; 1720 1721 /* handle completion code */ 1722 switch (trb_comp_code) { 1723 case COMP_SUCCESS: 1724 frame->status = 0; 1725 break; 1726 case COMP_SHORT_TX: 1727 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 1728 -EREMOTEIO : 0; 1729 break; 1730 case COMP_BW_OVER: 1731 frame->status = -ECOMM; 1732 skip_td = true; 1733 break; 1734 case COMP_BUFF_OVER: 1735 case COMP_BABBLE: 1736 frame->status = -EOVERFLOW; 1737 skip_td = true; 1738 break; 1739 case COMP_DEV_ERR: 1740 case COMP_STALL: 1741 frame->status = -EPROTO; 1742 skip_td = true; 1743 break; 1744 case COMP_STOP: 1745 case COMP_STOP_INVAL: 1746 break; 1747 default: 1748 frame->status = -1; 1749 break; 1750 } 1751 1752 if (trb_comp_code == COMP_SUCCESS || skip_td) { 1753 frame->actual_length = frame->length; 1754 td->urb->actual_length += frame->length; 1755 } else { 1756 for (cur_trb = ep_ring->dequeue, 1757 cur_seg = ep_ring->deq_seg; cur_trb != event_trb; 1758 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 1759 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 1760 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 1761 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 1762 } 1763 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 1764 TRB_LEN(le32_to_cpu(event->transfer_len)); 1765 1766 if (trb_comp_code != COMP_STOP_INVAL) { 1767 frame->actual_length = len; 1768 td->urb->actual_length += len; 1769 } 1770 } 1771 1772 return finish_td(xhci, td, event_trb, event, ep, status, false); 1773 } 1774 1775 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 1776 struct xhci_transfer_event *event, 1777 struct xhci_virt_ep *ep, int *status) 1778 { 1779 struct xhci_ring *ep_ring; 1780 struct urb_priv *urb_priv; 1781 struct usb_iso_packet_descriptor *frame; 1782 int idx; 1783 1784 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1785 urb_priv = td->urb->hcpriv; 1786 idx = urb_priv->td_cnt; 1787 frame = &td->urb->iso_frame_desc[idx]; 1788 1789 /* The transfer is partly done. */ 1790 frame->status = -EXDEV; 1791 1792 /* calc actual length */ 1793 frame->actual_length = 0; 1794 1795 /* Update ring dequeue pointer */ 1796 while (ep_ring->dequeue != td->last_trb) 1797 inc_deq(xhci, ep_ring, false); 1798 inc_deq(xhci, ep_ring, false); 1799 1800 return finish_td(xhci, td, NULL, event, ep, status, true); 1801 } 1802 1803 /* 1804 * Process bulk and interrupt tds, update urb status and actual_length. 1805 */ 1806 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, 1807 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1808 struct xhci_virt_ep *ep, int *status) 1809 { 1810 struct xhci_ring *ep_ring; 1811 union xhci_trb *cur_trb; 1812 struct xhci_segment *cur_seg; 1813 u32 trb_comp_code; 1814 1815 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1816 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1817 1818 switch (trb_comp_code) { 1819 case COMP_SUCCESS: 1820 /* Double check that the HW transferred everything. */ 1821 if (event_trb != td->last_trb) { 1822 xhci_warn(xhci, "WARN Successful completion " 1823 "on short TX\n"); 1824 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1825 *status = -EREMOTEIO; 1826 else 1827 *status = 0; 1828 } else { 1829 *status = 0; 1830 } 1831 break; 1832 case COMP_SHORT_TX: 1833 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1834 *status = -EREMOTEIO; 1835 else 1836 *status = 0; 1837 break; 1838 default: 1839 /* Others already handled above */ 1840 break; 1841 } 1842 if (trb_comp_code == COMP_SHORT_TX) 1843 xhci_dbg(xhci, "ep %#x - asked for %d bytes, " 1844 "%d bytes untransferred\n", 1845 td->urb->ep->desc.bEndpointAddress, 1846 td->urb->transfer_buffer_length, 1847 TRB_LEN(le32_to_cpu(event->transfer_len))); 1848 /* Fast path - was this the last TRB in the TD for this URB? */ 1849 if (event_trb == td->last_trb) { 1850 if (TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 1851 td->urb->actual_length = 1852 td->urb->transfer_buffer_length - 1853 TRB_LEN(le32_to_cpu(event->transfer_len)); 1854 if (td->urb->transfer_buffer_length < 1855 td->urb->actual_length) { 1856 xhci_warn(xhci, "HC gave bad length " 1857 "of %d bytes left\n", 1858 TRB_LEN(le32_to_cpu(event->transfer_len))); 1859 td->urb->actual_length = 0; 1860 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1861 *status = -EREMOTEIO; 1862 else 1863 *status = 0; 1864 } 1865 /* Don't overwrite a previously set error code */ 1866 if (*status == -EINPROGRESS) { 1867 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1868 *status = -EREMOTEIO; 1869 else 1870 *status = 0; 1871 } 1872 } else { 1873 td->urb->actual_length = 1874 td->urb->transfer_buffer_length; 1875 /* Ignore a short packet completion if the 1876 * untransferred length was zero. 1877 */ 1878 if (*status == -EREMOTEIO) 1879 *status = 0; 1880 } 1881 } else { 1882 /* Slow path - walk the list, starting from the dequeue 1883 * pointer, to get the actual length transferred. 1884 */ 1885 td->urb->actual_length = 0; 1886 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg; 1887 cur_trb != event_trb; 1888 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 1889 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 1890 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 1891 td->urb->actual_length += 1892 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 1893 } 1894 /* If the ring didn't stop on a Link or No-op TRB, add 1895 * in the actual bytes transferred from the Normal TRB 1896 */ 1897 if (trb_comp_code != COMP_STOP_INVAL) 1898 td->urb->actual_length += 1899 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 1900 TRB_LEN(le32_to_cpu(event->transfer_len)); 1901 } 1902 1903 return finish_td(xhci, td, event_trb, event, ep, status, false); 1904 } 1905 1906 /* 1907 * If this function returns an error condition, it means it got a Transfer 1908 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 1909 * At this point, the host controller is probably hosed and should be reset. 1910 */ 1911 static int handle_tx_event(struct xhci_hcd *xhci, 1912 struct xhci_transfer_event *event) 1913 { 1914 struct xhci_virt_device *xdev; 1915 struct xhci_virt_ep *ep; 1916 struct xhci_ring *ep_ring; 1917 unsigned int slot_id; 1918 int ep_index; 1919 struct xhci_td *td = NULL; 1920 dma_addr_t event_dma; 1921 struct xhci_segment *event_seg; 1922 union xhci_trb *event_trb; 1923 struct urb *urb = NULL; 1924 int status = -EINPROGRESS; 1925 struct urb_priv *urb_priv; 1926 struct xhci_ep_ctx *ep_ctx; 1927 struct list_head *tmp; 1928 u32 trb_comp_code; 1929 int ret = 0; 1930 int td_num = 0; 1931 1932 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1933 xdev = xhci->devs[slot_id]; 1934 if (!xdev) { 1935 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n"); 1936 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 1937 (unsigned long long) xhci_trb_virt_to_dma( 1938 xhci->event_ring->deq_seg, 1939 xhci->event_ring->dequeue), 1940 lower_32_bits(le64_to_cpu(event->buffer)), 1941 upper_32_bits(le64_to_cpu(event->buffer)), 1942 le32_to_cpu(event->transfer_len), 1943 le32_to_cpu(event->flags)); 1944 xhci_dbg(xhci, "Event ring:\n"); 1945 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 1946 return -ENODEV; 1947 } 1948 1949 /* Endpoint ID is 1 based, our index is zero based */ 1950 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1951 ep = &xdev->eps[ep_index]; 1952 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1953 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1954 if (!ep_ring || 1955 