1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 /* 12 * Ring initialization rules: 13 * 1. Each segment is initialized to zero, except for link TRBs. 14 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 15 * Consumer Cycle State (CCS), depending on ring function. 16 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 17 * 18 * Ring behavior rules: 19 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 20 * least one free TRB in the ring. This is useful if you want to turn that 21 * into a link TRB and expand the ring. 22 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 23 * link TRB, then load the pointer with the address in the link TRB. If the 24 * link TRB had its toggle bit set, you may need to update the ring cycle 25 * state (see cycle bit rules). You may have to do this multiple times 26 * until you reach a non-link TRB. 27 * 3. A ring is full if enqueue++ (for the definition of increment above) 28 * equals the dequeue pointer. 29 * 30 * Cycle bit rules: 31 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 32 * in a link TRB, it must toggle the ring cycle state. 33 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 34 * in a link TRB, it must toggle the ring cycle state. 35 * 36 * Producer rules: 37 * 1. Check if ring is full before you enqueue. 38 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 39 * Update enqueue pointer between each write (which may update the ring 40 * cycle state). 41 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 42 * and endpoint rings. If HC is the producer for the event ring, 43 * and it generates an interrupt according to interrupt modulation rules. 44 * 45 * Consumer rules: 46 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 47 * the TRB is owned by the consumer. 48 * 2. Update dequeue pointer (which may update the ring cycle state) and 49 * continue processing TRBs until you reach a TRB which is not owned by you. 50 * 3. Notify the producer. SW is the consumer for the event ring, and it 51 * updates event ring dequeue pointer. HC is the consumer for the command and 52 * endpoint rings; it generates events on the event ring for these. 53 */ 54 55 #include <linux/scatterlist.h> 56 #include <linux/slab.h> 57 #include <linux/dma-mapping.h> 58 #include "xhci.h" 59 #include "xhci-trace.h" 60 61 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 62 u32 field1, u32 field2, 63 u32 field3, u32 field4, bool command_must_succeed); 64 65 /* 66 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 67 * address of the TRB. 68 */ 69 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 70 union xhci_trb *trb) 71 { 72 unsigned long segment_offset; 73 74 if (!seg || !trb || trb < seg->trbs) 75 return 0; 76 /* offset in TRBs */ 77 segment_offset = trb - seg->trbs; 78 if (segment_offset >= TRBS_PER_SEGMENT) 79 return 0; 80 return seg->dma + (segment_offset * sizeof(*trb)); 81 } 82 83 static bool trb_is_noop(union xhci_trb *trb) 84 { 85 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); 86 } 87 88 static bool trb_is_link(union xhci_trb *trb) 89 { 90 return TRB_TYPE_LINK_LE32(trb->link.control); 91 } 92 93 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) 94 { 95 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; 96 } 97 98 static bool last_trb_on_ring(struct xhci_ring *ring, 99 struct xhci_segment *seg, union xhci_trb *trb) 100 { 101 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); 102 } 103 104 static bool link_trb_toggles_cycle(union xhci_trb *trb) 105 { 106 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 107 } 108 109 static bool last_td_in_urb(struct xhci_td *td) 110 { 111 struct urb_priv *urb_priv = td->urb->hcpriv; 112 113 return urb_priv->num_tds_done == urb_priv->num_tds; 114 } 115 116 static bool unhandled_event_trb(struct xhci_ring *ring) 117 { 118 return ((le32_to_cpu(ring->dequeue->event_cmd.flags) & TRB_CYCLE) == 119 ring->cycle_state); 120 } 121 122 static void inc_td_cnt(struct urb *urb) 123 { 124 struct urb_priv *urb_priv = urb->hcpriv; 125 126 urb_priv->num_tds_done++; 127 } 128 129 static void trb_to_noop(union xhci_trb *trb, u32 noop_type) 130 { 131 if (trb_is_link(trb)) { 132 /* unchain chained link TRBs */ 133 trb->link.control &= cpu_to_le32(~TRB_CHAIN); 134 } else { 135 trb->generic.field[0] = 0; 136 trb->generic.field[1] = 0; 137 trb->generic.field[2] = 0; 138 /* Preserve only the cycle bit of this TRB */ 139 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 140 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); 141 } 142 } 143 144 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 145 * TRB is in a new segment. This does not skip over link TRBs, and it does not 146 * effect the ring dequeue or enqueue pointers. 147 */ 148 static void next_trb(struct xhci_hcd *xhci, 149 struct xhci_ring *ring, 150 struct xhci_segment **seg, 151 union xhci_trb **trb) 152 { 153 if (trb_is_link(*trb) || last_trb_on_seg(*seg, *trb)) { 154 *seg = (*seg)->next; 155 *trb = ((*seg)->trbs); 156 } else { 157 (*trb)++; 158 } 159 } 160 161 /* 162 * See Cycle bit rules. SW is the consumer for the event ring only. 163 */ 164 void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 165 { 166 unsigned int link_trb_count = 0; 167 168 /* event ring doesn't have link trbs, check for last trb */ 169 if (ring->type == TYPE_EVENT) { 170 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 171 ring->dequeue++; 172 goto out; 173 } 174 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) 175 ring->cycle_state ^= 1; 176 ring->deq_seg = ring->deq_seg->next; 177 ring->dequeue = ring->deq_seg->trbs; 178 goto out; 179 } 180 181 /* All other rings have link trbs */ 182 if (!trb_is_link(ring->dequeue)) { 183 if (last_trb_on_seg(ring->deq_seg, ring->dequeue)) 184 xhci_warn(xhci, "Missing link TRB at end of segment\n"); 185 else 186 ring->dequeue++; 187 } 188 189 while (trb_is_link(ring->dequeue)) { 190 ring->deq_seg = ring->deq_seg->next; 191 ring->dequeue = ring->deq_seg->trbs; 192 193 if (link_trb_count++ > ring->num_segs) { 194 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 195 break; 196 } 197 } 198 out: 199 trace_xhci_inc_deq(ring); 200 201 return; 202 } 203 204 /* 205 * See Cycle bit rules. SW is the consumer for the event ring only. 206 * 207 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 208 * chain bit is set), then set the chain bit in all the following link TRBs. 209 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 210 * have their chain bit cleared (so that each Link TRB is a separate TD). 211 * 212 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 213 * set, but other sections talk about dealing with the chain bit set. This was 214 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 215 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 216 * 217 * @more_trbs_coming: Will you enqueue more TRBs before calling 218 * prepare_transfer()? 219 */ 220 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 221 bool more_trbs_coming) 222 { 223 u32 chain; 224 union xhci_trb *next; 225 unsigned int link_trb_count = 0; 226 227 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 228 229 if (last_trb_on_seg(ring->enq_seg, ring->enqueue)) { 230 xhci_err(xhci, "Tried to move enqueue past ring segment\n"); 231 return; 232 } 233 234 next = ++(ring->enqueue); 235 236 /* Update the dequeue pointer further if that was a link TRB */ 237 while (trb_is_link(next)) { 238 239 /* 240 * If the caller doesn't plan on enqueueing more TDs before 241 * ringing the doorbell, then we don't want to give the link TRB 242 * to the hardware just yet. We'll give the link TRB back in 243 * prepare_ring() just before we enqueue the TD at the top of 244 * the ring. 245 */ 246 if (!chain && !more_trbs_coming) 247 break; 248 249 /* If we're not dealing with 0.95 hardware or isoc rings on 250 * AMD 0.96 host, carry over the chain bit of the previous TRB 251 * (which may mean the chain bit is cleared). 252 */ 253 if (!xhci_link_chain_quirk(xhci, ring->type)) { 254 next->link.control &= cpu_to_le32(~TRB_CHAIN); 255 next->link.control |= cpu_to_le32(chain); 256 } 257 /* Give this link TRB to the hardware */ 258 wmb(); 259 next->link.control ^= cpu_to_le32(TRB_CYCLE); 260 261 /* Toggle the cycle bit after the last ring segment. */ 262 if (link_trb_toggles_cycle(next)) 263 ring->cycle_state ^= 1; 264 265 ring->enq_seg = ring->enq_seg->next; 266 ring->enqueue = ring->enq_seg->trbs; 267 next = ring->enqueue; 268 269 if (link_trb_count++ > ring->num_segs) { 270 xhci_warn(xhci, "%s: Ring link TRB loop\n", __func__); 271 break; 272 } 273 } 274 275 trace_xhci_inc_enq(ring); 276 } 277 278 /* 279 * Return number of free normal TRBs from enqueue to dequeue pointer on ring. 280 * Not counting an assumed link TRB at end of each TRBS_PER_SEGMENT sized segment. 281 * Only for transfer and command rings where driver is the producer, not for 282 * event rings. 283 */ 284 static unsigned int xhci_num_trbs_free(struct xhci_ring *ring) 285 { 286 struct xhci_segment *enq_seg = ring->enq_seg; 287 union xhci_trb *enq = ring->enqueue; 288 union xhci_trb *last_on_seg; 289 unsigned int free = 0; 290 int i = 0; 291 292 /* Ring might be empty even if enq != deq if enq is left on a link trb */ 293 if (trb_is_link(enq)) { 294 enq_seg = enq_seg->next; 295 enq = enq_seg->trbs; 296 } 297 298 /* Empty ring, common case, don't walk the segments */ 299 if (enq == ring->dequeue) 300 return ring->num_segs * (TRBS_PER_SEGMENT - 1); 301 302 do { 303 if (ring->deq_seg == enq_seg && ring->dequeue >= enq) 304 return free + (ring->dequeue - enq); 305 last_on_seg = &enq_seg->trbs[TRBS_PER_SEGMENT - 1]; 306 free += last_on_seg - enq; 307 enq_seg = enq_seg->next; 308 enq = enq_seg->trbs; 309 } while (i++ < ring->num_segs); 310 311 return free; 312 } 313 314 /* 315 * Check to see if there's room to enqueue num_trbs on the ring and make sure 316 * enqueue pointer will not advance into dequeue segment. See rules above. 317 * return number of new segments needed to ensure this. 318 */ 319 320 static unsigned int xhci_ring_expansion_needed(struct xhci_hcd *xhci, struct xhci_ring *ring, 321 unsigned int num_trbs) 322 { 323 struct xhci_segment *seg; 324 int trbs_past_seg; 325 int enq_used; 326 int new_segs; 327 328 enq_used = ring->enqueue - ring->enq_seg->trbs; 329 330 /* how many trbs will be queued past the enqueue segment? */ 331 trbs_past_seg = enq_used + num_trbs - (TRBS_PER_SEGMENT - 1); 332 333 /* 334 * Consider expanding the ring already if num_trbs fills the current 335 * segment (i.e. trbs_past_seg == 0), not only when num_trbs goes into 336 * the next segment. Avoids confusing full ring with special empty ring 337 * case below 338 */ 339 if (trbs_past_seg < 0) 340 return 0; 341 342 /* Empty ring special case, enqueue stuck on link trb while dequeue advanced */ 343 if (trb_is_link(ring->enqueue) && ring->enq_seg->next->trbs == ring->dequeue) 344 return 0; 345 346 new_segs = 1 + (trbs_past_seg / (TRBS_PER_SEGMENT - 1)); 347 seg = ring->enq_seg; 348 349 while (new_segs > 0) { 350 seg = seg->next; 351 if (seg == ring->deq_seg) { 352 xhci_dbg(xhci, "Adding %d trbs requires expanding ring by %d segments\n", 353 num_trbs, new_segs); 354 return new_segs; 355 } 356 new_segs--; 357 } 358 359 return 0; 360 } 361 362 /* Ring the host controller doorbell after placing a command on the ring */ 363 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 364 { 365 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 366 return; 367 368 xhci_dbg(xhci, "// Ding dong!\n"); 369 370 trace_xhci_ring_host_doorbell(0, DB_VALUE_HOST); 371 372 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 373 /* Flush PCI posted writes */ 374 readl(&xhci->dba->doorbell[0]); 375 } 376 377 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci) 378 { 379 return mod_delayed_work(system_wq, &xhci->cmd_timer, 380 msecs_to_jiffies(xhci->current_cmd->timeout_ms)); 381 } 382 383 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) 384 { 385 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, 386 cmd_list); 387 } 388 389 /* 390 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 391 * If there are other commands waiting then restart the ring and kick the timer. 392 * This must be called with command ring stopped and xhci->lock held. 393 */ 394 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 395 struct xhci_command *cur_cmd) 396 { 397 struct xhci_command *i_cmd; 398 399 /* Turn all aborted commands in list to no-ops, then restart */ 400 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { 401 402 if (i_cmd->status != COMP_COMMAND_ABORTED) 403 continue; 404 405 i_cmd->status = COMP_COMMAND_RING_STOPPED; 406 407 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 408 i_cmd->command_trb); 409 410 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); 411 412 /* 413 * caller waiting for completion is called when command 414 * completion event is received for these no-op commands 415 */ 416 } 417 418 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 419 420 /* ring command ring doorbell to restart the command ring */ 421 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 422 !(xhci->xhc_state & XHCI_STATE_DYING)) { 423 xhci->current_cmd = cur_cmd; 424 xhci_mod_cmd_timer(xhci); 425 xhci_ring_cmd_db(xhci); 426 } 427 } 428 429 /* Must be called with xhci->lock held, releases and aquires lock back */ 430 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) 431 { 432 struct xhci_segment *new_seg = xhci->cmd_ring->deq_seg; 433 union xhci_trb *new_deq = xhci->cmd_ring->dequeue; 434 u64 crcr; 435 int ret; 436 437 xhci_dbg(xhci, "Abort command ring\n"); 438 439 reinit_completion(&xhci->cmd_ring_stop_completion); 440 441 /* 442 * The control bits like command stop, abort are located in lower 443 * dword of the command ring control register. 444 * Some controllers require all 64 bits to be written to abort the ring. 445 * Make sure the upper dword is valid, pointing to the next command, 446 * avoiding corrupting the command ring pointer in case the command ring 447 * is stopped by the time the upper dword is written. 448 */ 449 next_trb(xhci, NULL, &new_seg, &new_deq); 450 if (trb_is_link(new_deq)) 451 next_trb(xhci, NULL, &new_seg, &new_deq); 452 453 crcr = xhci_trb_virt_to_dma(new_seg, new_deq); 454 xhci_write_64(xhci, crcr | CMD_RING_ABORT, &xhci->op_regs->cmd_ring); 455 456 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the 457 * completion of the Command Abort operation. If CRR is not negated in 5 458 * seconds then driver handles it as if host died (-ENODEV). 459 * In the future we should distinguish between -ENODEV and -ETIMEDOUT 460 * and try to recover a -ETIMEDOUT with a host controller reset. 461 */ 462 ret = xhci_handshake_check_state(xhci, &xhci->op_regs->cmd_ring, 463 CMD_RING_RUNNING, 0, 5 * 1000 * 1000, 464 XHCI_STATE_REMOVING); 465 if (ret < 0) { 466 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret); 467 xhci_halt(xhci); 468 xhci_hc_died(xhci); 469 return ret; 470 } 471 /* 472 * Writing the CMD_RING_ABORT bit should cause a cmd completion event, 473 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared 474 * but the completion event in never sent. Wait 2 secs (arbitrary 475 * number) to handle those cases after negation of CMD_RING_RUNNING. 476 */ 477 spin_unlock_irqrestore(&xhci->lock, flags); 478 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, 479 msecs_to_jiffies(2000)); 480 spin_lock_irqsave(&xhci->lock, flags); 481 if (!ret) { 482 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); 483 xhci_cleanup_command_queue(xhci); 484 } else { 485 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); 486 } 487 return 0; 488 } 489 490 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 491 unsigned int slot_id, 492 unsigned int ep_index, 493 unsigned int stream_id) 494 { 495 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 496 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 497 unsigned int ep_state = ep->ep_state; 498 499 /* Don't ring the doorbell for this endpoint if there are pending 500 * cancellations because we don't want to interrupt processing. 501 * We don't want to restart any stream rings if there's a set dequeue 502 * pointer command pending because the device can choose to start any 503 * stream once the endpoint is on the HW schedule. 504 */ 505 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || 506 (ep_state & EP_HALTED) || (ep_state & EP_CLEARING_TT)) 507 return; 508 509 trace_xhci_ring_ep_doorbell(slot_id, DB_VALUE(ep_index, stream_id)); 510 511 writel(DB_VALUE(ep_index, stream_id), db_addr); 512 /* flush the write */ 513 readl(db_addr); 514 } 515 516 /* Ring the doorbell for any rings with pending URBs */ 517 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 518 unsigned int slot_id, 519 unsigned int ep_index) 520 { 521 unsigned int stream_id; 522 struct xhci_virt_ep *ep; 523 524 ep = &xhci->devs[slot_id]->eps[ep_index]; 525 526 /* A ring has pending URBs if its TD list is not empty */ 527 if (!(ep->ep_state & EP_HAS_STREAMS)) { 528 if (ep->ring && !(list_empty(&ep->ring->td_list))) 529 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 530 return; 531 } 532 533 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 534 stream_id++) { 535 struct xhci_stream_info *stream_info = ep->stream_info; 536 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 537 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 538 stream_id); 539 } 540 } 541 542 void xhci_ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 543 unsigned int slot_id, 544 unsigned int ep_index) 545 { 546 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 547 } 548 549 static struct xhci_virt_ep *xhci_get_virt_ep(struct xhci_hcd *xhci, 550 unsigned int slot_id, 551 unsigned int ep_index) 552 { 553 if (slot_id == 0 || slot_id >= MAX_HC_SLOTS) { 554 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 555 return NULL; 556 } 557 if (ep_index >= EP_CTX_PER_DEV) { 558 xhci_warn(xhci, "Invalid endpoint index %u\n", ep_index); 559 return NULL; 560 } 561 if (!xhci->devs[slot_id]) { 562 xhci_warn(xhci, "No xhci virt device for slot_id %u\n", slot_id); 563 return NULL; 564 } 565 566 return &xhci->devs[slot_id]->eps[ep_index]; 567 } 568 569 static struct xhci_ring *xhci_virt_ep_to_ring(struct xhci_hcd *xhci, 570 struct xhci_virt_ep *ep, 571 unsigned int stream_id) 572 { 573 /* common case, no streams */ 574 if (!