1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 /* 12 * Ring initialization rules: 13 * 1. Each segment is initialized to zero, except for link TRBs. 14 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 15 * Consumer Cycle State (CCS), depending on ring function. 16 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 17 * 18 * Ring behavior rules: 19 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 20 * least one free TRB in the ring. This is useful if you want to turn that 21 * into a link TRB and expand the ring. 22 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 23 * link TRB, then load the pointer with the address in the link TRB. If the 24 * link TRB had its toggle bit set, you may need to update the ring cycle 25 * state (see cycle bit rules). You may have to do this multiple times 26 * until you reach a non-link TRB. 27 * 3. A ring is full if enqueue++ (for the definition of increment above) 28 * equals the dequeue pointer. 29 * 30 * Cycle bit rules: 31 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 32 * in a link TRB, it must toggle the ring cycle state. 33 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 34 * in a link TRB, it must toggle the ring cycle state. 35 * 36 * Producer rules: 37 * 1. Check if ring is full before you enqueue. 38 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 39 * Update enqueue pointer between each write (which may update the ring 40 * cycle state). 41 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 42 * and endpoint rings. If HC is the producer for the event ring, 43 * and it generates an interrupt according to interrupt modulation rules. 44 * 45 * Consumer rules: 46 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 47 * the TRB is owned by the consumer. 48 * 2. Update dequeue pointer (which may update the ring cycle state) and 49 * continue processing TRBs until you reach a TRB which is not owned by you. 50 * 3. Notify the producer. SW is the consumer for the event ring, and it 51 * updates event ring dequeue pointer. HC is the consumer for the command and 52 * endpoint rings; it generates events on the event ring for these. 53 */ 54 55 #include <linux/jiffies.h> 56 #include <linux/scatterlist.h> 57 #include <linux/slab.h> 58 #include <linux/string_choices.h> 59 #include <linux/dma-mapping.h> 60 #include "xhci.h" 61 #include "xhci-trace.h" 62 63 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 64 u32 field1, u32 field2, 65 u32 field3, u32 field4, bool command_must_succeed); 66 67 /* 68 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 69 * address of the TRB. 70 */ 71 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 72 union xhci_trb *trb) 73 { 74 unsigned long segment_offset; 75 76 if (!seg || !trb || trb < seg->trbs) 77 return 0; 78 /* offset in TRBs */ 79 segment_offset = trb - seg->trbs; 80 if (segment_offset >= TRBS_PER_SEGMENT) 81 return 0; 82 return seg->dma + (segment_offset * sizeof(*trb)); 83 } 84 85 static bool trb_is_noop(union xhci_trb *trb) 86 { 87 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); 88 } 89 90 static bool trb_is_link(union xhci_trb *trb) 91 { 92 return TRB_TYPE_LINK_LE32(trb->link.control); 93 } 94 95 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) 96 { 97 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; 98 } 99 100 static bool last_trb_on_ring(struct xhci_ring *ring, 101 struct xhci_segment *seg, union xhci_trb *trb) 102 { 103 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); 104 } 105 106 static bool link_trb_toggles_cycle(union xhci_trb *trb) 107 { 108 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 109 } 110 111 static bool last_td_in_urb(struct xhci_td *td) 112 { 113 struct urb_priv *urb_priv = td->urb->hcpriv; 114 115 return urb_priv->num_tds_done == urb_priv->num_tds; 116 } 117 118 static bool unhandled_event_trb(struct xhci_ring *ring) 119 { 120 return ((le32_to_cpu(ring->dequeue->event_cmd.flags) & TRB_CYCLE) == 121 ring->cycle_state); 122 } 123 124 static void inc_td_cnt(struct urb *urb) 125 { 126 struct urb_priv *urb_priv = urb->hcpriv; 127 128 urb_priv->num_tds_done++; 129 } 130 131 static void trb_to_noop(union xhci_trb *trb, u32 noop_type) 132 { 133 if (trb_is_link(trb)) { 134 /* unchain chained link TRBs */ 135 trb->link.control &= cpu_to_le32(~TRB_CHAIN); 136 } else { 137 trb->generic.field[0] = 0; 138 trb->generic.field[1] = 0; 139 trb->generic.field[2] = 0; 140 /* Preserve only the cycle bit of this TRB */ 141 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 142 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); 143 } 144 } 145 146 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 147 * TRB is in a new segment. This does not skip over link TRBs, and it does not 148 * effect the ring dequeue or enqueue pointers. 149 */ 150 static void next_trb(struct xhci_segment **seg, 151 union xhci_trb **trb) 152 { 153 if (trb_is_link(*trb) || last_trb_on_seg(*seg, *trb)) { 154 *seg = (*seg)->next; 155 *trb = ((*seg)->trbs); 156 } else { 157 (*trb)++; 158 } 159 } 160 161 /* 162 * See Cycle bit rules. SW is the consumer for the event ring only. 163 */ 164 void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 165 { 166 unsigned int link_trb_count = 0; 167 168 /* event ring doesn't have link trbs, check for last trb */ 169 if (ring->type == TYPE_EVENT) { 170 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 171 ring->dequeue++; 172 return; 173 } 174 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) 175 ring->cycle_state ^= 1; 176 ring->deq_seg = ring->deq_seg->next; 177 ring->dequeue = ring->deq_seg->trbs; 178 179 trace_xhci_inc_deq(ring); 180 181 return; 182 } 183 184 /* All other rings have link trbs */ 185 if (!trb_is_link(ring->dequeue)) { 186 if (last_trb_on_seg(ring->deq_seg, ring->dequeue)) 187 xhci_warn(xhci, "Missing link TRB at end of segment\n"); 188 else 189 ring->dequeue++; 190 } 191 192 while (trb_is_link(ring->dequeue)) { 193 ring->deq_seg = ring->deq_seg->next; 194 ring->dequeue = ring->deq_seg->trbs; 195 196 trace_xhci_inc_deq(ring); 197 198 if (link_trb_count++ > ring->num_segs) { 199 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 200 break; 201 } 202 } 203 return; 204 } 205 206 /* 207 * If enqueue points at a link TRB, follow links until an ordinary TRB is reached. 208 * Toggle the cycle bit of passed link TRBs and optionally chain them. 209 */ 210 static void inc_enq_past_link(struct xhci_hcd *xhci, struct xhci_ring *ring, u32 chain) 211 { 212 unsigned int link_trb_count = 0; 213 214 while (trb_is_link(ring->enqueue)) { 215 216 /* 217 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 218 * set, but other sections talk about dealing with the chain bit set. This was 219 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 220 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 221 * 222 * On 0.95 and some 0.96 HCs the chain bit is set once at segment initalization 223 * and never changed here. On all others, modify it as requested by the caller. 224 */ 225 if (!xhci_link_chain_quirk(xhci, ring->type)) { 226 ring->enqueue->link.control &= cpu_to_le32(~TRB_CHAIN); 227 ring->enqueue->link.control |= cpu_to_le32(chain); 228 } 229 230 /* Give this link TRB to the hardware */ 231 wmb(); 232 ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); 233 234 /* Toggle the cycle bit after the last ring segment. */ 235 if (link_trb_toggles_cycle(ring->enqueue)) 236 ring->cycle_state ^= 1; 237 238 ring->enq_seg = ring->enq_seg->next; 239 ring->enqueue = ring->enq_seg->trbs; 240 241 trace_xhci_inc_enq(ring); 242 243 if (link_trb_count++ > ring->num_segs) { 244 xhci_warn(xhci, "Link TRB loop at enqueue\n"); 245 break; 246 } 247 } 248 } 249 250 /* 251 * See Cycle bit rules. SW is the consumer for the event ring only. 252 * 253 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 254 * chain bit is set), then set the chain bit in all the following link TRBs. 255 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 256 * have their chain bit cleared (so that each Link TRB is a separate TD). 257 * 258 * @more_trbs_coming: Will you enqueue more TRBs before calling 259 * prepare_transfer()? 260 */ 261 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 262 bool more_trbs_coming) 263 { 264 u32 chain; 265 266 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 267 268 if (last_trb_on_seg(ring->enq_seg, ring->enqueue)) { 269 xhci_err(xhci, "Tried to move enqueue past ring segment\n"); 270 return; 271 } 272 273 ring->enqueue++; 274 275 /* 276 * If we are in the middle of a TD or the caller plans to enqueue more 277 * TDs as one transfer (eg. control), traverse any link TRBs right now. 278 * Otherwise, enqueue can stay on a link until the next prepare_ring(). 279 * This avoids enqueue entering deq_seg and simplifies ring expansion. 280 */ 281 if (trb_is_link(ring->enqueue) && (chain || more_trbs_coming)) 282 inc_enq_past_link(xhci, ring, chain); 283 } 284 285 /* 286 * If the suspect DMA address is a TRB in this TD, this function returns that 287 * TRB's segment. Otherwise it returns 0. 