1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 /* 24 * Ring initialization rules: 25 * 1. Each segment is initialized to zero, except for link TRBs. 26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 27 * Consumer Cycle State (CCS), depending on ring function. 28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 29 * 30 * Ring behavior rules: 31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 32 * least one free TRB in the ring. This is useful if you want to turn that 33 * into a link TRB and expand the ring. 34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 35 * link TRB, then load the pointer with the address in the link TRB. If the 36 * link TRB had its toggle bit set, you may need to update the ring cycle 37 * state (see cycle bit rules). You may have to do this multiple times 38 * until you reach a non-link TRB. 39 * 3. A ring is full if enqueue++ (for the definition of increment above) 40 * equals the dequeue pointer. 41 * 42 * Cycle bit rules: 43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 44 * in a link TRB, it must toggle the ring cycle state. 45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 46 * in a link TRB, it must toggle the ring cycle state. 47 * 48 * Producer rules: 49 * 1. Check if ring is full before you enqueue. 50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 51 * Update enqueue pointer between each write (which may update the ring 52 * cycle state). 53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 54 * and endpoint rings. If HC is the producer for the event ring, 55 * and it generates an interrupt according to interrupt modulation rules. 56 * 57 * Consumer rules: 58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 59 * the TRB is owned by the consumer. 60 * 2. Update dequeue pointer (which may update the ring cycle state) and 61 * continue processing TRBs until you reach a TRB which is not owned by you. 62 * 3. Notify the producer. SW is the consumer for the event ring, and it 63 * updates event ring dequeue pointer. HC is the consumer for the command and 64 * endpoint rings; it generates events on the event ring for these. 65 */ 66 67 #include <linux/scatterlist.h> 68 #include <linux/slab.h> 69 #include "xhci.h" 70 #include "xhci-trace.h" 71 72 /* 73 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 74 * address of the TRB. 75 */ 76 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 77 union xhci_trb *trb) 78 { 79 unsigned long segment_offset; 80 81 if (!seg || !trb || trb < seg->trbs) 82 return 0; 83 /* offset in TRBs */ 84 segment_offset = trb - seg->trbs; 85 if (segment_offset > TRBS_PER_SEGMENT) 86 return 0; 87 return seg->dma + (segment_offset * sizeof(*trb)); 88 } 89 90 /* Does this link TRB point to the first segment in a ring, 91 * or was the previous TRB the last TRB on the last segment in the ERST? 92 */ 93 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring, 94 struct xhci_segment *seg, union xhci_trb *trb) 95 { 96 if (ring == xhci->event_ring) 97 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) && 98 (seg->next == xhci->event_ring->first_seg); 99 else 100 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 101 } 102 103 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring 104 * segment? I.e. would the updated event TRB pointer step off the end of the 105 * event seg? 106 */ 107 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 108 struct xhci_segment *seg, union xhci_trb *trb) 109 { 110 if (ring == xhci->event_ring) 111 return trb == &seg->trbs[TRBS_PER_SEGMENT]; 112 else 113 return TRB_TYPE_LINK_LE32(trb->link.control); 114 } 115 116 static int enqueue_is_link_trb(struct xhci_ring *ring) 117 { 118 struct xhci_link_trb *link = &ring->enqueue->link; 119 return TRB_TYPE_LINK_LE32(link->control); 120 } 121 122 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 123 * TRB is in a new segment. This does not skip over link TRBs, and it does not 124 * effect the ring dequeue or enqueue pointers. 125 */ 126 static void next_trb(struct xhci_hcd *xhci, 127 struct xhci_ring *ring, 128 struct xhci_segment **seg, 129 union xhci_trb **trb) 130 { 131 if (last_trb(xhci, ring, *seg, *trb)) { 132 *seg = (*seg)->next; 133 *trb = ((*seg)->trbs); 134 } else { 135 (*trb)++; 136 } 137 } 138 139 /* 140 * See Cycle bit rules. SW is the consumer for the event ring only. 141 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 142 */ 143 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 144 { 145 ring->deq_updates++; 146 147 /* 148 * If this is not event ring, and the dequeue pointer 149 * is not on a link TRB, there is one more usable TRB 150 */ 151 if (ring->type != TYPE_EVENT && 152 !last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) 153 ring->num_trbs_free++; 154 155 do { 156 /* 157 * Update the dequeue pointer further if that was a link TRB or 158 * we're at the end of an event ring segment (which doesn't have 159 * link TRBS) 160 */ 161 if (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) { 162 if (ring->type == TYPE_EVENT && 163 last_trb_on_last_seg(xhci, ring, 164 ring->deq_seg, ring->dequeue)) { 165 ring->cycle_state ^= 1; 166 } 167 ring->deq_seg = ring->deq_seg->next; 168 ring->dequeue = ring->deq_seg->trbs; 169 } else { 170 ring->dequeue++; 171 } 172 } while (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)); 173 } 174 175 /* 176 * See Cycle bit rules. SW is the consumer for the event ring only. 177 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 178 * 179 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 180 * chain bit is set), then set the chain bit in all the following link TRBs. 181 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 182 * have their chain bit cleared (so that each Link TRB is a separate TD). 183 * 184 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 185 * set, but other sections talk about dealing with the chain bit set. This was 186 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 187 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 188 * 189 * @more_trbs_coming: Will you enqueue more TRBs before calling 190 * prepare_transfer()? 191 */ 192 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 193 bool more_trbs_coming) 194 { 195 u32 chain; 196 union xhci_trb *next; 197 198 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 199 /* If this is not event ring, there is one less usable TRB */ 200 if (ring->type != TYPE_EVENT && 201 !last_trb(xhci, ring, ring->enq_seg, ring->enqueue)) 202 ring->num_trbs_free--; 203 next = ++(ring->enqueue); 204 205 ring->enq_updates++; 206 /* Update the dequeue pointer further if that was a link TRB or we're at 207 * the end of an event ring segment (which doesn't have link TRBS) 208 */ 209 while (last_trb(xhci, ring, ring->enq_seg, next)) { 210 if (ring->type != TYPE_EVENT) { 211 /* 212 * If the caller doesn't plan on enqueueing more 213 * TDs before ringing the doorbell, then we 214 * don't want to give the link TRB to the 215 * hardware just yet. We'll give the link TRB 216 * back in prepare_ring() just before we enqueue 217 * the TD at the top of the ring. 218 */ 219 if (!chain && !more_trbs_coming) 220 break; 221 222 /* If we're not dealing with 0.95 hardware or 223 * isoc rings on AMD 0.96 host, 224 * carry over the chain bit of the previous TRB 225 * (which may mean the chain bit is cleared). 226 */ 227 if (!(ring->type == TYPE_ISOC && 228 (xhci->quirks & XHCI_AMD_0x96_HOST)) 229 && !xhci_link_trb_quirk(xhci)) { 230 next->link.control &= 231 cpu_to_le32(~TRB_CHAIN); 232 next->link.control |= 233 cpu_to_le32(chain); 234 } 235 /* Give this link TRB to the hardware */ 236 wmb(); 237 next->link.control ^= cpu_to_le32(TRB_CYCLE); 238 239 /* Toggle the cycle bit after the last ring segment. */ 240 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 241 ring->cycle_state = (ring->cycle_state ? 0 : 1); 242 } 243 } 244 ring->enq_seg = ring->enq_seg->next; 245 ring->enqueue = ring->enq_seg->trbs; 246 next = ring->enqueue; 247 } 248 } 249 250 /* 251 * Check to see if there's room to enqueue num_trbs on the ring and make sure 252 * enqueue pointer will not advance into dequeue segment. See rules above. 253 */ 254 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 255 unsigned int num_trbs) 256 { 257 int num_trbs_in_deq_seg; 258 259 if (ring->num_trbs_free < num_trbs) 260 return 0; 261 262 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { 263 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; 264 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) 265 return 0; 266 } 267 268 return 1; 269 } 270 271 /* Ring the host controller doorbell after placing a command on the ring */ 272 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 273 { 274 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 275 return; 276 277 xhci_dbg(xhci, "// Ding dong!\n"); 278 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 279 /* Flush PCI posted writes */ 280 readl(&xhci->dba->doorbell[0]); 281 } 282 283 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci) 284 { 285 u64 temp_64; 286 int ret; 287 288 xhci_dbg(xhci, "Abort command ring\n"); 289 290 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 291 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 292 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT, 293 &xhci->op_regs->cmd_ring); 294 295 /* Section 4.6.1.2 of xHCI 1.0 spec says software should 296 * time the completion od all xHCI commands, including 297 * the Command Abort operation. If software doesn't see 298 * CRR negated in a timely manner (e.g. longer than 5 299 * seconds), then it should assume that the there are 300 * larger problems with the xHC and assert HCRST. 301 */ 302 ret = xhci_handshake(xhci, &xhci->op_regs->cmd_ring, 303 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 304 if (ret < 0) { 305 xhci_err(xhci, "Stopped the command ring failed, " 306 "maybe the host is dead\n"); 307 xhci->xhc_state |= XHCI_STATE_DYING; 308 xhci_quiesce(xhci); 309 xhci_halt(xhci); 310 return -ESHUTDOWN; 311 } 312 313 return 0; 314 } 315 316 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 317 unsigned int slot_id, 318 unsigned int ep_index, 319 unsigned int stream_id) 320 { 321 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 322 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 323 unsigned int ep_state = ep->ep_state; 324 325 /* Don't ring the doorbell for this endpoint if there are pending 326 * cancellations because we don't want to interrupt processing. 327 * We don't want to restart any stream rings if there's a set dequeue 328 * pointer command pending because the device can choose to start any 329 * stream once the endpoint is on the HW schedule. 330 */ 331 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) || 332 (ep_state & EP_HALTED)) 333 return; 334 writel(DB_VALUE(ep_index, stream_id), db_addr); 335 /* The CPU has better things to do at this point than wait for a 336 * write-posting flush. It'll get there soon enough. 337 */ 338 } 339 340 /* Ring the doorbell for any rings with pending URBs */ 341 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 342 unsigned int slot_id, 343 unsigned int ep_index) 344 { 345 unsigned int stream_id; 346 struct xhci_virt_ep *ep; 347 348 ep = &xhci->devs[slot_id]->eps[ep_index]; 349 350 /* A ring has pending URBs if its TD list is not empty */ 351 if (!(ep->ep_state & EP_HAS_STREAMS)) { 352 if (ep->ring && !(list_empty(&ep->ring->td_list))) 353 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 354 return; 355 } 356 357 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 358 stream_id++) { 359 struct xhci_stream_info *stream_info = ep->stream_info; 360 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 361 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 362 stream_id); 363 } 364 } 365 366 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 367 unsigned int slot_id, unsigned int ep_index, 368 unsigned int stream_id) 369 { 370 struct xhci_virt_ep *ep; 371 372 ep = &xhci->devs[slot_id]->eps[ep_index]; 373 /* Common case: no streams */ 374 if (!(ep->ep_state & EP_HAS_STREAMS)) 375 return ep->ring; 376 377 if (stream_id == 0) { 378 xhci_warn(xhci, 379 "WARN: Slot ID %u, ep index %u has streams, " 380 "but URB has no stream ID.\n", 381 slot_id, ep_index); 382 return NULL; 383 } 384 385 if (stream_id < ep->stream_info->num_streams) 386 return ep->stream_info->stream_rings[stream_id]; 387 388 xhci_warn(xhci, 389 "WARN: Slot ID %u, ep index %u has " 390 "stream IDs 1 to %u allocated, " 391 "but stream ID %u is requested.\n", 392 slot_id, ep_index, 393 ep->stream_info->num_streams - 1, 394 stream_id); 395 return NULL; 396 } 397 398 /* Get the right ring for the given URB. 399 * If the endpoint supports streams, boundary check the URB's stream ID. 400 * If the endpoint doesn't support streams, return the singular endpoint ring. 401 */ 402 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 403 struct urb *urb) 404 { 405 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id, 406 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id); 407 } 408 409 /* 410 * Move the xHC's endpoint ring dequeue pointer past cur_td. 411 * Record the new state of the xHC's endpoint ring dequeue segment, 412 * dequeue pointer, and new consumer cycle state in state. 413 * Update our internal representation of the ring's dequeue pointer. 414 * 415 * We do this in three jumps: 416 * - First we update our new ring state to be the same as when the xHC stopped. 417 * - Then we traverse the ring to find the segment that contains 418 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass 419 * any link TRBs with the toggle cycle bit set. 420 * - Finally we move the dequeue state one TRB further, toggling the cycle bit 421 * if we've moved it past a link TRB with the toggle cycle bit set. 422 * 423 * Some of the uses of xhci_generic_trb are grotty, but if they're done 424 * with correct __le32 accesses they should work fine. Only users of this are 425 * in here. 426 */ 427 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, 428 unsigned int slot_id, unsigned int ep_index, 429 unsigned int stream_id, struct xhci_td *cur_td, 430 struct xhci_dequeue_state *state) 431 { 432 struct xhci_virt_device *dev = xhci->devs[slot_id]; 433 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 434 struct xhci_ring *ep_ring; 435 struct xhci_segment *new_seg; 436 union xhci_trb *new_deq; 437 dma_addr_t addr; 438 u64 hw_dequeue; 439 bool cycle_found = false; 440 bool td_last_trb_found = false; 441 442 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 443 ep_index, stream_id); 444 if (!ep_ring) { 445 xhci_warn(xhci, "WARN can't find new dequeue state " 446 "for invalid stream ID %u.\n", 447 stream_id); 448 return; 449 } 450 451 /* Dig out the cycle state saved by the xHC during the stop ep cmd */ 452 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 453 "Finding endpoint context"); 454 /* 4.6.9 the css flag is written to the stream context for streams */ 455 if (ep->ep_state & EP_HAS_STREAMS) { 456 struct xhci_stream_ctx *ctx = 457 &ep->stream_info->stream_ctx_array[stream_id]; 458 hw_dequeue = le64_to_cpu(ctx->stream_ring); 459 } else { 460 struct xhci_ep_ctx *ep_ctx 461 = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 462 hw_dequeue = le64_to_cpu(ep_ctx->deq); 463 } 464 465 new_seg = ep_ring->deq_seg; 466 new_deq = ep_ring->dequeue; 467 state->new_cycle_state = hw_dequeue & 0x1; 468 469 /* 470 * We want to find the pointer, segment and cycle state of the new trb 471 * (the one after current TD's last_trb). We know the cycle state at 472 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are 473 * found. 