1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 /* 12 * Ring initialization rules: 13 * 1. Each segment is initialized to zero, except for link TRBs. 14 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 15 * Consumer Cycle State (CCS), depending on ring function. 16 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 17 * 18 * Ring behavior rules: 19 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 20 * least one free TRB in the ring. This is useful if you want to turn that 21 * into a link TRB and expand the ring. 22 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 23 * link TRB, then load the pointer with the address in the link TRB. If the 24 * link TRB had its toggle bit set, you may need to update the ring cycle 25 * state (see cycle bit rules). You may have to do this multiple times 26 * until you reach a non-link TRB. 27 * 3. A ring is full if enqueue++ (for the definition of increment above) 28 * equals the dequeue pointer. 29 * 30 * Cycle bit rules: 31 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 32 * in a link TRB, it must toggle the ring cycle state. 33 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 34 * in a link TRB, it must toggle the ring cycle state. 35 * 36 * Producer rules: 37 * 1. Check if ring is full before you enqueue. 38 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 39 * Update enqueue pointer between each write (which may update the ring 40 * cycle state). 41 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 42 * and endpoint rings. If HC is the producer for the event ring, 43 * and it generates an interrupt according to interrupt modulation rules. 44 * 45 * Consumer rules: 46 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 47 * the TRB is owned by the consumer. 48 * 2. Update dequeue pointer (which may update the ring cycle state) and 49 * continue processing TRBs until you reach a TRB which is not owned by you. 50 * 3. Notify the producer. SW is the consumer for the event ring, and it 51 * updates event ring dequeue pointer. HC is the consumer for the command and 52 * endpoint rings; it generates events on the event ring for these. 53 */ 54 55 #include <linux/jiffies.h> 56 #include <linux/scatterlist.h> 57 #include <linux/slab.h> 58 #include <linux/string_choices.h> 59 #include <linux/dma-mapping.h> 60 #include "xhci.h" 61 #include "xhci-trace.h" 62 63 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 64 u32 field1, u32 field2, 65 u32 field3, u32 field4, bool command_must_succeed); 66 67 /* 68 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 69 * address of the TRB. 70 */ 71 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 72 union xhci_trb *trb) 73 { 74 unsigned long segment_offset; 75 76 if (!seg || !trb || trb < seg->trbs) 77 return 0; 78 /* offset in TRBs */ 79 segment_offset = trb - seg->trbs; 80 if (segment_offset >= TRBS_PER_SEGMENT) 81 return 0; 82 return seg->dma + (segment_offset * sizeof(*trb)); 83 } 84 85 static bool trb_is_noop(union xhci_trb *trb) 86 { 87 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); 88 } 89 90 static bool trb_is_link(union xhci_trb *trb) 91 { 92 return TRB_TYPE_LINK_LE32(trb->link.control); 93 } 94 95 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) 96 { 97 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; 98 } 99 100 static bool last_trb_on_ring(struct xhci_ring *ring, 101 struct xhci_segment *seg, union xhci_trb *trb) 102 { 103 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); 104 } 105 106 static bool link_trb_toggles_cycle(union xhci_trb *trb) 107 { 108 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 109 } 110 111 static bool last_td_in_urb(struct xhci_td *td) 112 { 113 struct urb_priv *urb_priv = td->urb->hcpriv; 114 115 return urb_priv->num_tds_done == urb_priv->num_tds; 116 } 117 118 static bool unhandled_event_trb(struct xhci_ring *ring) 119 { 120 return ((le32_to_cpu(ring->dequeue->event_cmd.flags) & TRB_CYCLE) == 121 ring->cycle_state); 122 } 123 124 static void inc_td_cnt(struct urb *urb) 125 { 126 struct urb_priv *urb_priv = urb->hcpriv; 127 128 urb_priv->num_tds_done++; 129 } 130 131 static void trb_to_noop(union xhci_trb *trb, u32 noop_type) 132 { 133 if (trb_is_link(trb)) { 134 /* unchain chained link TRBs */ 135 trb->link.control &= cpu_to_le32(~TRB_CHAIN); 136 } else { 137 trb->generic.field[0] = 0; 138 trb->generic.field[1] = 0; 139 trb->generic.field[2] = 0; 140 /* Preserve only the cycle bit of this TRB */ 141 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 142 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); 143 } 144 } 145 146 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 147 * TRB is in a new segment. This does not skip over link TRBs, and it does not 148 * effect the ring dequeue or enqueue pointers. 149 */ 150 static void next_trb(struct xhci_segment **seg, 151 union xhci_trb **trb) 152 { 153 if (trb_is_link(*trb) || last_trb_on_seg(*seg, *trb)) { 154 *seg = (*seg)->next; 155 *trb = ((*seg)->trbs); 156 } else { 157 (*trb)++; 158 } 159 } 160 161 /* 162 * See Cycle bit rules. SW is the consumer for the event ring only. 163 */ 164 void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 165 { 166 unsigned int link_trb_count = 0; 167 168 /* event ring doesn't have link trbs, check for last trb */ 169 if (ring->type == TYPE_EVENT) { 170 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 171 ring->dequeue++; 172 return; 173 } 174 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) 175 ring->cycle_state ^= 1; 176 ring->deq_seg = ring->deq_seg->next; 177 ring->dequeue = ring->deq_seg->trbs; 178 179 trace_xhci_inc_deq(ring); 180 181 return; 182 } 183 184 /* All other rings have link trbs */ 185 if (!trb_is_link(ring->dequeue)) { 186 if (last_trb_on_seg(ring->deq_seg, ring->dequeue)) 187 xhci_warn(xhci, "Missing link TRB at end of segment\n"); 188 else 189 ring->dequeue++; 190 } 191 192 while (trb_is_link(ring->dequeue)) { 193 ring->deq_seg = ring->deq_seg->next; 194 ring->dequeue = ring->deq_seg->trbs; 195 196 trace_xhci_inc_deq(ring); 197 198 if (link_trb_count++ > ring->num_segs) { 199 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 200 break; 201 } 202 } 203 return; 204 } 205 206 /* 207 * If enqueue points at a link TRB, follow links until an ordinary TRB is reached. 208 * Toggle the cycle bit of passed link TRBs and optionally chain them. 209 */ 210 static void inc_enq_past_link(struct xhci_hcd *xhci, struct xhci_ring *ring, u32 chain) 211 { 212 unsigned int link_trb_count = 0; 213 214 while (trb_is_link(ring->enqueue)) { 215 216 /* 217 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 218 * set, but other sections talk about dealing with the chain bit set. This was 219 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 220 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 221 * 222 * On 0.95 and some 0.96 HCs the chain bit is set once at segment initalization 223 * and never changed here. On all others, modify it as requested by the caller. 224 */ 225 if (!xhci_link_chain_quirk(xhci, ring->type)) { 226 ring->enqueue->link.control &= cpu_to_le32(~TRB_CHAIN); 227 ring->enqueue->link.control |= cpu_to_le32(chain); 228 } 229 230 /* Give this link TRB to the hardware */ 231 wmb(); 232 ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); 233 234 /* Toggle the cycle bit after the last ring segment. */ 235 if (link_trb_toggles_cycle(ring->enqueue)) 236 ring->cycle_state ^= 1; 237 238 ring->enq_seg = ring->enq_seg->next; 239 ring->enqueue = ring->enq_seg->trbs; 240 241 trace_xhci_inc_enq(ring); 242 243 if (link_trb_count++ > ring->num_segs) { 244 xhci_warn(xhci, "Link TRB loop at enqueue\n"); 245 break; 246 } 247 } 248 } 249 250 /* 251 * See Cycle bit rules. SW is the consumer for the event ring only. 252 * 253 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 254 * chain bit is set), then set the chain bit in all the following link TRBs. 255 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 256 * have their chain bit cleared (so that each Link TRB is a separate TD). 257 * 258 * @more_trbs_coming: Will you enqueue more TRBs before calling 259 * prepare_transfer()? 260 */ 261 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 262 bool more_trbs_coming) 263 { 264 u32 chain; 265 266 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 267 268 if (last_trb_on_seg(ring->enq_seg, ring->enqueue)) { 269 xhci_err(xhci, "Tried to move enqueue past ring segment\n"); 270 return; 271 } 272 273 ring->enqueue++; 274 275 /* 276 * If we are in the middle of a TD or the caller plans to enqueue more 277 * TDs as one transfer (eg. control), traverse any link TRBs right now. 278 * Otherwise, enqueue can stay on a link until the next prepare_ring(). 279 * This avoids enqueue entering deq_seg and simplifies ring expansion. 280 */ 281 if (trb_is_link(ring->enqueue) && (chain || more_trbs_coming)) 282 inc_enq_past_link(xhci, ring, chain); 283 } 284 285 /* 286 * If the suspect DMA address is a TRB in this TD, this function returns that 287 * TRB's segment. Otherwise it returns 0. 288 */ 289 static struct xhci_segment *trb_in_td(struct xhci_td *td, dma_addr_t suspect_dma) 290 { 291 dma_addr_t start_dma; 292 dma_addr_t end_seg_dma; 293 dma_addr_t end_trb_dma; 294 struct xhci_segment *cur_seg; 295 296 start_dma = xhci_trb_virt_to_dma(td->start_seg, td->start_trb); 297 cur_seg = td->start_seg; 298 299 do { 300 if (start_dma == 0) 301 return NULL; 302 /* We may get an event for a Link TRB in the middle of a TD */ 303 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 304 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 305 /* If the end TRB isn't in this segment, this is set to 0 */ 306 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, td->end_trb); 307 308 if (end_trb_dma > 0) { 309 /* The end TRB is in this segment, so suspect should be here */ 310 if (start_dma <= end_trb_dma) { 311 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 312 return cur_seg; 313 } else { 314 /* Case for one segment with 315 * a TD wrapped around to the top 316 */ 317 if ((suspect_dma >= start_dma && 318 suspect_dma <= end_seg_dma) || 319 (suspect_dma >= cur_seg->dma && 320 suspect_dma <= end_trb_dma)) 321 return cur_seg; 322 } 323 return NULL; 324 } 325 /* Might still be somewhere in this segment */ 326 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 327 return cur_seg; 328 329 cur_seg = cur_seg->next; 330 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 331 } while (cur_seg != td->start_seg); 332 333 return NULL; 334 } 335 336 /* 337 * Return number of free normal TRBs from enqueue to dequeue pointer on ring. 338 * Not counting an assumed link TRB at end of each TRBS_PER_SEGMENT sized segment. 339 * Only for transfer and command rings where driver is the producer, not for 340 * event rings. 341 */ 342 static unsigned int xhci_num_trbs_free(struct xhci_ring *ring) 343 { 344 struct xhci_segment *enq_seg = ring->enq_seg; 345 union xhci_trb *enq = ring->enqueue; 346 union xhci_trb *last_on_seg; 347 unsigned int free = 0; 348 int i = 0; 349 350 /* Ring might be empty even if enq != deq if enq is left on a link trb */ 351 if (trb_is_link(enq)) { 352 enq_seg = enq_seg->next; 353 enq = enq_seg->trbs; 354 } 355 356 /* Empty ring, common case, don't walk the segments */ 357 if (enq == ring->dequeue) 358 return ring->num_segs * (TRBS_PER_SEGMENT - 1); 359 360 do { 361 if (ring->deq_seg == enq_seg && ring->dequeue >= enq) 362 return free + (ring->dequeue - enq); 363 last_on_seg = &enq_seg->trbs[TRBS_PER_SEGMENT - 1]; 364 free += last_on_seg - enq; 365 enq_seg = enq_seg->next; 366 enq = enq_seg->trbs; 367 } while (i++ < ring->num_segs); 368 369 return free; 370 } 371 372 /* 373 * Check to see if there's room to enqueue num_trbs on the ring and make sure 374 * enqueue pointer will not advance into dequeue segment. See rules above. 375 * return number of new segments needed to ensure this. 376 */ 377 378 static unsigned int xhci_ring_expansion_needed(struct xhci_hcd *xhci, struct xhci_ring *ring, 379 unsigned int num_trbs) 380 { 381 struct xhci_segment *seg; 382 int trbs_past_seg; 383 int enq_used; 384 int new_segs; 385 386 enq_used = ring->enqueue - ring->enq_seg->trbs; 387 388 /* how many trbs will be queued past the enqueue segment? */ 389 trbs_past_seg = enq_used + num_trbs - (TRBS_PER_SEGMENT - 1); 390 391 /* 392 * Consider expanding the ring already if num_trbs fills the current 393 * segment (i.e. trbs_past_seg == 0), not only when num_trbs goes into 394 * the next segment. Avoids confusing full ring with special empty ring 395 * case below 396 */ 397 if (trbs_past_seg < 0) 398 return 0; 399 400 /* Empty ring special case, enqueue stuck on link trb while dequeue advanced */ 401 if (trb_is_link(ring->enqueue) && ring->enq_seg->next->trbs == ring->dequeue) 402 return 0; 403 404 new_segs = 1 + (trbs_past_seg / (TRBS_PER_SEGMENT - 1)); 405 seg = ring->enq_seg; 406 407 while (new_segs > 0) { 408 seg = seg->next; 409 if (seg == ring->deq_seg) { 410 xhci_dbg(xhci, "Adding %d trbs requires expanding ring by %d segments\n", 411 num_trbs, new_segs); 412 return new_segs; 413 } 414 new_segs--; 415 } 416 417 return 0; 418 } 419 420 /* Ring the host controller doorbell after placing a command on the ring */ 421 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 422 { 423 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 424 return; 425 426 xhci_dbg(xhci, "// Ding dong!\n"); 427 428 trace_xhci_ring_host_doorbell(0, DB_VALUE_HOST); 429 430 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 431 /* Flush PCI posted writes */ 432 readl(&xhci->dba->doorbell[0]); 433 } 434 435 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci) 436 { 437 return mod_delayed_work(system_wq, &xhci->cmd_timer, 438 msecs_to_jiffies(xhci->current_cmd->timeout_ms)); 439 } 440 441 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) 442 { 443 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, 444 cmd_list); 445 } 446 447 /* 448 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 449 * If there are other commands waiting then restart the ring and kick the timer. 450 * This must be called with command ring stopped and xhci->lock held. 451 */ 452 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 453 struct xhci_command *cur_cmd) 454 { 455 struct xhci_command *i_cmd; 456 457 /* Turn all aborted commands in list to no-ops, then restart */ 458 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { 459 460 if (i_cmd->status != COMP_COMMAND_ABORTED) 461 continue; 462 463 i_cmd->status = COMP_COMMAND_RING_STOPPED; 464 465 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 466 i_cmd->command_trb); 467 468 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); 469 470 /* 471 * caller waiting for completion is called when command 472 * completion event is received for these no-op commands 473 */ 474 } 475 476 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 477 478 /* ring command ring doorbell to restart the command ring */ 479 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 480 !(xhci->xhc_state & XHCI_STATE_DYING)) { 481 xhci->current_cmd = cur_cmd; 482 if (cur_cmd) 483 xhci_mod_cmd_timer(xhci); 484 xhci_ring_cmd_db(xhci); 485 } 486 } 487 488 /* Must be called with xhci->lock held, releases and acquires lock back */ 489 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) 490 { 491 struct xhci_segment *new_seg = xhci->cmd_ring->deq_seg; 492 union xhci_trb *new_deq = xhci->cmd_ring->dequeue; 493 u64 crcr; 494 int ret; 495 496 xhci_dbg(xhci, "Abort command ring\n"); 497 498 reinit_completion(&xhci->cmd_ring_stop_completion); 499 500 /* 501 * The control bits like command stop, abort are located in lower 502 * dword of the command ring control register. 503 * Some controllers require all 64 bits to be written to abort the ring. 504 * Make sure the upper dword is valid, pointing to the next command, 505 * avoiding corrupting the command ring pointer in case the command ring 506 * is stopped by the time the upper dword is written. 507 */ 508 next_trb(&new_seg, &new_deq); 509 if (trb_is_link(new_deq)) 510 next_trb(&new_seg, &new_deq); 511 512 crcr = xhci_trb_virt_to_dma(new_seg, new_deq); 513 xhci_write_64(xhci, crcr | CMD_RING_ABORT, &xhci->op_regs->cmd_ring); 514 515 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the 516 * completion of the Command Abort operation. If CRR is not negated in 5 517 * seconds then driver handles it as if host died (-ENODEV). 518 * In the future we should distinguish between -ENODEV and -ETIMEDOUT 519 * and try to recover a -ETIMEDOUT with a host controller reset. 520 */ 521 ret = xhci_handshake(&xhci->op_regs->cmd_ring, 522 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 523 if (ret < 0) { 524 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret); 525 xhci_halt(xhci); 526 xhci_hc_died(xhci); 527 return ret; 528 } 529 /* 530 * Writing the CMD_RING_ABORT bit should cause a cmd completion event, 531 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared 532 * but the completion event in never sent. Wait 2 secs (arbitrary 533 * number) to handle those cases after negation of CMD_RING_RUNNING. 534 */ 535 spin_unlock_irqrestore(&xhci->lock, flags); 536 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, 537 msecs_to_jiffies(2000)); 538 spin_lock_irqsave(&xhci->lock, flags); 539 if (!ret) { 540 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); 541 xhci_cleanup_command_queue(xhci); 542 } else { 543 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); 544 } 545 return 0; 546 } 547 548 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 549 unsigned int slot_id, 550 unsigned int ep_index, 551 unsigned int stream_id) 552 { 553 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 554 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 555 unsigned int ep_state = ep->ep_state; 556 557 /* Don't ring the doorbell for this endpoint if there are pending 558 * cancellations because we don't want to interrupt processing. 559 * We don't want to restart any stream rings if there's a set dequeue 560 * pointer command pending because the device can choose to start any 561 * stream once the endpoint is on the HW schedule. 