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) == 1956 EP_STATE_DISABLED) { 1957 xhci_err(xhci, "ERROR Transfer event for disabled endpoint " 1958 "or incorrect stream ring\n"); 1959 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 1960 (unsigned long long) xhci_trb_virt_to_dma( 1961 xhci->event_ring->deq_seg, 1962 xhci->event_ring->dequeue), 1963 lower_32_bits(le64_to_cpu(event->buffer)), 1964 upper_32_bits(le64_to_cpu(event->buffer)), 1965 le32_to_cpu(event->transfer_len), 1966 le32_to_cpu(event->flags)); 1967 xhci_dbg(xhci, "Event ring:\n"); 1968 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 1969 return -ENODEV; 1970 } 1971 1972 /* Count current td numbers if ep->skip is set */ 1973 if (ep->skip) { 1974 list_for_each(tmp, &ep_ring->td_list) 1975 td_num++; 1976 } 1977 1978 event_dma = le64_to_cpu(event->buffer); 1979 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1980 /* Look for common error cases */ 1981 switch (trb_comp_code) { 1982 /* Skip codes that require special handling depending on 1983 * transfer type 1984 */ 1985 case COMP_SUCCESS: 1986 case COMP_SHORT_TX: 1987 break; 1988 case COMP_STOP: 1989 xhci_dbg(xhci, "Stopped on Transfer TRB\n"); 1990 break; 1991 case COMP_STOP_INVAL: 1992 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n"); 1993 break; 1994 case COMP_STALL: 1995 xhci_dbg(xhci, "Stalled endpoint\n"); 1996 ep->ep_state |= EP_HALTED; 1997 status = -EPIPE; 1998 break; 1999 case COMP_TRB_ERR: 2000 xhci_warn(xhci, "WARN: TRB error on endpoint\n"); 2001 status = -EILSEQ; 2002 break; 2003 case COMP_SPLIT_ERR: 2004 case COMP_TX_ERR: 2005 xhci_dbg(xhci, "Transfer error on endpoint\n"); 2006 status = -EPROTO; 2007 break; 2008 case COMP_BABBLE: 2009 xhci_dbg(xhci, "Babble error on endpoint\n"); 2010 status = -EOVERFLOW; 2011 break; 2012 case COMP_DB_ERR: 2013 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n"); 2014 status = -ENOSR; 2015 break; 2016 case COMP_BW_OVER: 2017 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n"); 2018 break; 2019 case COMP_BUFF_OVER: 2020 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n"); 2021 break; 2022 case COMP_UNDERRUN: 2023 /* 2024 * When the Isoch ring is empty, the xHC will generate 2025 * a Ring Overrun Event for IN Isoch endpoint or Ring 2026 * Underrun Event for OUT Isoch endpoint. 2027 */ 2028 xhci_dbg(xhci, "underrun event on endpoint\n"); 2029 if (!list_empty(&ep_ring->td_list)) 2030 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2031 "still with TDs queued?\n", 2032 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2033 ep_index); 2034 goto cleanup; 2035 case COMP_OVERRUN: 2036 xhci_dbg(xhci, "overrun event on endpoint\n"); 2037 if (!list_empty(&ep_ring->td_list)) 2038 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2039 "still with TDs queued?\n", 2040 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2041 ep_index); 2042 goto cleanup; 2043 case COMP_DEV_ERR: 2044 xhci_warn(xhci, "WARN: detect an incompatible device"); 2045 status = -EPROTO; 2046 break; 2047 case COMP_MISSED_INT: 2048 /* 2049 * When encounter missed service error, one or more isoc tds 2050 * may be missed by xHC. 2051 * Set skip flag of the ep_ring; Complete the missed tds as 2052 * short transfer when process the ep_ring next time. 2053 */ 2054 ep->skip = true; 2055 xhci_dbg(xhci, "Miss service interval error, set skip flag\n"); 2056 goto cleanup; 2057 default: 2058 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2059 status = 0; 2060 break; 2061 } 2062 xhci_warn(xhci, "ERROR Unknown event condition, HC probably " 2063 "busted\n"); 2064 goto cleanup; 2065 } 2066 2067 do { 2068 /* This TRB should be in the TD at the head of this ring's 2069 * TD list. 2070 */ 2071 if (list_empty(&ep_ring->td_list)) { 2072 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d " 2073 "with no TDs queued?\n", 2074 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2075 ep_index); 2076 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n", 2077 (le32_to_cpu(event->flags) & 2078 TRB_TYPE_BITMASK)>>10); 2079 xhci_print_trb_offsets(xhci, (union xhci_trb *) event); 2080 if (ep->skip) { 2081 ep->skip = false; 2082 xhci_dbg(xhci, "td_list is empty while skip " 2083 "flag set. Clear skip flag.\n"); 2084 } 2085 ret = 0; 2086 goto cleanup; 2087 } 2088 2089 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2090 if (ep->skip && td_num == 0) { 2091 ep->skip = false; 2092 xhci_dbg(xhci, "All tds on the ep_ring skipped. " 2093 "Clear skip flag.\n"); 2094 ret = 0; 2095 goto cleanup; 2096 } 2097 2098 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list); 2099 if (ep->skip) 2100 td_num--; 2101 2102 /* Is this a TRB in the currently executing TD? */ 2103 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue, 2104 td->last_trb, event_dma); 2105 2106 /* 2107 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2108 * is not in the current TD pointed by ep_ring->dequeue because 2109 * that the hardware dequeue pointer still at the previous TRB 2110 * of the current TD. The previous TRB maybe a Link TD or the 2111 * last TRB of the previous TD. The command completion handle 2112 * will take care the rest. 2113 */ 2114 if (!event_seg && trb_comp_code == COMP_STOP_INVAL) { 2115 ret = 0; 2116 goto cleanup; 2117 } 2118 2119 if (!event_seg) { 2120 if (!ep->skip || 2121 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2122 /* Some host controllers give a spurious 2123 * successful event after a short transfer. 2124 * Ignore it. 2125 */ 2126 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2127 ep_ring->last_td_was_short) { 2128 ep_ring->last_td_was_short = false; 2129 ret = 0; 2130 goto cleanup; 2131 } 2132 /* HC is busted, give up! */ 2133 xhci_err(xhci, 2134 "ERROR Transfer event TRB DMA ptr not " 2135 "part of current TD\n"); 2136 return -ESHUTDOWN; 2137 } 2138 2139 ret = skip_isoc_td(xhci, td, event, ep, &status); 2140 goto cleanup; 2141 } 2142 if (trb_comp_code == COMP_SHORT_TX) 2143 ep_ring->last_td_was_short = true; 2144 else 2145 ep_ring->last_td_was_short = false; 2146 2147 if (ep->skip) { 2148 xhci_dbg(xhci, "Found td. Clear skip flag.\n"); 2149 ep->skip = false; 2150 } 2151 2152 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) / 2153 sizeof(*event_trb)]; 2154 /* 2155 * No-op TRB should not trigger interrupts. 2156 * If event_trb is a no-op TRB, it means the 2157 * corresponding TD has been cancelled. Just ignore 2158 * the TD. 2159 */ 2160 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) { 2161 xhci_dbg(xhci, 2162 "event_trb is a no-op TRB. Skip it\n"); 2163 goto cleanup; 2164 } 2165 2166 /* Now update the urb's actual_length and give back to 2167 * the core 2168 */ 2169 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2170 ret = process_ctrl_td(xhci, td, event_trb, event, ep, 2171 &status); 2172 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2173 ret = process_isoc_td(xhci, td, event_trb, event, ep, 2174 &status); 2175 else 2176 ret = process_bulk_intr_td(xhci, td, event_trb, event, 2177 ep, &status); 2178 2179 cleanup: 2180 /* 2181 * Do not update event ring dequeue pointer if ep->skip is set. 2182 * Will roll back to continue process missed tds. 2183 */ 2184 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) { 2185 inc_deq(xhci, xhci->event_ring, true); 2186 } 2187 2188 if (ret) { 2189 urb = td->urb; 2190 urb_priv = urb->hcpriv; 2191 /* Leave the TD around for the reset endpoint function 2192 * to use(but only if it's not a control endpoint, 2193 * since we already queued the Set TR dequeue pointer 2194 * command for stalled control endpoints). 