288 */ 289 static struct xhci_segment *trb_in_td(struct xhci_td *td, dma_addr_t suspect_dma) 290 { 291 dma_addr_t start_dma; 292 dma_addr_t end_seg_dma; 293 dma_addr_t end_trb_dma; 294 struct xhci_segment *cur_seg; 295 296 start_dma = xhci_trb_virt_to_dma(td->start_seg, td->start_trb); 297 cur_seg = td->start_seg; 298 299 do { 300 if (start_dma == 0) 301 return NULL; 302 /* We may get an event for a Link TRB in the middle of a TD */ 303 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 304 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 305 /* If the end TRB isn't in this segment, this is set to 0 */ 306 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, td->end_trb); 307 308 if (end_trb_dma > 0) { 309 /* The end TRB is in this segment, so suspect should be here */ 310 if (start_dma <= end_trb_dma) { 311 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 312 return cur_seg; 313 } else { 314 /* Case for one segment with 315 * a TD wrapped around to the top 316 */ 317 if ((suspect_dma >= start_dma && 318 suspect_dma <= end_seg_dma) || 319 (suspect_dma >= cur_seg->dma && 320 suspect_dma <= end_trb_dma)) 321 return cur_seg; 322 } 323 return NULL; 324 } 325 /* Might still be somewhere in this segment */ 326 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 327 return cur_seg; 328 329 cur_seg = cur_seg->next; 330 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 331 } while (cur_seg != td->start_seg); 332 333 return NULL; 334 } 335 336 /* 337 * Return number of free normal TRBs from enqueue to dequeue pointer on ring. 338 * Not counting an assumed link TRB at end of each TRBS_PER_SEGMENT sized segment. 339 * Only for transfer and command rings where driver is the producer, not for 340 * event rings. 341 */ 342 static unsigned int xhci_num_trbs_free(struct xhci_ring *ring) 343 { 344 struct xhci_segment *enq_seg = ring->enq_seg; 345 union xhci_trb *enq = ring->enqueue; 346 union xhci_trb *last_on_seg; 347 unsigned int free = 0; 348 int i = 0; 349 350 /* Ring might be empty even if enq != deq if enq is left on a link trb */ 351 if (trb_is_link(enq)) { 352 enq_seg = enq_seg->next; 353 enq = enq_seg->trbs; 354 } 355 356 /* Empty ring, common case, don't walk the segments */ 357 if (enq == ring->dequeue) 358 return ring->num_segs * (TRBS_PER_SEGMENT - 1); 359 360 do { 361 if (ring->deq_seg == enq_seg && ring->dequeue >= enq) 362 return free + (ring->dequeue - enq); 363 last_on_seg = &enq_seg->trbs[TRBS_PER_SEGMENT - 1]; 364 free += last_on_seg - enq; 365 enq_seg = enq_seg->next; 366 enq = enq_seg->trbs; 367 } while (i++ < ring->num_segs); 368 369 return free; 370 } 371 372 /* 373 * Check to see if there's room to enqueue num_trbs on the ring and make sure 374 * enqueue pointer will not advance into dequeue segment. See rules above. 375 * return number of new segments needed to ensure this. 376 */ 377 378 static unsigned int xhci_ring_expansion_needed(struct xhci_hcd *xhci, struct xhci_ring *ring, 379 unsigned int num_trbs) 380 { 381 struct xhci_segment *seg; 382 int trbs_past_seg; 383 int enq_used; 384 int new_segs; 385 386 enq_used = ring->enqueue - ring->enq_seg->trbs; 387 388 /* how many trbs will be queued past the enqueue segment? */ 389 trbs_past_seg = enq_used + num_trbs - (TRBS_PER_SEGMENT - 1); 390 391 /* 392 * Consider expanding the ring already if num_trbs fills the current 393 * segment (i.e. trbs_past_seg == 0), not only when num_trbs goes into 394 * the next segment. Avoids confusing full ring with special empty ring 395 * case below 396 */ 397 if (trbs_past_seg < 0) 398 return 0; 399 400 /* Empty ring special case, enqueue stuck on link trb while dequeue advanced */ 401 if (trb_is_link(ring->enqueue) && ring->enq_seg->next->trbs == ring->dequeue) 402 return 0; 403 404 new_segs = 1 + (trbs_past_seg / (TRBS_PER_SEGMENT - 1)); 405 seg = ring->enq_seg; 406 407 while (new_segs > 0) { 408 seg = seg->next; 409 if (seg == ring->deq_seg) { 410 xhci_dbg(xhci, "Adding %d trbs requires expanding ring by %d segments\n", 411 num_trbs, new_segs); 412 return new_segs; 413 } 414 new_segs--; 415 } 416 417 return 0; 418 } 419 420 /* Ring the host controller doorbell after placing a command on the ring */ 421 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 422 { 423 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 424 return; 425 426 xhci_dbg(xhci, "// Ding dong!\n"); 427 428 trace_xhci_ring_host_doorbell(0, DB_VALUE_HOST); 429 430 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 431 /* Flush PCI posted writes */ 432 readl(&xhci->dba->doorbell[0]); 433 } 434 435 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci) 436 { 437 return mod_delayed_work(system_wq, &xhci->cmd_timer, 438 msecs_to_jiffies(xhci->current_cmd->timeout_ms)); 439 } 440 441 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) 442 { 443 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, 444 cmd_list); 445 } 446 447 /* 448 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 449 * If there are other commands waiting then restart the ring and kick the timer. 450 * This must be called with command ring stopped and xhci->lock held. 451 */ 452 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 453 struct xhci_command *cur_cmd) 454 { 455 struct xhci_command *i_cmd; 456 457 /* Turn all aborted commands in list to no-ops, then restart */ 458 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { 459 460 if (i_cmd->status != COMP_COMMAND_ABORTED) 461 continue; 462 463 i_cmd->status = COMP_COMMAND_RING_STOPPED; 464 465 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 466 i_cmd->command_trb); 467 468 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); 469 470 /* 471 * caller waiting for completion is called when command 472 * completion event is received for these no-op commands 473 */ 474 } 475 476 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 477 478 /* ring command ring doorbell to restart the command ring */ 479 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 480 !(xhci->xhc_state & XHCI_STATE_DYING)) { 481 xhci->current_cmd = cur_cmd; 482 if (cur_cmd) 483 xhci_mod_cmd_timer(xhci); 484 xhci_ring_cmd_db(xhci); 485 } 486 } 487 488 /* Must be called with xhci->lock held, releases and acquires lock back */ 489 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) 490 { 491 struct xhci_segment *new_seg = xhci->cmd_ring->deq_seg; 492 union xhci_trb *new_deq = xhci->cmd_ring->dequeue; 493 u64 crcr; 494 int ret; 495 496 xhci_dbg(xhci, "Abort command ring\n"); 497 498 reinit_completion(&xhci->cmd_ring_stop_completion); 499 500 /* 501 * The control bits like command stop, abort are located in lower 502 * dword of the command ring control register. 503 * Some controllers require all 64 bits to be written to abort the ring. 504 * Make sure the upper dword is valid, pointing to the next command, 505 * avoiding corrupting the command ring pointer in case the command ring 506 * is stopped by the time the upper dword is written. 507 */ 508 next_trb(&new_seg, &new_deq); 509 if (trb_is_link(new_deq)) 510 next_trb(&new_seg, &new_deq); 511 512 crcr = xhci_trb_virt_to_dma(new_seg, new_deq); 513 xhci_write_64(xhci, crcr | CMD_RING_ABORT, &xhci->op_regs->cmd_ring); 514 515 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the 516 * completion of the Command Abort operation. If CRR is not negated in 5 517 * seconds then driver handles it as if host died (-ENODEV). 518 * In the future we should distinguish between -ENODEV and -ETIMEDOUT 519 * and try to recover a -ETIMEDOUT with a host controller reset. 520 */ 521 ret = xhci_handshake(&xhci->op_regs->cmd_ring, 522 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 523 if (ret < 0) { 524 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret); 525 xhci_halt(xhci); 526 xhci_hc_died(xhci); 527 return ret; 528 } 529 /* 530 * Writing the CMD_RING_ABORT bit should cause a cmd completion event, 531 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared 532 * but the completion event in never sent. Wait 2 secs (arbitrary 533 * number) to handle those cases after negation of CMD_RING_RUNNING. 534 */ 535 spin_unlock_irqrestore(&xhci->lock, flags); 536 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, 537 msecs_to_jiffies(2000)); 538 spin_lock_irqsave(&xhci->lock, flags); 539 if (!ret) { 540 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); 541 xhci_cleanup_command_queue(xhci); 542 } else { 543 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); 544 } 545 return 0; 546 } 547 548 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 549 unsigned int slot_id, 550 unsigned int ep_index, 551 unsigned int stream_id) 552 { 553 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 554 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 555 unsigned int ep_state = ep->ep_state; 556 557 /* Don't ring the doorbell for this endpoint if there are pending 558 * cancellations because we don't want to interrupt processing. 559 * We don't want to restart any stream rings if there's a set dequeue 560 * pointer command pending because the device can choose to start any 561 * stream once the endpoint is on the HW schedule. 562 */ 563 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || 564 (ep_state & EP_HALTED) || (ep_state & EP_CLEARING_TT)) 565 return; 566 567 trace_xhci_ring_ep_doorbell(slot_id, DB_VALUE(ep_index, stream_id)); 568 569 writel(DB_VALUE(ep_index, stream_id), db_addr); 570 /* flush the write */ 571 readl(db_addr); 572 } 573 574 /* Ring the doorbell for any rings with pending URBs */ 575 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 576 unsigned int slot_id, 577 unsigned int ep_index) 578 { 579 unsigned int stream_id; 580 struct xhci_virt_ep *ep; 581 582 ep = &xhci->devs[slot_id]->eps[ep_index]; 583 584 /* A ring has pending URBs if its TD list is not empty */ 585 if (!(ep->ep_state & EP_HAS_STREAMS)) { 586 if (ep->ring && !(list_empty(&ep->ring->td_list))) 587 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 588 return; 589 } 590 591 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 592 stream_id++) { 593 struct xhci_stream_info *stream_info = ep->stream_info; 594 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 595 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 596 stream_id); 597 } 598 } 599 600 void xhci_ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 601 unsigned int slot_id, 602 unsigned int ep_index) 603 { 604 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 605 } 606 607 static struct xhci_virt_ep *xhci_get_virt_ep(struct xhci_hcd *xhci, 608 unsigned int slot_id, 609 unsigned int ep_index) 610 { 611 if (slot_id == 0 || slot_id >= MAX_HC_SLOTS) { 612 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 613 return NULL; 614 } 615 if (ep_index >= EP_CTX_PER_DEV) { 616 xhci_warn(xhci, "Invalid endpoint index %u\n", ep_index); 617 return NULL; 618 } 619 if (!xhci->devs[slot_id]) { 620 xhci_warn(xhci, "No xhci virt device for slot_id %u\n", slot_id); 621 return NULL; 622 } 623 624 return &xhci->devs[slot_id]->eps[ep_index]; 625 } 626 627 static struct xhci_ring *xhci_virt_ep_to_ring(struct xhci_hcd *xhci, 628 struct xhci_virt_ep *ep, 629 unsigned int stream_id) 630 { 631 /* common case, no streams */ 632 if (!