562 */ 563 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || 564 (ep_state & EP_HALTED) || (ep_state & EP_CLEARING_TT)) 565 return; 566 567 trace_xhci_ring_ep_doorbell(slot_id, DB_VALUE(ep_index, stream_id)); 568 569 writel(DB_VALUE(ep_index, stream_id), db_addr); 570 /* flush the write */ 571 readl(db_addr); 572 } 573 574 /* Ring the doorbell for any rings with pending URBs */ 575 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 576 unsigned int slot_id, 577 unsigned int ep_index) 578 { 579 unsigned int stream_id; 580 struct xhci_virt_ep *ep; 581 582 ep = &xhci->devs[slot_id]->eps[ep_index]; 583 584 /* A ring has pending URBs if its TD list is not empty */ 585 if (!(ep->ep_state & EP_HAS_STREAMS)) { 586 if (ep->ring && !(list_empty(&ep->ring->td_list))) 587 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 588 return; 589 } 590 591 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 592 stream_id++) { 593 struct xhci_stream_info *stream_info = ep->stream_info; 594 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 595 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 596 stream_id); 597 } 598 } 599 600 void xhci_ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 601 unsigned int slot_id, 602 unsigned int ep_index) 603 { 604 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 605 } 606 607 static struct xhci_virt_ep *xhci_get_virt_ep(struct xhci_hcd *xhci, 608 unsigned int slot_id, 609 unsigned int ep_index) 610 { 611 if (slot_id == 0 || slot_id >= MAX_HC_SLOTS) { 612 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 613 return NULL; 614 } 615 if (ep_index >= EP_CTX_PER_DEV) { 616 xhci_warn(xhci, "Invalid endpoint index %u\n", ep_index); 617 return NULL; 618 } 619 if (!xhci->devs[slot_id]) { 620 xhci_warn(xhci, "No xhci virt device for slot_id %u\n", slot_id); 621 return NULL; 622 } 623 624 return &xhci->devs[slot_id]->eps[ep_index]; 625 } 626 627 static struct xhci_ring *xhci_virt_ep_to_ring(struct xhci_hcd *xhci, 628 struct xhci_virt_ep *ep, 629 unsigned int stream_id) 630 { 631 /* common case, no streams */ 632 if (!(ep->ep_state & EP_HAS_STREAMS)) 633 return ep->ring; 634 635 if (!ep->stream_info) 636 return NULL; 637 638 if (stream_id == 0 || stream_id >= ep->stream_info->num_streams) { 639 xhci_warn(xhci, "Invalid stream_id %u request for slot_id %u ep_index %u\n", 640 stream_id, ep->vdev->slot_id, ep->ep_index); 641 return NULL; 642 } 643 644 return ep->stream_info->stream_rings[stream_id]; 645 } 646 647 /* Get the right ring for the given slot_id, ep_index and stream_id. 648 * If the endpoint supports streams, boundary check the URB's stream ID. 649 * If the endpoint doesn't support streams, return the singular endpoint ring. 650 */ 651 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 652 unsigned int slot_id, unsigned int ep_index, 653 unsigned int stream_id) 654 { 655 struct xhci_virt_ep *ep; 656 657 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 658 if (!ep) 659 return NULL; 660 661 return xhci_virt_ep_to_ring(xhci, ep, stream_id); 662 } 663 664 665 /* 666 * Get the hw dequeue pointer xHC stopped on, either directly from the 667 * endpoint context, or if streams are in use from the stream context. 668 * The returned hw_dequeue contains the lowest four bits with cycle state 669 * and possbile stream context type. 670 */ 671 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev, 672 unsigned int ep_index, unsigned int stream_id) 673 { 674 struct xhci_ep_ctx *ep_ctx; 675 struct xhci_stream_ctx *st_ctx; 676 struct xhci_virt_ep *ep; 677 678 ep = &vdev->eps[ep_index]; 679 680 if (ep->ep_state & EP_HAS_STREAMS) { 681 st_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 682 return le64_to_cpu(st_ctx->stream_ring); 683 } 684 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 685 return le64_to_cpu(ep_ctx->deq); 686 } 687 688 static int xhci_move_dequeue_past_td(struct xhci_hcd *xhci, 689 unsigned int slot_id, unsigned int ep_index, 690 unsigned int stream_id, struct xhci_td *td) 691 { 692 struct xhci_virt_device *dev = xhci->devs[slot_id]; 693 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 694 struct xhci_ring *ep_ring; 695 struct xhci_command *cmd; 696 struct xhci_segment *new_seg; 697 union xhci_trb *new_deq; 698 int new_cycle; 699 dma_addr_t addr; 700 u64 hw_dequeue; 701 bool hw_dequeue_found = false; 702 bool td_last_trb_found = false; 703 u32 trb_sct = 0; 704 int ret; 705 706 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 707 ep_index, stream_id); 708 if (!ep_ring) { 709 xhci_warn(xhci, "WARN can't find new dequeue, invalid stream ID %u\n", 710 stream_id); 711 return -ENODEV; 712 } 713 714 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id); 715 new_seg = ep_ring->deq_seg; 716 new_deq = ep_ring->dequeue; 717 new_cycle = le32_to_cpu(td->end_trb->generic.field[3]) & TRB_CYCLE; 718 719 /* 720 * Walk the ring until both the next TRB and hw_dequeue are found (don't 721 * move hw_dequeue back if it went forward due to a HW bug). Cycle state 722 * is loaded from a known good TRB, track later toggles to maintain it. 723 */ 724 do { 725 if (!hw_dequeue_found && xhci_trb_virt_to_dma(new_seg, new_deq) 726 == (dma_addr_t)(hw_dequeue & ~0xf)) { 727 hw_dequeue_found = true; 728 if (td_last_trb_found) 729 break; 730 } 731 if (new_deq == td->end_trb) 732 td_last_trb_found = true; 733 734 if (td_last_trb_found && trb_is_link(new_deq) && 735 link_trb_toggles_cycle(new_deq)) 736 new_cycle ^= 0x1; 737 738 next_trb(&new_seg, &new_deq); 739 740 /* Search wrapped around, bail out */ 741 if (new_deq == ep->ring->dequeue) { 742 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 743 return -EINVAL; 744 } 745 746 } while (!hw_dequeue_found || !td_last_trb_found); 747 748 /* Don't update the ring cycle state for the producer (us). */ 749 addr = xhci_trb_virt_to_dma(new_seg, new_deq); 750 if (addr == 0) { 751 xhci_warn(xhci, "Can't find dma of new dequeue ptr\n"); 752 xhci_warn(xhci, "deq seg = %p, deq ptr = %p\n", new_seg, new_deq); 753 return -EINVAL; 754 } 755 756 if ((ep->ep_state & SET_DEQ_PENDING)) { 757 xhci_warn(xhci, "Set TR Deq already pending, don't submit for 0x%pad\n", 758 &addr); 759 return -EBUSY; 760 } 761 762 /* This function gets called from contexts where it cannot sleep */ 763 cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC); 764 if (!cmd) { 765 xhci_warn(xhci, "Can't alloc Set TR Deq cmd 0x%pad\n", &addr); 766 return -ENOMEM; 767 } 768 769 if (stream_id) 770 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 771 ret = queue_command(xhci, cmd, 772 lower_32_bits(addr) | trb_sct | new_cycle, 773 upper_32_bits(addr), 774 STREAM_ID_FOR_TRB(stream_id), SLOT_ID_FOR_TRB(slot_id) | 775 EP_INDEX_FOR_TRB(ep_index) | TRB_TYPE(TRB_SET_DEQ), false); 776 if (ret < 0) { 777 xhci_free_command(xhci, cmd); 778 return ret; 779 } 780 ep->queued_deq_seg = new_seg; 781 ep->queued_deq_ptr = new_deq; 782 783 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 784 "Set TR Deq ptr 0x%llx, cycle %u\n", addr, new_cycle); 785 786 /* Stop the TD queueing code from ringing the doorbell until 787 * this command completes. The HC won't set the dequeue pointer 788 * if the ring is running, and ringing the doorbell starts the 789 * ring running. 790 */ 791 ep->ep_state |= SET_DEQ_PENDING; 792 xhci_ring_cmd_db(xhci); 793 return 0; 794 } 795 796 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 797 * (The last TRB actually points to the ring enqueue pointer, which is not part 798 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 799 */ 800 static void td_to_noop(struct xhci_td *td, bool flip_cycle) 801 { 802 struct xhci_segment *seg = td->start_seg; 803 union xhci_trb *trb = td->start_trb; 804 805 while (1) { 806 trb_to_noop(trb, TRB_TR_NOOP); 807 808 /* flip cycle if asked to */ 809 if (flip_cycle && trb != td->start_trb && trb != td->end_trb) 810 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); 811 812 if (trb == td->end_trb) 813 break; 814 815 next_trb(&seg, &trb); 816 } 817 } 818 819 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 820 struct xhci_td *cur_td, int status) 821 { 822 struct urb *urb = cur_td->urb; 823 struct urb_priv *urb_priv = urb->hcpriv; 824 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 825 826 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 827 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 828 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 829 if (xhci->quirks & XHCI_AMD_PLL_FIX) 830 usb_amd_quirk_pll_enable(); 831 } 832 } 833 xhci_urb_free_priv(urb_priv); 834 usb_hcd_unlink_urb_from_ep(hcd, urb); 835 trace_xhci_urb_giveback(urb); 836 usb_hcd_giveback_urb(hcd, urb, status); 837 } 838 839 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, 840 struct xhci_ring *ring, struct xhci_td *td) 841 { 842 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 843 struct xhci_segment *seg = td->bounce_seg; 844 struct urb *urb = td->urb; 845 size_t len; 846 847 if (!ring || !seg || !urb) 848 return; 849 850 if (usb_urb_dir_out(urb)) { 851 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 852 DMA_TO_DEVICE); 853 return; 854 } 855 856 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 857 DMA_FROM_DEVICE); 858 /* for in transfers we need to copy the data from bounce to sg */ 859 if (urb->num_sgs) { 860 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, seg->bounce_buf, 861 seg->bounce_len, seg->bounce_offs); 862 if (len != seg->bounce_len) 863 xhci_warn(xhci, "WARN Wrong bounce buffer read length: %zu != %d\n", 864 len, seg->bounce_len); 865 } else { 866 memcpy(urb->transfer_buffer + seg->bounce_offs, seg->bounce_buf, 867 seg->bounce_len); 868 } 869 seg->bounce_len = 0; 870 seg->bounce_offs = 0; 871 } 872 873 static void xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, 874 struct xhci_ring *ep_ring, int status) 875 { 876 struct urb *urb = NULL; 877 878 /* Clean up the endpoint's TD list */ 879 urb = td->urb; 880 881 /* if a bounce buffer was used to align this td then unmap it */ 882 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); 883 884 /* Do one last check of the actual transfer length. 885 * If the host controller said we transferred more data than the buffer 886 * length, urb->actual_length will be a very big number (since it's 887 * unsigned). Play it safe and say we didn't transfer anything. 888 */ 889 if (urb->actual_length > urb->transfer_buffer_length) { 890 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", 891 urb->transfer_buffer_length, urb->actual_length); 892 urb->actual_length = 0; 893 status = 0; 894 } 895 /* TD might be removed from td_list if we are giving back a cancelled URB */ 896 if (!list_empty(&td->td_list)) 897 list_del_init(&td->td_list); 898 /* Giving back a cancelled URB, or if a slated TD completed anyway */ 899 if (!list_empty(&td->cancelled_td_list)) 900 list_del_init(&td->cancelled_td_list); 901 902 inc_td_cnt(urb); 903 /* Giveback the urb when all the tds are completed */ 904 if (last_td_in_urb(td)) { 905 if ((urb->actual_length != urb->transfer_buffer_length && 906 (urb->transfer_flags & URB_SHORT_NOT_OK)) || 907 (status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) 908 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", 909 urb, urb->actual_length, 910 urb->transfer_buffer_length, status); 911 912 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ 913 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 914 status = 0; 915 xhci_giveback_urb_in_irq(xhci, td, status); 916 } 917 } 918 919 /* Give back previous TD and move on to the next TD. */ 920 static void xhci_dequeue_td(struct xhci_hcd *xhci, struct xhci_td *td, struct xhci_ring *ring, 921 u32 status) 922 { 923 ring->dequeue = td->end_trb; 924 ring->deq_seg = td->end_seg; 925 inc_deq(xhci, ring); 926 927 xhci_td_cleanup(xhci, td, ring, status); 928 } 929 930 /* Complete the cancelled URBs we unlinked from td_list. */ 931 static void xhci_giveback_invalidated_tds(struct xhci_virt_ep *ep) 932 { 933 struct xhci_ring *ring; 934 struct xhci_td *td, *tmp_td; 935 936 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 937 cancelled_td_list) { 938 939 ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 940 941 if (td->cancel_status == TD_CLEARED) { 942 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 943 __func__, td->urb); 944 xhci_td_cleanup(ep->xhci, td, ring, td->status); 945 } else { 946 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 947 __func__, td->urb, td->cancel_status); 948 } 949 if (ep->xhci->xhc_state & XHCI_STATE_DYING) 950 return; 951 } 952 } 953 954 static int xhci_reset_halted_ep(struct xhci_hcd *xhci, unsigned int slot_id, 955 unsigned int ep_index, enum xhci_ep_reset_type reset_type) 956 { 957 struct xhci_command *command; 958 int ret = 0; 959 960 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 961 if (!command) { 962 ret = -ENOMEM; 963 goto done; 964 } 965 966 xhci_dbg(xhci, "%s-reset ep %u, slot %u\n", 967 (reset_type == EP_HARD_RESET) ? "Hard" : "Soft", 968 ep_index, slot_id); 969 970 ret = xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type); 971 done: 972 if (ret) 973 xhci_err(xhci, "ERROR queuing reset endpoint for slot %d ep_index %d, %d\n", 974 slot_id, ep_index, ret); 975 return ret; 976 } 977 978 static int xhci_handle_halted_endpoint(struct xhci_hcd *xhci, 979 struct xhci_virt_ep *ep, 980 struct xhci_td *td, 981 enum xhci_ep_reset_type reset_type) 982 { 983 unsigned int slot_id = ep->vdev->slot_id; 984 int err; 985 986 /* 987 * Avoid resetting endpoint if link is inactive. Can cause host hang. 988 * Device will be reset soon to recover the link so don't do anything 989 */ 990 if (ep->vdev->flags & VDEV_PORT_ERROR) 991 return -ENODEV; 992 993 /* add td to cancelled list and let reset ep handler take care of it */ 994 if (reset_type == EP_HARD_RESET) { 995 ep->ep_state |= EP_HARD_CLEAR_TOGGLE; 996 if (td && list_empty(&td->cancelled_td_list)) { 997 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 998 td->cancel_status = TD_HALTED; 999 } 1000 } 1001 1002 if (ep->ep_state & EP_HALTED) { 1003 xhci_dbg(xhci, "Reset ep command for ep_index %d already pending\n", 1004 ep->ep_index); 1005 return 0; 1006 } 1007 1008 err = xhci_reset_halted_ep(xhci, slot_id, ep->ep_index, reset_type); 1009 if (err) 1010 return err; 1011 1012 ep->ep_state |= EP_HALTED; 1013 1014 xhci_ring_cmd_db(xhci); 1015 1016 return 0; 1017 } 1018 1019 /* 1020 * Fix up the ep ring first, so HW stops executing cancelled TDs. 1021 * We have the xHCI lock, so nothing can modify this list until we drop it. 1022 * We're also in the event handler, so we can't get re-interrupted if another 1023 * Stop Endpoint command completes. 1024 * 1025 * only call this when ring is not in a running state 1026 */ 1027 1028 static int xhci_invalidate_cancelled_tds(struct xhci_virt_ep *ep) 1029 { 1030 struct xhci_hcd *xhci; 1031 struct xhci_td *td = NULL; 1032 struct xhci_td *tmp_td = NULL; 1033 struct xhci_td *cached_td = NULL; 1034 struct xhci_ring *ring; 1035 u64 hw_deq; 1036 unsigned int slot_id = ep->vdev->slot_id; 1037 int err; 1038 1039 /* 1040 * This is not going to work if the hardware is changing its dequeue 1041 * pointers as we look at them. Completion handler will call us later. 1042 */ 1043 if (ep->ep_state & SET_DEQ_PENDING) 1044 return 0; 1045 1046 xhci = ep->xhci; 1047 1048 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 1049 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1050 "Removing canceled TD starting at 0x%llx (dma) in stream %u URB %p", 1051 (unsigned long long)xhci_trb_virt_to_dma( 1052 td->start_seg, td->start_trb), 1053 td->urb->stream_id, td->urb); 1054 list_del_init(&td->td_list); 1055 ring = xhci_urb_to_transfer_ring(xhci, td->urb); 1056 if (!ring) { 1057 xhci_warn(xhci, "WARN Cancelled URB %p has invalid stream ID %u.\n", 1058 td->urb, td->urb->stream_id); 1059 continue; 1060 } 1061 /* 1062 * If a ring stopped on the TD we need to cancel then we have to 1063 * move the xHC endpoint ring dequeue pointer past this TD. 1064 * Rings halted due to STALL may show hw_deq is past the stalled 1065 * TD, but still require a set TR Deq command to flush xHC cache. 1066 */ 1067 hw_deq = xhci_get_hw_deq(xhci, ep->vdev, ep->ep_index, 1068 td->urb->stream_id); 1069 hw_deq &= ~0xf; 1070 1071 if (td->cancel_status == TD_HALTED || trb_in_td(td, hw_deq)) { 1072 switch (td->cancel_status) { 1073 case TD_CLEARED: /* TD is already no-op */ 1074 case TD_CLEARING_CACHE: /* set TR deq command already queued */ 1075 break; 1076 case TD_DIRTY: /* TD is cached, clear it */ 1077 case TD_HALTED: 1078 case TD_CLEARING_CACHE_DEFERRED: 1079 if (cached_td) { 1080 if (cached_td->urb->stream_id != td->urb->stream_id) { 1081 /* Multiple streams case, defer move dq */ 1082 xhci_dbg(xhci, 1083 "Move dq deferred: stream %u URB %p\n", 1084 td->urb->stream_id, td->urb); 1085 td->cancel_status = TD_CLEARING_CACHE_DEFERRED; 1086 break; 1087 } 1088 1089 /* Should never happen, but clear the TD if it does */ 1090 xhci_warn(xhci, 1091 "Found multiple active URBs %p and %p in stream %u?\n", 1092 td->urb, cached_td->urb, 1093 td->urb->stream_id); 1094 td_to_noop(cached_td, false); 1095 cached_td->cancel_status = TD_CLEARED; 1096 } 1097 td_to_noop(td, false); 1098 td->cancel_status = TD_CLEARING_CACHE; 1099 cached_td = td; 1100 break; 1101 } 1102 } else { 1103 td_to_noop(td, false); 1104 td->cancel_status = TD_CLEARED; 1105 } 1106 } 1107 1108 /* If there's no need to move the dequeue pointer then we're done */ 1109 if (!cached_td) 1110 return 0; 1111 1112 err = xhci_move_dequeue_past_td(xhci, slot_id, ep->ep_index, 1113 cached_td->urb->stream_id, 1114 cached_td); 1115 if (err) { 1116 /* Failed to move past cached td, just set cached TDs to no-op */ 1117 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 1118 /* 1119 * Deferred TDs need to have the deq pointer set after the above command 1120 * completes, so if that failed we just give up on all of them (and 1121 * complain loudly since this could cause issues due to caching). 1122 */ 1123 if (td->cancel_status != TD_CLEARING_CACHE && 1124 td->cancel_status != TD_CLEARING_CACHE_DEFERRED) 1125 continue; 1126 xhci_warn(xhci, "Failed to clear cancelled cached URB %p, mark clear anyway\n", 1127 td->urb); 1128 td_to_noop(td, false); 1129 td->cancel_status = TD_CLEARED; 1130 } 1131 } 1132 return 0; 1133 } 1134 1135 /* 1136 * Erase queued TDs from transfer ring(s) and give back those the xHC didn't 1137 * stop on. If necessary, queue commands to move the xHC off cancelled TDs it 1138 * stopped on. Those will be given back later when the commands complete. 1139 * 1140 * Call under xhci->lock on a stopped endpoint. 