(ep->ep_state & EP_HAS_STREAMS)) 575 return ep->ring; 576 577 if (!ep->stream_info) 578 return NULL; 579 580 if (stream_id == 0 || stream_id >= ep->stream_info->num_streams) { 581 xhci_warn(xhci, "Invalid stream_id %u request for slot_id %u ep_index %u\n", 582 stream_id, ep->vdev->slot_id, ep->ep_index); 583 return NULL; 584 } 585 586 return ep->stream_info->stream_rings[stream_id]; 587 } 588 589 /* Get the right ring for the given slot_id, ep_index and stream_id. 590 * If the endpoint supports streams, boundary check the URB's stream ID. 591 * If the endpoint doesn't support streams, return the singular endpoint ring. 592 */ 593 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 594 unsigned int slot_id, unsigned int ep_index, 595 unsigned int stream_id) 596 { 597 struct xhci_virt_ep *ep; 598 599 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 600 if (!ep) 601 return NULL; 602 603 return xhci_virt_ep_to_ring(xhci, ep, stream_id); 604 } 605 606 607 /* 608 * Get the hw dequeue pointer xHC stopped on, either directly from the 609 * endpoint context, or if streams are in use from the stream context. 610 * The returned hw_dequeue contains the lowest four bits with cycle state 611 * and possbile stream context type. 612 */ 613 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev, 614 unsigned int ep_index, unsigned int stream_id) 615 { 616 struct xhci_ep_ctx *ep_ctx; 617 struct xhci_stream_ctx *st_ctx; 618 struct xhci_virt_ep *ep; 619 620 ep = &vdev->eps[ep_index]; 621 622 if (ep->ep_state & EP_HAS_STREAMS) { 623 st_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 624 return le64_to_cpu(st_ctx->stream_ring); 625 } 626 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 627 return le64_to_cpu(ep_ctx->deq); 628 } 629 630 static int xhci_move_dequeue_past_td(struct xhci_hcd *xhci, 631 unsigned int slot_id, unsigned int ep_index, 632 unsigned int stream_id, struct xhci_td *td) 633 { 634 struct xhci_virt_device *dev = xhci->devs[slot_id]; 635 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 636 struct xhci_ring *ep_ring; 637 struct xhci_command *cmd; 638 struct xhci_segment *new_seg; 639 union xhci_trb *new_deq; 640 int new_cycle; 641 dma_addr_t addr; 642 u64 hw_dequeue; 643 bool cycle_found = false; 644 bool td_last_trb_found = false; 645 u32 trb_sct = 0; 646 int ret; 647 648 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 649 ep_index, stream_id); 650 if (!ep_ring) { 651 xhci_warn(xhci, "WARN can't find new dequeue, invalid stream ID %u\n", 652 stream_id); 653 return -ENODEV; 654 } 655 656 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id); 657 new_seg = ep_ring->deq_seg; 658 new_deq = ep_ring->dequeue; 659 new_cycle = hw_dequeue & 0x1; 660 661 /* 662 * We want to find the pointer, segment and cycle state of the new trb 663 * (the one after current TD's last_trb). We know the cycle state at 664 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are 665 * found. 666 */ 667 do { 668 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) 669 == (dma_addr_t)(hw_dequeue & ~0xf)) { 670 cycle_found = true; 671 if (td_last_trb_found) 672 break; 673 } 674 if (new_deq == td->last_trb) 675 td_last_trb_found = true; 676 677 if (cycle_found && trb_is_link(new_deq) && 678 link_trb_toggles_cycle(new_deq)) 679 new_cycle ^= 0x1; 680 681 next_trb(xhci, ep_ring, &new_seg, &new_deq); 682 683 /* Search wrapped around, bail out */ 684 if (new_deq == ep->ring->dequeue) { 685 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 686 return -EINVAL; 687 } 688 689 } while (!cycle_found || !td_last_trb_found); 690 691 /* Don't update the ring cycle state for the producer (us). */ 692 addr = xhci_trb_virt_to_dma(new_seg, new_deq); 693 if (addr == 0) { 694 xhci_warn(xhci, "Can't find dma of new dequeue ptr\n"); 695 xhci_warn(xhci, "deq seg = %p, deq ptr = %p\n", new_seg, new_deq); 696 return -EINVAL; 697 } 698 699 if ((ep->ep_state & SET_DEQ_PENDING)) { 700 xhci_warn(xhci, "Set TR Deq already pending, don't submit for 0x%pad\n", 701 &addr); 702 return -EBUSY; 703 } 704 705 /* This function gets called from contexts where it cannot sleep */ 706 cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC); 707 if (!cmd) { 708 xhci_warn(xhci, "Can't alloc Set TR Deq cmd 0x%pad\n", &addr); 709 return -ENOMEM; 710 } 711 712 if (stream_id) 713 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 714 ret = queue_command(xhci, cmd, 715 lower_32_bits(addr) | trb_sct | new_cycle, 716 upper_32_bits(addr), 717 STREAM_ID_FOR_TRB(stream_id), SLOT_ID_FOR_TRB(slot_id) | 718 EP_INDEX_FOR_TRB(ep_index) | TRB_TYPE(TRB_SET_DEQ), false); 719 if (ret < 0) { 720 xhci_free_command(xhci, cmd); 721 return ret; 722 } 723 ep->queued_deq_seg = new_seg; 724 ep->queued_deq_ptr = new_deq; 725 726 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 727 "Set TR Deq ptr 0x%llx, cycle %u\n", addr, new_cycle); 728 729 /* Stop the TD queueing code from ringing the doorbell until 730 * this command completes. The HC won't set the dequeue pointer 731 * if the ring is running, and ringing the doorbell starts the 732 * ring running. 733 */ 734 ep->ep_state |= SET_DEQ_PENDING; 735 xhci_ring_cmd_db(xhci); 736 return 0; 737 } 738 739 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 740 * (The last TRB actually points to the ring enqueue pointer, which is not part 741 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 742 */ 743 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 744 struct xhci_td *td, bool flip_cycle) 745 { 746 struct xhci_segment *seg = td->start_seg; 747 union xhci_trb *trb = td->first_trb; 748 749 while (1) { 750 trb_to_noop(trb, TRB_TR_NOOP); 751 752 /* flip cycle if asked to */ 753 if (flip_cycle && trb != td->first_trb && trb != td->last_trb) 754 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); 755 756 if (trb == td->last_trb) 757 break; 758 759 next_trb(xhci, ep_ring, &seg, &trb); 760 } 761 } 762 763 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 764 struct xhci_td *cur_td, int status) 765 { 766 struct urb *urb = cur_td->urb; 767 struct urb_priv *urb_priv = urb->hcpriv; 768 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 769 770 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 771 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 772 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 773 if (xhci->quirks & XHCI_AMD_PLL_FIX) 774 usb_amd_quirk_pll_enable(); 775 } 776 } 777 xhci_urb_free_priv(urb_priv); 778 usb_hcd_unlink_urb_from_ep(hcd, urb); 779 trace_xhci_urb_giveback(urb); 780 usb_hcd_giveback_urb(hcd, urb, status); 781 } 782 783 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, 784 struct xhci_ring *ring, struct xhci_td *td) 785 { 786 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 787 struct xhci_segment *seg = td->bounce_seg; 788 struct urb *urb = td->urb; 789 size_t len; 790 791 if (!ring || !seg || !urb) 792 return; 793 794 if (usb_urb_dir_out(urb)) { 795 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 796 DMA_TO_DEVICE); 797 return; 798 } 799 800 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 801 DMA_FROM_DEVICE); 802 /* for in tranfers we need to copy the data from bounce to sg */ 803 if (urb->num_sgs) { 804 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, seg->bounce_buf, 805 seg->bounce_len, seg->bounce_offs); 806 if (len != seg->bounce_len) 807 xhci_warn(xhci, "WARN Wrong bounce buffer read length: %zu != %d\n", 808 len, seg->bounce_len); 809 } else { 810 memcpy(urb->transfer_buffer + seg->bounce_offs, seg->bounce_buf, 811 seg->bounce_len); 812 } 813 seg->bounce_len = 0; 814 seg->bounce_offs = 0; 815 } 816 817 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, 818 struct xhci_ring *ep_ring, int status) 819 { 820 struct urb *urb = NULL; 821 822 /* Clean up the endpoint's TD list */ 823 urb = td->urb; 824 825 /* if a bounce buffer was used to align this td then unmap it */ 826 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); 827 828 /* Do one last check of the actual transfer length. 829 * If the host controller said we transferred more data than the buffer 830 * length, urb->actual_length will be a very big number (since it's 831 * unsigned). Play it safe and say we didn't transfer anything. 832 */ 833 if (urb->actual_length > urb->transfer_buffer_length) { 834 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", 835 urb->transfer_buffer_length, urb->actual_length); 836 urb->actual_length = 0; 837 status = 0; 838 } 839 /* TD might be removed from td_list if we are giving back a cancelled URB */ 840 if (!list_empty(&td->td_list)) 841 list_del_init(&td->td_list); 842 /* Giving back a cancelled URB, or if a slated TD completed anyway */ 843 if (!list_empty(&td->cancelled_td_list)) 844 list_del_init(&td->cancelled_td_list); 845 846 inc_td_cnt(urb); 847 /* Giveback the urb when all the tds are completed */ 848 if (last_td_in_urb(td)) { 849 if ((urb->actual_length != urb->transfer_buffer_length && 850 (urb->transfer_flags & URB_SHORT_NOT_OK)) || 851 (status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) 852 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", 853 urb, urb->actual_length, 854 urb->transfer_buffer_length, status); 855 856 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ 857 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 858 status = 0; 859 xhci_giveback_urb_in_irq(xhci, td, status); 860 } 861 862 return 0; 863 } 864 865 866 /* Complete the cancelled URBs we unlinked from td_list. */ 867 static void xhci_giveback_invalidated_tds(struct xhci_virt_ep *ep) 868 { 869 struct xhci_ring *ring; 870 struct xhci_td *td, *tmp_td; 871 872 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 873 cancelled_td_list) { 874 875 ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 876 877 if (td->cancel_status == TD_CLEARED) { 878 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 879 __func__, td->urb); 880 xhci_td_cleanup(ep->xhci, td, ring, td->status); 881 } else { 882 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 883 __func__, td->urb, td->cancel_status); 884 } 885 if (ep->xhci->xhc_state & XHCI_STATE_DYING) 886 return; 887 } 888 } 889 890 static int xhci_reset_halted_ep(struct xhci_hcd *xhci, unsigned int slot_id, 891 unsigned int ep_index, enum xhci_ep_reset_type reset_type) 892 { 893 struct xhci_command *command; 894 int ret = 0; 895 896 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 897 if (!command) { 898 ret = -ENOMEM; 899 goto done; 900 } 901 902 xhci_dbg(xhci, "%s-reset ep %u, slot %u\n", 903 (reset_type == EP_HARD_RESET) ? "Hard" : "Soft", 904 ep_index, slot_id); 905 906 ret = xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type); 907 done: 908 if (ret) 909 xhci_err(xhci, "ERROR queuing reset endpoint for slot %d ep_index %d, %d\n", 910 slot_id, ep_index, ret); 911 return ret; 912 } 913 914 static int xhci_handle_halted_endpoint(struct xhci_hcd *xhci, 915 struct xhci_virt_ep *ep, 916 struct xhci_td *td, 917 enum xhci_ep_reset_type reset_type) 918 { 919 unsigned int slot_id = ep->vdev->slot_id; 920 int err; 921 922 /* 923 * Avoid resetting endpoint if link is inactive. Can cause host hang. 924 * Device will be reset soon to recover the link so don't do anything 925 */ 926 if (ep->vdev->flags & VDEV_PORT_ERROR) 927 return -ENODEV; 928 929 /* add td to cancelled list and let reset ep handler take care of it */ 930 if (reset_type == EP_HARD_RESET) { 931 ep->ep_state |= EP_HARD_CLEAR_TOGGLE; 932 if (td && list_empty(&td->cancelled_td_list)) { 933 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 934 td->cancel_status = TD_HALTED; 935 } 936 } 937 938 if (ep->ep_state & EP_HALTED) { 939 xhci_dbg(xhci, "Reset ep command for ep_index %d already pending\n", 940 ep->ep_index); 941 return 0; 942 } 943 944 err = xhci_reset_halted_ep(xhci, slot_id, ep->ep_index, reset_type); 945 if (err) 946 return err; 947 948 ep->ep_state |= EP_HALTED; 949 950 xhci_ring_cmd_db(xhci); 951 952 return 0; 953 } 954 955 /* 956 * Fix up the ep ring first, so HW stops executing cancelled TDs. 957 * We have the xHCI lock, so nothing can modify this list until we drop it. 958 * We're also in the event handler, so we can't get re-interrupted if another 959 * Stop Endpoint command completes. 960 * 961 * only call this when ring is not in a running state 962 */ 963 964 static int xhci_invalidate_cancelled_tds(struct xhci_virt_ep *ep) 965 { 966 struct xhci_hcd *xhci; 967 struct xhci_td *td = NULL; 968 struct xhci_td *tmp_td = NULL; 969 struct xhci_td *cached_td = NULL; 970 struct xhci_ring *ring; 971 u64 hw_deq; 972 unsigned int slot_id = ep->vdev->slot_id; 973 int err; 974 975 xhci = ep->xhci; 976 977 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 978 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 979 "Removing canceled TD starting at 0x%llx (dma) in stream %u URB %p", 980 (unsigned long long)xhci_trb_virt_to_dma( 981 td->start_seg, td->first_trb), 982 td->urb->stream_id, td->urb); 983 list_del_init(&td->td_list); 984 ring = xhci_urb_to_transfer_ring(xhci, td->urb); 985 if (!ring) { 986 xhci_warn(xhci, "WARN Cancelled URB %p has invalid stream ID %u.\n", 987 td->urb, td->urb->stream_id); 988 continue; 989 } 990 /* 991 * If a ring stopped on the TD we need to cancel then we have to 992 * move the xHC endpoint ring dequeue pointer past this TD. 993 * Rings halted due to STALL may show hw_deq is past the stalled 994 * TD, but still require a set TR Deq command to flush xHC cache. 995 */ 996 hw_deq = xhci_get_hw_deq(xhci, ep->vdev, ep->ep_index, 997 td->urb->stream_id); 998 hw_deq &= ~0xf; 999 1000 if (td->cancel_status == TD_HALTED || trb_in_td(xhci, td, hw_deq, false)) { 1001 switch (td->cancel_status) { 1002 case TD_CLEARED: /* TD is already no-op */ 1003 case TD_CLEARING_CACHE: /* set TR deq command already queued */ 1004 break; 1005 case TD_DIRTY: /* TD is cached, clear it */ 1006 case TD_HALTED: 1007 case TD_CLEARING_CACHE_DEFERRED: 1008 if (cached_td) { 1009 if (cached_td->urb->stream_id != td->urb->stream_id) { 1010 /* Multiple streams case, defer move dq */ 1011 xhci_dbg(xhci, 1012 "Move dq deferred: stream %u URB %p\n", 1013 td->urb->stream_id, td->urb); 1014 td->cancel_status = TD_CLEARING_CACHE_DEFERRED; 1015 break; 1016 } 1017 1018 /* Should never happen, but clear the TD if it does */ 1019 xhci_warn(xhci, 1020 "Found multiple active URBs %p and %p in stream %u?\n", 1021 td->urb, cached_td->urb, 1022 td->urb->stream_id); 1023 td_to_noop(xhci, ring, cached_td, false); 1024 cached_td->cancel_status = TD_CLEARED; 1025 } 1026 1027 td->cancel_status = TD_CLEARING_CACHE; 1028 cached_td = td; 1029 break; 1030 } 1031 } else { 1032 td_to_noop(xhci, ring, td, false); 1033 td->cancel_status = TD_CLEARED; 1034 } 1035 } 1036 1037 /* If there's no need to move the dequeue pointer then we're done */ 1038 if (!cached_td) 1039 return 0; 1040 1041 err = xhci_move_dequeue_past_td(xhci, slot_id, ep->ep_index, 1042 cached_td->urb->stream_id, 1043 cached_td); 1044 if (err) { 1045 /* Failed to move past cached td, just set cached TDs to no-op */ 1046 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 1047 /* 1048 * Deferred TDs need to have the deq pointer set after the above command 1049 * completes, so if that failed we just give up on all of them (and 1050 * complain loudly since this could cause issues due to caching). 1051 */ 1052 if (td->cancel_status != TD_CLEARING_CACHE && 1053 td->cancel_status != TD_CLEARING_CACHE_DEFERRED) 1054 continue; 1055 xhci_warn(xhci, "Failed to clear cancelled cached URB %p, mark clear anyway\n", 1056 td->urb); 1057 td_to_noop(xhci, ring, td, false); 1058 td->cancel_status = TD_CLEARED; 1059 } 1060 } 1061 return 0; 1062 } 1063 1064 /* 1065 * Returns the TD the endpoint ring halted on. 1066 * Only call for non-running rings without streams. 1067 */ 1068 static struct xhci_td *find_halted_td(struct xhci_virt_ep *ep) 1069 { 1070 struct xhci_td *td; 1071 u64 hw_deq; 1072 1073 if (!list_empty(&ep->ring->td_list)) { /* Not streams compatible */ 1074 hw_deq = xhci_get_hw_deq(ep->xhci, ep->vdev, ep->ep_index, 0); 1075 hw_deq &= ~0xf; 1076 td = list_first_entry(&ep->ring->td_list, struct xhci_td, td_list); 1077 if (trb_in_td(ep->xhci, td, hw_deq, false)) 1078 return td; 1079 } 1080 return NULL; 1081 } 1082 1083 /* 1084 * When we get a command completion for a Stop Endpoint Command, we need to 1085 * unlink any cancelled TDs from the ring. There are two ways to do that: 1086 * 1087 * 1. If the HW was in the middle of processing the TD that needs to be 1088 * cancelled, then we must move the ring's dequeue pointer past the last TRB 1089 * in the TD with a Set Dequeue Pointer Command. 1090 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 1091 * bit cleared) so that the HW will skip over them. 1092 */ 1093 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 1094 union xhci_trb *trb, u32 comp_code) 1095 { 1096 unsigned int ep_index; 1097 struct xhci_virt_ep *ep; 1098 struct xhci_ep_ctx *ep_ctx; 1099 struct xhci_td *td = NULL; 1100 enum xhci_ep_reset_type reset_type; 1101 struct xhci_command *command; 1102 int err; 1103 1104 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 1105 if (!xhci->devs[slot_id]) 1106 xhci_warn(xhci, "Stop endpoint command completion for disabled slot %u\n", 1107 slot_id); 1108 return; 1109 } 1110 1111 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1112 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1113 if (!ep) 1114 return; 1115 1116 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1117 1118 trace_xhci_handle_cmd_stop_ep(ep_ctx); 1119 1120 if (comp_code == COMP_CONTEXT_STATE_ERROR) { 1121 /* 1122 * If stop endpoint command raced with a halting endpoint we need to 1123 * reset the host side endpoint first. 