(ep->ep_state & EP_HAS_STREAMS)) 633 return ep->ring; 634 635 if (!ep->stream_info) 636 return NULL; 637 638 if (stream_id == 0 || stream_id >= ep->stream_info->num_streams) { 639 xhci_warn(xhci, "Invalid stream_id %u request for slot_id %u ep_index %u\n", 640 stream_id, ep->vdev->slot_id, ep->ep_index); 641 return NULL; 642 } 643 644 return ep->stream_info->stream_rings[stream_id]; 645 } 646 647 /* Get the right ring for the given slot_id, ep_index and stream_id. 648 * If the endpoint supports streams, boundary check the URB's stream ID. 649 * If the endpoint doesn't support streams, return the singular endpoint ring. 650 */ 651 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 652 unsigned int slot_id, unsigned int ep_index, 653 unsigned int stream_id) 654 { 655 struct xhci_virt_ep *ep; 656 657 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 658 if (!ep) 659 return NULL; 660 661 return xhci_virt_ep_to_ring(xhci, ep, stream_id); 662 } 663 664 665 /* 666 * Get the hw dequeue pointer xHC stopped on, either directly from the 667 * endpoint context, or if streams are in use from the stream context. 668 * The returned hw_dequeue contains the lowest four bits with cycle state 669 * and possbile stream context type. 670 */ 671 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev, 672 unsigned int ep_index, unsigned int stream_id) 673 { 674 struct xhci_ep_ctx *ep_ctx; 675 struct xhci_stream_ctx *st_ctx; 676 struct xhci_virt_ep *ep; 677 678 ep = &vdev->eps[ep_index]; 679 680 if (ep->ep_state & EP_HAS_STREAMS) { 681 st_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 682 return le64_to_cpu(st_ctx->stream_ring); 683 } 684 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 685 return le64_to_cpu(ep_ctx->deq); 686 } 687 688 static int xhci_move_dequeue_past_td(struct xhci_hcd *xhci, 689 unsigned int slot_id, unsigned int ep_index, 690 unsigned int stream_id, struct xhci_td *td) 691 { 692 struct xhci_virt_device *dev = xhci->devs[slot_id]; 693 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 694 struct xhci_ring *ep_ring; 695 struct xhci_command *cmd; 696 struct xhci_segment *new_seg; 697 union xhci_trb *new_deq; 698 int new_cycle; 699 dma_addr_t addr; 700 u64 hw_dequeue; 701 bool hw_dequeue_found = false; 702 bool td_last_trb_found = false; 703 u32 trb_sct = 0; 704 int ret; 705 706 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 707 ep_index, stream_id); 708 if (!ep_ring) { 709 xhci_warn(xhci, "WARN can't find new dequeue, invalid stream ID %u\n", 710 stream_id); 711 return -ENODEV; 712 } 713 714 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id) & TR_DEQ_PTR_MASK; 715 new_seg = ep_ring->deq_seg; 716 new_deq = ep_ring->dequeue; 717 new_cycle = le32_to_cpu(td->end_trb->generic.field[3]) & TRB_CYCLE; 718 719 /* 720 * Walk the ring until both the next TRB and hw_dequeue are found (don't 721 * move hw_dequeue back if it went forward due to a HW bug). Cycle state 722 * is loaded from a known good TRB, track later toggles to maintain it. 723 */ 724 do { 725 if (!hw_dequeue_found && xhci_trb_virt_to_dma(new_seg, new_deq) 726 == (dma_addr_t)hw_dequeue) { 727 hw_dequeue_found = true; 728 if (td_last_trb_found) 729 break; 730 } 731 if (new_deq == td->end_trb) 732 td_last_trb_found = true; 733 734 if (td_last_trb_found && trb_is_link(new_deq) && 735 link_trb_toggles_cycle(new_deq)) 736 new_cycle ^= 0x1; 737 738 next_trb(&new_seg, &new_deq); 739 740 /* Search wrapped around, bail out */ 741 if (new_deq == ep->ring->dequeue) { 742 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 743 return -EINVAL; 744 } 745 746 } while (!hw_dequeue_found || !td_last_trb_found); 747 748 /* Don't update the ring cycle state for the producer (us). */ 749 addr = xhci_trb_virt_to_dma(new_seg, new_deq); 750 if (addr == 0) { 751 xhci_warn(xhci, "Can't find dma of new dequeue ptr\n"); 752 xhci_warn(xhci, "deq seg = %p, deq ptr = %p\n", new_seg, new_deq); 753 return -EINVAL; 754 } 755 756 if ((ep->ep_state & SET_DEQ_PENDING)) { 757 xhci_warn(xhci, "Set TR Deq already pending, don't submit for 0x%pad\n", 758 &addr); 759 return -EBUSY; 760 } 761 762 /* This function gets called from contexts where it cannot sleep */ 763 cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC); 764 if (!cmd) { 765 xhci_warn(xhci, "Can't alloc Set TR Deq cmd 0x%pad\n", &addr); 766 return -ENOMEM; 767 } 768 769 if (stream_id) 770 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 771 ret = queue_command(xhci, cmd, 772 lower_32_bits(addr) | trb_sct | new_cycle, 773 upper_32_bits(addr), 774 STREAM_ID_FOR_TRB(stream_id), SLOT_ID_FOR_TRB(slot_id) | 775 EP_INDEX_FOR_TRB(ep_index) | TRB_TYPE(TRB_SET_DEQ), false); 776 if (ret < 0) { 777 xhci_free_command(xhci, cmd); 778 return ret; 779 } 780 ep->queued_deq_seg = new_seg; 781 ep->queued_deq_ptr = new_deq; 782 783 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 784 "Set TR Deq ptr 0x%llx, cycle %u\n", addr, new_cycle); 785 786 /* Stop the TD queueing code from ringing the doorbell until 787 * this command completes. The HC won't set the dequeue pointer 788 * if the ring is running, and ringing the doorbell starts the 789 * ring running. 790 */ 791 ep->ep_state |= SET_DEQ_PENDING; 792 xhci_ring_cmd_db(xhci); 793 return 0; 794 } 795 796 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 797 * (The last TRB actually points to the ring enqueue pointer, which is not part 798 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 799 */ 800 static void td_to_noop(struct xhci_td *td, bool flip_cycle) 801 { 802 struct xhci_segment *seg = td->start_seg; 803 union xhci_trb *trb = td->start_trb; 804 805 while (1) { 806 trb_to_noop(trb, TRB_TR_NOOP); 807 808 /* flip cycle if asked to */ 809 if (flip_cycle && trb != td->start_trb && trb != td->end_trb) 810 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); 811 812 if (trb == td->end_trb) 813 break; 814 815 next_trb(&seg, &trb); 816 } 817 } 818 819 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 820 struct xhci_td *cur_td, int status) 821 { 822 struct urb *urb = cur_td->urb; 823 struct urb_priv *urb_priv = urb->hcpriv; 824 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 825 826 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 827 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 828 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 829 if (xhci->quirks & XHCI_AMD_PLL_FIX) 830 usb_amd_quirk_pll_enable(); 831 } 832 } 833 xhci_urb_free_priv(urb_priv); 834 usb_hcd_unlink_urb_from_ep(hcd, urb); 835 trace_xhci_urb_giveback(urb); 836 usb_hcd_giveback_urb(hcd, urb, status); 837 } 838 839 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, 840 struct xhci_ring *ring, struct xhci_td *td) 841 { 842 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 843 struct xhci_segment *seg = td->bounce_seg; 844 struct urb *urb = td->urb; 845 size_t len; 846 847 if (!ring || !seg || !urb) 848 return; 849 850 if (usb_urb_dir_out(urb)) { 851 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 852 DMA_TO_DEVICE); 853 return; 854 } 855 856 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 857 DMA_FROM_DEVICE); 858 /* for in transfers we need to copy the data from bounce to sg */ 859 if (urb->num_sgs) { 860 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, seg->bounce_buf, 861 seg->bounce_len, seg->bounce_offs); 862 if (len != seg->bounce_len) 863 xhci_warn(xhci, "WARN Wrong bounce buffer read length: %zu != %d\n", 864 len, seg->bounce_len); 865 } else { 866 memcpy(urb->transfer_buffer + seg->bounce_offs, seg->bounce_buf, 867 seg->bounce_len); 868 } 869 seg->bounce_len = 0; 870 seg->bounce_offs = 0; 871 } 872 873 static void xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, 874 struct xhci_ring *ep_ring, int status) 875 { 876 struct urb *urb = NULL; 877 878 /* Clean up the endpoint's TD list */ 879 urb = td->urb; 880 881 /* if a bounce buffer was used to align this td then unmap it */ 882 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); 883 884 /* Do one last check of the actual transfer length. 885 * If the host controller said we transferred more data than the buffer 886 * length, urb->actual_length will be a very big number (since it's 887 * unsigned). Play it safe and say we didn't transfer anything. 