474 */ 475 do { 476 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) 477 == (dma_addr_t)(hw_dequeue & ~0xf)) { 478 cycle_found = true; 479 if (td_last_trb_found) 480 break; 481 } 482 if (new_deq == cur_td->last_trb) 483 td_last_trb_found = true; 484 485 if (cycle_found && 486 TRB_TYPE_LINK_LE32(new_deq->generic.field[3]) && 487 new_deq->generic.field[3] & cpu_to_le32(LINK_TOGGLE)) 488 state->new_cycle_state ^= 0x1; 489 490 next_trb(xhci, ep_ring, &new_seg, &new_deq); 491 492 /* Search wrapped around, bail out */ 493 if (new_deq == ep->ring->dequeue) { 494 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 495 state->new_deq_seg = NULL; 496 state->new_deq_ptr = NULL; 497 return; 498 } 499 500 } while (!cycle_found || !td_last_trb_found); 501 502 state->new_deq_seg = new_seg; 503 state->new_deq_ptr = new_deq; 504 505 /* Don't update the ring cycle state for the producer (us). */ 506 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 507 "Cycle state = 0x%x", state->new_cycle_state); 508 509 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 510 "New dequeue segment = %p (virtual)", 511 state->new_deq_seg); 512 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); 513 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 514 "New dequeue pointer = 0x%llx (DMA)", 515 (unsigned long long) addr); 516 } 517 518 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 519 * (The last TRB actually points to the ring enqueue pointer, which is not part 520 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 521 */ 522 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 523 struct xhci_td *cur_td, bool flip_cycle) 524 { 525 struct xhci_segment *cur_seg; 526 union xhci_trb *cur_trb; 527 528 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb; 529 true; 530 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 531 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) { 532 /* Unchain any chained Link TRBs, but 533 * leave the pointers intact. 534 */ 535 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN); 536 /* Flip the cycle bit (link TRBs can't be the first 537 * or last TRB). 538 */ 539 if (flip_cycle) 540 cur_trb->generic.field[3] ^= 541 cpu_to_le32(TRB_CYCLE); 542 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 543 "Cancel (unchain) link TRB"); 544 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 545 "Address = %p (0x%llx dma); " 546 "in seg %p (0x%llx dma)", 547 cur_trb, 548 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb), 549 cur_seg, 550 (unsigned long long)cur_seg->dma); 551 } else { 552 cur_trb->generic.field[0] = 0; 553 cur_trb->generic.field[1] = 0; 554 cur_trb->generic.field[2] = 0; 555 /* Preserve only the cycle bit of this TRB */ 556 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 557 /* Flip the cycle bit except on the first or last TRB */ 558 if (flip_cycle && cur_trb != cur_td->first_trb && 559 cur_trb != cur_td->last_trb) 560 cur_trb->generic.field[3] ^= 561 cpu_to_le32(TRB_CYCLE); 562 cur_trb->generic.field[3] |= cpu_to_le32( 563 TRB_TYPE(TRB_TR_NOOP)); 564 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 565 "TRB to noop at offset 0x%llx", 566 (unsigned long long) 567 xhci_trb_virt_to_dma(cur_seg, cur_trb)); 568 } 569 if (cur_trb == cur_td->last_trb) 570 break; 571 } 572 } 573 574 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, 575 struct xhci_virt_ep *ep) 576 { 577 ep->ep_state &= ~EP_HALT_PENDING; 578 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the 579 * timer is running on another CPU, we don't decrement stop_cmds_pending 580 * (since we didn't successfully stop the watchdog timer). 581 */ 582 if (del_timer(&ep->stop_cmd_timer)) 583 ep->stop_cmds_pending--; 584 } 585 586 /* Must be called with xhci->lock held in interrupt context */ 587 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 588 struct xhci_td *cur_td, int status) 589 { 590 struct usb_hcd *hcd; 591 struct urb *urb; 592 struct urb_priv *urb_priv; 593 594 urb = cur_td->urb; 595 urb_priv = urb->hcpriv; 596 urb_priv->td_cnt++; 597 hcd = bus_to_hcd(urb->dev->bus); 598 599 /* Only giveback urb when this is the last td in urb */ 600 if (urb_priv->td_cnt == urb_priv->length) { 601 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 602 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 603 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 604 if (xhci->quirks & XHCI_AMD_PLL_FIX) 605 usb_amd_quirk_pll_enable(); 606 } 607 } 608 usb_hcd_unlink_urb_from_ep(hcd, urb); 609 610 spin_unlock(&xhci->lock); 611 usb_hcd_giveback_urb(hcd, urb, status); 612 xhci_urb_free_priv(xhci, urb_priv); 613 spin_lock(&xhci->lock); 614 } 615 } 616 617 /* 618 * When we get a command completion for a Stop Endpoint Command, we need to 619 * unlink any cancelled TDs from the ring. There are two ways to do that: 620 * 621 * 1. If the HW was in the middle of processing the TD that needs to be 622 * cancelled, then we must move the ring's dequeue pointer past the last TRB 623 * in the TD with a Set Dequeue Pointer Command. 624 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 625 * bit cleared) so that the HW will skip over them. 626 */ 627 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 628 union xhci_trb *trb, struct xhci_event_cmd *event) 629 { 630 unsigned int ep_index; 631 struct xhci_ring *ep_ring; 632 struct xhci_virt_ep *ep; 633 struct list_head *entry; 634 struct xhci_td *cur_td = NULL; 635 struct xhci_td *last_unlinked_td; 636 637 struct xhci_dequeue_state deq_state; 638 639 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 640 if (!xhci->devs[slot_id]) 641 xhci_warn(xhci, "Stop endpoint command " 642 "completion for disabled slot %u\n", 643 slot_id); 644 return; 645 } 646 647 memset(&deq_state, 0, sizeof(deq_state)); 648 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 649 ep = &xhci->devs[slot_id]->eps[ep_index]; 650 651 if (list_empty(&ep->cancelled_td_list)) { 652 xhci_stop_watchdog_timer_in_irq(xhci, ep); 653 ep->stopped_td = NULL; 654 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 655 return; 656 } 657 658 /* Fix up the ep ring first, so HW stops executing cancelled TDs. 659 * We have the xHCI lock, so nothing can modify this list until we drop 660 * it. We're also in the event handler, so we can't get re-interrupted 661 * if another Stop Endpoint command completes 662 */ 663 list_for_each(entry, &ep->cancelled_td_list) { 664 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list); 665 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 666 "Removing canceled TD starting at 0x%llx (dma).", 667 (unsigned long long)xhci_trb_virt_to_dma( 668 cur_td->start_seg, cur_td->first_trb)); 669 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 670 if (!ep_ring) { 671 /* This shouldn't happen unless a driver is mucking 672 * with the stream ID after submission. This will 673 * leave the TD on the hardware ring, and the hardware 674 * will try to execute it, and may access a buffer 675 * that has already been freed. In the best case, the 676 * hardware will execute it, and the event handler will 677 * ignore the completion event for that TD, since it was 678 * removed from the td_list for that endpoint. In 679 * short, don't muck with the stream ID after 680 * submission. 681 */ 682 xhci_warn(xhci, "WARN Cancelled URB %p " 683 "has invalid stream ID %u.\n", 684 cur_td->urb, 685 cur_td->urb->stream_id); 686 goto remove_finished_td; 687 } 688 /* 689 * If we stopped on the TD we need to cancel, then we have to 690 * move the xHC endpoint ring dequeue pointer past this TD. 691 */ 692 if (cur_td == ep->stopped_td) 693 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, 694 cur_td->urb->stream_id, 695 cur_td, &deq_state); 696 else 697 td_to_noop(xhci, ep_ring, cur_td, false); 698 remove_finished_td: 699 /* 700 * The event handler won't see a completion for this TD anymore, 701 * so remove it from the endpoint ring's TD list. Keep it in 702 * the cancelled TD list for URB completion later. 703 */ 704 list_del_init(&cur_td->td_list); 705 } 706 last_unlinked_td = cur_td; 707 xhci_stop_watchdog_timer_in_irq(xhci, ep); 708 709 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ 710 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { 711 xhci_queue_new_dequeue_state(xhci, slot_id, ep_index, 712 ep->stopped_td->urb->stream_id, &deq_state); 713 xhci_ring_cmd_db(xhci); 714 } else { 715 /* Otherwise ring the doorbell(s) to restart queued transfers */ 716 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 717 } 718 719 ep->stopped_td = NULL; 720 721 /* 722 * Drop the lock and complete the URBs in the cancelled TD list. 723 * New TDs to be cancelled might be added to the end of the list before 724 * we can complete all the URBs for the TDs we already unlinked. 725 * So stop when we've completed the URB for the last TD we unlinked. 726 */ 727 do { 728 cur_td = list_entry(ep->cancelled_td_list.next, 729 struct xhci_td, cancelled_td_list); 730 list_del_init(&cur_td->cancelled_td_list); 731 732 /* Clean up the cancelled URB */ 733 /* Doesn't matter what we pass for status, since the core will 734 * just overwrite it (because the URB has been unlinked). 735 */ 736 xhci_giveback_urb_in_irq(xhci, cur_td, 0); 737 738 /* Stop processing the cancelled list if the watchdog timer is 739 * running. 740 */ 741 if (xhci->xhc_state & XHCI_STATE_DYING) 742 return; 743 } while (cur_td != last_unlinked_td); 744 745 /* Return to the event handler with xhci->lock re-acquired */ 746 } 747 748 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 749 { 750 struct xhci_td *cur_td; 751 752 while (!list_empty(&ring->td_list)) { 753 cur_td = list_first_entry(&ring->td_list, 754 struct xhci_td, td_list); 755 list_del_init(&cur_td->td_list); 756 if (!list_empty(&cur_td->cancelled_td_list)) 757 list_del_init(&cur_td->cancelled_td_list); 758 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 759 } 760 } 761 762 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 763 int slot_id, int ep_index) 764 { 765 struct xhci_td *cur_td; 766 struct xhci_virt_ep *ep; 767 struct xhci_ring *ring; 768 769 ep = &xhci->devs[slot_id]->eps[ep_index]; 770 if ((ep->ep_state & EP_HAS_STREAMS) || 771 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 772 int stream_id; 773 774 for (stream_id = 0; stream_id < ep->stream_info->num_streams; 775 stream_id++) { 776 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 777 "Killing URBs for slot ID %u, ep index %u, stream %u", 778 slot_id, ep_index, stream_id + 1); 779 xhci_kill_ring_urbs(xhci, 780 ep->stream_info->stream_rings[stream_id]); 781 } 782 } else { 783 ring = ep->ring; 784 if (!ring) 785 return; 786 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 787 "Killing URBs for slot ID %u, ep index %u", 788 slot_id, ep_index); 789 xhci_kill_ring_urbs(xhci, ring); 790 } 791 while (!list_empty(&ep->cancelled_td_list)) { 792 cur_td = list_first_entry(&ep->cancelled_td_list, 793 struct xhci_td, cancelled_td_list); 794 list_del_init(&cur_td->cancelled_td_list); 795 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 796 } 797 } 798 799 /* Watchdog timer function for when a stop endpoint command fails to complete. 800 * In this case, we assume the host controller is broken or dying or dead. The 801 * host may still be completing some other events, so we have to be careful to 802 * let the event ring handler and the URB dequeueing/enqueueing functions know 803 * through xhci->state. 804 * 805 * The timer may also fire if the host takes a very long time to respond to the 806 * command, and the stop endpoint command completion handler cannot delete the 807 * timer before the timer function is called. Another endpoint cancellation may 808 * sneak in before the timer function can grab the lock, and that may queue 809 * another stop endpoint command and add the timer back. So we cannot use a 810 * simple flag to say whether there is a pending stop endpoint command for a 811 * particular endpoint. 812 * 813 * Instead we use a combination of that flag and a counter for the number of 814 * pending stop endpoint commands. If the timer is the tail end of the last 815 * stop endpoint command, and the endpoint's command is still pending, we assume 816 * the host is dying. 817 */ 818 void xhci_stop_endpoint_command_watchdog(unsigned long arg) 819 { 820 struct xhci_hcd *xhci; 821 struct xhci_virt_ep *ep; 822 int ret, i, j; 823 unsigned long flags; 824 825 ep = (struct xhci_virt_ep *) arg; 826 xhci = ep->xhci; 827 828 spin_lock_irqsave(&xhci->lock, flags); 829 830 ep->stop_cmds_pending--; 831 if (xhci->xhc_state & XHCI_STATE_DYING) { 832 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 833 "Stop EP timer ran, but another timer marked " 834 "xHCI as DYING, exiting."); 835 spin_unlock_irqrestore(&xhci->lock, flags); 836 return; 837 } 838 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) { 839 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 840 "Stop EP timer ran, but no command pending, " 841 "exiting."); 842 spin_unlock_irqrestore(&xhci->lock, flags); 843 return; 844 } 845 846 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); 847 xhci_warn(xhci, "Assuming host is dying, halting host.\n"); 848 /* Oops, HC is dead or dying or at least not responding to the stop 849 * endpoint command. 850 */ 851 xhci->xhc_state |= XHCI_STATE_DYING; 852 /* Disable interrupts from the host controller and start halting it */ 853 xhci_quiesce(xhci); 854 spin_unlock_irqrestore(&xhci->lock, flags); 855 856 ret = xhci_halt(xhci); 857 858 spin_lock_irqsave(&xhci->lock, flags); 859 if (ret < 0) { 860 /* This is bad; the host is not responding to commands and it's 861 * not allowing itself to be halted. At least interrupts are 862 * disabled. If we call usb_hc_died(), it will attempt to 863 * disconnect all device drivers under this host. Those 864 * disconnect() methods will wait for all URBs to be unlinked, 865 * so we must complete them. 866 */ 867 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n"); 868 xhci_warn(xhci, "Completing active URBs anyway.\n"); 869 /* We could turn all TDs on the rings to no-ops. This won't 870 * help if the host has cached part of the ring, and is slow if 871 * we want to preserve the cycle bit. Skip it and hope the host 872 * doesn't touch the memory. 873 */ 874 } 875 for (i = 0; i < MAX_HC_SLOTS; i++) { 876 if (!xhci->devs[i]) 877 continue; 878 for (j = 0; j < 31; j++) 879 xhci_kill_endpoint_urbs(xhci, i, j); 880 } 881 spin_unlock_irqrestore(&xhci->lock, flags); 882 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 883 "Calling usb_hc_died()"); 884 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); 885 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 886 "xHCI host controller is dead."); 887 } 888 889 890 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 891 struct xhci_virt_device *dev, 892 struct xhci_ring *ep_ring, 893 unsigned int ep_index) 894 { 895 union xhci_trb *dequeue_temp; 896 int num_trbs_free_temp; 897 bool revert = false; 898 899 num_trbs_free_temp = ep_ring->num_trbs_free; 900 dequeue_temp = ep_ring->dequeue; 901 902 /* If we get two back-to-back stalls, and the first stalled transfer 903 * ends just before a link TRB, the dequeue pointer will be left on 904 * the link TRB by the code in the while loop. So we have to update 905 * the dequeue pointer one segment further, or we'll jump off 906 * the segment into la-la-land. 907 */ 908 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) { 909 ep_ring->deq_seg = ep_ring->deq_seg->next; 910 ep_ring->dequeue = ep_ring->deq_seg->trbs; 911 } 912 913 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 914 /* We have more usable TRBs */ 915 ep_ring->num_trbs_free++; 916 ep_ring->dequeue++; 917 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, 918 ep_ring->dequeue)) { 919 if (ep_ring->dequeue == 920 dev->eps[ep_index].queued_deq_ptr) 921 break; 922 ep_ring->deq_seg = ep_ring->deq_seg->next; 923 ep_ring->dequeue = ep_ring->deq_seg->trbs; 924 } 925 if (ep_ring->dequeue == dequeue_temp) { 926 revert = true; 927 break; 928 } 929 } 930 931 if (revert) { 932 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 933 ep_ring->num_trbs_free = num_trbs_free_temp; 934 } 935 } 936 937 /* 938 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 939 * we need to clear the set deq pending flag in the endpoint ring state, so that 940 * the TD queueing code can ring the doorbell again. We also need to ring the 941 * endpoint doorbell to restart the ring, but only if there aren't more 942 * cancellations pending. 