1124 * If the TD we halted on isn't cancelled the TD should be given back 1125 * with a proper error code, and the ring dequeue moved past the TD. 1126 * If streams case we can't find hw_deq, or the TD we halted on so do a 1127 * soft reset. 1128 * 1129 * Proper error code is unknown here, it would be -EPIPE if device side 1130 * of enadpoit halted (aka STALL), and -EPROTO if not (transaction error) 1131 * We use -EPROTO, if device is stalled it should return a stall error on 1132 * next transfer, which then will return -EPIPE, and device side stall is 1133 * noted and cleared by class driver. 1134 */ 1135 switch (GET_EP_CTX_STATE(ep_ctx)) { 1136 case EP_STATE_HALTED: 1137 xhci_dbg(xhci, "Stop ep completion raced with stall, reset ep\n"); 1138 if (ep->ep_state & EP_HAS_STREAMS) { 1139 reset_type = EP_SOFT_RESET; 1140 } else { 1141 reset_type = EP_HARD_RESET; 1142 td = find_halted_td(ep); 1143 if (td) 1144 td->status = -EPROTO; 1145 } 1146 /* reset ep, reset handler cleans up cancelled tds */ 1147 err = xhci_handle_halted_endpoint(xhci, ep, td, reset_type); 1148 if (err) 1149 break; 1150 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1151 return; 1152 case EP_STATE_STOPPED: 1153 /* 1154 * NEC uPD720200 sometimes sets this state and fails with 1155 * Context Error while continuing to process TRBs. 1156 * Be conservative and trust EP_CTX_STATE on other chips. 1157 */ 1158 if (!(xhci->quirks & XHCI_NEC_HOST)) 1159 break; 1160 fallthrough; 1161 case EP_STATE_RUNNING: 1162 /* Race, HW handled stop ep cmd before ep was running */ 1163 xhci_dbg(xhci, "Stop ep completion ctx error, ep is running\n"); 1164 1165 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1166 if (!command) { 1167 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1168 return; 1169 } 1170 xhci_queue_stop_endpoint(xhci, command, slot_id, ep_index, 0); 1171 xhci_ring_cmd_db(xhci); 1172 1173 return; 1174 default: 1175 break; 1176 } 1177 } 1178 1179 /* will queue a set TR deq if stopped on a cancelled, uncleared TD */ 1180 xhci_invalidate_cancelled_tds(ep); 1181 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1182 1183 /* Otherwise ring the doorbell(s) to restart queued transfers */ 1184 xhci_giveback_invalidated_tds(ep); 1185 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1186 } 1187 1188 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 1189 { 1190 struct xhci_td *cur_td; 1191 struct xhci_td *tmp; 1192 1193 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { 1194 list_del_init(&cur_td->td_list); 1195 1196 if (!list_empty(&cur_td->cancelled_td_list)) 1197 list_del_init(&cur_td->cancelled_td_list); 1198 1199 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); 1200 1201 inc_td_cnt(cur_td->urb); 1202 if (last_td_in_urb(cur_td)) 1203 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1204 } 1205 } 1206 1207 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 1208 int slot_id, int ep_index) 1209 { 1210 struct xhci_td *cur_td; 1211 struct xhci_td *tmp; 1212 struct xhci_virt_ep *ep; 1213 struct xhci_ring *ring; 1214 1215 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1216 if (!ep) 1217 return; 1218 1219 if ((ep->ep_state & EP_HAS_STREAMS) || 1220 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 1221 int stream_id; 1222 1223 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 1224 stream_id++) { 1225 ring = ep->stream_info->stream_rings[stream_id]; 1226 if (!ring) 1227 continue; 1228 1229 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1230 "Killing URBs for slot ID %u, ep index %u, stream %u", 1231 slot_id, ep_index, stream_id); 1232 xhci_kill_ring_urbs(xhci, ring); 1233 } 1234 } else { 1235 ring = ep->ring; 1236 if (!ring) 1237 return; 1238 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1239 "Killing URBs for slot ID %u, ep index %u", 1240 slot_id, ep_index); 1241 xhci_kill_ring_urbs(xhci, ring); 1242 } 1243 1244 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, 1245 cancelled_td_list) { 1246 list_del_init(&cur_td->cancelled_td_list); 1247 inc_td_cnt(cur_td->urb); 1248 1249 if (last_td_in_urb(cur_td)) 1250 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1251 } 1252 } 1253 1254 /* 1255 * host controller died, register read returns 0xffffffff 1256 * Complete pending commands, mark them ABORTED. 1257 * URBs need to be given back as usb core might be waiting with device locks 1258 * held for the URBs to finish during device disconnect, blocking host remove. 1259 * 1260 * Call with xhci->lock held. 1261 * lock is relased and re-acquired while giving back urb. 1262 */ 1263 void xhci_hc_died(struct xhci_hcd *xhci) 1264 { 1265 int i, j; 1266 1267 if (xhci->xhc_state & XHCI_STATE_DYING) 1268 return; 1269 1270 xhci_err(xhci, "xHCI host controller not responding, assume dead\n"); 1271 xhci->xhc_state |= XHCI_STATE_DYING; 1272 1273 xhci_cleanup_command_queue(xhci); 1274 1275 /* return any pending urbs, remove may be waiting for them */ 1276 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 1277 if (!xhci->devs[i]) 1278 continue; 1279 for (j = 0; j < 31; j++) 1280 xhci_kill_endpoint_urbs(xhci, i, j); 1281 } 1282 1283 /* inform usb core hc died if PCI remove isn't already handling it */ 1284 if (!(xhci->xhc_state & XHCI_STATE_REMOVING)) 1285 usb_hc_died(xhci_to_hcd(xhci)); 1286 } 1287 1288 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 1289 struct xhci_virt_device *dev, 1290 struct xhci_ring *ep_ring, 1291 unsigned int ep_index) 1292 { 1293 union xhci_trb *dequeue_temp; 1294 1295 dequeue_temp = ep_ring->dequeue; 1296 1297 /* If we get two back-to-back stalls, and the first stalled transfer 1298 * ends just before a link TRB, the dequeue pointer will be left on 1299 * the link TRB by the code in the while loop. So we have to update 1300 * the dequeue pointer one segment further, or we'll jump off 1301 * the segment into la-la-land. 1302 */ 1303 if (trb_is_link(ep_ring->dequeue)) { 1304 ep_ring->deq_seg = ep_ring->deq_seg->next; 1305 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1306 } 1307 1308 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 1309 /* We have more usable TRBs */ 1310 ep_ring->dequeue++; 1311 if (trb_is_link(ep_ring->dequeue)) { 1312 if (ep_ring->dequeue == 1313 dev->eps[ep_index].queued_deq_ptr) 1314 break; 1315 ep_ring->deq_seg = ep_ring->deq_seg->next; 1316 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1317 } 1318 if (ep_ring->dequeue == dequeue_temp) { 1319 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 1320 break; 1321 } 1322 } 1323 } 1324 1325 /* 1326 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1327 * we need to clear the set deq pending flag in the endpoint ring state, so that 1328 * the TD queueing code can ring the doorbell again. We also need to ring the 1329 * endpoint doorbell to restart the ring, but only if there aren't more 1330 * cancellations pending. 1331 */ 1332 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1333 union xhci_trb *trb, u32 cmd_comp_code) 1334 { 1335 unsigned int ep_index; 1336 unsigned int stream_id; 1337 struct xhci_ring *ep_ring; 1338 struct xhci_virt_ep *ep; 1339 struct xhci_ep_ctx *ep_ctx; 1340 struct xhci_slot_ctx *slot_ctx; 1341 struct xhci_td *td, *tmp_td; 1342 bool deferred = false; 1343 1344 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1345 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1346 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1347 if (!ep) 1348 return; 1349 1350 ep_ring = xhci_virt_ep_to_ring(xhci, ep, stream_id); 1351 if (!ep_ring) { 1352 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 1353 stream_id); 1354 /* XXX: Harmless??? */ 1355 goto cleanup; 1356 } 1357 1358 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1359 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 1360 trace_xhci_handle_cmd_set_deq(slot_ctx); 1361 trace_xhci_handle_cmd_set_deq_ep(ep_ctx); 1362 1363 if (cmd_comp_code != COMP_SUCCESS) { 1364 unsigned int ep_state; 1365 unsigned int slot_state; 1366 1367 switch (cmd_comp_code) { 1368 case COMP_TRB_ERROR: 1369 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 1370 break; 1371 case COMP_CONTEXT_STATE_ERROR: 1372 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1373 ep_state = GET_EP_CTX_STATE(ep_ctx); 1374 slot_state = le32_to_cpu(slot_ctx->dev_state); 1375 slot_state = GET_SLOT_STATE(slot_state); 1376 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1377 "Slot state = %u, EP state = %u", 1378 slot_state, ep_state); 1379 break; 1380 case COMP_SLOT_NOT_ENABLED_ERROR: 1381 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1382 slot_id); 1383 break; 1384 default: 1385 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1386 cmd_comp_code); 1387 break; 1388 } 1389 /* OK what do we do now? The endpoint state is hosed, and we 1390 * should never get to this point if the synchronization between 1391 * queueing, and endpoint state are correct. This might happen 1392 * if the device gets disconnected after we've finished 1393 * cancelling URBs, which might not be an error... 1394 */ 1395 } else { 1396 u64 deq; 1397 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1398 if (ep->ep_state & EP_HAS_STREAMS) { 1399 struct xhci_stream_ctx *ctx = 1400 &ep->stream_info->stream_ctx_array[stream_id]; 1401 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; 1402 } else { 1403 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1404 } 1405 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1406 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1407 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1408 ep->queued_deq_ptr) == deq) { 1409 /* Update the ring's dequeue segment and dequeue pointer 1410 * to reflect the new position. 1411 */ 1412 update_ring_for_set_deq_completion(xhci, ep->vdev, 1413 ep_ring, ep_index); 1414 } else { 1415 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1416 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1417 ep->queued_deq_seg, ep->queued_deq_ptr); 1418 } 1419 } 1420 /* HW cached TDs cleared from cache, give them back */ 1421 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 1422 cancelled_td_list) { 1423 ep_ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 1424 if (td->cancel_status == TD_CLEARING_CACHE) { 1425 td->cancel_status = TD_CLEARED; 1426 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 1427 __func__, td->urb); 1428 xhci_td_cleanup(ep->xhci, td, ep_ring, td->status); 1429 } else if (td->cancel_status == TD_CLEARING_CACHE_DEFERRED) { 1430 deferred = true; 1431 } else { 1432 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 1433 __func__, td->urb, td->cancel_status); 1434 } 1435 } 1436 cleanup: 1437 ep->ep_state &= ~SET_DEQ_PENDING; 1438 ep->queued_deq_seg = NULL; 1439 ep->queued_deq_ptr = NULL; 1440 1441 if (deferred) { 1442 /* We have more streams to clear */ 1443 xhci_dbg(ep->xhci, "%s: Pending TDs to clear, continuing with invalidation\n", 1444 __func__); 1445 xhci_invalidate_cancelled_tds(ep); 1446 } else { 1447 /* Restart any rings with pending URBs */ 1448 xhci_dbg(ep->xhci, "%s: All TDs cleared, ring doorbell\n", __func__); 1449 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1450 } 1451 } 1452 1453 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1454 union xhci_trb *trb, u32 cmd_comp_code) 1455 { 1456 struct xhci_virt_ep *ep; 1457 struct xhci_ep_ctx *ep_ctx; 1458 unsigned int ep_index; 1459 1460 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1461 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1462 if (!ep) 1463 return; 1464 1465 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1466 trace_xhci_handle_cmd_reset_ep(ep_ctx); 1467 1468 /* This command will only fail if the endpoint wasn't halted, 1469 * but we don't care. 1470 */ 1471 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1472 "Ignoring reset ep completion code of %u", cmd_comp_code); 1473 1474 /* Cleanup cancelled TDs as ep is stopped. May queue a Set TR Deq cmd */ 1475 xhci_invalidate_cancelled_tds(ep); 1476 1477 /* Clear our internal halted state */ 1478 ep->ep_state &= ~EP_HALTED; 1479 1480 xhci_giveback_invalidated_tds(ep); 1481 1482 /* if this was a soft reset, then restart */ 1483 if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP) 1484 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1485 } 1486 1487 static void xhci_handle_cmd_enable_slot(int slot_id, struct xhci_command *command, 1488 u32 cmd_comp_code) 1489 { 1490 if (cmd_comp_code == COMP_SUCCESS) 1491 command->slot_id = slot_id; 1492 else 1493 command->slot_id = 0; 1494 } 1495 1496 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1497 { 1498 struct xhci_virt_device *virt_dev; 1499 struct xhci_slot_ctx *slot_ctx; 1500 1501 virt_dev = xhci->devs[slot_id]; 1502 if (!virt_dev) 1503 return; 1504 1505 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 1506 trace_xhci_handle_cmd_disable_slot(slot_ctx); 1507 1508 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1509 /* Delete default control endpoint resources */ 1510 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1511 } 1512 1513 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id) 1514 { 1515 struct xhci_virt_device *virt_dev; 1516 struct xhci_input_control_ctx *ctrl_ctx; 1517 struct xhci_ep_ctx *ep_ctx; 1518 unsigned int ep_index; 1519 u32 add_flags; 1520 1521 /* 1522 * Configure endpoint commands can come from the USB core configuration 1523 * or alt setting changes, or when streams were being configured. 1524 */ 1525 1526 virt_dev = xhci->devs[slot_id]; 1527 if (!virt_dev) 1528 return; 1529 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1530 if (!ctrl_ctx) { 1531 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1532 return; 1533 } 1534 1535 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1536 1537 /* Input ctx add_flags are the endpoint index plus one */ 1538 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1539 1540 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index); 1541 trace_xhci_handle_cmd_config_ep(ep_ctx); 1542 1543 return; 1544 } 1545 1546 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id) 1547 { 1548 struct xhci_virt_device *vdev; 1549 struct xhci_slot_ctx *slot_ctx; 1550 1551 vdev = xhci->devs[slot_id]; 1552 if (!vdev) 1553 return; 1554 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1555 trace_xhci_handle_cmd_addr_dev(slot_ctx); 1556 } 1557 1558 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id) 1559 { 1560 struct xhci_virt_device *vdev; 1561 struct xhci_slot_ctx *slot_ctx; 1562 1563 vdev = xhci->devs[slot_id]; 1564 if (!vdev) { 1565 xhci_warn(xhci, "Reset device command completion for disabled slot %u\n", 1566 slot_id); 1567 return; 1568 } 1569 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1570 trace_xhci_handle_cmd_reset_dev(slot_ctx); 1571 1572 xhci_dbg(xhci, "Completed reset device command.\n"); 1573 } 1574 1575 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1576 struct xhci_event_cmd *event) 1577 { 1578 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1579 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); 1580 return; 1581 } 1582 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1583 "NEC firmware version %2x.%02x", 1584 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1585 NEC_FW_MINOR(le32_to_cpu(event->status))); 1586 } 1587 1588 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) 1589 { 1590 list_del(&cmd->cmd_list); 1591 1592 if (cmd->completion) { 1593 cmd->status = status; 1594 complete(cmd->completion); 1595 } else { 1596 kfree(cmd); 1597 } 1598 } 1599 1600 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1601 { 1602 struct xhci_command *cur_cmd, *tmp_cmd; 1603 xhci->current_cmd = NULL; 1604 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1605 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED); 1606 } 1607 1608 void xhci_handle_command_timeout(struct work_struct *work) 1609 { 1610 struct xhci_hcd *xhci; 1611 unsigned long flags; 1612 char str[XHCI_MSG_MAX]; 1613 u64 hw_ring_state; 1614 u32 cmd_field3; 1615 u32 usbsts; 1616 1617 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); 1618 1619 spin_lock_irqsave(&xhci->lock, flags); 1620 1621 /* 1622 * If timeout work is pending, or current_cmd is NULL, it means we 1623 * raced with command completion. Command is handled so just return. 1624 */ 1625 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { 1626 spin_unlock_irqrestore(&xhci->lock, flags); 1627 return; 1628 } 1629 1630 cmd_field3 = le32_to_cpu(xhci->current_cmd->command_trb->generic.field[3]); 1631 usbsts = readl(&xhci->op_regs->status); 1632 xhci_dbg(xhci, "Command timeout, USBSTS:%s\n", xhci_decode_usbsts(str, usbsts)); 1633 1634 /* Bail out and tear down xhci if a stop endpoint command failed */ 1635 if (TRB_FIELD_TO_TYPE(cmd_field3) == TRB_STOP_RING) { 1636 struct xhci_virt_ep *ep; 1637 1638 xhci_warn(xhci, "xHCI host not responding to stop endpoint command\n"); 1639 1640 ep = xhci_get_virt_ep(xhci, TRB_TO_SLOT_ID(cmd_field3), 1641 TRB_TO_EP_INDEX(cmd_field3)); 1642 if (ep) 1643 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1644 1645 xhci_halt(xhci); 1646 xhci_hc_died(xhci); 1647 goto time_out_completed; 1648 } 1649 1650 /* mark this command to be cancelled */ 1651 xhci->current_cmd->status = COMP_COMMAND_ABORTED; 1652 1653 /* Make sure command ring is running before aborting it */ 1654 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1655 if (hw_ring_state == ~(u64)0) { 1656 xhci_hc_died(xhci); 1657 goto time_out_completed; 1658 } 1659 1660 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1661 (hw_ring_state & CMD_RING_RUNNING)) { 1662 /* Prevent new doorbell, and start command abort */ 1663 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 1664 xhci_dbg(xhci, "Command timeout\n"); 1665 xhci_abort_cmd_ring(xhci, flags); 1666 goto time_out_completed; 1667 } 1668 1669 /* host removed. Bail out */ 1670 if (xhci->xhc_state & XHCI_STATE_REMOVING) { 1671 xhci_dbg(xhci, "host removed, ring start fail?