888 */ 889 if (urb->actual_length > urb->transfer_buffer_length) { 890 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", 891 urb->transfer_buffer_length, urb->actual_length); 892 urb->actual_length = 0; 893 status = 0; 894 } 895 /* TD might be removed from td_list if we are giving back a cancelled URB */ 896 if (!list_empty(&td->td_list)) 897 list_del_init(&td->td_list); 898 /* Giving back a cancelled URB, or if a slated TD completed anyway */ 899 if (!list_empty(&td->cancelled_td_list)) 900 list_del_init(&td->cancelled_td_list); 901 902 inc_td_cnt(urb); 903 /* Giveback the urb when all the tds are completed */ 904 if (last_td_in_urb(td)) { 905 if ((urb->actual_length != urb->transfer_buffer_length && 906 (urb->transfer_flags & URB_SHORT_NOT_OK)) || 907 (status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) 908 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", 909 urb, urb->actual_length, 910 urb->transfer_buffer_length, status); 911 912 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ 913 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 914 status = 0; 915 xhci_giveback_urb_in_irq(xhci, td, status); 916 } 917 } 918 919 /* Give back previous TD and move on to the next TD. */ 920 static void xhci_dequeue_td(struct xhci_hcd *xhci, struct xhci_td *td, struct xhci_ring *ring, 921 u32 status) 922 { 923 ring->dequeue = td->end_trb; 924 ring->deq_seg = td->end_seg; 925 inc_deq(xhci, ring); 926 927 xhci_td_cleanup(xhci, td, ring, status); 928 } 929 930 /* Complete the cancelled URBs we unlinked from td_list. */ 931 static void xhci_giveback_invalidated_tds(struct xhci_virt_ep *ep) 932 { 933 struct xhci_ring *ring; 934 struct xhci_td *td, *tmp_td; 935 936 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 937 cancelled_td_list) { 938 939 ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 940 941 if (td->cancel_status == TD_CLEARED) { 942 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 943 __func__, td->urb); 944 xhci_td_cleanup(ep->xhci, td, ring, td->status); 945 } else { 946 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 947 __func__, td->urb, td->cancel_status); 948 } 949 if (ep->xhci->xhc_state & XHCI_STATE_DYING) 950 return; 951 } 952 } 953 954 static int xhci_reset_halted_ep(struct xhci_hcd *xhci, unsigned int slot_id, 955 unsigned int ep_index, enum xhci_ep_reset_type reset_type) 956 { 957 struct xhci_command *command; 958 int ret = 0; 959 960 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 961 if (!command) { 962 ret = -ENOMEM; 963 goto done; 964 } 965 966 xhci_dbg(xhci, "%s-reset ep %u, slot %u\n", 967 (reset_type == EP_HARD_RESET) ? "Hard" : "Soft", 968 ep_index, slot_id); 969 970 ret = xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type); 971 done: 972 if (ret) 973 xhci_err(xhci, "ERROR queuing reset endpoint for slot %d ep_index %d, %d\n", 974 slot_id, ep_index, ret); 975 return ret; 976 } 977 978 static int xhci_handle_halted_endpoint(struct xhci_hcd *xhci, 979 struct xhci_virt_ep *ep, 980 struct xhci_td *td, 981 enum xhci_ep_reset_type reset_type) 982 { 983 unsigned int slot_id = ep->vdev->slot_id; 984 int err; 985 986 /* 987 * Avoid resetting endpoint if link is inactive. Can cause host hang. 988 * Device will be reset soon to recover the link so don't do anything 989 */ 990 if (ep->vdev->flags & VDEV_PORT_ERROR) 991 return -ENODEV; 992 993 /* add td to cancelled list and let reset ep handler take care of it */ 994 if (reset_type == EP_HARD_RESET) { 995 ep->ep_state |= EP_HARD_CLEAR_TOGGLE; 996 if (td && list_empty(&td->cancelled_td_list)) { 997 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 998 td->cancel_status = TD_HALTED; 999 } 1000 } 1001 1002 if (ep->ep_state & EP_HALTED) { 1003 xhci_dbg(xhci, "Reset ep command for ep_index %d already pending\n", 1004 ep->ep_index); 1005 return 0; 1006 } 1007 1008 err = xhci_reset_halted_ep(xhci, slot_id, ep->ep_index, reset_type); 1009 if (err) 1010 return err; 1011 1012 ep->ep_state |= EP_HALTED; 1013 1014 xhci_ring_cmd_db(xhci); 1015 1016 return 0; 1017 } 1018 1019 /* 1020 * Fix up the ep ring first, so HW stops executing cancelled TDs. 1021 * We have the xHCI lock, so nothing can modify this list until we drop it. 1022 * We're also in the event handler, so we can't get re-interrupted if another 1023 * Stop Endpoint command completes. 1024 * 1025 * only call this when ring is not in a running state 1026 */ 1027 1028 static int xhci_invalidate_cancelled_tds(struct xhci_virt_ep *ep) 1029 { 1030 struct xhci_hcd *xhci; 1031 struct xhci_td *td = NULL; 1032 struct xhci_td *tmp_td = NULL; 1033 struct xhci_td *cached_td = NULL; 1034 struct xhci_ring *ring; 1035 u64 hw_deq; 1036 unsigned int slot_id = ep->vdev->slot_id; 1037 int err; 1038 1039 /* 1040 * This is not going to work if the hardware is changing its dequeue 1041 * pointers as we look at them. Completion handler will call us later. 1042 */ 1043 if (ep->ep_state & SET_DEQ_PENDING) 1044 return 0; 1045 1046 xhci = ep->xhci; 1047 1048 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 1049 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1050 "Removing canceled TD starting at 0x%llx (dma) in stream %u URB %p", 1051 (unsigned long long)xhci_trb_virt_to_dma( 1052 td->start_seg, td->start_trb), 1053 td->urb->stream_id, td->urb); 1054 list_del_init(&td->td_list); 1055 ring = xhci_urb_to_transfer_ring(xhci, td->urb); 1056 if (!ring) { 1057 xhci_warn(xhci, "WARN Cancelled URB %p has invalid stream ID %u.\n", 1058 td->urb, td->urb->stream_id); 1059 continue; 1060 } 1061 /* 1062 * If a ring stopped on the TD we need to cancel then we have to 1063 * move the xHC endpoint ring dequeue pointer past this TD. 1064 * Rings halted due to STALL may show hw_deq is past the stalled 1065 * TD, but still require a set TR Deq command to flush xHC cache. 1066 */ 1067 hw_deq = xhci_get_hw_deq(xhci, ep->vdev, ep->ep_index, 1068 td->urb->stream_id); 1069 hw_deq &= TR_DEQ_PTR_MASK; 1070 1071 if (td->cancel_status == TD_HALTED || trb_in_td(td, hw_deq)) { 1072 switch (td->cancel_status) { 1073 case TD_CLEARED: /* TD is already no-op */ 1074 case TD_CLEARING_CACHE: /* set TR deq command already queued */ 1075 break; 1076 case TD_DIRTY: /* TD is cached, clear it */ 1077 case TD_HALTED: 1078 case TD_CLEARING_CACHE_DEFERRED: 1079 if (cached_td) { 1080 if (cached_td->urb->stream_id != td->urb->stream_id) { 1081 /* Multiple streams case, defer move dq */ 1082 xhci_dbg(xhci, 1083 "Move dq deferred: stream %u URB %p\n", 1084 td->urb->stream_id, td->urb); 1085 td->cancel_status = TD_CLEARING_CACHE_DEFERRED; 1086 break; 1087 } 1088 1089 /* Should never happen, but clear the TD if it does */ 1090 xhci_warn(xhci, 1091 "Found multiple active URBs %p and %p in stream %u?\n", 1092 td->urb, cached_td->urb, 1093 td->urb->stream_id); 1094 td_to_noop(cached_td, false); 1095 cached_td->cancel_status = TD_CLEARED; 1096 } 1097 td_to_noop(td, false); 1098 td->cancel_status = TD_CLEARING_CACHE; 1099 cached_td = td; 1100 break; 1101 } 1102 } else { 1103 td_to_noop(td, false); 1104 td->cancel_status = TD_CLEARED; 1105 } 1106 } 1107 1108 /* If there's no need to move the dequeue pointer then we're done */ 1109 if (!cached_td) 1110 return 0; 1111 1112 err = xhci_move_dequeue_past_td(xhci, slot_id, ep->ep_index, 1113 cached_td->urb->stream_id, 1114 cached_td); 1115 if (err) { 1116 /* Failed to move past cached td, just set cached TDs to no-op */ 1117 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 1118 /* 1119 * Deferred TDs need to have the deq pointer set after the above command 1120 * completes, so if that failed we just give up on all of them (and 1121 * complain loudly since this could cause issues due to caching). 1122 */ 1123 if (td->cancel_status != TD_CLEARING_CACHE && 1124 td->cancel_status != TD_CLEARING_CACHE_DEFERRED) 1125 continue; 1126 xhci_warn(xhci, "Failed to clear cancelled cached URB %p, mark clear anyway\n", 1127 td->urb); 1128 td_to_noop(td, false); 1129 td->cancel_status = TD_CLEARED; 1130 } 1131 } 1132 return 0; 1133 } 1134 1135 /* 1136 * Erase queued TDs from transfer ring(s) and give back those the xHC didn't 1137 * stop on. If necessary, queue commands to move the xHC off cancelled TDs it 1138 * stopped on. Those will be given back later when the commands complete. 1139 * 1140 * Call under xhci->lock on a stopped endpoint. 1141 */ 1142 void xhci_process_cancelled_tds(struct xhci_virt_ep *ep) 1143 { 1144 xhci_invalidate_cancelled_tds(ep); 1145 xhci_giveback_invalidated_tds(ep); 1146 } 1147 1148 /* 1149 * Returns the TD the endpoint ring halted on. 1150 * Only call for non-running rings without streams. 1151 */ 1152 static struct xhci_td *find_halted_td(struct xhci_virt_ep *ep) 1153 { 1154 struct xhci_td *td; 1155 u64 hw_deq; 1156 1157 if (!list_empty(&ep->ring->td_list)) { /* Not streams compatible */ 1158 hw_deq = xhci_get_hw_deq(ep->xhci, ep->vdev, ep->ep_index, 0); 1159 hw_deq &= TR_DEQ_PTR_MASK; 1160 td = list_first_entry(&ep->ring->td_list, struct xhci_td, td_list); 1161 if (trb_in_td(td, hw_deq)) 1162 return td; 1163 } 1164 return NULL; 1165 } 1166 1167 /* 1168 * When we get a command completion for a Stop Endpoint Command, we need to 1169 * unlink any cancelled TDs from the ring. There are two ways to do that: 1170 * 1171 * 1. If the HW was in the middle of processing the TD that needs to be 1172 * cancelled, then we must move the ring's dequeue pointer past the last TRB 1173 * in the TD with a Set Dequeue Pointer Command. 1174 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 1175 * bit cleared) so that the HW will skip over them. 1176 */ 1177 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 1178 union xhci_trb *trb, u32 comp_code) 1179 { 1180 unsigned int ep_index; 1181 struct xhci_virt_ep *ep; 1182 struct xhci_ep_ctx *ep_ctx; 1183 struct xhci_td *td = NULL; 1184 enum xhci_ep_reset_type reset_type; 1185 struct xhci_command *command; 1186 int err; 1187 1188 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 1189 if (!xhci->devs[slot_id]) 1190 xhci_warn(xhci, "Stop endpoint command completion for disabled slot %u\n", 1191 slot_id); 1192 return; 1193 } 1194 1195 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1196 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1197 if (!ep) 1198 return; 1199 1200 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1201 1202 trace_xhci_handle_cmd_stop_ep(ep_ctx); 1203 1204 if (comp_code == COMP_CONTEXT_STATE_ERROR) { 1205 /* 1206 * If stop endpoint command raced with a halting endpoint we need to 1207 * reset the host side endpoint first. 1208 * If the TD we halted on isn't cancelled the TD should be given back 1209 * with a proper error code, and the ring dequeue moved past the TD. 1210 * If streams case we can't find hw_deq, or the TD we halted on so do a 1211 * soft reset. 