2195 */ 2196 if (usb_endpoint_xfer_control(&urb->ep->desc) || 2197 (trb_comp_code != COMP_STALL && 2198 trb_comp_code != COMP_BABBLE)) 2199 xhci_urb_free_priv(xhci, urb_priv); 2200 2201 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 2202 if ((urb->actual_length != urb->transfer_buffer_length && 2203 (urb->transfer_flags & 2204 URB_SHORT_NOT_OK)) || 2205 (status != 0 && 2206 !usb_endpoint_xfer_isoc(&urb->ep->desc))) 2207 xhci_dbg(xhci, "Giveback URB %p, len = %d, " 2208 "expected = %x, status = %d\n", 2209 urb, urb->actual_length, 2210 urb->transfer_buffer_length, 2211 status); 2212 spin_unlock(&xhci->lock); 2213 /* EHCI, UHCI, and OHCI always unconditionally set the 2214 * urb->status of an isochronous endpoint to 0. 2215 */ 2216 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 2217 status = 0; 2218 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status); 2219 spin_lock(&xhci->lock); 2220 } 2221 2222 /* 2223 * If ep->skip is set, it means there are missed tds on the 2224 * endpoint ring need to take care of. 2225 * Process them as short transfer until reach the td pointed by 2226 * the event. 2227 */ 2228 } while (ep->skip && trb_comp_code != COMP_MISSED_INT); 2229 2230 return 0; 2231 } 2232 2233 /* 2234 * This function handles all OS-owned events on the event ring. It may drop 2235 * xhci->lock between event processing (e.g. to pass up port status changes). 2236 * Returns >0 for "possibly more events to process" (caller should call again), 2237 * otherwise 0 if done. In future, <0 returns should indicate error code. 2238 */ 2239 static int xhci_handle_event(struct xhci_hcd *xhci) 2240 { 2241 union xhci_trb *event; 2242 int update_ptrs = 1; 2243 int ret; 2244 2245 if (!xhci->event_ring || !xhci->event_ring->dequeue) { 2246 xhci->error_bitmask |= 1 << 1; 2247 return 0; 2248 } 2249 2250 event = xhci->event_ring->dequeue; 2251 /* Does the HC or OS own the TRB? */ 2252 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2253 xhci->event_ring->cycle_state) { 2254 xhci->error_bitmask |= 1 << 2; 2255 return 0; 2256 } 2257 2258 /* 2259 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2260 * speculative reads of the event's flags/data below. 2261 */ 2262 rmb(); 2263 /* FIXME: Handle more event types. */ 2264 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) { 2265 case TRB_TYPE(TRB_COMPLETION): 2266 handle_cmd_completion(xhci, &event->event_cmd); 2267 break; 2268 case TRB_TYPE(TRB_PORT_STATUS): 2269 handle_port_status(xhci, event); 2270 update_ptrs = 0; 2271 break; 2272 case TRB_TYPE(TRB_TRANSFER): 2273 ret = handle_tx_event(xhci, &event->trans_event); 2274 if (ret < 0) 2275 xhci->error_bitmask |= 1 << 9; 2276 else 2277 update_ptrs = 0; 2278 break; 2279 default: 2280 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >= 2281 TRB_TYPE(48)) 2282 handle_vendor_event(xhci, event); 2283 else 2284 xhci->error_bitmask |= 1 << 3; 2285 } 2286 /* Any of the above functions may drop and re-acquire the lock, so check 2287 * to make sure a watchdog timer didn't mark the host as non-responsive. 2288 */ 2289 if (xhci->xhc_state & XHCI_STATE_DYING) { 2290 xhci_dbg(xhci, "xHCI host dying, returning from " 2291 "event handler.\n"); 2292 return 0; 2293 } 2294 2295 if (update_ptrs) 2296 /* Update SW event ring dequeue pointer */ 2297 inc_deq(xhci, xhci->event_ring, true); 2298 2299 /* Are there more items on the event ring? Caller will call us again to 2300 * check. 2301 */ 2302 return 1; 2303 } 2304 2305 /* 2306 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 2307 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 2308 * indicators of an event TRB error, but we check the status *first* to be safe. 2309 */ 2310 irqreturn_t xhci_irq(struct usb_hcd *hcd) 2311 { 2312 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2313 u32 status; 2314 union xhci_trb *trb; 2315 u64 temp_64; 2316 union xhci_trb *event_ring_deq; 2317 dma_addr_t deq; 2318 2319 spin_lock(&xhci->lock); 2320 trb = xhci->event_ring->dequeue; 2321 /* Check if the xHC generated the interrupt, or the irq is shared */ 2322 status = xhci_readl(xhci, &xhci->op_regs->status); 2323 if (status == 0xffffffff) 2324 goto hw_died; 2325 2326 if (!(status & STS_EINT)) { 2327 spin_unlock(&xhci->lock); 2328 return IRQ_NONE; 2329 } 2330 if (status & STS_FATAL) { 2331 xhci_warn(xhci, "WARNING: Host System Error\n"); 2332 xhci_halt(xhci); 2333 hw_died: 2334 spin_unlock(&xhci->lock); 2335 return -ESHUTDOWN; 2336 } 2337 2338 /* 2339 * Clear the op reg interrupt status first, 2340 * so we can receive interrupts from other MSI-X interrupters. 2341 * Write 1 to clear the interrupt status. 2342 */ 2343 status |= STS_EINT; 2344 xhci_writel(xhci, status, &xhci->op_regs->status); 2345 /* FIXME when MSI-X is supported and there are multiple vectors */ 2346 /* Clear the MSI-X event interrupt status */ 2347 2348 if (hcd->irq != -1) { 2349 u32 irq_pending; 2350 /* Acknowledge the PCI interrupt */ 2351 irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending); 2352 irq_pending |= 0x3; 2353 xhci_writel(xhci, irq_pending, &xhci->ir_set->irq_pending); 2354 } 2355 2356 if (xhci->xhc_state & XHCI_STATE_DYING) { 2357 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 2358 "Shouldn't IRQs be disabled?\n"); 2359 /* Clear the event handler busy flag (RW1C); 2360 * the event ring should be empty. 2361 */ 2362 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2363 xhci_write_64(xhci, temp_64 | ERST_EHB, 2364 &xhci->ir_set->erst_dequeue); 2365 spin_unlock(&xhci->lock); 2366 2367 return IRQ_HANDLED; 2368 } 2369 2370 event_ring_deq = xhci->event_ring->dequeue; 2371 /* FIXME this should be a delayed service routine 2372 * that clears the EHB. 2373 */ 2374 while (xhci_handle_event(xhci) > 0) {} 2375 2376 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2377 /* If necessary, update the HW's version of the event ring deq ptr. */ 2378 if (event_ring_deq != xhci->event_ring->dequeue) { 2379 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2380 xhci->event_ring->dequeue); 2381 if (deq == 0) 2382 xhci_warn(xhci, "WARN something wrong with SW event " 2383 "ring dequeue ptr.\n"); 2384 /* Update HC event ring dequeue pointer */ 2385 temp_64 &= ERST_PTR_MASK; 2386 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 2387 } 2388 2389 /* Clear the event handler busy flag (RW1C); event ring is empty. */ 2390 temp_64 |= ERST_EHB; 2391 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); 2392 2393 spin_unlock(&xhci->lock); 2394 2395 return IRQ_HANDLED; 2396 } 2397 2398 irqreturn_t xhci_msi_irq(int irq, struct usb_hcd *hcd) 2399 { 2400 return xhci_irq(hcd); 2401 } 2402 2403 /**** Endpoint Ring Operations ****/ 2404 2405 /* 2406 * Generic function for queueing a TRB on a ring. 2407 * The caller must have checked to make sure there's room on the ring. 2408 * 2409 * @more_trbs_coming: Will you enqueue more TRBs before calling 2410 * prepare_transfer()? 2411 */ 2412 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 2413 bool consumer, bool more_trbs_coming, bool isoc, 2414 u32 field1, u32 field2, u32 field3, u32 field4) 2415 { 2416 struct xhci_generic_trb *trb; 2417 2418 trb = &ring->enqueue->generic; 2419 trb->field[0] = cpu_to_le32(field1); 2420 trb->field[1] = cpu_to_le32(field2); 2421 trb->field[2] = cpu_to_le32(field3); 2422 trb->field[3] = cpu_to_le32(field4); 2423 inc_enq(xhci, ring, consumer, more_trbs_coming, isoc); 2424 } 2425 2426 /* 2427 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 2428 * FIXME allocate segments if the ring is full. 2429 */ 2430 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 2431 u32 ep_state, unsigned int num_trbs, bool isoc, gfp_t mem_flags) 2432 { 2433 /* Make sure the endpoint has been added to xHC schedule */ 2434 switch (ep_state) { 2435 case EP_STATE_DISABLED: 2436 /* 2437 * USB core changed config/interfaces without notifying us, 2438 * or hardware is reporting the wrong state. 