\n"); 1672 xhci_cleanup_command_queue(xhci); 1673 1674 goto time_out_completed; 1675 } 1676 1677 /* command timeout on stopped ring, ring can't be aborted */ 1678 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1679 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1680 1681 time_out_completed: 1682 spin_unlock_irqrestore(&xhci->lock, flags); 1683 return; 1684 } 1685 1686 static void handle_cmd_completion(struct xhci_hcd *xhci, 1687 struct xhci_event_cmd *event) 1688 { 1689 unsigned int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1690 u64 cmd_dma; 1691 dma_addr_t cmd_dequeue_dma; 1692 u32 cmd_comp_code; 1693 union xhci_trb *cmd_trb; 1694 struct xhci_command *cmd; 1695 u32 cmd_type; 1696 1697 if (slot_id >= MAX_HC_SLOTS) { 1698 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 1699 return; 1700 } 1701 1702 cmd_dma = le64_to_cpu(event->cmd_trb); 1703 cmd_trb = xhci->cmd_ring->dequeue; 1704 1705 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic); 1706 1707 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1708 cmd_trb); 1709 /* 1710 * Check whether the completion event is for our internal kept 1711 * command. 1712 */ 1713 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { 1714 xhci_warn(xhci, 1715 "ERROR mismatched command completion event\n"); 1716 return; 1717 } 1718 1719 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); 1720 1721 cancel_delayed_work(&xhci->cmd_timer); 1722 1723 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1724 1725 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1726 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) { 1727 complete_all(&xhci->cmd_ring_stop_completion); 1728 return; 1729 } 1730 1731 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1732 xhci_err(xhci, 1733 "Command completion event does not match command\n"); 1734 return; 1735 } 1736 1737 /* 1738 * Host aborted the command ring, check if the current command was 1739 * supposed to be aborted, otherwise continue normally. 1740 * The command ring is stopped now, but the xHC will issue a Command 1741 * Ring Stopped event which will cause us to restart it. 1742 */ 1743 if (cmd_comp_code == COMP_COMMAND_ABORTED) { 1744 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1745 if (cmd->status == COMP_COMMAND_ABORTED) { 1746 if (xhci->current_cmd == cmd) 1747 xhci->current_cmd = NULL; 1748 goto event_handled; 1749 } 1750 } 1751 1752 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1753 switch (cmd_type) { 1754 case TRB_ENABLE_SLOT: 1755 xhci_handle_cmd_enable_slot(slot_id, cmd, cmd_comp_code); 1756 break; 1757 case TRB_DISABLE_SLOT: 1758 xhci_handle_cmd_disable_slot(xhci, slot_id); 1759 break; 1760 case TRB_CONFIG_EP: 1761 if (!cmd->completion) 1762 xhci_handle_cmd_config_ep(xhci, slot_id); 1763 break; 1764 case TRB_EVAL_CONTEXT: 1765 break; 1766 case TRB_ADDR_DEV: 1767 xhci_handle_cmd_addr_dev(xhci, slot_id); 1768 break; 1769 case TRB_STOP_RING: 1770 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1771 le32_to_cpu(cmd_trb->generic.field[3]))); 1772 if (!cmd->completion) 1773 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, 1774 cmd_comp_code); 1775 break; 1776 case TRB_SET_DEQ: 1777 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1778 le32_to_cpu(cmd_trb->generic.field[3]))); 1779 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1780 break; 1781 case TRB_CMD_NOOP: 1782 /* Is this an aborted command turned to NO-OP? */ 1783 if (cmd->status == COMP_COMMAND_RING_STOPPED) 1784 cmd_comp_code = COMP_COMMAND_RING_STOPPED; 1785 break; 1786 case TRB_RESET_EP: 1787 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1788 le32_to_cpu(cmd_trb->generic.field[3]))); 1789 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1790 break; 1791 case TRB_RESET_DEV: 1792 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1793 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1794 */ 1795 slot_id = TRB_TO_SLOT_ID( 1796 le32_to_cpu(cmd_trb->generic.field[3])); 1797 xhci_handle_cmd_reset_dev(xhci, slot_id); 1798 break; 1799 case TRB_NEC_GET_FW: 1800 xhci_handle_cmd_nec_get_fw(xhci, event); 1801 break; 1802 default: 1803 /* Skip over unknown commands on the event ring */ 1804 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); 1805 break; 1806 } 1807 1808 /* restart timer if this wasn't the last command */ 1809 if (!list_is_singular(&xhci->cmd_list)) { 1810 xhci->current_cmd = list_first_entry(&cmd->cmd_list, 1811 struct xhci_command, cmd_list); 1812 xhci_mod_cmd_timer(xhci); 1813 } else if (xhci->current_cmd == cmd) { 1814 xhci->current_cmd = NULL; 1815 } 1816 1817 event_handled: 1818 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); 1819 1820 inc_deq(xhci, xhci->cmd_ring); 1821 } 1822 1823 static void handle_vendor_event(struct xhci_hcd *xhci, 1824 union xhci_trb *event, u32 trb_type) 1825 { 1826 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1827 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1828 handle_cmd_completion(xhci, &event->event_cmd); 1829 } 1830 1831 static void handle_device_notification(struct xhci_hcd *xhci, 1832 union xhci_trb *event) 1833 { 1834 u32 slot_id; 1835 struct usb_device *udev; 1836 1837 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1838 if (!xhci->devs[slot_id]) { 1839 xhci_warn(xhci, "Device Notification event for " 1840 "unused slot %u\n", slot_id); 1841 return; 1842 } 1843 1844 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1845 slot_id); 1846 udev = xhci->devs[slot_id]->udev; 1847 if (udev && udev->parent) 1848 usb_wakeup_notification(udev->parent, udev->portnum); 1849 } 1850 1851 /* 1852 * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI 1853 * Controller. 1854 * As per ThunderX2errata-129 USB 2 device may come up as USB 1 1855 * If a connection to a USB 1 device is followed by another connection 1856 * to a USB 2 device. 1857 * 1858 * Reset the PHY after the USB device is disconnected if device speed 1859 * is less than HCD_USB3. 1860 * Retry the reset sequence max of 4 times checking the PLL lock status. 1861 * 1862 */ 1863 static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci) 1864 { 1865 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1866 u32 pll_lock_check; 1867 u32 retry_count = 4; 1868 1869 do { 1870 /* Assert PHY reset */ 1871 writel(0x6F, hcd->regs + 0x1048); 1872 udelay(10); 1873 /* De-assert the PHY reset */ 1874 writel(0x7F, hcd->regs + 0x1048); 1875 udelay(200); 1876 pll_lock_check = readl(hcd->regs + 0x1070); 1877 } while (!(pll_lock_check & 0x1) && --retry_count); 1878 } 1879 1880 static void handle_port_status(struct xhci_hcd *xhci, union xhci_trb *event) 1881 { 1882 struct usb_hcd *hcd; 1883 u32 port_id; 1884 u32 portsc, cmd_reg; 1885 int max_ports; 1886 unsigned int hcd_portnum; 1887 struct xhci_bus_state *bus_state; 1888 bool bogus_port_status = false; 1889 struct xhci_port *port; 1890 1891 /* Port status change events always have a successful completion code */ 1892 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) 1893 xhci_warn(xhci, 1894 "WARN: xHC returned failed port status event\n"); 1895 1896 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1897 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1898 1899 if ((port_id <= 0) || (port_id > max_ports)) { 1900 xhci_warn(xhci, "Port change event with invalid port ID %d\n", 1901 port_id); 1902 return; 1903 } 1904 1905 port = &xhci->hw_ports[port_id - 1]; 1906 if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) { 1907 xhci_warn(xhci, "Port change event, no port for port ID %u\n", 1908 port_id); 1909 bogus_port_status = true; 1910 goto cleanup; 1911 } 1912 1913 /* We might get interrupts after shared_hcd is removed */ 1914 if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) { 1915 xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n"); 1916 bogus_port_status = true; 1917 goto cleanup; 1918 } 1919 1920 hcd = port->rhub->hcd; 1921 bus_state = &port->rhub->bus_state; 1922 hcd_portnum = port->hcd_portnum; 1923 portsc = readl(port->addr); 1924 1925 xhci_dbg(xhci, "Port change event, %d-%d, id %d, portsc: 0x%x\n", 1926 hcd->self.busnum, hcd_portnum + 1, port_id, portsc); 1927 1928 trace_xhci_handle_port_status(port, portsc); 1929 1930 if (hcd->state == HC_STATE_SUSPENDED) { 1931 xhci_dbg(xhci, "resume root hub\n"); 1932 usb_hcd_resume_root_hub(hcd); 1933 } 1934 1935 if (hcd->speed >= HCD_USB3 && 1936 (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) { 1937 if (port->slot_id && xhci->devs[port->slot_id]) 1938 xhci->devs[port->slot_id]->flags |= VDEV_PORT_ERROR; 1939 } 1940 1941 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) { 1942 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1943 1944 cmd_reg = readl(&xhci->op_regs->command); 1945 if (!(cmd_reg & CMD_RUN)) { 1946 xhci_warn(xhci, "xHC is not running.\n"); 1947 goto cleanup; 1948 } 1949 1950 if (DEV_SUPERSPEED_ANY(portsc)) { 1951 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1952 /* Set a flag to say the port signaled remote wakeup, 1953 * so we can tell the difference between the end of 1954 * device and host initiated resume. 1955 */ 1956 bus_state->port_remote_wakeup |= 1 << hcd_portnum; 1957 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1958 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 1959 xhci_set_link_state(xhci, port, XDEV_U0); 1960 /* Need to wait until the next link state change 1961 * indicates the device is actually in U0. 1962 */ 1963 bogus_port_status = true; 1964 goto cleanup; 1965 } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) { 1966 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1967 port->resume_timestamp = jiffies + 1968 msecs_to_jiffies(USB_RESUME_TIMEOUT); 1969 set_bit(hcd_portnum, &bus_state->resuming_ports); 1970 /* Do the rest in GetPortStatus after resume time delay. 1971 * Avoid polling roothub status before that so that a 1972 * usb device auto-resume latency around ~40ms. 1973 */ 1974 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1975 mod_timer(&hcd->rh_timer, 1976 port->resume_timestamp); 1977 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 1978 bogus_port_status = true; 1979 } 1980 } 1981 1982 if ((portsc & PORT_PLC) && 1983 DEV_SUPERSPEED_ANY(portsc) && 1984 ((portsc & PORT_PLS_MASK) == XDEV_U0 || 1985 (portsc & PORT_PLS_MASK) == XDEV_U1 || 1986 (portsc & PORT_PLS_MASK) == XDEV_U2)) { 1987 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1988 complete(&port->u3exit_done); 1989 /* We've just brought the device into U0/1/2 through either the 1990 * Resume state after a device remote wakeup, or through the 1991 * U3Exit state after a host-initiated resume. If it's a device 1992 * initiated remote wake, don't pass up the link state change, 1993 * so the roothub behavior is consistent with external 1994 * USB 3.0 hub behavior. 1995 */ 1996 if (port->slot_id && xhci->devs[port->slot_id]) 1997 xhci_ring_device(xhci, port->slot_id); 1998 if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) { 1999 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2000 usb_wakeup_notification(hcd->self.root_hub, 2001 hcd_portnum + 1); 2002 bogus_port_status = true; 2003 goto cleanup; 2004 } 2005 } 2006 2007 /* 2008 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 2009 * RExit to a disconnect state). If so, let the driver know it's 2010 * out of the RExit state. 2011 */ 2012 if (hcd->speed < HCD_USB3 && port->rexit_active) { 2013 complete(&port->rexit_done); 2014 port->rexit_active = false; 2015 bogus_port_status = true; 2016 goto cleanup; 2017 } 2018 2019 if (hcd->speed < HCD_USB3) { 2020 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2021 if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) && 2022 (portsc & PORT_CSC) && !(portsc & PORT_CONNECT)) 2023 xhci_cavium_reset_phy_quirk(xhci); 2024 } 2025 2026 cleanup: 2027 2028 /* Don't make the USB core poll the roothub if we got a bad port status 2029 * change event. Besides, at that point we can't tell which roothub 2030 * (USB 2.0 or USB 3.0) to kick. 2031 */ 2032 if (bogus_port_status) 2033 return; 2034 2035 /* 2036 * xHCI port-status-change events occur when the "or" of all the 2037 * status-change bits in the portsc register changes from 0 to 1. 2038 * New status changes won't cause an event if any other change 2039 * bits are still set. When an event occurs, switch over to 2040 * polling to avoid losing status changes. 2041 */ 2042 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 2043 __func__, hcd->self.busnum); 2044 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2045 spin_unlock(&xhci->lock); 2046 /* Pass this up to the core */ 2047 usb_hcd_poll_rh_status(hcd); 2048 spin_lock(&xhci->lock); 2049 } 2050 2051 /* 2052 * If the suspect DMA address is a TRB in this TD, this function returns that 2053 * TRB's segment. Otherwise it returns 0. 2054 */ 2055 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, struct xhci_td *td, dma_addr_t suspect_dma, 2056 bool debug) 2057 { 2058 dma_addr_t start_dma; 2059 dma_addr_t end_seg_dma; 2060 dma_addr_t end_trb_dma; 2061 struct xhci_segment *cur_seg; 2062 2063 start_dma = xhci_trb_virt_to_dma(td->start_seg, td->first_trb); 2064 cur_seg = td->start_seg; 2065 2066 do { 2067 if (start_dma == 0) 2068 return NULL; 2069 /* We may get an event for a Link TRB in the middle of a TD */ 2070 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 2071 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 2072 /* If the end TRB isn't in this segment, this is set to 0 */ 2073 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, td->last_trb); 2074 2075 if (debug) 2076 xhci_warn(xhci, 2077 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", 2078 (unsigned long long)suspect_dma, 2079 (unsigned long long)start_dma, 2080 (unsigned long long)end_trb_dma, 2081 (unsigned long long)cur_seg->dma, 2082 (unsigned long long)end_seg_dma); 2083 2084 if (end_trb_dma > 0) { 2085 /* The end TRB is in this segment, so suspect should be here */ 2086 if (start_dma <= end_trb_dma) { 2087 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 2088 return cur_seg; 2089 } else { 2090 /* Case for one segment with 2091 * a TD wrapped around to the top 2092 */ 2093 if ((suspect_dma >= start_dma && 2094 suspect_dma <= end_seg_dma) || 2095 (suspect_dma >= cur_seg->dma && 2096 suspect_dma <= end_trb_dma)) 2097 return cur_seg; 2098 } 2099 return NULL; 2100 } else { 2101 /* Might still be somewhere in this segment */ 2102 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 2103 return cur_seg; 2104 } 2105 cur_seg = cur_seg->next; 2106 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 2107 } while (cur_seg != td->start_seg); 2108 2109 return NULL; 2110 } 2111 2112 static void xhci_clear_hub_tt_buffer(struct xhci_hcd *xhci, struct xhci_td *td, 2113 struct xhci_virt_ep *ep) 2114 { 2115 /* 2116 * As part of low/full-speed endpoint-halt processing 2117 * we must clear the TT buffer (USB 2.0 specification 11.17.5). 2118 */ 2119 if (td->urb->dev->tt && !usb_pipeint(td->urb->pipe) && 2120 (td->urb->dev->tt->hub != xhci_to_hcd(xhci)->self.root_hub) && 2121 !(ep->ep_state & EP_CLEARING_TT)) { 2122 ep->ep_state |= EP_CLEARING_TT; 2123 td->urb->ep->hcpriv = td->urb->dev; 2124 if (usb_hub_clear_tt_buffer(td->urb)) 2125 ep->ep_state &= ~EP_CLEARING_TT; 2126 } 2127 } 2128 2129 /* 2130 * Check if xhci internal endpoint state has gone to a "halt" state due to an 2131 * error or stall, including default control pipe protocol stall. 2132 * The internal halt needs to be cleared with a reset endpoint command. 2133 * 2134 * External device side is also halted in functional stall cases. Class driver 2135 * will clear the device halt with a CLEAR_FEATURE(ENDPOINT_HALT) request later. 2136 */ 2137 static bool xhci_halted_host_endpoint(struct xhci_ep_ctx *ep_ctx, unsigned int comp_code) 2138 { 2139 /* Stall halts both internal and device side endpoint */ 2140 if (comp_code == COMP_STALL_ERROR) 2141 return true; 2142 2143 /* TRB completion codes that may require internal halt cleanup */ 2144 if (comp_code == COMP_USB_TRANSACTION_ERROR || 2145 comp_code == COMP_BABBLE_DETECTED_ERROR || 2146 comp_code == COMP_SPLIT_TRANSACTION_ERROR) 2147 /* 2148 * The 0.95 spec says a babbling control endpoint is not halted. 2149 * The 0.96 spec says it is. Some HW claims to be 0.95 2150 * compliant, but it halts the control endpoint anyway. 2151 * Check endpoint context if endpoint is halted. 2152 */ 2153 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) 2154 return true; 2155 2156 return false; 2157 } 2158 2159 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 2160 { 2161 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 2162 /* Vendor defined "informational" completion code, 2163 * treat as not-an-error. 2164 */ 2165 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 2166 trb_comp_code); 2167 xhci_dbg(xhci, "Treating code as success.\n"); 2168 return 1; 2169 } 2170 return 0; 2171 } 2172 2173 static int finish_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2174 struct xhci_ring *ep_ring, struct xhci_td *td, 2175 u32 trb_comp_code) 2176 { 2177 struct xhci_ep_ctx *ep_ctx; 2178 2179 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2180 2181 switch (trb_comp_code) { 2182 case COMP_STOPPED_LENGTH_INVALID: 2183 case COMP_STOPPED_SHORT_PACKET: 2184 case COMP_STOPPED: 2185 /* 2186 * The "Stop Endpoint" completion will take care of any 2187 * stopped TDs. A stopped TD may be restarted, so don't update 2188 * the ring dequeue pointer or take this TD off any lists yet. 2189 */ 2190 return 0; 2191 case COMP_USB_TRANSACTION_ERROR: 2192 case COMP_BABBLE_DETECTED_ERROR: 2193 case COMP_SPLIT_TRANSACTION_ERROR: 2194 /* 2195 * If endpoint context state is not halted we might be 2196 * racing with a reset endpoint command issued by a unsuccessful 2197 * stop endpoint completion (context error). In that case the 2198 * td should be on the cancelled list, and EP_HALTED flag set. 2199 * 2200 * Or then it's not halted due to the 0.95 spec stating that a 2201 * babbling control endpoint should not halt. The 0.96 spec 2202 * again says it should. Some HW claims to be 0.95 compliant, 2203 * but it halts the control endpoint anyway. 