1141 */ 1142 void xhci_process_cancelled_tds(struct xhci_virt_ep *ep) 1143 { 1144 xhci_invalidate_cancelled_tds(ep); 1145 xhci_giveback_invalidated_tds(ep); 1146 } 1147 1148 /* 1149 * Returns the TD the endpoint ring halted on. 1150 * Only call for non-running rings without streams. 1151 */ 1152 static struct xhci_td *find_halted_td(struct xhci_virt_ep *ep) 1153 { 1154 struct xhci_td *td; 1155 u64 hw_deq; 1156 1157 if (!list_empty(&ep->ring->td_list)) { /* Not streams compatible */ 1158 hw_deq = xhci_get_hw_deq(ep->xhci, ep->vdev, ep->ep_index, 0); 1159 hw_deq &= ~0xf; 1160 td = list_first_entry(&ep->ring->td_list, struct xhci_td, td_list); 1161 if (trb_in_td(td, hw_deq)) 1162 return td; 1163 } 1164 return NULL; 1165 } 1166 1167 /* 1168 * When we get a command completion for a Stop Endpoint Command, we need to 1169 * unlink any cancelled TDs from the ring. There are two ways to do that: 1170 * 1171 * 1. If the HW was in the middle of processing the TD that needs to be 1172 * cancelled, then we must move the ring's dequeue pointer past the last TRB 1173 * in the TD with a Set Dequeue Pointer Command. 1174 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 1175 * bit cleared) so that the HW will skip over them. 1176 */ 1177 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 1178 union xhci_trb *trb, u32 comp_code) 1179 { 1180 unsigned int ep_index; 1181 struct xhci_virt_ep *ep; 1182 struct xhci_ep_ctx *ep_ctx; 1183 struct xhci_td *td = NULL; 1184 enum xhci_ep_reset_type reset_type; 1185 struct xhci_command *command; 1186 int err; 1187 1188 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 1189 if (!xhci->devs[slot_id]) 1190 xhci_warn(xhci, "Stop endpoint command completion for disabled slot %u\n", 1191 slot_id); 1192 return; 1193 } 1194 1195 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1196 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1197 if (!ep) 1198 return; 1199 1200 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1201 1202 trace_xhci_handle_cmd_stop_ep(ep_ctx); 1203 1204 if (comp_code == COMP_CONTEXT_STATE_ERROR) { 1205 /* 1206 * If stop endpoint command raced with a halting endpoint we need to 1207 * reset the host side endpoint first. 1208 * If the TD we halted on isn't cancelled the TD should be given back 1209 * with a proper error code, and the ring dequeue moved past the TD. 1210 * If streams case we can't find hw_deq, or the TD we halted on so do a 1211 * soft reset. 1212 * 1213 * Proper error code is unknown here, it would be -EPIPE if device side 1214 * of enadpoit halted (aka STALL), and -EPROTO if not (transaction error) 1215 * We use -EPROTO, if device is stalled it should return a stall error on 1216 * next transfer, which then will return -EPIPE, and device side stall is 1217 * noted and cleared by class driver. 1218 */ 1219 switch (GET_EP_CTX_STATE(ep_ctx)) { 1220 case EP_STATE_HALTED: 1221 xhci_dbg(xhci, "Stop ep completion raced with stall\n"); 1222 /* 1223 * If the halt happened before Stop Endpoint failed, its transfer event 1224 * should have already been handled and Reset Endpoint should be pending. 1225 */ 1226 if (ep->ep_state & EP_HALTED) 1227 goto reset_done; 1228 1229 if (ep->ep_state & EP_HAS_STREAMS) { 1230 reset_type = EP_SOFT_RESET; 1231 } else { 1232 reset_type = EP_HARD_RESET; 1233 td = find_halted_td(ep); 1234 if (td) 1235 td->status = -EPROTO; 1236 } 1237 /* reset ep, reset handler cleans up cancelled tds */ 1238 err = xhci_handle_halted_endpoint(xhci, ep, td, reset_type); 1239 xhci_dbg(xhci, "Stop ep completion resetting ep, status %d\n", err); 1240 if (err) 1241 break; 1242 reset_done: 1243 /* Reset EP handler will clean up cancelled TDs */ 1244 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1245 return; 1246 case EP_STATE_STOPPED: 1247 /* 1248 * Per xHCI 4.6.9, Stop Endpoint command on a Stopped 1249 * EP is a Context State Error, and EP stays Stopped. 1250 * 1251 * But maybe it failed on Halted, and somebody ran Reset 1252 * Endpoint later. EP state is now Stopped and EP_HALTED 1253 * still set because Reset EP handler will run after us. 1254 */ 1255 if (ep->ep_state & EP_HALTED) 1256 break; 1257 /* 1258 * On some HCs EP state remains Stopped for some tens of 1259 * us to a few ms or more after a doorbell ring, and any 1260 * new Stop Endpoint fails without aborting the restart. 1261 * This handler may run quickly enough to still see this 1262 * Stopped state, but it will soon change to Running. 1263 * 1264 * Assume this bug on unexpected Stop Endpoint failures. 1265 * Keep retrying until the EP starts and stops again. 1266 */ 1267 fallthrough; 1268 case EP_STATE_RUNNING: 1269 /* Race, HW handled stop ep cmd before ep was running */ 1270 xhci_dbg(xhci, "Stop ep completion ctx error, ctx_state %d\n", 1271 GET_EP_CTX_STATE(ep_ctx)); 1272 /* 1273 * Don't retry forever if we guessed wrong or a defective HC never starts 1274 * the EP or says 'Running' but fails the command. We must give back TDs. 1275 */ 1276 if (time_is_before_jiffies(ep->stop_time + msecs_to_jiffies(100))) 1277 break; 1278 1279 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1280 if (!command) { 1281 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1282 return; 1283 } 1284 xhci_queue_stop_endpoint(xhci, command, slot_id, ep_index, 0); 1285 xhci_ring_cmd_db(xhci); 1286 1287 return; 1288 default: 1289 break; 1290 } 1291 } 1292 1293 /* will queue a set TR deq if stopped on a cancelled, uncleared TD */ 1294 xhci_invalidate_cancelled_tds(ep); 1295 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1296 1297 /* Otherwise ring the doorbell(s) to restart queued transfers */ 1298 xhci_giveback_invalidated_tds(ep); 1299 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1300 } 1301 1302 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 1303 { 1304 struct xhci_td *cur_td; 1305 struct xhci_td *tmp; 1306 1307 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { 1308 list_del_init(&cur_td->td_list); 1309 1310 if (!list_empty(&cur_td->cancelled_td_list)) 1311 list_del_init(&cur_td->cancelled_td_list); 1312 1313 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); 1314 1315 inc_td_cnt(cur_td->urb); 1316 if (last_td_in_urb(cur_td)) 1317 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1318 } 1319 } 1320 1321 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 1322 int slot_id, int ep_index) 1323 { 1324 struct xhci_td *cur_td; 1325 struct xhci_td *tmp; 1326 struct xhci_virt_ep *ep; 1327 struct xhci_ring *ring; 1328 1329 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1330 if (!ep) 1331 return; 1332 1333 if ((ep->ep_state & EP_HAS_STREAMS) || 1334 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 1335 int stream_id; 1336 1337 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 1338 stream_id++) { 1339 ring = ep->stream_info->stream_rings[stream_id]; 1340 if (!ring) 1341 continue; 1342 1343 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1344 "Killing URBs for slot ID %u, ep index %u, stream %u", 1345 slot_id, ep_index, stream_id); 1346 xhci_kill_ring_urbs(xhci, ring); 1347 } 1348 } else { 1349 ring = ep->ring; 1350 if (!ring) 1351 return; 1352 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1353 "Killing URBs for slot ID %u, ep index %u", 1354 slot_id, ep_index); 1355 xhci_kill_ring_urbs(xhci, ring); 1356 } 1357 1358 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, 1359 cancelled_td_list) { 1360 list_del_init(&cur_td->cancelled_td_list); 1361 inc_td_cnt(cur_td->urb); 1362 1363 if (last_td_in_urb(cur_td)) 1364 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1365 } 1366 } 1367 1368 /* 1369 * host controller died, register read returns 0xffffffff 1370 * Complete pending commands, mark them ABORTED. 1371 * URBs need to be given back as usb core might be waiting with device locks 1372 * held for the URBs to finish during device disconnect, blocking host remove. 1373 * 1374 * Call with xhci->lock held. 1375 * lock is relased and re-acquired while giving back urb. 1376 */ 1377 void xhci_hc_died(struct xhci_hcd *xhci) 1378 { 1379 bool notify; 1380 int i, j; 1381 1382 if (xhci->xhc_state & XHCI_STATE_DYING) 1383 return; 1384 1385 notify = !(xhci->xhc_state & XHCI_STATE_REMOVING); 1386 if (notify) 1387 xhci_err(xhci, "xHCI host controller not responding, assume dead\n"); 1388 xhci->xhc_state |= XHCI_STATE_DYING; 1389 1390 xhci_cleanup_command_queue(xhci); 1391 1392 /* return any pending urbs, remove may be waiting for them */ 1393 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 1394 if (!xhci->devs[i]) 1395 continue; 1396 for (j = 0; j < 31; j++) 1397 xhci_kill_endpoint_urbs(xhci, i, j); 1398 } 1399 1400 /* inform usb core hc died if PCI remove isn't already handling it */ 1401 if (notify) 1402 usb_hc_died(xhci_to_hcd(xhci)); 1403 } 1404 1405 /* 1406 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1407 * we need to clear the set deq pending flag in the endpoint ring state, so that 1408 * the TD queueing code can ring the doorbell again. We also need to ring the 1409 * endpoint doorbell to restart the ring, but only if there aren't more 1410 * cancellations pending. 1411 */ 1412 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1413 union xhci_trb *trb, u32 cmd_comp_code) 1414 { 1415 unsigned int ep_index; 1416 unsigned int stream_id; 1417 struct xhci_ring *ep_ring; 1418 struct xhci_virt_ep *ep; 1419 struct xhci_ep_ctx *ep_ctx; 1420 struct xhci_slot_ctx *slot_ctx; 1421 struct xhci_stream_ctx *stream_ctx; 1422 struct xhci_td *td, *tmp_td; 1423 1424 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1425 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1426 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1427 if (!ep) 1428 return; 1429 1430 ep_ring = xhci_virt_ep_to_ring(xhci, ep, stream_id); 1431 if (!ep_ring) { 1432 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 1433 stream_id); 1434 /* XXX: Harmless??? */ 1435 goto cleanup; 1436 } 1437 1438 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1439 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 1440 trace_xhci_handle_cmd_set_deq(slot_ctx); 1441 trace_xhci_handle_cmd_set_deq_ep(ep_ctx); 1442 1443 if (ep->ep_state & EP_HAS_STREAMS) { 1444 stream_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 1445 trace_xhci_handle_cmd_set_deq_stream(ep->stream_info, stream_id); 1446 } 1447 1448 if (cmd_comp_code != COMP_SUCCESS) { 1449 unsigned int ep_state; 1450 unsigned int slot_state; 1451 1452 switch (cmd_comp_code) { 1453 case COMP_TRB_ERROR: 1454 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 1455 break; 1456 case COMP_CONTEXT_STATE_ERROR: 1457 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1458 ep_state = GET_EP_CTX_STATE(ep_ctx); 1459 slot_state = le32_to_cpu(slot_ctx->dev_state); 1460 slot_state = GET_SLOT_STATE(slot_state); 1461 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1462 "Slot state = %u, EP state = %u", 1463 slot_state, ep_state); 1464 break; 1465 case COMP_SLOT_NOT_ENABLED_ERROR: 1466 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1467 slot_id); 1468 break; 1469 default: 1470 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1471 cmd_comp_code); 1472 break; 1473 } 1474 /* OK what do we do now? The endpoint state is hosed, and we 1475 * should never get to this point if the synchronization between 1476 * queueing, and endpoint state are correct. This might happen 1477 * if the device gets disconnected after we've finished 1478 * cancelling URBs, which might not be an error... 1479 */ 1480 } else { 1481 u64 deq; 1482 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1483 if (ep->ep_state & EP_HAS_STREAMS) { 1484 deq = le64_to_cpu(stream_ctx->stream_ring) & SCTX_DEQ_MASK; 1485 1486 /* 1487 * Cadence xHCI controllers store some endpoint state 1488 * information within Rsvd0 fields of Stream Endpoint 1489 * context. This field is not cleared during Set TR 1490 * Dequeue Pointer command which causes XDMA to skip 1491 * over transfer ring and leads to data loss on stream 1492 * pipe. 1493 * To fix this issue driver must clear Rsvd0 field. 1494 */ 1495 if (xhci->quirks & XHCI_CDNS_SCTX_QUIRK) { 1496 stream_ctx->reserved[0] = 0; 1497 stream_ctx->reserved[1] = 0; 1498 } 1499 } else { 1500 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1501 } 1502 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1503 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1504 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1505 ep->queued_deq_ptr) == deq) { 1506 /* Update the ring's dequeue segment and dequeue pointer 1507 * to reflect the new position. 1508 */ 1509 ep_ring->deq_seg = ep->queued_deq_seg; 1510 ep_ring->dequeue = ep->queued_deq_ptr; 1511 } else { 1512 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1513 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1514 ep->queued_deq_seg, ep->queued_deq_ptr); 1515 } 1516 } 1517 /* HW cached TDs cleared from cache, give them back */ 1518 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 1519 cancelled_td_list) { 1520 ep_ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 1521 if (td->cancel_status == TD_CLEARING_CACHE) { 1522 td->cancel_status = TD_CLEARED; 1523 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 1524 __func__, td->urb); 1525 xhci_td_cleanup(ep->xhci, td, ep_ring, td->status); 1526 } else { 1527 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 1528 __func__, td->urb, td->cancel_status); 1529 } 1530 } 1531 cleanup: 1532 ep->ep_state &= ~SET_DEQ_PENDING; 1533 ep->queued_deq_seg = NULL; 1534 ep->queued_deq_ptr = NULL; 1535 1536 /* Check for deferred or newly cancelled TDs */ 1537 if (!list_empty(&ep->cancelled_td_list)) { 1538 xhci_dbg(ep->xhci, "%s: Pending TDs to clear, continuing with invalidation\n", 1539 __func__); 1540 xhci_invalidate_cancelled_tds(ep); 1541 /* Try to restart the endpoint if all is done */ 1542 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1543 /* Start giving back any TDs invalidated above */ 1544 xhci_giveback_invalidated_tds(ep); 1545 } else { 1546 /* Restart any rings with pending URBs */ 1547 xhci_dbg(ep->xhci, "%s: All TDs cleared, ring doorbell\n", __func__); 1548 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1549 } 1550 } 1551 1552 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1553 union xhci_trb *trb, u32 cmd_comp_code) 1554 { 1555 struct xhci_virt_ep *ep; 1556 struct xhci_ep_ctx *ep_ctx; 1557 unsigned int ep_index; 1558 1559 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1560 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1561 if (!ep) 1562 return; 1563 1564 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1565 trace_xhci_handle_cmd_reset_ep(ep_ctx); 1566 1567 /* This command will only fail if the endpoint wasn't halted, 1568 * but we don't care. 1569 */ 1570 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1571 "Ignoring reset ep completion code of %u", cmd_comp_code); 1572 1573 /* Cleanup cancelled TDs as ep is stopped. May queue a Set TR Deq cmd */ 1574 xhci_invalidate_cancelled_tds(ep); 1575 1576 /* Clear our internal halted state */ 1577 ep->ep_state &= ~EP_HALTED; 1578 1579 xhci_giveback_invalidated_tds(ep); 1580 1581 /* if this was a soft reset, then restart */ 1582 if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP) 1583 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1584 } 1585 1586 static void xhci_handle_cmd_enable_slot(int slot_id, struct xhci_command *command, 1587 u32 cmd_comp_code) 1588 { 1589 if (cmd_comp_code == COMP_SUCCESS) 1590 command->slot_id = slot_id; 1591 else 1592 command->slot_id = 0; 1593 } 1594 1595 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1596 { 1597 struct xhci_virt_device *virt_dev; 1598 struct xhci_slot_ctx *slot_ctx; 1599 1600 virt_dev = xhci->devs[slot_id]; 1601 if (!virt_dev) 1602 return; 1603 1604 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 1605 trace_xhci_handle_cmd_disable_slot(slot_ctx); 1606 1607 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1608 /* Delete default control endpoint resources */ 1609 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1610 } 1611 1612 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id) 1613 { 1614 struct xhci_virt_device *virt_dev; 1615 struct xhci_input_control_ctx *ctrl_ctx; 1616 struct xhci_ep_ctx *ep_ctx; 1617 unsigned int ep_index; 1618 u32 add_flags; 1619 1620 /* 1621 * Configure endpoint commands can come from the USB core configuration 1622 * or alt setting changes, or when streams were being configured. 1623 */ 1624 1625 virt_dev = xhci->devs[slot_id]; 1626 if (!virt_dev) 1627 return; 1628 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1629 if (!ctrl_ctx) { 1630 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1631 return; 1632 } 1633 1634 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1635 1636 /* Input ctx add_flags are the endpoint index plus one */ 1637 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1638 1639 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index); 1640 trace_xhci_handle_cmd_config_ep(ep_ctx); 1641 1642 return; 1643 } 1644 1645 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id) 1646 { 1647 struct xhci_virt_device *vdev; 1648 struct xhci_slot_ctx *slot_ctx; 1649 1650 vdev = xhci->devs[slot_id]; 1651 if (!vdev) 1652 return; 1653 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1654 trace_xhci_handle_cmd_addr_dev(slot_ctx); 1655 } 1656 1657 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id) 1658 { 1659 struct xhci_virt_device *vdev; 1660 struct xhci_slot_ctx *slot_ctx; 1661 1662 vdev = xhci->devs[slot_id]; 1663 if (!vdev) { 1664 xhci_warn(xhci, "Reset device command completion for disabled slot %u\n", 1665 slot_id); 1666 return; 1667 } 1668 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1669 trace_xhci_handle_cmd_reset_dev(slot_ctx); 1670 1671 xhci_dbg(xhci, "Completed reset device command.\n"); 1672 } 1673 1674 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1675 struct xhci_event_cmd *event) 1676 { 1677 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1678 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); 1679 return; 1680 } 1681 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1682 "NEC firmware version %2x.