1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 /* 12 * Ring initialization rules: 13 * 1. Each segment is initialized to zero, except for link TRBs. 14 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 15 * Consumer Cycle State (CCS), depending on ring function. 16 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 17 * 18 * Ring behavior rules: 19 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 20 * least one free TRB in the ring. This is useful if you want to turn that 21 * into a link TRB and expand the ring. 22 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 23 * link TRB, then load the pointer with the address in the link TRB. If the 24 * link TRB had its toggle bit set, you may need to update the ring cycle 25 * state (see cycle bit rules). You may have to do this multiple times 26 * until you reach a non-link TRB. 27 * 3. A ring is full if enqueue++ (for the definition of increment above) 28 * equals the dequeue pointer. 29 * 30 * Cycle bit rules: 31 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 32 * in a link TRB, it must toggle the ring cycle state. 33 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 34 * in a link TRB, it must toggle the ring cycle state. 35 * 36 * Producer rules: 37 * 1. Check if ring is full before you enqueue. 38 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 39 * Update enqueue pointer between each write (which may update the ring 40 * cycle state). 41 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 42 * and endpoint rings. If HC is the producer for the event ring, 43 * and it generates an interrupt according to interrupt modulation rules. 44 * 45 * Consumer rules: 46 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 47 * the TRB is owned by the consumer. 48 * 2. Update dequeue pointer (which may update the ring cycle state) and 49 * continue processing TRBs until you reach a TRB which is not owned by you. 50 * 3. Notify the producer. SW is the consumer for the event ring, and it 51 * updates event ring dequeue pointer. HC is the consumer for the command and 52 * endpoint rings; it generates events on the event ring for these. 53 */ 54 55 #include <linux/jiffies.h> 56 #include <linux/scatterlist.h> 57 #include <linux/slab.h> 58 #include <linux/string_choices.h> 59 #include <linux/dma-mapping.h> 60 #include "xhci.h" 61 #include "xhci-trace.h" 62 63 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 64 u32 field1, u32 field2, 65 u32 field3, u32 field4, bool command_must_succeed); 66 67 /* 68 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 69 * address of the TRB. 70 */ 71 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 72 union xhci_trb *trb) 73 { 74 unsigned long segment_offset; 75 76 if (!seg || !trb || trb < seg->trbs) 77 return 0; 78 /* offset in TRBs */ 79 segment_offset = trb - seg->trbs; 80 if (segment_offset >= TRBS_PER_SEGMENT) 81 return 0; 82 return seg->dma + (segment_offset * sizeof(*trb)); 83 } 84 85 static bool trb_is_noop(union xhci_trb *trb) 86 { 87 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); 88 } 89 90 static bool trb_is_link(union xhci_trb *trb) 91 { 92 return TRB_TYPE_LINK_LE32(trb->link.control); 93 } 94 95 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) 96 { 97 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; 98 } 99 100 static bool last_trb_on_ring(struct xhci_ring *ring, 101 struct xhci_segment *seg, union xhci_trb *trb) 102 { 103 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); 104 } 105 106 static bool link_trb_toggles_cycle(union xhci_trb *trb) 107 { 108 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 109 } 110 111 static bool last_td_in_urb(struct xhci_td *td) 112 { 113 struct urb_priv *urb_priv = td->urb->hcpriv; 114 115 return urb_priv->num_tds_done == urb_priv->num_tds; 116 } 117 118 static bool unhandled_event_trb(struct xhci_ring *ring) 119 { 120 return ((le32_to_cpu(ring->dequeue->event_cmd.flags) & TRB_CYCLE) == 121 ring->cycle_state); 122 } 123 124 static void inc_td_cnt(struct urb *urb) 125 { 126 struct urb_priv *urb_priv = urb->hcpriv; 127 128 urb_priv->num_tds_done++; 129 } 130 131 static void trb_to_noop(union xhci_trb *trb, u32 noop_type) 132 { 133 if (trb_is_link(trb)) { 134 /* unchain chained link TRBs */ 135 trb->link.control &= cpu_to_le32(~TRB_CHAIN); 136 } else { 137 trb->generic.field[0] = 0; 138 trb->generic.field[1] = 0; 139 trb->generic.field[2] = 0; 140 /* Preserve only the cycle bit of this TRB */ 141 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 142 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); 143 } 144 } 145 146 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 147 * TRB is in a new segment. This does not skip over link TRBs, and it does not 148 * effect the ring dequeue or enqueue pointers. 149 */ 150 static void next_trb(struct xhci_segment **seg, 151 union xhci_trb **trb) 152 { 153 if (trb_is_link(*trb) || last_trb_on_seg(*seg, *trb)) { 154 *seg = (*seg)->next; 155 *trb = ((*seg)->trbs); 156 } else { 157 (*trb)++; 158 } 159 } 160 161 /* 162 * See Cycle bit rules. SW is the consumer for the event ring only. 163 */ 164 void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 165 { 166 unsigned int link_trb_count = 0; 167 168 /* event ring doesn't have link trbs, check for last trb */ 169 if (ring->type == TYPE_EVENT) { 170 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 171 ring->dequeue++; 172 return; 173 } 174 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) 175 ring->cycle_state ^= 1; 176 ring->deq_seg = ring->deq_seg->next; 177 ring->dequeue = ring->deq_seg->trbs; 178 179 trace_xhci_inc_deq(ring); 180 181 return; 182 } 183 184 /* All other rings have link trbs */ 185 if (!trb_is_link(ring->dequeue)) { 186 if (last_trb_on_seg(ring->deq_seg, ring->dequeue)) 187 xhci_warn(xhci, "Missing link TRB at end of segment\n"); 188 else 189 ring->dequeue++; 190 } 191 192 while (trb_is_link(ring->dequeue)) { 193 ring->deq_seg = ring->deq_seg->next; 194 ring->dequeue = ring->deq_seg->trbs; 195 196 trace_xhci_inc_deq(ring); 197 198 if (link_trb_count++ > ring->num_segs) { 199 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 200 break; 201 } 202 } 203 return; 204 } 205 206 /* 207 * If enqueue points at a link TRB, follow links until an ordinary TRB is reached. 208 * Toggle the cycle bit of passed link TRBs and optionally chain them. 209 */ 210 static void inc_enq_past_link(struct xhci_hcd *xhci, struct xhci_ring *ring, u32 chain) 211 { 212 unsigned int link_trb_count = 0; 213 214 while (trb_is_link(ring->enqueue)) { 215 216 /* 217 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 218 * set, but other sections talk about dealing with the chain bit set. This was 219 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 220 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 221 * 222 * On 0.95 and some 0.96 HCs the chain bit is set once at segment initalization 223 * and never changed here. On all others, modify it as requested by the caller. 224 */ 225 if (!xhci_link_chain_quirk(xhci, ring->type)) { 226 ring->enqueue->link.control &= cpu_to_le32(~TRB_CHAIN); 227 ring->enqueue->link.control |= cpu_to_le32(chain); 228 } 229 230 /* Give this link TRB to the hardware */ 231 wmb(); 232 ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); 233 234 /* Toggle the cycle bit after the last ring segment. */ 235 if (link_trb_toggles_cycle(ring->enqueue)) 236 ring->cycle_state ^= 1; 237 238 ring->enq_seg = ring->enq_seg->next; 239 ring->enqueue = ring->enq_seg->trbs; 240 241 trace_xhci_inc_enq(ring); 242 243 if (link_trb_count++ > ring->num_segs) { 244 xhci_warn(xhci, "Link TRB loop at enqueue\n"); 245 break; 246 } 247 } 248 } 249 250 /* 251 * See Cycle bit rules. SW is the consumer for the event ring only. 252 * 253 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 254 * chain bit is set), then set the chain bit in all the following link TRBs. 255 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 256 * have their chain bit cleared (so that each Link TRB is a separate TD). 257 * 258 * @more_trbs_coming: Will you enqueue more TRBs before calling 259 * prepare_transfer()? 260 */ 261 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 262 bool more_trbs_coming) 263 { 264 u32 chain; 265 266 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 267 268 if (last_trb_on_seg(ring->enq_seg, ring->enqueue)) { 269 xhci_err(xhci, "Tried to move enqueue past ring segment\n"); 270 return; 271 } 272 273 ring->enqueue++; 274 275 /* 276 * If we are in the middle of a TD or the caller plans to enqueue more 277 * TDs as one transfer (eg. control), traverse any link TRBs right now. 278 * Otherwise, enqueue can stay on a link until the next prepare_ring(). 279 * This avoids enqueue entering deq_seg and simplifies ring expansion. 280 */ 281 if (trb_is_link(ring->enqueue) && (chain || more_trbs_coming)) 282 inc_enq_past_link(xhci, ring, chain); 283 } 284 285 /* 286 * If the suspect DMA address is a TRB in this TD, this function returns that 287 * TRB's segment. Otherwise it returns 0. 288 */ 289 static struct xhci_segment *trb_in_td(struct xhci_td *td, dma_addr_t suspect_dma) 290 { 291 dma_addr_t start_dma; 292 dma_addr_t end_seg_dma; 293 dma_addr_t end_trb_dma; 294 struct xhci_segment *cur_seg; 295 296 start_dma = xhci_trb_virt_to_dma(td->start_seg, td->start_trb); 297 cur_seg = td->start_seg; 298 299 do { 300 if (start_dma == 0) 301 return NULL; 302 /* We may get an event for a Link TRB in the middle of a TD */ 303 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 304 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 305 /* If the end TRB isn't in this segment, this is set to 0 */ 306 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, td->end_trb); 307 308 if (end_trb_dma > 0) { 309 /* The end TRB is in this segment, so suspect should be here */ 310 if (start_dma <= end_trb_dma) { 311 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 312 return cur_seg; 313 } else { 314 /* Case for one segment with 315 * a TD wrapped around to the top 316 */ 317 if ((suspect_dma >= start_dma && 318 suspect_dma <= end_seg_dma) || 319 (suspect_dma >= cur_seg->dma && 320 suspect_dma <= end_trb_dma)) 321 return cur_seg; 322 } 323 return NULL; 324 } 325 /* Might still be somewhere in this segment */ 326 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 327 return cur_seg; 328 329 cur_seg = cur_seg->next; 330 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 331 } while (cur_seg != td->start_seg); 332 333 return NULL; 334 } 335 336 /* 337 * Return number of free normal TRBs from enqueue to dequeue pointer on ring. 338 * Not counting an assumed link TRB at end of each TRBS_PER_SEGMENT sized segment. 339 * Only for transfer and command rings where driver is the producer, not for 340 * event rings. 341 */ 342 static unsigned int xhci_num_trbs_free(struct xhci_ring *ring) 343 { 344 struct xhci_segment *enq_seg = ring->enq_seg; 345 union xhci_trb *enq = ring->enqueue; 346 union xhci_trb *last_on_seg; 347 unsigned int free = 0; 348 int i = 0; 349 350 /* Ring might be empty even if enq != deq if enq is left on a link trb */ 351 if (trb_is_link(enq)) { 352 enq_seg = enq_seg->next; 353 enq = enq_seg->trbs; 354 } 355 356 /* Empty ring, common case, don't walk the segments */ 357 if (enq == ring->dequeue) 358 return ring->num_segs * (TRBS_PER_SEGMENT - 1); 359 360 do { 361 if (ring->deq_seg == enq_seg && ring->dequeue >= enq) 362 return free + (ring->dequeue - enq); 363 last_on_seg = &enq_seg->trbs[TRBS_PER_SEGMENT - 1]; 364 free += last_on_seg - enq; 365 enq_seg = enq_seg->next; 366 enq = enq_seg->trbs; 367 } while (i++ < ring->num_segs); 368 369 return free; 370 } 371 372 /* 373 * Check to see if there's room to enqueue num_trbs on the ring and make sure 374 * enqueue pointer will not advance into dequeue segment. See rules above. 375 * return number of new segments needed to ensure this. 376 */ 377 378 static unsigned int xhci_ring_expansion_needed(struct xhci_hcd *xhci, struct xhci_ring *ring, 379 unsigned int num_trbs) 380 { 381 struct xhci_segment *seg; 382 int trbs_past_seg; 383 int enq_used; 384 int new_segs; 385 386 enq_used = ring->enqueue - ring->enq_seg->trbs; 387 388 /* how many trbs will be queued past the enqueue segment? */ 389 trbs_past_seg = enq_used + num_trbs - (TRBS_PER_SEGMENT - 1); 390 391 /* 392 * Consider expanding the ring already if num_trbs fills the current 393 * segment (i.e. trbs_past_seg == 0), not only when num_trbs goes into 394 * the next segment. Avoids confusing full ring with special empty ring 395 * case below 396 */ 397 if (trbs_past_seg < 0) 398 return 0; 399 400 /* Empty ring special case, enqueue stuck on link trb while dequeue advanced */ 401 if (trb_is_link(ring->enqueue) && ring->enq_seg->next->trbs == ring->dequeue) 402 return 0; 403 404 new_segs = 1 + (trbs_past_seg / (TRBS_PER_SEGMENT - 1)); 405 seg = ring->enq_seg; 406 407 while (new_segs > 0) { 408 seg = seg->next; 409 if (seg == ring->deq_seg) { 410 xhci_dbg(xhci, "Adding %d trbs requires expanding ring by %d segments\n", 411 num_trbs, new_segs); 412 return new_segs; 413 } 414 new_segs--; 415 } 416 417 return 0; 418 } 419 420 /* Ring the host controller doorbell after placing a command on the ring */ 421 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 422 { 423 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 424 return; 425 426 xhci_dbg(xhci, "// Ding dong!\n"); 427 428 trace_xhci_ring_host_doorbell(0, DB_VALUE_HOST); 429 430 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 431 /* Flush PCI posted writes */ 432 readl(&xhci->dba->doorbell[0]); 433 } 434 435 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci) 436 { 437 return mod_delayed_work(system_wq, &xhci->cmd_timer, 438 msecs_to_jiffies(xhci->current_cmd->timeout_ms)); 439 } 440 441 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) 442 { 443 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, 444 cmd_list); 445 } 446 447 /* 448 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 449 * If there are other commands waiting then restart the ring and kick the timer. 450 * This must be called with command ring stopped and xhci->lock held. 451 */ 452 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 453 struct xhci_command *cur_cmd) 454 { 455 struct xhci_command *i_cmd; 456 457 /* Turn all aborted commands in list to no-ops, then restart */ 458 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { 459 460 if (i_cmd->status != COMP_COMMAND_ABORTED) 461 continue; 462 463 i_cmd->status = COMP_COMMAND_RING_STOPPED; 464 465 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 466 i_cmd->command_trb); 467 468 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); 469 470 /* 471 * caller waiting for completion is called when command 472 * completion event is received for these no-op commands 473 */ 474 } 475 476 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 477 478 /* ring command ring doorbell to restart the command ring */ 479 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 480 !(xhci->xhc_state & XHCI_STATE_DYING)) { 481 xhci->current_cmd = cur_cmd; 482 if (cur_cmd) 483 xhci_mod_cmd_timer(xhci); 484 xhci_ring_cmd_db(xhci); 485 } 486 } 487 488 /* Must be called with xhci->lock held, releases and acquires lock back */ 489 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) 490 { 491 struct xhci_segment *new_seg = xhci->cmd_ring->deq_seg; 492 union xhci_trb *new_deq = xhci->cmd_ring->dequeue; 493 u64 crcr; 494 int ret; 495 496 xhci_dbg(xhci, "Abort command ring\n"); 497 498 reinit_completion(&xhci->cmd_ring_stop_completion); 499 500 /* 501 * The control bits like command stop, abort are located in lower 502 * dword of the command ring control register. 503 * Some controllers require all 64 bits to be written to abort the ring. 504 * Make sure the upper dword is valid, pointing to the next command, 505 * avoiding corrupting the command ring pointer in case the command ring 506 * is stopped by the time the upper dword is written. 507 */ 508 next_trb(&new_seg, &new_deq); 509 if (trb_is_link(new_deq)) 510 next_trb(&new_seg, &new_deq); 511 512 crcr = xhci_trb_virt_to_dma(new_seg, new_deq); 513 xhci_write_64(xhci, crcr | CMD_RING_ABORT, &xhci->op_regs->cmd_ring); 514 515 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the 516 * completion of the Command Abort operation. If CRR is not negated in 5 517 * seconds then driver handles it as if host died (-ENODEV). 518 * In the future we should distinguish between -ENODEV and -ETIMEDOUT 519 * and try to recover a -ETIMEDOUT with a host controller reset. 520 */ 521 ret = xhci_handshake(&xhci->op_regs->cmd_ring, 522 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 523 if (ret < 0) { 524 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret); 525 xhci_halt(xhci); 526 xhci_hc_died(xhci); 527 return ret; 528 } 529 /* 530 * Writing the CMD_RING_ABORT bit should cause a cmd completion event, 531 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared 532 * but the completion event in never sent. Wait 2 secs (arbitrary 533 * number) to handle those cases after negation of CMD_RING_RUNNING. 534 */ 535 spin_unlock_irqrestore(&xhci->lock, flags); 536 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, 537 msecs_to_jiffies(2000)); 538 spin_lock_irqsave(&xhci->lock, flags); 539 if (!ret) { 540 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); 541 xhci_cleanup_command_queue(xhci); 542 } else { 543 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); 544 } 545 return 0; 546 } 547 548 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 549 unsigned int slot_id, 550 unsigned int ep_index, 551 unsigned int stream_id) 552 { 553 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 554 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 555 unsigned int ep_state = ep->ep_state; 556 557 /* Don't ring the doorbell for this endpoint if there are pending 558 * cancellations because we don't want to interrupt processing. 559 * We don't want to restart any stream rings if there's a set dequeue 560 * pointer command pending because the device can choose to start any 561 * stream once the endpoint is on the HW schedule. 