943 */ 944 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 945 union xhci_trb *trb, u32 cmd_comp_code) 946 { 947 unsigned int ep_index; 948 unsigned int stream_id; 949 struct xhci_ring *ep_ring; 950 struct xhci_virt_device *dev; 951 struct xhci_virt_ep *ep; 952 struct xhci_ep_ctx *ep_ctx; 953 struct xhci_slot_ctx *slot_ctx; 954 955 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 956 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 957 dev = xhci->devs[slot_id]; 958 ep = &dev->eps[ep_index]; 959 960 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); 961 if (!ep_ring) { 962 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 963 stream_id); 964 /* XXX: Harmless??? */ 965 goto cleanup; 966 } 967 968 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 969 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); 970 971 if (cmd_comp_code != COMP_SUCCESS) { 972 unsigned int ep_state; 973 unsigned int slot_state; 974 975 switch (cmd_comp_code) { 976 case COMP_TRB_ERR: 977 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 978 break; 979 case COMP_CTX_STATE: 980 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 981 ep_state = le32_to_cpu(ep_ctx->ep_info); 982 ep_state &= EP_STATE_MASK; 983 slot_state = le32_to_cpu(slot_ctx->dev_state); 984 slot_state = GET_SLOT_STATE(slot_state); 985 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 986 "Slot state = %u, EP state = %u", 987 slot_state, ep_state); 988 break; 989 case COMP_EBADSLT: 990 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 991 slot_id); 992 break; 993 default: 994 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 995 cmd_comp_code); 996 break; 997 } 998 /* OK what do we do now? The endpoint state is hosed, and we 999 * should never get to this point if the synchronization between 1000 * queueing, and endpoint state are correct. This might happen 1001 * if the device gets disconnected after we've finished 1002 * cancelling URBs, which might not be an error... 1003 */ 1004 } else { 1005 u64 deq; 1006 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1007 if (ep->ep_state & EP_HAS_STREAMS) { 1008 struct xhci_stream_ctx *ctx = 1009 &ep->stream_info->stream_ctx_array[stream_id]; 1010 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; 1011 } else { 1012 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1013 } 1014 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1015 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1016 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1017 ep->queued_deq_ptr) == deq) { 1018 /* Update the ring's dequeue segment and dequeue pointer 1019 * to reflect the new position. 1020 */ 1021 update_ring_for_set_deq_completion(xhci, dev, 1022 ep_ring, ep_index); 1023 } else { 1024 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1025 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1026 ep->queued_deq_seg, ep->queued_deq_ptr); 1027 } 1028 } 1029 1030 cleanup: 1031 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 1032 dev->eps[ep_index].queued_deq_seg = NULL; 1033 dev->eps[ep_index].queued_deq_ptr = NULL; 1034 /* Restart any rings with pending URBs */ 1035 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1036 } 1037 1038 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1039 union xhci_trb *trb, u32 cmd_comp_code) 1040 { 1041 unsigned int ep_index; 1042 1043 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1044 /* This command will only fail if the endpoint wasn't halted, 1045 * but we don't care. 1046 */ 1047 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1048 "Ignoring reset ep completion code of %u", cmd_comp_code); 1049 1050 /* HW with the reset endpoint quirk needs to have a configure endpoint 1051 * command complete before the endpoint can be used. Queue that here 1052 * because the HW can't handle two commands being queued in a row. 1053 */ 1054 if (xhci->quirks & XHCI_RESET_EP_QUIRK) { 1055 struct xhci_command *command; 1056 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1057 if (!command) { 1058 xhci_warn(xhci, "WARN Cannot submit cfg ep: ENOMEM\n"); 1059 return; 1060 } 1061 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1062 "Queueing configure endpoint command"); 1063 xhci_queue_configure_endpoint(xhci, command, 1064 xhci->devs[slot_id]->in_ctx->dma, slot_id, 1065 false); 1066 xhci_ring_cmd_db(xhci); 1067 } else { 1068 /* Clear our internal halted state */ 1069 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; 1070 } 1071 } 1072 1073 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, 1074 u32 cmd_comp_code) 1075 { 1076 if (cmd_comp_code == COMP_SUCCESS) 1077 xhci->slot_id = slot_id; 1078 else 1079 xhci->slot_id = 0; 1080 } 1081 1082 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1083 { 1084 struct xhci_virt_device *virt_dev; 1085 1086 virt_dev = xhci->devs[slot_id]; 1087 if (!virt_dev) 1088 return; 1089 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1090 /* Delete default control endpoint resources */ 1091 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1092 xhci_free_virt_device(xhci, slot_id); 1093 } 1094 1095 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, 1096 struct xhci_event_cmd *event, u32 cmd_comp_code) 1097 { 1098 struct xhci_virt_device *virt_dev; 1099 struct xhci_input_control_ctx *ctrl_ctx; 1100 unsigned int ep_index; 1101 unsigned int ep_state; 1102 u32 add_flags, drop_flags; 1103 1104 /* 1105 * Configure endpoint commands can come from the USB core 1106 * configuration or alt setting changes, or because the HW 1107 * needed an extra configure endpoint command after a reset 1108 * endpoint command or streams were being configured. 1109 * If the command was for a halted endpoint, the xHCI driver 1110 * is not waiting on the configure endpoint command. 1111 */ 1112 virt_dev = xhci->devs[slot_id]; 1113 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 1114 if (!ctrl_ctx) { 1115 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1116 return; 1117 } 1118 1119 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1120 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1121 /* Input ctx add_flags are the endpoint index plus one */ 1122 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1123 1124 /* A usb_set_interface() call directly after clearing a halted 1125 * condition may race on this quirky hardware. Not worth 1126 * worrying about, since this is prototype hardware. Not sure 1127 * if this will work for streams, but streams support was 1128 * untested on this prototype. 1129 */ 1130 if (xhci->quirks & XHCI_RESET_EP_QUIRK && 1131 ep_index != (unsigned int) -1 && 1132 add_flags - SLOT_FLAG == drop_flags) { 1133 ep_state = virt_dev->eps[ep_index].ep_state; 1134 if (!(ep_state & EP_HALTED)) 1135 return; 1136 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1137 "Completed config ep cmd - " 1138 "last ep index = %d, state = %d", 1139 ep_index, ep_state); 1140 /* Clear internal halted state and restart ring(s) */ 1141 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED; 1142 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1143 return; 1144 } 1145 return; 1146 } 1147 1148 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id, 1149 struct xhci_event_cmd *event) 1150 { 1151 xhci_dbg(xhci, "Completed reset device command.\n"); 1152 if (!xhci->devs[slot_id]) 1153 xhci_warn(xhci, "Reset device command completion " 1154 "for disabled slot %u\n", slot_id); 1155 } 1156 1157 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1158 struct xhci_event_cmd *event) 1159 { 1160 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1161 xhci->error_bitmask |= 1 << 6; 1162 return; 1163 } 1164 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1165 "NEC firmware version %2x.%02x", 1166 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1167 NEC_FW_MINOR(le32_to_cpu(event->status))); 1168 } 1169 1170 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) 1171 { 1172 list_del(&cmd->cmd_list); 1173 1174 if (cmd->completion) { 1175 cmd->status = status; 1176 complete(cmd->completion); 1177 } else { 1178 kfree(cmd); 1179 } 1180 } 1181 1182 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1183 { 1184 struct xhci_command *cur_cmd, *tmp_cmd; 1185 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1186 xhci_complete_del_and_free_cmd(cur_cmd, COMP_CMD_ABORT); 1187 } 1188 1189 /* 1190 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 1191 * If there are other commands waiting then restart the ring and kick the timer. 1192 * This must be called with command ring stopped and xhci->lock held. 1193 */ 1194 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 1195 struct xhci_command *cur_cmd) 1196 { 1197 struct xhci_command *i_cmd, *tmp_cmd; 1198 u32 cycle_state; 1199 1200 /* Turn all aborted commands in list to no-ops, then restart */ 1201 list_for_each_entry_safe(i_cmd, tmp_cmd, &xhci->cmd_list, 1202 cmd_list) { 1203 1204 if (i_cmd->status != COMP_CMD_ABORT) 1205 continue; 1206 1207 i_cmd->status = COMP_CMD_STOP; 1208 1209 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 1210 i_cmd->command_trb); 1211 /* get cycle state from the original cmd trb */ 1212 cycle_state = le32_to_cpu( 1213 i_cmd->command_trb->generic.field[3]) & TRB_CYCLE; 1214 /* modify the command trb to no-op command */ 1215 i_cmd->command_trb->generic.field[0] = 0; 1216 i_cmd->command_trb->generic.field[1] = 0; 1217 i_cmd->command_trb->generic.field[2] = 0; 1218 i_cmd->command_trb->generic.field[3] = cpu_to_le32( 1219 TRB_TYPE(TRB_CMD_NOOP) | cycle_state); 1220 1221 /* 1222 * caller waiting for completion is called when command 1223 * completion event is received for these no-op commands 1224 */ 1225 } 1226 1227 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 1228 1229 /* ring command ring doorbell to restart the command ring */ 1230 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 1231 !(xhci->xhc_state & XHCI_STATE_DYING)) { 1232 xhci->current_cmd = cur_cmd; 1233 mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT); 1234 xhci_ring_cmd_db(xhci); 1235 } 1236 return; 1237 } 1238 1239 1240 void xhci_handle_command_timeout(unsigned long data) 1241 { 1242 struct xhci_hcd *xhci; 1243 int ret; 1244 unsigned long flags; 1245 u64 hw_ring_state; 1246 struct xhci_command *cur_cmd = NULL; 1247 xhci = (struct xhci_hcd *) data; 1248 1249 /* mark this command to be cancelled */ 1250 spin_lock_irqsave(&xhci->lock, flags); 1251 if (xhci->current_cmd) { 1252 cur_cmd = xhci->current_cmd; 1253 cur_cmd->status = COMP_CMD_ABORT; 1254 } 1255 1256 1257 /* Make sure command ring is running before aborting it */ 1258 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1259 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1260 (hw_ring_state & CMD_RING_RUNNING)) { 1261 1262 spin_unlock_irqrestore(&xhci->lock, flags); 1263 xhci_dbg(xhci, "Command timeout\n"); 1264 ret = xhci_abort_cmd_ring(xhci); 1265 if (unlikely(ret == -ESHUTDOWN)) { 1266 xhci_err(xhci, "Abort command ring failed\n"); 1267 xhci_cleanup_command_queue(xhci); 1268 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); 1269 xhci_dbg(xhci, "xHCI host controller is dead.\n"); 1270 } 1271 return; 1272 } 1273 /* command timeout on stopped ring, ring can't be aborted */ 1274 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1275 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1276 spin_unlock_irqrestore(&xhci->lock, flags); 1277 return; 1278 } 1279 1280 static void handle_cmd_completion(struct xhci_hcd *xhci, 1281 struct xhci_event_cmd *event) 1282 { 1283 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1284 u64 cmd_dma; 1285 dma_addr_t cmd_dequeue_dma; 1286 u32 cmd_comp_code; 1287 union xhci_trb *cmd_trb; 1288 struct xhci_command *cmd; 1289 u32 cmd_type; 1290 1291 cmd_dma = le64_to_cpu(event->cmd_trb); 1292 cmd_trb = xhci->cmd_ring->dequeue; 1293 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1294 cmd_trb); 1295 /* Is the command ring deq ptr out of sync with the deq seg ptr? */ 1296 if (cmd_dequeue_dma == 0) { 1297 xhci->error_bitmask |= 1 << 4; 1298 return; 1299 } 1300 /* Does the DMA address match our internal dequeue pointer address? */ 1301 if (cmd_dma != (u64) cmd_dequeue_dma) { 1302 xhci->error_bitmask |= 1 << 5; 1303 return; 1304 } 1305 1306 cmd = list_entry(xhci->cmd_list.next, struct xhci_command, cmd_list); 1307 1308 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1309 xhci_err(xhci, 1310 "Command completion event does not match command\n"); 1311 return; 1312 } 1313 1314 del_timer(&xhci->cmd_timer); 1315 1316 trace_xhci_cmd_completion(cmd_trb, (struct xhci_generic_trb *) event); 1317 1318 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1319 1320 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1321 if (cmd_comp_code == COMP_CMD_STOP) { 1322 xhci_handle_stopped_cmd_ring(xhci, cmd); 1323 return; 1324 } 1325 /* 1326 * Host aborted the command ring, check if the current command was 1327 * supposed to be aborted, otherwise continue normally. 1328 * The command ring is stopped now, but the xHC will issue a Command 1329 * Ring Stopped event which will cause us to restart it. 1330 */ 1331 if (cmd_comp_code == COMP_CMD_ABORT) { 1332 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1333 if (cmd->status == COMP_CMD_ABORT) 1334 goto event_handled; 1335 } 1336 1337 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1338 switch (cmd_type) { 1339 case TRB_ENABLE_SLOT: 1340 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd_comp_code); 1341 break; 1342 case TRB_DISABLE_SLOT: 1343 xhci_handle_cmd_disable_slot(xhci, slot_id); 1344 break; 1345 case TRB_CONFIG_EP: 1346 if (!cmd->completion) 1347 xhci_handle_cmd_config_ep(xhci, slot_id, event, 1348 cmd_comp_code); 1349 break; 1350 case TRB_EVAL_CONTEXT: 1351 break; 1352 case TRB_ADDR_DEV: 1353 break; 1354 case TRB_STOP_RING: 1355 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1356 le32_to_cpu(cmd_trb->generic.field[3]))); 1357 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event); 1358 break; 1359 case TRB_SET_DEQ: 1360 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1361 le32_to_cpu(cmd_trb->generic.field[3]))); 1362 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1363 break; 1364 case TRB_CMD_NOOP: 1365 /* Is this an aborted command turned to NO-OP? */ 1366 if (cmd->status == COMP_CMD_STOP) 1367 cmd_comp_code = COMP_CMD_STOP; 1368 break; 1369 case TRB_RESET_EP: 1370 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1371 le32_to_cpu(cmd_trb->generic.field[3]))); 1372 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1373 break; 1374 case TRB_RESET_DEV: 1375 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1376 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1377 */ 1378 slot_id = TRB_TO_SLOT_ID( 1379 le32_to_cpu(cmd_trb->generic.field[3])); 1380 xhci_handle_cmd_reset_dev(xhci, slot_id, event); 1381 break; 1382 case TRB_NEC_GET_FW: 1383 xhci_handle_cmd_nec_get_fw(xhci, event); 1384 break; 1385 default: 1386 /* Skip over unknown commands on the event ring */ 1387 xhci->error_bitmask |= 1 << 6; 1388 break; 1389 } 1390 1391 /* restart timer if this wasn't the last command */ 1392 if (cmd->cmd_list.next != &xhci->cmd_list) { 1393 xhci->current_cmd = list_entry(cmd->cmd_list.next, 1394 struct xhci_command, cmd_list); 1395 mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT); 1396 } 1397 1398 event_handled: 1399 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); 1400 1401 inc_deq(xhci, xhci->cmd_ring); 1402 } 1403 1404 static void handle_vendor_event(struct xhci_hcd *xhci, 1405 union xhci_trb *event) 1406 { 1407 u32 trb_type; 1408 1409 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3])); 1410 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1411 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1412 handle_cmd_completion(xhci, &event->event_cmd); 1413 } 1414 1415 /* @port_id: the one-based port ID from the hardware (indexed from array of all 1416 * port registers -- USB 3.0 and USB 2.0). 1417 * 1418 * Returns a zero-based port number, which is suitable for indexing into each of 1419 * the split roothubs' port arrays and bus state arrays. 1420 * Add one to it in order to call xhci_find_slot_id_by_port. 1421 */ 1422 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd, 1423 struct xhci_hcd *xhci, u32 port_id) 1424 { 1425 unsigned int i; 1426 unsigned int num_similar_speed_ports = 0; 1427 1428 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[], 1429 * and usb2_ports are 0-based indexes. Count the number of similar 1430 * speed ports, up to 1 port before this port. 1431 */ 1432 for (i = 0; i < (port_id - 1); i++) { 1433 u8 port_speed = xhci->port_array[i]; 1434 1435 /* 1436 * Skip ports that don't have known speeds, or have duplicate 1437 * Extended Capabilities port speed entries. 