%02x", 1683 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1684 NEC_FW_MINOR(le32_to_cpu(event->status))); 1685 } 1686 1687 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 comp_code, u32 comp_param) 1688 { 1689 list_del(&cmd->cmd_list); 1690 1691 if (cmd->completion) { 1692 cmd->status = comp_code; 1693 cmd->comp_param = comp_param; 1694 complete(cmd->completion); 1695 } else { 1696 kfree(cmd); 1697 } 1698 } 1699 1700 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1701 { 1702 struct xhci_command *cur_cmd, *tmp_cmd; 1703 xhci->current_cmd = NULL; 1704 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1705 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED, 0); 1706 } 1707 1708 void xhci_handle_command_timeout(struct work_struct *work) 1709 { 1710 struct xhci_hcd *xhci; 1711 unsigned long flags; 1712 char str[XHCI_MSG_MAX]; 1713 u64 hw_ring_state; 1714 u32 cmd_field3; 1715 u32 usbsts; 1716 1717 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); 1718 1719 spin_lock_irqsave(&xhci->lock, flags); 1720 1721 /* 1722 * If timeout work is pending, or current_cmd is NULL, it means we 1723 * raced with command completion. Command is handled so just return. 1724 */ 1725 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { 1726 spin_unlock_irqrestore(&xhci->lock, flags); 1727 return; 1728 } 1729 1730 cmd_field3 = le32_to_cpu(xhci->current_cmd->command_trb->generic.field[3]); 1731 usbsts = readl(&xhci->op_regs->status); 1732 xhci_dbg(xhci, "Command timeout, USBSTS:%s\n", xhci_decode_usbsts(str, usbsts)); 1733 1734 /* Bail out and tear down xhci if a stop endpoint command failed */ 1735 if (TRB_FIELD_TO_TYPE(cmd_field3) == TRB_STOP_RING) { 1736 struct xhci_virt_ep *ep; 1737 1738 xhci_warn(xhci, "xHCI host not responding to stop endpoint command\n"); 1739 1740 ep = xhci_get_virt_ep(xhci, TRB_TO_SLOT_ID(cmd_field3), 1741 TRB_TO_EP_INDEX(cmd_field3)); 1742 if (ep) 1743 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1744 1745 xhci_halt(xhci); 1746 xhci_hc_died(xhci); 1747 goto time_out_completed; 1748 } 1749 1750 /* mark this command to be cancelled */ 1751 xhci->current_cmd->status = COMP_COMMAND_ABORTED; 1752 1753 /* Make sure command ring is running before aborting it */ 1754 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1755 if (hw_ring_state == ~(u64)0) { 1756 xhci_hc_died(xhci); 1757 goto time_out_completed; 1758 } 1759 1760 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1761 (hw_ring_state & CMD_RING_RUNNING)) { 1762 /* Prevent new doorbell, and start command abort */ 1763 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 1764 xhci_dbg(xhci, "Command timeout\n"); 1765 xhci_abort_cmd_ring(xhci, flags); 1766 goto time_out_completed; 1767 } 1768 1769 /* host removed. Bail out */ 1770 if (xhci->xhc_state & XHCI_STATE_REMOVING) { 1771 xhci_dbg(xhci, "host removed, ring start fail?\n"); 1772 xhci_cleanup_command_queue(xhci); 1773 1774 goto time_out_completed; 1775 } 1776 1777 /* command timeout on stopped ring, ring can't be aborted */ 1778 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1779 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1780 1781 time_out_completed: 1782 spin_unlock_irqrestore(&xhci->lock, flags); 1783 return; 1784 } 1785 1786 static void handle_cmd_completion(struct xhci_hcd *xhci, 1787 struct xhci_event_cmd *event) 1788 { 1789 unsigned int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1790 u32 status = le32_to_cpu(event->status); 1791 u64 cmd_dma; 1792 dma_addr_t cmd_dequeue_dma; 1793 u32 cmd_comp_code; 1794 union xhci_trb *cmd_trb; 1795 struct xhci_command *cmd; 1796 u32 cmd_type; 1797 1798 if (slot_id >= MAX_HC_SLOTS) { 1799 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 1800 return; 1801 } 1802 1803 cmd_dma = le64_to_cpu(event->cmd_trb); 1804 cmd_trb = xhci->cmd_ring->dequeue; 1805 1806 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic, cmd_dma); 1807 1808 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1809 1810 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1811 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) { 1812 complete_all(&xhci->cmd_ring_stop_completion); 1813 return; 1814 } 1815 1816 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1817 cmd_trb); 1818 /* 1819 * Check whether the completion event is for our internal kept 1820 * command. 1821 */ 1822 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { 1823 xhci_warn(xhci, 1824 "ERROR mismatched command completion event\n"); 1825 return; 1826 } 1827 1828 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); 1829 1830 cancel_delayed_work(&xhci->cmd_timer); 1831 1832 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1833 xhci_err(xhci, 1834 "Command completion event does not match command\n"); 1835 return; 1836 } 1837 1838 /* 1839 * Host aborted the command ring, check if the current command was 1840 * supposed to be aborted, otherwise continue normally. 1841 * The command ring is stopped now, but the xHC will issue a Command 1842 * Ring Stopped event which will cause us to restart it. 1843 */ 1844 if (cmd_comp_code == COMP_COMMAND_ABORTED) { 1845 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1846 if (cmd->status == COMP_COMMAND_ABORTED) { 1847 if (xhci->current_cmd == cmd) 1848 xhci->current_cmd = NULL; 1849 goto event_handled; 1850 } 1851 } 1852 1853 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1854 switch (cmd_type) { 1855 case TRB_ENABLE_SLOT: 1856 xhci_handle_cmd_enable_slot(slot_id, cmd, cmd_comp_code); 1857 break; 1858 case TRB_DISABLE_SLOT: 1859 xhci_handle_cmd_disable_slot(xhci, slot_id); 1860 break; 1861 case TRB_CONFIG_EP: 1862 if (!cmd->completion) 1863 xhci_handle_cmd_config_ep(xhci, slot_id); 1864 break; 1865 case TRB_EVAL_CONTEXT: 1866 break; 1867 case TRB_ADDR_DEV: 1868 xhci_handle_cmd_addr_dev(xhci, slot_id); 1869 break; 1870 case TRB_STOP_RING: 1871 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1872 le32_to_cpu(cmd_trb->generic.field[3]))); 1873 if (!cmd->completion) 1874 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, 1875 cmd_comp_code); 1876 break; 1877 case TRB_SET_DEQ: 1878 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1879 le32_to_cpu(cmd_trb->generic.field[3]))); 1880 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1881 break; 1882 case TRB_CMD_NOOP: 1883 /* Is this an aborted command turned to NO-OP? */ 1884 if (cmd->status == COMP_COMMAND_RING_STOPPED) 1885 cmd_comp_code = COMP_COMMAND_RING_STOPPED; 1886 break; 1887 case TRB_RESET_EP: 1888 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1889 le32_to_cpu(cmd_trb->generic.field[3]))); 1890 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1891 break; 1892 case TRB_RESET_DEV: 1893 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1894 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1895 */ 1896 slot_id = TRB_TO_SLOT_ID( 1897 le32_to_cpu(cmd_trb->generic.field[3])); 1898 xhci_handle_cmd_reset_dev(xhci, slot_id); 1899 break; 1900 case TRB_NEC_GET_FW: 1901 xhci_handle_cmd_nec_get_fw(xhci, event); 1902 break; 1903 case TRB_GET_BW: 1904 break; 1905 default: 1906 /* Skip over unknown commands on the event ring */ 1907 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); 1908 break; 1909 } 1910 1911 /* restart timer if this wasn't the last command */ 1912 if (!list_is_singular(&xhci->cmd_list)) { 1913 xhci->current_cmd = list_first_entry(&cmd->cmd_list, 1914 struct xhci_command, cmd_list); 1915 xhci_mod_cmd_timer(xhci); 1916 } else if (xhci->current_cmd == cmd) { 1917 xhci->current_cmd = NULL; 1918 } 1919 1920 event_handled: 1921 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code, COMP_PARAM(status)); 1922 1923 inc_deq(xhci, xhci->cmd_ring); 1924 } 1925 1926 static void handle_vendor_event(struct xhci_hcd *xhci, 1927 union xhci_trb *event, u32 trb_type) 1928 { 1929 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1930 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1931 handle_cmd_completion(xhci, &event->event_cmd); 1932 } 1933 1934 static void handle_device_notification(struct xhci_hcd *xhci, 1935 union xhci_trb *event) 1936 { 1937 u32 slot_id; 1938 struct usb_device *udev; 1939 1940 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1941 if (!xhci->devs[slot_id]) { 1942 xhci_warn(xhci, "Device Notification event for " 1943 "unused slot %u\n", slot_id); 1944 return; 1945 } 1946 1947 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1948 slot_id); 1949 udev = xhci->devs[slot_id]->udev; 1950 if (udev && udev->parent) 1951 usb_wakeup_notification(udev->parent, udev->portnum); 1952 } 1953 1954 /* 1955 * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI 1956 * Controller. 1957 * As per ThunderX2errata-129 USB 2 device may come up as USB 1 1958 * If a connection to a USB 1 device is followed by another connection 1959 * to a USB 2 device. 1960 * 1961 * Reset the PHY after the USB device is disconnected if device speed 1962 * is less than HCD_USB3. 1963 * Retry the reset sequence max of 4 times checking the PLL lock status. 1964 * 1965 */ 1966 static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci) 1967 { 1968 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1969 u32 pll_lock_check; 1970 u32 retry_count = 4; 1971 1972 do { 1973 /* Assert PHY reset */ 1974 writel(0x6F, hcd->regs + 0x1048); 1975 udelay(10); 1976 /* De-assert the PHY reset */ 1977 writel(0x7F, hcd->regs + 0x1048); 1978 udelay(200); 1979 pll_lock_check = readl(hcd->regs + 0x1070); 1980 } while (!(pll_lock_check & 0x1) && --retry_count); 1981 } 1982 1983 static void handle_port_status(struct xhci_hcd *xhci, union xhci_trb *event) 1984 { 1985 struct usb_hcd *hcd; 1986 u32 port_id; 1987 u32 portsc, cmd_reg; 1988 int max_ports; 1989 unsigned int hcd_portnum; 1990 struct xhci_bus_state *bus_state; 1991 bool bogus_port_status = false; 1992 struct xhci_port *port; 1993 1994 /* Port status change events always have a successful completion code */ 1995 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) 1996 xhci_warn(xhci, 1997 "WARN: xHC returned failed port status event\n"); 1998 1999 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 2000 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 2001 2002 if ((port_id <= 0) || (port_id > max_ports)) { 2003 xhci_warn(xhci, "Port change event with invalid port ID %d\n", 2004 port_id); 2005 return; 2006 } 2007 2008 port = &xhci->hw_ports[port_id - 1]; 2009 if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) { 2010 xhci_warn(xhci, "Port change event, no port for port ID %u\n", 2011 port_id); 2012 bogus_port_status = true; 2013 goto cleanup; 2014 } 2015 2016 /* We might get interrupts after shared_hcd is removed */ 2017 if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) { 2018 xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n"); 2019 bogus_port_status = true; 2020 goto cleanup; 2021 } 2022 2023 hcd = port->rhub->hcd; 2024 bus_state = &port->rhub->bus_state; 2025 hcd_portnum = port->hcd_portnum; 2026 portsc = readl(port->addr); 2027 2028 xhci_dbg(xhci, "Port change event, %d-%d, id %d, portsc: 0x%x\n", 2029 hcd->self.busnum, hcd_portnum + 1, port_id, portsc); 2030 2031 trace_xhci_handle_port_status(port, portsc); 2032 2033 if (hcd->state == HC_STATE_SUSPENDED) { 2034 xhci_dbg(xhci, "resume root hub\n"); 2035 usb_hcd_resume_root_hub(hcd); 2036 } 2037 2038 if (hcd->speed >= HCD_USB3 && 2039 (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) { 2040 if (port->slot_id && xhci->devs[port->slot_id]) 2041 xhci->devs[port->slot_id]->flags |= VDEV_PORT_ERROR; 2042 } 2043 2044 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) { 2045 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 2046 2047 cmd_reg = readl(&xhci->op_regs->command); 2048 if (!(cmd_reg & CMD_RUN)) { 2049 xhci_warn(xhci, "xHC is not running.\n"); 2050 goto cleanup; 2051 } 2052 2053 if (DEV_SUPERSPEED_ANY(portsc)) { 2054 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 2055 /* Set a flag to say the port signaled remote wakeup, 2056 * so we can tell the difference between the end of 2057 * device and host initiated resume. 2058 */ 2059 bus_state->port_remote_wakeup |= 1 << hcd_portnum; 2060 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2061 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 2062 xhci_set_link_state(xhci, port, XDEV_U0); 2063 /* Need to wait until the next link state change 2064 * indicates the device is actually in U0. 2065 */ 2066 bogus_port_status = true; 2067 goto cleanup; 2068 } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) { 2069 xhci_dbg(xhci, "resume HS port %d\n", port_id); 2070 port->resume_timestamp = jiffies + 2071 msecs_to_jiffies(USB_RESUME_TIMEOUT); 2072 set_bit(hcd_portnum, &bus_state->resuming_ports); 2073 /* Do the rest in GetPortStatus after resume time delay. 2074 * Avoid polling roothub status before that so that a 2075 * usb device auto-resume latency around ~40ms. 2076 */ 2077 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2078 mod_timer(&hcd->rh_timer, 2079 port->resume_timestamp); 2080 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 2081 bogus_port_status = true; 2082 } 2083 } 2084 2085 if ((portsc & PORT_PLC) && 2086 DEV_SUPERSPEED_ANY(portsc) && 2087 ((portsc & PORT_PLS_MASK) == XDEV_U0 || 2088 (portsc & PORT_PLS_MASK) == XDEV_U1 || 2089 (portsc & PORT_PLS_MASK) == XDEV_U2)) { 2090 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 2091 complete(&port->u3exit_done); 2092 /* We've just brought the device into U0/1/2 through either the 2093 * Resume state after a device remote wakeup, or through the 2094 * U3Exit state after a host-initiated resume. If it's a device 2095 * initiated remote wake, don't pass up the link state change, 2096 * so the roothub behavior is consistent with external 2097 * USB 3.0 hub behavior. 2098 */ 2099 if (port->slot_id && xhci->devs[port->slot_id]) 2100 xhci_ring_device(xhci, port->slot_id); 2101 if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) { 2102 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2103 usb_wakeup_notification(hcd->self.root_hub, 2104 hcd_portnum + 1); 2105 bogus_port_status = true; 2106 goto cleanup; 2107 } 2108 } 2109 2110 /* 2111 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 2112 * RExit to a disconnect state). If so, let the driver know it's 2113 * out of the RExit state. 2114 */ 2115 if (hcd->speed < HCD_USB3 && port->rexit_active) { 2116 complete(&port->rexit_done); 2117 port->rexit_active = false; 2118 bogus_port_status = true; 2119 goto cleanup; 2120 } 2121 2122 if (hcd->speed < HCD_USB3) { 2123 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2124 if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) && 2125 (portsc & PORT_CSC) && !(portsc & PORT_CONNECT)) 2126 xhci_cavium_reset_phy_quirk(xhci); 2127 } 2128 2129 cleanup: 2130 2131 /* Don't make the USB core poll the roothub if we got a bad port status 2132 * change event. Besides, at that point we can't tell which roothub 2133 * (USB 2.0 or USB 3.0) to kick. 2134 */ 2135 if (bogus_port_status) 2136 return; 2137 2138 /* 2139 * xHCI port-status-change events occur when the "or" of all the 2140 * status-change bits in the portsc register changes from 0 to 1. 2141 * New status changes won't cause an event if any other change 2142 * bits are still set. When an event occurs, switch over to 2143 * polling to avoid losing status changes. 2144 */ 2145 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 2146 __func__, hcd->self.busnum); 2147 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2148 spin_unlock(&xhci->lock); 2149 /* Pass this up to the core */ 2150 usb_hcd_poll_rh_status(hcd); 2151 spin_lock(&xhci->lock); 2152 } 2153 2154 static void xhci_clear_hub_tt_buffer(struct xhci_hcd *xhci, struct xhci_td *td, 2155 struct xhci_virt_ep *ep) 2156 { 2157 /* 2158 * As part of low/full-speed endpoint-halt processing 2159 * we must clear the TT buffer (USB 2.0 specification 11.17.5). 2160 */ 2161 if (td->urb->dev->tt && !usb_pipeint(td->urb->pipe) && 2162 (td->urb->dev->tt->hub != xhci_to_hcd(xhci)->self.root_hub) && 2163 !(ep->ep_state & EP_CLEARING_TT)) { 2164 ep->ep_state |= EP_CLEARING_TT; 2165 td->urb->ep->hcpriv = td->urb->dev; 2166 if (usb_hub_clear_tt_buffer(td->urb)) 2167 ep->ep_state &= ~EP_CLEARING_TT; 2168 } 2169 } 2170 2171 /* 2172 * Check if xhci internal endpoint state has gone to a "halt" state due to an 2173 * error or stall, including default control pipe protocol stall. 2174 * The internal halt needs to be cleared with a reset endpoint command. 2175 * 2176 * External device side is also halted in functional stall cases. Class driver 2177 * will clear the device halt with a CLEAR_FEATURE(ENDPOINT_HALT) request later. 2178 */ 2179 static bool xhci_halted_host_endpoint(struct xhci_ep_ctx *ep_ctx, unsigned int comp_code) 2180 { 2181 /* Stall halts both internal and device side endpoint */ 2182 if (comp_code == COMP_STALL_ERROR) 2183 return true; 2184 2185 /* TRB completion codes that may require internal halt cleanup */ 2186 if (comp_code == COMP_USB_TRANSACTION_ERROR || 2187 comp_code == COMP_BABBLE_DETECTED_ERROR || 2188 comp_code == COMP_SPLIT_TRANSACTION_ERROR) 2189 /* 2190 * The 0.95 spec says a babbling control endpoint is not halted. 2191 * The 0.96 spec says it is. Some HW claims to be 0.95 2192 * compliant, but it halts the control endpoint anyway. 2193 * Check endpoint context if endpoint is halted. 2194 */ 2195 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) 2196 return true; 2197 2198 return false; 2199 } 2200 2201 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 2202 { 2203 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 2204 /* Vendor defined "informational" completion code, 2205 * treat as not-an-error. 2206 */ 2207 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 2208 trb_comp_code); 2209 xhci_dbg(xhci, "Treating code as success.\n"); 2210 return 1; 2211 } 2212 return 0; 2213 } 2214 2215 static void finish_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2216 struct xhci_ring *ep_ring, struct xhci_td *td, 2217 u32 trb_comp_code) 2218 { 2219 struct xhci_ep_ctx *ep_ctx; 2220 2221 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2222 2223 switch (trb_comp_code) { 2224 case COMP_STOPPED_LENGTH_INVALID: 2225 case COMP_STOPPED_SHORT_PACKET: 2226 case COMP_STOPPED: 2227 /* 2228 * The "Stop Endpoint" completion will take care of any 2229 * stopped TDs. A stopped TD may be restarted, so don't update 2230 * the ring dequeue pointer or take this TD off any lists yet. 2231 */ 2232 return; 2233 case COMP_USB_TRANSACTION_ERROR: 2234 case COMP_BABBLE_DETECTED_ERROR: 2235 case COMP_SPLIT_TRANSACTION_ERROR: 2236 /* 2237 * If endpoint context state is not halted we might be 2238 * racing with a reset endpoint command issued by a unsuccessful 2239 * stop endpoint completion (context error). In that case the 2240 * td should be on the cancelled list, and EP_HALTED flag set. 2241 * 2242 * Or then it's not halted due to the 0.95 spec stating that a 2243 * babbling control endpoint should not halt. The 0.96 spec 2244 * again says it should. Some HW claims to be 0.95 compliant, 2245 * but it halts the control endpoint anyway. 