562 */ 563 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || 564 (ep_state & EP_HALTED) || (ep_state & EP_CLEARING_TT)) 565 return; 566 567 trace_xhci_ring_ep_doorbell(slot_id, DB_VALUE(ep_index, stream_id)); 568 569 writel(DB_VALUE(ep_index, stream_id), db_addr); 570 /* flush the write */ 571 readl(db_addr); 572 } 573 574 /* Ring the doorbell for any rings with pending URBs */ 575 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 576 unsigned int slot_id, 577 unsigned int ep_index) 578 { 579 unsigned int stream_id; 580 struct xhci_virt_ep *ep; 581 582 ep = &xhci->devs[slot_id]->eps[ep_index]; 583 584 /* A ring has pending URBs if its TD list is not empty */ 585 if (!(ep->ep_state & EP_HAS_STREAMS)) { 586 if (ep->ring && !(list_empty(&ep->ring->td_list))) 587 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 588 return; 589 } 590 591 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 592 stream_id++) { 593 struct xhci_stream_info *stream_info = ep->stream_info; 594 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 595 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 596 stream_id); 597 } 598 } 599 600 void xhci_ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 601 unsigned int slot_id, 602 unsigned int ep_index) 603 { 604 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 605 } 606 607 static struct xhci_virt_ep *xhci_get_virt_ep(struct xhci_hcd *xhci, 608 unsigned int slot_id, 609 unsigned int ep_index) 610 { 611 if (slot_id == 0 || slot_id >= MAX_HC_SLOTS) { 612 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 613 return NULL; 614 } 615 if (ep_index >= EP_CTX_PER_DEV) { 616 xhci_warn(xhci, "Invalid endpoint index %u\n", ep_index); 617 return NULL; 618 } 619 if (!xhci->devs[slot_id]) { 620 xhci_warn(xhci, "No xhci virt device for slot_id %u\n", slot_id); 621 return NULL; 622 } 623 624 return &xhci->devs[slot_id]->eps[ep_index]; 625 } 626 627 static struct xhci_ring *xhci_virt_ep_to_ring(struct xhci_hcd *xhci, 628 struct xhci_virt_ep *ep, 629 unsigned int stream_id) 630 { 631 /* common case, no streams */ 632 if (!(ep->ep_state & EP_HAS_STREAMS)) 633 return ep->ring; 634 635 if (!ep->stream_info) 636 return NULL; 637 638 if (stream_id == 0 || stream_id >= ep->stream_info->num_streams) { 639 xhci_warn(xhci, "Invalid stream_id %u request for slot_id %u ep_index %u\n", 640 stream_id, ep->vdev->slot_id, ep->ep_index); 641 return NULL; 642 } 643 644 return ep->stream_info->stream_rings[stream_id]; 645 } 646 647 /* Get the right ring for the given slot_id, ep_index and stream_id. 648 * If the endpoint supports streams, boundary check the URB's stream ID. 649 * If the endpoint doesn't support streams, return the singular endpoint ring. 650 */ 651 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 652 unsigned int slot_id, unsigned int ep_index, 653 unsigned int stream_id) 654 { 655 struct xhci_virt_ep *ep; 656 657 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 658 if (!ep) 659 return NULL; 660 661 return xhci_virt_ep_to_ring(xhci, ep, stream_id); 662 } 663 664 665 /* 666 * Get the hw dequeue pointer xHC stopped on, either directly from the 667 * endpoint context, or if streams are in use from the stream context. 668 * The returned hw_dequeue contains the lowest four bits with cycle state 669 * and possbile stream context type. 670 */ 671 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev, 672 unsigned int ep_index, unsigned int stream_id) 673 { 674 struct xhci_ep_ctx *ep_ctx; 675 struct xhci_stream_ctx *st_ctx; 676 struct xhci_virt_ep *ep; 677 678 ep = &vdev->eps[ep_index]; 679 680 if (ep->ep_state & EP_HAS_STREAMS) { 681 st_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 682 return le64_to_cpu(st_ctx->stream_ring); 683 } 684 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 685 return le64_to_cpu(ep_ctx->deq); 686 } 687 688 static int xhci_move_dequeue_past_td(struct xhci_hcd *xhci, 689 unsigned int slot_id, unsigned int ep_index, 690 unsigned int stream_id, struct xhci_td *td) 691 { 692 struct xhci_virt_device *dev = xhci->devs[slot_id]; 693 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 694 struct xhci_ring *ep_ring; 695 struct xhci_command *cmd; 696 struct xhci_segment *new_seg; 697 union xhci_trb *new_deq; 698 int new_cycle; 699 dma_addr_t addr; 700 u64 hw_dequeue; 701 bool hw_dequeue_found = false; 702 bool td_last_trb_found = false; 703 u32 trb_sct = 0; 704 int ret; 705 706 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 707 ep_index, stream_id); 708 if (!ep_ring) { 709 xhci_warn(xhci, "WARN can't find new dequeue, invalid stream ID %u\n", 710 stream_id); 711 return -ENODEV; 712 } 713 714 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id); 715 new_seg = ep_ring->deq_seg; 716 new_deq = ep_ring->dequeue; 717 new_cycle = le32_to_cpu(td->end_trb->generic.field[3]) & TRB_CYCLE; 718 719 /* 720 * Walk the ring until both the next TRB and hw_dequeue are found (don't 721 * move hw_dequeue back if it went forward due to a HW bug). Cycle state 722 * is loaded from a known good TRB, track later toggles to maintain it. 723 */ 724 do { 725 if (!hw_dequeue_found && xhci_trb_virt_to_dma(new_seg, new_deq) 726 == (dma_addr_t)(hw_dequeue & ~0xf)) { 727 hw_dequeue_found = true; 728 if (td_last_trb_found) 729 break; 730 } 731 if (new_deq == td->end_trb) 732 td_last_trb_found = true; 733 734 if (td_last_trb_found && trb_is_link(new_deq) && 735 link_trb_toggles_cycle(new_deq)) 736 new_cycle ^= 0x1; 737 738 next_trb(&new_seg, &new_deq); 739 740 /* Search wrapped around, bail out */ 741 if (new_deq == ep->ring->dequeue) { 742 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 743 return -EINVAL; 744 } 745 746 } while (!hw_dequeue_found || !td_last_trb_found); 747 748 /* Don't update the ring cycle state for the producer (us). */ 749 addr = xhci_trb_virt_to_dma(new_seg, new_deq); 750 if (addr == 0) { 751 xhci_warn(xhci, "Can't find dma of new dequeue ptr\n"); 752 xhci_warn(xhci, "deq seg = %p, deq ptr = %p\n", new_seg, new_deq); 753 return -EINVAL; 754 } 755 756 if ((ep->ep_state & SET_DEQ_PENDING)) { 757 xhci_warn(xhci, "Set TR Deq already pending, don't submit for 0x%pad\n", 758 &addr); 759 return -EBUSY; 760 } 761 762 /* This function gets called from contexts where it cannot sleep */ 763 cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC); 764 if (!cmd) { 765 xhci_warn(xhci, "Can't alloc Set TR Deq cmd 0x%pad\n", &addr); 766 return -ENOMEM; 767 } 768 769 if (stream_id) 770 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 771 ret = queue_command(xhci, cmd, 772 lower_32_bits(addr) | trb_sct | new_cycle, 773 upper_32_bits(addr), 774 STREAM_ID_FOR_TRB(stream_id), SLOT_ID_FOR_TRB(slot_id) | 775 EP_INDEX_FOR_TRB(ep_index) | TRB_TYPE(TRB_SET_DEQ), false); 776 if (ret < 0) { 777 xhci_free_command(xhci, cmd); 778 return ret; 779 } 780 ep->queued_deq_seg = new_seg; 781 ep->queued_deq_ptr = new_deq; 782 783 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 784 "Set TR Deq ptr 0x%llx, cycle %u\n", addr, new_cycle); 785 786 /* Stop the TD queueing code from ringing the doorbell until 787 * this command completes. The HC won't set the dequeue pointer 788 * if the ring is running, and ringing the doorbell starts the 789 * ring running. 790 */ 791 ep->ep_state |= SET_DEQ_PENDING; 792 xhci_ring_cmd_db(xhci); 793 return 0; 794 } 795 796 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 797 * (The last TRB actually points to the ring enqueue pointer, which is not part 798 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 799 */ 800 static void td_to_noop(struct xhci_td *td, bool flip_cycle) 801 { 802 struct xhci_segment *seg = td->start_seg; 803 union xhci_trb *trb = td->start_trb; 804 805 while (1) { 806 trb_to_noop(trb, TRB_TR_NOOP); 807 808 /* flip cycle if asked to */ 809 if (flip_cycle && trb != td->start_trb && trb != td->end_trb) 810 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); 811 812 if (trb == td->end_trb) 813 break; 814 815 next_trb(&seg, &trb); 816 } 817 } 818 819 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 820 struct xhci_td *cur_td, int status) 821 { 822 struct urb *urb = cur_td->urb; 823 struct urb_priv *urb_priv = urb->hcpriv; 824 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 825 826 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 827 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 828 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 829 if (xhci->quirks & XHCI_AMD_PLL_FIX) 830 usb_amd_quirk_pll_enable(); 831 } 832 } 833 xhci_urb_free_priv(urb_priv); 834 usb_hcd_unlink_urb_from_ep(hcd, urb); 835 trace_xhci_urb_giveback(urb); 836 usb_hcd_giveback_urb(hcd, urb, status); 837 } 838 839 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, 840 struct xhci_ring *ring, struct xhci_td *td) 841 { 842 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 843 struct xhci_segment *seg = td->bounce_seg; 844 struct urb *urb = td->urb; 845 size_t len; 846 847 if (!ring || !seg || !urb) 848 return; 849 850 if (usb_urb_dir_out(urb)) { 851 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 852 DMA_TO_DEVICE); 853 return; 854 } 855 856 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 857 DMA_FROM_DEVICE); 858 /* for in transfers we need to copy the data from bounce to sg */ 859 if (urb->num_sgs) { 860 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, seg->bounce_buf, 861 seg->bounce_len, seg->bounce_offs); 862 if (len != seg->bounce_len) 863 xhci_warn(xhci, "WARN Wrong bounce buffer read length: %zu != %d\n", 864 len, seg->bounce_len); 865 } else { 866 memcpy(urb->transfer_buffer + seg->bounce_offs, seg->bounce_buf, 867 seg->bounce_len); 868 } 869 seg->bounce_len = 0; 870 seg->bounce_offs = 0; 871 } 872 873 static void xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, 874 struct xhci_ring *ep_ring, int status) 875 { 876 struct urb *urb = NULL; 877 878 /* Clean up the endpoint's TD list */ 879 urb = td->urb; 880 881 /* if a bounce buffer was used to align this td then unmap it */ 882 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); 883 884 /* Do one last check of the actual transfer length. 885 * If the host controller said we transferred more data than the buffer 886 * length, urb->actual_length will be a very big number (since it's 887 * unsigned). Play it safe and say we didn't transfer anything. 888 */ 889 if (urb->actual_length > urb->transfer_buffer_length) { 890 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", 891 urb->transfer_buffer_length, urb->actual_length); 892 urb->actual_length = 0; 893 status = 0; 894 } 895 /* TD might be removed from td_list if we are giving back a cancelled URB */ 896 if (!list_empty(&td->td_list)) 897 list_del_init(&td->td_list); 898 /* Giving back a cancelled URB, or if a slated TD completed anyway */ 899 if (!list_empty(&td->cancelled_td_list)) 900 list_del_init(&td->cancelled_td_list); 901 902 inc_td_cnt(urb); 903 /* Giveback the urb when all the tds are completed */ 904 if (last_td_in_urb(td)) { 905 if ((urb->actual_length != urb->transfer_buffer_length && 906 (urb->transfer_flags & URB_SHORT_NOT_OK)) || 907 (status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) 908 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", 909 urb, urb->actual_length, 910 urb->transfer_buffer_length, status); 911 912 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ 913 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 914 status = 0; 915 xhci_giveback_urb_in_irq(xhci, td, status); 916 } 917 } 918 919 /* Give back previous TD and move on to the next TD. */ 920 static void xhci_dequeue_td(struct xhci_hcd *xhci, struct xhci_td *td, struct xhci_ring *ring, 921 u32 status) 922 { 923 ring->dequeue = td->end_trb; 924 ring->deq_seg = td->end_seg; 925 inc_deq(xhci, ring); 926 927 xhci_td_cleanup(xhci, td, ring, status); 928 } 929 930 /* Complete the cancelled URBs we unlinked from td_list. */ 931 static void xhci_giveback_invalidated_tds(struct xhci_virt_ep *ep) 932 { 933 struct xhci_ring *ring; 934 struct xhci_td *td, *tmp_td; 935 936 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 937 cancelled_td_list) { 938 939 ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 940 941 if (td->cancel_status == TD_CLEARED) { 942 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 943 __func__, td->urb); 944 xhci_td_cleanup(ep->xhci, td, ring, td->status); 945 } else { 946 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 947 __func__, td->urb, td->cancel_status); 948 } 949 if (ep->xhci->xhc_state & XHCI_STATE_DYING) 950 return; 951 } 952 } 953 954 static int xhci_reset_halted_ep(struct xhci_hcd *xhci, unsigned int slot_id, 955 unsigned int ep_index, enum xhci_ep_reset_type reset_type) 956 { 957 struct xhci_command *command; 958 int ret = 0; 959 960 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 961 if (!command) { 962 ret = -ENOMEM; 963 goto done; 964 } 965 966 xhci_dbg(xhci, "%s-reset ep %u, slot %u\n", 967 (reset_type == EP_HARD_RESET) ? "Hard" : "Soft", 968 ep_index, slot_id); 969 970 ret = xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type); 971 done: 972 if (ret) 973 xhci_err(xhci, "ERROR queuing reset endpoint for slot %d ep_index %d, %d\n", 974 slot_id, ep_index, ret); 975 return ret; 976 } 977 978 static int xhci_handle_halted_endpoint(struct xhci_hcd *xhci, 979 struct xhci_virt_ep *ep, 980 struct xhci_td *td, 981 enum xhci_ep_reset_type reset_type) 982 { 983 unsigned int slot_id = ep->vdev->slot_id; 984 int err; 985 986 /* 987 * Avoid resetting endpoint if link is inactive. Can cause host hang. 988 * Device will be reset soon to recover the link so don't do anything 989 */ 990 if (ep->vdev->flags & VDEV_PORT_ERROR) 991 return -ENODEV; 992 993 /* add td to cancelled list and let reset ep handler take care of it */ 994 if (reset_type == EP_HARD_RESET) { 995 ep->ep_state |= EP_HARD_CLEAR_TOGGLE; 996 if (td && list_empty(&td->cancelled_td_list)) { 997 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 998 td->cancel_status = TD_HALTED; 999 } 1000 } 1001 1002 if (ep->ep_state & EP_HALTED) { 1003 xhci_dbg(xhci, "Reset ep command for ep_index %d already pending\n", 1004 ep->ep_index); 1005 return 0; 1006 } 1007 1008 err = xhci_reset_halted_ep(xhci, slot_id, ep->ep_index, reset_type); 1009 if (err) 1010 return err; 1011 1012 ep->ep_state |= EP_HALTED; 1013 1014 xhci_ring_cmd_db(xhci); 1015 1016 return 0; 1017 } 1018 1019 /* 1020 * Fix up the ep ring first, so HW stops executing cancelled TDs. 1021 * We have the xHCI lock, so nothing can modify this list until we drop it. 1022 * We're also in the event handler, so we can't get re-interrupted if another 1023 * Stop Endpoint command completes. 1024 * 1025 * only call this when ring is not in a running state 1026 */ 1027 1028 static int xhci_invalidate_cancelled_tds(struct xhci_virt_ep *ep) 1029 { 1030 struct xhci_hcd *xhci; 1031 struct xhci_td *td = NULL; 1032 struct xhci_td *tmp_td = NULL; 1033 struct xhci_td *cached_td = NULL; 1034 struct xhci_ring *ring; 1035 u64 hw_deq; 1036 unsigned int slot_id = ep->vdev->slot_id; 1037 int err; 1038 1039 /* 1040 * This is not going to work if the hardware is changing its dequeue 1041 * pointers as we look at them. Completion handler will call us later. 1042 */ 1043 if (ep->ep_state & SET_DEQ_PENDING) 1044 return 0; 1045 1046 xhci = ep->xhci; 1047 1048 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 1049 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1050 "Removing canceled TD starting at 0x%llx (dma) in stream %u URB %p", 1051 (unsigned long long)xhci_trb_virt_to_dma( 1052 td->start_seg, td->start_trb), 1053 td->urb->stream_id, td->urb); 1054 list_del_init(&td->td_list); 1055 ring = xhci_urb_to_transfer_ring(xhci, td->urb); 1056 if (!ring) { 1057 xhci_warn(xhci, "WARN Cancelled URB %p has invalid stream ID %u.\n", 1058 td->urb, td->urb->stream_id); 1059 continue; 1060 } 1061 /* 1062 * If a ring stopped on the TD we need to cancel then we have to 1063 * move the xHC endpoint ring dequeue pointer past this TD. 1064 * Rings halted due to STALL may show hw_deq is past the stalled 1065 * TD, but still require a set TR Deq command to flush xHC cache. 1066 */ 1067 hw_deq = xhci_get_hw_deq(xhci, ep->vdev, ep->ep_index, 1068 td->urb->stream_id); 1069 hw_deq &= ~0xf; 1070 1071 if (td->cancel_status == TD_HALTED || trb_in_td(td, hw_deq)) { 1072 switch (td->cancel_status) { 1073 case TD_CLEARED: /* TD is already no-op */ 1074 case TD_CLEARING_CACHE: /* set TR deq command already queued */ 1075 break; 1076 case TD_DIRTY: /* TD is cached, clear it */ 1077 case TD_HALTED: 1078 case TD_CLEARING_CACHE_DEFERRED: 1079 if (cached_td) { 1080 if (cached_td->urb->stream_id != td->urb->stream_id) { 1081 /* Multiple streams case, defer move dq */ 1082 xhci_dbg(xhci, 1083 "Move dq deferred: stream %u URB %p\n", 1084 td->urb->stream_id, td->urb); 1085 td->cancel_status = TD_CLEARING_CACHE_DEFERRED; 1086 break; 1087 } 1088 1089 /* Should never happen, but clear the TD if it does */ 1090 xhci_warn(xhci, 1091 "Found multiple active URBs %p and %p in stream %u?\n", 1092 td->urb, cached_td->urb, 1093 td->urb->stream_id); 1094 td_to_noop(cached_td, false); 1095 cached_td->cancel_status = TD_CLEARED; 1096 } 1097 td_to_noop(td, false); 1098 td->cancel_status = TD_CLEARING_CACHE; 1099 cached_td = td; 1100 break; 1101 } 1102 } else { 1103 td_to_noop(td, false); 1104 td->cancel_status = TD_CLEARED; 1105 } 1106 } 1107 1108 /* If there's no need to move the dequeue pointer then we're done */ 1109 if (!cached_td) 1110 return 0; 1111 1112 err = xhci_move_dequeue_past_td(xhci, slot_id, ep->ep_index, 1113 cached_td->urb->stream_id, 1114 cached_td); 1115 if (err) { 1116 /* Failed to move past cached td, just set cached TDs to no-op */ 1117 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 1118 /* 1119 * Deferred TDs need to have the deq pointer set after the above command 1120 * completes, so if that failed we just give up on all of them (and 1121 * complain loudly since this could cause issues due to caching). 1122 */ 1123 if (td->cancel_status != TD_CLEARING_CACHE && 1124 td->cancel_status != TD_CLEARING_CACHE_DEFERRED) 1125 continue; 1126 xhci_warn(xhci, "Failed to clear cancelled cached URB %p, mark clear anyway\n", 1127 td->urb); 1128 td_to_noop(td, false); 1129 td->cancel_status = TD_CLEARED; 1130 } 1131 } 1132 return 0; 1133 } 1134 1135 /* 1136 * Erase queued TDs from transfer ring(s) and give back those the xHC didn't 1137 * stop on. If necessary, queue commands to move the xHC off cancelled TDs it 1138 * stopped on. Those will be given back later when the commands complete. 1139 * 1140 * Call under xhci->lock on a stopped endpoint. 