1212 * 1213 * Proper error code is unknown here, it would be -EPIPE if device side 1214 * of enadpoit halted (aka STALL), and -EPROTO if not (transaction error) 1215 * We use -EPROTO, if device is stalled it should return a stall error on 1216 * next transfer, which then will return -EPIPE, and device side stall is 1217 * noted and cleared by class driver. 1218 */ 1219 switch (GET_EP_CTX_STATE(ep_ctx)) { 1220 case EP_STATE_HALTED: 1221 xhci_dbg(xhci, "Stop ep completion raced with stall\n"); 1222 /* 1223 * If the halt happened before Stop Endpoint failed, its transfer event 1224 * should have already been handled and Reset Endpoint should be pending. 1225 */ 1226 if (ep->ep_state & EP_HALTED) 1227 goto reset_done; 1228 1229 if (ep->ep_state & EP_HAS_STREAMS) { 1230 reset_type = EP_SOFT_RESET; 1231 } else { 1232 reset_type = EP_HARD_RESET; 1233 td = find_halted_td(ep); 1234 if (td) 1235 td->status = -EPROTO; 1236 } 1237 /* reset ep, reset handler cleans up cancelled tds */ 1238 err = xhci_handle_halted_endpoint(xhci, ep, td, reset_type); 1239 xhci_dbg(xhci, "Stop ep completion resetting ep, status %d\n", err); 1240 if (err) 1241 break; 1242 reset_done: 1243 /* Reset EP handler will clean up cancelled TDs */ 1244 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1245 return; 1246 case EP_STATE_STOPPED: 1247 /* 1248 * Per xHCI 4.6.9, Stop Endpoint command on a Stopped 1249 * EP is a Context State Error, and EP stays Stopped. 1250 * 1251 * But maybe it failed on Halted, and somebody ran Reset 1252 * Endpoint later. EP state is now Stopped and EP_HALTED 1253 * still set because Reset EP handler will run after us. 1254 */ 1255 if (ep->ep_state & EP_HALTED) 1256 break; 1257 /* 1258 * On some HCs EP state remains Stopped for some tens of 1259 * us to a few ms or more after a doorbell ring, and any 1260 * new Stop Endpoint fails without aborting the restart. 1261 * This handler may run quickly enough to still see this 1262 * Stopped state, but it will soon change to Running. 1263 * 1264 * Assume this bug on unexpected Stop Endpoint failures. 1265 * Keep retrying until the EP starts and stops again or 1266 * up to a timeout (a defective HC may never start, or a 1267 * driver bug may cause stopping an already stopped EP). 1268 */ 1269 if (time_is_before_jiffies(ep->stop_time + msecs_to_jiffies(100))) 1270 break; 1271 fallthrough; 1272 case EP_STATE_RUNNING: 1273 /* Race, HW handled stop ep cmd before ep was running */ 1274 xhci_dbg(xhci, "Stop ep completion ctx error, ctx_state %d\n", 1275 GET_EP_CTX_STATE(ep_ctx)); 1276 1277 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1278 if (!command) { 1279 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1280 return; 1281 } 1282 xhci_queue_stop_endpoint(xhci, command, slot_id, ep_index, 0); 1283 xhci_ring_cmd_db(xhci); 1284 1285 return; 1286 default: 1287 break; 1288 } 1289 } 1290 1291 /* will queue a set TR deq if stopped on a cancelled, uncleared TD */ 1292 xhci_invalidate_cancelled_tds(ep); 1293 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1294 1295 /* Otherwise ring the doorbell(s) to restart queued transfers */ 1296 xhci_giveback_invalidated_tds(ep); 1297 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1298 } 1299 1300 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 1301 { 1302 struct xhci_td *cur_td; 1303 struct xhci_td *tmp; 1304 1305 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { 1306 list_del_init(&cur_td->td_list); 1307 1308 if (!list_empty(&cur_td->cancelled_td_list)) 1309 list_del_init(&cur_td->cancelled_td_list); 1310 1311 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); 1312 1313 inc_td_cnt(cur_td->urb); 1314 if (last_td_in_urb(cur_td)) 1315 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1316 } 1317 } 1318 1319 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 1320 int slot_id, int ep_index) 1321 { 1322 struct xhci_td *cur_td; 1323 struct xhci_td *tmp; 1324 struct xhci_virt_ep *ep; 1325 struct xhci_ring *ring; 1326 1327 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1328 if (!ep) 1329 return; 1330 1331 if ((ep->ep_state & EP_HAS_STREAMS) || 1332 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 1333 int stream_id; 1334 1335 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 1336 stream_id++) { 1337 ring = ep->stream_info->stream_rings[stream_id]; 1338 if (!ring) 1339 continue; 1340 1341 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1342 "Killing URBs for slot ID %u, ep index %u, stream %u", 1343 slot_id, ep_index, stream_id); 1344 xhci_kill_ring_urbs(xhci, ring); 1345 } 1346 } else { 1347 ring = ep->ring; 1348 if (!ring) 1349 return; 1350 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1351 "Killing URBs for slot ID %u, ep index %u", 1352 slot_id, ep_index); 1353 xhci_kill_ring_urbs(xhci, ring); 1354 } 1355 1356 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, 1357 cancelled_td_list) { 1358 list_del_init(&cur_td->cancelled_td_list); 1359 inc_td_cnt(cur_td->urb); 1360 1361 if (last_td_in_urb(cur_td)) 1362 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1363 } 1364 } 1365 1366 /* 1367 * host controller died, register read returns 0xffffffff 1368 * Complete pending commands, mark them ABORTED. 1369 * URBs need to be given back as usb core might be waiting with device locks 1370 * held for the URBs to finish during device disconnect, blocking host remove. 1371 * 1372 * Call with xhci->lock held. 1373 * lock is relased and re-acquired while giving back urb. 1374 */ 1375 void xhci_hc_died(struct xhci_hcd *xhci) 1376 { 1377 bool notify; 1378 int i, j; 1379 1380 if (xhci->xhc_state & XHCI_STATE_DYING) 1381 return; 1382 1383 notify = !(xhci->xhc_state & XHCI_STATE_REMOVING); 1384 if (notify) 1385 xhci_err(xhci, "xHCI host controller not responding, assume dead\n"); 1386 xhci->xhc_state |= XHCI_STATE_DYING; 1387 1388 xhci_cleanup_command_queue(xhci); 1389 1390 /* return any pending urbs, remove may be waiting for them */ 1391 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 1392 if (!xhci->devs[i]) 1393 continue; 1394 for (j = 0; j < 31; j++) 1395 xhci_kill_endpoint_urbs(xhci, i, j); 1396 } 1397 1398 /* inform usb core hc died if PCI remove isn't already handling it */ 1399 if (notify) 1400 usb_hc_died(xhci_to_hcd(xhci)); 1401 } 1402 1403 /* 1404 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1405 * we need to clear the set deq pending flag in the endpoint ring state, so that 1406 * the TD queueing code can ring the doorbell again. We also need to ring the 1407 * endpoint doorbell to restart the ring, but only if there aren't more 1408 * cancellations pending. 1409 */ 1410 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1411 union xhci_trb *trb, u32 cmd_comp_code) 1412 { 1413 unsigned int ep_index; 1414 unsigned int stream_id; 1415 struct xhci_ring *ep_ring; 1416 struct xhci_virt_ep *ep; 1417 struct xhci_ep_ctx *ep_ctx; 1418 struct xhci_slot_ctx *slot_ctx; 1419 struct xhci_stream_ctx *stream_ctx; 1420 struct xhci_td *td, *tmp_td; 1421 1422 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1423 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1424 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1425 if (!ep) 1426 return; 1427 1428 ep_ring = xhci_virt_ep_to_ring(xhci, ep, stream_id); 1429 if (!ep_ring) { 1430 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 1431 stream_id); 1432 /* XXX: Harmless??? */ 1433 goto cleanup; 1434 } 1435 1436 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1437 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 1438 trace_xhci_handle_cmd_set_deq(slot_ctx); 1439 trace_xhci_handle_cmd_set_deq_ep(ep_ctx); 1440 1441 if (ep->ep_state & EP_HAS_STREAMS) { 1442 stream_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 1443 trace_xhci_handle_cmd_set_deq_stream(ep->stream_info, stream_id); 1444 } 1445 1446 if (cmd_comp_code != COMP_SUCCESS) { 1447 unsigned int ep_state; 1448 unsigned int slot_state; 1449 1450 switch (cmd_comp_code) { 1451 case COMP_TRB_ERROR: 1452 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 1453 break; 1454 case COMP_CONTEXT_STATE_ERROR: 1455 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1456 ep_state = GET_EP_CTX_STATE(ep_ctx); 1457 slot_state = le32_to_cpu(slot_ctx->dev_state); 1458 slot_state = GET_SLOT_STATE(slot_state); 1459 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1460 "Slot state = %u, EP state = %u", 1461 slot_state, ep_state); 1462 break; 1463 case COMP_SLOT_NOT_ENABLED_ERROR: 1464 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1465 slot_id); 1466 break; 1467 default: 1468 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1469 cmd_comp_code); 1470 break; 1471 } 1472 /* OK what do we do now? The endpoint state is hosed, and we 1473 * should never get to this point if the synchronization between 1474 * queueing, and endpoint state are correct. This might happen 1475 * if the device gets disconnected after we've finished 1476 * cancelling URBs, which might not be an error... 1477 */ 1478 } else { 1479 u64 deq; 1480 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1481 if (ep->ep_state & EP_HAS_STREAMS) { 1482 deq = le64_to_cpu(stream_ctx->stream_ring) & TR_DEQ_PTR_MASK; 1483 1484 /* 1485 * Cadence xHCI controllers store some endpoint state 1486 * information within Rsvd0 fields of Stream Endpoint 1487 * context. This field is not cleared during Set TR 1488 * Dequeue Pointer command which causes XDMA to skip 1489 * over transfer ring and leads to data loss on stream 1490 * pipe. 1491 * To fix this issue driver must clear Rsvd0 field. 