2439 */ 2440 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 2441 return -ENOENT; 2442 case EP_STATE_ERROR: 2443 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 2444 /* FIXME event handling code for error needs to clear it */ 2445 /* XXX not sure if this should be -ENOENT or not */ 2446 return -EINVAL; 2447 case EP_STATE_HALTED: 2448 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 2449 case EP_STATE_STOPPED: 2450 case EP_STATE_RUNNING: 2451 break; 2452 default: 2453 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 2454 /* 2455 * FIXME issue Configure Endpoint command to try to get the HC 2456 * back into a known state. 2457 */ 2458 return -EINVAL; 2459 } 2460 if (!room_on_ring(xhci, ep_ring, num_trbs)) { 2461 /* FIXME allocate more room */ 2462 xhci_err(xhci, "ERROR no room on ep ring\n"); 2463 return -ENOMEM; 2464 } 2465 2466 if (enqueue_is_link_trb(ep_ring)) { 2467 struct xhci_ring *ring = ep_ring; 2468 union xhci_trb *next; 2469 2470 next = ring->enqueue; 2471 2472 while (last_trb(xhci, ring, ring->enq_seg, next)) { 2473 /* If we're not dealing with 0.95 hardware or isoc rings 2474 * on AMD 0.96 host, clear the chain bit. 2475 */ 2476 if (!xhci_link_trb_quirk(xhci) && !(isoc && 2477 (xhci->quirks & XHCI_AMD_0x96_HOST))) 2478 next->link.control &= cpu_to_le32(~TRB_CHAIN); 2479 else 2480 next->link.control |= cpu_to_le32(TRB_CHAIN); 2481 2482 wmb(); 2483 next->link.control ^= cpu_to_le32(TRB_CYCLE); 2484 2485 /* Toggle the cycle bit after the last ring segment. */ 2486 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 2487 ring->cycle_state = (ring->cycle_state ? 0 : 1); 2488 } 2489 ring->enq_seg = ring->enq_seg->next; 2490 ring->enqueue = ring->enq_seg->trbs; 2491 next = ring->enqueue; 2492 } 2493 } 2494 2495 return 0; 2496 } 2497 2498 static int prepare_transfer(struct xhci_hcd *xhci, 2499 struct xhci_virt_device *xdev, 2500 unsigned int ep_index, 2501 unsigned int stream_id, 2502 unsigned int num_trbs, 2503 struct urb *urb, 2504 unsigned int td_index, 2505 bool isoc, 2506 gfp_t mem_flags) 2507 { 2508 int ret; 2509 struct urb_priv *urb_priv; 2510 struct xhci_td *td; 2511 struct xhci_ring *ep_ring; 2512 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2513 2514 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); 2515 if (!ep_ring) { 2516 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 2517 stream_id); 2518 return -EINVAL; 2519 } 2520 2521 ret = prepare_ring(xhci, ep_ring, 2522 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 2523 num_trbs, isoc, mem_flags); 2524 if (ret) 2525 return ret; 2526 2527 urb_priv = urb->hcpriv; 2528 td = urb_priv->td[td_index]; 2529 2530 INIT_LIST_HEAD(&td->td_list); 2531 INIT_LIST_HEAD(&td->cancelled_td_list); 2532 2533 if (td_index == 0) { 2534 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 2535 if (unlikely(ret)) 2536 return ret; 2537 } 2538 2539 td->urb = urb; 2540 /* Add this TD to the tail of the endpoint ring's TD list */ 2541 list_add_tail(&td->td_list, &ep_ring->td_list); 2542 td->start_seg = ep_ring->enq_seg; 2543 td->first_trb = ep_ring->enqueue; 2544 2545 urb_priv->td[td_index] = td; 2546 2547 return 0; 2548 } 2549 2550 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb) 2551 { 2552 int num_sgs, num_trbs, running_total, temp, i; 2553 struct scatterlist *sg; 2554 2555 sg = NULL; 2556 num_sgs = urb->num_mapped_sgs; 2557 temp = urb->transfer_buffer_length; 2558 2559 num_trbs = 0; 2560 for_each_sg(urb->sg, sg, num_sgs, i) { 2561 unsigned int len = sg_dma_len(sg); 2562 2563 /* Scatter gather list entries may cross 64KB boundaries */ 2564 running_total = TRB_MAX_BUFF_SIZE - 2565 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1)); 2566 running_total &= TRB_MAX_BUFF_SIZE - 1; 2567 if (running_total != 0) 2568 num_trbs++; 2569 2570 /* How many more 64KB chunks to transfer, how many more TRBs? */ 2571 while (running_total < sg_dma_len(sg) && running_total < temp) { 2572 num_trbs++; 2573 running_total += TRB_MAX_BUFF_SIZE; 2574 } 2575 len = min_t(int, len, temp); 2576 temp -= len; 2577 if (temp == 0) 2578 break; 2579 } 2580 return num_trbs; 2581 } 2582 2583 static void check_trb_math(struct urb *urb, int num_trbs, int running_total) 2584 { 2585 if (num_trbs != 0) 2586 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of " 2587 "TRBs, %d left\n", __func__, 2588 urb->ep->desc.bEndpointAddress, num_trbs); 2589 if (running_total != urb->transfer_buffer_length) 2590 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 2591 "queued %#x (%d), asked for %#x (%d)\n", 2592 __func__, 2593 urb->ep->desc.bEndpointAddress, 2594 running_total, running_total, 2595 urb->transfer_buffer_length, 2596 urb->transfer_buffer_length); 2597 } 2598 2599 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 2600 unsigned int ep_index, unsigned int stream_id, int start_cycle, 2601 struct xhci_generic_trb *start_trb) 2602 { 2603 /* 2604 * Pass all the TRBs to the hardware at once and make sure this write 2605 * isn't reordered. 2606 */ 2607 wmb(); 2608 if (start_cycle) 2609 start_trb->field[3] |= cpu_to_le32(start_cycle); 2610 else 2611 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 2612 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 2613 } 2614 2615 /* 2616 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 2617 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 2618 * (comprised of sg list entries) can take several service intervals to 2619 * transmit. 2620 */ 2621 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 2622 struct urb *urb, int slot_id, unsigned int ep_index) 2623 { 2624 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, 2625 xhci->devs[slot_id]->out_ctx, ep_index); 2626 int xhci_interval; 2627 int ep_interval; 2628 2629 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 2630 ep_interval = urb->interval; 2631 /* Convert to microframes */ 2632 if (urb->dev->speed == USB_SPEED_LOW || 2633 urb->dev->speed == USB_SPEED_FULL) 2634 ep_interval *= 8; 2635 /* FIXME change this to a warning and a suggestion to use the new API 2636 * to set the polling interval (once the API is added). 2637 */ 2638 if (xhci_interval != ep_interval) { 2639 if (printk_ratelimit()) 2640 dev_dbg(&urb->dev->dev, "Driver uses different interval" 2641 " (%d microframe%s) than xHCI " 2642 "(%d microframe%s)\n", 2643 ep_interval, 2644 ep_interval == 1 ? "" : "s", 2645 xhci_interval, 2646 xhci_interval == 1 ? "" : "s"); 2647 urb->interval = xhci_interval; 2648 /* Convert back to frames for LS/FS devices */ 2649 if (urb->dev->speed == USB_SPEED_LOW || 2650 urb->dev->speed == USB_SPEED_FULL) 2651 urb->interval /= 8; 2652 } 2653 return xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index); 2654 } 2655 2656 /* 2657 * The TD size is the number of bytes remaining in the TD (including this TRB), 2658 * right shifted by 10. 2659 * It must fit in bits 21:17, so it can't be bigger than 31. 