1141 */ 1142 void xhci_process_cancelled_tds(struct xhci_virt_ep *ep) 1143 { 1144 xhci_invalidate_cancelled_tds(ep); 1145 xhci_giveback_invalidated_tds(ep); 1146 } 1147 1148 /* 1149 * Returns the TD the endpoint ring halted on. 1150 * Only call for non-running rings without streams. 1151 */ 1152 static struct xhci_td *find_halted_td(struct xhci_virt_ep *ep) 1153 { 1154 struct xhci_td *td; 1155 u64 hw_deq; 1156 1157 if (!list_empty(&ep->ring->td_list)) { /* Not streams compatible */ 1158 hw_deq = xhci_get_hw_deq(ep->xhci, ep->vdev, ep->ep_index, 0); 1159 hw_deq &= ~0xf; 1160 td = list_first_entry(&ep->ring->td_list, struct xhci_td, td_list); 1161 if (trb_in_td(td, hw_deq)) 1162 return td; 1163 } 1164 return NULL; 1165 } 1166 1167 /* 1168 * When we get a command completion for a Stop Endpoint Command, we need to 1169 * unlink any cancelled TDs from the ring. There are two ways to do that: 1170 * 1171 * 1. If the HW was in the middle of processing the TD that needs to be 1172 * cancelled, then we must move the ring's dequeue pointer past the last TRB 1173 * in the TD with a Set Dequeue Pointer Command. 1174 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 1175 * bit cleared) so that the HW will skip over them. 1176 */ 1177 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 1178 union xhci_trb *trb, u32 comp_code) 1179 { 1180 unsigned int ep_index; 1181 struct xhci_virt_ep *ep; 1182 struct xhci_ep_ctx *ep_ctx; 1183 struct xhci_td *td = NULL; 1184 enum xhci_ep_reset_type reset_type; 1185 struct xhci_command *command; 1186 int err; 1187 1188 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 1189 if (!xhci->devs[slot_id]) 1190 xhci_warn(xhci, "Stop endpoint command completion for disabled slot %u\n", 1191 slot_id); 1192 return; 1193 } 1194 1195 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1196 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1197 if (!ep) 1198 return; 1199 1200 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1201 1202 trace_xhci_handle_cmd_stop_ep(ep_ctx); 1203 1204 if (comp_code == COMP_CONTEXT_STATE_ERROR) { 1205 /* 1206 * If stop endpoint command raced with a halting endpoint we need to 1207 * reset the host side endpoint first. 1208 * If the TD we halted on isn't cancelled the TD should be given back 1209 * with a proper error code, and the ring dequeue moved past the TD. 1210 * If streams case we can't find hw_deq, or the TD we halted on so do a 1211 * soft reset. 1212 * 1213 * Proper error code is unknown here, it would be -EPIPE if device side 1214 * of enadpoit halted (aka STALL), and -EPROTO if not (transaction error) 1215 * We use -EPROTO, if device is stalled it should return a stall error on 1216 * next transfer, which then will return -EPIPE, and device side stall is 1217 * noted and cleared by class driver. 1218 */ 1219 switch (GET_EP_CTX_STATE(ep_ctx)) { 1220 case EP_STATE_HALTED: 1221 xhci_dbg(xhci, "Stop ep completion raced with stall\n"); 1222 /* 1223 * If the halt happened before Stop Endpoint failed, its transfer event 1224 * should have already been handled and Reset Endpoint should be pending. 1225 */ 1226 if (ep->ep_state & EP_HALTED) 1227 goto reset_done; 1228 1229 if (ep->ep_state & EP_HAS_STREAMS) { 1230 reset_type = EP_SOFT_RESET; 1231 } else { 1232 reset_type = EP_HARD_RESET; 1233 td = find_halted_td(ep); 1234 if (td) 1235 td->status = -EPROTO; 1236 } 1237 /* reset ep, reset handler cleans up cancelled tds */ 1238 err = xhci_handle_halted_endpoint(xhci, ep, td, reset_type); 1239 xhci_dbg(xhci, "Stop ep completion resetting ep, status %d\n", err); 1240 if (err) 1241 break; 1242 reset_done: 1243 /* Reset EP handler will clean up cancelled TDs */ 1244 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1245 return; 1246 case EP_STATE_STOPPED: 1247 /* 1248 * Per xHCI 4.6.9, Stop Endpoint command on a Stopped 1249 * EP is a Context State Error, and EP stays Stopped. 1250 * 1251 * But maybe it failed on Halted, and somebody ran Reset 1252 * Endpoint later. EP state is now Stopped and EP_HALTED 1253 * still set because Reset EP handler will run after us. 1254 */ 1255 if (ep->ep_state & EP_HALTED) 1256 break; 1257 /* 1258 * On some HCs EP state remains Stopped for some tens of 1259 * us to a few ms or more after a doorbell ring, and any 1260 * new Stop Endpoint fails without aborting the restart. 1261 * This handler may run quickly enough to still see this 1262 * Stopped state, but it will soon change to Running. 1263 * 1264 * Assume this bug on unexpected Stop Endpoint failures. 1265 * Keep retrying until the EP starts and stops again. 1266 */ 1267 fallthrough; 1268 case EP_STATE_RUNNING: 1269 /* Race, HW handled stop ep cmd before ep was running */ 1270 xhci_dbg(xhci, "Stop ep completion ctx error, ctx_state %d\n", 1271 GET_EP_CTX_STATE(ep_ctx)); 1272 /* 1273 * Don't retry forever if we guessed wrong or a defective HC never starts 1274 * the EP or says 'Running' but fails the command. We must give back TDs. 1275 */ 1276 if (time_is_before_jiffies(ep->stop_time + msecs_to_jiffies(100))) 1277 break; 1278 1279 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1280 if (!command) { 1281 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1282 return; 1283 } 1284 xhci_queue_stop_endpoint(xhci, command, slot_id, ep_index, 0); 1285 xhci_ring_cmd_db(xhci); 1286 1287 return; 1288 default: 1289 break; 1290 } 1291 } 1292 1293 /* will queue a set TR deq if stopped on a cancelled, uncleared TD */ 1294 xhci_invalidate_cancelled_tds(ep); 1295 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1296 1297 /* Otherwise ring the doorbell(s) to restart queued transfers */ 1298 xhci_giveback_invalidated_tds(ep); 1299 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1300 } 1301 1302 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 1303 { 1304 struct xhci_td *cur_td; 1305 struct xhci_td *tmp; 1306 1307 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { 1308 list_del_init(&cur_td->td_list); 1309 1310 if (!list_empty(&cur_td->cancelled_td_list)) 1311 list_del_init(&cur_td->cancelled_td_list); 1312 1313 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); 1314 1315 inc_td_cnt(cur_td->urb); 1316 if (last_td_in_urb(cur_td)) 1317 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1318 } 1319 } 1320 1321 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 1322 int slot_id, int ep_index) 1323 { 1324 struct xhci_td *cur_td; 1325 struct xhci_td *tmp; 1326 struct xhci_virt_ep *ep; 1327 struct xhci_ring *ring; 1328 1329 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1330 if (!ep) 1331 return; 1332 1333 if ((ep->ep_state & EP_HAS_STREAMS) || 1334 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 1335 int stream_id; 1336 1337 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 1338 stream_id++) { 1339 ring = ep->stream_info->stream_rings[stream_id]; 1340 if (!ring) 1341 continue; 1342 1343 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1344 "Killing URBs for slot ID %u, ep index %u, stream %u", 1345 slot_id, ep_index, stream_id); 1346 xhci_kill_ring_urbs(xhci, ring); 1347 } 1348 } else { 1349 ring = ep->ring; 1350 if (!ring) 1351 return; 1352 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1353 "Killing URBs for slot ID %u, ep index %u", 1354 slot_id, ep_index); 1355 xhci_kill_ring_urbs(xhci, ring); 1356 } 1357 1358 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, 1359 cancelled_td_list) { 1360 list_del_init(&cur_td->cancelled_td_list); 1361 inc_td_cnt(cur_td->urb); 1362 1363 if (last_td_in_urb(cur_td)) 1364 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1365 } 1366 } 1367 1368 /* 1369 * host controller died, register read returns 0xffffffff 1370 * Complete pending commands, mark them ABORTED. 1371 * URBs need to be given back as usb core might be waiting with device locks 1372 * held for the URBs to finish during device disconnect, blocking host remove. 1373 * 1374 * Call with xhci->lock held. 1375 * lock is relased and re-acquired while giving back urb. 1376 */ 1377 void xhci_hc_died(struct xhci_hcd *xhci) 1378 { 1379 int i, j; 1380 1381 if (xhci->xhc_state & XHCI_STATE_DYING) 1382 return; 1383 1384 xhci_err(xhci, "xHCI host controller not responding, assume dead\n"); 1385 xhci->xhc_state |= XHCI_STATE_DYING; 1386 1387 xhci_cleanup_command_queue(xhci); 1388 1389 /* return any pending urbs, remove may be waiting for them */ 1390 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 1391 if (!xhci->devs[i]) 1392 continue; 1393 for (j = 0; j < 31; j++) 1394 xhci_kill_endpoint_urbs(xhci, i, j); 1395 } 1396 1397 /* inform usb core hc died if PCI remove isn't already handling it */ 1398 if (!(xhci->xhc_state & XHCI_STATE_REMOVING)) 1399 usb_hc_died(xhci_to_hcd(xhci)); 1400 } 1401 1402 /* 1403 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1404 * we need to clear the set deq pending flag in the endpoint ring state, so that 1405 * the TD queueing code can ring the doorbell again. We also need to ring the 1406 * endpoint doorbell to restart the ring, but only if there aren't more 1407 * cancellations pending. 1408 */ 1409 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1410 union xhci_trb *trb, u32 cmd_comp_code) 1411 { 1412 unsigned int ep_index; 1413 unsigned int stream_id; 1414 struct xhci_ring *ep_ring; 1415 struct xhci_virt_ep *ep; 1416 struct xhci_ep_ctx *ep_ctx; 1417 struct xhci_slot_ctx *slot_ctx; 1418 struct xhci_stream_ctx *stream_ctx; 1419 struct xhci_td *td, *tmp_td; 1420 1421 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1422 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1423 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1424 if (!ep) 1425 return; 1426 1427 ep_ring = xhci_virt_ep_to_ring(xhci, ep, stream_id); 1428 if (!ep_ring) { 1429 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 1430 stream_id); 1431 /* XXX: Harmless??? */ 1432 goto cleanup; 1433 } 1434 1435 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1436 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 1437 trace_xhci_handle_cmd_set_deq(slot_ctx); 1438 trace_xhci_handle_cmd_set_deq_ep(ep_ctx); 1439 1440 if (ep->ep_state & EP_HAS_STREAMS) { 1441 stream_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 1442 trace_xhci_handle_cmd_set_deq_stream(ep->stream_info, stream_id); 1443 } 1444 1445 if (cmd_comp_code != COMP_SUCCESS) { 1446 unsigned int ep_state; 1447 unsigned int slot_state; 1448 1449 switch (cmd_comp_code) { 1450 case COMP_TRB_ERROR: 1451 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 1452 break; 1453 case COMP_CONTEXT_STATE_ERROR: 1454 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1455 ep_state = GET_EP_CTX_STATE(ep_ctx); 1456 slot_state = le32_to_cpu(slot_ctx->dev_state); 1457 slot_state = GET_SLOT_STATE(slot_state); 1458 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1459 "Slot state = %u, EP state = %u", 1460 slot_state, ep_state); 1461 break; 1462 case COMP_SLOT_NOT_ENABLED_ERROR: 1463 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1464 slot_id); 1465 break; 1466 default: 1467 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1468 cmd_comp_code); 1469 break; 1470 } 1471 /* OK what do we do now? The endpoint state is hosed, and we 1472 * should never get to this point if the synchronization between 1473 * queueing, and endpoint state are correct. This might happen 1474 * if the device gets disconnected after we've finished 1475 * cancelling URBs, which might not be an error... 1476 */ 1477 } else { 1478 u64 deq; 1479 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1480 if (ep->ep_state & EP_HAS_STREAMS) { 1481 deq = le64_to_cpu(stream_ctx->stream_ring) & SCTX_DEQ_MASK; 1482 1483 /* 1484 * Cadence xHCI controllers store some endpoint state 1485 * information within Rsvd0 fields of Stream Endpoint 1486 * context. This field is not cleared during Set TR 1487 * Dequeue Pointer command which causes XDMA to skip 1488 * over transfer ring and leads to data loss on stream 1489 * pipe. 1490 * To fix this issue driver must clear Rsvd0 field. 1491 */ 1492 if (xhci->quirks & XHCI_CDNS_SCTX_QUIRK) { 1493 stream_ctx->reserved[0] = 0; 1494 stream_ctx->reserved[1] = 0; 1495 } 1496 } else { 1497 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1498 } 1499 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1500 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1501 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1502 ep->queued_deq_ptr) == deq) { 1503 /* Update the ring's dequeue segment and dequeue pointer 1504 * to reflect the new position. 1505 */ 1506 ep_ring->deq_seg = ep->queued_deq_seg; 1507 ep_ring->dequeue = ep->queued_deq_ptr; 1508 } else { 1509 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1510 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1511 ep->queued_deq_seg, ep->queued_deq_ptr); 1512 } 1513 } 1514 /* HW cached TDs cleared from cache, give them back */ 1515 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 1516 cancelled_td_list) { 1517 ep_ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 1518 if (td->cancel_status == TD_CLEARING_CACHE) { 1519 td->cancel_status = TD_CLEARED; 1520 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 1521 __func__, td->urb); 1522 xhci_td_cleanup(ep->xhci, td, ep_ring, td->status); 1523 } else { 1524 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 1525 __func__, td->urb, td->cancel_status); 1526 } 1527 } 1528 cleanup: 1529 ep->ep_state &= ~SET_DEQ_PENDING; 1530 ep->queued_deq_seg = NULL; 1531 ep->queued_deq_ptr = NULL; 1532 1533 /* Check for deferred or newly cancelled TDs */ 1534 if (!list_empty(&ep->cancelled_td_list)) { 1535 xhci_dbg(ep->xhci, "%s: Pending TDs to clear, continuing with invalidation\n", 1536 __func__); 1537 xhci_invalidate_cancelled_tds(ep); 1538 /* Try to restart the endpoint if all is done */ 1539 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1540 /* Start giving back any TDs invalidated above */ 1541 xhci_giveback_invalidated_tds(ep); 1542 } else { 1543 /* Restart any rings with pending URBs */ 1544 xhci_dbg(ep->xhci, "%s: All TDs cleared, ring doorbell\n", __func__); 1545 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1546 } 1547 } 1548 1549 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1550 union xhci_trb *trb, u32 cmd_comp_code) 1551 { 1552 struct xhci_virt_ep *ep; 1553 struct xhci_ep_ctx *ep_ctx; 1554 unsigned int ep_index; 1555 1556 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1557 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1558 if (!ep) 1559 return; 1560 1561 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1562 trace_xhci_handle_cmd_reset_ep(ep_ctx); 1563 1564 /* This command will only fail if the endpoint wasn't halted, 1565 * but we don't care. 1566 */ 1567 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1568 "Ignoring reset ep completion code of %u", cmd_comp_code); 1569 1570 /* Cleanup cancelled TDs as ep is stopped. May queue a Set TR Deq cmd */ 1571 xhci_invalidate_cancelled_tds(ep); 1572 1573 /* Clear our internal halted state */ 1574 ep->ep_state &= ~EP_HALTED; 1575 1576 xhci_giveback_invalidated_tds(ep); 1577 1578 /* if this was a soft reset, then restart */ 1579 if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP) 1580 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1581 } 1582 1583 static void xhci_handle_cmd_enable_slot(int slot_id, struct xhci_command *command, 1584 u32 cmd_comp_code) 1585 { 1586 if (cmd_comp_code == COMP_SUCCESS) 1587 command->slot_id = slot_id; 1588 else 1589 command->slot_id = 0; 1590 } 1591 1592 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1593 { 1594 struct xhci_virt_device *virt_dev; 1595 struct xhci_slot_ctx *slot_ctx; 1596 1597 virt_dev = xhci->devs[slot_id]; 1598 if (!virt_dev) 1599 return; 1600 1601 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 1602 trace_xhci_handle_cmd_disable_slot(slot_ctx); 1603 1604 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1605 /* Delete default control endpoint resources */ 1606 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1607 } 1608 1609 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id) 1610 { 1611 struct xhci_virt_device *virt_dev; 1612 struct xhci_input_control_ctx *ctrl_ctx; 1613 struct xhci_ep_ctx *ep_ctx; 1614 unsigned int ep_index; 1615 u32 add_flags; 1616 1617 /* 1618 * Configure endpoint commands can come from the USB core configuration 1619 * or alt setting changes, or when streams were being configured. 1620 */ 1621 1622 virt_dev = xhci->devs[slot_id]; 1623 if (!virt_dev) 1624 return; 1625 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1626 if (!ctrl_ctx) { 1627 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1628 return; 1629 } 1630 1631 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1632 1633 /* Input ctx add_flags are the endpoint index plus one */ 1634 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1635 1636 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index); 1637 trace_xhci_handle_cmd_config_ep(ep_ctx); 1638 1639 return; 1640 } 1641 1642 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id) 1643 { 1644 struct xhci_virt_device *vdev; 1645 struct xhci_slot_ctx *slot_ctx; 1646 1647 vdev = xhci->devs[slot_id]; 1648 if (!vdev) 1649 return; 1650 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1651 trace_xhci_handle_cmd_addr_dev(slot_ctx); 1652 } 1653 1654 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id) 1655 { 1656 struct xhci_virt_device *vdev; 1657 struct xhci_slot_ctx *slot_ctx; 1658 1659 vdev = xhci->devs[slot_id]; 1660 if (!vdev) { 1661 xhci_warn(xhci, "Reset device command completion for disabled slot %u\n", 1662 slot_id); 1663 return; 1664 } 1665 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1666 trace_xhci_handle_cmd_reset_dev(slot_ctx); 1667 1668 xhci_dbg(xhci, "Completed reset device command.\n"); 1669 } 1670 1671 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1672 struct xhci_event_cmd *event) 1673 { 1674 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1675 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); 1676 return; 1677 } 1678 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1679 "NEC firmware version %2x.