1492 */ 1493 if (xhci->quirks & XHCI_CDNS_SCTX_QUIRK) { 1494 stream_ctx->reserved[0] = 0; 1495 stream_ctx->reserved[1] = 0; 1496 } 1497 } else { 1498 deq = le64_to_cpu(ep_ctx->deq) & TR_DEQ_PTR_MASK; 1499 } 1500 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1501 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1502 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1503 ep->queued_deq_ptr) == deq) { 1504 /* Update the ring's dequeue segment and dequeue pointer 1505 * to reflect the new position. 1506 */ 1507 ep_ring->deq_seg = ep->queued_deq_seg; 1508 ep_ring->dequeue = ep->queued_deq_ptr; 1509 } else { 1510 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1511 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1512 ep->queued_deq_seg, ep->queued_deq_ptr); 1513 } 1514 } 1515 /* HW cached TDs cleared from cache, give them back */ 1516 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 1517 cancelled_td_list) { 1518 ep_ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 1519 if (td->cancel_status == TD_CLEARING_CACHE) { 1520 td->cancel_status = TD_CLEARED; 1521 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 1522 __func__, td->urb); 1523 xhci_td_cleanup(ep->xhci, td, ep_ring, td->status); 1524 } else { 1525 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 1526 __func__, td->urb, td->cancel_status); 1527 } 1528 } 1529 cleanup: 1530 ep->ep_state &= ~SET_DEQ_PENDING; 1531 ep->queued_deq_seg = NULL; 1532 ep->queued_deq_ptr = NULL; 1533 1534 /* Check for deferred or newly cancelled TDs */ 1535 if (!list_empty(&ep->cancelled_td_list)) { 1536 xhci_dbg(ep->xhci, "%s: Pending TDs to clear, continuing with invalidation\n", 1537 __func__); 1538 xhci_invalidate_cancelled_tds(ep); 1539 /* Try to restart the endpoint if all is done */ 1540 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1541 /* Start giving back any TDs invalidated above */ 1542 xhci_giveback_invalidated_tds(ep); 1543 } else { 1544 /* Restart any rings with pending URBs */ 1545 xhci_dbg(ep->xhci, "%s: All TDs cleared, ring doorbell\n", __func__); 1546 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1547 } 1548 } 1549 1550 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1551 union xhci_trb *trb, u32 cmd_comp_code) 1552 { 1553 struct xhci_virt_ep *ep; 1554 struct xhci_ep_ctx *ep_ctx; 1555 unsigned int ep_index; 1556 1557 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1558 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1559 if (!ep) 1560 return; 1561 1562 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1563 trace_xhci_handle_cmd_reset_ep(ep_ctx); 1564 1565 /* This command will only fail if the endpoint wasn't halted, 1566 * but we don't care. 1567 */ 1568 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1569 "Ignoring reset ep completion code of %u", cmd_comp_code); 1570 1571 /* Cleanup cancelled TDs as ep is stopped. May queue a Set TR Deq cmd */ 1572 xhci_invalidate_cancelled_tds(ep); 1573 1574 /* Clear our internal halted state */ 1575 ep->ep_state &= ~EP_HALTED; 1576 1577 xhci_giveback_invalidated_tds(ep); 1578 1579 /* if this was a soft reset, then restart */ 1580 if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP) 1581 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1582 } 1583 1584 static void xhci_handle_cmd_enable_slot(int slot_id, struct xhci_command *command, 1585 u32 cmd_comp_code) 1586 { 1587 if (cmd_comp_code == COMP_SUCCESS) 1588 command->slot_id = slot_id; 1589 else 1590 command->slot_id = 0; 1591 } 1592 1593 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id, 1594 u32 cmd_comp_code) 1595 { 1596 struct xhci_virt_device *virt_dev; 1597 struct xhci_slot_ctx *slot_ctx; 1598 1599 virt_dev = xhci->devs[slot_id]; 1600 if (!virt_dev) 1601 return; 1602 1603 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 1604 trace_xhci_handle_cmd_disable_slot(slot_ctx); 1605 1606 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1607 /* Delete default control endpoint resources */ 1608 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1609 if (cmd_comp_code == COMP_SUCCESS) { 1610 xhci->dcbaa->dev_context_ptrs[slot_id] = 0; 1611 xhci->devs[slot_id] = NULL; 1612 } 1613 } 1614 1615 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id) 1616 { 1617 struct xhci_virt_device *virt_dev; 1618 struct xhci_input_control_ctx *ctrl_ctx; 1619 struct xhci_ep_ctx *ep_ctx; 1620 unsigned int ep_index; 1621 u32 add_flags; 1622 1623 /* 1624 * Configure endpoint commands can come from the USB core configuration 1625 * or alt setting changes, or when streams were being configured. 1626 */ 1627 1628 virt_dev = xhci->devs[slot_id]; 1629 if (!virt_dev) 1630 return; 1631 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1632 if (!ctrl_ctx) { 1633 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1634 return; 1635 } 1636 1637 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1638 1639 /* Input ctx add_flags are the endpoint index plus one */ 1640 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1641 1642 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index); 1643 trace_xhci_handle_cmd_config_ep(ep_ctx); 1644 1645 return; 1646 } 1647 1648 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id) 1649 { 1650 struct xhci_virt_device *vdev; 1651 struct xhci_slot_ctx *slot_ctx; 1652 1653 vdev = xhci->devs[slot_id]; 1654 if (!vdev) 1655 return; 1656 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1657 trace_xhci_handle_cmd_addr_dev(slot_ctx); 1658 } 1659 1660 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id) 1661 { 1662 struct xhci_virt_device *vdev; 1663 struct xhci_slot_ctx *slot_ctx; 1664 1665 vdev = xhci->devs[slot_id]; 1666 if (!vdev) { 1667 xhci_warn(xhci, "Reset device command completion for disabled slot %u\n", 1668 slot_id); 1669 return; 1670 } 1671 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1672 trace_xhci_handle_cmd_reset_dev(slot_ctx); 1673 1674 xhci_dbg(xhci, "Completed reset device command.\n"); 1675 } 1676 1677 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1678 struct xhci_event_cmd *event) 1679 { 1680 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1681 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); 1682 return; 1683 } 1684 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1685 "NEC firmware version %2x.%02x", 1686 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1687 NEC_FW_MINOR(le32_to_cpu(event->status))); 1688 } 1689 1690 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 comp_code, u32 comp_param) 1691 { 1692 list_del(&cmd->cmd_list); 1693 1694 if (cmd->completion) { 1695 cmd->status = comp_code; 1696 cmd->comp_param = comp_param; 1697 complete(cmd->completion); 1698 } else { 1699 kfree(cmd); 1700 } 1701 } 1702 1703 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1704 { 1705 struct xhci_command *cur_cmd, *tmp_cmd; 1706 xhci->current_cmd = NULL; 1707 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1708 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED, 0); 1709 } 1710 1711 void xhci_handle_command_timeout(struct work_struct *work) 1712 { 1713 struct xhci_hcd *xhci; 1714 unsigned long flags; 1715 char str[XHCI_MSG_MAX]; 1716 u64 hw_ring_state; 1717 u32 cmd_field3; 1718 u32 usbsts; 1719 1720 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); 1721 1722 spin_lock_irqsave(&xhci->lock, flags); 1723 1724 /* 1725 * If timeout work is pending, or current_cmd is NULL, it means we 1726 * raced with command completion. Command is handled so just return. 1727 */ 1728 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { 1729 spin_unlock_irqrestore(&xhci->lock, flags); 1730 return; 1731 } 1732 1733 cmd_field3 = le32_to_cpu(xhci->current_cmd->command_trb->generic.field[3]); 1734 usbsts = readl(&xhci->op_regs->status); 1735 xhci_dbg(xhci, "Command timeout, USBSTS:%s\n", xhci_decode_usbsts(str, usbsts)); 1736 1737 /* Bail out and tear down xhci if a stop endpoint command failed */ 1738 if (TRB_FIELD_TO_TYPE(cmd_field3) == TRB_STOP_RING) { 1739 struct xhci_virt_ep *ep; 1740 1741 xhci_warn(xhci, "xHCI host not responding to stop endpoint command\n"); 1742 1743 ep = xhci_get_virt_ep(xhci, TRB_TO_SLOT_ID(cmd_field3), 1744 TRB_TO_EP_INDEX(cmd_field3)); 1745 if (ep) 1746 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1747 1748 xhci_halt(xhci); 1749 xhci_hc_died(xhci); 1750 goto time_out_completed; 1751 } 1752 1753 /* mark this command to be cancelled */ 1754 xhci->current_cmd->status = COMP_COMMAND_ABORTED; 1755 1756 /* Make sure command ring is running before aborting it */ 1757 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1758 if (hw_ring_state == ~(u64)0) { 1759 xhci_hc_died(xhci); 1760 goto time_out_completed; 1761 } 1762 1763 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1764 (hw_ring_state & CMD_RING_RUNNING)) { 1765 /* Prevent new doorbell, and start command abort */ 1766 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 1767 xhci_dbg(xhci, "Command timeout\n"); 1768 xhci_abort_cmd_ring(xhci, flags); 1769 goto time_out_completed; 1770 } 1771 1772 /* host removed. Bail out */ 1773 if (xhci->xhc_state & XHCI_STATE_REMOVING) { 1774 xhci_dbg(xhci, "host removed, ring start fail?\n"); 1775 xhci_cleanup_command_queue(xhci); 1776 1777 goto time_out_completed; 1778 } 1779 1780 /* command timeout on stopped ring, ring can't be aborted */ 1781 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1782 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1783 1784 time_out_completed: 1785 spin_unlock_irqrestore(&xhci->lock, flags); 1786 return; 1787 } 1788 1789 static void handle_cmd_completion(struct xhci_hcd *xhci, 1790 struct xhci_event_cmd *event) 1791 { 1792 unsigned int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1793 u32 status = le32_to_cpu(event->status); 1794 u64 cmd_dma; 1795 dma_addr_t cmd_dequeue_dma; 1796 u32 cmd_comp_code; 1797 union xhci_trb *cmd_trb; 1798 struct xhci_command *cmd; 1799 u32 cmd_type; 1800 1801 if (slot_id >= MAX_HC_SLOTS) { 1802 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 1803 return; 1804 } 1805 1806 cmd_dma = le64_to_cpu(event->cmd_trb); 1807 cmd_trb = xhci->cmd_ring->dequeue; 1808 1809 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic, cmd_dma); 1810 1811 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1812 1813 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1814 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) { 1815 complete_all(&xhci->cmd_ring_stop_completion); 1816 return; 1817 } 1818 1819 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1820 cmd_trb); 1821 /* 1822 * Check whether the completion event is for our internal kept 1823 * command. 