2660 */ 2661 static u32 xhci_td_remainder(unsigned int remainder) 2662 { 2663 u32 max = (1 << (21 - 17 + 1)) - 1; 2664 2665 if ((remainder >> 10) >= max) 2666 return max << 17; 2667 else 2668 return (remainder >> 10) << 17; 2669 } 2670 2671 /* 2672 * For xHCI 1.0 host controllers, TD size is the number of packets remaining in 2673 * the TD (*not* including this TRB). 2674 * 2675 * Total TD packet count = total_packet_count = 2676 * roundup(TD size in bytes / wMaxPacketSize) 2677 * 2678 * Packets transferred up to and including this TRB = packets_transferred = 2679 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 2680 * 2681 * TD size = total_packet_count - packets_transferred 2682 * 2683 * It must fit in bits 21:17, so it can't be bigger than 31. 2684 */ 2685 2686 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len, 2687 unsigned int total_packet_count, struct urb *urb) 2688 { 2689 int packets_transferred; 2690 2691 /* One TRB with a zero-length data packet. */ 2692 if (running_total == 0 && trb_buff_len == 0) 2693 return 0; 2694 2695 /* All the TRB queueing functions don't count the current TRB in 2696 * running_total. 2697 */ 2698 packets_transferred = (running_total + trb_buff_len) / 2699 usb_endpoint_maxp(&urb->ep->desc); 2700 2701 return xhci_td_remainder(total_packet_count - packets_transferred); 2702 } 2703 2704 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 2705 struct urb *urb, int slot_id, unsigned int ep_index) 2706 { 2707 struct xhci_ring *ep_ring; 2708 unsigned int num_trbs; 2709 struct urb_priv *urb_priv; 2710 struct xhci_td *td; 2711 struct scatterlist *sg; 2712 int num_sgs; 2713 int trb_buff_len, this_sg_len, running_total; 2714 unsigned int total_packet_count; 2715 bool first_trb; 2716 u64 addr; 2717 bool more_trbs_coming; 2718 2719 struct xhci_generic_trb *start_trb; 2720 int start_cycle; 2721 2722 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 2723 if (!ep_ring) 2724 return -EINVAL; 2725 2726 num_trbs = count_sg_trbs_needed(xhci, urb); 2727 num_sgs = urb->num_mapped_sgs; 2728 total_packet_count = roundup(urb->transfer_buffer_length, 2729 usb_endpoint_maxp(&urb->ep->desc)); 2730 2731 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id], 2732 ep_index, urb->stream_id, 2733 num_trbs, urb, 0, false, mem_flags); 2734 if (trb_buff_len < 0) 2735 return trb_buff_len; 2736 2737 urb_priv = urb->hcpriv; 2738 td = urb_priv->td[0]; 2739 2740 /* 2741 * Don't give the first TRB to the hardware (by toggling the cycle bit) 2742 * until we've finished creating all the other TRBs. The ring's cycle 2743 * state may change as we enqueue the other TRBs, so save it too. 2744 */ 2745 start_trb = &ep_ring->enqueue->generic; 2746 start_cycle = ep_ring->cycle_state; 2747 2748 running_total = 0; 2749 /* 2750 * How much data is in the first TRB? 2751 * 2752 * There are three forces at work for TRB buffer pointers and lengths: 2753 * 1. We don't want to walk off the end of this sg-list entry buffer. 2754 * 2. The transfer length that the driver requested may be smaller than 2755 * the amount of memory allocated for this scatter-gather list. 2756 * 3. TRBs buffers can't cross 64KB boundaries. 2757 */ 2758 sg = urb->sg; 2759 addr = (u64) sg_dma_address(sg); 2760 this_sg_len = sg_dma_len(sg); 2761 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1)); 2762 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 2763 if (trb_buff_len > urb->transfer_buffer_length) 2764 trb_buff_len = urb->transfer_buffer_length; 2765 2766 first_trb = true; 2767 /* Queue the first TRB, even if it's zero-length */ 2768 do { 2769 u32 field = 0; 2770 u32 length_field = 0; 2771 u32 remainder = 0; 2772 2773 /* Don't change the cycle bit of the first TRB until later */ 2774 if (first_trb) { 2775 first_trb = false; 2776 if (start_cycle == 0) 2777 field |= 0x1; 2778 } else 2779 field |= ep_ring->cycle_state; 2780 2781 /* Chain all the TRBs together; clear the chain bit in the last 2782 * TRB to indicate it's the last TRB in the chain. 2783 */ 2784 if (num_trbs > 1) { 2785 field |= TRB_CHAIN; 2786 } else { 2787 /* FIXME - add check for ZERO_PACKET flag before this */ 2788 td->last_trb = ep_ring->enqueue; 2789 field |= TRB_IOC; 2790 } 2791 2792 /* Only set interrupt on short packet for IN endpoints */ 2793 if (usb_urb_dir_in(urb)) 2794 field |= TRB_ISP; 2795 2796 if (TRB_MAX_BUFF_SIZE - 2797 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) { 2798 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n"); 2799 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n", 2800 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1), 2801 (unsigned int) addr + trb_buff_len); 2802 } 2803 2804 /* Set the TRB length, TD size, and interrupter fields. */ 2805 if (xhci->hci_version < 0x100) { 2806 remainder = xhci_td_remainder( 2807 urb->transfer_buffer_length - 2808 running_total); 2809 } else { 2810 remainder = xhci_v1_0_td_remainder(running_total, 2811 trb_buff_len, total_packet_count, urb); 2812 } 2813 length_field = TRB_LEN(trb_buff_len) | 2814 remainder | 2815 TRB_INTR_TARGET(0); 2816 2817 if (num_trbs > 1) 2818 more_trbs_coming = true; 2819 else 2820 more_trbs_coming = false; 2821 queue_trb(xhci, ep_ring, false, more_trbs_coming, false, 2822 lower_32_bits(addr), 2823 upper_32_bits(addr), 2824 length_field, 2825 field | TRB_TYPE(TRB_NORMAL)); 2826 --num_trbs; 2827 running_total += trb_buff_len; 2828 2829 /* Calculate length for next transfer -- 2830 * Are we done queueing all the TRBs for this sg entry? 2831 */ 2832 this_sg_len -= trb_buff_len; 2833 if (this_sg_len == 0) { 2834 --num_sgs; 2835 if (num_sgs == 0) 2836 break; 2837 sg = sg_next(sg); 2838 addr = (u64) sg_dma_address(sg); 2839 this_sg_len = sg_dma_len(sg); 2840 } else { 2841 addr += trb_buff_len; 2842 } 2843 2844 trb_buff_len = TRB_MAX_BUFF_SIZE - 2845 (addr & (TRB_MAX_BUFF_SIZE - 1)); 2846 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 2847 if (running_total + trb_buff_len > urb->transfer_buffer_length) 2848 trb_buff_len = 2849 urb->transfer_buffer_length - running_total; 2850 } while (running_total < urb->transfer_buffer_length); 2851 2852 check_trb_math(urb, num_trbs, running_total); 2853 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 2854 start_cycle, start_trb); 2855 return 0; 2856 } 2857 2858 /* This is very similar to what ehci-q.c qtd_fill() does */ 2859 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 2860 struct urb *urb, int slot_id, unsigned int ep_index) 2861 { 2862 struct xhci_ring *ep_ring; 2863 struct urb_priv *urb_priv; 2864 struct xhci_td *td; 2865 int num_trbs; 2866 struct xhci_generic_trb *start_trb; 2867 bool first_trb; 2868 bool more_trbs_coming; 2869 int start_cycle; 2870 u32 field, length_field; 2871 2872 int running_total, trb_buff_len, ret; 2873 unsigned int total_packet_count; 2874 u64 addr; 2875 2876 if (urb->num_sgs) 2877 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index); 2878 2879 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 2880 if (!ep_ring) 2881 return -EINVAL; 2882 2883 num_trbs = 0; 2884 /* How much data is (potentially) left before the 64KB boundary? */ 2885 running_total = TRB_MAX_BUFF_SIZE - 2886 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 2887 running_total &= TRB_MAX_BUFF_SIZE - 1; 2888 2889 /* If there's some data on this 64KB chunk, or we have to send a 2890 * zero-length transfer, we need at least one TRB 2891 */ 2892 if (running_total != 0 || urb->transfer_buffer_length == 0) 2893 num_trbs++; 2894 /* How many more 64KB chunks to transfer, how many more TRBs? */ 2895 while (running_total < urb->transfer_buffer_length) { 