2246 */ 2247 if (GET_EP_CTX_STATE(ep_ctx) != EP_STATE_HALTED) { 2248 /* 2249 * If EP_HALTED is set and TD is on the cancelled list 2250 * the TD and dequeue pointer will be handled by reset 2251 * ep command completion 2252 */ 2253 if ((ep->ep_state & EP_HALTED) && 2254 !list_empty(&td->cancelled_td_list)) { 2255 xhci_dbg(xhci, "Already resolving halted ep for 0x%llx\n", 2256 (unsigned long long)xhci_trb_virt_to_dma( 2257 td->start_seg, td->start_trb)); 2258 return; 2259 } 2260 /* endpoint not halted, don't reset it */ 2261 break; 2262 } 2263 /* Almost same procedure as for STALL_ERROR below */ 2264 xhci_clear_hub_tt_buffer(xhci, td, ep); 2265 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2266 return; 2267 case COMP_STALL_ERROR: 2268 /* 2269 * xhci internal endpoint state will go to a "halt" state for 2270 * any stall, including default control pipe protocol stall. 2271 * To clear the host side halt we need to issue a reset endpoint 2272 * command, followed by a set dequeue command to move past the 2273 * TD. 2274 * Class drivers clear the device side halt from a functional 2275 * stall later. Hub TT buffer should only be cleared for FS/LS 2276 * devices behind HS hubs for functional stalls. 2277 */ 2278 if (ep->ep_index != 0) 2279 xhci_clear_hub_tt_buffer(xhci, td, ep); 2280 2281 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2282 2283 return; /* xhci_handle_halted_endpoint marked td cancelled */ 2284 default: 2285 break; 2286 } 2287 2288 xhci_dequeue_td(xhci, td, ep_ring, td->status); 2289 } 2290 2291 /* sum trb lengths from the first trb up to stop_trb, _excluding_ stop_trb */ 2292 static u32 sum_trb_lengths(struct xhci_td *td, union xhci_trb *stop_trb) 2293 { 2294 u32 sum; 2295 union xhci_trb *trb = td->start_trb; 2296 struct xhci_segment *seg = td->start_seg; 2297 2298 for (sum = 0; trb != stop_trb; next_trb(&seg, &trb)) { 2299 if (!trb_is_noop(trb) && !trb_is_link(trb)) 2300 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); 2301 } 2302 return sum; 2303 } 2304 2305 /* 2306 * Process control tds, update urb status and actual_length. 2307 */ 2308 static void process_ctrl_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2309 struct xhci_ring *ep_ring, struct xhci_td *td, 2310 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2311 { 2312 struct xhci_ep_ctx *ep_ctx; 2313 u32 trb_comp_code; 2314 u32 remaining, requested; 2315 u32 trb_type; 2316 2317 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); 2318 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2319 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2320 requested = td->urb->transfer_buffer_length; 2321 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2322 2323 switch (trb_comp_code) { 2324 case COMP_SUCCESS: 2325 if (trb_type != TRB_STATUS) { 2326 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n", 2327 (trb_type == TRB_DATA) ? "data" : "setup"); 2328 td->status = -ESHUTDOWN; 2329 break; 2330 } 2331 td->status = 0; 2332 break; 2333 case COMP_SHORT_PACKET: 2334 td->status = 0; 2335 break; 2336 case COMP_STOPPED_SHORT_PACKET: 2337 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2338 td->urb->actual_length = remaining; 2339 else 2340 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); 2341 goto finish_td; 2342 case COMP_STOPPED: 2343 switch (trb_type) { 2344 case TRB_SETUP: 2345 td->urb->actual_length = 0; 2346 goto finish_td; 2347 case TRB_DATA: 2348 case TRB_NORMAL: 2349 td->urb->actual_length = requested - remaining; 2350 goto finish_td; 2351 case TRB_STATUS: 2352 td->urb->actual_length = requested; 2353 goto finish_td; 2354 default: 2355 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", 2356 trb_type); 2357 goto finish_td; 2358 } 2359 case COMP_STOPPED_LENGTH_INVALID: 2360 goto finish_td; 2361 default: 2362 if (!xhci_halted_host_endpoint(ep_ctx, trb_comp_code)) 2363 break; 2364 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", 2365 trb_comp_code, ep->ep_index); 2366 fallthrough; 2367 case COMP_STALL_ERROR: 2368 /* Did we transfer part of the data (middle) phase? */ 2369 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2370 td->urb->actual_length = requested - remaining; 2371 else if (!td->urb_length_set) 2372 td->urb->actual_length = 0; 2373 goto finish_td; 2374 } 2375 2376 /* stopped at setup stage, no data transferred */ 2377 if (trb_type == TRB_SETUP) 2378 goto finish_td; 2379 2380 /* 2381 * if on data stage then update the actual_length of the URB and flag it 2382 * as set, so it won't be overwritten in the event for the last TRB. 2383 */ 2384 if (trb_type == TRB_DATA || 2385 trb_type == TRB_NORMAL) { 2386 td->urb_length_set = true; 2387 td->urb->actual_length = requested - remaining; 2388 xhci_dbg(xhci, "Waiting for status stage event\n"); 2389 return; 2390 } 2391 2392 /* at status stage */ 2393 if (!td->urb_length_set) 2394 td->urb->actual_length = requested; 2395 2396 finish_td: 2397 finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2398 } 2399 2400 /* 2401 * Process isochronous tds, update urb packet status and actual_length. 2402 */ 2403 static void process_isoc_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2404 struct xhci_ring *ep_ring, struct xhci_td *td, 2405 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2406 { 2407 struct urb_priv *urb_priv; 2408 int idx; 2409 struct usb_iso_packet_descriptor *frame; 2410 u32 trb_comp_code; 2411 bool sum_trbs_for_length = false; 2412 u32 remaining, requested, ep_trb_len; 2413 int short_framestatus; 2414 2415 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2416 urb_priv = td->urb->hcpriv; 2417 idx = urb_priv->num_tds_done; 2418 frame = &td->urb->iso_frame_desc[idx]; 2419 requested = frame->length; 2420 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2421 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2422 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2423 -EREMOTEIO : 0; 2424 2425 /* handle completion code */ 2426 switch (trb_comp_code) { 2427 case COMP_SUCCESS: 2428 /* Don't overwrite status if TD had an error, see xHCI 4.9.1 */ 2429 if (td->error_mid_td) 2430 break; 2431 if (remaining) { 2432 frame->status = short_framestatus; 2433 sum_trbs_for_length = true; 2434 break; 2435 } 2436 frame->status = 0; 2437 break; 2438 case COMP_SHORT_PACKET: 2439 frame->status = short_framestatus; 2440 sum_trbs_for_length = true; 2441 break; 2442 case COMP_BANDWIDTH_OVERRUN_ERROR: 2443 frame->status = -ECOMM; 2444 break; 2445 case COMP_BABBLE_DETECTED_ERROR: 2446 sum_trbs_for_length = true; 2447 fallthrough; 2448 case COMP_ISOCH_BUFFER_OVERRUN: 2449 frame->status = -EOVERFLOW; 2450 if (ep_trb != td->end_trb) 2451 td->error_mid_td = true; 2452 break; 2453 case COMP_MISSED_SERVICE_ERROR: 2454 frame->status = -EXDEV; 2455 sum_trbs_for_length = true; 2456 if (ep_trb != td->end_trb) 2457 td->error_mid_td = true; 2458 break; 2459 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2460 case COMP_STALL_ERROR: 2461 frame->status = -EPROTO; 2462 break; 2463 case COMP_USB_TRANSACTION_ERROR: 2464 frame->status = -EPROTO; 2465 sum_trbs_for_length = true; 2466 if (ep_trb != td->end_trb) 2467 td->error_mid_td = true; 2468 break; 2469 case COMP_STOPPED: 2470 sum_trbs_for_length = true; 2471 break; 2472 case COMP_STOPPED_SHORT_PACKET: 2473 /* field normally containing residue now contains transferred */ 2474 frame->status = short_framestatus; 2475 requested = remaining; 2476 break; 2477 case COMP_STOPPED_LENGTH_INVALID: 2478 /* exclude stopped trb with invalid length from length sum */ 2479 sum_trbs_for_length = true; 2480 ep_trb_len = 0; 2481 remaining = 0; 2482 break; 2483 default: 2484 sum_trbs_for_length = true; 2485 frame->status = -1; 2486 break; 2487 } 2488 2489 if (td->urb_length_set) 2490 goto finish_td; 2491 2492 if (sum_trbs_for_length) 2493 frame->actual_length = sum_trb_lengths(td, ep_trb) + 2494 ep_trb_len - remaining; 2495 else 2496 frame->actual_length = requested; 2497 2498 td->urb->actual_length += frame->actual_length; 2499 2500 finish_td: 2501 /* Don't give back TD yet if we encountered an error mid TD */ 2502 if (td->error_mid_td && ep_trb != td->end_trb) { 2503 xhci_dbg(xhci, "Error mid isoc TD, wait for final completion event\n"); 2504 td->urb_length_set = true; 2505 return; 2506 } 2507 finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2508 } 2509 2510 static void skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2511 struct xhci_virt_ep *ep, int status) 2512 { 2513 struct urb_priv *urb_priv; 2514 struct usb_iso_packet_descriptor *frame; 2515 int idx; 2516 2517 urb_priv = td->urb->hcpriv; 2518 idx = urb_priv->num_tds_done; 2519 frame = &td->urb->iso_frame_desc[idx]; 2520 2521 /* The transfer is partly done. */ 2522 frame->status = -EXDEV; 2523 2524 /* calc actual length */ 2525 frame->actual_length = 0; 2526 2527 xhci_dequeue_td(xhci, td, ep->ring, status); 2528 } 2529 2530 /* 2531 * Process bulk and interrupt tds, update urb status and actual_length. 2532 */ 2533 static void process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2534 struct xhci_ring *ep_ring, struct xhci_td *td, 2535 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2536 { 2537 struct xhci_slot_ctx *slot_ctx; 2538 u32 trb_comp_code; 2539 u32 remaining, requested, ep_trb_len; 2540 2541 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 2542 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2543 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2544 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2545 requested = td->urb->transfer_buffer_length; 2546 2547 switch (trb_comp_code) { 2548 case COMP_SUCCESS: 2549 ep->err_count = 0; 2550 /* handle success with untransferred data as short packet */ 2551 if (ep_trb != td->end_trb || remaining) { 2552 xhci_warn(xhci, "WARN Successful completion on short TX\n"); 2553 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2554 td->urb->ep->desc.bEndpointAddress, 2555 requested, remaining); 2556 } 2557 td->status = 0; 2558 break; 2559 case COMP_SHORT_PACKET: 2560 td->status = 0; 2561 break; 2562 case COMP_STOPPED_SHORT_PACKET: 2563 td->urb->actual_length = remaining; 2564 goto finish_td; 2565 case COMP_STOPPED_LENGTH_INVALID: 2566 /* stopped on ep trb with invalid length, exclude it */ 2567 td->urb->actual_length = sum_trb_lengths(td, ep_trb); 2568 goto finish_td; 2569 case COMP_USB_TRANSACTION_ERROR: 2570 if (xhci->quirks & XHCI_NO_SOFT_RETRY || 2571 (ep->err_count++ > MAX_SOFT_RETRY) || 2572 le32_to_cpu(slot_ctx->tt_info) & TT_SLOT) 2573 break; 2574 2575 td->status = 0; 2576 2577 xhci_handle_halted_endpoint(xhci, ep, td, EP_SOFT_RESET); 2578 return; 2579 default: 2580 /* do nothing */ 2581 break; 2582 } 2583 2584 if (ep_trb == td->end_trb) 2585 td->urb->actual_length = requested - remaining; 2586 else 2587 td->urb->actual_length = 2588 sum_trb_lengths(td, ep_trb) + 2589 ep_trb_len - remaining; 2590 finish_td: 2591 if (remaining > requested) { 2592 xhci_warn(xhci, "bad transfer trb length %d in event trb\n", 2593 remaining); 2594 td->urb->actual_length = 0; 2595 } 2596 2597 finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2598 } 2599 2600 /* Transfer events which don't point to a transfer TRB, see xhci 4.17.4 */ 2601 static int handle_transferless_tx_event(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2602 u32 trb_comp_code) 2603 { 2604 switch (trb_comp_code) { 2605 case COMP_STALL_ERROR: 2606 case COMP_USB_TRANSACTION_ERROR: 2607 case COMP_INVALID_STREAM_TYPE_ERROR: 2608 case COMP_INVALID_STREAM_ID_ERROR: 2609 xhci_dbg(xhci, "Stream transaction error ep %u no id\n", ep->ep_index); 2610 if (ep->err_count++ > MAX_SOFT_RETRY) 2611 xhci_handle_halted_endpoint(xhci, ep, NULL, EP_HARD_RESET); 2612 else 2613 xhci_handle_halted_endpoint(xhci, ep, NULL, EP_SOFT_RESET); 2614 break; 2615 case COMP_RING_UNDERRUN: 2616 case COMP_RING_OVERRUN: 2617 case COMP_STOPPED_LENGTH_INVALID: 2618 break; 2619 default: 2620 xhci_err(xhci, "Transfer event %u for unknown stream ring slot %u ep %u\n", 2621 trb_comp_code, ep->vdev->slot_id, ep->ep_index); 2622 return -ENODEV; 2623 } 2624 return 0; 2625 } 2626 2627 static bool xhci_spurious_success_tx_event(struct xhci_hcd *xhci, 2628 struct xhci_ring *ring) 2629 { 2630 switch (ring->old_trb_comp_code) { 2631 case COMP_SHORT_PACKET: 2632 return xhci->quirks & XHCI_SPURIOUS_SUCCESS; 2633 case COMP_USB_TRANSACTION_ERROR: 2634 case COMP_BABBLE_DETECTED_ERROR: 2635 case COMP_ISOCH_BUFFER_OVERRUN: 2636 return xhci->quirks & XHCI_ETRON_HOST && 2637 ring->type == TYPE_ISOC; 2638 default: 2639 return false; 2640 } 2641 } 2642 2643 /* 2644 * If this function returns an error condition, it means it got a Transfer 2645 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2646 * At this point, the host controller is probably hosed and should be reset. 2647 */ 2648 static int handle_tx_event(struct xhci_hcd *xhci, 2649 struct xhci_interrupter *ir, 2650 struct xhci_transfer_event *event) 2651 { 2652 struct xhci_virt_ep *ep; 2653 struct xhci_ring *ep_ring; 2654 unsigned int slot_id; 2655 int ep_index; 2656 struct xhci_td *td = NULL; 2657 dma_addr_t ep_trb_dma; 2658 struct xhci_segment *ep_seg; 2659 union xhci_trb *ep_trb; 2660 int status = -EINPROGRESS; 2661 struct xhci_ep_ctx *ep_ctx; 2662 u32 trb_comp_code; 2663 bool ring_xrun_event = false; 2664 2665 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2666 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2667 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2668 ep_trb_dma = le64_to_cpu(event->buffer); 2669 2670 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 2671 if (!ep) { 2672 xhci_err(xhci, "ERROR Invalid Transfer event\n"); 2673 goto err_out; 2674 } 2675 2676 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma); 2677 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 2678 2679 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { 2680 xhci_err(xhci, 2681 "ERROR Transfer event for disabled endpoint slot %u ep %u\n", 2682 slot_id, ep_index); 2683 goto err_out; 2684 } 2685 2686 if (!ep_ring) 2687 return handle_transferless_tx_event(xhci, ep, trb_comp_code); 2688 2689 /* Look for common error cases */ 2690 switch (trb_comp_code) { 2691 /* Skip codes that require special handling depending on 2692 * transfer type 2693 */ 2694 case COMP_SUCCESS: 2695 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2696 trb_comp_code = COMP_SHORT_PACKET; 2697 xhci_dbg(xhci, "Successful completion on short TX for slot %u ep %u with last td comp code %d\n", 2698 slot_id, ep_index, ep_ring->old_trb_comp_code); 2699 } 2700 break; 2701 case COMP_SHORT_PACKET: 2702 break; 2703 /* Completion codes for endpoint stopped state */ 2704 case COMP_STOPPED: 2705 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n", 2706 slot_id, ep_index); 2707 break; 2708 case COMP_STOPPED_LENGTH_INVALID: 2709 xhci_dbg(xhci, 2710 "Stopped on No-op or Link TRB for slot %u ep %u\n", 2711 slot_id, ep_index); 2712 break; 2713 case COMP_STOPPED_SHORT_PACKET: 2714 xhci_dbg(xhci, 2715 "Stopped with short packet transfer detected for slot %u ep %u\n", 2716 slot_id, ep_index); 2717 break; 2718 /* Completion codes for endpoint halted state */ 2719 case COMP_STALL_ERROR: 2720 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id, 2721 ep_index); 2722 status = -EPIPE; 2723 break; 2724 case COMP_SPLIT_TRANSACTION_ERROR: 2725 xhci_dbg(xhci, "Split transaction error for slot %u ep %u\n", 2726 slot_id, ep_index); 2727 status = -EPROTO; 2728 break; 2729 case COMP_USB_TRANSACTION_ERROR: 2730 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n", 2731 slot_id, ep_index); 2732 status = -EPROTO; 2733 break; 2734 case COMP_BABBLE_DETECTED_ERROR: 2735 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n", 2736 slot_id, ep_index); 2737 status = -EOVERFLOW; 2738 break; 2739 /* Completion codes for endpoint error state */ 2740 case COMP_TRB_ERROR: 2741 xhci_warn(xhci, 2742 "WARN: TRB error for slot %u ep %u on endpoint\n", 2743 slot_id, ep_index); 2744 status = -EILSEQ; 2745 break; 2746 /* completion codes not indicating endpoint state change */ 2747 case COMP_DATA_BUFFER_ERROR: 2748 xhci_warn(xhci, 2749 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n", 2750 slot_id, ep_index); 2751 status = -ENOSR; 2752 break; 2753 case COMP_BANDWIDTH_OVERRUN_ERROR: 2754 xhci_warn(xhci, 2755 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n", 2756 slot_id, ep_index); 2757 break; 2758 case COMP_ISOCH_BUFFER_OVERRUN: 2759 xhci_warn(xhci, 2760 "WARN: buffer overrun event for slot %u ep %u on endpoint", 2761 slot_id, ep_index); 2762 break; 2763 case COMP_RING_UNDERRUN: 2764 /* 2765 * When the Isoch ring is empty, the xHC will generate 2766 * a Ring Overrun Event for IN Isoch endpoint or Ring 2767 * Underrun Event for OUT Isoch endpoint. 2768 */ 2769 xhci_dbg(xhci, "Underrun event on slot %u ep %u\n", slot_id, ep_index); 2770 ring_xrun_event = true; 2771 break; 2772 case COMP_RING_OVERRUN: 2773 xhci_dbg(xhci, "Overrun event on slot %u ep %u\n", slot_id, ep_index); 2774 ring_xrun_event = true; 2775 break; 2776 case COMP_MISSED_SERVICE_ERROR: 2777 /* 2778 * When encounter missed service error, one or more isoc tds 2779 * may be missed by xHC. 2780 * Set skip flag of the ep_ring; Complete the missed tds as 2781 * short transfer when process the ep_ring next time. 2782 */ 2783 ep->skip = true; 2784 xhci_dbg(xhci, 2785 "Miss service interval error for slot %u ep %u, set skip flag%s\n", 2786 slot_id, ep_index, ep_trb_dma ? ", skip now" : ""); 2787 break; 2788 case COMP_NO_PING_RESPONSE_ERROR: 2789 ep->skip = true; 2790 xhci_dbg(xhci, 2791 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n", 2792 slot_id, ep_index); 2793 return 0; 2794 2795 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2796 /* needs disable slot command to recover */ 2797 xhci_warn(xhci, 2798 "WARN: detect an incompatible device for slot %u ep %u", 2799 slot_id, ep_index); 2800 status = -EPROTO; 2801 break; 2802 default: 2803 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2804 status = 0; 2805 break; 2806 } 2807 xhci_warn(xhci, 2808 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n", 2809 trb_comp_code, slot_id, ep_index); 2810 if (ep->skip) 2811 break; 2812 return 0; 2813 } 2814 2815 /* 2816 * xhci 4.10.2 states isoc endpoints should continue 2817 * processing the next TD if there was an error mid TD. 2818 * So host like NEC don't generate an event for the last 2819 * isoc TRB even if the IOC flag is set. 2820 * xhci 4.9.1 states that if there are errors in mult-TRB 2821 * TDs xHC should generate an error for that TRB, and if xHC 2822 * proceeds to the next TD it should genete an event for 2823 * any TRB with IOC flag on the way. Other host follow this. 2824 * 2825 * We wait for the final IOC event, but if we get an event 2826 * anywhere outside this TD, just give it back already. 