1438 */ 1439 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY) 1440 continue; 1441 1442 /* 1443 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and 1444 * 1.1 ports are under the USB 2.0 hub. If the port speed 1445 * matches the device speed, it's a similar speed port. 1446 */ 1447 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3)) 1448 num_similar_speed_ports++; 1449 } 1450 return num_similar_speed_ports; 1451 } 1452 1453 static void handle_device_notification(struct xhci_hcd *xhci, 1454 union xhci_trb *event) 1455 { 1456 u32 slot_id; 1457 struct usb_device *udev; 1458 1459 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1460 if (!xhci->devs[slot_id]) { 1461 xhci_warn(xhci, "Device Notification event for " 1462 "unused slot %u\n", slot_id); 1463 return; 1464 } 1465 1466 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1467 slot_id); 1468 udev = xhci->devs[slot_id]->udev; 1469 if (udev && udev->parent) 1470 usb_wakeup_notification(udev->parent, udev->portnum); 1471 } 1472 1473 static void handle_port_status(struct xhci_hcd *xhci, 1474 union xhci_trb *event) 1475 { 1476 struct usb_hcd *hcd; 1477 u32 port_id; 1478 u32 temp, temp1; 1479 int max_ports; 1480 int slot_id; 1481 unsigned int faked_port_index; 1482 u8 major_revision; 1483 struct xhci_bus_state *bus_state; 1484 __le32 __iomem **port_array; 1485 bool bogus_port_status = false; 1486 1487 /* Port status change events always have a successful completion code */ 1488 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) { 1489 xhci_warn(xhci, "WARN: xHC returned failed port status event\n"); 1490 xhci->error_bitmask |= 1 << 8; 1491 } 1492 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1493 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id); 1494 1495 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1496 if ((port_id <= 0) || (port_id > max_ports)) { 1497 xhci_warn(xhci, "Invalid port id %d\n", port_id); 1498 inc_deq(xhci, xhci->event_ring); 1499 return; 1500 } 1501 1502 /* Figure out which usb_hcd this port is attached to: 1503 * is it a USB 3.0 port or a USB 2.0/1.1 port? 1504 */ 1505 major_revision = xhci->port_array[port_id - 1]; 1506 1507 /* Find the right roothub. */ 1508 hcd = xhci_to_hcd(xhci); 1509 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3)) 1510 hcd = xhci->shared_hcd; 1511 1512 if (major_revision == 0) { 1513 xhci_warn(xhci, "Event for port %u not in " 1514 "Extended Capabilities, ignoring.\n", 1515 port_id); 1516 bogus_port_status = true; 1517 goto cleanup; 1518 } 1519 if (major_revision == DUPLICATE_ENTRY) { 1520 xhci_warn(xhci, "Event for port %u duplicated in" 1521 "Extended Capabilities, ignoring.\n", 1522 port_id); 1523 bogus_port_status = true; 1524 goto cleanup; 1525 } 1526 1527 /* 1528 * Hardware port IDs reported by a Port Status Change Event include USB 1529 * 3.0 and USB 2.0 ports. We want to check if the port has reported a 1530 * resume event, but we first need to translate the hardware port ID 1531 * into the index into the ports on the correct split roothub, and the 1532 * correct bus_state structure. 1533 */ 1534 bus_state = &xhci->bus_state[hcd_index(hcd)]; 1535 if (hcd->speed == HCD_USB3) 1536 port_array = xhci->usb3_ports; 1537 else 1538 port_array = xhci->usb2_ports; 1539 /* Find the faked port hub number */ 1540 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci, 1541 port_id); 1542 1543 temp = readl(port_array[faked_port_index]); 1544 if (hcd->state == HC_STATE_SUSPENDED) { 1545 xhci_dbg(xhci, "resume root hub\n"); 1546 usb_hcd_resume_root_hub(hcd); 1547 } 1548 1549 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) { 1550 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1551 1552 temp1 = readl(&xhci->op_regs->command); 1553 if (!(temp1 & CMD_RUN)) { 1554 xhci_warn(xhci, "xHC is not running.\n"); 1555 goto cleanup; 1556 } 1557 1558 if (DEV_SUPERSPEED(temp)) { 1559 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1560 /* Set a flag to say the port signaled remote wakeup, 1561 * so we can tell the difference between the end of 1562 * device and host initiated resume. 1563 */ 1564 bus_state->port_remote_wakeup |= 1 << faked_port_index; 1565 xhci_test_and_clear_bit(xhci, port_array, 1566 faked_port_index, PORT_PLC); 1567 xhci_set_link_state(xhci, port_array, faked_port_index, 1568 XDEV_U0); 1569 /* Need to wait until the next link state change 1570 * indicates the device is actually in U0. 1571 */ 1572 bogus_port_status = true; 1573 goto cleanup; 1574 } else { 1575 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1576 bus_state->resume_done[faked_port_index] = jiffies + 1577 msecs_to_jiffies(20); 1578 set_bit(faked_port_index, &bus_state->resuming_ports); 1579 mod_timer(&hcd->rh_timer, 1580 bus_state->resume_done[faked_port_index]); 1581 /* Do the rest in GetPortStatus */ 1582 } 1583 } 1584 1585 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 && 1586 DEV_SUPERSPEED(temp)) { 1587 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1588 /* We've just brought the device into U0 through either the 1589 * Resume state after a device remote wakeup, or through the 1590 * U3Exit state after a host-initiated resume. If it's a device 1591 * initiated remote wake, don't pass up the link state change, 1592 * so the roothub behavior is consistent with external 1593 * USB 3.0 hub behavior. 1594 */ 1595 slot_id = xhci_find_slot_id_by_port(hcd, xhci, 1596 faked_port_index + 1); 1597 if (slot_id && xhci->devs[slot_id]) 1598 xhci_ring_device(xhci, slot_id); 1599 if (bus_state->port_remote_wakeup & (1 << faked_port_index)) { 1600 bus_state->port_remote_wakeup &= 1601 ~(1 << faked_port_index); 1602 xhci_test_and_clear_bit(xhci, port_array, 1603 faked_port_index, PORT_PLC); 1604 usb_wakeup_notification(hcd->self.root_hub, 1605 faked_port_index + 1); 1606 bogus_port_status = true; 1607 goto cleanup; 1608 } 1609 } 1610 1611 /* 1612 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 1613 * RExit to a disconnect state). If so, let the the driver know it's 1614 * out of the RExit state. 1615 */ 1616 if (!DEV_SUPERSPEED(temp) && 1617 test_and_clear_bit(faked_port_index, 1618 &bus_state->rexit_ports)) { 1619 complete(&bus_state->rexit_done[faked_port_index]); 1620 bogus_port_status = true; 1621 goto cleanup; 1622 } 1623 1624 if (hcd->speed != HCD_USB3) 1625 xhci_test_and_clear_bit(xhci, port_array, faked_port_index, 1626 PORT_PLC); 1627 1628 cleanup: 1629 /* Update event ring dequeue pointer before dropping the lock */ 1630 inc_deq(xhci, xhci->event_ring); 1631 1632 /* Don't make the USB core poll the roothub if we got a bad port status 1633 * change event. Besides, at that point we can't tell which roothub 1634 * (USB 2.0 or USB 3.0) to kick. 1635 */ 1636 if (bogus_port_status) 1637 return; 1638 1639 /* 1640 * xHCI port-status-change events occur when the "or" of all the 1641 * status-change bits in the portsc register changes from 0 to 1. 1642 * New status changes won't cause an event if any other change 1643 * bits are still set. When an event occurs, switch over to 1644 * polling to avoid losing status changes. 1645 */ 1646 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1647 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1648 spin_unlock(&xhci->lock); 1649 /* Pass this up to the core */ 1650 usb_hcd_poll_rh_status(hcd); 1651 spin_lock(&xhci->lock); 1652 } 1653 1654 /* 1655 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 1656 * at end_trb, which may be in another segment. If the suspect DMA address is a 1657 * TRB in this TD, this function returns that TRB's segment. Otherwise it 1658 * returns 0. 1659 */ 1660 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, 1661 struct xhci_segment *start_seg, 1662 union xhci_trb *start_trb, 1663 union xhci_trb *end_trb, 1664 dma_addr_t suspect_dma, 1665 bool debug) 1666 { 1667 dma_addr_t start_dma; 1668 dma_addr_t end_seg_dma; 1669 dma_addr_t end_trb_dma; 1670 struct xhci_segment *cur_seg; 1671 1672 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 1673 cur_seg = start_seg; 1674 1675 do { 1676 if (start_dma == 0) 1677 return NULL; 1678 /* We may get an event for a Link TRB in the middle of a TD */ 1679 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 1680 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 1681 /* If the end TRB isn't in this segment, this is set to 0 */ 1682 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 1683 1684 if (debug) 1685 xhci_warn(xhci, 1686 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", 1687 (unsigned long long)suspect_dma, 1688 (unsigned long long)start_dma, 1689 (unsigned long long)end_trb_dma, 1690 (unsigned long long)cur_seg->dma, 1691 (unsigned long long)end_seg_dma); 1692 1693 if (end_trb_dma > 0) { 1694 /* The end TRB is in this segment, so suspect should be here */ 1695 if (start_dma <= end_trb_dma) { 1696 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 1697 return cur_seg; 1698 } else { 1699 /* Case for one segment with 1700 * a TD wrapped around to the top 1701 */ 1702 if ((suspect_dma >= start_dma && 1703 suspect_dma <= end_seg_dma) || 1704 (suspect_dma >= cur_seg->dma && 1705 suspect_dma <= end_trb_dma)) 1706 return cur_seg; 1707 } 1708 return NULL; 1709 } else { 1710 /* Might still be somewhere in this segment */ 1711 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 1712 return cur_seg; 1713 } 1714 cur_seg = cur_seg->next; 1715 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 1716 } while (cur_seg != start_seg); 1717 1718 return NULL; 1719 } 1720 1721 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, 1722 unsigned int slot_id, unsigned int ep_index, 1723 unsigned int stream_id, 1724 struct xhci_td *td, union xhci_trb *event_trb) 1725 { 1726 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 1727 struct xhci_command *command; 1728 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1729 if (!command) 1730 return; 1731 1732 ep->ep_state |= EP_HALTED; 1733 ep->stopped_stream = stream_id; 1734 1735 xhci_queue_reset_ep(xhci, command, slot_id, ep_index); 1736 xhci_cleanup_stalled_ring(xhci, ep_index, td); 1737 1738 ep->stopped_stream = 0; 1739 1740 xhci_ring_cmd_db(xhci); 1741 } 1742 1743 /* Check if an error has halted the endpoint ring. The class driver will 1744 * cleanup the halt for a non-default control endpoint if we indicate a stall. 1745 * However, a babble and other errors also halt the endpoint ring, and the class 1746 * driver won't clear the halt in that case, so we need to issue a Set Transfer 1747 * Ring Dequeue Pointer command manually. 1748 */ 1749 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 1750 struct xhci_ep_ctx *ep_ctx, 1751 unsigned int trb_comp_code) 1752 { 1753 /* TRB completion codes that may require a manual halt cleanup */ 1754 if (trb_comp_code == COMP_TX_ERR || 1755 trb_comp_code == COMP_BABBLE || 1756 trb_comp_code == COMP_SPLIT_ERR) 1757 /* The 0.96 spec says a babbling control endpoint 1758 * is not halted. The 0.96 spec says it is. Some HW 1759 * claims to be 0.95 compliant, but it halts the control 1760 * endpoint anyway. Check if a babble halted the 1761 * endpoint. 1762 */ 1763 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1764 cpu_to_le32(EP_STATE_HALTED)) 1765 return 1; 1766 1767 return 0; 1768 } 1769 1770 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 1771 { 1772 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 1773 /* Vendor defined "informational" completion code, 1774 * treat as not-an-error. 1775 */ 1776 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 1777 trb_comp_code); 1778 xhci_dbg(xhci, "Treating code as success.\n"); 1779 return 1; 1780 } 1781 return 0; 1782 } 1783 1784 /* 1785 * Finish the td processing, remove the td from td list; 1786 * Return 1 if the urb can be given back. 1787 */ 1788 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, 1789 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1790 struct xhci_virt_ep *ep, int *status, bool skip) 1791 { 1792 struct xhci_virt_device *xdev; 1793 struct xhci_ring *ep_ring; 1794 unsigned int slot_id; 1795 int ep_index; 1796 struct urb *urb = NULL; 1797 struct xhci_ep_ctx *ep_ctx; 1798 int ret = 0; 1799 struct urb_priv *urb_priv; 1800 u32 trb_comp_code; 1801 1802 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1803 xdev = xhci->devs[slot_id]; 1804 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1805 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1806 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1807 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1808 1809 if (skip) 1810 goto td_cleanup; 1811 1812 if (trb_comp_code == COMP_STOP_INVAL || trb_comp_code == COMP_STOP) { 1813 /* The Endpoint Stop Command completion will take care of any 1814 * stopped TDs. A stopped TD may be restarted, so don't update 1815 * the ring dequeue pointer or take this TD off any lists yet. 1816 */ 1817 ep->stopped_td = td; 1818 return 0; 1819 } 1820 if (trb_comp_code == COMP_STALL || 1821 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 1822 trb_comp_code)) { 1823 /* Issue a reset endpoint command to clear the host side 1824 * halt, followed by a set dequeue command to move the 1825 * dequeue pointer past the TD. 1826 * The class driver clears the device side halt later. 1827 */ 1828 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 1829 ep_ring->stream_id, td, event_trb); 1830 } else { 1831 /* Update ring dequeue pointer */ 1832 while (ep_ring->dequeue != td->last_trb) 1833 inc_deq(xhci, ep_ring); 1834 inc_deq(xhci, ep_ring); 1835 } 1836 1837 td_cleanup: 1838 /* Clean up the endpoint's TD list */ 1839 urb = td->urb; 1840 urb_priv = urb->hcpriv; 1841 1842 /* Do one last check of the actual transfer length. 1843 * If the host controller said we transferred more data than the buffer 1844 * length, urb->actual_length will be a very big number (since it's 1845 * unsigned). Play it safe and say we didn't transfer anything. 1846 */ 1847 if (urb->actual_length > urb->transfer_buffer_length) { 1848 xhci_warn(xhci, "URB transfer length is wrong, xHC issue? req. len = %u, act. len = %u\n", 1849 urb->transfer_buffer_length, 1850 urb->actual_length); 1851 urb->actual_length = 0; 1852 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1853 *status = -EREMOTEIO; 1854 else 1855 *status = 0; 1856 } 1857 list_del_init(&td->td_list); 1858 /* Was this TD slated to be cancelled but completed anyway? */ 1859 if (!list_empty(&td->cancelled_td_list)) 1860 list_del_init(&td->cancelled_td_list); 1861 1862 urb_priv->td_cnt++; 1863 /* Giveback the urb when all the tds are completed */ 1864 if (urb_priv->td_cnt == urb_priv->length) { 1865 ret = 1; 1866 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 1867 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 1868 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 1869 if (xhci->quirks & XHCI_AMD_PLL_FIX) 1870 usb_amd_quirk_pll_enable(); 1871 } 1872 } 1873 } 1874 1875 return ret; 1876 } 1877 1878 /* 1879 * Process control tds, update urb status and actual_length. 1880 */ 1881 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, 1882 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1883 struct xhci_virt_ep *ep, int *status) 1884 { 1885 struct xhci_virt_device *xdev; 1886 struct xhci_ring *ep_ring; 1887 unsigned int slot_id; 1888 int ep_index; 1889 struct xhci_ep_ctx *ep_ctx; 1890 u32 trb_comp_code; 1891 1892 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1893 xdev = xhci->devs[slot_id]; 1894 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1895 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1896 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1897 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1898 1899 switch (trb_comp_code) { 1900 case COMP_SUCCESS: 1901 if (event_trb == ep_ring->dequeue) { 1902 xhci_warn(xhci, "WARN: Success on ctrl setup TRB " 1903 "without IOC set??\n"); 1904 *status = -ESHUTDOWN; 1905 } else if (event_trb != td->last_trb) { 1906 xhci_warn(xhci, "WARN: Success on ctrl data TRB " 1907 "without IOC set??