%02x", 1680 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1681 NEC_FW_MINOR(le32_to_cpu(event->status))); 1682 } 1683 1684 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 comp_code, u32 comp_param) 1685 { 1686 list_del(&cmd->cmd_list); 1687 1688 if (cmd->completion) { 1689 cmd->status = comp_code; 1690 cmd->comp_param = comp_param; 1691 complete(cmd->completion); 1692 } else { 1693 kfree(cmd); 1694 } 1695 } 1696 1697 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1698 { 1699 struct xhci_command *cur_cmd, *tmp_cmd; 1700 xhci->current_cmd = NULL; 1701 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1702 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED, 0); 1703 } 1704 1705 void xhci_handle_command_timeout(struct work_struct *work) 1706 { 1707 struct xhci_hcd *xhci; 1708 unsigned long flags; 1709 char str[XHCI_MSG_MAX]; 1710 u64 hw_ring_state; 1711 u32 cmd_field3; 1712 u32 usbsts; 1713 1714 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); 1715 1716 spin_lock_irqsave(&xhci->lock, flags); 1717 1718 /* 1719 * If timeout work is pending, or current_cmd is NULL, it means we 1720 * raced with command completion. Command is handled so just return. 1721 */ 1722 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { 1723 spin_unlock_irqrestore(&xhci->lock, flags); 1724 return; 1725 } 1726 1727 cmd_field3 = le32_to_cpu(xhci->current_cmd->command_trb->generic.field[3]); 1728 usbsts = readl(&xhci->op_regs->status); 1729 xhci_dbg(xhci, "Command timeout, USBSTS:%s\n", xhci_decode_usbsts(str, usbsts)); 1730 1731 /* Bail out and tear down xhci if a stop endpoint command failed */ 1732 if (TRB_FIELD_TO_TYPE(cmd_field3) == TRB_STOP_RING) { 1733 struct xhci_virt_ep *ep; 1734 1735 xhci_warn(xhci, "xHCI host not responding to stop endpoint command\n"); 1736 1737 ep = xhci_get_virt_ep(xhci, TRB_TO_SLOT_ID(cmd_field3), 1738 TRB_TO_EP_INDEX(cmd_field3)); 1739 if (ep) 1740 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1741 1742 xhci_halt(xhci); 1743 xhci_hc_died(xhci); 1744 goto time_out_completed; 1745 } 1746 1747 /* mark this command to be cancelled */ 1748 xhci->current_cmd->status = COMP_COMMAND_ABORTED; 1749 1750 /* Make sure command ring is running before aborting it */ 1751 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1752 if (hw_ring_state == ~(u64)0) { 1753 xhci_hc_died(xhci); 1754 goto time_out_completed; 1755 } 1756 1757 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1758 (hw_ring_state & CMD_RING_RUNNING)) { 1759 /* Prevent new doorbell, and start command abort */ 1760 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 1761 xhci_dbg(xhci, "Command timeout\n"); 1762 xhci_abort_cmd_ring(xhci, flags); 1763 goto time_out_completed; 1764 } 1765 1766 /* host removed. Bail out */ 1767 if (xhci->xhc_state & XHCI_STATE_REMOVING) { 1768 xhci_dbg(xhci, "host removed, ring start fail?\n"); 1769 xhci_cleanup_command_queue(xhci); 1770 1771 goto time_out_completed; 1772 } 1773 1774 /* command timeout on stopped ring, ring can't be aborted */ 1775 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1776 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1777 1778 time_out_completed: 1779 spin_unlock_irqrestore(&xhci->lock, flags); 1780 return; 1781 } 1782 1783 static void handle_cmd_completion(struct xhci_hcd *xhci, 1784 struct xhci_event_cmd *event) 1785 { 1786 unsigned int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1787 u32 status = le32_to_cpu(event->status); 1788 u64 cmd_dma; 1789 dma_addr_t cmd_dequeue_dma; 1790 u32 cmd_comp_code; 1791 union xhci_trb *cmd_trb; 1792 struct xhci_command *cmd; 1793 u32 cmd_type; 1794 1795 if (slot_id >= MAX_HC_SLOTS) { 1796 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 1797 return; 1798 } 1799 1800 cmd_dma = le64_to_cpu(event->cmd_trb); 1801 cmd_trb = xhci->cmd_ring->dequeue; 1802 1803 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic, cmd_dma); 1804 1805 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1806 1807 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1808 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) { 1809 complete_all(&xhci->cmd_ring_stop_completion); 1810 return; 1811 } 1812 1813 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1814 cmd_trb); 1815 /* 1816 * Check whether the completion event is for our internal kept 1817 * command. 1818 */ 1819 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { 1820 xhci_warn(xhci, 1821 "ERROR mismatched command completion event\n"); 1822 return; 1823 } 1824 1825 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); 1826 1827 cancel_delayed_work(&xhci->cmd_timer); 1828 1829 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1830 xhci_err(xhci, 1831 "Command completion event does not match command\n"); 1832 return; 1833 } 1834 1835 /* 1836 * Host aborted the command ring, check if the current command was 1837 * supposed to be aborted, otherwise continue normally. 1838 * The command ring is stopped now, but the xHC will issue a Command 1839 * Ring Stopped event which will cause us to restart it. 1840 */ 1841 if (cmd_comp_code == COMP_COMMAND_ABORTED) { 1842 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1843 if (cmd->status == COMP_COMMAND_ABORTED) { 1844 if (xhci->current_cmd == cmd) 1845 xhci->current_cmd = NULL; 1846 goto event_handled; 1847 } 1848 } 1849 1850 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1851 switch (cmd_type) { 1852 case TRB_ENABLE_SLOT: 1853 xhci_handle_cmd_enable_slot(slot_id, cmd, cmd_comp_code); 1854 break; 1855 case TRB_DISABLE_SLOT: 1856 xhci_handle_cmd_disable_slot(xhci, slot_id); 1857 break; 1858 case TRB_CONFIG_EP: 1859 if (!cmd->completion) 1860 xhci_handle_cmd_config_ep(xhci, slot_id); 1861 break; 1862 case TRB_EVAL_CONTEXT: 1863 break; 1864 case TRB_ADDR_DEV: 1865 xhci_handle_cmd_addr_dev(xhci, slot_id); 1866 break; 1867 case TRB_STOP_RING: 1868 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1869 le32_to_cpu(cmd_trb->generic.field[3]))); 1870 if (!cmd->completion) 1871 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, 1872 cmd_comp_code); 1873 break; 1874 case TRB_SET_DEQ: 1875 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1876 le32_to_cpu(cmd_trb->generic.field[3]))); 1877 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1878 break; 1879 case TRB_CMD_NOOP: 1880 /* Is this an aborted command turned to NO-OP? */ 1881 if (cmd->status == COMP_COMMAND_RING_STOPPED) 1882 cmd_comp_code = COMP_COMMAND_RING_STOPPED; 1883 break; 1884 case TRB_RESET_EP: 1885 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1886 le32_to_cpu(cmd_trb->generic.field[3]))); 1887 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1888 break; 1889 case TRB_RESET_DEV: 1890 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1891 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1892 */ 1893 slot_id = TRB_TO_SLOT_ID( 1894 le32_to_cpu(cmd_trb->generic.field[3])); 1895 xhci_handle_cmd_reset_dev(xhci, slot_id); 1896 break; 1897 case TRB_NEC_GET_FW: 1898 xhci_handle_cmd_nec_get_fw(xhci, event); 1899 break; 1900 case TRB_GET_BW: 1901 break; 1902 default: 1903 /* Skip over unknown commands on the event ring */ 1904 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); 1905 break; 1906 } 1907 1908 /* restart timer if this wasn't the last command */ 1909 if (!list_is_singular(&xhci->cmd_list)) { 1910 xhci->current_cmd = list_first_entry(&cmd->cmd_list, 1911 struct xhci_command, cmd_list); 1912 xhci_mod_cmd_timer(xhci); 1913 } else if (xhci->current_cmd == cmd) { 1914 xhci->current_cmd = NULL; 1915 } 1916 1917 event_handled: 1918 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code, COMP_PARAM(status)); 1919 1920 inc_deq(xhci, xhci->cmd_ring); 1921 } 1922 1923 static void handle_vendor_event(struct xhci_hcd *xhci, 1924 union xhci_trb *event, u32 trb_type) 1925 { 1926 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1927 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1928 handle_cmd_completion(xhci, &event->event_cmd); 1929 } 1930 1931 static void handle_device_notification(struct xhci_hcd *xhci, 1932 union xhci_trb *event) 1933 { 1934 u32 slot_id; 1935 struct usb_device *udev; 1936 1937 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1938 if (!xhci->devs[slot_id]) { 1939 xhci_warn(xhci, "Device Notification event for " 1940 "unused slot %u\n", slot_id); 1941 return; 1942 } 1943 1944 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1945 slot_id); 1946 udev = xhci->devs[slot_id]->udev; 1947 if (udev && udev->parent) 1948 usb_wakeup_notification(udev->parent, udev->portnum); 1949 } 1950 1951 /* 1952 * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI 1953 * Controller. 1954 * As per ThunderX2errata-129 USB 2 device may come up as USB 1 1955 * If a connection to a USB 1 device is followed by another connection 1956 * to a USB 2 device. 1957 * 1958 * Reset the PHY after the USB device is disconnected if device speed 1959 * is less than HCD_USB3. 1960 * Retry the reset sequence max of 4 times checking the PLL lock status. 1961 * 1962 */ 1963 static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci) 1964 { 1965 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1966 u32 pll_lock_check; 1967 u32 retry_count = 4; 1968 1969 do { 1970 /* Assert PHY reset */ 1971 writel(0x6F, hcd->regs + 0x1048); 1972 udelay(10); 1973 /* De-assert the PHY reset */ 1974 writel(0x7F, hcd->regs + 0x1048); 1975 udelay(200); 1976 pll_lock_check = readl(hcd->regs + 0x1070); 1977 } while (!(pll_lock_check & 0x1) && --retry_count); 1978 } 1979 1980 static void handle_port_status(struct xhci_hcd *xhci, union xhci_trb *event) 1981 { 1982 struct usb_hcd *hcd; 1983 u32 port_id; 1984 u32 portsc, cmd_reg; 1985 int max_ports; 1986 unsigned int hcd_portnum; 1987 struct xhci_bus_state *bus_state; 1988 bool bogus_port_status = false; 1989 struct xhci_port *port; 1990 1991 /* Port status change events always have a successful completion code */ 1992 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) 1993 xhci_warn(xhci, 1994 "WARN: xHC returned failed port status event\n"); 1995 1996 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1997 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1998 1999 if ((port_id <= 0) || (port_id > max_ports)) { 2000 xhci_warn(xhci, "Port change event with invalid port ID %d\n", 2001 port_id); 2002 return; 2003 } 2004 2005 port = &xhci->hw_ports[port_id - 1]; 2006 if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) { 2007 xhci_warn(xhci, "Port change event, no port for port ID %u\n", 2008 port_id); 2009 bogus_port_status = true; 2010 goto cleanup; 2011 } 2012 2013 /* We might get interrupts after shared_hcd is removed */ 2014 if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) { 2015 xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n"); 2016 bogus_port_status = true; 2017 goto cleanup; 2018 } 2019 2020 hcd = port->rhub->hcd; 2021 bus_state = &port->rhub->bus_state; 2022 hcd_portnum = port->hcd_portnum; 2023 portsc = readl(port->addr); 2024 2025 xhci_dbg(xhci, "Port change event, %d-%d, id %d, portsc: 0x%x\n", 2026 hcd->self.busnum, hcd_portnum + 1, port_id, portsc); 2027 2028 trace_xhci_handle_port_status(port, portsc); 2029 2030 if (hcd->state == HC_STATE_SUSPENDED) { 2031 xhci_dbg(xhci, "resume root hub\n"); 2032 usb_hcd_resume_root_hub(hcd); 2033 } 2034 2035 if (hcd->speed >= HCD_USB3 && 2036 (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) { 2037 if (port->slot_id && xhci->devs[port->slot_id]) 2038 xhci->devs[port->slot_id]->flags |= VDEV_PORT_ERROR; 2039 } 2040 2041 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) { 2042 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 2043 2044 cmd_reg = readl(&xhci->op_regs->command); 2045 if (!(cmd_reg & CMD_RUN)) { 2046 xhci_warn(xhci, "xHC is not running.\n"); 2047 goto cleanup; 2048 } 2049 2050 if (DEV_SUPERSPEED_ANY(portsc)) { 2051 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 2052 /* Set a flag to say the port signaled remote wakeup, 2053 * so we can tell the difference between the end of 2054 * device and host initiated resume. 2055 */ 2056 bus_state->port_remote_wakeup |= 1 << hcd_portnum; 2057 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2058 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 2059 xhci_set_link_state(xhci, port, XDEV_U0); 2060 /* Need to wait until the next link state change 2061 * indicates the device is actually in U0. 2062 */ 2063 bogus_port_status = true; 2064 goto cleanup; 2065 } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) { 2066 xhci_dbg(xhci, "resume HS port %d\n", port_id); 2067 port->resume_timestamp = jiffies + 2068 msecs_to_jiffies(USB_RESUME_TIMEOUT); 2069 set_bit(hcd_portnum, &bus_state->resuming_ports); 2070 /* Do the rest in GetPortStatus after resume time delay. 2071 * Avoid polling roothub status before that so that a 2072 * usb device auto-resume latency around ~40ms. 2073 */ 2074 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2075 mod_timer(&hcd->rh_timer, 2076 port->resume_timestamp); 2077 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 2078 bogus_port_status = true; 2079 } 2080 } 2081 2082 if ((portsc & PORT_PLC) && 2083 DEV_SUPERSPEED_ANY(portsc) && 2084 ((portsc & PORT_PLS_MASK) == XDEV_U0 || 2085 (portsc & PORT_PLS_MASK) == XDEV_U1 || 2086 (portsc & PORT_PLS_MASK) == XDEV_U2)) { 2087 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 2088 complete(&port->u3exit_done); 2089 /* We've just brought the device into U0/1/2 through either the 2090 * Resume state after a device remote wakeup, or through the 2091 * U3Exit state after a host-initiated resume. If it's a device 2092 * initiated remote wake, don't pass up the link state change, 2093 * so the roothub behavior is consistent with external 2094 * USB 3.0 hub behavior. 2095 */ 2096 if (port->slot_id && xhci->devs[port->slot_id]) 2097 xhci_ring_device(xhci, port->slot_id); 2098 if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) { 2099 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2100 usb_wakeup_notification(hcd->self.root_hub, 2101 hcd_portnum + 1); 2102 bogus_port_status = true; 2103 goto cleanup; 2104 } 2105 } 2106 2107 /* 2108 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 2109 * RExit to a disconnect state). If so, let the driver know it's 2110 * out of the RExit state. 2111 */ 2112 if (hcd->speed < HCD_USB3 && port->rexit_active) { 2113 complete(&port->rexit_done); 2114 port->rexit_active = false; 2115 bogus_port_status = true; 2116 goto cleanup; 2117 } 2118 2119 if (hcd->speed < HCD_USB3) { 2120 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2121 if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) && 2122 (portsc & PORT_CSC) && !(portsc & PORT_CONNECT)) 2123 xhci_cavium_reset_phy_quirk(xhci); 2124 } 2125 2126 cleanup: 2127 2128 /* Don't make the USB core poll the roothub if we got a bad port status 2129 * change event. Besides, at that point we can't tell which roothub 2130 * (USB 2.0 or USB 3.0) to kick. 2131 */ 2132 if (bogus_port_status) 2133 return; 2134 2135 /* 2136 * xHCI port-status-change events occur when the "or" of all the 2137 * status-change bits in the portsc register changes from 0 to 1. 2138 * New status changes won't cause an event if any other change 2139 * bits are still set. When an event occurs, switch over to 2140 * polling to avoid losing status changes. 2141 */ 2142 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 2143 __func__, hcd->self.busnum); 2144 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2145 spin_unlock(&xhci->lock); 2146 /* Pass this up to the core */ 2147 usb_hcd_poll_rh_status(hcd); 2148 spin_lock(&xhci->lock); 2149 } 2150 2151 static void xhci_clear_hub_tt_buffer(struct xhci_hcd *xhci, struct xhci_td *td, 2152 struct xhci_virt_ep *ep) 2153 { 2154 /* 2155 * As part of low/full-speed endpoint-halt processing 2156 * we must clear the TT buffer (USB 2.0 specification 11.17.5). 2157 */ 2158 if (td->urb->dev->tt && !usb_pipeint(td->urb->pipe) && 2159 (td->urb->dev->tt->hub != xhci_to_hcd(xhci)->self.root_hub) && 2160 !(ep->ep_state & EP_CLEARING_TT)) { 2161 ep->ep_state |= EP_CLEARING_TT; 2162 td->urb->ep->hcpriv = td->urb->dev; 2163 if (usb_hub_clear_tt_buffer(td->urb)) 2164 ep->ep_state &= ~EP_CLEARING_TT; 2165 } 2166 } 2167 2168 /* 2169 * Check if xhci internal endpoint state has gone to a "halt" state due to an 2170 * error or stall, including default control pipe protocol stall. 2171 * The internal halt needs to be cleared with a reset endpoint command. 2172 * 2173 * External device side is also halted in functional stall cases. Class driver 2174 * will clear the device halt with a CLEAR_FEATURE(ENDPOINT_HALT) request later. 2175 */ 2176 static bool xhci_halted_host_endpoint(struct xhci_ep_ctx *ep_ctx, unsigned int comp_code) 2177 { 2178 /* Stall halts both internal and device side endpoint */ 2179 if (comp_code == COMP_STALL_ERROR) 2180 return true; 2181 2182 /* TRB completion codes that may require internal halt cleanup */ 2183 if (comp_code == COMP_USB_TRANSACTION_ERROR || 2184 comp_code == COMP_BABBLE_DETECTED_ERROR || 2185 comp_code == COMP_SPLIT_TRANSACTION_ERROR) 2186 /* 2187 * The 0.95 spec says a babbling control endpoint is not halted. 2188 * The 0.96 spec says it is. Some HW claims to be 0.95 2189 * compliant, but it halts the control endpoint anyway. 2190 * Check endpoint context if endpoint is halted. 2191 */ 2192 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) 2193 return true; 2194 2195 return false; 2196 } 2197 2198 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 2199 { 2200 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 2201 /* Vendor defined "informational" completion code, 2202 * treat as not-an-error. 2203 */ 2204 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 2205 trb_comp_code); 2206 xhci_dbg(xhci, "Treating code as success.\n"); 2207 return 1; 2208 } 2209 return 0; 2210 } 2211 2212 static void finish_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2213 struct xhci_ring *ep_ring, struct xhci_td *td, 2214 u32 trb_comp_code) 2215 { 2216 struct xhci_ep_ctx *ep_ctx; 2217 2218 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2219 2220 switch (trb_comp_code) { 2221 case COMP_STOPPED_LENGTH_INVALID: 2222 case COMP_STOPPED_SHORT_PACKET: 2223 case COMP_STOPPED: 2224 /* 2225 * The "Stop Endpoint" completion will take care of any 2226 * stopped TDs. A stopped TD may be restarted, so don't update 2227 * the ring dequeue pointer or take this TD off any lists yet. 2228 */ 2229 return; 2230 case COMP_USB_TRANSACTION_ERROR: 2231 case COMP_BABBLE_DETECTED_ERROR: 2232 case COMP_SPLIT_TRANSACTION_ERROR: 2233 /* 2234 * If endpoint context state is not halted we might be 2235 * racing with a reset endpoint command issued by a unsuccessful 2236 * stop endpoint completion (context error). In that case the 2237 * td should be on the cancelled list, and EP_HALTED flag set. 2238 * 2239 * Or then it's not halted due to the 0.95 spec stating that a 2240 * babbling control endpoint should not halt. The 0.96 spec 2241 * again says it should. Some HW claims to be 0.95 compliant, 2242 * but it halts the control endpoint anyway. 