2827 */ 2828 td = list_first_entry_or_null(&ep_ring->td_list, struct xhci_td, td_list); 2829 2830 if (td && td->error_mid_td && !trb_in_td(td, ep_trb_dma)) { 2831 xhci_dbg(xhci, "Missing TD completion event after mid TD error\n"); 2832 xhci_dequeue_td(xhci, td, ep_ring, td->status); 2833 } 2834 2835 /* If the TRB pointer is NULL, missed TDs will be skipped on the next event */ 2836 if (trb_comp_code == COMP_MISSED_SERVICE_ERROR && !ep_trb_dma) 2837 return 0; 2838 2839 if (list_empty(&ep_ring->td_list)) { 2840 /* 2841 * Don't print wanings if ring is empty due to a stopped endpoint generating an 2842 * extra completion event if the device was suspended. Or, a event for the last TRB 2843 * of a short TD we already got a short event for. The short TD is already removed 2844 * from the TD list. 2845 */ 2846 if (trb_comp_code != COMP_STOPPED && 2847 trb_comp_code != COMP_STOPPED_LENGTH_INVALID && 2848 !ring_xrun_event && 2849 !xhci_spurious_success_tx_event(xhci, ep_ring)) { 2850 xhci_warn(xhci, "Event TRB for slot %u ep %u with no TDs queued\n", 2851 slot_id, ep_index); 2852 } 2853 2854 ep->skip = false; 2855 goto check_endpoint_halted; 2856 } 2857 2858 do { 2859 td = list_first_entry(&ep_ring->td_list, struct xhci_td, 2860 td_list); 2861 2862 /* Is this a TRB in the currently executing TD? */ 2863 ep_seg = trb_in_td(td, ep_trb_dma); 2864 2865 if (!ep_seg) { 2866 2867 if (ep->skip && usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2868 /* this event is unlikely to match any TD, don't skip them all */ 2869 if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID) 2870 return 0; 2871 2872 skip_isoc_td(xhci, td, ep, status); 2873 2874 if (!list_empty(&ep_ring->td_list)) { 2875 if (ring_xrun_event) { 2876 /* 2877 * If we are here, we are on xHCI 1.0 host with no 2878 * idea how many TDs were missed or where the xrun 2879 * occurred. New TDs may have been added after the 2880 * xrun, so skip only one TD to be safe. 2881 */ 2882 xhci_dbg(xhci, "Skipped one TD for slot %u ep %u", 2883 slot_id, ep_index); 2884 return 0; 2885 } 2886 continue; 2887 } 2888 2889 xhci_dbg(xhci, "All TDs skipped for slot %u ep %u. Clear skip flag.\n", 2890 slot_id, ep_index); 2891 ep->skip = false; 2892 td = NULL; 2893 goto check_endpoint_halted; 2894 } 2895 2896 /* TD was queued after xrun, maybe xrun was on a link, don't panic yet */ 2897 if (ring_xrun_event) 2898 return 0; 2899 2900 /* 2901 * Skip the Force Stopped Event. The 'ep_trb' of FSE is not in the current 2902 * TD pointed by 'ep_ring->dequeue' because that the hardware dequeue 2903 * pointer still at the previous TRB of the current TD. The previous TRB 2904 * maybe a Link TD or the last TRB of the previous TD. The command 2905 * completion handle will take care the rest. 2906 */ 2907 if (trb_comp_code == COMP_STOPPED || 2908 trb_comp_code == COMP_STOPPED_LENGTH_INVALID) { 2909 return 0; 2910 } 2911 2912 /* 2913 * Some hosts give a spurious success event after a short 2914 * transfer or error on last TRB. Ignore it. 2915 */ 2916 if (xhci_spurious_success_tx_event(xhci, ep_ring)) { 2917 xhci_dbg(xhci, "Spurious event dma %pad, comp_code %u after %u\n", 2918 &ep_trb_dma, trb_comp_code, ep_ring->old_trb_comp_code); 2919 ep_ring->old_trb_comp_code = 0; 2920 return 0; 2921 } 2922 2923 /* HC is busted, give up! */ 2924 goto debug_finding_td; 2925 } 2926 2927 if (ep->skip) { 2928 xhci_dbg(xhci, 2929 "Found td. Clear skip flag for slot %u ep %u.\n", 2930 slot_id, ep_index); 2931 ep->skip = false; 2932 } 2933 2934 /* 2935 * If ep->skip is set, it means there are missed tds on the 2936 * endpoint ring need to take care of. 2937 * Process them as short transfer until reach the td pointed by 2938 * the event. 2939 */ 2940 } while (ep->skip); 2941 2942 ep_ring->old_trb_comp_code = trb_comp_code; 2943 2944 /* Get out if a TD was queued at enqueue after the xrun occurred */ 2945 if (ring_xrun_event) 2946 return 0; 2947 2948 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / sizeof(*ep_trb)]; 2949 trace_xhci_handle_transfer(ep_ring, (struct xhci_generic_trb *) ep_trb, ep_trb_dma); 2950 2951 /* 2952 * No-op TRB could trigger interrupts in a case where a URB was killed 2953 * and a STALL_ERROR happens right after the endpoint ring stopped. 2954 * Reset the halted endpoint. Otherwise, the endpoint remains stalled 2955 * indefinitely. 2956 */ 2957 2958 if (trb_is_noop(ep_trb)) 2959 goto check_endpoint_halted; 2960 2961 td->status = status; 2962 2963 /* update the urb's actual_length and give back to the core */ 2964 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2965 process_ctrl_td(xhci, ep, ep_ring, td, ep_trb, event); 2966 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2967 process_isoc_td(xhci, ep, ep_ring, td, ep_trb, event); 2968 else 2969 process_bulk_intr_td(xhci, ep, ep_ring, td, ep_trb, event); 2970 return 0; 2971 2972 check_endpoint_halted: 2973 if (xhci_halted_host_endpoint(ep_ctx, trb_comp_code)) 2974 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2975 2976 return 0; 2977 2978 debug_finding_td: 2979 xhci_err(xhci, "Event dma %pad for ep %d status %d not part of TD at %016llx - %016llx\n", 2980 &ep_trb_dma, ep_index, trb_comp_code, 2981 (unsigned long long)xhci_trb_virt_to_dma(td->start_seg, td->start_trb), 2982 (unsigned long long)xhci_trb_virt_to_dma(td->end_seg, td->end_trb)); 2983 2984 return -ESHUTDOWN; 2985 2986 err_out: 2987 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2988 (unsigned long long) xhci_trb_virt_to_dma( 2989 ir->event_ring->deq_seg, 2990 ir->event_ring->dequeue), 2991 lower_32_bits(le64_to_cpu(event->buffer)), 2992 upper_32_bits(le64_to_cpu(event->buffer)), 2993 le32_to_cpu(event->transfer_len), 2994 le32_to_cpu(event->flags)); 2995 return -ENODEV; 2996 } 2997 2998 /* 2999 * This function handles one OS-owned event on the event ring. It may drop 3000 * xhci->lock between event processing (e.g. to pass up port status changes). 3001 */ 3002 static int xhci_handle_event_trb(struct xhci_hcd *xhci, struct xhci_interrupter *ir, 3003 union xhci_trb *event) 3004 { 3005 u32 trb_type; 3006 3007 trace_xhci_handle_event(ir->event_ring, &event->generic, 3008 xhci_trb_virt_to_dma(ir->event_ring->deq_seg, 3009 ir->event_ring->dequeue)); 3010 3011 /* 3012 * Barrier between reading the TRB_CYCLE (valid) flag before, and any 3013 * speculative reads of the event's flags/data below. 3014 */ 3015 rmb(); 3016 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->event_cmd.flags)); 3017 /* FIXME: Handle more event types. */ 3018 3019 switch (trb_type) { 3020 case TRB_COMPLETION: 3021 handle_cmd_completion(xhci, &event->event_cmd); 3022 break; 3023 case TRB_PORT_STATUS: 3024 handle_port_status(xhci, event); 3025 break; 3026 case TRB_TRANSFER: 3027 handle_tx_event(xhci, ir, &event->trans_event); 3028 break; 3029 case TRB_DEV_NOTE: 3030 handle_device_notification(xhci, event); 3031 break; 3032 default: 3033 if (trb_type >= TRB_VENDOR_DEFINED_LOW) 3034 handle_vendor_event(xhci, event, trb_type); 3035 else 3036 xhci_warn(xhci, "ERROR unknown event type %d\n", trb_type); 3037 } 3038 /* Any of the above functions may drop and re-acquire the lock, so check 3039 * to make sure a watchdog timer didn't mark the host as non-responsive. 3040 */ 3041 if (xhci->xhc_state & XHCI_STATE_DYING) { 3042 xhci_dbg(xhci, "xHCI host dying, returning from event handler.\n"); 3043 return -ENODEV; 3044 } 3045 3046 return 0; 3047 } 3048 3049 /* 3050 * Update Event Ring Dequeue Pointer: 3051 * - When all events have finished 3052 * - To avoid "Event Ring Full Error" condition 3053 */ 3054 void xhci_update_erst_dequeue(struct xhci_hcd *xhci, 3055 struct xhci_interrupter *ir, 3056 bool clear_ehb) 3057 { 3058 u64 temp_64; 3059 dma_addr_t deq; 3060 3061 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 3062 deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg, 3063 ir->event_ring->dequeue); 3064 if (deq == 0) 3065 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr\n"); 3066 /* 3067 * Per 4.9.4, Software writes to the ERDP register shall always advance 3068 * the Event Ring Dequeue Pointer value. 3069 */ 3070 if ((temp_64 & ERST_PTR_MASK) == (deq & ERST_PTR_MASK) && !clear_ehb) 3071 return; 3072 3073 /* Update HC event ring dequeue pointer */ 3074 temp_64 = ir->event_ring->deq_seg->num & ERST_DESI_MASK; 3075 temp_64 |= deq & ERST_PTR_MASK; 3076 3077 /* Clear the event handler busy flag (RW1C) */ 3078 if (clear_ehb) 3079 temp_64 |= ERST_EHB; 3080 xhci_write_64(xhci, temp_64, &ir->ir_set->erst_dequeue); 3081 } 3082 3083 /* Clear the interrupt pending bit for a specific interrupter. */ 3084 static void xhci_clear_interrupt_pending(struct xhci_interrupter *ir) 3085 { 3086 if (!ir->ip_autoclear) { 3087 u32 iman; 3088 3089 iman = readl(&ir->ir_set->iman); 3090 iman |= IMAN_IP; 3091 writel(iman, &ir->ir_set->iman); 3092 3093 /* Read operation to guarantee the write has been flushed from posted buffers */ 3094 readl(&ir->ir_set->iman); 3095 } 3096 } 3097 3098 /* 3099 * Handle all OS-owned events on an interrupter event ring. It may drop 3100 * and reaquire xhci->lock between event processing. 3101 */ 3102 static int xhci_handle_events(struct xhci_hcd *xhci, struct xhci_interrupter *ir, 3103 bool skip_events) 3104 { 3105 int event_loop = 0; 3106 int err = 0; 3107 u64 temp; 3108 3109 xhci_clear_interrupt_pending(ir); 3110 3111 /* Event ring hasn't been allocated yet. */ 3112 if (!ir->event_ring || !ir->event_ring->dequeue) { 3113 xhci_err(xhci, "ERROR interrupter event ring not ready\n"); 3114 return -ENOMEM; 3115 } 3116 3117 if (xhci->xhc_state & XHCI_STATE_DYING || 3118 xhci->xhc_state & XHCI_STATE_HALTED) { 3119 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. Shouldn't IRQs be disabled?\n"); 3120 3121 /* Clear the event handler busy flag (RW1C) */ 3122 temp = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 3123 xhci_write_64(xhci, temp | ERST_EHB, &ir->ir_set->erst_dequeue); 3124 return -ENODEV; 3125 } 3126 3127 /* Process all OS owned event TRBs on this event ring */ 3128 while (unhandled_event_trb(ir->event_ring)) { 3129 if (!skip_events) 3130 err = xhci_handle_event_trb(xhci, ir, ir->event_ring->dequeue); 3131 3132 /* 3133 * If half a segment of events have been handled in one go then 3134 * update ERDP, and force isoc trbs to interrupt more often 3135 */ 3136 if (event_loop++ > TRBS_PER_SEGMENT / 2) { 3137 xhci_update_erst_dequeue(xhci, ir, false); 3138 3139 if (ir->isoc_bei_interval > AVOID_BEI_INTERVAL_MIN) 3140 ir->isoc_bei_interval = ir->isoc_bei_interval / 2; 3141 3142 event_loop = 0; 3143 } 3144 3145 /* Update SW event ring dequeue pointer */ 3146 inc_deq(xhci, ir->event_ring); 3147 3148 if (err) 3149 break; 3150 } 3151 3152 xhci_update_erst_dequeue(xhci, ir, true); 3153 3154 return 0; 3155 } 3156 3157 /* 3158 * Move the event ring dequeue pointer to skip events kept in the secondary 3159 * event ring. This is used to ensure that pending events in the ring are 3160 * acknowledged, so the xHCI HCD can properly enter suspend/resume. The 3161 * secondary ring is typically maintained by an external component. 3162 */ 3163 void xhci_skip_sec_intr_events(struct xhci_hcd *xhci, 3164 struct xhci_ring *ring, struct xhci_interrupter *ir) 3165 { 3166 union xhci_trb *current_trb; 3167 u64 erdp_reg; 3168 dma_addr_t deq; 3169 3170 /* disable irq, ack pending interrupt and ack all pending events */ 3171 xhci_disable_interrupter(xhci, ir); 3172 3173 /* last acked event trb is in erdp reg */ 3174 erdp_reg = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 3175 deq = (dma_addr_t)(erdp_reg & ERST_PTR_MASK); 3176 if (!deq) { 3177 xhci_err(xhci, "event ring handling not required\n"); 3178 return; 3179 } 3180 3181 current_trb = ir->event_ring->dequeue; 3182 /* read cycle state of the last acked trb to find out CCS */ 3183 ring->cycle_state = le32_to_cpu(current_trb->event_cmd.flags) & TRB_CYCLE; 3184 3185 xhci_handle_events(xhci, ir, true); 3186 } 3187 3188 /* 3189 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 3190 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 3191 * indicators of an event TRB error, but we check the status *first* to be safe. 3192 */ 3193 irqreturn_t xhci_irq(struct usb_hcd *hcd) 3194 { 3195 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3196 irqreturn_t ret = IRQ_HANDLED; 3197 u32 status; 3198 3199 spin_lock(&xhci->lock); 3200 /* Check if the xHC generated the interrupt, or the irq is shared */ 3201 status = readl(&xhci->op_regs->status); 3202 if (status == ~(u32)0) { 3203 xhci_hc_died(xhci); 3204 goto out; 3205 } 3206 3207 if (!(status & STS_EINT)) { 3208 ret = IRQ_NONE; 3209 goto out; 3210 } 3211 3212 if (status & STS_HCE) { 3213 xhci_warn(xhci, "WARNING: Host Controller Error\n"); 3214 goto out; 3215 } 3216 3217 if (status & STS_FATAL) { 3218 xhci_warn(xhci, "WARNING: Host System Error\n"); 3219 xhci_halt(xhci); 3220 goto out; 3221 } 3222 3223 /* 3224 * Clear the op reg interrupt status first, 3225 * so we can receive interrupts from other MSI-X interrupters. 3226 * Write 1 to clear the interrupt status. 3227 */ 3228 status |= STS_EINT; 3229 writel(status, &xhci->op_regs->status); 3230 3231 /* This is the handler of the primary interrupter */ 3232 xhci_handle_events(xhci, xhci->interrupters[0], false); 3233 out: 3234 spin_unlock(&xhci->lock); 3235 3236 return ret; 3237 } 3238 3239 irqreturn_t xhci_msi_irq(int irq, void *hcd) 3240 { 3241 return xhci_irq(hcd); 3242 } 3243 EXPORT_SYMBOL_GPL(xhci_msi_irq); 3244 3245 /**** Endpoint Ring Operations ****/ 3246 3247 /* 3248 * Generic function for queueing a TRB on a ring. 3249 * The caller must have checked to make sure there's room on the ring. 3250 * 3251 * @more_trbs_coming: Will you enqueue more TRBs before calling 3252 * prepare_transfer()? 3253 */ 3254 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 3255 bool more_trbs_coming, 3256 u32 field1, u32 field2, u32 field3, u32 field4) 3257 { 3258 struct xhci_generic_trb *trb; 3259 3260 trb = &ring->enqueue->generic; 3261 trb->field[0] = cpu_to_le32(field1); 3262 trb->field[1] = cpu_to_le32(field2); 3263 trb->field[2] = cpu_to_le32(field3); 3264 /* make sure TRB is fully written before giving it to the controller */ 3265 wmb(); 3266 trb->field[3] = cpu_to_le32(field4); 3267 3268 trace_xhci_queue_trb(ring, trb, 3269 xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue)); 3270 3271 inc_enq(xhci, ring, more_trbs_coming); 3272 } 3273 3274 /* 3275 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 3276 * expand ring if it start to be full. 3277 */ 3278 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 3279 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 3280 { 3281 unsigned int new_segs = 0; 3282 3283 /* Make sure the endpoint has been added to xHC schedule */ 3284 switch (ep_state) { 3285 case EP_STATE_DISABLED: 3286 /* 3287 * USB core changed config/interfaces without notifying us, 3288 * or hardware is reporting the wrong state. 3289 */ 3290 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 3291 return -ENOENT; 3292 case EP_STATE_ERROR: 3293 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 3294 /* FIXME event handling code for error needs to clear it */ 3295 /* XXX not sure if this should be -ENOENT or not */ 3296 return -EINVAL; 3297 case EP_STATE_HALTED: 3298 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 3299 break; 3300 case EP_STATE_STOPPED: 3301 case EP_STATE_RUNNING: 3302 break; 3303 default: 3304 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 3305 /* 3306 * FIXME issue Configure Endpoint command to try to get the HC 3307 * back into a known state. 3308 */ 3309 return -EINVAL; 3310 } 3311 3312 if (ep_ring != xhci->cmd_ring) { 3313 new_segs = xhci_ring_expansion_needed(xhci, ep_ring, num_trbs); 3314 } else if (xhci_num_trbs_free(ep_ring) <= num_trbs) { 3315 xhci_err(xhci, "Do not support expand command ring\n"); 3316 return -ENOMEM; 3317 } 3318 3319 if (new_segs) { 3320 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 3321 "ERROR no room on ep ring, try ring expansion"); 3322 if (xhci_ring_expansion(xhci, ep_ring, new_segs, mem_flags)) { 3323 xhci_err(xhci, "Ring expansion failed\n"); 3324 return -ENOMEM; 3325 } 3326 } 3327 3328 /* Ensure that new TRBs won't overwrite a link */ 3329 if (trb_is_link(ep_ring->enqueue)) 3330 inc_enq_past_link(xhci, ep_ring, 0); 3331 3332 if (last_trb_on_seg(ep_ring->enq_seg, ep_ring->enqueue)) { 3333 xhci_warn(xhci, "Missing link TRB at end of ring segment\n"); 3334 return -EINVAL; 3335 } 3336 3337 return 0; 3338 } 3339 3340 static int prepare_transfer(struct xhci_hcd *xhci, 3341 struct xhci_virt_device *xdev, 3342 unsigned int ep_index, 3343 unsigned int stream_id, 3344 unsigned int num_trbs, 3345 struct urb *urb, 3346 unsigned int td_index, 3347 gfp_t mem_flags) 3348 { 3349 int ret; 3350 struct urb_priv *urb_priv; 3351 struct xhci_td *td; 3352 struct xhci_ring *ep_ring; 3353 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3354 3355 ep_ring = xhci_triad_to_transfer_ring(xhci, xdev->slot_id, ep_index, 3356 stream_id); 3357 if (!ep_ring) { 3358 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 3359 stream_id); 3360 return -EINVAL; 3361 } 3362 3363 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 3364 num_trbs, mem_flags); 3365 if (ret) 3366 return ret; 3367 3368 urb_priv = urb->hcpriv; 3369 td = &urb_priv->td[td_index]; 3370 3371 INIT_LIST_HEAD(&td->td_list); 3372 INIT_LIST_HEAD(&td->cancelled_td_list); 3373 3374 if (td_index == 0) { 3375 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 3376 if (unlikely(ret)) 3377 return ret; 3378 } 3379 3380 td->urb = urb; 3381 /* Add this TD to the tail of the endpoint ring's TD list */ 3382 list_add_tail(&td->td_list, &ep_ring->td_list); 3383 td->start_seg = ep_ring->enq_seg; 3384 td->start_trb = ep_ring->enqueue; 3385 3386 return 0; 3387 } 3388 3389 unsigned int count_trbs(u64 addr, u64 len) 3390 { 3391 unsigned int num_trbs; 3392 3393 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3394 TRB_MAX_BUFF_SIZE); 3395 if (num_trbs == 0) 3396 num_trbs++; 3397 3398 return num_trbs; 3399 } 3400 3401 static inline unsigned int count_trbs_needed(struct urb *urb) 3402 { 3403 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); 3404 } 3405 3406 static unsigned int count_sg_trbs_needed(struct urb *urb) 3407 { 3408 struct scatterlist *sg; 3409 unsigned int i, len, full_len, num_trbs = 0; 3410 3411 full_len = urb->transfer_buffer_length; 3412 3413 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { 3414 len = sg_dma_len(sg); 3415 num_trbs += count_trbs(sg_dma_address(sg), len); 3416 len = min_t(unsigned int, len, full_len); 3417 full_len -= len; 3418 if (full_len == 0) 3419 break; 3420 } 3421 3422 return num_trbs; 3423 } 3424 3425 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) 3426 { 3427 u64 addr, len; 3428 3429 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3430 len = urb->iso_frame_desc[i].length; 3431 3432 return count_trbs(addr, len); 3433 } 3434 3435 static void check_trb_math(struct urb *urb, int running_total) 3436 { 3437 if (unlikely(running_total != urb->transfer_buffer_length)) 3438 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3439 "queued %#x (%d), asked for %#x (%d)\n", 3440 __func__, 3441 urb->ep->desc.bEndpointAddress, 3442 running_total, running_total, 3443 urb->transfer_buffer_length, 3444 urb->transfer_buffer_length); 3445 } 3446 3447 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3448 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3449 struct xhci_generic_trb *start_trb) 3450 { 3451 /* 3452 * Pass all the TRBs to the hardware at once and make sure this write 3453 * isn't reordered. 