2204 */ 2205 if (GET_EP_CTX_STATE(ep_ctx) != EP_STATE_HALTED) { 2206 /* 2207 * If EP_HALTED is set and TD is on the cancelled list 2208 * the TD and dequeue pointer will be handled by reset 2209 * ep command completion 2210 */ 2211 if ((ep->ep_state & EP_HALTED) && 2212 !list_empty(&td->cancelled_td_list)) { 2213 xhci_dbg(xhci, "Already resolving halted ep for 0x%llx\n", 2214 (unsigned long long)xhci_trb_virt_to_dma( 2215 td->start_seg, td->first_trb)); 2216 return 0; 2217 } 2218 /* endpoint not halted, don't reset it */ 2219 break; 2220 } 2221 /* Almost same procedure as for STALL_ERROR below */ 2222 xhci_clear_hub_tt_buffer(xhci, td, ep); 2223 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2224 return 0; 2225 case COMP_STALL_ERROR: 2226 /* 2227 * xhci internal endpoint state will go to a "halt" state for 2228 * any stall, including default control pipe protocol stall. 2229 * To clear the host side halt we need to issue a reset endpoint 2230 * command, followed by a set dequeue command to move past the 2231 * TD. 2232 * Class drivers clear the device side halt from a functional 2233 * stall later. Hub TT buffer should only be cleared for FS/LS 2234 * devices behind HS hubs for functional stalls. 2235 */ 2236 if (ep->ep_index != 0) 2237 xhci_clear_hub_tt_buffer(xhci, td, ep); 2238 2239 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2240 2241 return 0; /* xhci_handle_halted_endpoint marked td cancelled */ 2242 default: 2243 break; 2244 } 2245 2246 /* Update ring dequeue pointer */ 2247 ep_ring->dequeue = td->last_trb; 2248 ep_ring->deq_seg = td->last_trb_seg; 2249 inc_deq(xhci, ep_ring); 2250 2251 return xhci_td_cleanup(xhci, td, ep_ring, td->status); 2252 } 2253 2254 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */ 2255 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring, 2256 union xhci_trb *stop_trb) 2257 { 2258 u32 sum; 2259 union xhci_trb *trb = ring->dequeue; 2260 struct xhci_segment *seg = ring->deq_seg; 2261 2262 for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) { 2263 if (!trb_is_noop(trb) && !trb_is_link(trb)) 2264 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); 2265 } 2266 return sum; 2267 } 2268 2269 /* 2270 * Process control tds, update urb status and actual_length. 2271 */ 2272 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2273 struct xhci_ring *ep_ring, struct xhci_td *td, 2274 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2275 { 2276 struct xhci_ep_ctx *ep_ctx; 2277 u32 trb_comp_code; 2278 u32 remaining, requested; 2279 u32 trb_type; 2280 2281 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); 2282 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2283 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2284 requested = td->urb->transfer_buffer_length; 2285 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2286 2287 switch (trb_comp_code) { 2288 case COMP_SUCCESS: 2289 if (trb_type != TRB_STATUS) { 2290 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n", 2291 (trb_type == TRB_DATA) ? "data" : "setup"); 2292 td->status = -ESHUTDOWN; 2293 break; 2294 } 2295 td->status = 0; 2296 break; 2297 case COMP_SHORT_PACKET: 2298 td->status = 0; 2299 break; 2300 case COMP_STOPPED_SHORT_PACKET: 2301 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2302 td->urb->actual_length = remaining; 2303 else 2304 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); 2305 goto finish_td; 2306 case COMP_STOPPED: 2307 switch (trb_type) { 2308 case TRB_SETUP: 2309 td->urb->actual_length = 0; 2310 goto finish_td; 2311 case TRB_DATA: 2312 case TRB_NORMAL: 2313 td->urb->actual_length = requested - remaining; 2314 goto finish_td; 2315 case TRB_STATUS: 2316 td->urb->actual_length = requested; 2317 goto finish_td; 2318 default: 2319 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", 2320 trb_type); 2321 goto finish_td; 2322 } 2323 case COMP_STOPPED_LENGTH_INVALID: 2324 goto finish_td; 2325 default: 2326 if (!xhci_halted_host_endpoint(ep_ctx, trb_comp_code)) 2327 break; 2328 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", 2329 trb_comp_code, ep->ep_index); 2330 fallthrough; 2331 case COMP_STALL_ERROR: 2332 /* Did we transfer part of the data (middle) phase? */ 2333 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2334 td->urb->actual_length = requested - remaining; 2335 else if (!td->urb_length_set) 2336 td->urb->actual_length = 0; 2337 goto finish_td; 2338 } 2339 2340 /* stopped at setup stage, no data transferred */ 2341 if (trb_type == TRB_SETUP) 2342 goto finish_td; 2343 2344 /* 2345 * if on data stage then update the actual_length of the URB and flag it 2346 * as set, so it won't be overwritten in the event for the last TRB. 2347 */ 2348 if (trb_type == TRB_DATA || 2349 trb_type == TRB_NORMAL) { 2350 td->urb_length_set = true; 2351 td->urb->actual_length = requested - remaining; 2352 xhci_dbg(xhci, "Waiting for status stage event\n"); 2353 return 0; 2354 } 2355 2356 /* at status stage */ 2357 if (!td->urb_length_set) 2358 td->urb->actual_length = requested; 2359 2360 finish_td: 2361 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2362 } 2363 2364 /* 2365 * Process isochronous tds, update urb packet status and actual_length. 2366 */ 2367 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2368 struct xhci_ring *ep_ring, struct xhci_td *td, 2369 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2370 { 2371 struct urb_priv *urb_priv; 2372 int idx; 2373 struct usb_iso_packet_descriptor *frame; 2374 u32 trb_comp_code; 2375 bool sum_trbs_for_length = false; 2376 u32 remaining, requested, ep_trb_len; 2377 int short_framestatus; 2378 2379 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2380 urb_priv = td->urb->hcpriv; 2381 idx = urb_priv->num_tds_done; 2382 frame = &td->urb->iso_frame_desc[idx]; 2383 requested = frame->length; 2384 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2385 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2386 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2387 -EREMOTEIO : 0; 2388 2389 /* handle completion code */ 2390 switch (trb_comp_code) { 2391 case COMP_SUCCESS: 2392 /* Don't overwrite status if TD had an error, see xHCI 4.9.1 */ 2393 if (td->error_mid_td) 2394 break; 2395 if (remaining) { 2396 frame->status = short_framestatus; 2397 sum_trbs_for_length = true; 2398 break; 2399 } 2400 frame->status = 0; 2401 break; 2402 case COMP_SHORT_PACKET: 2403 frame->status = short_framestatus; 2404 sum_trbs_for_length = true; 2405 break; 2406 case COMP_BANDWIDTH_OVERRUN_ERROR: 2407 frame->status = -ECOMM; 2408 break; 2409 case COMP_BABBLE_DETECTED_ERROR: 2410 sum_trbs_for_length = true; 2411 fallthrough; 2412 case COMP_ISOCH_BUFFER_OVERRUN: 2413 frame->status = -EOVERFLOW; 2414 if (ep_trb != td->last_trb) 2415 td->error_mid_td = true; 2416 break; 2417 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2418 case COMP_STALL_ERROR: 2419 frame->status = -EPROTO; 2420 break; 2421 case COMP_USB_TRANSACTION_ERROR: 2422 frame->status = -EPROTO; 2423 sum_trbs_for_length = true; 2424 if (ep_trb != td->last_trb) 2425 td->error_mid_td = true; 2426 break; 2427 case COMP_STOPPED: 2428 sum_trbs_for_length = true; 2429 break; 2430 case COMP_STOPPED_SHORT_PACKET: 2431 /* field normally containing residue now contains tranferred */ 2432 frame->status = short_framestatus; 2433 requested = remaining; 2434 break; 2435 case COMP_STOPPED_LENGTH_INVALID: 2436 /* exclude stopped trb with invalid length from length sum */ 2437 sum_trbs_for_length = true; 2438 ep_trb_len = 0; 2439 remaining = 0; 2440 break; 2441 default: 2442 sum_trbs_for_length = true; 2443 frame->status = -1; 2444 break; 2445 } 2446 2447 if (td->urb_length_set) 2448 goto finish_td; 2449 2450 if (sum_trbs_for_length) 2451 frame->actual_length = sum_trb_lengths(xhci, ep->ring, ep_trb) + 2452 ep_trb_len - remaining; 2453 else 2454 frame->actual_length = requested; 2455 2456 td->urb->actual_length += frame->actual_length; 2457 2458 finish_td: 2459 /* Don't give back TD yet if we encountered an error mid TD */ 2460 if (td->error_mid_td && ep_trb != td->last_trb) { 2461 xhci_dbg(xhci, "Error mid isoc TD, wait for final completion event\n"); 2462 td->urb_length_set = true; 2463 return 0; 2464 } 2465 2466 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2467 } 2468 2469 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2470 struct xhci_virt_ep *ep, int status) 2471 { 2472 struct urb_priv *urb_priv; 2473 struct usb_iso_packet_descriptor *frame; 2474 int idx; 2475 2476 urb_priv = td->urb->hcpriv; 2477 idx = urb_priv->num_tds_done; 2478 frame = &td->urb->iso_frame_desc[idx]; 2479 2480 /* The transfer is partly done. */ 2481 frame->status = -EXDEV; 2482 2483 /* calc actual length */ 2484 frame->actual_length = 0; 2485 2486 /* Update ring dequeue pointer */ 2487 ep->ring->dequeue = td->last_trb; 2488 ep->ring->deq_seg = td->last_trb_seg; 2489 inc_deq(xhci, ep->ring); 2490 2491 return xhci_td_cleanup(xhci, td, ep->ring, status); 2492 } 2493 2494 /* 2495 * Process bulk and interrupt tds, update urb status and actual_length. 2496 */ 2497 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2498 struct xhci_ring *ep_ring, struct xhci_td *td, 2499 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2500 { 2501 struct xhci_slot_ctx *slot_ctx; 2502 u32 trb_comp_code; 2503 u32 remaining, requested, ep_trb_len; 2504 2505 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 2506 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2507 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2508 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2509 requested = td->urb->transfer_buffer_length; 2510 2511 switch (trb_comp_code) { 2512 case COMP_SUCCESS: 2513 ep->err_count = 0; 2514 /* handle success with untransferred data as short packet */ 2515 if (ep_trb != td->last_trb || remaining) { 2516 xhci_warn(xhci, "WARN Successful completion on short TX\n"); 2517 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2518 td->urb->ep->desc.bEndpointAddress, 2519 requested, remaining); 2520 } 2521 td->status = 0; 2522 break; 2523 case COMP_SHORT_PACKET: 2524 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2525 td->urb->ep->desc.bEndpointAddress, 2526 requested, remaining); 2527 td->status = 0; 2528 break; 2529 case COMP_STOPPED_SHORT_PACKET: 2530 td->urb->actual_length = remaining; 2531 goto finish_td; 2532 case COMP_STOPPED_LENGTH_INVALID: 2533 /* stopped on ep trb with invalid length, exclude it */ 2534 td->urb->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb); 2535 goto finish_td; 2536 case COMP_USB_TRANSACTION_ERROR: 2537 if (xhci->quirks & XHCI_NO_SOFT_RETRY || 2538 (ep->err_count++ > MAX_SOFT_RETRY) || 2539 le32_to_cpu(slot_ctx->tt_info) & TT_SLOT) 2540 break; 2541 2542 td->status = 0; 2543 2544 xhci_handle_halted_endpoint(xhci, ep, td, EP_SOFT_RESET); 2545 return 0; 2546 default: 2547 /* do nothing */ 2548 break; 2549 } 2550 2551 if (ep_trb == td->last_trb) 2552 td->urb->actual_length = requested - remaining; 2553 else 2554 td->urb->actual_length = 2555 sum_trb_lengths(xhci, ep_ring, ep_trb) + 2556 ep_trb_len - remaining; 2557 finish_td: 2558 if (remaining > requested) { 2559 xhci_warn(xhci, "bad transfer trb length %d in event trb\n", 2560 remaining); 2561 td->urb->actual_length = 0; 2562 } 2563 2564 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2565 } 2566 2567 /* Transfer events which don't point to a transfer TRB, see xhci 4.17.4 */ 2568 static int handle_transferless_tx_event(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2569 u32 trb_comp_code) 2570 { 2571 switch (trb_comp_code) { 2572 case COMP_STALL_ERROR: 2573 case COMP_USB_TRANSACTION_ERROR: 2574 case COMP_INVALID_STREAM_TYPE_ERROR: 2575 case COMP_INVALID_STREAM_ID_ERROR: 2576 xhci_dbg(xhci, "Stream transaction error ep %u no id\n", ep->ep_index); 2577 if (ep->err_count++ > MAX_SOFT_RETRY) 2578 xhci_handle_halted_endpoint(xhci, ep, NULL, EP_HARD_RESET); 2579 else 2580 xhci_handle_halted_endpoint(xhci, ep, NULL, EP_SOFT_RESET); 2581 break; 2582 case COMP_RING_UNDERRUN: 2583 case COMP_RING_OVERRUN: 2584 case COMP_STOPPED_LENGTH_INVALID: 2585 break; 2586 default: 2587 xhci_err(xhci, "Transfer event %u for unknown stream ring slot %u ep %u\n", 2588 trb_comp_code, ep->vdev->slot_id, ep->ep_index); 2589 return -ENODEV; 2590 } 2591 return 0; 2592 } 2593 2594 /* 2595 * If this function returns an error condition, it means it got a Transfer 2596 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2597 * At this point, the host controller is probably hosed and should be reset. 2598 */ 2599 static int handle_tx_event(struct xhci_hcd *xhci, 2600 struct xhci_interrupter *ir, 2601 struct xhci_transfer_event *event) 2602 { 2603 struct xhci_virt_ep *ep; 2604 struct xhci_ring *ep_ring; 2605 unsigned int slot_id; 2606 int ep_index; 2607 struct xhci_td *td = NULL; 2608 dma_addr_t ep_trb_dma; 2609 struct xhci_segment *ep_seg; 2610 union xhci_trb *ep_trb; 2611 int status = -EINPROGRESS; 2612 struct xhci_ep_ctx *ep_ctx; 2613 u32 trb_comp_code; 2614 2615 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2616 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2617 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2618 ep_trb_dma = le64_to_cpu(event->buffer); 2619 2620 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 2621 if (!ep) { 2622 xhci_err(xhci, "ERROR Invalid Transfer event\n"); 2623 goto err_out; 2624 } 2625 2626 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma); 2627 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 2628 2629 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { 2630 xhci_err(xhci, 2631 "ERROR Transfer event for disabled endpoint slot %u ep %u\n", 2632 slot_id, ep_index); 2633 goto err_out; 2634 } 2635 2636 if (!ep_ring) 2637 return handle_transferless_tx_event(xhci, ep, trb_comp_code); 2638 2639 /* Look for common error cases */ 2640 switch (trb_comp_code) { 2641 /* Skip codes that require special handling depending on 2642 * transfer type 2643 */ 2644 case COMP_SUCCESS: 2645 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2646 trb_comp_code = COMP_SHORT_PACKET; 2647 xhci_dbg(xhci, "Successful completion on short TX for slot %u ep %u with last td short %d\n", 2648 slot_id, ep_index, ep_ring->last_td_was_short); 2649 } 2650 break; 2651 case COMP_SHORT_PACKET: 2652 break; 2653 /* Completion codes for endpoint stopped state */ 2654 case COMP_STOPPED: 2655 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n", 2656 slot_id, ep_index); 2657 break; 2658 case COMP_STOPPED_LENGTH_INVALID: 2659 xhci_dbg(xhci, 2660 "Stopped on No-op or Link TRB for slot %u ep %u\n", 2661 slot_id, ep_index); 2662 break; 2663 case COMP_STOPPED_SHORT_PACKET: 2664 xhci_dbg(xhci, 2665 "Stopped with short packet transfer detected for slot %u ep %u\n", 2666 slot_id, ep_index); 2667 break; 2668 /* Completion codes for endpoint halted state */ 2669 case COMP_STALL_ERROR: 2670 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id, 2671 ep_index); 2672 status = -EPIPE; 2673 break; 2674 case COMP_SPLIT_TRANSACTION_ERROR: 2675 xhci_dbg(xhci, "Split transaction error for slot %u ep %u\n", 2676 slot_id, ep_index); 2677 status = -EPROTO; 2678 break; 2679 case COMP_USB_TRANSACTION_ERROR: 2680 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n", 2681 slot_id, ep_index); 2682 status = -EPROTO; 2683 break; 2684 case COMP_BABBLE_DETECTED_ERROR: 2685 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n", 2686 slot_id, ep_index); 2687 status = -EOVERFLOW; 2688 break; 2689 /* Completion codes for endpoint error state */ 2690 case COMP_TRB_ERROR: 2691 xhci_warn(xhci, 2692 "WARN: TRB error for slot %u ep %u on endpoint\n", 2693 slot_id, ep_index); 2694 status = -EILSEQ; 2695 break; 2696 /* completion codes not indicating endpoint state change */ 2697 case COMP_DATA_BUFFER_ERROR: 2698 xhci_warn(xhci, 2699 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n", 2700 slot_id, ep_index); 2701 status = -ENOSR; 2702 break; 2703 case COMP_BANDWIDTH_OVERRUN_ERROR: 2704 xhci_warn(xhci, 2705 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n", 2706 slot_id, ep_index); 2707 break; 2708 case COMP_ISOCH_BUFFER_OVERRUN: 2709 xhci_warn(xhci, 2710 "WARN: buffer overrun event for slot %u ep %u on endpoint", 2711 slot_id, ep_index); 2712 break; 2713 case COMP_RING_UNDERRUN: 2714 /* 2715 * When the Isoch ring is empty, the xHC will generate 2716 * a Ring Overrun Event for IN Isoch endpoint or Ring 2717 * Underrun Event for OUT Isoch endpoint. 