2243 */ 2244 if (GET_EP_CTX_STATE(ep_ctx) != EP_STATE_HALTED) { 2245 /* 2246 * If EP_HALTED is set and TD is on the cancelled list 2247 * the TD and dequeue pointer will be handled by reset 2248 * ep command completion 2249 */ 2250 if ((ep->ep_state & EP_HALTED) && 2251 !list_empty(&td->cancelled_td_list)) { 2252 xhci_dbg(xhci, "Already resolving halted ep for 0x%llx\n", 2253 (unsigned long long)xhci_trb_virt_to_dma( 2254 td->start_seg, td->start_trb)); 2255 return; 2256 } 2257 /* endpoint not halted, don't reset it */ 2258 break; 2259 } 2260 /* Almost same procedure as for STALL_ERROR below */ 2261 xhci_clear_hub_tt_buffer(xhci, td, ep); 2262 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2263 return; 2264 case COMP_STALL_ERROR: 2265 /* 2266 * xhci internal endpoint state will go to a "halt" state for 2267 * any stall, including default control pipe protocol stall. 2268 * To clear the host side halt we need to issue a reset endpoint 2269 * command, followed by a set dequeue command to move past the 2270 * TD. 2271 * Class drivers clear the device side halt from a functional 2272 * stall later. Hub TT buffer should only be cleared for FS/LS 2273 * devices behind HS hubs for functional stalls. 2274 */ 2275 if (ep->ep_index != 0) 2276 xhci_clear_hub_tt_buffer(xhci, td, ep); 2277 2278 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2279 2280 return; /* xhci_handle_halted_endpoint marked td cancelled */ 2281 default: 2282 break; 2283 } 2284 2285 xhci_dequeue_td(xhci, td, ep_ring, td->status); 2286 } 2287 2288 /* sum trb lengths from the first trb up to stop_trb, _excluding_ stop_trb */ 2289 static u32 sum_trb_lengths(struct xhci_td *td, union xhci_trb *stop_trb) 2290 { 2291 u32 sum; 2292 union xhci_trb *trb = td->start_trb; 2293 struct xhci_segment *seg = td->start_seg; 2294 2295 for (sum = 0; trb != stop_trb; next_trb(&seg, &trb)) { 2296 if (!trb_is_noop(trb) && !trb_is_link(trb)) 2297 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); 2298 } 2299 return sum; 2300 } 2301 2302 /* 2303 * Process control tds, update urb status and actual_length. 2304 */ 2305 static void process_ctrl_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2306 struct xhci_ring *ep_ring, struct xhci_td *td, 2307 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2308 { 2309 struct xhci_ep_ctx *ep_ctx; 2310 u32 trb_comp_code; 2311 u32 remaining, requested; 2312 u32 trb_type; 2313 2314 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); 2315 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2316 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2317 requested = td->urb->transfer_buffer_length; 2318 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2319 2320 switch (trb_comp_code) { 2321 case COMP_SUCCESS: 2322 if (trb_type != TRB_STATUS) { 2323 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n", 2324 (trb_type == TRB_DATA) ? "data" : "setup"); 2325 td->status = -ESHUTDOWN; 2326 break; 2327 } 2328 td->status = 0; 2329 break; 2330 case COMP_SHORT_PACKET: 2331 td->status = 0; 2332 break; 2333 case COMP_STOPPED_SHORT_PACKET: 2334 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2335 td->urb->actual_length = remaining; 2336 else 2337 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); 2338 goto finish_td; 2339 case COMP_STOPPED: 2340 switch (trb_type) { 2341 case TRB_SETUP: 2342 td->urb->actual_length = 0; 2343 goto finish_td; 2344 case TRB_DATA: 2345 case TRB_NORMAL: 2346 td->urb->actual_length = requested - remaining; 2347 goto finish_td; 2348 case TRB_STATUS: 2349 td->urb->actual_length = requested; 2350 goto finish_td; 2351 default: 2352 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", 2353 trb_type); 2354 goto finish_td; 2355 } 2356 case COMP_STOPPED_LENGTH_INVALID: 2357 goto finish_td; 2358 default: 2359 if (!xhci_halted_host_endpoint(ep_ctx, trb_comp_code)) 2360 break; 2361 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", 2362 trb_comp_code, ep->ep_index); 2363 fallthrough; 2364 case COMP_STALL_ERROR: 2365 /* Did we transfer part of the data (middle) phase? */ 2366 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2367 td->urb->actual_length = requested - remaining; 2368 else if (!td->urb_length_set) 2369 td->urb->actual_length = 0; 2370 goto finish_td; 2371 } 2372 2373 /* stopped at setup stage, no data transferred */ 2374 if (trb_type == TRB_SETUP) 2375 goto finish_td; 2376 2377 /* 2378 * if on data stage then update the actual_length of the URB and flag it 2379 * as set, so it won't be overwritten in the event for the last TRB. 2380 */ 2381 if (trb_type == TRB_DATA || 2382 trb_type == TRB_NORMAL) { 2383 td->urb_length_set = true; 2384 td->urb->actual_length = requested - remaining; 2385 xhci_dbg(xhci, "Waiting for status stage event\n"); 2386 return; 2387 } 2388 2389 /* at status stage */ 2390 if (!td->urb_length_set) 2391 td->urb->actual_length = requested; 2392 2393 finish_td: 2394 finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2395 } 2396 2397 /* 2398 * Process isochronous tds, update urb packet status and actual_length. 2399 */ 2400 static void process_isoc_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2401 struct xhci_ring *ep_ring, struct xhci_td *td, 2402 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2403 { 2404 struct urb_priv *urb_priv; 2405 int idx; 2406 struct usb_iso_packet_descriptor *frame; 2407 u32 trb_comp_code; 2408 bool sum_trbs_for_length = false; 2409 u32 remaining, requested, ep_trb_len; 2410 int short_framestatus; 2411 2412 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2413 urb_priv = td->urb->hcpriv; 2414 idx = urb_priv->num_tds_done; 2415 frame = &td->urb->iso_frame_desc[idx]; 2416 requested = frame->length; 2417 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2418 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2419 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2420 -EREMOTEIO : 0; 2421 2422 /* handle completion code */ 2423 switch (trb_comp_code) { 2424 case COMP_SUCCESS: 2425 /* Don't overwrite status if TD had an error, see xHCI 4.9.1 */ 2426 if (td->error_mid_td) 2427 break; 2428 if (remaining) { 2429 frame->status = short_framestatus; 2430 sum_trbs_for_length = true; 2431 break; 2432 } 2433 frame->status = 0; 2434 break; 2435 case COMP_SHORT_PACKET: 2436 frame->status = short_framestatus; 2437 sum_trbs_for_length = true; 2438 break; 2439 case COMP_BANDWIDTH_OVERRUN_ERROR: 2440 frame->status = -ECOMM; 2441 break; 2442 case COMP_BABBLE_DETECTED_ERROR: 2443 sum_trbs_for_length = true; 2444 fallthrough; 2445 case COMP_ISOCH_BUFFER_OVERRUN: 2446 frame->status = -EOVERFLOW; 2447 if (ep_trb != td->end_trb) 2448 td->error_mid_td = true; 2449 break; 2450 case COMP_MISSED_SERVICE_ERROR: 2451 frame->status = -EXDEV; 2452 sum_trbs_for_length = true; 2453 if (ep_trb != td->end_trb) 2454 td->error_mid_td = true; 2455 break; 2456 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2457 case COMP_STALL_ERROR: 2458 frame->status = -EPROTO; 2459 break; 2460 case COMP_USB_TRANSACTION_ERROR: 2461 frame->status = -EPROTO; 2462 sum_trbs_for_length = true; 2463 if (ep_trb != td->end_trb) 2464 td->error_mid_td = true; 2465 break; 2466 case COMP_STOPPED: 2467 sum_trbs_for_length = true; 2468 break; 2469 case COMP_STOPPED_SHORT_PACKET: 2470 /* field normally containing residue now contains transferred */ 2471 frame->status = short_framestatus; 2472 requested = remaining; 2473 break; 2474 case COMP_STOPPED_LENGTH_INVALID: 2475 /* exclude stopped trb with invalid length from length sum */ 2476 sum_trbs_for_length = true; 2477 ep_trb_len = 0; 2478 remaining = 0; 2479 break; 2480 default: 2481 sum_trbs_for_length = true; 2482 frame->status = -1; 2483 break; 2484 } 2485 2486 if (td->urb_length_set) 2487 goto finish_td; 2488 2489 if (sum_trbs_for_length) 2490 frame->actual_length = sum_trb_lengths(td, ep_trb) + 2491 ep_trb_len - remaining; 2492 else 2493 frame->actual_length = requested; 2494 2495 td->urb->actual_length += frame->actual_length; 2496 2497 finish_td: 2498 /* Don't give back TD yet if we encountered an error mid TD */ 2499 if (td->error_mid_td && ep_trb != td->end_trb) { 2500 xhci_dbg(xhci, "Error mid isoc TD, wait for final completion event\n"); 2501 td->urb_length_set = true; 2502 return; 2503 } 2504 finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2505 } 2506 2507 static void skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2508 struct xhci_virt_ep *ep, int status) 2509 { 2510 struct urb_priv *urb_priv; 2511 struct usb_iso_packet_descriptor *frame; 2512 int idx; 2513 2514 urb_priv = td->urb->hcpriv; 2515 idx = urb_priv->num_tds_done; 2516 frame = &td->urb->iso_frame_desc[idx]; 2517 2518 /* The transfer is partly done. */ 2519 frame->status = -EXDEV; 2520 2521 /* calc actual length */ 2522 frame->actual_length = 0; 2523 2524 xhci_dequeue_td(xhci, td, ep->ring, status); 2525 } 2526 2527 /* 2528 * Process bulk and interrupt tds, update urb status and actual_length. 2529 */ 2530 static void process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2531 struct xhci_ring *ep_ring, struct xhci_td *td, 2532 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2533 { 2534 struct xhci_slot_ctx *slot_ctx; 2535 u32 trb_comp_code; 2536 u32 remaining, requested, ep_trb_len; 2537 2538 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 2539 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2540 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2541 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2542 requested = td->urb->transfer_buffer_length; 2543 2544 switch (trb_comp_code) { 2545 case COMP_SUCCESS: 2546 ep->err_count = 0; 2547 /* handle success with untransferred data as short packet */ 2548 if (ep_trb != td->end_trb || remaining) { 2549 xhci_warn(xhci, "WARN Successful completion on short TX\n"); 2550 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2551 td->urb->ep->desc.bEndpointAddress, 2552 requested, remaining); 2553 } 2554 td->status = 0; 2555 break; 2556 case COMP_SHORT_PACKET: 2557 td->status = 0; 2558 break; 2559 case COMP_STOPPED_SHORT_PACKET: 2560 td->urb->actual_length = remaining; 2561 goto finish_td; 2562 case COMP_STOPPED_LENGTH_INVALID: 2563 /* stopped on ep trb with invalid length, exclude it */ 2564 td->urb->actual_length = sum_trb_lengths(td, ep_trb); 2565 goto finish_td; 2566 case COMP_USB_TRANSACTION_ERROR: 2567 if (xhci->quirks & XHCI_NO_SOFT_RETRY || 2568 (ep->err_count++ > MAX_SOFT_RETRY) || 2569 le32_to_cpu(slot_ctx->tt_info) & TT_SLOT) 2570 break; 2571 2572 td->status = 0; 2573 2574 xhci_handle_halted_endpoint(xhci, ep, td, EP_SOFT_RESET); 2575 return; 2576 default: 2577 /* do nothing */ 2578 break; 2579 } 2580 2581 if (ep_trb == td->end_trb) 2582 td->urb->actual_length = requested - remaining; 2583 else 2584 td->urb->actual_length = 2585 sum_trb_lengths(td, ep_trb) + 2586 ep_trb_len - remaining; 2587 finish_td: 2588 if (remaining > requested) { 2589 xhci_warn(xhci, "bad transfer trb length %d in event trb\n", 2590 remaining); 2591 td->urb->actual_length = 0; 2592 } 2593 2594 finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2595 } 2596 2597 /* Transfer events which don't point to a transfer TRB, see xhci 4.17.4 */ 2598 static int handle_transferless_tx_event(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2599 u32 trb_comp_code) 2600 { 2601 switch (trb_comp_code) { 2602 case COMP_STALL_ERROR: 2603 case COMP_USB_TRANSACTION_ERROR: 2604 case COMP_INVALID_STREAM_TYPE_ERROR: 2605 case COMP_INVALID_STREAM_ID_ERROR: 2606 xhci_dbg(xhci, "Stream transaction error ep %u no id\n", ep->ep_index); 2607 if (ep->err_count++ > MAX_SOFT_RETRY) 2608 xhci_handle_halted_endpoint(xhci, ep, NULL, EP_HARD_RESET); 2609 else 2610 xhci_handle_halted_endpoint(xhci, ep, NULL, EP_SOFT_RESET); 2611 break; 2612 case COMP_RING_UNDERRUN: 2613 case COMP_RING_OVERRUN: 2614 case COMP_STOPPED_LENGTH_INVALID: 2615 break; 2616 default: 2617 xhci_err(xhci, "Transfer event %u for unknown stream ring slot %u ep %u\n", 2618 trb_comp_code, ep->vdev->slot_id, ep->ep_index); 2619 return -ENODEV; 2620 } 2621 return 0; 2622 } 2623 2624 static bool xhci_spurious_success_tx_event(struct xhci_hcd *xhci, 2625 struct xhci_ring *ring) 2626 { 2627 switch (ring->old_trb_comp_code) { 2628 case COMP_SHORT_PACKET: 2629 return xhci->quirks & XHCI_SPURIOUS_SUCCESS; 2630 case COMP_USB_TRANSACTION_ERROR: 2631 case COMP_BABBLE_DETECTED_ERROR: 2632 case COMP_ISOCH_BUFFER_OVERRUN: 2633 return xhci->quirks & XHCI_ETRON_HOST && 2634 ring->type == TYPE_ISOC; 2635 default: 2636 return false; 2637 } 2638 } 2639 2640 /* 2641 * If this function returns an error condition, it means it got a Transfer 2642 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2643 * At this point, the host controller is probably hosed and should be reset. 2644 */ 2645 static int handle_tx_event(struct xhci_hcd *xhci, 2646 struct xhci_interrupter *ir, 2647 struct xhci_transfer_event *event) 2648 { 2649 struct xhci_virt_ep *ep; 2650 struct xhci_ring *ep_ring; 2651 unsigned int slot_id; 2652 int ep_index; 2653 struct xhci_td *td = NULL; 2654 dma_addr_t ep_trb_dma; 2655 struct xhci_segment *ep_seg; 2656 union xhci_trb *ep_trb; 2657 int status = -EINPROGRESS; 2658 struct xhci_ep_ctx *ep_ctx; 2659 u32 trb_comp_code; 2660 bool ring_xrun_event = false; 2661 2662 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2663 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2664 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2665 ep_trb_dma = le64_to_cpu(event->buffer); 2666 2667 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 2668 if (!ep) { 2669 xhci_err(xhci, "ERROR Invalid Transfer event\n"); 2670 goto err_out; 2671 } 2672 2673 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma); 2674 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 2675 2676 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { 2677 xhci_err(xhci, 2678 "ERROR Transfer event for disabled endpoint slot %u ep %u\n", 2679 slot_id, ep_index); 2680 goto err_out; 2681 } 2682 2683 if (!ep_ring) 2684 return handle_transferless_tx_event(xhci, ep, trb_comp_code); 2685 2686 /* Look for common error cases */ 2687 switch (trb_comp_code) { 2688 /* Skip codes that require special handling depending on 2689 * transfer type 2690 */ 2691 case COMP_SUCCESS: 2692 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2693 trb_comp_code = COMP_SHORT_PACKET; 2694 xhci_dbg(xhci, "Successful completion on short TX for slot %u ep %u with last td comp code %d\n", 2695 slot_id, ep_index, ep_ring->old_trb_comp_code); 2696 } 2697 break; 2698 case COMP_SHORT_PACKET: 2699 break; 2700 /* Completion codes for endpoint stopped state */ 2701 case COMP_STOPPED: 2702 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n", 2703 slot_id, ep_index); 2704 break; 2705 case COMP_STOPPED_LENGTH_INVALID: 2706 xhci_dbg(xhci, 2707 "Stopped on No-op or Link TRB for slot %u ep %u\n", 2708 slot_id, ep_index); 2709 break; 2710 case COMP_STOPPED_SHORT_PACKET: 2711 xhci_dbg(xhci, 2712 "Stopped with short packet transfer detected for slot %u ep %u\n", 2713 slot_id, ep_index); 2714 break; 2715 /* Completion codes for endpoint halted state */ 2716 case COMP_STALL_ERROR: 2717 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id, 2718 ep_index); 2719 status = -EPIPE; 2720 break; 2721 case COMP_SPLIT_TRANSACTION_ERROR: 2722 xhci_dbg(xhci, "Split transaction error for slot %u ep %u\n", 2723 slot_id, ep_index); 2724 status = -EPROTO; 2725 break; 2726 case COMP_USB_TRANSACTION_ERROR: 2727 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n", 2728 slot_id, ep_index); 2729 status = -EPROTO; 2730 break; 2731 case COMP_BABBLE_DETECTED_ERROR: 2732 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n", 2733 slot_id, ep_index); 2734 status = -EOVERFLOW; 2735 break; 2736 /* Completion codes for endpoint error state */ 2737 case COMP_TRB_ERROR: 2738 xhci_warn(xhci, 2739 "WARN: TRB error for slot %u ep %u on endpoint\n", 2740 slot_id, ep_index); 2741 status = -EILSEQ; 2742 break; 2743 /* completion codes not indicating endpoint state change */ 2744 case COMP_DATA_BUFFER_ERROR: 2745 xhci_warn(xhci, 2746 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n", 2747 slot_id, ep_index); 2748 status = -ENOSR; 2749 break; 2750 case COMP_BANDWIDTH_OVERRUN_ERROR: 2751 xhci_warn(xhci, 2752 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n", 2753 slot_id, ep_index); 2754 break; 2755 case COMP_ISOCH_BUFFER_OVERRUN: 2756 xhci_warn(xhci, 2757 "WARN: buffer overrun event for slot %u ep %u on endpoint", 2758 slot_id, ep_index); 2759 break; 2760 case COMP_RING_UNDERRUN: 2761 /* 2762 * When the Isoch ring is empty, the xHC will generate 2763 * a Ring Overrun Event for IN Isoch endpoint or Ring 2764 * Underrun Event for OUT Isoch endpoint. 2765 */ 2766 xhci_dbg(xhci, "Underrun event on slot %u ep %u\n", slot_id, ep_index); 2767 ring_xrun_event = true; 2768 break; 2769 case COMP_RING_OVERRUN: 2770 xhci_dbg(xhci, "Overrun event on slot %u ep %u\n", slot_id, ep_index); 2771 ring_xrun_event = true; 2772 break; 2773 case COMP_MISSED_SERVICE_ERROR: 2774 /* 2775 * When encounter missed service error, one or more isoc tds 2776 * may be missed by xHC. 2777 * Set skip flag of the ep_ring; Complete the missed tds as 2778 * short transfer when process the ep_ring next time. 2779 */ 2780 ep->skip = true; 2781 xhci_dbg(xhci, 2782 "Miss service interval error for slot %u ep %u, set skip flag%s\n", 2783 slot_id, ep_index, ep_trb_dma ? ", skip now" : ""); 2784 break; 2785 case COMP_NO_PING_RESPONSE_ERROR: 2786 ep->skip = true; 2787 xhci_dbg(xhci, 2788 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n", 2789 slot_id, ep_index); 2790 return 0; 2791 2792 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2793 /* needs disable slot command to recover */ 2794 xhci_warn(xhci, 2795 "WARN: detect an incompatible device for slot %u ep %u", 2796 slot_id, ep_index); 2797 status = -EPROTO; 2798 break; 2799 default: 2800 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2801 status = 0; 2802 break; 2803 } 2804 xhci_warn(xhci, 2805 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n", 2806 trb_comp_code, slot_id, ep_index); 2807 if (ep->skip) 2808 break; 2809 return 0; 2810 } 2811 2812 /* 2813 * xhci 4.10.2 states isoc endpoints should continue 2814 * processing the next TD if there was an error mid TD. 2815 * So host like NEC don't generate an event for the last 2816 * isoc TRB even if the IOC flag is set. 2817 * xhci 4.9.1 states that if there are errors in mult-TRB 2818 * TDs xHC should generate an error for that TRB, and if xHC 2819 * proceeds to the next TD it should genete an event for 2820 * any TRB with IOC flag on the way. Other host follow this. 2821 * 2822 * We wait for the final IOC event, but if we get an event 2823 * anywhere outside this TD, just give it back already. 