\n"); 1908 *status = -ESHUTDOWN; 1909 } else { 1910 *status = 0; 1911 } 1912 break; 1913 case COMP_SHORT_TX: 1914 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1915 *status = -EREMOTEIO; 1916 else 1917 *status = 0; 1918 break; 1919 case COMP_STOP_INVAL: 1920 case COMP_STOP: 1921 return finish_td(xhci, td, event_trb, event, ep, status, false); 1922 default: 1923 if (!xhci_requires_manual_halt_cleanup(xhci, 1924 ep_ctx, trb_comp_code)) 1925 break; 1926 xhci_dbg(xhci, "TRB error code %u, " 1927 "halted endpoint index = %u\n", 1928 trb_comp_code, ep_index); 1929 /* else fall through */ 1930 case COMP_STALL: 1931 /* Did we transfer part of the data (middle) phase? */ 1932 if (event_trb != ep_ring->dequeue && 1933 event_trb != td->last_trb) 1934 td->urb->actual_length = 1935 td->urb->transfer_buffer_length - 1936 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 1937 else 1938 td->urb->actual_length = 0; 1939 1940 return finish_td(xhci, td, event_trb, event, ep, status, false); 1941 } 1942 /* 1943 * Did we transfer any data, despite the errors that might have 1944 * happened? I.e. did we get past the setup stage? 1945 */ 1946 if (event_trb != ep_ring->dequeue) { 1947 /* The event was for the status stage */ 1948 if (event_trb == td->last_trb) { 1949 if (td->urb->actual_length != 0) { 1950 /* Don't overwrite a previously set error code 1951 */ 1952 if ((*status == -EINPROGRESS || *status == 0) && 1953 (td->urb->transfer_flags 1954 & URB_SHORT_NOT_OK)) 1955 /* Did we already see a short data 1956 * stage? */ 1957 *status = -EREMOTEIO; 1958 } else { 1959 td->urb->actual_length = 1960 td->urb->transfer_buffer_length; 1961 } 1962 } else { 1963 /* Maybe the event was for the data stage? */ 1964 td->urb->actual_length = 1965 td->urb->transfer_buffer_length - 1966 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 1967 xhci_dbg(xhci, "Waiting for status " 1968 "stage event\n"); 1969 return 0; 1970 } 1971 } 1972 1973 return finish_td(xhci, td, event_trb, event, ep, status, false); 1974 } 1975 1976 /* 1977 * Process isochronous tds, update urb packet status and actual_length. 1978 */ 1979 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 1980 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1981 struct xhci_virt_ep *ep, int *status) 1982 { 1983 struct xhci_ring *ep_ring; 1984 struct urb_priv *urb_priv; 1985 int idx; 1986 int len = 0; 1987 union xhci_trb *cur_trb; 1988 struct xhci_segment *cur_seg; 1989 struct usb_iso_packet_descriptor *frame; 1990 u32 trb_comp_code; 1991 bool skip_td = false; 1992 1993 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1994 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1995 urb_priv = td->urb->hcpriv; 1996 idx = urb_priv->td_cnt; 1997 frame = &td->urb->iso_frame_desc[idx]; 1998 1999 /* handle completion code */ 2000 switch (trb_comp_code) { 2001 case COMP_SUCCESS: 2002 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) { 2003 frame->status = 0; 2004 break; 2005 } 2006 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH)) 2007 trb_comp_code = COMP_SHORT_TX; 2008 case COMP_SHORT_TX: 2009 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2010 -EREMOTEIO : 0; 2011 break; 2012 case COMP_BW_OVER: 2013 frame->status = -ECOMM; 2014 skip_td = true; 2015 break; 2016 case COMP_BUFF_OVER: 2017 case COMP_BABBLE: 2018 frame->status = -EOVERFLOW; 2019 skip_td = true; 2020 break; 2021 case COMP_DEV_ERR: 2022 case COMP_STALL: 2023 case COMP_TX_ERR: 2024 frame->status = -EPROTO; 2025 skip_td = true; 2026 break; 2027 case COMP_STOP: 2028 case COMP_STOP_INVAL: 2029 break; 2030 default: 2031 frame->status = -1; 2032 break; 2033 } 2034 2035 if (trb_comp_code == COMP_SUCCESS || skip_td) { 2036 frame->actual_length = frame->length; 2037 td->urb->actual_length += frame->length; 2038 } else { 2039 for (cur_trb = ep_ring->dequeue, 2040 cur_seg = ep_ring->deq_seg; cur_trb != event_trb; 2041 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 2042 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 2043 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 2044 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 2045 } 2046 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 2047 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2048 2049 if (trb_comp_code != COMP_STOP_INVAL) { 2050 frame->actual_length = len; 2051 td->urb->actual_length += len; 2052 } 2053 } 2054 2055 return finish_td(xhci, td, event_trb, event, ep, status, false); 2056 } 2057 2058 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2059 struct xhci_transfer_event *event, 2060 struct xhci_virt_ep *ep, int *status) 2061 { 2062 struct xhci_ring *ep_ring; 2063 struct urb_priv *urb_priv; 2064 struct usb_iso_packet_descriptor *frame; 2065 int idx; 2066 2067 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2068 urb_priv = td->urb->hcpriv; 2069 idx = urb_priv->td_cnt; 2070 frame = &td->urb->iso_frame_desc[idx]; 2071 2072 /* The transfer is partly done. */ 2073 frame->status = -EXDEV; 2074 2075 /* calc actual length */ 2076 frame->actual_length = 0; 2077 2078 /* Update ring dequeue pointer */ 2079 while (ep_ring->dequeue != td->last_trb) 2080 inc_deq(xhci, ep_ring); 2081 inc_deq(xhci, ep_ring); 2082 2083 return finish_td(xhci, td, NULL, event, ep, status, true); 2084 } 2085 2086 /* 2087 * Process bulk and interrupt tds, update urb status and actual_length. 2088 */ 2089 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, 2090 union xhci_trb *event_trb, struct xhci_transfer_event *event, 2091 struct xhci_virt_ep *ep, int *status) 2092 { 2093 struct xhci_ring *ep_ring; 2094 union xhci_trb *cur_trb; 2095 struct xhci_segment *cur_seg; 2096 u32 trb_comp_code; 2097 2098 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2099 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2100 2101 switch (trb_comp_code) { 2102 case COMP_SUCCESS: 2103 /* Double check that the HW transferred everything. */ 2104 if (event_trb != td->last_trb || 2105 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2106 xhci_warn(xhci, "WARN Successful completion " 2107 "on short TX\n"); 2108 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2109 *status = -EREMOTEIO; 2110 else 2111 *status = 0; 2112 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH)) 2113 trb_comp_code = COMP_SHORT_TX; 2114 } else { 2115 *status = 0; 2116 } 2117 break; 2118 case COMP_SHORT_TX: 2119 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2120 *status = -EREMOTEIO; 2121 else 2122 *status = 0; 2123 break; 2124 default: 2125 /* Others already handled above */ 2126 break; 2127 } 2128 if (trb_comp_code == COMP_SHORT_TX) 2129 xhci_dbg(xhci, "ep %#x - asked for %d bytes, " 2130 "%d bytes untransferred\n", 2131 td->urb->ep->desc.bEndpointAddress, 2132 td->urb->transfer_buffer_length, 2133 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len))); 2134 /* Fast path - was this the last TRB in the TD for this URB? */ 2135 if (event_trb == td->last_trb) { 2136 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2137 td->urb->actual_length = 2138 td->urb->transfer_buffer_length - 2139 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2140 if (td->urb->transfer_buffer_length < 2141 td->urb->actual_length) { 2142 xhci_warn(xhci, "HC gave bad length " 2143 "of %d bytes left\n", 2144 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len))); 2145 td->urb->actual_length = 0; 2146 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2147 *status = -EREMOTEIO; 2148 else 2149 *status = 0; 2150 } 2151 /* Don't overwrite a previously set error code */ 2152 if (*status == -EINPROGRESS) { 2153 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2154 *status = -EREMOTEIO; 2155 else 2156 *status = 0; 2157 } 2158 } else { 2159 td->urb->actual_length = 2160 td->urb->transfer_buffer_length; 2161 /* Ignore a short packet completion if the 2162 * untransferred length was zero. 2163 */ 2164 if (*status == -EREMOTEIO) 2165 *status = 0; 2166 } 2167 } else { 2168 /* Slow path - walk the list, starting from the dequeue 2169 * pointer, to get the actual length transferred. 2170 */ 2171 td->urb->actual_length = 0; 2172 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg; 2173 cur_trb != event_trb; 2174 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 2175 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 2176 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 2177 td->urb->actual_length += 2178 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 2179 } 2180 /* If the ring didn't stop on a Link or No-op TRB, add 2181 * in the actual bytes transferred from the Normal TRB 2182 */ 2183 if (trb_comp_code != COMP_STOP_INVAL) 2184 td->urb->actual_length += 2185 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 2186 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2187 } 2188 2189 return finish_td(xhci, td, event_trb, event, ep, status, false); 2190 } 2191 2192 /* 2193 * If this function returns an error condition, it means it got a Transfer 2194 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2195 * At this point, the host controller is probably hosed and should be reset. 2196 */ 2197 static int handle_tx_event(struct xhci_hcd *xhci, 2198 struct xhci_transfer_event *event) 2199 __releases(&xhci->lock) 2200 __acquires(&xhci->lock) 2201 { 2202 struct xhci_virt_device *xdev; 2203 struct xhci_virt_ep *ep; 2204 struct xhci_ring *ep_ring; 2205 unsigned int slot_id; 2206 int ep_index; 2207 struct xhci_td *td = NULL; 2208 dma_addr_t event_dma; 2209 struct xhci_segment *event_seg; 2210 union xhci_trb *event_trb; 2211 struct urb *urb = NULL; 2212 int status = -EINPROGRESS; 2213 struct urb_priv *urb_priv; 2214 struct xhci_ep_ctx *ep_ctx; 2215 struct list_head *tmp; 2216 u32 trb_comp_code; 2217 int ret = 0; 2218 int td_num = 0; 2219 2220 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2221 xdev = xhci->devs[slot_id]; 2222 if (!xdev) { 2223 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n"); 2224 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2225 (unsigned long long) xhci_trb_virt_to_dma( 2226 xhci->event_ring->deq_seg, 2227 xhci->event_ring->dequeue), 2228 lower_32_bits(le64_to_cpu(event->buffer)), 2229 upper_32_bits(le64_to_cpu(event->buffer)), 2230 le32_to_cpu(event->transfer_len), 2231 le32_to_cpu(event->flags)); 2232 xhci_dbg(xhci, "Event ring:\n"); 2233 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 2234 return -ENODEV; 2235 } 2236 2237 /* Endpoint ID is 1 based, our index is zero based */ 2238 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2239 ep = &xdev->eps[ep_index]; 2240 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2241 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2242 if (!ep_ring || 2243 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) == 2244 EP_STATE_DISABLED) { 2245 xhci_err(xhci, "ERROR Transfer event for disabled endpoint " 2246 "or incorrect stream ring\n"); 2247 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2248 (unsigned long long) xhci_trb_virt_to_dma( 2249 xhci->event_ring->deq_seg, 2250 xhci->event_ring->dequeue), 2251 lower_32_bits(le64_to_cpu(event->buffer)), 2252 upper_32_bits(le64_to_cpu(event->buffer)), 2253 le32_to_cpu(event->transfer_len), 2254 le32_to_cpu(event->flags)); 2255 xhci_dbg(xhci, "Event ring:\n"); 2256 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 2257 return -ENODEV; 2258 } 2259 2260 /* Count current td numbers if ep->skip is set */ 2261 if (ep->skip) { 2262 list_for_each(tmp, &ep_ring->td_list) 2263 td_num++; 2264 } 2265 2266 event_dma = le64_to_cpu(event->buffer); 2267 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2268 /* Look for common error cases */ 2269 switch (trb_comp_code) { 2270 /* Skip codes that require special handling depending on 2271 * transfer type 2272 */ 2273 case COMP_SUCCESS: 2274 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2275 break; 2276 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2277 trb_comp_code = COMP_SHORT_TX; 2278 else 2279 xhci_warn_ratelimited(xhci, 2280 "WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n"); 2281 case COMP_SHORT_TX: 2282 break; 2283 case COMP_STOP: 2284 xhci_dbg(xhci, "Stopped on Transfer TRB\n"); 2285 break; 2286 case COMP_STOP_INVAL: 2287 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n"); 2288 break; 2289 case COMP_STALL: 2290 xhci_dbg(xhci, "Stalled endpoint\n"); 2291 ep->ep_state |= EP_HALTED; 2292 status = -EPIPE; 2293 break; 2294 case COMP_TRB_ERR: 2295 xhci_warn(xhci, "WARN: TRB error on endpoint\n"); 2296 status = -EILSEQ; 2297 break; 2298 case COMP_SPLIT_ERR: 2299 case COMP_TX_ERR: 2300 xhci_dbg(xhci, "Transfer error on endpoint\n"); 2301 status = -EPROTO; 2302 break; 2303 case COMP_BABBLE: 2304 xhci_dbg(xhci, "Babble error on endpoint\n"); 2305 status = -EOVERFLOW; 2306 break; 2307 case COMP_DB_ERR: 2308 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n"); 2309 status = -ENOSR; 2310 break; 2311 case COMP_BW_OVER: 2312 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n"); 2313 break; 2314 case COMP_BUFF_OVER: 2315 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n"); 2316 break; 2317 case COMP_UNDERRUN: 2318 /* 2319 * When the Isoch ring is empty, the xHC will generate 2320 * a Ring Overrun Event for IN Isoch endpoint or Ring 2321 * Underrun Event for OUT Isoch endpoint. 2322 */ 2323 xhci_dbg(xhci, "underrun event on endpoint\n"); 2324 if (!list_empty(&ep_ring->td_list)) 2325 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2326 "still with TDs queued?\n", 2327 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2328 ep_index); 2329 goto cleanup; 2330 case COMP_OVERRUN: 2331 xhci_dbg(xhci, "overrun event on endpoint\n"); 2332 if (!list_empty(&ep_ring->td_list)) 2333 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2334 "still with TDs queued?\n", 2335 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2336 ep_index); 2337 goto cleanup; 2338 case COMP_DEV_ERR: 2339 xhci_warn(xhci, "WARN: detect an incompatible device"); 2340 status = -EPROTO; 2341 break; 2342 case COMP_MISSED_INT: 2343 /* 2344 * When encounter missed service error, one or more isoc tds 2345 * may be missed by xHC. 2346 * Set skip flag of the ep_ring; Complete the missed tds as 2347 * short transfer when process the ep_ring next time. 2348 */ 2349 ep->skip = true; 2350 xhci_dbg(xhci, "Miss service interval error, set skip flag\n"); 2351 goto cleanup; 2352 default: 2353 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2354 status = 0; 2355 break; 2356 } 2357 xhci_warn(xhci, "ERROR Unknown event condition, HC probably " 2358 "busted\n"); 2359 goto cleanup; 2360 } 2361 2362 do { 2363 /* This TRB should be in the TD at the head of this ring's 2364 * TD list. 2365 */ 2366 if (list_empty(&ep_ring->td_list)) { 2367 /* 2368 * A stopped endpoint may generate an extra completion 2369 * event if the device was suspended. Don't print 2370 * warnings. 2371 */ 2372 if (!(trb_comp_code == COMP_STOP || 2373 trb_comp_code == COMP_STOP_INVAL)) { 2374 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2375 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2376 ep_index); 2377 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n", 2378 (le32_to_cpu(event->flags) & 2379 TRB_TYPE_BITMASK)>>10); 2380 xhci_print_trb_offsets(xhci, (union xhci_trb *) event); 2381 } 2382 if (ep->skip) { 2383 ep->skip = false; 2384 xhci_dbg(xhci, "td_list is empty while skip " 2385 "flag set. Clear skip flag.\n"); 2386 } 2387 ret = 0; 2388 goto cleanup; 2389 } 2390 2391 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2392 if (ep->skip && td_num == 0) { 2393 ep->skip = false; 2394 xhci_dbg(xhci, "All tds on the ep_ring skipped. " 2395 "Clear skip flag.\n"); 2396 ret = 0; 2397 goto cleanup; 2398 } 2399 2400 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list); 2401 if (ep->skip) 2402 td_num--; 2403 2404 /* Is this a TRB in the currently executing TD? */ 2405 event_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue, 2406 td->last_trb, event_dma, false); 2407 2408 /* 2409 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2410 * is not in the current TD pointed by ep_ring->dequeue because 2411 * that the hardware dequeue pointer still at the previous TRB 2412 * of the current TD. The previous TRB maybe a Link TD or the 2413 * last TRB of the previous TD. The command completion handle 2414 * will take care the rest. 2415 */ 2416 if (!event_seg && (trb_comp_code == COMP_STOP || 2417 trb_comp_code == COMP_STOP_INVAL)) { 2418 ret = 0; 2419 goto cleanup; 2420 } 2421 2422 if (!event_seg) { 2423 if (!ep->skip || 2424 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2425 /* Some host controllers give a spurious 2426 * successful event after a short transfer. 