1824 */ 1825 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { 1826 xhci_warn(xhci, 1827 "ERROR mismatched command completion event\n"); 1828 return; 1829 } 1830 1831 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); 1832 1833 cancel_delayed_work(&xhci->cmd_timer); 1834 1835 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1836 xhci_err(xhci, 1837 "Command completion event does not match command\n"); 1838 return; 1839 } 1840 1841 /* 1842 * Host aborted the command ring, check if the current command was 1843 * supposed to be aborted, otherwise continue normally. 1844 * The command ring is stopped now, but the xHC will issue a Command 1845 * Ring Stopped event which will cause us to restart it. 1846 */ 1847 if (cmd_comp_code == COMP_COMMAND_ABORTED) { 1848 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1849 if (cmd->status == COMP_COMMAND_ABORTED) { 1850 if (xhci->current_cmd == cmd) 1851 xhci->current_cmd = NULL; 1852 goto event_handled; 1853 } 1854 } 1855 1856 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1857 switch (cmd_type) { 1858 case TRB_ENABLE_SLOT: 1859 xhci_handle_cmd_enable_slot(slot_id, cmd, cmd_comp_code); 1860 break; 1861 case TRB_DISABLE_SLOT: 1862 xhci_handle_cmd_disable_slot(xhci, slot_id, cmd_comp_code); 1863 break; 1864 case TRB_CONFIG_EP: 1865 if (!cmd->completion) 1866 xhci_handle_cmd_config_ep(xhci, slot_id); 1867 break; 1868 case TRB_EVAL_CONTEXT: 1869 break; 1870 case TRB_ADDR_DEV: 1871 xhci_handle_cmd_addr_dev(xhci, slot_id); 1872 break; 1873 case TRB_STOP_RING: 1874 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1875 le32_to_cpu(cmd_trb->generic.field[3]))); 1876 if (!cmd->completion) 1877 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, 1878 cmd_comp_code); 1879 break; 1880 case TRB_SET_DEQ: 1881 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1882 le32_to_cpu(cmd_trb->generic.field[3]))); 1883 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1884 break; 1885 case TRB_CMD_NOOP: 1886 /* Is this an aborted command turned to NO-OP? */ 1887 if (cmd->status == COMP_COMMAND_RING_STOPPED) 1888 cmd_comp_code = COMP_COMMAND_RING_STOPPED; 1889 break; 1890 case TRB_RESET_EP: 1891 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1892 le32_to_cpu(cmd_trb->generic.field[3]))); 1893 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1894 break; 1895 case TRB_RESET_DEV: 1896 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1897 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1898 */ 1899 slot_id = TRB_TO_SLOT_ID( 1900 le32_to_cpu(cmd_trb->generic.field[3])); 1901 xhci_handle_cmd_reset_dev(xhci, slot_id); 1902 break; 1903 case TRB_NEC_GET_FW: 1904 xhci_handle_cmd_nec_get_fw(xhci, event); 1905 break; 1906 case TRB_GET_BW: 1907 break; 1908 default: 1909 /* Skip over unknown commands on the event ring */ 1910 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); 1911 break; 1912 } 1913 1914 /* restart timer if this wasn't the last command */ 1915 if (!list_is_singular(&xhci->cmd_list)) { 1916 xhci->current_cmd = list_first_entry(&cmd->cmd_list, 1917 struct xhci_command, cmd_list); 1918 xhci_mod_cmd_timer(xhci); 1919 } else if (xhci->current_cmd == cmd) { 1920 xhci->current_cmd = NULL; 1921 } 1922 1923 event_handled: 1924 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code, COMP_PARAM(status)); 1925 1926 inc_deq(xhci, xhci->cmd_ring); 1927 } 1928 1929 static void handle_vendor_event(struct xhci_hcd *xhci, 1930 union xhci_trb *event, u32 trb_type) 1931 { 1932 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1933 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1934 handle_cmd_completion(xhci, &event->event_cmd); 1935 } 1936 1937 static void handle_device_notification(struct xhci_hcd *xhci, 1938 union xhci_trb *event) 1939 { 1940 u32 slot_id; 1941 struct usb_device *udev; 1942 1943 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1944 if (!xhci->devs[slot_id]) { 1945 xhci_warn(xhci, "Device Notification event for " 1946 "unused slot %u\n", slot_id); 1947 return; 1948 } 1949 1950 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1951 slot_id); 1952 udev = xhci->devs[slot_id]->udev; 1953 if (udev && udev->parent) 1954 usb_wakeup_notification(udev->parent, udev->portnum); 1955 } 1956 1957 /* 1958 * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI 1959 * Controller. 1960 * As per ThunderX2errata-129 USB 2 device may come up as USB 1 1961 * If a connection to a USB 1 device is followed by another connection 1962 * to a USB 2 device. 1963 * 1964 * Reset the PHY after the USB device is disconnected if device speed 1965 * is less than HCD_USB3. 1966 * Retry the reset sequence max of 4 times checking the PLL lock status. 1967 * 1968 */ 1969 static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci) 1970 { 1971 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1972 u32 pll_lock_check; 1973 u32 retry_count = 4; 1974 1975 do { 1976 /* Assert PHY reset */ 1977 writel(0x6F, hcd->regs + 0x1048); 1978 udelay(10); 1979 /* De-assert the PHY reset */ 1980 writel(0x7F, hcd->regs + 0x1048); 1981 udelay(200); 1982 pll_lock_check = readl(hcd->regs + 0x1070); 1983 } while (!(pll_lock_check & 0x1) && --retry_count); 1984 } 1985 1986 static void handle_port_status(struct xhci_hcd *xhci, union xhci_trb *event) 1987 { 1988 struct xhci_virt_device *vdev = NULL; 1989 struct usb_hcd *hcd; 1990 u32 port_id; 1991 u32 portsc, cmd_reg; 1992 int max_ports; 1993 unsigned int hcd_portnum; 1994 struct xhci_bus_state *bus_state; 1995 bool bogus_port_status = false; 1996 struct xhci_port *port; 1997 1998 /* Port status change events always have a successful completion code */ 1999 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) 2000 xhci_warn(xhci, 2001 "WARN: xHC returned failed port status event\n"); 2002 2003 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 2004 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 2005 2006 if ((port_id <= 0) || (port_id > max_ports)) { 2007 xhci_warn(xhci, "Port change event with invalid port ID %d\n", 2008 port_id); 2009 return; 2010 } 2011 2012 port = &xhci->hw_ports[port_id - 1]; 2013 if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) { 2014 xhci_warn(xhci, "Port change event, no port for port ID %u\n", 2015 port_id); 2016 bogus_port_status = true; 2017 goto cleanup; 2018 } 2019 2020 if (port->slot_id) 2021 vdev = xhci->devs[port->slot_id]; 2022 2023 /* We might get interrupts after shared_hcd is removed */ 2024 if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) { 2025 xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n"); 2026 bogus_port_status = true; 2027 goto cleanup; 2028 } 2029 2030 hcd = port->rhub->hcd; 2031 bus_state = &port->rhub->bus_state; 2032 hcd_portnum = port->hcd_portnum; 2033 portsc = readl(port->addr); 2034 2035 xhci_dbg(xhci, "Port change event, %d-%d, id %d, portsc: 0x%x\n", 2036 hcd->self.busnum, hcd_portnum + 1, port_id, portsc); 2037 2038 trace_xhci_handle_port_status(port, portsc); 2039 2040 if (hcd->state == HC_STATE_SUSPENDED) { 2041 xhci_dbg(xhci, "resume root hub\n"); 2042 usb_hcd_resume_root_hub(hcd); 2043 } 2044 2045 if (vdev && (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) { 2046 if (!(portsc & PORT_RESET)) 2047 vdev->flags |= VDEV_PORT_ERROR; 2048 } else if (vdev && portsc & PORT_RC) { 2049 vdev->flags &= ~VDEV_PORT_ERROR; 2050 } 2051 2052 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) { 2053 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 2054 2055 cmd_reg = readl(&xhci->op_regs->command); 2056 if (!(cmd_reg & CMD_RUN)) { 2057 xhci_warn(xhci, "xHC is not running.\n"); 2058 goto cleanup; 2059 } 2060 2061 if (DEV_SUPERSPEED_ANY(portsc)) { 2062 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 2063 /* Set a flag to say the port signaled remote wakeup, 2064 * so we can tell the difference between the end of 2065 * device and host initiated resume. 2066 */ 2067 bus_state->port_remote_wakeup |= 1 << hcd_portnum; 2068 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2069 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 2070 xhci_set_link_state(xhci, port, XDEV_U0); 2071 /* Need to wait until the next link state change 2072 * indicates the device is actually in U0. 2073 */ 2074 bogus_port_status = true; 2075 goto cleanup; 2076 } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) { 2077 xhci_dbg(xhci, "resume HS port %d\n", port_id); 2078 port->resume_timestamp = jiffies + 2079 msecs_to_jiffies(USB_RESUME_TIMEOUT); 2080 set_bit(hcd_portnum, &bus_state->resuming_ports); 2081 /* Do the rest in GetPortStatus after resume time delay. 2082 * Avoid polling roothub status before that so that a 2083 * usb device auto-resume latency around ~40ms. 2084 */ 2085 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2086 mod_timer(&hcd->rh_timer, 2087 port->resume_timestamp); 2088 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 2089 bogus_port_status = true; 2090 } 2091 } 2092 2093 if ((portsc & PORT_PLC) && 2094 DEV_SUPERSPEED_ANY(portsc) && 2095 ((portsc & PORT_PLS_MASK) == XDEV_U0 || 2096 (portsc & PORT_PLS_MASK) == XDEV_U1 || 2097 (portsc & PORT_PLS_MASK) == XDEV_U2)) { 2098 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 2099 complete(&port->u3exit_done); 2100 /* We've just brought the device into U0/1/2 through either the 2101 * Resume state after a device remote wakeup, or through the 2102 * U3Exit state after a host-initiated resume. If it's a device 2103 * initiated remote wake, don't pass up the link state change, 2104 * so the roothub behavior is consistent with external 2105 * USB 3.0 hub behavior. 