2824 */ 2825 td = list_first_entry_or_null(&ep_ring->td_list, struct xhci_td, td_list); 2826 2827 if (td && td->error_mid_td && !trb_in_td(td, ep_trb_dma)) { 2828 xhci_dbg(xhci, "Missing TD completion event after mid TD error\n"); 2829 xhci_dequeue_td(xhci, td, ep_ring, td->status); 2830 } 2831 2832 /* If the TRB pointer is NULL, missed TDs will be skipped on the next event */ 2833 if (trb_comp_code == COMP_MISSED_SERVICE_ERROR && !ep_trb_dma) 2834 return 0; 2835 2836 if (list_empty(&ep_ring->td_list)) { 2837 /* 2838 * Don't print wanings if ring is empty due to a stopped endpoint generating an 2839 * extra completion event if the device was suspended. Or, a event for the last TRB 2840 * of a short TD we already got a short event for. The short TD is already removed 2841 * from the TD list. 2842 */ 2843 if (trb_comp_code != COMP_STOPPED && 2844 trb_comp_code != COMP_STOPPED_LENGTH_INVALID && 2845 !ring_xrun_event && 2846 !xhci_spurious_success_tx_event(xhci, ep_ring)) { 2847 xhci_warn(xhci, "Event TRB for slot %u ep %u with no TDs queued\n", 2848 slot_id, ep_index); 2849 } 2850 2851 ep->skip = false; 2852 goto check_endpoint_halted; 2853 } 2854 2855 do { 2856 td = list_first_entry(&ep_ring->td_list, struct xhci_td, 2857 td_list); 2858 2859 /* Is this a TRB in the currently executing TD? */ 2860 ep_seg = trb_in_td(td, ep_trb_dma); 2861 2862 if (!ep_seg) { 2863 2864 if (ep->skip && usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2865 /* this event is unlikely to match any TD, don't skip them all */ 2866 if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID) 2867 return 0; 2868 2869 skip_isoc_td(xhci, td, ep, status); 2870 2871 if (!list_empty(&ep_ring->td_list)) { 2872 if (ring_xrun_event) { 2873 /* 2874 * If we are here, we are on xHCI 1.0 host with no 2875 * idea how many TDs were missed or where the xrun 2876 * occurred. New TDs may have been added after the 2877 * xrun, so skip only one TD to be safe. 2878 */ 2879 xhci_dbg(xhci, "Skipped one TD for slot %u ep %u", 2880 slot_id, ep_index); 2881 return 0; 2882 } 2883 continue; 2884 } 2885 2886 xhci_dbg(xhci, "All TDs skipped for slot %u ep %u. Clear skip flag.\n", 2887 slot_id, ep_index); 2888 ep->skip = false; 2889 td = NULL; 2890 goto check_endpoint_halted; 2891 } 2892 2893 /* TD was queued after xrun, maybe xrun was on a link, don't panic yet */ 2894 if (ring_xrun_event) 2895 return 0; 2896 2897 /* 2898 * Skip the Force Stopped Event. The 'ep_trb' of FSE is not in the current 2899 * TD pointed by 'ep_ring->dequeue' because that the hardware dequeue 2900 * pointer still at the previous TRB of the current TD. The previous TRB 2901 * maybe a Link TD or the last TRB of the previous TD. The command 2902 * completion handle will take care the rest. 2903 */ 2904 if (trb_comp_code == COMP_STOPPED || 2905 trb_comp_code == COMP_STOPPED_LENGTH_INVALID) { 2906 return 0; 2907 } 2908 2909 /* 2910 * Some hosts give a spurious success event after a short 2911 * transfer or error on last TRB. Ignore it. 2912 */ 2913 if (xhci_spurious_success_tx_event(xhci, ep_ring)) { 2914 xhci_dbg(xhci, "Spurious event dma %pad, comp_code %u after %u\n", 2915 &ep_trb_dma, trb_comp_code, ep_ring->old_trb_comp_code); 2916 ep_ring->old_trb_comp_code = 0; 2917 return 0; 2918 } 2919 2920 /* HC is busted, give up! */ 2921 goto debug_finding_td; 2922 } 2923 2924 if (ep->skip) { 2925 xhci_dbg(xhci, 2926 "Found td. Clear skip flag for slot %u ep %u.\n", 2927 slot_id, ep_index); 2928 ep->skip = false; 2929 } 2930 2931 /* 2932 * If ep->skip is set, it means there are missed tds on the 2933 * endpoint ring need to take care of. 2934 * Process them as short transfer until reach the td pointed by 2935 * the event. 2936 */ 2937 } while (ep->skip); 2938 2939 ep_ring->old_trb_comp_code = trb_comp_code; 2940 2941 /* Get out if a TD was queued at enqueue after the xrun occurred */ 2942 if (ring_xrun_event) 2943 return 0; 2944 2945 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / sizeof(*ep_trb)]; 2946 trace_xhci_handle_transfer(ep_ring, (struct xhci_generic_trb *) ep_trb, ep_trb_dma); 2947 2948 /* 2949 * No-op TRB could trigger interrupts in a case where a URB was killed 2950 * and a STALL_ERROR happens right after the endpoint ring stopped. 2951 * Reset the halted endpoint. Otherwise, the endpoint remains stalled 2952 * indefinitely. 2953 */ 2954 2955 if (trb_is_noop(ep_trb)) 2956 goto check_endpoint_halted; 2957 2958 td->status = status; 2959 2960 /* update the urb's actual_length and give back to the core */ 2961 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2962 process_ctrl_td(xhci, ep, ep_ring, td, ep_trb, event); 2963 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2964 process_isoc_td(xhci, ep, ep_ring, td, ep_trb, event); 2965 else 2966 process_bulk_intr_td(xhci, ep, ep_ring, td, ep_trb, event); 2967 return 0; 2968 2969 check_endpoint_halted: 2970 if (xhci_halted_host_endpoint(ep_ctx, trb_comp_code)) 2971 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2972 2973 return 0; 2974 2975 debug_finding_td: 2976 xhci_err(xhci, "Event dma %pad for ep %d status %d not part of TD at %016llx - %016llx\n", 2977 &ep_trb_dma, ep_index, trb_comp_code, 2978 (unsigned long long)xhci_trb_virt_to_dma(td->start_seg, td->start_trb), 2979 (unsigned long long)xhci_trb_virt_to_dma(td->end_seg, td->end_trb)); 2980 2981 return -ESHUTDOWN; 2982 2983 err_out: 2984 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2985 (unsigned long long) xhci_trb_virt_to_dma( 2986 ir->event_ring->deq_seg, 2987 ir->event_ring->dequeue), 2988 lower_32_bits(le64_to_cpu(event->buffer)), 2989 upper_32_bits(le64_to_cpu(event->buffer)), 2990 le32_to_cpu(event->transfer_len), 2991 le32_to_cpu(event->flags)); 2992 return -ENODEV; 2993 } 2994 2995 /* 2996 * This function handles one OS-owned event on the event ring. It may drop 2997 * xhci->lock between event processing (e.g. to pass up port status changes). 2998 */ 2999 static int xhci_handle_event_trb(struct xhci_hcd *xhci, struct xhci_interrupter *ir, 3000 union xhci_trb *event) 3001 { 3002 u32 trb_type; 3003 3004 trace_xhci_handle_event(ir->event_ring, &event->generic, 3005 xhci_trb_virt_to_dma(ir->event_ring->deq_seg, 3006 ir->event_ring->dequeue)); 3007 3008 /* 3009 * Barrier between reading the TRB_CYCLE (valid) flag before, and any 3010 * speculative reads of the event's flags/data below. 3011 */ 3012 rmb(); 3013 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->event_cmd.flags)); 3014 /* FIXME: Handle more event types. */ 3015 3016 switch (trb_type) { 3017 case TRB_COMPLETION: 3018 handle_cmd_completion(xhci, &event->event_cmd); 3019 break; 3020 case TRB_PORT_STATUS: 3021 handle_port_status(xhci, event); 3022 break; 3023 case TRB_TRANSFER: 3024 handle_tx_event(xhci, ir, &event->trans_event); 3025 break; 3026 case TRB_DEV_NOTE: 3027 handle_device_notification(xhci, event); 3028 break; 3029 default: 3030 if (trb_type >= TRB_VENDOR_DEFINED_LOW) 3031 handle_vendor_event(xhci, event, trb_type); 3032 else 3033 xhci_warn(xhci, "ERROR unknown event type %d\n", trb_type); 3034 } 3035 /* Any of the above functions may drop and re-acquire the lock, so check 3036 * to make sure a watchdog timer didn't mark the host as non-responsive. 3037 */ 3038 if (xhci->xhc_state & XHCI_STATE_DYING) { 3039 xhci_dbg(xhci, "xHCI host dying, returning from event handler.\n"); 3040 return -ENODEV; 3041 } 3042 3043 return 0; 3044 } 3045 3046 /* 3047 * Update Event Ring Dequeue Pointer: 3048 * - When all events have finished 3049 * - To avoid "Event Ring Full Error" condition 3050 */ 3051 void xhci_update_erst_dequeue(struct xhci_hcd *xhci, 3052 struct xhci_interrupter *ir, 3053 bool clear_ehb) 3054 { 3055 u64 temp_64; 3056 dma_addr_t deq; 3057 3058 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 3059 deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg, 3060 ir->event_ring->dequeue); 3061 if (deq == 0) 3062 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr\n"); 3063 /* 3064 * Per 4.9.4, Software writes to the ERDP register shall always advance 3065 * the Event Ring Dequeue Pointer value. 3066 */ 3067 if ((temp_64 & ERST_PTR_MASK) == (deq & ERST_PTR_MASK) && !clear_ehb) 3068 return; 3069 3070 /* Update HC event ring dequeue pointer */ 3071 temp_64 = ir->event_ring->deq_seg->num & ERST_DESI_MASK; 3072 temp_64 |= deq & ERST_PTR_MASK; 3073 3074 /* Clear the event handler busy flag (RW1C) */ 3075 if (clear_ehb) 3076 temp_64 |= ERST_EHB; 3077 xhci_write_64(xhci, temp_64, &ir->ir_set->erst_dequeue); 3078 } 3079 3080 /* Clear the interrupt pending bit for a specific interrupter. */ 3081 static void xhci_clear_interrupt_pending(struct xhci_interrupter *ir) 3082 { 3083 if (!ir->ip_autoclear) { 3084 u32 iman; 3085 3086 iman = readl(&ir->ir_set->iman); 3087 iman |= IMAN_IP; 3088 writel(iman, &ir->ir_set->iman); 3089 3090 /* Read operation to guarantee the write has been flushed from posted buffers */ 3091 readl(&ir->ir_set->iman); 3092 } 3093 } 3094 3095 /* 3096 * Handle all OS-owned events on an interrupter event ring. It may drop 3097 * and reaquire xhci->lock between event processing. 3098 */ 3099 static int xhci_handle_events(struct xhci_hcd *xhci, struct xhci_interrupter *ir, 3100 bool skip_events) 3101 { 3102 int event_loop = 0; 3103 int err = 0; 3104 u64 temp; 3105 3106 xhci_clear_interrupt_pending(ir); 3107 3108 /* Event ring hasn't been allocated yet. */ 3109 if (!ir->event_ring || !ir->event_ring->dequeue) { 3110 xhci_err(xhci, "ERROR interrupter event ring not ready\n"); 3111 return -ENOMEM; 3112 } 3113 3114 if (xhci->xhc_state & XHCI_STATE_DYING || 3115 xhci->xhc_state & XHCI_STATE_HALTED) { 3116 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. Shouldn't IRQs be disabled?\n"); 3117 3118 /* Clear the event handler busy flag (RW1C) */ 3119 temp = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 3120 xhci_write_64(xhci, temp | ERST_EHB, &ir->ir_set->erst_dequeue); 3121 return -ENODEV; 3122 } 3123 3124 /* Process all OS owned event TRBs on this event ring */ 3125 while (unhandled_event_trb(ir->event_ring)) { 3126 if (!skip_events) 3127 err = xhci_handle_event_trb(xhci, ir, ir->event_ring->dequeue); 3128 3129 /* 3130 * If half a segment of events have been handled in one go then 3131 * update ERDP, and force isoc trbs to interrupt more often 3132 */ 3133 if (event_loop++ > TRBS_PER_SEGMENT / 2) { 3134 xhci_update_erst_dequeue(xhci, ir, false); 3135 3136 if (ir->isoc_bei_interval > AVOID_BEI_INTERVAL_MIN) 3137 ir->isoc_bei_interval = ir->isoc_bei_interval / 2; 3138 3139 event_loop = 0; 3140 } 3141 3142 /* Update SW event ring dequeue pointer */ 3143 inc_deq(xhci, ir->event_ring); 3144 3145 if (err) 3146 break; 3147 } 3148 3149 xhci_update_erst_dequeue(xhci, ir, true); 3150 3151 return 0; 3152 } 3153 3154 /* 3155 * Move the event ring dequeue pointer to skip events kept in the secondary 3156 * event ring. This is used to ensure that pending events in the ring are 3157 * acknowledged, so the xHCI HCD can properly enter suspend/resume. The 3158 * secondary ring is typically maintained by an external component. 3159 */ 3160 void xhci_skip_sec_intr_events(struct xhci_hcd *xhci, 3161 struct xhci_ring *ring, struct xhci_interrupter *ir) 3162 { 3163 union xhci_trb *current_trb; 3164 u64 erdp_reg; 3165 dma_addr_t deq; 3166 3167 /* disable irq, ack pending interrupt and ack all pending events */ 3168 xhci_disable_interrupter(xhci, ir); 3169 3170 /* last acked event trb is in erdp reg */ 3171 erdp_reg = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 3172 deq = (dma_addr_t)(erdp_reg & ERST_PTR_MASK); 3173 if (!deq) { 3174 xhci_err(xhci, "event ring handling not required\n"); 3175 return; 3176 } 3177 3178 current_trb = ir->event_ring->dequeue; 3179 /* read cycle state of the last acked trb to find out CCS */ 3180 ring->cycle_state = le32_to_cpu(current_trb->event_cmd.flags) & TRB_CYCLE; 3181 3182 xhci_handle_events(xhci, ir, true); 3183 } 3184 3185 /* 3186 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 3187 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 3188 * indicators of an event TRB error, but we check the status *first* to be safe. 3189 */ 3190 irqreturn_t xhci_irq(struct usb_hcd *hcd) 3191 { 3192 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3193 irqreturn_t ret = IRQ_HANDLED; 3194 u32 status; 3195 3196 spin_lock(&xhci->lock); 3197 /* Check if the xHC generated the interrupt, or the irq is shared */ 3198 status = readl(&xhci->op_regs->status); 3199 if (status == ~(u32)0) { 3200 xhci_hc_died(xhci); 3201 goto out; 3202 } 3203 3204 if (!(status & STS_EINT)) { 3205 ret = IRQ_NONE; 3206 goto out; 3207 } 3208 3209 if (status & STS_HCE) { 3210 xhci_warn(xhci, "WARNING: Host Controller Error\n"); 3211 goto out; 3212 } 3213 3214 if (status & STS_FATAL) { 3215 xhci_warn(xhci, "WARNING: Host System Error\n"); 3216 xhci_halt(xhci); 3217 goto out; 3218 } 3219 3220 /* 3221 * Clear the op reg interrupt status first, 3222 * so we can receive interrupts from other MSI-X interrupters. 3223 * Write 1 to clear the interrupt status. 3224 */ 3225 status |= STS_EINT; 3226 writel(status, &xhci->op_regs->status); 3227 3228 /* This is the handler of the primary interrupter */ 3229 xhci_handle_events(xhci, xhci->interrupters[0], false); 3230 out: 3231 spin_unlock(&xhci->lock); 3232 3233 return ret; 3234 } 3235 3236 irqreturn_t xhci_msi_irq(int irq, void *hcd) 3237 { 3238 return xhci_irq(hcd); 3239 } 3240 EXPORT_SYMBOL_GPL(xhci_msi_irq); 3241 3242 /**** Endpoint Ring Operations ****/ 3243 3244 /* 3245 * Generic function for queueing a TRB on a ring. 3246 * The caller must have checked to make sure there's room on the ring. 3247 * 3248 * @more_trbs_coming: Will you enqueue more TRBs before calling 3249 * prepare_transfer()? 3250 */ 3251 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 3252 bool more_trbs_coming, 3253 u32 field1, u32 field2, u32 field3, u32 field4) 3254 { 3255 struct xhci_generic_trb *trb; 3256 3257 trb = &ring->enqueue->generic; 3258 trb->field[0] = cpu_to_le32(field1); 3259 trb->field[1] = cpu_to_le32(field2); 3260 trb->field[2] = cpu_to_le32(field3); 3261 /* make sure TRB is fully written before giving it to the controller */ 3262 wmb(); 3263 trb->field[3] = cpu_to_le32(field4); 3264 3265 trace_xhci_queue_trb(ring, trb, 3266 xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue)); 3267 3268 inc_enq(xhci, ring, more_trbs_coming); 3269 } 3270 3271 /* 3272 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 3273 * expand ring if it start to be full. 3274 */ 3275 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 3276 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 3277 { 3278 unsigned int new_segs = 0; 3279 3280 /* Make sure the endpoint has been added to xHC schedule */ 3281 switch (ep_state) { 3282 case EP_STATE_DISABLED: 3283 /* 3284 * USB core changed config/interfaces without notifying us, 3285 * or hardware is reporting the wrong state. 3286 */ 3287 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 3288 return -ENOENT; 3289 case EP_STATE_ERROR: 3290 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 3291 /* FIXME event handling code for error needs to clear it */ 3292 /* XXX not sure if this should be -ENOENT or not */ 3293 return -EINVAL; 3294 case EP_STATE_HALTED: 3295 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 3296 break; 3297 case EP_STATE_STOPPED: 3298 case EP_STATE_RUNNING: 3299 break; 3300 default: 3301 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 3302 /* 3303 * FIXME issue Configure Endpoint command to try to get the HC 3304 * back into a known state. 3305 */ 3306 return -EINVAL; 3307 } 3308 3309 if (ep_ring != xhci->cmd_ring) { 3310 new_segs = xhci_ring_expansion_needed(xhci, ep_ring, num_trbs); 3311 } else if (xhci_num_trbs_free(ep_ring) <= num_trbs) { 3312 xhci_err(xhci, "Do not support expand command ring\n"); 3313 return -ENOMEM; 3314 } 3315 3316 if (new_segs) { 3317 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 3318 "ERROR no room on ep ring, try ring expansion"); 3319 if (xhci_ring_expansion(xhci, ep_ring, new_segs, mem_flags)) { 3320 xhci_err(xhci, "Ring expansion failed\n"); 3321 return -ENOMEM; 3322 } 3323 } 3324 3325 /* Ensure that new TRBs won't overwrite a link */ 3326 if (trb_is_link(ep_ring->enqueue)) 3327 inc_enq_past_link(xhci, ep_ring, 0); 3328 3329 if (last_trb_on_seg(ep_ring->enq_seg, ep_ring->enqueue)) { 3330 xhci_warn(xhci, "Missing link TRB at end of ring segment\n"); 3331 return -EINVAL; 3332 } 3333 3334 return 0; 3335 } 3336 3337 static int prepare_transfer(struct xhci_hcd *xhci, 3338 struct xhci_virt_device *xdev, 3339 unsigned int ep_index, 3340 unsigned int stream_id, 3341 unsigned int num_trbs, 3342 struct urb *urb, 3343 unsigned int td_index, 3344 gfp_t mem_flags) 3345 { 3346 int ret; 3347 struct urb_priv *urb_priv; 3348 struct xhci_td *td; 3349 struct xhci_ring *ep_ring; 3350 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3351 3352 ep_ring = xhci_triad_to_transfer_ring(xhci, xdev->slot_id, ep_index, 3353 stream_id); 3354 if (!ep_ring) { 3355 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 3356 stream_id); 3357 return -EINVAL; 3358 } 3359 3360 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 3361 num_trbs, mem_flags); 3362 if (ret) 3363 return ret; 3364 3365 urb_priv = urb->hcpriv; 3366 td = &urb_priv->td[td_index]; 3367 3368 INIT_LIST_HEAD(&td->td_list); 3369 INIT_LIST_HEAD(&td->cancelled_td_list); 3370 3371 if (td_index == 0) { 3372 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 3373 if (unlikely(ret)) 3374 return ret; 3375 } 3376 3377 td->urb = urb; 3378 /* Add this TD to the tail of the endpoint ring's TD list */ 3379 list_add_tail(&td->td_list, &ep_ring->td_list); 3380 td->start_seg = ep_ring->enq_seg; 3381 td->start_trb = ep_ring->enqueue; 3382 3383 return 0; 3384 } 3385 3386 unsigned int count_trbs(u64 addr, u64 len) 3387 { 3388 unsigned int num_trbs; 3389 3390 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3391 TRB_MAX_BUFF_SIZE); 3392 if (num_trbs == 0) 3393 num_trbs++; 3394 3395 return num_trbs; 3396 } 3397 3398 static inline unsigned int count_trbs_needed(struct urb *urb) 3399 { 3400 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); 3401 } 3402 3403 static unsigned int count_sg_trbs_needed(struct urb *urb) 3404 { 3405 struct scatterlist *sg; 3406 unsigned int i, len, full_len, num_trbs = 0; 3407 3408 full_len = urb->transfer_buffer_length; 3409 3410 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { 3411 len = sg_dma_len(sg); 3412 num_trbs += count_trbs(sg_dma_address(sg), len); 3413 len = min_t(unsigned int, len, full_len); 3414 full_len -= len; 3415 if (full_len == 0) 3416 break; 3417 } 3418 3419 return num_trbs; 3420 } 3421 3422 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) 3423 { 3424 u64 addr, len; 3425 3426 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3427 len = urb->iso_frame_desc[i].length; 3428 3429 return count_trbs(addr, len); 3430 } 3431 3432 static void check_trb_math(struct urb *urb, int running_total) 3433 { 3434 if (unlikely(running_total != urb->transfer_buffer_length)) 3435 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3436 "queued %#x (%d), asked for %#x (%d)\n", 3437 __func__, 3438 urb->ep->desc.bEndpointAddress, 3439 running_total, running_total, 3440 urb->transfer_buffer_length, 3441 urb->transfer_buffer_length); 3442 } 3443 3444 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3445 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3446 struct xhci_generic_trb *start_trb) 3447 { 3448 /* 3449 * Pass all the TRBs to the hardware at once and make sure this write 3450 * isn't reordered. 