2427 * Ignore it. 2428 */ 2429 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2430 ep_ring->last_td_was_short) { 2431 ep_ring->last_td_was_short = false; 2432 ret = 0; 2433 goto cleanup; 2434 } 2435 /* HC is busted, give up! */ 2436 xhci_err(xhci, 2437 "ERROR Transfer event TRB DMA ptr not " 2438 "part of current TD ep_index %d " 2439 "comp_code %u\n", ep_index, 2440 trb_comp_code); 2441 trb_in_td(xhci, ep_ring->deq_seg, 2442 ep_ring->dequeue, td->last_trb, 2443 event_dma, true); 2444 return -ESHUTDOWN; 2445 } 2446 2447 ret = skip_isoc_td(xhci, td, event, ep, &status); 2448 goto cleanup; 2449 } 2450 if (trb_comp_code == COMP_SHORT_TX) 2451 ep_ring->last_td_was_short = true; 2452 else 2453 ep_ring->last_td_was_short = false; 2454 2455 if (ep->skip) { 2456 xhci_dbg(xhci, "Found td. Clear skip flag.\n"); 2457 ep->skip = false; 2458 } 2459 2460 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) / 2461 sizeof(*event_trb)]; 2462 /* 2463 * No-op TRB should not trigger interrupts. 2464 * If event_trb is a no-op TRB, it means the 2465 * corresponding TD has been cancelled. Just ignore 2466 * the TD. 2467 */ 2468 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) { 2469 xhci_dbg(xhci, 2470 "event_trb is a no-op TRB. Skip it\n"); 2471 goto cleanup; 2472 } 2473 2474 /* Now update the urb's actual_length and give back to 2475 * the core 2476 */ 2477 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2478 ret = process_ctrl_td(xhci, td, event_trb, event, ep, 2479 &status); 2480 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2481 ret = process_isoc_td(xhci, td, event_trb, event, ep, 2482 &status); 2483 else 2484 ret = process_bulk_intr_td(xhci, td, event_trb, event, 2485 ep, &status); 2486 2487 cleanup: 2488 /* 2489 * Do not update event ring dequeue pointer if ep->skip is set. 2490 * Will roll back to continue process missed tds. 2491 */ 2492 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) { 2493 inc_deq(xhci, xhci->event_ring); 2494 } 2495 2496 if (ret) { 2497 urb = td->urb; 2498 urb_priv = urb->hcpriv; 2499 2500 xhci_urb_free_priv(xhci, urb_priv); 2501 2502 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 2503 if ((urb->actual_length != urb->transfer_buffer_length && 2504 (urb->transfer_flags & 2505 URB_SHORT_NOT_OK)) || 2506 (status != 0 && 2507 !usb_endpoint_xfer_isoc(&urb->ep->desc))) 2508 xhci_dbg(xhci, "Giveback URB %p, len = %d, " 2509 "expected = %d, status = %d\n", 2510 urb, urb->actual_length, 2511 urb->transfer_buffer_length, 2512 status); 2513 spin_unlock(&xhci->lock); 2514 /* EHCI, UHCI, and OHCI always unconditionally set the 2515 * urb->status of an isochronous endpoint to 0. 2516 */ 2517 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 2518 status = 0; 2519 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status); 2520 spin_lock(&xhci->lock); 2521 } 2522 2523 /* 2524 * If ep->skip is set, it means there are missed tds on the 2525 * endpoint ring need to take care of. 2526 * Process them as short transfer until reach the td pointed by 2527 * the event. 2528 */ 2529 } while (ep->skip && trb_comp_code != COMP_MISSED_INT); 2530 2531 return 0; 2532 } 2533 2534 /* 2535 * This function handles all OS-owned events on the event ring. It may drop 2536 * xhci->lock between event processing (e.g. to pass up port status changes). 2537 * Returns >0 for "possibly more events to process" (caller should call again), 2538 * otherwise 0 if done. In future, <0 returns should indicate error code. 2539 */ 2540 static int xhci_handle_event(struct xhci_hcd *xhci) 2541 { 2542 union xhci_trb *event; 2543 int update_ptrs = 1; 2544 int ret; 2545 2546 if (!xhci->event_ring || !xhci->event_ring->dequeue) { 2547 xhci->error_bitmask |= 1 << 1; 2548 return 0; 2549 } 2550 2551 event = xhci->event_ring->dequeue; 2552 /* Does the HC or OS own the TRB? */ 2553 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2554 xhci->event_ring->cycle_state) { 2555 xhci->error_bitmask |= 1 << 2; 2556 return 0; 2557 } 2558 2559 /* 2560 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2561 * speculative reads of the event's flags/data below. 2562 */ 2563 rmb(); 2564 /* FIXME: Handle more event types. */ 2565 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) { 2566 case TRB_TYPE(TRB_COMPLETION): 2567 handle_cmd_completion(xhci, &event->event_cmd); 2568 break; 2569 case TRB_TYPE(TRB_PORT_STATUS): 2570 handle_port_status(xhci, event); 2571 update_ptrs = 0; 2572 break; 2573 case TRB_TYPE(TRB_TRANSFER): 2574 ret = handle_tx_event(xhci, &event->trans_event); 2575 if (ret < 0) 2576 xhci->error_bitmask |= 1 << 9; 2577 else 2578 update_ptrs = 0; 2579 break; 2580 case TRB_TYPE(TRB_DEV_NOTE): 2581 handle_device_notification(xhci, event); 2582 break; 2583 default: 2584 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >= 2585 TRB_TYPE(48)) 2586 handle_vendor_event(xhci, event); 2587 else 2588 xhci->error_bitmask |= 1 << 3; 2589 } 2590 /* Any of the above functions may drop and re-acquire the lock, so check 2591 * to make sure a watchdog timer didn't mark the host as non-responsive. 2592 */ 2593 if (xhci->xhc_state & XHCI_STATE_DYING) { 2594 xhci_dbg(xhci, "xHCI host dying, returning from " 2595 "event handler.\n"); 2596 return 0; 2597 } 2598 2599 if (update_ptrs) 2600 /* Update SW event ring dequeue pointer */ 2601 inc_deq(xhci, xhci->event_ring); 2602 2603 /* Are there more items on the event ring? Caller will call us again to 2604 * check. 2605 */ 2606 return 1; 2607 } 2608 2609 /* 2610 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 2611 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 2612 * indicators of an event TRB error, but we check the status *first* to be safe. 2613 */ 2614 irqreturn_t xhci_irq(struct usb_hcd *hcd) 2615 { 2616 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2617 u32 status; 2618 u64 temp_64; 2619 union xhci_trb *event_ring_deq; 2620 dma_addr_t deq; 2621 2622 spin_lock(&xhci->lock); 2623 /* Check if the xHC generated the interrupt, or the irq is shared */ 2624 status = readl(&xhci->op_regs->status); 2625 if (status == 0xffffffff) 2626 goto hw_died; 2627 2628 if (!(status & STS_EINT)) { 2629 spin_unlock(&xhci->lock); 2630 return IRQ_NONE; 2631 } 2632 if (status & STS_FATAL) { 2633 xhci_warn(xhci, "WARNING: Host System Error\n"); 2634 xhci_halt(xhci); 2635 hw_died: 2636 spin_unlock(&xhci->lock); 2637 return -ESHUTDOWN; 2638 } 2639 2640 /* 2641 * Clear the op reg interrupt status first, 2642 * so we can receive interrupts from other MSI-X interrupters. 2643 * Write 1 to clear the interrupt status. 2644 */ 2645 status |= STS_EINT; 2646 writel(status, &xhci->op_regs->status); 2647 /* FIXME when MSI-X is supported and there are multiple vectors */ 2648 /* Clear the MSI-X event interrupt status */ 2649 2650 if (hcd->irq) { 2651 u32 irq_pending; 2652 /* Acknowledge the PCI interrupt */ 2653 irq_pending = readl(&xhci->ir_set->irq_pending); 2654 irq_pending |= IMAN_IP; 2655 writel(irq_pending, &xhci->ir_set->irq_pending); 2656 } 2657 2658 if (xhci->xhc_state & XHCI_STATE_DYING) { 2659 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 2660 "Shouldn't IRQs be disabled?\n"); 2661 /* Clear the event handler busy flag (RW1C); 2662 * the event ring should be empty. 2663 */ 2664 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2665 xhci_write_64(xhci, temp_64 | ERST_EHB, 2666 &xhci->ir_set->erst_dequeue); 2667 spin_unlock(&xhci->lock); 2668 2669 return IRQ_HANDLED; 2670 } 2671 2672 event_ring_deq = xhci->event_ring->dequeue; 2673 /* FIXME this should be a delayed service routine 2674 * that clears the EHB. 2675 */ 2676 while (xhci_handle_event(xhci) > 0) {} 2677 2678 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2679 /* If necessary, update the HW's version of the event ring deq ptr. */ 2680 if (event_ring_deq != xhci->event_ring->dequeue) { 2681 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2682 xhci->event_ring->dequeue); 2683 if (deq == 0) 2684 xhci_warn(xhci, "WARN something wrong with SW event " 2685 "ring dequeue ptr.\n"); 2686 /* Update HC event ring dequeue pointer */ 2687 temp_64 &= ERST_PTR_MASK; 2688 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 2689 } 2690 2691 /* Clear the event handler busy flag (RW1C); event ring is empty. */ 2692 temp_64 |= ERST_EHB; 2693 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); 2694 2695 spin_unlock(&xhci->lock); 2696 2697 return IRQ_HANDLED; 2698 } 2699 2700 irqreturn_t xhci_msi_irq(int irq, void *hcd) 2701 { 2702 return xhci_irq(hcd); 2703 } 2704 2705 /**** Endpoint Ring Operations ****/ 2706 2707 /* 2708 * Generic function for queueing a TRB on a ring. 2709 * The caller must have checked to make sure there's room on the ring. 2710 * 2711 * @more_trbs_coming: Will you enqueue more TRBs before calling 2712 * prepare_transfer()? 2713 */ 2714 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 2715 bool more_trbs_coming, 2716 u32 field1, u32 field2, u32 field3, u32 field4) 2717 { 2718 struct xhci_generic_trb *trb; 2719 2720 trb = &ring->enqueue->generic; 2721 trb->field[0] = cpu_to_le32(field1); 2722 trb->field[1] = cpu_to_le32(field2); 2723 trb->field[2] = cpu_to_le32(field3); 2724 trb->field[3] = cpu_to_le32(field4); 2725 inc_enq(xhci, ring, more_trbs_coming); 2726 } 2727 2728 /* 2729 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 2730 * FIXME allocate segments if the ring is full. 2731 */ 2732 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 2733 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 2734 { 2735 unsigned int num_trbs_needed; 2736 2737 /* Make sure the endpoint has been added to xHC schedule */ 2738 switch (ep_state) { 2739 case EP_STATE_DISABLED: 2740 /* 2741 * USB core changed config/interfaces without notifying us, 2742 * or hardware is reporting the wrong state. 2743 */ 2744 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 2745 return -ENOENT; 2746 case EP_STATE_ERROR: 2747 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 2748 /* FIXME event handling code for error needs to clear it */ 2749 /* XXX not sure if this should be -ENOENT or not */ 2750 return -EINVAL; 2751 case EP_STATE_HALTED: 2752 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 2753 case EP_STATE_STOPPED: 2754 case EP_STATE_RUNNING: 2755 break; 2756 default: 2757 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 2758 /* 2759 * FIXME issue Configure Endpoint command to try to get the HC 2760 * back into a known state. 2761 */ 2762 return -EINVAL; 2763 } 2764 2765 while (1) { 2766 if (room_on_ring(xhci, ep_ring, num_trbs)) 2767 break; 2768 2769 if (ep_ring == xhci->cmd_ring) { 2770 xhci_err(xhci, "Do not support expand command ring\n"); 2771 return -ENOMEM; 2772 } 2773 2774 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 2775 "ERROR no room on ep ring, try ring expansion"); 2776 num_trbs_needed = num_trbs - ep_ring->num_trbs_free; 2777 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed, 2778 mem_flags)) { 2779 xhci_err(xhci, "Ring expansion failed\n"); 2780 return -ENOMEM; 2781 } 2782 } 2783 2784 if (enqueue_is_link_trb(ep_ring)) { 2785 struct xhci_ring *ring = ep_ring; 2786 union xhci_trb *next; 2787 2788 next = ring->enqueue; 2789 2790 while (last_trb(xhci, ring, ring->enq_seg, next)) { 2791 /* If we're not dealing with 0.95 hardware or isoc rings 2792 * on AMD 0.96 host, clear the chain bit. 2793 */ 2794 if (!xhci_link_trb_quirk(xhci) && 2795 !(ring->type == TYPE_ISOC && 2796 (xhci->quirks & XHCI_AMD_0x96_HOST))) 2797 next->link.control &= cpu_to_le32(~TRB_CHAIN); 2798 else 2799 next->link.control |= cpu_to_le32(TRB_CHAIN); 2800 2801 wmb(); 2802 next->link.control ^= cpu_to_le32(TRB_CYCLE); 2803 2804 /* Toggle the cycle bit after the last ring segment. */ 2805 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 2806 ring->cycle_state = (ring->cycle_state ? 0 : 1); 2807 } 2808 ring->enq_seg = ring->enq_seg->next; 2809 ring->enqueue = ring->enq_seg->trbs; 2810 next = ring->enqueue; 2811 } 2812 } 2813 2814 return 0; 2815 } 2816 2817 static int prepare_transfer(struct xhci_hcd *xhci, 2818 struct xhci_virt_device *xdev, 2819 unsigned int ep_index, 2820 unsigned int stream_id, 2821 unsigned int num_trbs, 2822 struct urb *urb, 2823 unsigned int td_index, 2824 gfp_t mem_flags) 2825 { 2826 int ret; 2827 struct urb_priv *urb_priv; 2828 struct xhci_td *td; 2829 struct xhci_ring *ep_ring; 2830 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2831 2832 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); 2833 if (!ep_ring) { 2834 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 2835 stream_id); 2836 return -EINVAL; 2837 } 2838 2839 ret = prepare_ring(xhci, ep_ring, 2840 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 2841 num_trbs, mem_flags); 2842 if (ret) 2843 return ret; 2844 2845 urb_priv = urb->hcpriv; 2846 td = urb_priv->td[td_index]; 2847 2848 INIT_LIST_HEAD(&td->td_list); 2849 INIT_LIST_HEAD(&td->cancelled_td_list); 2850 2851 if (td_index == 0) { 2852 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 2853 if (unlikely(ret)) 2854 return ret; 2855 } 2856 2857 td->urb = urb; 2858 /* Add this TD to the tail of the endpoint ring's TD list */ 2859 list_add_tail(&td->td_list, &ep_ring->td_list); 2860 td->start_seg = ep_ring->enq_seg; 2861 td->first_trb = ep_ring->enqueue; 2862 2863 urb_priv->td[td_index] = td; 2864 2865 return 0; 2866 } 2867 2868 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb) 2869 { 2870 int num_sgs, num_trbs, running_total, temp, i; 2871 struct scatterlist *sg; 2872 2873 sg = NULL; 2874 num_sgs = urb->num_mapped_sgs; 2875 temp = urb->transfer_buffer_length; 2876 2877 num_trbs = 0; 2878 for_each_sg(urb->sg, sg, num_sgs, i) { 2879 unsigned int len = sg_dma_len(sg); 2880 2881 /* Scatter gather list entries may cross 64KB boundaries */ 2882 running_total = TRB_MAX_BUFF_SIZE - 2883 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1)); 2884 running_total &= TRB_MAX_BUFF_SIZE - 1; 2885 if (running_total != 0) 2886 num_trbs++; 2887 2888 /* How many more 64KB chunks to transfer, how many more TRBs? */ 2889 while (running_total < sg_dma_len(sg) && running_total < temp) { 2890 num_trbs++; 2891 running_total += TRB_MAX_BUFF_SIZE; 2892 } 2893 len = min_t(int, len, temp); 2894 temp -= len; 2895 if (temp == 0) 2896 break; 2897 } 2898 return num_trbs; 2899 } 2900 2901 static void check_trb_math(struct urb *urb, int num_trbs, int running_total) 2902 { 2903 if (num_trbs != 0) 2904 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of " 2905 "TRBs, %d left\n", __func__, 2906 urb->ep->desc.bEndpointAddress, num_trbs); 2907 if (running_total != urb->transfer_buffer_length) 2908 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 2909 "queued %#x (%d), asked for %#x (%d)\n", 2910 __func__, 2911 urb->ep->desc.bEndpointAddress, 2912 running_total, running_total, 2913 urb->transfer_buffer_length, 2914 urb->transfer_buffer_length); 2915 } 2916 2917 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 2918 unsigned int ep_index, unsigned int stream_id, int start_cycle, 2919 struct xhci_generic_trb *start_trb) 2920 { 2921 /* 2922 * Pass all the TRBs to the hardware at once and make sure this write 2923 * isn't reordered. 2924 */ 2925 wmb(); 2926 if (start_cycle) 2927 start_trb->field[3] |= cpu_to_le32(start_cycle); 2928 else 2929 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 2930 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 2931 } 2932 2933 /* 2934 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 2935 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 2936 * (comprised of sg list entries) can take several service intervals to 2937 * transmit. 2938 */ 2939 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 2940 struct urb *urb, int slot_id, unsigned int ep_index) 2941 { 2942 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, 2943 xhci->devs[slot_id]->out_ctx, ep_index); 2944 int xhci_interval; 2945 int ep_interval; 2946 2947 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 2948 ep_interval = urb->interval; 2949 /* Convert to microframes */ 2950 if (urb->dev->speed == USB_SPEED_LOW || 2951 urb->dev->speed == USB_SPEED_FULL) 2952 ep_interval *= 8; 2953 /* FIXME change this to a warning and a suggestion to use the new API 2954 * to set the polling interval (once the API is added). 