2718 */ 2719 xhci_dbg(xhci, "Underrun event on slot %u ep %u\n", slot_id, ep_index); 2720 if (ep->skip) 2721 break; 2722 return 0; 2723 case COMP_RING_OVERRUN: 2724 xhci_dbg(xhci, "Overrun event on slot %u ep %u\n", slot_id, ep_index); 2725 if (ep->skip) 2726 break; 2727 return 0; 2728 case COMP_MISSED_SERVICE_ERROR: 2729 /* 2730 * When encounter missed service error, one or more isoc tds 2731 * may be missed by xHC. 2732 * Set skip flag of the ep_ring; Complete the missed tds as 2733 * short transfer when process the ep_ring next time. 2734 */ 2735 ep->skip = true; 2736 xhci_dbg(xhci, 2737 "Miss service interval error for slot %u ep %u, set skip flag\n", 2738 slot_id, ep_index); 2739 return 0; 2740 case COMP_NO_PING_RESPONSE_ERROR: 2741 ep->skip = true; 2742 xhci_dbg(xhci, 2743 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n", 2744 slot_id, ep_index); 2745 return 0; 2746 2747 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2748 /* needs disable slot command to recover */ 2749 xhci_warn(xhci, 2750 "WARN: detect an incompatible device for slot %u ep %u", 2751 slot_id, ep_index); 2752 status = -EPROTO; 2753 break; 2754 default: 2755 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2756 status = 0; 2757 break; 2758 } 2759 xhci_warn(xhci, 2760 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n", 2761 trb_comp_code, slot_id, ep_index); 2762 if (ep->skip) 2763 break; 2764 return 0; 2765 } 2766 2767 do { 2768 /* This TRB should be in the TD at the head of this ring's 2769 * TD list. 2770 */ 2771 if (list_empty(&ep_ring->td_list)) { 2772 /* 2773 * Don't print wanings if it's due to a stopped endpoint 2774 * generating an extra completion event if the device 2775 * was suspended. Or, a event for the last TRB of a 2776 * short TD we already got a short event for. 2777 * The short TD is already removed from the TD list. 2778 */ 2779 2780 if (!(trb_comp_code == COMP_STOPPED || 2781 trb_comp_code == COMP_STOPPED_LENGTH_INVALID || 2782 ep_ring->last_td_was_short)) { 2783 xhci_warn(xhci, "WARN Event TRB for slot %u ep %d with no TDs queued?\n", 2784 slot_id, ep_index); 2785 } 2786 if (ep->skip) { 2787 ep->skip = false; 2788 xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n", 2789 slot_id, ep_index); 2790 } 2791 2792 td = NULL; 2793 goto check_endpoint_halted; 2794 } 2795 2796 td = list_first_entry(&ep_ring->td_list, struct xhci_td, 2797 td_list); 2798 2799 /* Is this a TRB in the currently executing TD? */ 2800 ep_seg = trb_in_td(xhci, td, ep_trb_dma, false); 2801 2802 if (!ep_seg) { 2803 2804 if (ep->skip && usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2805 skip_isoc_td(xhci, td, ep, status); 2806 continue; 2807 } 2808 2809 /* 2810 * Skip the Force Stopped Event. The 'ep_trb' of FSE is not in the current 2811 * TD pointed by 'ep_ring->dequeue' because that the hardware dequeue 2812 * pointer still at the previous TRB of the current TD. The previous TRB 2813 * maybe a Link TD or the last TRB of the previous TD. The command 2814 * completion handle will take care the rest. 2815 */ 2816 if (trb_comp_code == COMP_STOPPED || 2817 trb_comp_code == COMP_STOPPED_LENGTH_INVALID) { 2818 return 0; 2819 } 2820 2821 /* 2822 * Some hosts give a spurious success event after a short 2823 * transfer. Ignore it. 2824 */ 2825 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2826 ep_ring->last_td_was_short) { 2827 ep_ring->last_td_was_short = false; 2828 return 0; 2829 } 2830 2831 /* 2832 * xhci 4.10.2 states isoc endpoints should continue 2833 * processing the next TD if there was an error mid TD. 2834 * So host like NEC don't generate an event for the last 2835 * isoc TRB even if the IOC flag is set. 2836 * xhci 4.9.1 states that if there are errors in mult-TRB 2837 * TDs xHC should generate an error for that TRB, and if xHC 2838 * proceeds to the next TD it should genete an event for 2839 * any TRB with IOC flag on the way. Other host follow this. 2840 * So this event might be for the next TD. 2841 */ 2842 if (td->error_mid_td && 2843 !list_is_last(&td->td_list, &ep_ring->td_list)) { 2844 struct xhci_td *td_next = list_next_entry(td, td_list); 2845 2846 ep_seg = trb_in_td(xhci, td_next, ep_trb_dma, false); 2847 if (ep_seg) { 2848 /* give back previous TD, start handling new */ 2849 xhci_dbg(xhci, "Missing TD completion event after mid TD error\n"); 2850 ep_ring->dequeue = td->last_trb; 2851 ep_ring->deq_seg = td->last_trb_seg; 2852 inc_deq(xhci, ep_ring); 2853 xhci_td_cleanup(xhci, td, ep_ring, td->status); 2854 td = td_next; 2855 } 2856 } 2857 2858 if (!ep_seg) { 2859 /* HC is busted, give up! */ 2860 xhci_err(xhci, 2861 "ERROR Transfer event TRB DMA ptr not " 2862 "part of current TD ep_index %d " 2863 "comp_code %u\n", ep_index, 2864 trb_comp_code); 2865 trb_in_td(xhci, td, ep_trb_dma, true); 2866 2867 return -ESHUTDOWN; 2868 } 2869 } 2870 2871 if (ep->skip) { 2872 xhci_dbg(xhci, 2873 "Found td. Clear skip flag for slot %u ep %u.\n", 2874 slot_id, ep_index); 2875 ep->skip = false; 2876 } 2877 2878 /* 2879 * If ep->skip is set, it means there are missed tds on the 2880 * endpoint ring need to take care of. 2881 * Process them as short transfer until reach the td pointed by 2882 * the event. 2883 */ 2884 } while (ep->skip); 2885 2886 if (trb_comp_code == COMP_SHORT_PACKET) 2887 ep_ring->last_td_was_short = true; 2888 else 2889 ep_ring->last_td_was_short = false; 2890 2891 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / sizeof(*ep_trb)]; 2892 trace_xhci_handle_transfer(ep_ring, (struct xhci_generic_trb *) ep_trb); 2893 2894 /* 2895 * No-op TRB could trigger interrupts in a case where a URB was killed 2896 * and a STALL_ERROR happens right after the endpoint ring stopped. 2897 * Reset the halted endpoint. Otherwise, the endpoint remains stalled 2898 * indefinitely. 2899 */ 2900 2901 if (trb_is_noop(ep_trb)) 2902 goto check_endpoint_halted; 2903 2904 td->status = status; 2905 2906 /* update the urb's actual_length and give back to the core */ 2907 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2908 process_ctrl_td(xhci, ep, ep_ring, td, ep_trb, event); 2909 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2910 process_isoc_td(xhci, ep, ep_ring, td, ep_trb, event); 2911 else 2912 process_bulk_intr_td(xhci, ep, ep_ring, td, ep_trb, event); 2913 2914 check_endpoint_halted: 2915 if (xhci_halted_host_endpoint(ep_ctx, trb_comp_code)) 2916 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2917 2918 return 0; 2919 2920 err_out: 2921 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2922 (unsigned long long) xhci_trb_virt_to_dma( 2923 ir->event_ring->deq_seg, 2924 ir->event_ring->dequeue), 2925 lower_32_bits(le64_to_cpu(event->buffer)), 2926 upper_32_bits(le64_to_cpu(event->buffer)), 2927 le32_to_cpu(event->transfer_len), 2928 le32_to_cpu(event->flags)); 2929 return -ENODEV; 2930 } 2931 2932 /* 2933 * This function handles one OS-owned event on the event ring. It may drop 2934 * xhci->lock between event processing (e.g. to pass up port status changes). 2935 */ 2936 static int xhci_handle_event_trb(struct xhci_hcd *xhci, struct xhci_interrupter *ir, 2937 union xhci_trb *event) 2938 { 2939 u32 trb_type; 2940 2941 trace_xhci_handle_event(ir->event_ring, &event->generic); 2942 2943 /* 2944 * Barrier between reading the TRB_CYCLE (valid) flag before, and any 2945 * speculative reads of the event's flags/data below. 2946 */ 2947 rmb(); 2948 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->event_cmd.flags)); 2949 /* FIXME: Handle more event types. */ 2950 2951 switch (trb_type) { 2952 case TRB_COMPLETION: 2953 handle_cmd_completion(xhci, &event->event_cmd); 2954 break; 2955 case TRB_PORT_STATUS: 2956 handle_port_status(xhci, event); 2957 break; 2958 case TRB_TRANSFER: 2959 handle_tx_event(xhci, ir, &event->trans_event); 2960 break; 2961 case TRB_DEV_NOTE: 2962 handle_device_notification(xhci, event); 2963 break; 2964 default: 2965 if (trb_type >= TRB_VENDOR_DEFINED_LOW) 2966 handle_vendor_event(xhci, event, trb_type); 2967 else 2968 xhci_warn(xhci, "ERROR unknown event type %d\n", trb_type); 2969 } 2970 /* Any of the above functions may drop and re-acquire the lock, so check 2971 * to make sure a watchdog timer didn't mark the host as non-responsive. 2972 */ 2973 if (xhci->xhc_state & XHCI_STATE_DYING) { 2974 xhci_dbg(xhci, "xHCI host dying, returning from event handler.\n"); 2975 return -ENODEV; 2976 } 2977 2978 return 0; 2979 } 2980 2981 /* 2982 * Update Event Ring Dequeue Pointer: 2983 * - When all events have finished 2984 * - To avoid "Event Ring Full Error" condition 2985 */ 2986 static void xhci_update_erst_dequeue(struct xhci_hcd *xhci, 2987 struct xhci_interrupter *ir, 2988 bool clear_ehb) 2989 { 2990 u64 temp_64; 2991 dma_addr_t deq; 2992 2993 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 2994 deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg, 2995 ir->event_ring->dequeue); 2996 if (deq == 0) 2997 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr\n"); 2998 /* 2999 * Per 4.9.4, Software writes to the ERDP register shall always advance 3000 * the Event Ring Dequeue Pointer value. 3001 */ 3002 if ((temp_64 & ERST_PTR_MASK) == (deq & ERST_PTR_MASK) && !clear_ehb) 3003 return; 3004 3005 /* Update HC event ring dequeue pointer */ 3006 temp_64 = ir->event_ring->deq_seg->num & ERST_DESI_MASK; 3007 temp_64 |= deq & ERST_PTR_MASK; 3008 3009 /* Clear the event handler busy flag (RW1C) */ 3010 if (clear_ehb) 3011 temp_64 |= ERST_EHB; 3012 xhci_write_64(xhci, temp_64, &ir->ir_set->erst_dequeue); 3013 } 3014 3015 /* Clear the interrupt pending bit for a specific interrupter. */ 3016 static void xhci_clear_interrupt_pending(struct xhci_interrupter *ir) 3017 { 3018 if (!ir->ip_autoclear) { 3019 u32 irq_pending; 3020 3021 irq_pending = readl(&ir->ir_set->irq_pending); 3022 irq_pending |= IMAN_IP; 3023 writel(irq_pending, &ir->ir_set->irq_pending); 3024 } 3025 } 3026 3027 /* 3028 * Handle all OS-owned events on an interrupter event ring. It may drop 3029 * and reaquire xhci->lock between event processing. 3030 */ 3031 static int xhci_handle_events(struct xhci_hcd *xhci, struct xhci_interrupter *ir) 3032 { 3033 int event_loop = 0; 3034 int err; 3035 u64 temp; 3036 3037 xhci_clear_interrupt_pending(ir); 3038 3039 /* Event ring hasn't been allocated yet. */ 3040 if (!ir->event_ring || !ir->event_ring->dequeue) { 3041 xhci_err(xhci, "ERROR interrupter event ring not ready\n"); 3042 return -ENOMEM; 3043 } 3044 3045 if (xhci->xhc_state & XHCI_STATE_DYING || 3046 xhci->xhc_state & XHCI_STATE_HALTED) { 3047 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. Shouldn't IRQs be disabled?\n"); 3048 3049 /* Clear the event handler busy flag (RW1C) */ 3050 temp = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 3051 xhci_write_64(xhci, temp | ERST_EHB, &ir->ir_set->erst_dequeue); 3052 return -ENODEV; 3053 } 3054 3055 /* Process all OS owned event TRBs on this event ring */ 3056 while (unhandled_event_trb(ir->event_ring)) { 3057 err = xhci_handle_event_trb(xhci, ir, ir->event_ring->dequeue); 3058 3059 /* 3060 * If half a segment of events have been handled in one go then 3061 * update ERDP, and force isoc trbs to interrupt more often 3062 */ 3063 if (event_loop++ > TRBS_PER_SEGMENT / 2) { 3064 xhci_update_erst_dequeue(xhci, ir, false); 3065 3066 if (ir->isoc_bei_interval > AVOID_BEI_INTERVAL_MIN) 3067 ir->isoc_bei_interval = ir->isoc_bei_interval / 2; 3068 3069 event_loop = 0; 3070 } 3071 3072 /* Update SW event ring dequeue pointer */ 3073 inc_deq(xhci, ir->event_ring); 3074 3075 if (err) 3076 break; 3077 } 3078 3079 xhci_update_erst_dequeue(xhci, ir, true); 3080 3081 return 0; 3082 } 3083 3084 /* 3085 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 3086 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 3087 * indicators of an event TRB error, but we check the status *first* to be safe. 3088 */ 3089 irqreturn_t xhci_irq(struct usb_hcd *hcd) 3090 { 3091 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3092 irqreturn_t ret = IRQ_HANDLED; 3093 u32 status; 3094 3095 spin_lock(&xhci->lock); 3096 /* Check if the xHC generated the interrupt, or the irq is shared */ 3097 status = readl(&xhci->op_regs->status); 3098 if (status == ~(u32)0) { 3099 xhci_hc_died(xhci); 3100 goto out; 3101 } 3102 3103 if (!(status & STS_EINT)) { 3104 ret = IRQ_NONE; 3105 goto out; 3106 } 3107 3108 if (status & STS_HCE) { 3109 xhci_warn(xhci, "WARNING: Host Controller Error\n"); 3110 goto out; 3111 } 3112 3113 if (status & STS_FATAL) { 3114 xhci_warn(xhci, "WARNING: Host System Error\n"); 3115 xhci_halt(xhci); 3116 goto out; 3117 } 3118 3119 /* 3120 * Clear the op reg interrupt status first, 3121 * so we can receive interrupts from other MSI-X interrupters. 3122 * Write 1 to clear the interrupt status. 3123 */ 3124 status |= STS_EINT; 3125 writel(status, &xhci->op_regs->status); 3126 3127 /* This is the handler of the primary interrupter */ 3128 xhci_handle_events(xhci, xhci->interrupters[0]); 3129 out: 3130 spin_unlock(&xhci->lock); 3131 3132 return ret; 3133 } 3134 3135 irqreturn_t xhci_msi_irq(int irq, void *hcd) 3136 { 3137 return xhci_irq(hcd); 3138 } 3139 EXPORT_SYMBOL_GPL(xhci_msi_irq); 3140 3141 /**** Endpoint Ring Operations ****/ 3142 3143 /* 3144 * Generic function for queueing a TRB on a ring. 3145 * The caller must have checked to make sure there's room on the ring. 3146 * 3147 * @more_trbs_coming: Will you enqueue more TRBs before calling 3148 * prepare_transfer()? 3149 */ 3150 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 3151 bool more_trbs_coming, 3152 u32 field1, u32 field2, u32 field3, u32 field4) 3153 { 3154 struct xhci_generic_trb *trb; 3155 3156 trb = &ring->enqueue->generic; 3157 trb->field[0] = cpu_to_le32(field1); 3158 trb->field[1] = cpu_to_le32(field2); 3159 trb->field[2] = cpu_to_le32(field3); 3160 /* make sure TRB is fully written before giving it to the controller */ 3161 wmb(); 3162 trb->field[3] = cpu_to_le32(field4); 3163 3164 trace_xhci_queue_trb(ring, trb); 3165 3166 inc_enq(xhci, ring, more_trbs_coming); 3167 } 3168 3169 /* 3170 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 3171 * expand ring if it start to be full. 3172 */ 3173 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 3174 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 3175 { 3176 unsigned int link_trb_count = 0; 3177 unsigned int new_segs = 0; 3178 3179 /* Make sure the endpoint has been added to xHC schedule */ 3180 switch (ep_state) { 3181 case EP_STATE_DISABLED: 3182 /* 3183 * USB core changed config/interfaces without notifying us, 3184 * or hardware is reporting the wrong state. 3185 */ 3186 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 3187 return -ENOENT; 3188 case EP_STATE_ERROR: 3189 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 3190 /* FIXME event handling code for error needs to clear it */ 3191 /* XXX not sure if this should be -ENOENT or not */ 3192 return -EINVAL; 3193 case EP_STATE_HALTED: 3194 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 3195 break; 3196 case EP_STATE_STOPPED: 3197 case EP_STATE_RUNNING: 3198 break; 3199 default: 3200 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 3201 /* 3202 * FIXME issue Configure Endpoint command to try to get the HC 3203 * back into a known state. 3204 */ 3205 return -EINVAL; 3206 } 3207 3208 if (ep_ring != xhci->cmd_ring) { 3209 new_segs = xhci_ring_expansion_needed(xhci, ep_ring, num_trbs); 3210 } else if (xhci_num_trbs_free(ep_ring) <= num_trbs) { 3211 xhci_err(xhci, "Do not support expand command ring\n"); 3212 return -ENOMEM; 3213 } 3214 3215 if (new_segs) { 3216 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 3217 "ERROR no room on ep ring, try ring expansion"); 3218 if (xhci_ring_expansion(xhci, ep_ring, new_segs, mem_flags)) { 3219 xhci_err(xhci, "Ring expansion failed\n"); 3220 return -ENOMEM; 3221 } 3222 } 3223 3224 while (trb_is_link(ep_ring->enqueue)) { 3225 /* If we're not dealing with 0.95 hardware or isoc rings 3226 * on AMD 0.96 host, clear the chain bit. 3227 */ 3228 if (!xhci_link_chain_quirk(xhci, ep_ring->type)) 3229 ep_ring->enqueue->link.control &= 3230 cpu_to_le32(~TRB_CHAIN); 3231 else 3232 ep_ring->enqueue->link.control |= 3233 cpu_to_le32(TRB_CHAIN); 3234 3235 wmb(); 3236 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); 3237 3238 /* Toggle the cycle bit after the last ring segment. */ 3239 if (link_trb_toggles_cycle(ep_ring->enqueue)) 3240 ep_ring->cycle_state ^= 1; 3241 3242 ep_ring->enq_seg = ep_ring->enq_seg->next; 3243 ep_ring->enqueue = ep_ring->enq_seg->trbs; 3244 3245 /* prevent infinite loop if all first trbs are link trbs */ 3246 if (link_trb_count++ > ep_ring->num_segs) { 3247 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 3248 return -EINVAL; 3249 } 3250 } 3251 3252 if (last_trb_on_seg(ep_ring->enq_seg, ep_ring->enqueue)) { 3253 xhci_warn(xhci, "Missing link TRB at end of ring segment\n"); 3254 return -EINVAL; 3255 } 3256 3257 return 0; 3258 } 3259 3260 static int prepare_transfer(struct xhci_hcd *xhci, 3261 struct xhci_virt_device *xdev, 3262 unsigned int ep_index, 3263 unsigned int stream_id, 3264 unsigned int num_trbs, 3265 struct urb *urb, 3266 unsigned int td_index, 3267 gfp_t mem_flags) 3268 { 3269 int ret; 3270 struct urb_priv *urb_priv; 3271 struct xhci_td *td; 3272 struct xhci_ring *ep_ring; 3273 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3274 3275 ep_ring = xhci_triad_to_transfer_ring(xhci, xdev->slot_id, ep_index, 3276 stream_id); 3277 if (!ep_ring) { 3278 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 3279 stream_id); 3280 return -EINVAL; 3281 } 3282 3283 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 3284 num_trbs, mem_flags); 3285 if (ret) 3286 return ret; 3287 3288 urb_priv = urb->hcpriv; 3289 td = &urb_priv->td[td_index]; 3290 3291 INIT_LIST_HEAD(&td->td_list); 3292 INIT_LIST_HEAD(&td->cancelled_td_list); 3293 3294 if (td_index == 0) { 3295 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 3296 if (unlikely(ret)) 3297 return ret; 3298 } 3299 3300 td->urb = urb; 3301 /* Add this TD to the tail of the endpoint ring's TD list */ 3302 list_add_tail(&td->td_list, &ep_ring->td_list); 3303 td->start_seg = ep_ring->enq_seg; 3304 td->first_trb = ep_ring->enqueue; 3305 3306 return 0; 3307 } 3308 3309 unsigned int count_trbs(u64 addr, u64 len) 3310 { 3311 unsigned int num_trbs; 3312 3313 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3314 TRB_MAX_BUFF_SIZE); 3315 if (num_trbs == 0) 3316 num_trbs++; 3317 3318 return num_trbs; 3319 } 3320 3321 static inline unsigned int count_trbs_needed(struct urb *urb) 3322 { 3323 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); 3324 } 3325 3326 static unsigned int count_sg_trbs_needed(struct urb *urb) 3327 { 3328 struct scatterlist *sg; 3329 unsigned int i, len, full_len, num_trbs = 0; 3330 3331 full_len = urb->transfer_buffer_length; 3332 3333 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { 3334 len = sg_dma_len(sg); 3335 num_trbs += count_trbs(sg_dma_address(sg), len); 3336 len = min_t(unsigned int, len, full_len); 3337 full_len -= len; 3338 if (full_len == 0) 3339 break; 3340 } 3341 3342 return num_trbs; 3343 } 3344 3345 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) 3346 { 3347 u64 addr, len; 3348 3349 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3350 len = urb->iso_frame_desc[i].length; 3351 3352 return count_trbs(addr, len); 3353 } 3354 3355 static void check_trb_math(struct urb *urb, int running_total) 3356 { 3357 if (unlikely(running_total != urb->transfer_buffer_length)) 3358 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3359 "queued %#x (%d), asked for %#x (%d)\n", 3360 __func__, 3361 urb->ep->desc.bEndpointAddress, 3362 running_total, running_total, 3363 urb->transfer_buffer_length, 3364 urb->transfer_buffer_length); 3365 } 3366 3367 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3368 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3369 struct xhci_generic_trb *start_trb) 3370 { 3371 /* 3372 * Pass all the TRBs to the hardware at once and make sure this write 3373 * isn't reordered. 