3451 */ 3452 wmb(); 3453 if (start_cycle) 3454 start_trb->field[3] |= cpu_to_le32(start_cycle); 3455 else 3456 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3457 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3458 } 3459 3460 static void check_interval(struct urb *urb, struct xhci_ep_ctx *ep_ctx) 3461 { 3462 int xhci_interval; 3463 int ep_interval; 3464 3465 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3466 ep_interval = urb->interval; 3467 3468 /* Convert to microframes */ 3469 if (urb->dev->speed == USB_SPEED_LOW || 3470 urb->dev->speed == USB_SPEED_FULL) 3471 ep_interval *= 8; 3472 3473 /* FIXME change this to a warning and a suggestion to use the new API 3474 * to set the polling interval (once the API is added). 3475 */ 3476 if (xhci_interval != ep_interval) { 3477 dev_dbg_ratelimited(&urb->dev->dev, 3478 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3479 ep_interval, str_plural(ep_interval), 3480 xhci_interval, str_plural(xhci_interval)); 3481 urb->interval = xhci_interval; 3482 /* Convert back to frames for LS/FS devices */ 3483 if (urb->dev->speed == USB_SPEED_LOW || 3484 urb->dev->speed == USB_SPEED_FULL) 3485 urb->interval /= 8; 3486 } 3487 } 3488 3489 /* 3490 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3491 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3492 * (comprised of sg list entries) can take several service intervals to 3493 * transmit. 3494 */ 3495 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3496 struct urb *urb, int slot_id, unsigned int ep_index) 3497 { 3498 struct xhci_ep_ctx *ep_ctx; 3499 3500 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); 3501 check_interval(urb, ep_ctx); 3502 3503 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3504 } 3505 3506 /* 3507 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3508 * packets remaining in the TD (*not* including this TRB). 3509 * 3510 * Total TD packet count = total_packet_count = 3511 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3512 * 3513 * Packets transferred up to and including this TRB = packets_transferred = 3514 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3515 * 3516 * TD size = total_packet_count - packets_transferred 3517 * 3518 * For xHCI 0.96 and older, TD size field should be the remaining bytes 3519 * including this TRB, right shifted by 10 3520 * 3521 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. 3522 * This is taken care of in the TRB_TD_SIZE() macro 3523 * 3524 * The last TRB in a TD must have the TD size set to zero. 3525 */ 3526 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, 3527 int trb_buff_len, unsigned int td_total_len, 3528 struct urb *urb, bool more_trbs_coming) 3529 { 3530 u32 maxp, total_packet_count; 3531 3532 /* MTK xHCI 0.96 contains some features from 1.0 */ 3533 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) 3534 return ((td_total_len - transferred) >> 10); 3535 3536 /* One TRB with a zero-length data packet. */ 3537 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || 3538 trb_buff_len == td_total_len) 3539 return 0; 3540 3541 /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */ 3542 if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100)) 3543 trb_buff_len = 0; 3544 3545 maxp = usb_endpoint_maxp(&urb->ep->desc); 3546 total_packet_count = DIV_ROUND_UP(td_total_len, maxp); 3547 3548 /* Queueing functions don't count the current TRB into transferred */ 3549 return (total_packet_count - ((transferred + trb_buff_len) / maxp)); 3550 } 3551 3552 3553 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, 3554 u32 *trb_buff_len, struct xhci_segment *seg) 3555 { 3556 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 3557 unsigned int unalign; 3558 unsigned int max_pkt; 3559 u32 new_buff_len; 3560 size_t len; 3561 3562 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3563 unalign = (enqd_len + *trb_buff_len) % max_pkt; 3564 3565 /* we got lucky, last normal TRB data on segment is packet aligned */ 3566 if (unalign == 0) 3567 return 0; 3568 3569 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", 3570 unalign, *trb_buff_len); 3571 3572 /* is the last nornal TRB alignable by splitting it */ 3573 if (*trb_buff_len > unalign) { 3574 *trb_buff_len -= unalign; 3575 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); 3576 return 0; 3577 } 3578 3579 /* 3580 * We want enqd_len + trb_buff_len to sum up to a number aligned to 3581 * number which is divisible by the endpoint's wMaxPacketSize. IOW: 3582 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. 3583 */ 3584 new_buff_len = max_pkt - (enqd_len % max_pkt); 3585 3586 if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) 3587 new_buff_len = (urb->transfer_buffer_length - enqd_len); 3588 3589 /* create a max max_pkt sized bounce buffer pointed to by last trb */ 3590 if (usb_urb_dir_out(urb)) { 3591 if (urb->num_sgs) { 3592 len = sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 3593 seg->bounce_buf, new_buff_len, enqd_len); 3594 if (len != new_buff_len) 3595 xhci_warn(xhci, "WARN Wrong bounce buffer write length: %zu != %d\n", 3596 len, new_buff_len); 3597 } else { 3598 memcpy(seg->bounce_buf, urb->transfer_buffer + enqd_len, new_buff_len); 3599 } 3600 3601 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3602 max_pkt, DMA_TO_DEVICE); 3603 } else { 3604 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3605 max_pkt, DMA_FROM_DEVICE); 3606 } 3607 3608 if (dma_mapping_error(dev, seg->bounce_dma)) { 3609 /* try without aligning. Some host controllers survive */ 3610 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); 3611 return 0; 3612 } 3613 *trb_buff_len = new_buff_len; 3614 seg->bounce_len = new_buff_len; 3615 seg->bounce_offs = enqd_len; 3616 3617 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); 3618 3619 return 1; 3620 } 3621 3622 /* This is very similar to what ehci-q.c qtd_fill() does */ 3623 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3624 struct urb *urb, int slot_id, unsigned int ep_index) 3625 { 3626 struct xhci_ring *ring; 3627 struct urb_priv *urb_priv; 3628 struct xhci_td *td; 3629 struct xhci_generic_trb *start_trb; 3630 struct scatterlist *sg = NULL; 3631 bool more_trbs_coming = true; 3632 bool need_zero_pkt = false; 3633 bool first_trb = true; 3634 unsigned int num_trbs; 3635 unsigned int start_cycle, num_sgs = 0; 3636 unsigned int enqd_len, block_len, trb_buff_len, full_len; 3637 int sent_len, ret; 3638 u32 field, length_field, remainder; 3639 u64 addr, send_addr; 3640 3641 ring = xhci_urb_to_transfer_ring(xhci, urb); 3642 if (!ring) 3643 return -EINVAL; 3644 3645 full_len = urb->transfer_buffer_length; 3646 /* If we have scatter/gather list, we use it. */ 3647 if (urb->num_sgs && !(urb->transfer_flags & URB_DMA_MAP_SINGLE)) { 3648 num_sgs = urb->num_mapped_sgs; 3649 sg = urb->sg; 3650 addr = (u64) sg_dma_address(sg); 3651 block_len = sg_dma_len(sg); 3652 num_trbs = count_sg_trbs_needed(urb); 3653 } else { 3654 num_trbs = count_trbs_needed(urb); 3655 addr = (u64) urb->transfer_dma; 3656 block_len = full_len; 3657 } 3658 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3659 ep_index, urb->stream_id, 3660 num_trbs, urb, 0, mem_flags); 3661 if (unlikely(ret < 0)) 3662 return ret; 3663 3664 urb_priv = urb->hcpriv; 3665 3666 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3667 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) 3668 need_zero_pkt = true; 3669 3670 td = &urb_priv->td[0]; 3671 3672 /* 3673 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3674 * until we've finished creating all the other TRBs. The ring's cycle 3675 * state may change as we enqueue the other TRBs, so save it too. 3676 */ 3677 start_trb = &ring->enqueue->generic; 3678 start_cycle = ring->cycle_state; 3679 send_addr = addr; 3680 3681 /* Queue the TRBs, even if they are zero-length */ 3682 for (enqd_len = 0; first_trb || enqd_len < full_len; 3683 enqd_len += trb_buff_len) { 3684 field = TRB_TYPE(TRB_NORMAL); 3685 3686 /* TRB buffer should not cross 64KB boundaries */ 3687 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3688 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); 3689 3690 if (enqd_len + trb_buff_len > full_len) 3691 trb_buff_len = full_len - enqd_len; 3692 3693 /* Don't change the cycle bit of the first TRB until later */ 3694 if (first_trb) { 3695 first_trb = false; 3696 if (start_cycle == 0) 3697 field |= TRB_CYCLE; 3698 } else 3699 field |= ring->cycle_state; 3700 3701 /* Chain all the TRBs together; clear the chain bit in the last 3702 * TRB to indicate it's the last TRB in the chain. 3703 */ 3704 if (enqd_len + trb_buff_len < full_len) { 3705 field |= TRB_CHAIN; 3706 if (trb_is_link(ring->enqueue + 1)) { 3707 if (xhci_align_td(xhci, urb, enqd_len, 3708 &trb_buff_len, 3709 ring->enq_seg)) { 3710 send_addr = ring->enq_seg->bounce_dma; 3711 /* assuming TD won't span 2 segs */ 3712 td->bounce_seg = ring->enq_seg; 3713 } 3714 } 3715 } 3716 if (enqd_len + trb_buff_len >= full_len) { 3717 field &= ~TRB_CHAIN; 3718 field |= TRB_IOC; 3719 more_trbs_coming = false; 3720 td->end_trb = ring->enqueue; 3721 td->end_seg = ring->enq_seg; 3722 if (xhci_urb_suitable_for_idt(urb)) { 3723 memcpy(&send_addr, urb->transfer_buffer, 3724 trb_buff_len); 3725 le64_to_cpus(&send_addr); 3726 field |= TRB_IDT; 3727 } 3728 } 3729 3730 /* Only set interrupt on short packet for IN endpoints */ 3731 if (usb_urb_dir_in(urb)) 3732 field |= TRB_ISP; 3733 3734 /* Set the TRB length, TD size, and interrupter fields. */ 3735 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, 3736 full_len, urb, more_trbs_coming); 3737 3738 length_field = TRB_LEN(trb_buff_len) | 3739 TRB_TD_SIZE(remainder) | 3740 TRB_INTR_TARGET(0); 3741 3742 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, 3743 lower_32_bits(send_addr), 3744 upper_32_bits(send_addr), 3745 length_field, 3746 field); 3747 addr += trb_buff_len; 3748 sent_len = trb_buff_len; 3749 3750 while (sg && sent_len >= block_len) { 3751 /* New sg entry */ 3752 --num_sgs; 3753 sent_len -= block_len; 3754 sg = sg_next(sg); 3755 if (num_sgs != 0 && sg) { 3756 block_len = sg_dma_len(sg); 3757 addr = (u64) sg_dma_address(sg); 3758 addr += sent_len; 3759 } 3760 } 3761 block_len -= sent_len; 3762 send_addr = addr; 3763 } 3764 3765 if (need_zero_pkt) { 3766 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3767 ep_index, urb->stream_id, 3768 1, urb, 1, mem_flags); 3769 urb_priv->td[1].end_trb = ring->enqueue; 3770 urb_priv->td[1].end_seg = ring->enq_seg; 3771 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; 3772 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); 3773 } 3774 3775 check_trb_math(urb, enqd_len); 3776 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3777 start_cycle, start_trb); 3778 return 0; 3779 } 3780 3781 /* Caller must have locked xhci->lock */ 3782 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3783 struct urb *urb, int slot_id, unsigned int ep_index) 3784 { 3785 struct xhci_ring *ep_ring; 3786 int num_trbs; 3787 int ret; 3788 struct usb_ctrlrequest *setup; 3789 struct xhci_generic_trb *start_trb; 3790 int start_cycle; 3791 u32 field; 3792 struct urb_priv *urb_priv; 3793 struct xhci_td *td; 3794 3795 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3796 if (!ep_ring) 3797 return -EINVAL; 3798 3799 /* 3800 * Need to copy setup packet into setup TRB, so we can't use the setup 3801 * DMA address. 3802 */ 3803 if (!urb->setup_packet) 3804 return -EINVAL; 3805 3806 if ((xhci->quirks & XHCI_ETRON_HOST) && 3807 urb->dev->speed >= USB_SPEED_SUPER) { 3808 /* 3809 * If next available TRB is the Link TRB in the ring segment then 3810 * enqueue a No Op TRB, this can prevent the Setup and Data Stage 3811 * TRB to be breaked by the Link TRB. 3812 */ 3813 if (last_trb_on_seg(ep_ring->enq_seg, ep_ring->enqueue + 1)) { 3814 field = TRB_TYPE(TRB_TR_NOOP) | ep_ring->cycle_state; 3815 queue_trb(xhci, ep_ring, false, 0, 0, 3816 TRB_INTR_TARGET(0), field); 3817 } 3818 } 3819 3820 /* 1 TRB for setup, 1 for status */ 3821 num_trbs = 2; 3822 /* 3823 * Don't need to check if we need additional event data and normal TRBs, 3824 * since data in control transfers will never get bigger than 16MB 3825 * XXX: can we get a buffer that crosses 64KB boundaries? 3826 */ 3827 if (urb->transfer_buffer_length > 0) 3828 num_trbs++; 3829 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3830 ep_index, urb->stream_id, 3831 num_trbs, urb, 0, mem_flags); 3832 if (ret < 0) 3833 return ret; 3834 3835 urb_priv = urb->hcpriv; 3836 td = &urb_priv->td[0]; 3837 3838 /* 3839 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3840 * until we've finished creating all the other TRBs. The ring's cycle 3841 * state may change as we enqueue the other TRBs, so save it too. 3842 */ 3843 start_trb = &ep_ring->enqueue->generic; 3844 start_cycle = ep_ring->cycle_state; 3845 3846 /* Queue setup TRB - see section 6.4.1.2.1 */ 3847 /* FIXME better way to translate setup_packet into two u32 fields? */ 3848 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3849 field = 0; 3850 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3851 if (start_cycle == 0) 3852 field |= 0x1; 3853 3854 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ 3855 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { 3856 if (urb->transfer_buffer_length > 0) { 3857 if (setup->bRequestType & USB_DIR_IN) 3858 field |= TRB_TX_TYPE(TRB_DATA_IN); 3859 else 3860 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3861 } 3862 } 3863 3864 queue_trb(xhci, ep_ring, true, 3865 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3866 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3867 TRB_LEN(8) | TRB_INTR_TARGET(0), 3868 /* Immediate data in pointer */ 3869 field); 3870 3871 /* If there's data, queue data TRBs */ 3872 /* Only set interrupt on short packet for IN endpoints */ 3873 if (usb_urb_dir_in(urb)) 3874 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3875 else 3876 field = TRB_TYPE(TRB_DATA); 3877 3878 if (urb->transfer_buffer_length > 0) { 3879 u32 length_field, remainder; 3880 u64 addr; 3881 3882 if (xhci_urb_suitable_for_idt(urb)) { 3883 memcpy(&addr, urb->transfer_buffer, 3884 urb->transfer_buffer_length); 3885 le64_to_cpus(&addr); 3886 field |= TRB_IDT; 3887 } else { 3888 addr = (u64) urb->transfer_dma; 3889 } 3890 3891 remainder = xhci_td_remainder(xhci, 0, 3892 urb->transfer_buffer_length, 3893 urb->transfer_buffer_length, 3894 urb, 1); 3895 length_field = TRB_LEN(urb->transfer_buffer_length) | 3896 TRB_TD_SIZE(remainder) | 3897 TRB_INTR_TARGET(0); 3898 if (setup->bRequestType & USB_DIR_IN) 3899 field |= TRB_DIR_IN; 3900 queue_trb(xhci, ep_ring, true, 3901 lower_32_bits(addr), 3902 upper_32_bits(addr), 3903 length_field, 3904 field | ep_ring->cycle_state); 3905 } 3906 3907 /* Save the DMA address of the last TRB in the TD */ 3908 td->end_trb = ep_ring->enqueue; 3909 td->end_seg = ep_ring->enq_seg; 3910 3911 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3912 /* If the device sent data, the status stage is an OUT transfer */ 3913 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3914 field = 0; 3915 else 3916 field = TRB_DIR_IN; 3917 queue_trb(xhci, ep_ring, false, 3918 0, 3919 0, 3920 TRB_INTR_TARGET(0), 3921 /* Event on completion */ 3922 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3923 3924 giveback_first_trb(xhci, slot_id, ep_index, 0, 3925 start_cycle, start_trb); 3926 return 0; 3927 } 3928 3929 /* 3930 * The transfer burst count field of the isochronous TRB defines the number of 3931 * bursts that are required to move all packets in this TD. Only SuperSpeed 3932 * devices can burst up to bMaxBurst number of packets per service interval. 3933 * This field is zero based, meaning a value of zero in the field means one 3934 * burst. Basically, for everything but SuperSpeed devices, this field will be 3935 * zero. Only xHCI 1.0 host controllers support this field. 3936 */ 3937 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3938 struct urb *urb, unsigned int total_packet_count) 3939 { 3940 unsigned int max_burst; 3941 3942 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) 3943 return 0; 3944 3945 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3946 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3947 } 3948 3949 /* 3950 * Returns the number of packets in the last "burst" of packets. This field is 3951 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3952 * the last burst packet count is equal to the total number of packets in the 3953 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3954 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3955 * contain 1 to (bMaxBurst + 1) packets. 