2896 num_trbs++; 2897 running_total += TRB_MAX_BUFF_SIZE; 2898 } 2899 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */ 2900 2901 ret = prepare_transfer(xhci, xhci->devs[slot_id], 2902 ep_index, urb->stream_id, 2903 num_trbs, urb, 0, false, mem_flags); 2904 if (ret < 0) 2905 return ret; 2906 2907 urb_priv = urb->hcpriv; 2908 td = urb_priv->td[0]; 2909 2910 /* 2911 * Don't give the first TRB to the hardware (by toggling the cycle bit) 2912 * until we've finished creating all the other TRBs. The ring's cycle 2913 * state may change as we enqueue the other TRBs, so save it too. 2914 */ 2915 start_trb = &ep_ring->enqueue->generic; 2916 start_cycle = ep_ring->cycle_state; 2917 2918 running_total = 0; 2919 total_packet_count = roundup(urb->transfer_buffer_length, 2920 usb_endpoint_maxp(&urb->ep->desc)); 2921 /* How much data is in the first TRB? */ 2922 addr = (u64) urb->transfer_dma; 2923 trb_buff_len = TRB_MAX_BUFF_SIZE - 2924 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 2925 if (trb_buff_len > urb->transfer_buffer_length) 2926 trb_buff_len = urb->transfer_buffer_length; 2927 2928 first_trb = true; 2929 2930 /* Queue the first TRB, even if it's zero-length */ 2931 do { 2932 u32 remainder = 0; 2933 field = 0; 2934 2935 /* Don't change the cycle bit of the first TRB until later */ 2936 if (first_trb) { 2937 first_trb = false; 2938 if (start_cycle == 0) 2939 field |= 0x1; 2940 } else 2941 field |= ep_ring->cycle_state; 2942 2943 /* Chain all the TRBs together; clear the chain bit in the last 2944 * TRB to indicate it's the last TRB in the chain. 2945 */ 2946 if (num_trbs > 1) { 2947 field |= TRB_CHAIN; 2948 } else { 2949 /* FIXME - add check for ZERO_PACKET flag before this */ 2950 td->last_trb = ep_ring->enqueue; 2951 field |= TRB_IOC; 2952 } 2953 2954 /* Only set interrupt on short packet for IN endpoints */ 2955 if (usb_urb_dir_in(urb)) 2956 field |= TRB_ISP; 2957 2958 /* Set the TRB length, TD size, and interrupter fields. */ 2959 if (xhci->hci_version < 0x100) { 2960 remainder = xhci_td_remainder( 2961 urb->transfer_buffer_length - 2962 running_total); 2963 } else { 2964 remainder = xhci_v1_0_td_remainder(running_total, 2965 trb_buff_len, total_packet_count, urb); 2966 } 2967 length_field = TRB_LEN(trb_buff_len) | 2968 remainder | 2969 TRB_INTR_TARGET(0); 2970 2971 if (num_trbs > 1) 2972 more_trbs_coming = true; 2973 else 2974 more_trbs_coming = false; 2975 queue_trb(xhci, ep_ring, false, more_trbs_coming, false, 2976 lower_32_bits(addr), 2977 upper_32_bits(addr), 2978 length_field, 2979 field | TRB_TYPE(TRB_NORMAL)); 2980 --num_trbs; 2981 running_total += trb_buff_len; 2982 2983 /* Calculate length for next transfer */ 2984 addr += trb_buff_len; 2985 trb_buff_len = urb->transfer_buffer_length - running_total; 2986 if (trb_buff_len > TRB_MAX_BUFF_SIZE) 2987 trb_buff_len = TRB_MAX_BUFF_SIZE; 2988 } while (running_total < urb->transfer_buffer_length); 2989 2990 check_trb_math(urb, num_trbs, running_total); 2991 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 2992 start_cycle, start_trb); 2993 return 0; 2994 } 2995 2996 /* Caller must have locked xhci->lock */ 2997 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 2998 struct urb *urb, int slot_id, unsigned int ep_index) 2999 { 3000 struct xhci_ring *ep_ring; 3001 int num_trbs; 3002 int ret; 3003 struct usb_ctrlrequest *setup; 3004 struct xhci_generic_trb *start_trb; 3005 int start_cycle; 3006 u32 field, length_field; 3007 struct urb_priv *urb_priv; 3008 struct xhci_td *td; 3009 3010 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3011 if (!ep_ring) 3012 return -EINVAL; 3013 3014 /* 3015 * Need to copy setup packet into setup TRB, so we can't use the setup 3016 * DMA address. 3017 */ 3018 if (!urb->setup_packet) 3019 return -EINVAL; 3020 3021 /* 1 TRB for setup, 1 for status */ 3022 num_trbs = 2; 3023 /* 3024 * Don't need to check if we need additional event data and normal TRBs, 3025 * since data in control transfers will never get bigger than 16MB 3026 * XXX: can we get a buffer that crosses 64KB boundaries? 3027 */ 3028 if (urb->transfer_buffer_length > 0) 3029 num_trbs++; 3030 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3031 ep_index, urb->stream_id, 3032 num_trbs, urb, 0, false, mem_flags); 3033 if (ret < 0) 3034 return ret; 3035 3036 urb_priv = urb->hcpriv; 3037 td = urb_priv->td[0]; 3038 3039 /* 3040 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3041 * until we've finished creating all the other TRBs. The ring's cycle 3042 * state may change as we enqueue the other TRBs, so save it too. 3043 */ 3044 start_trb = &ep_ring->enqueue->generic; 3045 start_cycle = ep_ring->cycle_state; 3046 3047 /* Queue setup TRB - see section 6.4.1.2.1 */ 3048 /* FIXME better way to translate setup_packet into two u32 fields? */ 3049 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3050 field = 0; 3051 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3052 if (start_cycle == 0) 3053 field |= 0x1; 3054 3055 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */ 3056 if (xhci->hci_version == 0x100) { 3057 if (urb->transfer_buffer_length > 0) { 3058 if (setup->bRequestType & USB_DIR_IN) 3059 field |= TRB_TX_TYPE(TRB_DATA_IN); 3060 else 3061 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3062 } 3063 } 3064 3065 queue_trb(xhci, ep_ring, false, true, false, 3066 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3067 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3068 TRB_LEN(8) | TRB_INTR_TARGET(0), 3069 /* Immediate data in pointer */ 3070 field); 3071 3072 /* If there's data, queue data TRBs */ 3073 /* Only set interrupt on short packet for IN endpoints */ 3074 if (usb_urb_dir_in(urb)) 3075 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3076 else 3077 field = TRB_TYPE(TRB_DATA); 3078 3079 length_field = TRB_LEN(urb->transfer_buffer_length) | 3080 xhci_td_remainder(urb->transfer_buffer_length) | 3081 TRB_INTR_TARGET(0); 3082 if (urb->transfer_buffer_length > 0) { 3083 if (setup->bRequestType & USB_DIR_IN) 3084 field |= TRB_DIR_IN; 3085 queue_trb(xhci, ep_ring, false, true, false, 3086 lower_32_bits(urb->transfer_dma), 3087 upper_32_bits(urb->transfer_dma), 3088 length_field, 3089 field | ep_ring->cycle_state); 3090 } 3091 3092 /* Save the DMA address of the last TRB in the TD */ 3093 td->last_trb = ep_ring->enqueue; 3094 3095 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3096 /* If the device sent data, the status stage is an OUT transfer */ 3097 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3098 field = 0; 3099 else 3100 field = TRB_DIR_IN; 3101 queue_trb(xhci, ep_ring, false, false, false, 3102 0, 3103 0, 3104 TRB_INTR_TARGET(0), 3105 /* Event on completion */ 3106 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3107 3108 giveback_first_trb(xhci, slot_id, ep_index, 0, 3109 start_cycle, start_trb); 3110 return 0; 3111 } 3112 3113 static int count_isoc_trbs_needed(struct xhci_hcd *xhci, 3114 struct urb *urb, int i) 3115 { 3116 int num_trbs = 0; 3117 u64 addr, td_len; 3118 3119 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3120 td_len = urb->iso_frame_desc[i].length; 3121 3122 num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3123 TRB_MAX_BUFF_SIZE); 3124 if (num_trbs == 0) 3125 num_trbs++; 3126 3127 return num_trbs; 3128 } 3129 3130 /* 3131 * The transfer burst count field of the isochronous TRB defines the number of 3132 * bursts that are required to move all packets in this TD. Only SuperSpeed 3133 * devices can burst up to bMaxBurst number of packets per service interval. 