3374 */ 3375 wmb(); 3376 if (start_cycle) 3377 start_trb->field[3] |= cpu_to_le32(start_cycle); 3378 else 3379 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3380 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3381 } 3382 3383 static void check_interval(struct urb *urb, struct xhci_ep_ctx *ep_ctx) 3384 { 3385 int xhci_interval; 3386 int ep_interval; 3387 3388 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3389 ep_interval = urb->interval; 3390 3391 /* Convert to microframes */ 3392 if (urb->dev->speed == USB_SPEED_LOW || 3393 urb->dev->speed == USB_SPEED_FULL) 3394 ep_interval *= 8; 3395 3396 /* FIXME change this to a warning and a suggestion to use the new API 3397 * to set the polling interval (once the API is added). 3398 */ 3399 if (xhci_interval != ep_interval) { 3400 dev_dbg_ratelimited(&urb->dev->dev, 3401 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3402 ep_interval, ep_interval == 1 ? "" : "s", 3403 xhci_interval, xhci_interval == 1 ? "" : "s"); 3404 urb->interval = xhci_interval; 3405 /* Convert back to frames for LS/FS devices */ 3406 if (urb->dev->speed == USB_SPEED_LOW || 3407 urb->dev->speed == USB_SPEED_FULL) 3408 urb->interval /= 8; 3409 } 3410 } 3411 3412 /* 3413 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3414 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3415 * (comprised of sg list entries) can take several service intervals to 3416 * transmit. 3417 */ 3418 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3419 struct urb *urb, int slot_id, unsigned int ep_index) 3420 { 3421 struct xhci_ep_ctx *ep_ctx; 3422 3423 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); 3424 check_interval(urb, ep_ctx); 3425 3426 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3427 } 3428 3429 /* 3430 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3431 * packets remaining in the TD (*not* including this TRB). 3432 * 3433 * Total TD packet count = total_packet_count = 3434 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3435 * 3436 * Packets transferred up to and including this TRB = packets_transferred = 3437 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3438 * 3439 * TD size = total_packet_count - packets_transferred 3440 * 3441 * For xHCI 0.96 and older, TD size field should be the remaining bytes 3442 * including this TRB, right shifted by 10 3443 * 3444 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. 3445 * This is taken care of in the TRB_TD_SIZE() macro 3446 * 3447 * The last TRB in a TD must have the TD size set to zero. 3448 */ 3449 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, 3450 int trb_buff_len, unsigned int td_total_len, 3451 struct urb *urb, bool more_trbs_coming) 3452 { 3453 u32 maxp, total_packet_count; 3454 3455 /* MTK xHCI 0.96 contains some features from 1.0 */ 3456 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) 3457 return ((td_total_len - transferred) >> 10); 3458 3459 /* One TRB with a zero-length data packet. */ 3460 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || 3461 trb_buff_len == td_total_len) 3462 return 0; 3463 3464 /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */ 3465 if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100)) 3466 trb_buff_len = 0; 3467 3468 maxp = usb_endpoint_maxp(&urb->ep->desc); 3469 total_packet_count = DIV_ROUND_UP(td_total_len, maxp); 3470 3471 /* Queueing functions don't count the current TRB into transferred */ 3472 return (total_packet_count - ((transferred + trb_buff_len) / maxp)); 3473 } 3474 3475 3476 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, 3477 u32 *trb_buff_len, struct xhci_segment *seg) 3478 { 3479 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 3480 unsigned int unalign; 3481 unsigned int max_pkt; 3482 u32 new_buff_len; 3483 size_t len; 3484 3485 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3486 unalign = (enqd_len + *trb_buff_len) % max_pkt; 3487 3488 /* we got lucky, last normal TRB data on segment is packet aligned */ 3489 if (unalign == 0) 3490 return 0; 3491 3492 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", 3493 unalign, *trb_buff_len); 3494 3495 /* is the last nornal TRB alignable by splitting it */ 3496 if (*trb_buff_len > unalign) { 3497 *trb_buff_len -= unalign; 3498 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); 3499 return 0; 3500 } 3501 3502 /* 3503 * We want enqd_len + trb_buff_len to sum up to a number aligned to 3504 * number which is divisible by the endpoint's wMaxPacketSize. IOW: 3505 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. 3506 */ 3507 new_buff_len = max_pkt - (enqd_len % max_pkt); 3508 3509 if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) 3510 new_buff_len = (urb->transfer_buffer_length - enqd_len); 3511 3512 /* create a max max_pkt sized bounce buffer pointed to by last trb */ 3513 if (usb_urb_dir_out(urb)) { 3514 if (urb->num_sgs) { 3515 len = sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 3516 seg->bounce_buf, new_buff_len, enqd_len); 3517 if (len != new_buff_len) 3518 xhci_warn(xhci, "WARN Wrong bounce buffer write length: %zu != %d\n", 3519 len, new_buff_len); 3520 } else { 3521 memcpy(seg->bounce_buf, urb->transfer_buffer + enqd_len, new_buff_len); 3522 } 3523 3524 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3525 max_pkt, DMA_TO_DEVICE); 3526 } else { 3527 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3528 max_pkt, DMA_FROM_DEVICE); 3529 } 3530 3531 if (dma_mapping_error(dev, seg->bounce_dma)) { 3532 /* try without aligning. Some host controllers survive */ 3533 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); 3534 return 0; 3535 } 3536 *trb_buff_len = new_buff_len; 3537 seg->bounce_len = new_buff_len; 3538 seg->bounce_offs = enqd_len; 3539 3540 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); 3541 3542 return 1; 3543 } 3544 3545 /* This is very similar to what ehci-q.c qtd_fill() does */ 3546 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3547 struct urb *urb, int slot_id, unsigned int ep_index) 3548 { 3549 struct xhci_ring *ring; 3550 struct urb_priv *urb_priv; 3551 struct xhci_td *td; 3552 struct xhci_generic_trb *start_trb; 3553 struct scatterlist *sg = NULL; 3554 bool more_trbs_coming = true; 3555 bool need_zero_pkt = false; 3556 bool first_trb = true; 3557 unsigned int num_trbs; 3558 unsigned int start_cycle, num_sgs = 0; 3559 unsigned int enqd_len, block_len, trb_buff_len, full_len; 3560 int sent_len, ret; 3561 u32 field, length_field, remainder; 3562 u64 addr, send_addr; 3563 3564 ring = xhci_urb_to_transfer_ring(xhci, urb); 3565 if (!ring) 3566 return -EINVAL; 3567 3568 full_len = urb->transfer_buffer_length; 3569 /* If we have scatter/gather list, we use it. */ 3570 if (urb->num_sgs && !(urb->transfer_flags & URB_DMA_MAP_SINGLE)) { 3571 num_sgs = urb->num_mapped_sgs; 3572 sg = urb->sg; 3573 addr = (u64) sg_dma_address(sg); 3574 block_len = sg_dma_len(sg); 3575 num_trbs = count_sg_trbs_needed(urb); 3576 } else { 3577 num_trbs = count_trbs_needed(urb); 3578 addr = (u64) urb->transfer_dma; 3579 block_len = full_len; 3580 } 3581 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3582 ep_index, urb->stream_id, 3583 num_trbs, urb, 0, mem_flags); 3584 if (unlikely(ret < 0)) 3585 return ret; 3586 3587 urb_priv = urb->hcpriv; 3588 3589 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3590 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) 3591 need_zero_pkt = true; 3592 3593 td = &urb_priv->td[0]; 3594 3595 /* 3596 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3597 * until we've finished creating all the other TRBs. The ring's cycle 3598 * state may change as we enqueue the other TRBs, so save it too. 3599 */ 3600 start_trb = &ring->enqueue->generic; 3601 start_cycle = ring->cycle_state; 3602 send_addr = addr; 3603 3604 /* Queue the TRBs, even if they are zero-length */ 3605 for (enqd_len = 0; first_trb || enqd_len < full_len; 3606 enqd_len += trb_buff_len) { 3607 field = TRB_TYPE(TRB_NORMAL); 3608 3609 /* TRB buffer should not cross 64KB boundaries */ 3610 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3611 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); 3612 3613 if (enqd_len + trb_buff_len > full_len) 3614 trb_buff_len = full_len - enqd_len; 3615 3616 /* Don't change the cycle bit of the first TRB until later */ 3617 if (first_trb) { 3618 first_trb = false; 3619 if (start_cycle == 0) 3620 field |= TRB_CYCLE; 3621 } else 3622 field |= ring->cycle_state; 3623 3624 /* Chain all the TRBs together; clear the chain bit in the last 3625 * TRB to indicate it's the last TRB in the chain. 3626 */ 3627 if (enqd_len + trb_buff_len < full_len) { 3628 field |= TRB_CHAIN; 3629 if (trb_is_link(ring->enqueue + 1)) { 3630 if (xhci_align_td(xhci, urb, enqd_len, 3631 &trb_buff_len, 3632 ring->enq_seg)) { 3633 send_addr = ring->enq_seg->bounce_dma; 3634 /* assuming TD won't span 2 segs */ 3635 td->bounce_seg = ring->enq_seg; 3636 } 3637 } 3638 } 3639 if (enqd_len + trb_buff_len >= full_len) { 3640 field &= ~TRB_CHAIN; 3641 field |= TRB_IOC; 3642 more_trbs_coming = false; 3643 td->last_trb = ring->enqueue; 3644 td->last_trb_seg = ring->enq_seg; 3645 if (xhci_urb_suitable_for_idt(urb)) { 3646 memcpy(&send_addr, urb->transfer_buffer, 3647 trb_buff_len); 3648 le64_to_cpus(&send_addr); 3649 field |= TRB_IDT; 3650 } 3651 } 3652 3653 /* Only set interrupt on short packet for IN endpoints */ 3654 if (usb_urb_dir_in(urb)) 3655 field |= TRB_ISP; 3656 3657 /* Set the TRB length, TD size, and interrupter fields. */ 3658 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, 3659 full_len, urb, more_trbs_coming); 3660 3661 length_field = TRB_LEN(trb_buff_len) | 3662 TRB_TD_SIZE(remainder) | 3663 TRB_INTR_TARGET(0); 3664 3665 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, 3666 lower_32_bits(send_addr), 3667 upper_32_bits(send_addr), 3668 length_field, 3669 field); 3670 addr += trb_buff_len; 3671 sent_len = trb_buff_len; 3672 3673 while (sg && sent_len >= block_len) { 3674 /* New sg entry */ 3675 --num_sgs; 3676 sent_len -= block_len; 3677 sg = sg_next(sg); 3678 if (num_sgs != 0 && sg) { 3679 block_len = sg_dma_len(sg); 3680 addr = (u64) sg_dma_address(sg); 3681 addr += sent_len; 3682 } 3683 } 3684 block_len -= sent_len; 3685 send_addr = addr; 3686 } 3687 3688 if (need_zero_pkt) { 3689 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3690 ep_index, urb->stream_id, 3691 1, urb, 1, mem_flags); 3692 urb_priv->td[1].last_trb = ring->enqueue; 3693 urb_priv->td[1].last_trb_seg = ring->enq_seg; 3694 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; 3695 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); 3696 } 3697 3698 check_trb_math(urb, enqd_len); 3699 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3700 start_cycle, start_trb); 3701 return 0; 3702 } 3703 3704 /* Caller must have locked xhci->lock */ 3705 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3706 struct urb *urb, int slot_id, unsigned int ep_index) 3707 { 3708 struct xhci_ring *ep_ring; 3709 int num_trbs; 3710 int ret; 3711 struct usb_ctrlrequest *setup; 3712 struct xhci_generic_trb *start_trb; 3713 int start_cycle; 3714 u32 field; 3715 struct urb_priv *urb_priv; 3716 struct xhci_td *td; 3717 3718 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3719 if (!ep_ring) 3720 return -EINVAL; 3721 3722 /* 3723 * Need to copy setup packet into setup TRB, so we can't use the setup 3724 * DMA address. 3725 */ 3726 if (!urb->setup_packet) 3727 return -EINVAL; 3728 3729 /* 1 TRB for setup, 1 for status */ 3730 num_trbs = 2; 3731 /* 3732 * Don't need to check if we need additional event data and normal TRBs, 3733 * since data in control transfers will never get bigger than 16MB 3734 * XXX: can we get a buffer that crosses 64KB boundaries? 3735 */ 3736 if (urb->transfer_buffer_length > 0) 3737 num_trbs++; 3738 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3739 ep_index, urb->stream_id, 3740 num_trbs, urb, 0, mem_flags); 3741 if (ret < 0) 3742 return ret; 3743 3744 urb_priv = urb->hcpriv; 3745 td = &urb_priv->td[0]; 3746 3747 /* 3748 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3749 * until we've finished creating all the other TRBs. The ring's cycle 3750 * state may change as we enqueue the other TRBs, so save it too. 3751 */ 3752 start_trb = &ep_ring->enqueue->generic; 3753 start_cycle = ep_ring->cycle_state; 3754 3755 /* Queue setup TRB - see section 6.4.1.2.1 */ 3756 /* FIXME better way to translate setup_packet into two u32 fields? */ 3757 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3758 field = 0; 3759 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3760 if (start_cycle == 0) 3761 field |= 0x1; 3762 3763 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ 3764 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { 3765 if (urb->transfer_buffer_length > 0) { 3766 if (setup->bRequestType & USB_DIR_IN) 3767 field |= TRB_TX_TYPE(TRB_DATA_IN); 3768 else 3769 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3770 } 3771 } 3772 3773 queue_trb(xhci, ep_ring, true, 3774 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3775 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3776 TRB_LEN(8) | TRB_INTR_TARGET(0), 3777 /* Immediate data in pointer */ 3778 field); 3779 3780 /* If there's data, queue data TRBs */ 3781 /* Only set interrupt on short packet for IN endpoints */ 3782 if (usb_urb_dir_in(urb)) 3783 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3784 else 3785 field = TRB_TYPE(TRB_DATA); 3786 3787 if (urb->transfer_buffer_length > 0) { 3788 u32 length_field, remainder; 3789 u64 addr; 3790 3791 if (xhci_urb_suitable_for_idt(urb)) { 3792 memcpy(&addr, urb->transfer_buffer, 3793 urb->transfer_buffer_length); 3794 le64_to_cpus(&addr); 3795 field |= TRB_IDT; 3796 } else { 3797 addr = (u64) urb->transfer_dma; 3798 } 3799 3800 remainder = xhci_td_remainder(xhci, 0, 3801 urb->transfer_buffer_length, 3802 urb->transfer_buffer_length, 3803 urb, 1); 3804 length_field = TRB_LEN(urb->transfer_buffer_length) | 3805 TRB_TD_SIZE(remainder) | 3806 TRB_INTR_TARGET(0); 3807 if (setup->bRequestType & USB_DIR_IN) 3808 field |= TRB_DIR_IN; 3809 queue_trb(xhci, ep_ring, true, 3810 lower_32_bits(addr), 3811 upper_32_bits(addr), 3812 length_field, 3813 field | ep_ring->cycle_state); 3814 } 3815 3816 /* Save the DMA address of the last TRB in the TD */ 3817 td->last_trb = ep_ring->enqueue; 3818 td->last_trb_seg = ep_ring->enq_seg; 3819 3820 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3821 /* If the device sent data, the status stage is an OUT transfer */ 3822 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3823 field = 0; 3824 else 3825 field = TRB_DIR_IN; 3826 queue_trb(xhci, ep_ring, false, 3827 0, 3828 0, 3829 TRB_INTR_TARGET(0), 3830 /* Event on completion */ 3831 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3832 3833 giveback_first_trb(xhci, slot_id, ep_index, 0, 3834 start_cycle, start_trb); 3835 return 0; 3836 } 3837 3838 /* 3839 * The transfer burst count field of the isochronous TRB defines the number of 3840 * bursts that are required to move all packets in this TD. Only SuperSpeed 3841 * devices can burst up to bMaxBurst number of packets per service interval. 3842 * This field is zero based, meaning a value of zero in the field means one 3843 * burst. Basically, for everything but SuperSpeed devices, this field will be 3844 * zero. Only xHCI 1.0 host controllers support this field. 3845 */ 3846 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3847 struct urb *urb, unsigned int total_packet_count) 3848 { 3849 unsigned int max_burst; 3850 3851 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) 3852 return 0; 3853 3854 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3855 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3856 } 3857 3858 /* 3859 * Returns the number of packets in the last "burst" of packets. This field is 3860 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3861 * the last burst packet count is equal to the total number of packets in the 3862 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3863 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3864 * contain 1 to (bMaxBurst + 1) packets. 3865 */ 3866 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3867 struct urb *urb, unsigned int total_packet_count) 3868 { 3869 unsigned int max_burst; 3870 unsigned int residue; 3871 3872 if (xhci->hci_version < 0x100) 3873 return 0; 3874 3875 if (urb->dev->speed >= USB_SPEED_SUPER) { 3876 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3877 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3878 residue = total_packet_count % (max_burst + 1); 3879 /* If residue is zero, the last burst contains (max_burst + 1) 3880 * number of packets, but the TLBPC field is zero-based. 