2955 */ 2956 if (xhci_interval != ep_interval) { 2957 dev_dbg_ratelimited(&urb->dev->dev, 2958 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 2959 ep_interval, ep_interval == 1 ? "" : "s", 2960 xhci_interval, xhci_interval == 1 ? "" : "s"); 2961 urb->interval = xhci_interval; 2962 /* Convert back to frames for LS/FS devices */ 2963 if (urb->dev->speed == USB_SPEED_LOW || 2964 urb->dev->speed == USB_SPEED_FULL) 2965 urb->interval /= 8; 2966 } 2967 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 2968 } 2969 2970 /* 2971 * The TD size is the number of bytes remaining in the TD (including this TRB), 2972 * right shifted by 10. 2973 * It must fit in bits 21:17, so it can't be bigger than 31. 2974 */ 2975 static u32 xhci_td_remainder(unsigned int remainder) 2976 { 2977 u32 max = (1 << (21 - 17 + 1)) - 1; 2978 2979 if ((remainder >> 10) >= max) 2980 return max << 17; 2981 else 2982 return (remainder >> 10) << 17; 2983 } 2984 2985 /* 2986 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 2987 * packets remaining in the TD (*not* including this TRB). 2988 * 2989 * Total TD packet count = total_packet_count = 2990 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 2991 * 2992 * Packets transferred up to and including this TRB = packets_transferred = 2993 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 2994 * 2995 * TD size = total_packet_count - packets_transferred 2996 * 2997 * It must fit in bits 21:17, so it can't be bigger than 31. 2998 * The last TRB in a TD must have the TD size set to zero. 2999 */ 3000 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len, 3001 unsigned int total_packet_count, struct urb *urb, 3002 unsigned int num_trbs_left) 3003 { 3004 int packets_transferred; 3005 3006 /* One TRB with a zero-length data packet. */ 3007 if (num_trbs_left == 0 || (running_total == 0 && trb_buff_len == 0)) 3008 return 0; 3009 3010 /* All the TRB queueing functions don't count the current TRB in 3011 * running_total. 3012 */ 3013 packets_transferred = (running_total + trb_buff_len) / 3014 GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc)); 3015 3016 if ((total_packet_count - packets_transferred) > 31) 3017 return 31 << 17; 3018 return (total_packet_count - packets_transferred) << 17; 3019 } 3020 3021 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3022 struct urb *urb, int slot_id, unsigned int ep_index) 3023 { 3024 struct xhci_ring *ep_ring; 3025 unsigned int num_trbs; 3026 struct urb_priv *urb_priv; 3027 struct xhci_td *td; 3028 struct scatterlist *sg; 3029 int num_sgs; 3030 int trb_buff_len, this_sg_len, running_total; 3031 unsigned int total_packet_count; 3032 bool first_trb; 3033 u64 addr; 3034 bool more_trbs_coming; 3035 3036 struct xhci_generic_trb *start_trb; 3037 int start_cycle; 3038 3039 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3040 if (!ep_ring) 3041 return -EINVAL; 3042 3043 num_trbs = count_sg_trbs_needed(xhci, urb); 3044 num_sgs = urb->num_mapped_sgs; 3045 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length, 3046 usb_endpoint_maxp(&urb->ep->desc)); 3047 3048 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id], 3049 ep_index, urb->stream_id, 3050 num_trbs, urb, 0, mem_flags); 3051 if (trb_buff_len < 0) 3052 return trb_buff_len; 3053 3054 urb_priv = urb->hcpriv; 3055 td = urb_priv->td[0]; 3056 3057 /* 3058 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3059 * until we've finished creating all the other TRBs. The ring's cycle 3060 * state may change as we enqueue the other TRBs, so save it too. 3061 */ 3062 start_trb = &ep_ring->enqueue->generic; 3063 start_cycle = ep_ring->cycle_state; 3064 3065 running_total = 0; 3066 /* 3067 * How much data is in the first TRB? 3068 * 3069 * There are three forces at work for TRB buffer pointers and lengths: 3070 * 1. We don't want to walk off the end of this sg-list entry buffer. 3071 * 2. The transfer length that the driver requested may be smaller than 3072 * the amount of memory allocated for this scatter-gather list. 3073 * 3. TRBs buffers can't cross 64KB boundaries. 3074 */ 3075 sg = urb->sg; 3076 addr = (u64) sg_dma_address(sg); 3077 this_sg_len = sg_dma_len(sg); 3078 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1)); 3079 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 3080 if (trb_buff_len > urb->transfer_buffer_length) 3081 trb_buff_len = urb->transfer_buffer_length; 3082 3083 first_trb = true; 3084 /* Queue the first TRB, even if it's zero-length */ 3085 do { 3086 u32 field = 0; 3087 u32 length_field = 0; 3088 u32 remainder = 0; 3089 3090 /* Don't change the cycle bit of the first TRB until later */ 3091 if (first_trb) { 3092 first_trb = false; 3093 if (start_cycle == 0) 3094 field |= 0x1; 3095 } else 3096 field |= ep_ring->cycle_state; 3097 3098 /* Chain all the TRBs together; clear the chain bit in the last 3099 * TRB to indicate it's the last TRB in the chain. 3100 */ 3101 if (num_trbs > 1) { 3102 field |= TRB_CHAIN; 3103 } else { 3104 /* FIXME - add check for ZERO_PACKET flag before this */ 3105 td->last_trb = ep_ring->enqueue; 3106 field |= TRB_IOC; 3107 } 3108 3109 /* Only set interrupt on short packet for IN endpoints */ 3110 if (usb_urb_dir_in(urb)) 3111 field |= TRB_ISP; 3112 3113 if (TRB_MAX_BUFF_SIZE - 3114 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) { 3115 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n"); 3116 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n", 3117 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1), 3118 (unsigned int) addr + trb_buff_len); 3119 } 3120 3121 /* Set the TRB length, TD size, and interrupter fields. */ 3122 if (xhci->hci_version < 0x100) { 3123 remainder = xhci_td_remainder( 3124 urb->transfer_buffer_length - 3125 running_total); 3126 } else { 3127 remainder = xhci_v1_0_td_remainder(running_total, 3128 trb_buff_len, total_packet_count, urb, 3129 num_trbs - 1); 3130 } 3131 length_field = TRB_LEN(trb_buff_len) | 3132 remainder | 3133 TRB_INTR_TARGET(0); 3134 3135 if (num_trbs > 1) 3136 more_trbs_coming = true; 3137 else 3138 more_trbs_coming = false; 3139 queue_trb(xhci, ep_ring, more_trbs_coming, 3140 lower_32_bits(addr), 3141 upper_32_bits(addr), 3142 length_field, 3143 field | TRB_TYPE(TRB_NORMAL)); 3144 --num_trbs; 3145 running_total += trb_buff_len; 3146 3147 /* Calculate length for next transfer -- 3148 * Are we done queueing all the TRBs for this sg entry? 3149 */ 3150 this_sg_len -= trb_buff_len; 3151 if (this_sg_len == 0) { 3152 --num_sgs; 3153 if (num_sgs == 0) 3154 break; 3155 sg = sg_next(sg); 3156 addr = (u64) sg_dma_address(sg); 3157 this_sg_len = sg_dma_len(sg); 3158 } else { 3159 addr += trb_buff_len; 3160 } 3161 3162 trb_buff_len = TRB_MAX_BUFF_SIZE - 3163 (addr & (TRB_MAX_BUFF_SIZE - 1)); 3164 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 3165 if (running_total + trb_buff_len > urb->transfer_buffer_length) 3166 trb_buff_len = 3167 urb->transfer_buffer_length - running_total; 3168 } while (running_total < urb->transfer_buffer_length); 3169 3170 check_trb_math(urb, num_trbs, running_total); 3171 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3172 start_cycle, start_trb); 3173 return 0; 3174 } 3175 3176 /* This is very similar to what ehci-q.c qtd_fill() does */ 3177 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3178 struct urb *urb, int slot_id, unsigned int ep_index) 3179 { 3180 struct xhci_ring *ep_ring; 3181 struct urb_priv *urb_priv; 3182 struct xhci_td *td; 3183 int num_trbs; 3184 struct xhci_generic_trb *start_trb; 3185 bool first_trb; 3186 bool more_trbs_coming; 3187 int start_cycle; 3188 u32 field, length_field; 3189 3190 int running_total, trb_buff_len, ret; 3191 unsigned int total_packet_count; 3192 u64 addr; 3193 3194 if (urb->num_sgs) 3195 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index); 3196 3197 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3198 if (!ep_ring) 3199 return -EINVAL; 3200 3201 num_trbs = 0; 3202 /* How much data is (potentially) left before the 64KB boundary? */ 3203 running_total = TRB_MAX_BUFF_SIZE - 3204 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 3205 running_total &= TRB_MAX_BUFF_SIZE - 1; 3206 3207 /* If there's some data on this 64KB chunk, or we have to send a 3208 * zero-length transfer, we need at least one TRB 3209 */ 3210 if (running_total != 0 || urb->transfer_buffer_length == 0) 3211 num_trbs++; 3212 /* How many more 64KB chunks to transfer, how many more TRBs? */ 3213 while (running_total < urb->transfer_buffer_length) { 3214 num_trbs++; 3215 running_total += TRB_MAX_BUFF_SIZE; 3216 } 3217 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */ 3218 3219 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3220 ep_index, urb->stream_id, 3221 num_trbs, urb, 0, mem_flags); 3222 if (ret < 0) 3223 return ret; 3224 3225 urb_priv = urb->hcpriv; 3226 td = urb_priv->td[0]; 3227 3228 /* 3229 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3230 * until we've finished creating all the other TRBs. The ring's cycle 3231 * state may change as we enqueue the other TRBs, so save it too. 3232 */ 3233 start_trb = &ep_ring->enqueue->generic; 3234 start_cycle = ep_ring->cycle_state; 3235 3236 running_total = 0; 3237 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length, 3238 usb_endpoint_maxp(&urb->ep->desc)); 3239 /* How much data is in the first TRB? */ 3240 addr = (u64) urb->transfer_dma; 3241 trb_buff_len = TRB_MAX_BUFF_SIZE - 3242 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 3243 if (trb_buff_len > urb->transfer_buffer_length) 3244 trb_buff_len = urb->transfer_buffer_length; 3245 3246 first_trb = true; 3247 3248 /* Queue the first TRB, even if it's zero-length */ 3249 do { 3250 u32 remainder = 0; 3251 field = 0; 3252 3253 /* Don't change the cycle bit of the first TRB until later */ 3254 if (first_trb) { 3255 first_trb = false; 3256 if (start_cycle == 0) 3257 field |= 0x1; 3258 } else 3259 field |= ep_ring->cycle_state; 3260 3261 /* Chain all the TRBs together; clear the chain bit in the last 3262 * TRB to indicate it's the last TRB in the chain. 3263 */ 3264 if (num_trbs > 1) { 3265 field |= TRB_CHAIN; 3266 } else { 3267 /* FIXME - add check for ZERO_PACKET flag before this */ 3268 td->last_trb = ep_ring->enqueue; 3269 field |= TRB_IOC; 3270 } 3271 3272 /* Only set interrupt on short packet for IN endpoints */ 3273 if (usb_urb_dir_in(urb)) 3274 field |= TRB_ISP; 3275 3276 /* Set the TRB length, TD size, and interrupter fields. */ 3277 if (xhci->hci_version < 0x100) { 3278 remainder = xhci_td_remainder( 3279 urb->transfer_buffer_length - 3280 running_total); 3281 } else { 3282 remainder = xhci_v1_0_td_remainder(running_total, 3283 trb_buff_len, total_packet_count, urb, 3284 num_trbs - 1); 3285 } 3286 length_field = TRB_LEN(trb_buff_len) | 3287 remainder | 3288 TRB_INTR_TARGET(0); 3289 3290 if (num_trbs > 1) 3291 more_trbs_coming = true; 3292 else 3293 more_trbs_coming = false; 3294 queue_trb(xhci, ep_ring, more_trbs_coming, 3295 lower_32_bits(addr), 3296 upper_32_bits(addr), 3297 length_field, 3298 field | TRB_TYPE(TRB_NORMAL)); 3299 --num_trbs; 3300 running_total += trb_buff_len; 3301 3302 /* Calculate length for next transfer */ 3303 addr += trb_buff_len; 3304 trb_buff_len = urb->transfer_buffer_length - running_total; 3305 if (trb_buff_len > TRB_MAX_BUFF_SIZE) 3306 trb_buff_len = TRB_MAX_BUFF_SIZE; 3307 } while (running_total < urb->transfer_buffer_length); 3308 3309 check_trb_math(urb, num_trbs, running_total); 3310 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3311 start_cycle, start_trb); 3312 return 0; 3313 } 3314 3315 /* Caller must have locked xhci->lock */ 3316 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3317 struct urb *urb, int slot_id, unsigned int ep_index) 3318 { 3319 struct xhci_ring *ep_ring; 3320 int num_trbs; 3321 int ret; 3322 struct usb_ctrlrequest *setup; 3323 struct xhci_generic_trb *start_trb; 3324 int start_cycle; 3325 u32 field, length_field; 3326 struct urb_priv *urb_priv; 3327 struct xhci_td *td; 3328 3329 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3330 if (!ep_ring) 3331 return -EINVAL; 3332 3333 /* 3334 * Need to copy setup packet into setup TRB, so we can't use the setup 3335 * DMA address. 3336 */ 3337 if (!urb->setup_packet) 3338 return -EINVAL; 3339 3340 /* 1 TRB for setup, 1 for status */ 3341 num_trbs = 2; 3342 /* 3343 * Don't need to check if we need additional event data and normal TRBs, 3344 * since data in control transfers will never get bigger than 16MB 3345 * XXX: can we get a buffer that crosses 64KB boundaries? 3346 */ 3347 if (urb->transfer_buffer_length > 0) 3348 num_trbs++; 3349 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3350 ep_index, urb->stream_id, 3351 num_trbs, urb, 0, mem_flags); 3352 if (ret < 0) 3353 return ret; 3354 3355 urb_priv = urb->hcpriv; 3356 td = urb_priv->td[0]; 3357 3358 /* 3359 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3360 * until we've finished creating all the other TRBs. The ring's cycle 3361 * state may change as we enqueue the other TRBs, so save it too. 3362 */ 3363 start_trb = &ep_ring->enqueue->generic; 3364 start_cycle = ep_ring->cycle_state; 3365 3366 /* Queue setup TRB - see section 6.4.1.2.1 */ 3367 /* FIXME better way to translate setup_packet into two u32 fields? */ 3368 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3369 field = 0; 3370 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3371 if (start_cycle == 0) 3372 field |= 0x1; 3373 3374 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */ 3375 if (xhci->hci_version == 0x100) { 3376 if (urb->transfer_buffer_length > 0) { 3377 if (setup->bRequestType & USB_DIR_IN) 3378 field |= TRB_TX_TYPE(TRB_DATA_IN); 3379 else 3380 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3381 } 3382 } 3383 3384 queue_trb(xhci, ep_ring, true, 3385 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3386 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3387 TRB_LEN(8) | TRB_INTR_TARGET(0), 3388 /* Immediate data in pointer */ 3389 field); 3390 3391 /* If there's data, queue data TRBs */ 3392 /* Only set interrupt on short packet for IN endpoints */ 3393 if (usb_urb_dir_in(urb)) 3394 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3395 else 3396 field = TRB_TYPE(TRB_DATA); 3397 3398 length_field = TRB_LEN(urb->transfer_buffer_length) | 3399 xhci_td_remainder(urb->transfer_buffer_length) | 3400 TRB_INTR_TARGET(0); 3401 if (urb->transfer_buffer_length > 0) { 3402 if (setup->bRequestType & USB_DIR_IN) 3403 field |= TRB_DIR_IN; 3404 queue_trb(xhci, ep_ring, true, 3405 lower_32_bits(urb->transfer_dma), 3406 upper_32_bits(urb->transfer_dma), 3407 length_field, 3408 field | ep_ring->cycle_state); 3409 } 3410 3411 /* Save the DMA address of the last TRB in the TD */ 3412 td->last_trb = ep_ring->enqueue; 3413 3414 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3415 /* If the device sent data, the status stage is an OUT transfer */ 3416 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3417 field = 0; 3418 else 3419 field = TRB_DIR_IN; 3420 queue_trb(xhci, ep_ring, false, 3421 0, 3422 0, 3423 TRB_INTR_TARGET(0), 3424 /* Event on completion */ 3425 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3426 3427 giveback_first_trb(xhci, slot_id, ep_index, 0, 3428 start_cycle, start_trb); 3429 return 0; 3430 } 3431 3432 static int count_isoc_trbs_needed(struct xhci_hcd *xhci, 3433 struct urb *urb, int i) 3434 { 3435 int num_trbs = 0; 3436 u64 addr, td_len; 3437 3438 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3439 td_len = urb->iso_frame_desc[i].length; 3440 3441 num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3442 TRB_MAX_BUFF_SIZE); 3443 if (num_trbs == 0) 3444 num_trbs++; 3445 3446 return num_trbs; 3447 } 3448 3449 /* 3450 * The transfer burst count field of the isochronous TRB defines the number of 3451 * bursts that are required to move all packets in this TD. Only SuperSpeed 3452 * devices can burst up to bMaxBurst number of packets per service interval. 3453 * This field is zero based, meaning a value of zero in the field means one 3454 * burst. Basically, for everything but SuperSpeed devices, this field will be 3455 * zero. Only xHCI 1.0 host controllers support this field. 