3134 * This field is zero based, meaning a value of zero in the field means one 3135 * burst. Basically, for everything but SuperSpeed devices, this field will be 3136 * zero. Only xHCI 1.0 host controllers support this field. 3137 */ 3138 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3139 struct usb_device *udev, 3140 struct urb *urb, unsigned int total_packet_count) 3141 { 3142 unsigned int max_burst; 3143 3144 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER) 3145 return 0; 3146 3147 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3148 return roundup(total_packet_count, max_burst + 1) - 1; 3149 } 3150 3151 /* 3152 * Returns the number of packets in the last "burst" of packets. This field is 3153 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3154 * the last burst packet count is equal to the total number of packets in the 3155 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3156 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3157 * contain 1 to (bMaxBurst + 1) packets. 3158 */ 3159 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3160 struct usb_device *udev, 3161 struct urb *urb, unsigned int total_packet_count) 3162 { 3163 unsigned int max_burst; 3164 unsigned int residue; 3165 3166 if (xhci->hci_version < 0x100) 3167 return 0; 3168 3169 switch (udev->speed) { 3170 case USB_SPEED_SUPER: 3171 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3172 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3173 residue = total_packet_count % (max_burst + 1); 3174 /* If residue is zero, the last burst contains (max_burst + 1) 3175 * number of packets, but the TLBPC field is zero-based. 3176 */ 3177 if (residue == 0) 3178 return max_burst; 3179 return residue - 1; 3180 default: 3181 if (total_packet_count == 0) 3182 return 0; 3183 return total_packet_count - 1; 3184 } 3185 } 3186 3187 /* This is for isoc transfer */ 3188 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3189 struct urb *urb, int slot_id, unsigned int ep_index) 3190 { 3191 struct xhci_ring *ep_ring; 3192 struct urb_priv *urb_priv; 3193 struct xhci_td *td; 3194 int num_tds, trbs_per_td; 3195 struct xhci_generic_trb *start_trb; 3196 bool first_trb; 3197 int start_cycle; 3198 u32 field, length_field; 3199 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3200 u64 start_addr, addr; 3201 int i, j; 3202 bool more_trbs_coming; 3203 3204 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 3205 3206 num_tds = urb->number_of_packets; 3207 if (num_tds < 1) { 3208 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 3209 return -EINVAL; 3210 } 3211 3212 start_addr = (u64) urb->transfer_dma; 3213 start_trb = &ep_ring->enqueue->generic; 3214 start_cycle = ep_ring->cycle_state; 3215 3216 urb_priv = urb->hcpriv; 3217 /* Queue the first TRB, even if it's zero-length */ 3218 for (i = 0; i < num_tds; i++) { 3219 unsigned int total_packet_count; 3220 unsigned int burst_count; 3221 unsigned int residue; 3222 3223 first_trb = true; 3224 running_total = 0; 3225 addr = start_addr + urb->iso_frame_desc[i].offset; 3226 td_len = urb->iso_frame_desc[i].length; 3227 td_remain_len = td_len; 3228 total_packet_count = roundup(td_len, 3229 usb_endpoint_maxp(&urb->ep->desc)); 3230 /* A zero-length transfer still involves at least one packet. */ 3231 if (total_packet_count == 0) 3232 total_packet_count++; 3233 burst_count = xhci_get_burst_count(xhci, urb->dev, urb, 3234 total_packet_count); 3235 residue = xhci_get_last_burst_packet_count(xhci, 3236 urb->dev, urb, total_packet_count); 3237 3238 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i); 3239 3240 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 3241 urb->stream_id, trbs_per_td, urb, i, true, 3242 mem_flags); 3243 if (ret < 0) { 3244 if (i == 0) 3245 return ret; 3246 goto cleanup; 3247 } 3248 3249 td = urb_priv->td[i]; 3250 for (j = 0; j < trbs_per_td; j++) { 3251 u32 remainder = 0; 3252 field = TRB_TBC(burst_count) | TRB_TLBPC(residue); 3253 3254 if (first_trb) { 3255 /* Queue the isoc TRB */ 3256 field |= TRB_TYPE(TRB_ISOC); 3257 /* Assume URB_ISO_ASAP is set */ 3258 field |= TRB_SIA; 3259 if (i == 0) { 3260 if (start_cycle == 0) 3261 field |= 0x1; 3262 } else 3263 field |= ep_ring->cycle_state; 3264 first_trb = false; 3265 } else { 3266 /* Queue other normal TRBs */ 3267 field |= TRB_TYPE(TRB_NORMAL); 3268 field |= ep_ring->cycle_state; 3269 } 3270 3271 /* Only set interrupt on short packet for IN EPs */ 3272 if (usb_urb_dir_in(urb)) 3273 field |= TRB_ISP; 3274 3275 /* Chain all the TRBs together; clear the chain bit in 3276 * the last TRB to indicate it's the last TRB in the 3277 * chain. 3278 */ 3279 if (j < trbs_per_td - 1) { 3280 field |= TRB_CHAIN; 3281 more_trbs_coming = true; 3282 } else { 3283 td->last_trb = ep_ring->enqueue; 3284 field |= TRB_IOC; 3285 if (xhci->hci_version == 0x100) { 3286 /* Set BEI bit except for the last td */ 3287 if (i < num_tds - 1) 3288 field |= TRB_BEI; 3289 } 3290 more_trbs_coming = false; 3291 } 3292 3293 /* Calculate TRB length */ 3294 trb_buff_len = TRB_MAX_BUFF_SIZE - 3295 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1)); 3296 if (trb_buff_len > td_remain_len) 3297 trb_buff_len = td_remain_len; 3298 3299 /* Set the TRB length, TD size, & interrupter fields. */ 3300 if (xhci->hci_version < 0x100) { 3301 remainder = xhci_td_remainder( 3302 td_len - running_total); 3303 } else { 3304 remainder = xhci_v1_0_td_remainder( 3305 running_total, trb_buff_len, 3306 total_packet_count, urb); 3307 } 3308 length_field = TRB_LEN(trb_buff_len) | 3309 remainder | 3310 TRB_INTR_TARGET(0); 3311 3312 queue_trb(xhci, ep_ring, false, more_trbs_coming, true, 3313 lower_32_bits(addr), 3314 upper_32_bits(addr), 3315 length_field, 3316 field); 3317 running_total += trb_buff_len; 3318 3319 addr += trb_buff_len; 3320 td_remain_len -= trb_buff_len; 3321 } 3322 3323 /* Check TD length */ 3324 if (running_total != td_len) { 3325 xhci_err(xhci, "ISOC TD length unmatch\n"); 3326 return -EINVAL; 3327 } 3328 } 3329 3330 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 3331 if (xhci->quirks & XHCI_AMD_PLL_FIX) 3332 usb_amd_quirk_pll_disable(); 3333 } 3334 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 3335 3336 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3337 start_cycle, start_trb); 3338 return 0; 3339 cleanup: 3340 /* Clean up a partially enqueued isoc transfer. */ 3341 3342 for (i--; i >= 0; i--) 3343 list_del_init(&urb_priv->td[i]->td_list); 3344 3345 /* Use the first TD as a temporary variable to turn the TDs we've queued 3346 * into No-ops with a software-owned cycle bit. That way the hardware 3347 * won't accidentally start executing bogus TDs when we partially 3348 * overwrite them. td->first_trb and td->start_seg are already set. 3349 */ 3350 urb_priv->td[0]->last_trb = ep_ring->enqueue; 3351 /* Every TRB except the first & last will have its cycle bit flipped. */ 3352 td_to_noop(xhci, ep_ring, urb_priv->td[0], true); 3353 3354 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 3355 ep_ring->enqueue = urb_priv->td[0]->first_trb; 3356 ep_ring->enq_seg = urb_priv->td[0]->start_seg; 3357 ep_ring->cycle_state = start_cycle; 3358 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 3359 return ret; 3360 } 3361 3362 /* 3363 * Check transfer ring to guarantee there is enough room for the urb. 3364 * Update ISO URB start_frame and interval. 