3881 */ 3882 if (residue == 0) 3883 return max_burst; 3884 return residue - 1; 3885 } 3886 if (total_packet_count == 0) 3887 return 0; 3888 return total_packet_count - 1; 3889 } 3890 3891 /* 3892 * Calculates Frame ID field of the isochronous TRB identifies the 3893 * target frame that the Interval associated with this Isochronous 3894 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. 3895 * 3896 * Returns actual frame id on success, negative value on error. 3897 */ 3898 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, 3899 struct urb *urb, int index) 3900 { 3901 int start_frame, ist, ret = 0; 3902 int start_frame_id, end_frame_id, current_frame_id; 3903 3904 if (urb->dev->speed == USB_SPEED_LOW || 3905 urb->dev->speed == USB_SPEED_FULL) 3906 start_frame = urb->start_frame + index * urb->interval; 3907 else 3908 start_frame = (urb->start_frame + index * urb->interval) >> 3; 3909 3910 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): 3911 * 3912 * If bit [3] of IST is cleared to '0', software can add a TRB no 3913 * later than IST[2:0] Microframes before that TRB is scheduled to 3914 * be executed. 3915 * If bit [3] of IST is set to '1', software can add a TRB no later 3916 * than IST[2:0] Frames before that TRB is scheduled to be executed. 3917 */ 3918 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3919 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3920 ist <<= 3; 3921 3922 /* Software shall not schedule an Isoch TD with a Frame ID value that 3923 * is less than the Start Frame ID or greater than the End Frame ID, 3924 * where: 3925 * 3926 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 3927 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 3928 * 3929 * Both the End Frame ID and Start Frame ID values are calculated 3930 * in microframes. When software determines the valid Frame ID value; 3931 * The End Frame ID value should be rounded down to the nearest Frame 3932 * boundary, and the Start Frame ID value should be rounded up to the 3933 * nearest Frame boundary. 3934 */ 3935 current_frame_id = readl(&xhci->run_regs->microframe_index); 3936 start_frame_id = roundup(current_frame_id + ist + 1, 8); 3937 end_frame_id = rounddown(current_frame_id + 895 * 8, 8); 3938 3939 start_frame &= 0x7ff; 3940 start_frame_id = (start_frame_id >> 3) & 0x7ff; 3941 end_frame_id = (end_frame_id >> 3) & 0x7ff; 3942 3943 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n", 3944 __func__, index, readl(&xhci->run_regs->microframe_index), 3945 start_frame_id, end_frame_id, start_frame); 3946 3947 if (start_frame_id < end_frame_id) { 3948 if (start_frame > end_frame_id || 3949 start_frame < start_frame_id) 3950 ret = -EINVAL; 3951 } else if (start_frame_id > end_frame_id) { 3952 if ((start_frame > end_frame_id && 3953 start_frame < start_frame_id)) 3954 ret = -EINVAL; 3955 } else { 3956 ret = -EINVAL; 3957 } 3958 3959 if (index == 0) { 3960 if (ret == -EINVAL || start_frame == start_frame_id) { 3961 start_frame = start_frame_id + 1; 3962 if (urb->dev->speed == USB_SPEED_LOW || 3963 urb->dev->speed == USB_SPEED_FULL) 3964 urb->start_frame = start_frame; 3965 else 3966 urb->start_frame = start_frame << 3; 3967 ret = 0; 3968 } 3969 } 3970 3971 if (ret) { 3972 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", 3973 start_frame, current_frame_id, index, 3974 start_frame_id, end_frame_id); 3975 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); 3976 return ret; 3977 } 3978 3979 return start_frame; 3980 } 3981 3982 /* Check if we should generate event interrupt for a TD in an isoc URB */ 3983 static bool trb_block_event_intr(struct xhci_hcd *xhci, int num_tds, int i, 3984 struct xhci_interrupter *ir) 3985 { 3986 if (xhci->hci_version < 0x100) 3987 return false; 3988 /* always generate an event interrupt for the last TD */ 3989 if (i == num_tds - 1) 3990 return false; 3991 /* 3992 * If AVOID_BEI is set the host handles full event rings poorly, 3993 * generate an event at least every 8th TD to clear the event ring 3994 */ 3995 if (i && ir->isoc_bei_interval && xhci->quirks & XHCI_AVOID_BEI) 3996 return !!(i % ir->isoc_bei_interval); 3997 3998 return true; 3999 } 4000 4001 /* This is for isoc transfer */ 4002 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 4003 struct urb *urb, int slot_id, unsigned int ep_index) 4004 { 4005 struct xhci_interrupter *ir; 4006 struct xhci_ring *ep_ring; 4007 struct urb_priv *urb_priv; 4008 struct xhci_td *td; 4009 int num_tds, trbs_per_td; 4010 struct xhci_generic_trb *start_trb; 4011 bool first_trb; 4012 int start_cycle; 4013 u32 field, length_field; 4014 int running_total, trb_buff_len, td_len, td_remain_len, ret; 4015 u64 start_addr, addr; 4016 int i, j; 4017 bool more_trbs_coming; 4018 struct xhci_virt_ep *xep; 4019 int frame_id; 4020 4021 xep = &xhci->devs[slot_id]->eps[ep_index]; 4022 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 4023 ir = xhci->interrupters[0]; 4024 4025 num_tds = urb->number_of_packets; 4026 if (num_tds < 1) { 4027 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 4028 return -EINVAL; 4029 } 4030 start_addr = (u64) urb->transfer_dma; 4031 start_trb = &ep_ring->enqueue->generic; 4032 start_cycle = ep_ring->cycle_state; 4033 4034 urb_priv = urb->hcpriv; 4035 /* Queue the TRBs for each TD, even if they are zero-length */ 4036 for (i = 0; i < num_tds; i++) { 4037 unsigned int total_pkt_count, max_pkt; 4038 unsigned int burst_count, last_burst_pkt_count; 4039 u32 sia_frame_id; 4040 4041 first_trb = true; 4042 running_total = 0; 4043 addr = start_addr + urb->iso_frame_desc[i].offset; 4044 td_len = urb->iso_frame_desc[i].length; 4045 td_remain_len = td_len; 4046 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 4047 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); 4048 4049 /* A zero-length transfer still involves at least one packet. */ 4050 if (total_pkt_count == 0) 4051 total_pkt_count++; 4052 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); 4053 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, 4054 urb, total_pkt_count); 4055 4056 trbs_per_td = count_isoc_trbs_needed(urb, i); 4057 4058 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 4059 urb->stream_id, trbs_per_td, urb, i, mem_flags); 4060 if (ret < 0) { 4061 if (i == 0) 4062 return ret; 4063 goto cleanup; 4064 } 4065 td = &urb_priv->td[i]; 4066 /* use SIA as default, if frame id is used overwrite it */ 4067 sia_frame_id = TRB_SIA; 4068 if (!(urb->transfer_flags & URB_ISO_ASAP) && 4069 HCC_CFC(xhci->hcc_params)) { 4070 frame_id = xhci_get_isoc_frame_id(xhci, urb, i); 4071 if (frame_id >= 0) 4072 sia_frame_id = TRB_FRAME_ID(frame_id); 4073 } 4074 /* 4075 * Set isoc specific data for the first TRB in a TD. 4076 * Prevent HW from getting the TRBs by keeping the cycle state 4077 * inverted in the first TDs isoc TRB. 4078 */ 4079 field = TRB_TYPE(TRB_ISOC) | 4080 TRB_TLBPC(last_burst_pkt_count) | 4081 sia_frame_id | 4082 (i ? ep_ring->cycle_state : !start_cycle); 4083 4084 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ 4085 if (!xep->use_extended_tbc) 4086 field |= TRB_TBC(burst_count); 4087 4088 /* fill the rest of the TRB fields, and remaining normal TRBs */ 4089 for (j = 0; j < trbs_per_td; j++) { 4090 u32 remainder = 0; 4091 4092 /* only first TRB is isoc, overwrite otherwise */ 4093 if (!first_trb) 4094 field = TRB_TYPE(TRB_NORMAL) | 4095 ep_ring->cycle_state; 4096 4097 /* Only set interrupt on short packet for IN EPs */ 4098 if (usb_urb_dir_in(urb)) 4099 field |= TRB_ISP; 4100 4101 /* Set the chain bit for all except the last TRB */ 4102 if (j < trbs_per_td - 1) { 4103 more_trbs_coming = true; 4104 field |= TRB_CHAIN; 4105 } else { 4106 more_trbs_coming = false; 4107 td->last_trb = ep_ring->enqueue; 4108 td->last_trb_seg = ep_ring->enq_seg; 4109 field |= TRB_IOC; 4110 if (trb_block_event_intr(xhci, num_tds, i, ir)) 4111 field |= TRB_BEI; 4112 } 4113 /* Calculate TRB length */ 4114 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 4115 if (trb_buff_len > td_remain_len) 4116 trb_buff_len = td_remain_len; 4117 4118 /* Set the TRB length, TD size, & interrupter fields. */ 4119 remainder = xhci_td_remainder(xhci, running_total, 4120 trb_buff_len, td_len, 4121 urb, more_trbs_coming); 4122 4123 length_field = TRB_LEN(trb_buff_len) | 4124 TRB_INTR_TARGET(0); 4125 4126 /* xhci 1.1 with ETE uses TD Size field for TBC */ 4127 if (first_trb && xep->use_extended_tbc) 4128 length_field |= TRB_TD_SIZE_TBC(burst_count); 4129 else 4130 length_field |= TRB_TD_SIZE(remainder); 4131 first_trb = false; 4132 4133 queue_trb(xhci, ep_ring, more_trbs_coming, 4134 lower_32_bits(addr), 4135 upper_32_bits(addr), 4136 length_field, 4137 field); 4138 running_total += trb_buff_len; 4139 4140 addr += trb_buff_len; 4141 td_remain_len -= trb_buff_len; 4142 } 4143 4144 /* Check TD length */ 4145 if (running_total != td_len) { 4146 xhci_err(xhci, "ISOC TD length unmatch\n"); 4147 ret = -EINVAL; 4148 goto cleanup; 4149 } 4150 } 4151 4152 /* store the next frame id */ 4153 if (HCC_CFC(xhci->hcc_params)) 4154 xep->next_frame_id = urb->start_frame + num_tds * urb->interval; 4155 4156 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 4157 if (xhci->quirks & XHCI_AMD_PLL_FIX) 4158 usb_amd_quirk_pll_disable(); 4159 } 4160 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 4161 4162 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 4163 start_cycle, start_trb); 4164 return 0; 4165 cleanup: 4166 /* Clean up a partially enqueued isoc transfer. */ 4167 4168 for (i--; i >= 0; i--) 4169 list_del_init(&urb_priv->td[i].td_list); 4170 4171 /* Use the first TD as a temporary variable to turn the TDs we've queued 4172 * into No-ops with a software-owned cycle bit. That way the hardware 4173 * won't accidentally start executing bogus TDs when we partially 4174 * overwrite them. td->first_trb and td->start_seg are already set. 4175 */ 4176 urb_priv->td[0].last_trb = ep_ring->enqueue; 4177 /* Every TRB except the first & last will have its cycle bit flipped. */ 4178 td_to_noop(xhci, ep_ring, &urb_priv->td[0], true); 4179 4180 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 4181 ep_ring->enqueue = urb_priv->td[0].first_trb; 4182 ep_ring->enq_seg = urb_priv->td[0].start_seg; 4183 ep_ring->cycle_state = start_cycle; 4184 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 4185 return ret; 4186 } 4187 4188 /* 4189 * Check transfer ring to guarantee there is enough room for the urb. 4190 * Update ISO URB start_frame and interval. 4191 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to 4192 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or 4193 * Contiguous Frame ID is not supported by HC. 4194 */ 4195 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 4196 struct urb *urb, int slot_id, unsigned int ep_index) 4197 { 4198 struct xhci_virt_device *xdev; 4199 struct xhci_ring *ep_ring; 4200 struct xhci_ep_ctx *ep_ctx; 4201 int start_frame; 4202 int num_tds, num_trbs, i; 4203 int ret; 4204 struct xhci_virt_ep *xep; 4205 int ist; 4206 4207 xdev = xhci->devs[slot_id]; 4208 xep = &xhci->devs[slot_id]->eps[ep_index]; 4209 ep_ring = xdev->eps[ep_index].ring; 4210 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 4211 4212 num_trbs = 0; 4213 num_tds = urb->number_of_packets; 4214 for (i = 0; i < num_tds; i++) 4215 num_trbs += count_isoc_trbs_needed(urb, i); 4216 4217 /* Check the ring to guarantee there is enough room for the whole urb. 4218 * Do not insert any td of the urb to the ring if the check failed. 4219 */ 4220 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 4221 num_trbs, mem_flags); 4222 if (ret) 4223 return ret; 4224 4225 /* 4226 * Check interval value. This should be done before we start to 4227 * calculate the start frame value. 4228 */ 4229 check_interval(urb, ep_ctx); 4230 4231 /* Calculate the start frame and put it in urb->start_frame. */ 4232 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { 4233 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) { 4234 urb->start_frame = xep->next_frame_id; 4235 goto skip_start_over; 4236 } 4237 } 4238 4239 start_frame = readl(&xhci->run_regs->microframe_index); 4240 start_frame &= 0x3fff; 4241 /* 4242 * Round up to the next frame and consider the time before trb really 4243 * gets scheduled by hardare. 4244 */ 4245 ist = HCS_IST(xhci->hcs_params2) & 0x7; 4246 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 4247 ist <<= 3; 4248 start_frame += ist + XHCI_CFC_DELAY; 4249 start_frame = roundup(start_frame, 8); 4250 4251 /* 4252 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT 4253 * is greate than 8 microframes. 4254 */ 4255 if (urb->dev->speed == USB_SPEED_LOW || 4256 urb->dev->speed == USB_SPEED_FULL) { 4257 start_frame = roundup(start_frame, urb->interval << 3); 4258 urb->start_frame = start_frame >> 3; 4259 } else { 4260 start_frame = roundup(start_frame, urb->interval); 4261 urb->start_frame = start_frame; 4262 } 4263 4264 skip_start_over: 4265 4266 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 4267 } 4268 4269 /**** Command Ring Operations ****/ 4270 4271 /* Generic function for queueing a command TRB on the command ring. 4272 * Check to make sure there's room on the command ring for one command TRB. 4273 * Also check that there's room reserved for commands that must not fail. 4274 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 4275 * then only check for the number of reserved spots. 4276 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 4277 * because the command event handler may want to resubmit a failed command. 4278 */ 4279 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4280 u32 field1, u32 field2, 4281 u32 field3, u32 field4, bool command_must_succeed) 4282 { 4283 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 4284 int ret; 4285 4286 if ((xhci->xhc_state & XHCI_STATE_DYING) || 4287 (xhci->xhc_state & XHCI_STATE_HALTED)) { 4288 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); 4289 return -ESHUTDOWN; 4290 } 4291 4292 if (!command_must_succeed) 4293 reserved_trbs++; 4294 4295 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 4296 reserved_trbs, GFP_ATOMIC); 4297 if (ret < 0) { 4298 xhci_err(xhci, "ERR: No room for command on command ring\n"); 4299 if (command_must_succeed) 4300 xhci_err(xhci, "ERR: Reserved TRB counting for " 4301 "unfailable commands failed.\n"); 4302 return ret; 4303 } 4304 4305 cmd->command_trb = xhci->cmd_ring->enqueue; 4306 4307 /* if there are no other commands queued we start the timeout timer */ 4308 if (list_empty(&xhci->cmd_list)) { 4309 xhci->current_cmd = cmd; 4310 xhci_mod_cmd_timer(xhci); 4311 } 4312 4313 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 4314 4315 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 4316 field4 | xhci->cmd_ring->cycle_state); 4317 return 0; 4318 } 4319 4320 /* Queue a slot enable or disable request on the command ring */ 4321 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 4322 u32 trb_type, u32 slot_id) 4323 { 4324 return queue_command(xhci, cmd, 0, 0, 0, 4325 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 4326 } 4327 4328 /* Queue an address device command TRB */ 4329 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4330 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 4331 { 4332 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4333 upper_32_bits(in_ctx_ptr), 0, 4334 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 4335 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 4336 } 4337 4338 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4339 u32 field1, u32 field2, u32 field3, u32 field4) 4340 { 4341 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 4342 } 4343 4344 /* Queue a reset device command TRB */ 4345 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4346 u32 slot_id) 4347 { 4348 return queue_command(xhci, cmd, 0, 0, 0, 4349 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 4350 false); 4351 } 4352 4353 /* Queue a configure endpoint command TRB */ 4354 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 4355 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 4356 u32 slot_id, bool command_must_succeed) 4357 { 4358 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4359 upper_32_bits(in_ctx_ptr), 0, 4360 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 4361 command_must_succeed); 4362 } 4363 4364 /* Queue an evaluate context command TRB */ 4365 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 4366 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 4367 { 4368 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4369 upper_32_bits(in_ctx_ptr), 0, 4370 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 4371 command_must_succeed); 4372 } 4373 4374 /* 4375 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 4376 * activity on an endpoint that is about to be suspended. 4377 */ 4378 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 4379 int slot_id, unsigned int ep_index, int suspend) 4380 { 4381 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4382 u32 trb_ep_index = EP_INDEX_FOR_TRB(ep_index); 4383 u32 type = TRB_TYPE(TRB_STOP_RING); 4384 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 4385 4386 return queue_command(xhci, cmd, 0, 0, 0, 4387 trb_slot_id | trb_ep_index | type | trb_suspend, false); 4388 } 4389 4390 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 4391 int slot_id, unsigned int ep_index, 4392 enum xhci_ep_reset_type reset_type) 4393 { 4394 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4395 u32 trb_ep_index = EP_INDEX_FOR_TRB(ep_index); 4396 u32 type = TRB_TYPE(TRB_RESET_EP); 4397 4398 if (reset_type == EP_SOFT_RESET) 4399 type |= TRB_TSP; 4400 4401 return queue_command(xhci, cmd, 0, 0, 0, 4402 trb_slot_id | trb_ep_index | type, false); 4403 } 4404