3454 */ 3455 wmb(); 3456 if (start_cycle) 3457 start_trb->field[3] |= cpu_to_le32(start_cycle); 3458 else 3459 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3460 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3461 } 3462 3463 static void check_interval(struct urb *urb, struct xhci_ep_ctx *ep_ctx) 3464 { 3465 int xhci_interval; 3466 int ep_interval; 3467 3468 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3469 ep_interval = urb->interval; 3470 3471 /* Convert to microframes */ 3472 if (urb->dev->speed == USB_SPEED_LOW || 3473 urb->dev->speed == USB_SPEED_FULL) 3474 ep_interval *= 8; 3475 3476 /* FIXME change this to a warning and a suggestion to use the new API 3477 * to set the polling interval (once the API is added). 3478 */ 3479 if (xhci_interval != ep_interval) { 3480 dev_dbg_ratelimited(&urb->dev->dev, 3481 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3482 ep_interval, str_plural(ep_interval), 3483 xhci_interval, str_plural(xhci_interval)); 3484 urb->interval = xhci_interval; 3485 /* Convert back to frames for LS/FS devices */ 3486 if (urb->dev->speed == USB_SPEED_LOW || 3487 urb->dev->speed == USB_SPEED_FULL) 3488 urb->interval /= 8; 3489 } 3490 } 3491 3492 /* 3493 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3494 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3495 * (comprised of sg list entries) can take several service intervals to 3496 * transmit. 3497 */ 3498 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3499 struct urb *urb, int slot_id, unsigned int ep_index) 3500 { 3501 struct xhci_ep_ctx *ep_ctx; 3502 3503 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); 3504 check_interval(urb, ep_ctx); 3505 3506 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3507 } 3508 3509 /* 3510 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3511 * packets remaining in the TD (*not* including this TRB). 3512 * 3513 * Total TD packet count = total_packet_count = 3514 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3515 * 3516 * Packets transferred up to and including this TRB = packets_transferred = 3517 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3518 * 3519 * TD size = total_packet_count - packets_transferred 3520 * 3521 * For xHCI 0.96 and older, TD size field should be the remaining bytes 3522 * including this TRB, right shifted by 10 3523 * 3524 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. 3525 * This is taken care of in the TRB_TD_SIZE() macro 3526 * 3527 * The last TRB in a TD must have the TD size set to zero. 3528 */ 3529 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, 3530 int trb_buff_len, unsigned int td_total_len, 3531 struct urb *urb, bool more_trbs_coming) 3532 { 3533 u32 maxp, total_packet_count; 3534 3535 /* MTK xHCI 0.96 contains some features from 1.0 */ 3536 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) 3537 return ((td_total_len - transferred) >> 10); 3538 3539 /* One TRB with a zero-length data packet. */ 3540 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || 3541 trb_buff_len == td_total_len) 3542 return 0; 3543 3544 /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */ 3545 if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100)) 3546 trb_buff_len = 0; 3547 3548 maxp = usb_endpoint_maxp(&urb->ep->desc); 3549 total_packet_count = DIV_ROUND_UP(td_total_len, maxp); 3550 3551 /* Queueing functions don't count the current TRB into transferred */ 3552 return (total_packet_count - ((transferred + trb_buff_len) / maxp)); 3553 } 3554 3555 3556 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, 3557 u32 *trb_buff_len, struct xhci_segment *seg) 3558 { 3559 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 3560 unsigned int unalign; 3561 unsigned int max_pkt; 3562 u32 new_buff_len; 3563 size_t len; 3564 3565 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3566 unalign = (enqd_len + *trb_buff_len) % max_pkt; 3567 3568 /* we got lucky, last normal TRB data on segment is packet aligned */ 3569 if (unalign == 0) 3570 return 0; 3571 3572 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", 3573 unalign, *trb_buff_len); 3574 3575 /* is the last nornal TRB alignable by splitting it */ 3576 if (*trb_buff_len > unalign) { 3577 *trb_buff_len -= unalign; 3578 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); 3579 return 0; 3580 } 3581 3582 /* 3583 * We want enqd_len + trb_buff_len to sum up to a number aligned to 3584 * number which is divisible by the endpoint's wMaxPacketSize. IOW: 3585 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. 3586 */ 3587 new_buff_len = max_pkt - (enqd_len % max_pkt); 3588 3589 if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) 3590 new_buff_len = (urb->transfer_buffer_length - enqd_len); 3591 3592 /* create a max max_pkt sized bounce buffer pointed to by last trb */ 3593 if (usb_urb_dir_out(urb)) { 3594 if (urb->num_sgs) { 3595 len = sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 3596 seg->bounce_buf, new_buff_len, enqd_len); 3597 if (len != new_buff_len) 3598 xhci_warn(xhci, "WARN Wrong bounce buffer write length: %zu != %d\n", 3599 len, new_buff_len); 3600 } else { 3601 memcpy(seg->bounce_buf, urb->transfer_buffer + enqd_len, new_buff_len); 3602 } 3603 3604 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3605 max_pkt, DMA_TO_DEVICE); 3606 } else { 3607 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3608 max_pkt, DMA_FROM_DEVICE); 3609 } 3610 3611 if (dma_mapping_error(dev, seg->bounce_dma)) { 3612 /* try without aligning. Some host controllers survive */ 3613 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); 3614 return 0; 3615 } 3616 *trb_buff_len = new_buff_len; 3617 seg->bounce_len = new_buff_len; 3618 seg->bounce_offs = enqd_len; 3619 3620 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); 3621 3622 return 1; 3623 } 3624 3625 /* This is very similar to what ehci-q.c qtd_fill() does */ 3626 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3627 struct urb *urb, int slot_id, unsigned int ep_index) 3628 { 3629 struct xhci_ring *ring; 3630 struct urb_priv *urb_priv; 3631 struct xhci_td *td; 3632 struct xhci_generic_trb *start_trb; 3633 struct scatterlist *sg = NULL; 3634 bool more_trbs_coming = true; 3635 bool need_zero_pkt = false; 3636 bool first_trb = true; 3637 unsigned int num_trbs; 3638 unsigned int start_cycle, num_sgs = 0; 3639 unsigned int enqd_len, block_len, trb_buff_len, full_len; 3640 int sent_len, ret; 3641 u32 field, length_field, remainder; 3642 u64 addr, send_addr; 3643 3644 ring = xhci_urb_to_transfer_ring(xhci, urb); 3645 if (!ring) 3646 return -EINVAL; 3647 3648 full_len = urb->transfer_buffer_length; 3649 /* If we have scatter/gather list, we use it. */ 3650 if (urb->num_sgs && !(urb->transfer_flags & URB_DMA_MAP_SINGLE)) { 3651 num_sgs = urb->num_mapped_sgs; 3652 sg = urb->sg; 3653 addr = (u64) sg_dma_address(sg); 3654 block_len = sg_dma_len(sg); 3655 num_trbs = count_sg_trbs_needed(urb); 3656 } else { 3657 num_trbs = count_trbs_needed(urb); 3658 addr = (u64) urb->transfer_dma; 3659 block_len = full_len; 3660 } 3661 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3662 ep_index, urb->stream_id, 3663 num_trbs, urb, 0, mem_flags); 3664 if (unlikely(ret < 0)) 3665 return ret; 3666 3667 urb_priv = urb->hcpriv; 3668 3669 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3670 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) 3671 need_zero_pkt = true; 3672 3673 td = &urb_priv->td[0]; 3674 3675 /* 3676 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3677 * until we've finished creating all the other TRBs. The ring's cycle 3678 * state may change as we enqueue the other TRBs, so save it too. 3679 */ 3680 start_trb = &ring->enqueue->generic; 3681 start_cycle = ring->cycle_state; 3682 send_addr = addr; 3683 3684 /* Queue the TRBs, even if they are zero-length */ 3685 for (enqd_len = 0; first_trb || enqd_len < full_len; 3686 enqd_len += trb_buff_len) { 3687 field = TRB_TYPE(TRB_NORMAL); 3688 3689 /* TRB buffer should not cross 64KB boundaries */ 3690 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3691 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); 3692 3693 if (enqd_len + trb_buff_len > full_len) 3694 trb_buff_len = full_len - enqd_len; 3695 3696 /* Don't change the cycle bit of the first TRB until later */ 3697 if (first_trb) { 3698 first_trb = false; 3699 if (start_cycle == 0) 3700 field |= TRB_CYCLE; 3701 } else 3702 field |= ring->cycle_state; 3703 3704 /* Chain all the TRBs together; clear the chain bit in the last 3705 * TRB to indicate it's the last TRB in the chain. 3706 */ 3707 if (enqd_len + trb_buff_len < full_len) { 3708 field |= TRB_CHAIN; 3709 if (trb_is_link(ring->enqueue + 1)) { 3710 if (xhci_align_td(xhci, urb, enqd_len, 3711 &trb_buff_len, 3712 ring->enq_seg)) { 3713 send_addr = ring->enq_seg->bounce_dma; 3714 /* assuming TD won't span 2 segs */ 3715 td->bounce_seg = ring->enq_seg; 3716 } 3717 } 3718 } 3719 if (enqd_len + trb_buff_len >= full_len) { 3720 field &= ~TRB_CHAIN; 3721 field |= TRB_IOC; 3722 more_trbs_coming = false; 3723 td->end_trb = ring->enqueue; 3724 td->end_seg = ring->enq_seg; 3725 if (xhci_urb_suitable_for_idt(urb)) { 3726 memcpy(&send_addr, urb->transfer_buffer, 3727 trb_buff_len); 3728 le64_to_cpus(&send_addr); 3729 field |= TRB_IDT; 3730 } 3731 } 3732 3733 /* Only set interrupt on short packet for IN endpoints */ 3734 if (usb_urb_dir_in(urb)) 3735 field |= TRB_ISP; 3736 3737 /* Set the TRB length, TD size, and interrupter fields. */ 3738 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, 3739 full_len, urb, more_trbs_coming); 3740 3741 length_field = TRB_LEN(trb_buff_len) | 3742 TRB_TD_SIZE(remainder) | 3743 TRB_INTR_TARGET(0); 3744 3745 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, 3746 lower_32_bits(send_addr), 3747 upper_32_bits(send_addr), 3748 length_field, 3749 field); 3750 addr += trb_buff_len; 3751 sent_len = trb_buff_len; 3752 3753 while (sg && sent_len >= block_len) { 3754 /* New sg entry */ 3755 --num_sgs; 3756 sent_len -= block_len; 3757 sg = sg_next(sg); 3758 if (num_sgs != 0 && sg) { 3759 block_len = sg_dma_len(sg); 3760 addr = (u64) sg_dma_address(sg); 3761 addr += sent_len; 3762 } 3763 } 3764 block_len -= sent_len; 3765 send_addr = addr; 3766 } 3767 3768 if (need_zero_pkt) { 3769 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3770 ep_index, urb->stream_id, 3771 1, urb, 1, mem_flags); 3772 urb_priv->td[1].end_trb = ring->enqueue; 3773 urb_priv->td[1].end_seg = ring->enq_seg; 3774 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; 3775 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); 3776 } 3777 3778 check_trb_math(urb, enqd_len); 3779 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3780 start_cycle, start_trb); 3781 return 0; 3782 } 3783 3784 /* Caller must have locked xhci->lock */ 3785 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3786 struct urb *urb, int slot_id, unsigned int ep_index) 3787 { 3788 struct xhci_ring *ep_ring; 3789 int num_trbs; 3790 int ret; 3791 struct usb_ctrlrequest *setup; 3792 struct xhci_generic_trb *start_trb; 3793 int start_cycle; 3794 u32 field; 3795 struct urb_priv *urb_priv; 3796 struct xhci_td *td; 3797 3798 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3799 if (!ep_ring) 3800 return -EINVAL; 3801 3802 /* 3803 * Need to copy setup packet into setup TRB, so we can't use the setup 3804 * DMA address. 3805 */ 3806 if (!urb->setup_packet) 3807 return -EINVAL; 3808 3809 if ((xhci->quirks & XHCI_ETRON_HOST) && 3810 urb->dev->speed >= USB_SPEED_SUPER) { 3811 /* 3812 * If next available TRB is the Link TRB in the ring segment then 3813 * enqueue a No Op TRB, this can prevent the Setup and Data Stage 3814 * TRB to be breaked by the Link TRB. 3815 */ 3816 if (last_trb_on_seg(ep_ring->enq_seg, ep_ring->enqueue + 1)) { 3817 field = TRB_TYPE(TRB_TR_NOOP) | ep_ring->cycle_state; 3818 queue_trb(xhci, ep_ring, false, 0, 0, 3819 TRB_INTR_TARGET(0), field); 3820 } 3821 } 3822 3823 /* 1 TRB for setup, 1 for status */ 3824 num_trbs = 2; 3825 /* 3826 * Don't need to check if we need additional event data and normal TRBs, 3827 * since data in control transfers will never get bigger than 16MB 3828 * XXX: can we get a buffer that crosses 64KB boundaries? 3829 */ 3830 if (urb->transfer_buffer_length > 0) 3831 num_trbs++; 3832 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3833 ep_index, urb->stream_id, 3834 num_trbs, urb, 0, mem_flags); 3835 if (ret < 0) 3836 return ret; 3837 3838 urb_priv = urb->hcpriv; 3839 td = &urb_priv->td[0]; 3840 3841 /* 3842 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3843 * until we've finished creating all the other TRBs. The ring's cycle 3844 * state may change as we enqueue the other TRBs, so save it too. 3845 */ 3846 start_trb = &ep_ring->enqueue->generic; 3847 start_cycle = ep_ring->cycle_state; 3848 3849 /* Queue setup TRB - see section 6.4.1.2.1 */ 3850 /* FIXME better way to translate setup_packet into two u32 fields? */ 3851 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3852 field = 0; 3853 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3854 if (start_cycle == 0) 3855 field |= 0x1; 3856 3857 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ 3858 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { 3859 if (urb->transfer_buffer_length > 0) { 3860 if (setup->bRequestType & USB_DIR_IN) 3861 field |= TRB_TX_TYPE(TRB_DATA_IN); 3862 else 3863 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3864 } 3865 } 3866 3867 queue_trb(xhci, ep_ring, true, 3868 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3869 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3870 TRB_LEN(8) | TRB_INTR_TARGET(0), 3871 /* Immediate data in pointer */ 3872 field); 3873 3874 /* If there's data, queue data TRBs */ 3875 /* Only set interrupt on short packet for IN endpoints */ 3876 if (usb_urb_dir_in(urb)) 3877 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3878 else 3879 field = TRB_TYPE(TRB_DATA); 3880 3881 if (urb->transfer_buffer_length > 0) { 3882 u32 length_field, remainder; 3883 u64 addr; 3884 3885 if (xhci_urb_suitable_for_idt(urb)) { 3886 memcpy(&addr, urb->transfer_buffer, 3887 urb->transfer_buffer_length); 3888 le64_to_cpus(&addr); 3889 field |= TRB_IDT; 3890 } else { 3891 addr = (u64) urb->transfer_dma; 3892 } 3893 3894 remainder = xhci_td_remainder(xhci, 0, 3895 urb->transfer_buffer_length, 3896 urb->transfer_buffer_length, 3897 urb, 1); 3898 length_field = TRB_LEN(urb->transfer_buffer_length) | 3899 TRB_TD_SIZE(remainder) | 3900 TRB_INTR_TARGET(0); 3901 if (setup->bRequestType & USB_DIR_IN) 3902 field |= TRB_DIR_IN; 3903 queue_trb(xhci, ep_ring, true, 3904 lower_32_bits(addr), 3905 upper_32_bits(addr), 3906 length_field, 3907 field | ep_ring->cycle_state); 3908 } 3909 3910 /* Save the DMA address of the last TRB in the TD */ 3911 td->end_trb = ep_ring->enqueue; 3912 td->end_seg = ep_ring->enq_seg; 3913 3914 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3915 /* If the device sent data, the status stage is an OUT transfer */ 3916 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3917 field = 0; 3918 else 3919 field = TRB_DIR_IN; 3920 queue_trb(xhci, ep_ring, false, 3921 0, 3922 0, 3923 TRB_INTR_TARGET(0), 3924 /* Event on completion */ 3925 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3926 3927 giveback_first_trb(xhci, slot_id, ep_index, 0, 3928 start_cycle, start_trb); 3929 return 0; 3930 } 3931 3932 /* 3933 * The transfer burst count field of the isochronous TRB defines the number of 3934 * bursts that are required to move all packets in this TD. Only SuperSpeed 3935 * devices can burst up to bMaxBurst number of packets per service interval. 3936 * This field is zero based, meaning a value of zero in the field means one 3937 * burst. Basically, for everything but SuperSpeed devices, this field will be 3938 * zero. Only xHCI 1.0 host controllers support this field. 3939 */ 3940 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3941 struct urb *urb, unsigned int total_packet_count) 3942 { 3943 unsigned int max_burst; 3944 3945 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) 3946 return 0; 3947 3948 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3949 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3950 } 3951 3952 /* 3953 * Returns the number of packets in the last "burst" of packets. This field is 3954 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3955 * the last burst packet count is equal to the total number of packets in the 3956 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3957 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3958 * contain 1 to (bMaxBurst + 1) packets. 