3956 */ 3957 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3958 struct urb *urb, unsigned int total_packet_count) 3959 { 3960 unsigned int max_burst; 3961 unsigned int residue; 3962 3963 if (xhci->hci_version < 0x100) 3964 return 0; 3965 3966 if (urb->dev->speed >= USB_SPEED_SUPER) { 3967 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3968 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3969 residue = total_packet_count % (max_burst + 1); 3970 /* If residue is zero, the last burst contains (max_burst + 1) 3971 * number of packets, but the TLBPC field is zero-based. 3972 */ 3973 if (residue == 0) 3974 return max_burst; 3975 return residue - 1; 3976 } 3977 if (total_packet_count == 0) 3978 return 0; 3979 return total_packet_count - 1; 3980 } 3981 3982 /* 3983 * Calculates Frame ID field of the isochronous TRB identifies the 3984 * target frame that the Interval associated with this Isochronous 3985 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. 3986 * 3987 * Returns actual frame id on success, negative value on error. 3988 */ 3989 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, 3990 struct urb *urb, int index) 3991 { 3992 int start_frame, ist, ret = 0; 3993 int start_frame_id, end_frame_id, current_frame_id; 3994 3995 if (urb->dev->speed == USB_SPEED_LOW || 3996 urb->dev->speed == USB_SPEED_FULL) 3997 start_frame = urb->start_frame + index * urb->interval; 3998 else 3999 start_frame = (urb->start_frame + index * urb->interval) >> 3; 4000 4001 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): 4002 * 4003 * If bit [3] of IST is cleared to '0', software can add a TRB no 4004 * later than IST[2:0] Microframes before that TRB is scheduled to 4005 * be executed. 4006 * If bit [3] of IST is set to '1', software can add a TRB no later 4007 * than IST[2:0] Frames before that TRB is scheduled to be executed. 4008 */ 4009 ist = HCS_IST(xhci->hcs_params2) & 0x7; 4010 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 4011 ist <<= 3; 4012 4013 /* Software shall not schedule an Isoch TD with a Frame ID value that 4014 * is less than the Start Frame ID or greater than the End Frame ID, 4015 * where: 4016 * 4017 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 4018 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 4019 * 4020 * Both the End Frame ID and Start Frame ID values are calculated 4021 * in microframes. When software determines the valid Frame ID value; 4022 * The End Frame ID value should be rounded down to the nearest Frame 4023 * boundary, and the Start Frame ID value should be rounded up to the 4024 * nearest Frame boundary. 4025 */ 4026 current_frame_id = readl(&xhci->run_regs->microframe_index); 4027 start_frame_id = roundup(current_frame_id + ist + 1, 8); 4028 end_frame_id = rounddown(current_frame_id + 895 * 8, 8); 4029 4030 start_frame &= 0x7ff; 4031 start_frame_id = (start_frame_id >> 3) & 0x7ff; 4032 end_frame_id = (end_frame_id >> 3) & 0x7ff; 4033 4034 if (start_frame_id < end_frame_id) { 4035 if (start_frame > end_frame_id || 4036 start_frame < start_frame_id) 4037 ret = -EINVAL; 4038 } else if (start_frame_id > end_frame_id) { 4039 if ((start_frame > end_frame_id && 4040 start_frame < start_frame_id)) 4041 ret = -EINVAL; 4042 } else { 4043 ret = -EINVAL; 4044 } 4045 4046 if (index == 0) { 4047 if (ret == -EINVAL || start_frame == start_frame_id) { 4048 start_frame = start_frame_id + 1; 4049 if (urb->dev->speed == USB_SPEED_LOW || 4050 urb->dev->speed == USB_SPEED_FULL) 4051 urb->start_frame = start_frame; 4052 else 4053 urb->start_frame = start_frame << 3; 4054 ret = 0; 4055 } 4056 } 4057 4058 if (ret) { 4059 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", 4060 start_frame, current_frame_id, index, 4061 start_frame_id, end_frame_id); 4062 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); 4063 return ret; 4064 } 4065 4066 return start_frame; 4067 } 4068 4069 /* Check if we should generate event interrupt for a TD in an isoc URB */ 4070 static bool trb_block_event_intr(struct xhci_hcd *xhci, int num_tds, int i, 4071 struct xhci_interrupter *ir) 4072 { 4073 if (xhci->hci_version < 0x100) 4074 return false; 4075 /* always generate an event interrupt for the last TD */ 4076 if (i == num_tds - 1) 4077 return false; 4078 /* 4079 * If AVOID_BEI is set the host handles full event rings poorly, 4080 * generate an event at least every 8th TD to clear the event ring 4081 */ 4082 if (i && ir->isoc_bei_interval && xhci->quirks & XHCI_AVOID_BEI) 4083 return !!(i % ir->isoc_bei_interval); 4084 4085 return true; 4086 } 4087 4088 /* This is for isoc transfer */ 4089 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 4090 struct urb *urb, int slot_id, unsigned int ep_index) 4091 { 4092 struct xhci_interrupter *ir; 4093 struct xhci_ring *ep_ring; 4094 struct urb_priv *urb_priv; 4095 struct xhci_td *td; 4096 int num_tds, trbs_per_td; 4097 struct xhci_generic_trb *start_trb; 4098 bool first_trb; 4099 int start_cycle; 4100 u32 field, length_field; 4101 int running_total, trb_buff_len, td_len, td_remain_len, ret; 4102 u64 start_addr, addr; 4103 int i, j; 4104 bool more_trbs_coming; 4105 struct xhci_virt_ep *xep; 4106 int frame_id; 4107 4108 xep = &xhci->devs[slot_id]->eps[ep_index]; 4109 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 4110 ir = xhci->interrupters[0]; 4111 4112 num_tds = urb->number_of_packets; 4113 if (num_tds < 1) { 4114 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 4115 return -EINVAL; 4116 } 4117 start_addr = (u64) urb->transfer_dma; 4118 start_trb = &ep_ring->enqueue->generic; 4119 start_cycle = ep_ring->cycle_state; 4120 4121 urb_priv = urb->hcpriv; 4122 /* Queue the TRBs for each TD, even if they are zero-length */ 4123 for (i = 0; i < num_tds; i++) { 4124 unsigned int total_pkt_count, max_pkt; 4125 unsigned int burst_count, last_burst_pkt_count; 4126 u32 sia_frame_id; 4127 4128 first_trb = true; 4129 running_total = 0; 4130 addr = start_addr + urb->iso_frame_desc[i].offset; 4131 td_len = urb->iso_frame_desc[i].length; 4132 td_remain_len = td_len; 4133 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 4134 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); 4135 4136 /* A zero-length transfer still involves at least one packet. */ 4137 if (total_pkt_count == 0) 4138 total_pkt_count++; 4139 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); 4140 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, 4141 urb, total_pkt_count); 4142 4143 trbs_per_td = count_isoc_trbs_needed(urb, i); 4144 4145 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 4146 urb->stream_id, trbs_per_td, urb, i, mem_flags); 4147 if (ret < 0) { 4148 if (i == 0) 4149 return ret; 4150 goto cleanup; 4151 } 4152 td = &urb_priv->td[i]; 4153 /* use SIA as default, if frame id is used overwrite it */ 4154 sia_frame_id = TRB_SIA; 4155 if (!(urb->transfer_flags & URB_ISO_ASAP) && 4156 HCC_CFC(xhci->hcc_params)) { 4157 frame_id = xhci_get_isoc_frame_id(xhci, urb, i); 4158 if (frame_id >= 0) 4159 sia_frame_id = TRB_FRAME_ID(frame_id); 4160 } 4161 /* 4162 * Set isoc specific data for the first TRB in a TD. 4163 * Prevent HW from getting the TRBs by keeping the cycle state 4164 * inverted in the first TDs isoc TRB. 4165 */ 4166 field = TRB_TYPE(TRB_ISOC) | 4167 TRB_TLBPC(last_burst_pkt_count) | 4168 sia_frame_id | 4169 (i ? ep_ring->cycle_state : !start_cycle); 4170 4171 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ 4172 if (!xep->use_extended_tbc) 4173 field |= TRB_TBC(burst_count); 4174 4175 /* fill the rest of the TRB fields, and remaining normal TRBs */ 4176 for (j = 0; j < trbs_per_td; j++) { 4177 u32 remainder = 0; 4178 4179 /* only first TRB is isoc, overwrite otherwise */ 4180 if (!first_trb) 4181 field = TRB_TYPE(TRB_NORMAL) | 4182 ep_ring->cycle_state; 4183 4184 /* Only set interrupt on short packet for IN EPs */ 4185 if (usb_urb_dir_in(urb)) 4186 field |= TRB_ISP; 4187 4188 /* Set the chain bit for all except the last TRB */ 4189 if (j < trbs_per_td - 1) { 4190 more_trbs_coming = true; 4191 field |= TRB_CHAIN; 4192 } else { 4193 more_trbs_coming = false; 4194 td->end_trb = ep_ring->enqueue; 4195 td->end_seg = ep_ring->enq_seg; 4196 field |= TRB_IOC; 4197 if (trb_block_event_intr(xhci, num_tds, i, ir)) 4198 field |= TRB_BEI; 4199 } 4200 /* Calculate TRB length */ 4201 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 4202 if (trb_buff_len > td_remain_len) 4203 trb_buff_len = td_remain_len; 4204 4205 /* Set the TRB length, TD size, & interrupter fields. */ 4206 remainder = xhci_td_remainder(xhci, running_total, 4207 trb_buff_len, td_len, 4208 urb, more_trbs_coming); 4209 4210 length_field = TRB_LEN(trb_buff_len) | 4211 TRB_INTR_TARGET(0); 4212 4213 /* xhci 1.1 with ETE uses TD Size field for TBC */ 4214 if (first_trb && xep->use_extended_tbc) 4215 length_field |= TRB_TD_SIZE_TBC(burst_count); 4216 else 4217 length_field |= TRB_TD_SIZE(remainder); 4218 first_trb = false; 4219 4220 queue_trb(xhci, ep_ring, more_trbs_coming, 4221 lower_32_bits(addr), 4222 upper_32_bits(addr), 4223 length_field, 4224 field); 4225 running_total += trb_buff_len; 4226 4227 addr += trb_buff_len; 4228 td_remain_len -= trb_buff_len; 4229 } 4230 4231 /* Check TD length */ 4232 if (running_total != td_len) { 4233 xhci_err(xhci, "ISOC TD length unmatch\n"); 4234 ret = -EINVAL; 4235 goto cleanup; 4236 } 4237 } 4238 4239 /* store the next frame id */ 4240 if (HCC_CFC(xhci->hcc_params)) 4241 xep->next_frame_id = urb->start_frame + num_tds * urb->interval; 4242 4243 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 4244 if (xhci->quirks & XHCI_AMD_PLL_FIX) 4245 usb_amd_quirk_pll_disable(); 4246 } 4247 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 4248 4249 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 4250 start_cycle, start_trb); 4251 return 0; 4252 cleanup: 4253 /* Clean up a partially enqueued isoc transfer. */ 4254 4255 for (i--; i >= 0; i--) 4256 list_del_init(&urb_priv->td[i].td_list); 4257 4258 /* Use the first TD as a temporary variable to turn the TDs we've queued 4259 * into No-ops with a software-owned cycle bit. That way the hardware 4260 * won't accidentally start executing bogus TDs when we partially 4261 * overwrite them. td->start_trb and td->start_seg are already set. 4262 */ 4263 urb_priv->td[0].end_trb = ep_ring->enqueue; 4264 /* Every TRB except the first & last will have its cycle bit flipped. */ 4265 td_to_noop(&urb_priv->td[0], true); 4266 4267 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 4268 ep_ring->enqueue = urb_priv->td[0].start_trb; 4269 ep_ring->enq_seg = urb_priv->td[0].start_seg; 4270 ep_ring->cycle_state = start_cycle; 4271 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 4272 return ret; 4273 } 4274 4275 /* 4276 * Check transfer ring to guarantee there is enough room for the urb. 4277 * Update ISO URB start_frame and interval. 4278 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to 4279 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or 4280 * Contiguous Frame ID is not supported by HC. 4281 */ 4282 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 4283 struct urb *urb, int slot_id, unsigned int ep_index) 4284 { 4285 struct xhci_virt_device *xdev; 4286 struct xhci_ring *ep_ring; 4287 struct xhci_ep_ctx *ep_ctx; 4288 int start_frame; 4289 int num_tds, num_trbs, i; 4290 int ret; 4291 struct xhci_virt_ep *xep; 4292 int ist; 4293 4294 xdev = xhci->devs[slot_id]; 4295 xep = &xhci->devs[slot_id]->eps[ep_index]; 4296 ep_ring = xdev->eps[ep_index].ring; 4297 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 4298 4299 num_trbs = 0; 4300 num_tds = urb->number_of_packets; 4301 for (i = 0; i < num_tds; i++) 4302 num_trbs += count_isoc_trbs_needed(urb, i); 4303 4304 /* Check the ring to guarantee there is enough room for the whole urb. 4305 * Do not insert any td of the urb to the ring if the check failed. 4306 */ 4307 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 4308 num_trbs, mem_flags); 4309 if (ret) 4310 return ret; 4311 4312 /* 4313 * Check interval value. This should be done before we start to 4314 * calculate the start frame value. 4315 */ 4316 check_interval(urb, ep_ctx); 4317 4318 /* Calculate the start frame and put it in urb->start_frame. */ 4319 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { 4320 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) { 4321 urb->start_frame = xep->next_frame_id; 4322 goto skip_start_over; 4323 } 4324 } 4325 4326 start_frame = readl(&xhci->run_regs->microframe_index); 4327 start_frame &= 0x3fff; 4328 /* 4329 * Round up to the next frame and consider the time before trb really 4330 * gets scheduled by hardare. 4331 */ 4332 ist = HCS_IST(xhci->hcs_params2) & 0x7; 4333 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 4334 ist <<= 3; 4335 start_frame += ist + XHCI_CFC_DELAY; 4336 start_frame = roundup(start_frame, 8); 4337 4338 /* 4339 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT 4340 * is greate than 8 microframes. 4341 */ 4342 if (urb->dev->speed == USB_SPEED_LOW || 4343 urb->dev->speed == USB_SPEED_FULL) { 4344 start_frame = roundup(start_frame, urb->interval << 3); 4345 urb->start_frame = start_frame >> 3; 4346 } else { 4347 start_frame = roundup(start_frame, urb->interval); 4348 urb->start_frame = start_frame; 4349 } 4350 4351 skip_start_over: 4352 4353 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 4354 } 4355 4356 /**** Command Ring Operations ****/ 4357 4358 /* Generic function for queueing a command TRB on the command ring. 4359 * Check to make sure there's room on the command ring for one command TRB. 4360 * Also check that there's room reserved for commands that must not fail. 4361 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 4362 * then only check for the number of reserved spots. 4363 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 4364 * because the command event handler may want to resubmit a failed command. 4365 */ 4366 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4367 u32 field1, u32 field2, 4368 u32 field3, u32 field4, bool command_must_succeed) 4369 { 4370 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 4371 int ret; 4372 4373 if ((xhci->xhc_state & XHCI_STATE_DYING) || 4374 (xhci->xhc_state & XHCI_STATE_HALTED)) { 4375 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); 4376 return -ESHUTDOWN; 4377 } 4378 4379 if (!command_must_succeed) 4380 reserved_trbs++; 4381 4382 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 4383 reserved_trbs, GFP_ATOMIC); 4384 if (ret < 0) { 4385 xhci_err(xhci, "ERR: No room for command on command ring\n"); 4386 if (command_must_succeed) 4387 xhci_err(xhci, "ERR: Reserved TRB counting for " 4388 "unfailable commands failed.\n"); 4389 return ret; 4390 } 4391 4392 cmd->command_trb = xhci->cmd_ring->enqueue; 4393 4394 /* if there are no other commands queued we start the timeout timer */ 4395 if (list_empty(&xhci->cmd_list)) { 4396 xhci->current_cmd = cmd; 4397 xhci_mod_cmd_timer(xhci); 4398 } 4399 4400 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 4401 4402 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 4403 field4 | xhci->cmd_ring->cycle_state); 4404 return 0; 4405 } 4406 4407 /* Queue a slot enable or disable request on the command ring */ 4408 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 4409 u32 trb_type, u32 slot_id) 4410 { 4411 return queue_command(xhci, cmd, 0, 0, 0, 4412 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 4413 } 4414 4415 /* Queue an address device command TRB */ 4416 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4417 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 4418 { 4419 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4420 upper_32_bits(in_ctx_ptr), 0, 4421 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 4422 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 4423 } 4424 4425 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4426 u32 field1, u32 field2, u32 field3, u32 field4) 4427 { 4428 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 4429 } 4430 4431 /* Queue a reset device command TRB */ 4432 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4433 u32 slot_id) 4434 { 4435 return queue_command(xhci, cmd, 0, 0, 0, 4436 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 4437 false); 4438 } 4439 4440 /* Queue a configure endpoint command TRB */ 4441 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 4442 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 4443 u32 slot_id, bool command_must_succeed) 4444 { 4445 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4446 upper_32_bits(in_ctx_ptr), 0, 4447 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 4448 command_must_succeed); 4449 } 4450 4451 /* Queue a get root hub port bandwidth command TRB */ 4452 int xhci_queue_get_port_bw(struct xhci_hcd *xhci, 4453 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 4454 u8 dev_speed, bool command_must_succeed) 4455 { 4456 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4457 upper_32_bits(in_ctx_ptr), 0, 4458 TRB_TYPE(TRB_GET_BW) | DEV_SPEED_FOR_TRB(dev_speed), 4459 command_must_succeed); 4460 } 4461 4462 /* Queue an evaluate context command TRB */ 4463 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 4464 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 4465 { 4466 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4467 upper_32_bits(in_ctx_ptr), 0, 4468 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 4469 command_must_succeed); 4470 } 4471 4472 /* 4473 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 4474 * activity on an endpoint that is about to be suspended. 4475 */ 4476 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 4477 int slot_id, unsigned int ep_index, int suspend) 4478 { 4479 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4480 u32 trb_ep_index = EP_INDEX_FOR_TRB(ep_index); 4481 u32 type = TRB_TYPE(TRB_STOP_RING); 4482 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 4483 4484 return queue_command(xhci, cmd, 0, 0, 0, 4485 trb_slot_id | trb_ep_index | type | trb_suspend, false); 4486 } 4487 4488 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 4489 int slot_id, unsigned int ep_index, 4490 enum xhci_ep_reset_type reset_type) 4491 { 4492 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4493 u32 trb_ep_index = EP_INDEX_FOR_TRB(ep_index); 4494 u32 type = TRB_TYPE(TRB_RESET_EP); 4495 4496 if (reset_type == EP_SOFT_RESET) 4497 type |= TRB_TSP; 4498 4499 return queue_command(xhci, cmd, 0, 0, 0, 4500 trb_slot_id | trb_ep_index | type, false); 4501 } 4502