3456 */ 3457 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3458 struct usb_device *udev, 3459 struct urb *urb, unsigned int total_packet_count) 3460 { 3461 unsigned int max_burst; 3462 3463 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER) 3464 return 0; 3465 3466 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3467 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3468 } 3469 3470 /* 3471 * Returns the number of packets in the last "burst" of packets. This field is 3472 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3473 * the last burst packet count is equal to the total number of packets in the 3474 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3475 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3476 * contain 1 to (bMaxBurst + 1) packets. 3477 */ 3478 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3479 struct usb_device *udev, 3480 struct urb *urb, unsigned int total_packet_count) 3481 { 3482 unsigned int max_burst; 3483 unsigned int residue; 3484 3485 if (xhci->hci_version < 0x100) 3486 return 0; 3487 3488 switch (udev->speed) { 3489 case USB_SPEED_SUPER: 3490 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3491 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3492 residue = total_packet_count % (max_burst + 1); 3493 /* If residue is zero, the last burst contains (max_burst + 1) 3494 * number of packets, but the TLBPC field is zero-based. 3495 */ 3496 if (residue == 0) 3497 return max_burst; 3498 return residue - 1; 3499 default: 3500 if (total_packet_count == 0) 3501 return 0; 3502 return total_packet_count - 1; 3503 } 3504 } 3505 3506 /* This is for isoc transfer */ 3507 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3508 struct urb *urb, int slot_id, unsigned int ep_index) 3509 { 3510 struct xhci_ring *ep_ring; 3511 struct urb_priv *urb_priv; 3512 struct xhci_td *td; 3513 int num_tds, trbs_per_td; 3514 struct xhci_generic_trb *start_trb; 3515 bool first_trb; 3516 int start_cycle; 3517 u32 field, length_field; 3518 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3519 u64 start_addr, addr; 3520 int i, j; 3521 bool more_trbs_coming; 3522 3523 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 3524 3525 num_tds = urb->number_of_packets; 3526 if (num_tds < 1) { 3527 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 3528 return -EINVAL; 3529 } 3530 3531 start_addr = (u64) urb->transfer_dma; 3532 start_trb = &ep_ring->enqueue->generic; 3533 start_cycle = ep_ring->cycle_state; 3534 3535 urb_priv = urb->hcpriv; 3536 /* Queue the first TRB, even if it's zero-length */ 3537 for (i = 0; i < num_tds; i++) { 3538 unsigned int total_packet_count; 3539 unsigned int burst_count; 3540 unsigned int residue; 3541 3542 first_trb = true; 3543 running_total = 0; 3544 addr = start_addr + urb->iso_frame_desc[i].offset; 3545 td_len = urb->iso_frame_desc[i].length; 3546 td_remain_len = td_len; 3547 total_packet_count = DIV_ROUND_UP(td_len, 3548 GET_MAX_PACKET( 3549 usb_endpoint_maxp(&urb->ep->desc))); 3550 /* A zero-length transfer still involves at least one packet. */ 3551 if (total_packet_count == 0) 3552 total_packet_count++; 3553 burst_count = xhci_get_burst_count(xhci, urb->dev, urb, 3554 total_packet_count); 3555 residue = xhci_get_last_burst_packet_count(xhci, 3556 urb->dev, urb, total_packet_count); 3557 3558 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i); 3559 3560 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 3561 urb->stream_id, trbs_per_td, urb, i, mem_flags); 3562 if (ret < 0) { 3563 if (i == 0) 3564 return ret; 3565 goto cleanup; 3566 } 3567 3568 td = urb_priv->td[i]; 3569 for (j = 0; j < trbs_per_td; j++) { 3570 u32 remainder = 0; 3571 field = 0; 3572 3573 if (first_trb) { 3574 field = TRB_TBC(burst_count) | 3575 TRB_TLBPC(residue); 3576 /* Queue the isoc TRB */ 3577 field |= TRB_TYPE(TRB_ISOC); 3578 /* Assume URB_ISO_ASAP is set */ 3579 field |= TRB_SIA; 3580 if (i == 0) { 3581 if (start_cycle == 0) 3582 field |= 0x1; 3583 } else 3584 field |= ep_ring->cycle_state; 3585 first_trb = false; 3586 } else { 3587 /* Queue other normal TRBs */ 3588 field |= TRB_TYPE(TRB_NORMAL); 3589 field |= ep_ring->cycle_state; 3590 } 3591 3592 /* Only set interrupt on short packet for IN EPs */ 3593 if (usb_urb_dir_in(urb)) 3594 field |= TRB_ISP; 3595 3596 /* Chain all the TRBs together; clear the chain bit in 3597 * the last TRB to indicate it's the last TRB in the 3598 * chain. 3599 */ 3600 if (j < trbs_per_td - 1) { 3601 field |= TRB_CHAIN; 3602 more_trbs_coming = true; 3603 } else { 3604 td->last_trb = ep_ring->enqueue; 3605 field |= TRB_IOC; 3606 if (xhci->hci_version == 0x100 && 3607 !(xhci->quirks & 3608 XHCI_AVOID_BEI)) { 3609 /* Set BEI bit except for the last td */ 3610 if (i < num_tds - 1) 3611 field |= TRB_BEI; 3612 } 3613 more_trbs_coming = false; 3614 } 3615 3616 /* Calculate TRB length */ 3617 trb_buff_len = TRB_MAX_BUFF_SIZE - 3618 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1)); 3619 if (trb_buff_len > td_remain_len) 3620 trb_buff_len = td_remain_len; 3621 3622 /* Set the TRB length, TD size, & interrupter fields. */ 3623 if (xhci->hci_version < 0x100) { 3624 remainder = xhci_td_remainder( 3625 td_len - running_total); 3626 } else { 3627 remainder = xhci_v1_0_td_remainder( 3628 running_total, trb_buff_len, 3629 total_packet_count, urb, 3630 (trbs_per_td - j - 1)); 3631 } 3632 length_field = TRB_LEN(trb_buff_len) | 3633 remainder | 3634 TRB_INTR_TARGET(0); 3635 3636 queue_trb(xhci, ep_ring, more_trbs_coming, 3637 lower_32_bits(addr), 3638 upper_32_bits(addr), 3639 length_field, 3640 field); 3641 running_total += trb_buff_len; 3642 3643 addr += trb_buff_len; 3644 td_remain_len -= trb_buff_len; 3645 } 3646 3647 /* Check TD length */ 3648 if (running_total != td_len) { 3649 xhci_err(xhci, "ISOC TD length unmatch\n"); 3650 ret = -EINVAL; 3651 goto cleanup; 3652 } 3653 } 3654 3655 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 3656 if (xhci->quirks & XHCI_AMD_PLL_FIX) 3657 usb_amd_quirk_pll_disable(); 3658 } 3659 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 3660 3661 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3662 start_cycle, start_trb); 3663 return 0; 3664 cleanup: 3665 /* Clean up a partially enqueued isoc transfer. */ 3666 3667 for (i--; i >= 0; i--) 3668 list_del_init(&urb_priv->td[i]->td_list); 3669 3670 /* Use the first TD as a temporary variable to turn the TDs we've queued 3671 * into No-ops with a software-owned cycle bit. That way the hardware 3672 * won't accidentally start executing bogus TDs when we partially 3673 * overwrite them. td->first_trb and td->start_seg are already set. 3674 */ 3675 urb_priv->td[0]->last_trb = ep_ring->enqueue; 3676 /* Every TRB except the first & last will have its cycle bit flipped. */ 3677 td_to_noop(xhci, ep_ring, urb_priv->td[0], true); 3678 3679 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 3680 ep_ring->enqueue = urb_priv->td[0]->first_trb; 3681 ep_ring->enq_seg = urb_priv->td[0]->start_seg; 3682 ep_ring->cycle_state = start_cycle; 3683 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp; 3684 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 3685 return ret; 3686 } 3687 3688 /* 3689 * Check transfer ring to guarantee there is enough room for the urb. 3690 * Update ISO URB start_frame and interval. 3691 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to 3692 * update the urb->start_frame by now. 3693 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input. 3694 */ 3695 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 3696 struct urb *urb, int slot_id, unsigned int ep_index) 3697 { 3698 struct xhci_virt_device *xdev; 3699 struct xhci_ring *ep_ring; 3700 struct xhci_ep_ctx *ep_ctx; 3701 int start_frame; 3702 int xhci_interval; 3703 int ep_interval; 3704 int num_tds, num_trbs, i; 3705 int ret; 3706 3707 xdev = xhci->devs[slot_id]; 3708 ep_ring = xdev->eps[ep_index].ring; 3709 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3710 3711 num_trbs = 0; 3712 num_tds = urb->number_of_packets; 3713 for (i = 0; i < num_tds; i++) 3714 num_trbs += count_isoc_trbs_needed(xhci, urb, i); 3715 3716 /* Check the ring to guarantee there is enough room for the whole urb. 3717 * Do not insert any td of the urb to the ring if the check failed. 3718 */ 3719 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 3720 num_trbs, mem_flags); 3721 if (ret) 3722 return ret; 3723 3724 start_frame = readl(&xhci->run_regs->microframe_index); 3725 start_frame &= 0x3fff; 3726 3727 urb->start_frame = start_frame; 3728 if (urb->dev->speed == USB_SPEED_LOW || 3729 urb->dev->speed == USB_SPEED_FULL) 3730 urb->start_frame >>= 3; 3731 3732 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3733 ep_interval = urb->interval; 3734 /* Convert to microframes */ 3735 if (urb->dev->speed == USB_SPEED_LOW || 3736 urb->dev->speed == USB_SPEED_FULL) 3737 ep_interval *= 8; 3738 /* FIXME change this to a warning and a suggestion to use the new API 3739 * to set the polling interval (once the API is added). 3740 */ 3741 if (xhci_interval != ep_interval) { 3742 dev_dbg_ratelimited(&urb->dev->dev, 3743 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3744 ep_interval, ep_interval == 1 ? "" : "s", 3745 xhci_interval, xhci_interval == 1 ? "" : "s"); 3746 urb->interval = xhci_interval; 3747 /* Convert back to frames for LS/FS devices */ 3748 if (urb->dev->speed == USB_SPEED_LOW || 3749 urb->dev->speed == USB_SPEED_FULL) 3750 urb->interval /= 8; 3751 } 3752 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free; 3753 3754 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 3755 } 3756 3757 /**** Command Ring Operations ****/ 3758 3759 /* Generic function for queueing a command TRB on the command ring. 3760 * Check to make sure there's room on the command ring for one command TRB. 3761 * Also check that there's room reserved for commands that must not fail. 3762 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 3763 * then only check for the number of reserved spots. 3764 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 3765 * because the command event handler may want to resubmit a failed command. 3766 */ 3767 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 3768 u32 field1, u32 field2, 3769 u32 field3, u32 field4, bool command_must_succeed) 3770 { 3771 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 3772 int ret; 3773 if (xhci->xhc_state & XHCI_STATE_DYING) 3774 return -ESHUTDOWN; 3775 3776 if (!command_must_succeed) 3777 reserved_trbs++; 3778 3779 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 3780 reserved_trbs, GFP_ATOMIC); 3781 if (ret < 0) { 3782 xhci_err(xhci, "ERR: No room for command on command ring\n"); 3783 if (command_must_succeed) 3784 xhci_err(xhci, "ERR: Reserved TRB counting for " 3785 "unfailable commands failed.\n"); 3786 return ret; 3787 } 3788 3789 cmd->command_trb = xhci->cmd_ring->enqueue; 3790 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 3791 3792 /* if there are no other commands queued we start the timeout timer */ 3793 if (xhci->cmd_list.next == &cmd->cmd_list && 3794 !timer_pending(&xhci->cmd_timer)) { 3795 xhci->current_cmd = cmd; 3796 mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT); 3797 } 3798 3799 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 3800 field4 | xhci->cmd_ring->cycle_state); 3801 return 0; 3802 } 3803 3804 /* Queue a slot enable or disable request on the command ring */ 3805 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 3806 u32 trb_type, u32 slot_id) 3807 { 3808 return queue_command(xhci, cmd, 0, 0, 0, 3809 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 3810 } 3811 3812 /* Queue an address device command TRB */ 3813 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 3814 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 3815 { 3816 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3817 upper_32_bits(in_ctx_ptr), 0, 3818 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 3819 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 3820 } 3821 3822 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 3823 u32 field1, u32 field2, u32 field3, u32 field4) 3824 { 3825 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 3826 } 3827 3828 /* Queue a reset device command TRB */ 3829 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 3830 u32 slot_id) 3831 { 3832 return queue_command(xhci, cmd, 0, 0, 0, 3833 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 3834 false); 3835 } 3836 3837 /* Queue a configure endpoint command TRB */ 3838 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 3839 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 3840 u32 slot_id, bool command_must_succeed) 3841 { 3842 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3843 upper_32_bits(in_ctx_ptr), 0, 3844 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 3845 command_must_succeed); 3846 } 3847 3848 /* Queue an evaluate context command TRB */ 3849 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 3850 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 3851 { 3852 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3853 upper_32_bits(in_ctx_ptr), 0, 3854 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 3855 command_must_succeed); 3856 } 3857 3858 /* 3859 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 3860 * activity on an endpoint that is about to be suspended. 3861 */ 3862 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 3863 int slot_id, unsigned int ep_index, int suspend) 3864 { 3865 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3866 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3867 u32 type = TRB_TYPE(TRB_STOP_RING); 3868 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 3869 3870 return queue_command(xhci, cmd, 0, 0, 0, 3871 trb_slot_id | trb_ep_index | type | trb_suspend, false); 3872 } 3873 3874 /* Set Transfer Ring Dequeue Pointer command */ 3875 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, 3876 unsigned int slot_id, unsigned int ep_index, 3877 unsigned int stream_id, 3878 struct xhci_dequeue_state *deq_state) 3879 { 3880 dma_addr_t addr; 3881 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3882 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3883 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id); 3884 u32 trb_sct = 0; 3885 u32 type = TRB_TYPE(TRB_SET_DEQ); 3886 struct xhci_virt_ep *ep; 3887 struct xhci_command *cmd; 3888 int ret; 3889 3890 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 3891 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u", 3892 deq_state->new_deq_seg, 3893 (unsigned long long)deq_state->new_deq_seg->dma, 3894 deq_state->new_deq_ptr, 3895 (unsigned long long)xhci_trb_virt_to_dma( 3896 deq_state->new_deq_seg, deq_state->new_deq_ptr), 3897 deq_state->new_cycle_state); 3898 3899 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 3900 deq_state->new_deq_ptr); 3901 if (addr == 0) { 3902 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 3903 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", 3904 deq_state->new_deq_seg, deq_state->new_deq_ptr); 3905 return; 3906 } 3907 ep = &xhci->devs[slot_id]->eps[ep_index]; 3908 if ((ep->ep_state & SET_DEQ_PENDING)) { 3909 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 3910 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n"); 3911 return; 3912 } 3913 3914 /* This function gets called from contexts where it cannot sleep */ 3915 cmd = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 3916 if (!cmd) { 3917 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr: ENOMEM\n"); 3918 return; 3919 } 3920 3921 ep->queued_deq_seg = deq_state->new_deq_seg; 3922 ep->queued_deq_ptr = deq_state->new_deq_ptr; 3923 if (stream_id) 3924 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 3925 ret = queue_command(xhci, cmd, 3926 lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state, 3927 upper_32_bits(addr), trb_stream_id, 3928 trb_slot_id | trb_ep_index | type, false); 3929 if (ret < 0) { 3930 xhci_free_command(xhci, cmd); 3931 return; 3932 } 3933 3934 /* Stop the TD queueing code from ringing the doorbell until 3935 * this command completes. The HC won't set the dequeue pointer 3936 * if the ring is running, and ringing the doorbell starts the 3937 * ring running. 3938 */ 3939 ep->ep_state |= SET_DEQ_PENDING; 3940 } 3941 3942 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 3943 int slot_id, unsigned int ep_index) 3944 { 3945 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3946 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3947 u32 type = TRB_TYPE(TRB_RESET_EP); 3948 3949 return queue_command(xhci, cmd, 0, 0, 0, 3950 trb_slot_id | trb_ep_index | type, false); 3951 } 3952