3959 */ 3960 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3961 struct urb *urb, unsigned int total_packet_count) 3962 { 3963 unsigned int max_burst; 3964 unsigned int residue; 3965 3966 if (xhci->hci_version < 0x100) 3967 return 0; 3968 3969 if (urb->dev->speed >= USB_SPEED_SUPER) { 3970 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3971 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3972 residue = total_packet_count % (max_burst + 1); 3973 /* If residue is zero, the last burst contains (max_burst + 1) 3974 * number of packets, but the TLBPC field is zero-based. 3975 */ 3976 if (residue == 0) 3977 return max_burst; 3978 return residue - 1; 3979 } 3980 if (total_packet_count == 0) 3981 return 0; 3982 return total_packet_count - 1; 3983 } 3984 3985 /* 3986 * Calculates Frame ID field of the isochronous TRB identifies the 3987 * target frame that the Interval associated with this Isochronous 3988 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. 3989 * 3990 * Returns actual frame id on success, negative value on error. 3991 */ 3992 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, 3993 struct urb *urb, int index) 3994 { 3995 int start_frame, ist, ret = 0; 3996 int start_frame_id, end_frame_id, current_frame_id; 3997 3998 if (urb->dev->speed == USB_SPEED_LOW || 3999 urb->dev->speed == USB_SPEED_FULL) 4000 start_frame = urb->start_frame + index * urb->interval; 4001 else 4002 start_frame = (urb->start_frame + index * urb->interval) >> 3; 4003 4004 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): 4005 * 4006 * If bit [3] of IST is cleared to '0', software can add a TRB no 4007 * later than IST[2:0] Microframes before that TRB is scheduled to 4008 * be executed. 4009 * If bit [3] of IST is set to '1', software can add a TRB no later 4010 * than IST[2:0] Frames before that TRB is scheduled to be executed. 4011 */ 4012 ist = HCS_IST(xhci->hcs_params2) & 0x7; 4013 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 4014 ist <<= 3; 4015 4016 /* Software shall not schedule an Isoch TD with a Frame ID value that 4017 * is less than the Start Frame ID or greater than the End Frame ID, 4018 * where: 4019 * 4020 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 4021 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 4022 * 4023 * Both the End Frame ID and Start Frame ID values are calculated 4024 * in microframes. When software determines the valid Frame ID value; 4025 * The End Frame ID value should be rounded down to the nearest Frame 4026 * boundary, and the Start Frame ID value should be rounded up to the 4027 * nearest Frame boundary. 4028 */ 4029 current_frame_id = readl(&xhci->run_regs->microframe_index); 4030 start_frame_id = roundup(current_frame_id + ist + 1, 8); 4031 end_frame_id = rounddown(current_frame_id + 895 * 8, 8); 4032 4033 start_frame &= 0x7ff; 4034 start_frame_id = (start_frame_id >> 3) & 0x7ff; 4035 end_frame_id = (end_frame_id >> 3) & 0x7ff; 4036 4037 if (start_frame_id < end_frame_id) { 4038 if (start_frame > end_frame_id || 4039 start_frame < start_frame_id) 4040 ret = -EINVAL; 4041 } else if (start_frame_id > end_frame_id) { 4042 if ((start_frame > end_frame_id && 4043 start_frame < start_frame_id)) 4044 ret = -EINVAL; 4045 } else { 4046 ret = -EINVAL; 4047 } 4048 4049 if (index == 0) { 4050 if (ret == -EINVAL || start_frame == start_frame_id) { 4051 start_frame = start_frame_id + 1; 4052 if (urb->dev->speed == USB_SPEED_LOW || 4053 urb->dev->speed == USB_SPEED_FULL) 4054 urb->start_frame = start_frame; 4055 else 4056 urb->start_frame = start_frame << 3; 4057 ret = 0; 4058 } 4059 } 4060 4061 if (ret) { 4062 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", 4063 start_frame, current_frame_id, index, 4064 start_frame_id, end_frame_id); 4065 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); 4066 return ret; 4067 } 4068 4069 return start_frame; 4070 } 4071 4072 /* Check if we should generate event interrupt for a TD in an isoc URB */ 4073 static bool trb_block_event_intr(struct xhci_hcd *xhci, int num_tds, int i, 4074 struct xhci_interrupter *ir) 4075 { 4076 if (xhci->hci_version < 0x100) 4077 return false; 4078 /* always generate an event interrupt for the last TD */ 4079 if (i == num_tds - 1) 4080 return false; 4081 /* 4082 * If AVOID_BEI is set the host handles full event rings poorly, 4083 * generate an event at least every 8th TD to clear the event ring 4084 */ 4085 if (i && ir->isoc_bei_interval && xhci->quirks & XHCI_AVOID_BEI) 4086 return !!(i % ir->isoc_bei_interval); 4087 4088 return true; 4089 } 4090 4091 /* This is for isoc transfer */ 4092 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 4093 struct urb *urb, int slot_id, unsigned int ep_index) 4094 { 4095 struct xhci_interrupter *ir; 4096 struct xhci_ring *ep_ring; 4097 struct urb_priv *urb_priv; 4098 struct xhci_td *td; 4099 int num_tds, trbs_per_td; 4100 struct xhci_generic_trb *start_trb; 4101 bool first_trb; 4102 int start_cycle; 4103 u32 field, length_field; 4104 int running_total, trb_buff_len, td_len, td_remain_len, ret; 4105 u64 start_addr, addr; 4106 int i, j; 4107 bool more_trbs_coming; 4108 struct xhci_virt_ep *xep; 4109 int frame_id; 4110 4111 xep = &xhci->devs[slot_id]->eps[ep_index]; 4112 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 4113 ir = xhci->interrupters[0]; 4114 4115 num_tds = urb->number_of_packets; 4116 if (num_tds < 1) { 4117 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 4118 return -EINVAL; 4119 } 4120 start_addr = (u64) urb->transfer_dma; 4121 start_trb = &ep_ring->enqueue->generic; 4122 start_cycle = ep_ring->cycle_state; 4123 4124 urb_priv = urb->hcpriv; 4125 /* Queue the TRBs for each TD, even if they are zero-length */ 4126 for (i = 0; i < num_tds; i++) { 4127 unsigned int total_pkt_count, max_pkt; 4128 unsigned int burst_count, last_burst_pkt_count; 4129 u32 sia_frame_id; 4130 4131 first_trb = true; 4132 running_total = 0; 4133 addr = start_addr + urb->iso_frame_desc[i].offset; 4134 td_len = urb->iso_frame_desc[i].length; 4135 td_remain_len = td_len; 4136 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 4137 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); 4138 4139 /* A zero-length transfer still involves at least one packet. */ 4140 if (total_pkt_count == 0) 4141 total_pkt_count++; 4142 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); 4143 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, 4144 urb, total_pkt_count); 4145 4146 trbs_per_td = count_isoc_trbs_needed(urb, i); 4147 4148 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 4149 urb->stream_id, trbs_per_td, urb, i, mem_flags); 4150 if (ret < 0) { 4151 if (i == 0) 4152 return ret; 4153 goto cleanup; 4154 } 4155 td = &urb_priv->td[i]; 4156 /* use SIA as default, if frame id is used overwrite it */ 4157 sia_frame_id = TRB_SIA; 4158 if (!(urb->transfer_flags & URB_ISO_ASAP) && 4159 HCC_CFC(xhci->hcc_params)) { 4160 frame_id = xhci_get_isoc_frame_id(xhci, urb, i); 4161 if (frame_id >= 0) 4162 sia_frame_id = TRB_FRAME_ID(frame_id); 4163 } 4164 /* 4165 * Set isoc specific data for the first TRB in a TD. 4166 * Prevent HW from getting the TRBs by keeping the cycle state 4167 * inverted in the first TDs isoc TRB. 4168 */ 4169 field = TRB_TYPE(TRB_ISOC) | 4170 TRB_TLBPC(last_burst_pkt_count) | 4171 sia_frame_id | 4172 (i ? ep_ring->cycle_state : !start_cycle); 4173 4174 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ 4175 if (!xep->use_extended_tbc) 4176 field |= TRB_TBC(burst_count); 4177 4178 /* fill the rest of the TRB fields, and remaining normal TRBs */ 4179 for (j = 0; j < trbs_per_td; j++) { 4180 u32 remainder = 0; 4181 4182 /* only first TRB is isoc, overwrite otherwise */ 4183 if (!first_trb) 4184 field = TRB_TYPE(TRB_NORMAL) | 4185 ep_ring->cycle_state; 4186 4187 /* Only set interrupt on short packet for IN EPs */ 4188 if (usb_urb_dir_in(urb)) 4189 field |= TRB_ISP; 4190 4191 /* Set the chain bit for all except the last TRB */ 4192 if (j < trbs_per_td - 1) { 4193 more_trbs_coming = true; 4194 field |= TRB_CHAIN; 4195 } else { 4196 more_trbs_coming = false; 4197 td->end_trb = ep_ring->enqueue; 4198 td->end_seg = ep_ring->enq_seg; 4199 field |= TRB_IOC; 4200 if (trb_block_event_intr(xhci, num_tds, i, ir)) 4201 field |= TRB_BEI; 4202 } 4203 /* Calculate TRB length */ 4204 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 4205 if (trb_buff_len > td_remain_len) 4206 trb_buff_len = td_remain_len; 4207 4208 /* Set the TRB length, TD size, & interrupter fields. */ 4209 remainder = xhci_td_remainder(xhci, running_total, 4210 trb_buff_len, td_len, 4211 urb, more_trbs_coming); 4212 4213 length_field = TRB_LEN(trb_buff_len) | 4214 TRB_INTR_TARGET(0); 4215 4216 /* xhci 1.1 with ETE uses TD Size field for TBC */ 4217 if (first_trb && xep->use_extended_tbc) 4218 length_field |= TRB_TD_SIZE_TBC(burst_count); 4219 else 4220 length_field |= TRB_TD_SIZE(remainder); 4221 first_trb = false; 4222 4223 queue_trb(xhci, ep_ring, more_trbs_coming, 4224 lower_32_bits(addr), 4225 upper_32_bits(addr), 4226 length_field, 4227 field); 4228 running_total += trb_buff_len; 4229 4230 addr += trb_buff_len; 4231 td_remain_len -= trb_buff_len; 4232 } 4233 4234 /* Check TD length */ 4235 if (running_total != td_len) { 4236 xhci_err(xhci, "ISOC TD length unmatch\n"); 4237 ret = -EINVAL; 4238 goto cleanup; 4239 } 4240 } 4241 4242 /* store the next frame id */ 4243 if (HCC_CFC(xhci->hcc_params)) 4244 xep->next_frame_id = urb->start_frame + num_tds * urb->interval; 4245 4246 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 4247 if (xhci->quirks & XHCI_AMD_PLL_FIX) 4248 usb_amd_quirk_pll_disable(); 4249 } 4250 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 4251 4252 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 4253 start_cycle, start_trb); 4254 return 0; 4255 cleanup: 4256 /* Clean up a partially enqueued isoc transfer. */ 4257 4258 for (i--; i >= 0; i--) 4259 list_del_init(&urb_priv->td[i].td_list); 4260 4261 /* Use the first TD as a temporary variable to turn the TDs we've queued 4262 * into No-ops with a software-owned cycle bit. That way the hardware 4263 * won't accidentally start executing bogus TDs when we partially 4264 * overwrite them. td->start_trb and td->start_seg are already set. 4265 */ 4266 urb_priv->td[0].end_trb = ep_ring->enqueue; 4267 /* Every TRB except the first & last will have its cycle bit flipped. */ 4268 td_to_noop(&urb_priv->td[0], true); 4269 4270 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 4271 ep_ring->enqueue = urb_priv->td[0].start_trb; 4272 ep_ring->enq_seg = urb_priv->td[0].start_seg; 4273 ep_ring->cycle_state = start_cycle; 4274 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 4275 return ret; 4276 } 4277 4278 /* 4279 * Check transfer ring to guarantee there is enough room for the urb. 4280 * Update ISO URB start_frame and interval. 4281 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to 4282 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or 4283 * Contiguous Frame ID is not supported by HC. 4284 */ 4285 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 4286 struct urb *urb, int slot_id, unsigned int ep_index) 4287 { 4288 struct xhci_virt_device *xdev; 4289 struct xhci_ring *ep_ring; 4290 struct xhci_ep_ctx *ep_ctx; 4291 int start_frame; 4292 int num_tds, num_trbs, i; 4293 int ret; 4294 struct xhci_virt_ep *xep; 4295 int ist; 4296 4297 xdev = xhci->devs[slot_id]; 4298 xep = &xhci->devs[slot_id]->eps[ep_index]; 4299 ep_ring = xdev->eps[ep_index].ring; 4300 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 4301 4302 num_trbs = 0; 4303 num_tds = urb->number_of_packets; 4304 for (i = 0; i < num_tds; i++) 4305 num_trbs += count_isoc_trbs_needed(urb, i); 4306 4307 /* Check the ring to guarantee there is enough room for the whole urb. 4308 * Do not insert any td of the urb to the ring if the check failed. 4309 */ 4310 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 4311 num_trbs, mem_flags); 4312 if (ret) 4313 return ret; 4314 4315 /* 4316 * Check interval value. This should be done before we start to 4317 * calculate the start frame value. 4318 */ 4319 check_interval(urb, ep_ctx); 4320 4321 /* Calculate the start frame and put it in urb->start_frame. */ 4322 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { 4323 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) { 4324 urb->start_frame = xep->next_frame_id; 4325 goto skip_start_over; 4326 } 4327 } 4328 4329 start_frame = readl(&xhci->run_regs->microframe_index); 4330 start_frame &= 0x3fff; 4331 /* 4332 * Round up to the next frame and consider the time before trb really 4333 * gets scheduled by hardare. 4334 */ 4335 ist = HCS_IST(xhci->hcs_params2) & 0x7; 4336 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 4337 ist <<= 3; 4338 start_frame += ist + XHCI_CFC_DELAY; 4339 start_frame = roundup(start_frame, 8); 4340 4341 /* 4342 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT 4343 * is greate than 8 microframes. 4344 */ 4345 if (urb->dev->speed == USB_SPEED_LOW || 4346 urb->dev->speed == USB_SPEED_FULL) { 4347 start_frame = roundup(start_frame, urb->interval << 3); 4348 urb->start_frame = start_frame >> 3; 4349 } else { 4350 start_frame = roundup(start_frame, urb->interval); 4351 urb->start_frame = start_frame; 4352 } 4353 4354 skip_start_over: 4355 4356 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 4357 } 4358 4359 /**** Command Ring Operations ****/ 4360 4361 /* Generic function for queueing a command TRB on the command ring. 4362 * Check to make sure there's room on the command ring for one command TRB. 4363 * Also check that there's room reserved for commands that must not fail. 4364 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 4365 * then only check for the number of reserved spots. 4366 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 4367 * because the command event handler may want to resubmit a failed command. 4368 */ 4369 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4370 u32 field1, u32 field2, 4371 u32 field3, u32 field4, bool command_must_succeed) 4372 { 4373 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 4374 int ret; 4375 4376 if ((xhci->xhc_state & XHCI_STATE_DYING) || 4377 (xhci->xhc_state & XHCI_STATE_HALTED)) { 4378 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command. state: 0x%x\n", 4379 xhci->xhc_state); 4380 return -ESHUTDOWN; 4381 } 4382 4383 if (!command_must_succeed) 4384 reserved_trbs++; 4385 4386 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 4387 reserved_trbs, GFP_ATOMIC); 4388 if (ret < 0) { 4389 xhci_err(xhci, "ERR: No room for command on command ring\n"); 4390 if (command_must_succeed) 4391 xhci_err(xhci, "ERR: Reserved TRB counting for " 4392 "unfailable commands failed.\n"); 4393 return ret; 4394 } 4395 4396 cmd->command_trb = xhci->cmd_ring->enqueue; 4397 4398 /* if there are no other commands queued we start the timeout timer */ 4399 if (list_empty(&xhci->cmd_list)) { 4400 xhci->current_cmd = cmd; 4401 xhci_mod_cmd_timer(xhci); 4402 } 4403 4404 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 4405 4406 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 4407 field4 | xhci->cmd_ring->cycle_state); 4408 return 0; 4409 } 4410 4411 /* Queue a slot enable or disable request on the command ring */ 4412 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 4413 u32 trb_type, u32 slot_id) 4414 { 4415 return queue_command(xhci, cmd, 0, 0, 0, 4416 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 4417 } 4418 4419 /* Queue an address device command TRB */ 4420 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4421 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 4422 { 4423 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4424 upper_32_bits(in_ctx_ptr), 0, 4425 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 4426 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 4427 } 4428 4429 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4430 u32 field1, u32 field2, u32 field3, u32 field4) 4431 { 4432 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 4433 } 4434 4435 /* Queue a reset device command TRB */ 4436 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4437 u32 slot_id) 4438 { 4439 return queue_command(xhci, cmd, 0, 0, 0, 4440 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 4441 false); 4442 } 4443 4444 /* Queue a configure endpoint command TRB */ 4445 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 4446 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 4447 u32 slot_id, bool command_must_succeed) 4448 { 4449 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4450 upper_32_bits(in_ctx_ptr), 0, 4451 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 4452 command_must_succeed); 4453 } 4454 4455 /* Queue a get root hub port bandwidth command TRB */ 4456 int xhci_queue_get_port_bw(struct xhci_hcd *xhci, 4457 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 4458 u8 dev_speed, bool command_must_succeed) 4459 { 4460 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4461 upper_32_bits(in_ctx_ptr), 0, 4462 TRB_TYPE(TRB_GET_BW) | DEV_SPEED_FOR_TRB(dev_speed), 4463 command_must_succeed); 4464 } 4465 4466 /* Queue an evaluate context command TRB */ 4467 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 4468 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 4469 { 4470 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4471 upper_32_bits(in_ctx_ptr), 0, 4472 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 4473 command_must_succeed); 4474 } 4475 4476 /* 4477 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 4478 * activity on an endpoint that is about to be suspended. 4479 */ 4480 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 4481 int slot_id, unsigned int ep_index, int suspend) 4482 { 4483 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4484 u32 trb_ep_index = EP_INDEX_FOR_TRB(ep_index); 4485 u32 type = TRB_TYPE(TRB_STOP_RING); 4486 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 4487 4488 return queue_command(xhci, cmd, 0, 0, 0, 4489 trb_slot_id | trb_ep_index | type | trb_suspend, false); 4490 } 4491 4492 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 4493 int slot_id, unsigned int ep_index, 4494 enum xhci_ep_reset_type reset_type) 4495 { 4496 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4497 u32 trb_ep_index = EP_INDEX_FOR_TRB(ep_index); 4498 u32 type = TRB_TYPE(TRB_RESET_EP); 4499 4500 if (reset_type == EP_SOFT_RESET) 4501 type |= TRB_TSP; 4502 4503 return queue_command(xhci, cmd, 0, 0, 0, 4504 trb_slot_id | trb_ep_index | type, false); 4505 } 4506