3365 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to 3366 * update the urb->start_frame by now. 3367 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input. 3368 */ 3369 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 3370 struct urb *urb, int slot_id, unsigned int ep_index) 3371 { 3372 struct xhci_virt_device *xdev; 3373 struct xhci_ring *ep_ring; 3374 struct xhci_ep_ctx *ep_ctx; 3375 int start_frame; 3376 int xhci_interval; 3377 int ep_interval; 3378 int num_tds, num_trbs, i; 3379 int ret; 3380 3381 xdev = xhci->devs[slot_id]; 3382 ep_ring = xdev->eps[ep_index].ring; 3383 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3384 3385 num_trbs = 0; 3386 num_tds = urb->number_of_packets; 3387 for (i = 0; i < num_tds; i++) 3388 num_trbs += count_isoc_trbs_needed(xhci, urb, i); 3389 3390 /* Check the ring to guarantee there is enough room for the whole urb. 3391 * Do not insert any td of the urb to the ring if the check failed. 3392 */ 3393 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 3394 num_trbs, true, mem_flags); 3395 if (ret) 3396 return ret; 3397 3398 start_frame = xhci_readl(xhci, &xhci->run_regs->microframe_index); 3399 start_frame &= 0x3fff; 3400 3401 urb->start_frame = start_frame; 3402 if (urb->dev->speed == USB_SPEED_LOW || 3403 urb->dev->speed == USB_SPEED_FULL) 3404 urb->start_frame >>= 3; 3405 3406 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3407 ep_interval = urb->interval; 3408 /* Convert to microframes */ 3409 if (urb->dev->speed == USB_SPEED_LOW || 3410 urb->dev->speed == USB_SPEED_FULL) 3411 ep_interval *= 8; 3412 /* FIXME change this to a warning and a suggestion to use the new API 3413 * to set the polling interval (once the API is added). 3414 */ 3415 if (xhci_interval != ep_interval) { 3416 if (printk_ratelimit()) 3417 dev_dbg(&urb->dev->dev, "Driver uses different interval" 3418 " (%d microframe%s) than xHCI " 3419 "(%d microframe%s)\n", 3420 ep_interval, 3421 ep_interval == 1 ? "" : "s", 3422 xhci_interval, 3423 xhci_interval == 1 ? "" : "s"); 3424 urb->interval = xhci_interval; 3425 /* Convert back to frames for LS/FS devices */ 3426 if (urb->dev->speed == USB_SPEED_LOW || 3427 urb->dev->speed == USB_SPEED_FULL) 3428 urb->interval /= 8; 3429 } 3430 return xhci_queue_isoc_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index); 3431 } 3432 3433 /**** Command Ring Operations ****/ 3434 3435 /* Generic function for queueing a command TRB on the command ring. 3436 * Check to make sure there's room on the command ring for one command TRB. 3437 * Also check that there's room reserved for commands that must not fail. 3438 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 3439 * then only check for the number of reserved spots. 3440 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 3441 * because the command event handler may want to resubmit a failed command. 3442 */ 3443 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2, 3444 u32 field3, u32 field4, bool command_must_succeed) 3445 { 3446 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 3447 int ret; 3448 3449 if (!command_must_succeed) 3450 reserved_trbs++; 3451 3452 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 3453 reserved_trbs, false, GFP_ATOMIC); 3454 if (ret < 0) { 3455 xhci_err(xhci, "ERR: No room for command on command ring\n"); 3456 if (command_must_succeed) 3457 xhci_err(xhci, "ERR: Reserved TRB counting for " 3458 "unfailable commands failed.\n"); 3459 return ret; 3460 } 3461 queue_trb(xhci, xhci->cmd_ring, false, false, false, field1, field2, 3462 field3, field4 | xhci->cmd_ring->cycle_state); 3463 return 0; 3464 } 3465 3466 /* Queue a slot enable or disable request on the command ring */ 3467 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id) 3468 { 3469 return queue_command(xhci, 0, 0, 0, 3470 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 3471 } 3472 3473 /* Queue an address device command TRB */ 3474 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 3475 u32 slot_id) 3476 { 3477 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 3478 upper_32_bits(in_ctx_ptr), 0, 3479 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id), 3480 false); 3481 } 3482 3483 int xhci_queue_vendor_command(struct xhci_hcd *xhci, 3484 u32 field1, u32 field2, u32 field3, u32 field4) 3485 { 3486 return queue_command(xhci, field1, field2, field3, field4, false); 3487 } 3488 3489 /* Queue a reset device command TRB */ 3490 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id) 3491 { 3492 return queue_command(xhci, 0, 0, 0, 3493 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 3494 false); 3495 } 3496 3497 /* Queue a configure endpoint command TRB */ 3498 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 3499 u32 slot_id, bool command_must_succeed) 3500 { 3501 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 3502 upper_32_bits(in_ctx_ptr), 0, 3503 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 3504 command_must_succeed); 3505 } 3506 3507 /* Queue an evaluate context command TRB */ 3508 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 3509 u32 slot_id) 3510 { 3511 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 3512 upper_32_bits(in_ctx_ptr), 0, 3513 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 3514 false); 3515 } 3516 3517 /* 3518 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 3519 * activity on an endpoint that is about to be suspended. 3520 */ 3521 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id, 3522 unsigned int ep_index, int suspend) 3523 { 3524 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3525 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3526 u32 type = TRB_TYPE(TRB_STOP_RING); 3527 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 3528 3529 return queue_command(xhci, 0, 0, 0, 3530 trb_slot_id | trb_ep_index | type | trb_suspend, false); 3531 } 3532 3533 /* Set Transfer Ring Dequeue Pointer command. 3534 * This should not be used for endpoints that have streams enabled. 3535 */ 3536 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id, 3537 unsigned int ep_index, unsigned int stream_id, 3538 struct xhci_segment *deq_seg, 3539 union xhci_trb *deq_ptr, u32 cycle_state) 3540 { 3541 dma_addr_t addr; 3542 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3543 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3544 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id); 3545 u32 type = TRB_TYPE(TRB_SET_DEQ); 3546 struct xhci_virt_ep *ep; 3547 3548 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr); 3549 if (addr == 0) { 3550 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 3551 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", 3552 deq_seg, deq_ptr); 3553 return 0; 3554 } 3555 ep = &xhci->devs[slot_id]->eps[ep_index]; 3556 if ((ep->ep_state & SET_DEQ_PENDING)) { 3557 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 3558 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n"); 3559 return 0; 3560 } 3561 ep->queued_deq_seg = deq_seg; 3562 ep->queued_deq_ptr = deq_ptr; 3563 return queue_command(xhci, lower_32_bits(addr) | cycle_state, 3564 upper_32_bits(addr), trb_stream_id, 3565 trb_slot_id | trb_ep_index | type, false); 3566 } 3567 3568 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id, 3569 unsigned int ep_index) 3570 { 3571 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3572 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3573 u32 type = TRB_TYPE(TRB_RESET_EP); 3574 3575 return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type, 3576 false); 3577 } 3578