2106 */ 2107 if (vdev) 2108 xhci_ring_device(xhci, port->slot_id); 2109 if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) { 2110 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2111 usb_wakeup_notification(hcd->self.root_hub, 2112 hcd_portnum + 1); 2113 bogus_port_status = true; 2114 goto cleanup; 2115 } 2116 } 2117 2118 /* 2119 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 2120 * RExit to a disconnect state). If so, let the driver know it's 2121 * out of the RExit state. 2122 */ 2123 if (hcd->speed < HCD_USB3 && port->rexit_active) { 2124 complete(&port->rexit_done); 2125 port->rexit_active = false; 2126 bogus_port_status = true; 2127 goto cleanup; 2128 } 2129 2130 if (hcd->speed < HCD_USB3) { 2131 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2132 if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) && 2133 (portsc & PORT_CSC) && !(portsc & PORT_CONNECT)) 2134 xhci_cavium_reset_phy_quirk(xhci); 2135 } 2136 2137 cleanup: 2138 2139 /* Don't make the USB core poll the roothub if we got a bad port status 2140 * change event. Besides, at that point we can't tell which roothub 2141 * (USB 2.0 or USB 3.0) to kick. 2142 */ 2143 if (bogus_port_status) 2144 return; 2145 2146 /* 2147 * xHCI port-status-change events occur when the "or" of all the 2148 * status-change bits in the portsc register changes from 0 to 1. 2149 * New status changes won't cause an event if any other change 2150 * bits are still set. When an event occurs, switch over to 2151 * polling to avoid losing status changes. 2152 */ 2153 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 2154 __func__, hcd->self.busnum); 2155 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2156 spin_unlock(&xhci->lock); 2157 /* Pass this up to the core */ 2158 usb_hcd_poll_rh_status(hcd); 2159 spin_lock(&xhci->lock); 2160 } 2161 2162 static void xhci_clear_hub_tt_buffer(struct xhci_hcd *xhci, struct xhci_td *td, 2163 struct xhci_virt_ep *ep) 2164 { 2165 /* 2166 * As part of low/full-speed endpoint-halt processing 2167 * we must clear the TT buffer (USB 2.0 specification 11.17.5). 2168 */ 2169 if (td->urb->dev->tt && !usb_pipeint(td->urb->pipe) && 2170 (td->urb->dev->tt->hub != xhci_to_hcd(xhci)->self.root_hub) && 2171 !(ep->ep_state & EP_CLEARING_TT)) { 2172 ep->ep_state |= EP_CLEARING_TT; 2173 td->urb->ep->hcpriv = td->urb->dev; 2174 if (usb_hub_clear_tt_buffer(td->urb)) 2175 ep->ep_state &= ~EP_CLEARING_TT; 2176 } 2177 } 2178 2179 /* 2180 * Check if xhci internal endpoint state has gone to a "halt" state due to an 2181 * error or stall, including default control pipe protocol stall. 2182 * The internal halt needs to be cleared with a reset endpoint command. 2183 * 2184 * External device side is also halted in functional stall cases. Class driver 2185 * will clear the device halt with a CLEAR_FEATURE(ENDPOINT_HALT) request later. 2186 */ 2187 static bool xhci_halted_host_endpoint(struct xhci_ep_ctx *ep_ctx, unsigned int comp_code) 2188 { 2189 /* Stall halts both internal and device side endpoint */ 2190 if (comp_code == COMP_STALL_ERROR) 2191 return true; 2192 2193 /* TRB completion codes that may require internal halt cleanup */ 2194 if (comp_code == COMP_USB_TRANSACTION_ERROR || 2195 comp_code == COMP_BABBLE_DETECTED_ERROR || 2196 comp_code == COMP_SPLIT_TRANSACTION_ERROR) 2197 /* 2198 * The 0.95 spec says a babbling control endpoint is not halted. 2199 * The 0.96 spec says it is. Some HW claims to be 0.95 2200 * compliant, but it halts the control endpoint anyway. 2201 * Check endpoint context if endpoint is halted. 2202 */ 2203 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) 2204 return true; 2205 2206 return false; 2207 } 2208 2209 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 2210 { 2211 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 2212 /* Vendor defined "informational" completion code, 2213 * treat as not-an-error. 2214 */ 2215 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 2216 trb_comp_code); 2217 xhci_dbg(xhci, "Treating code as success.\n"); 2218 return 1; 2219 } 2220 return 0; 2221 } 2222 2223 static void finish_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2224 struct xhci_ring *ep_ring, struct xhci_td *td, 2225 u32 trb_comp_code) 2226 { 2227 struct xhci_ep_ctx *ep_ctx; 2228 2229 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2230 2231 switch (trb_comp_code) { 2232 case COMP_STOPPED_LENGTH_INVALID: 2233 case COMP_STOPPED_SHORT_PACKET: 2234 case COMP_STOPPED: 2235 /* 2236 * The "Stop Endpoint" completion will take care of any 2237 * stopped TDs. A stopped TD may be restarted, so don't update 2238 * the ring dequeue pointer or take this TD off any lists yet. 2239 */ 2240 return; 2241 case COMP_USB_TRANSACTION_ERROR: 2242 case COMP_BABBLE_DETECTED_ERROR: 2243 case COMP_SPLIT_TRANSACTION_ERROR: 2244 /* 2245 * If endpoint context state is not halted we might be 2246 * racing with a reset endpoint command issued by a unsuccessful 2247 * stop endpoint completion (context error). In that case the 2248 * td should be on the cancelled list, and EP_HALTED flag set. 2249 * 2250 * Or then it's not halted due to the 0.95 spec stating that a 2251 * babbling control endpoint should not halt. The 0.96 spec 2252 * again says it should. Some HW claims to be 0.95 compliant, 2253 * but it halts the control endpoint anyway. 2254 */ 2255 if (GET_EP_CTX_STATE(ep_ctx) != EP_STATE_HALTED) { 2256 /* 2257 * If EP_HALTED is set and TD is on the cancelled list 2258 * the TD and dequeue pointer will be handled by reset 2259 * ep command completion 2260 */ 2261 if ((ep->ep_state & EP_HALTED) && 2262 !list_empty(&td->cancelled_td_list)) { 2263 xhci_dbg(xhci, "Already resolving halted ep for 0x%llx\n", 2264 (unsigned long long)xhci_trb_virt_to_dma( 2265 td->start_seg, td->start_trb)); 2266 return; 2267 } 2268 /* endpoint not halted, don't reset it */ 2269 break; 2270 } 2271 /* Almost same procedure as for STALL_ERROR below */ 2272 xhci_clear_hub_tt_buffer(xhci, td, ep); 2273 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2274 return; 2275 case COMP_STALL_ERROR: 2276 /* 2277 * xhci internal endpoint state will go to a "halt" state for 2278 * any stall, including default control pipe protocol stall. 2279 * To clear the host side halt we need to issue a reset endpoint 2280 * command, followed by a set dequeue command to move past the 2281 * TD. 2282 * Class drivers clear the device side halt from a functional 2283 * stall later. Hub TT buffer should only be cleared for FS/LS 2284 * devices behind HS hubs for functional stalls. 2285 */ 2286 if (ep->ep_index != 0) 2287 xhci_clear_hub_tt_buffer(xhci, td, ep); 2288 2289 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2290 2291 return; /* xhci_handle_halted_endpoint marked td cancelled */ 2292 default: 2293 break; 2294 } 2295 2296 xhci_dequeue_td(xhci, td, ep_ring, td->status); 2297 } 2298 2299 /* sum trb lengths from the first trb up to stop_trb, _excluding_ stop_trb */ 2300 static u32 sum_trb_lengths(struct xhci_td *td, union xhci_trb *stop_trb) 2301 { 2302 u32 sum; 2303 union xhci_trb *trb = td->start_trb; 2304 struct xhci_segment *seg = td->start_seg; 2305 2306 for (sum = 0; trb != stop_trb; next_trb(&seg, &trb)) { 2307 if (!trb_is_noop(trb) && !trb_is_link(trb)) 2308 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); 2309 } 2310 return sum; 2311 } 2312 2313 /* 2314 * Process control tds, update urb status and actual_length. 2315 */ 2316 static void process_ctrl_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2317 struct xhci_ring *ep_ring, struct xhci_td *td, 2318 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2319 { 2320 struct xhci_ep_ctx *ep_ctx; 2321 u32 trb_comp_code; 2322 u32 remaining, requested; 2323 u32 trb_type; 2324 2325 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); 2326 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2327 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2328 requested = td->urb->transfer_buffer_length; 2329 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2330 2331 switch (trb_comp_code) { 2332 case COMP_SUCCESS: 2333 if (trb_type != TRB_STATUS) { 2334 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n", 2335 (trb_type == TRB_DATA) ? "data" : "setup"); 2336 td->status = -ESHUTDOWN; 2337 break; 2338 } 2339 td->status = 0; 2340 break; 2341 case COMP_SHORT_PACKET: 2342 td->status = 0; 2343 break; 2344 case COMP_STOPPED_SHORT_PACKET: 2345 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2346 td->urb->actual_length = remaining; 2347 else 2348 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); 2349 goto finish_td; 2350 case COMP_STOPPED: 2351 switch (trb_type) { 2352 case TRB_SETUP: 2353 td->urb->actual_length = 0; 2354 goto finish_td; 2355 case TRB_DATA: 2356 case TRB_NORMAL: 2357 td->urb->actual_length = requested - remaining; 2358 goto finish_td; 2359 case TRB_STATUS: 2360 td->urb->actual_length = requested; 2361 goto finish_td; 2362 default: 2363 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", 2364 trb_type); 2365 goto finish_td; 2366 } 2367 case COMP_STOPPED_LENGTH_INVALID: 2368 goto finish_td; 2369 default: 2370 if (!xhci_halted_host_endpoint(ep_ctx, trb_comp_code)) 2371 break; 2372 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", 2373 trb_comp_code, ep->ep_index); 2374 fallthrough; 2375 case COMP_STALL_ERROR: 2376 /* Did we transfer part of the data (middle) phase? */ 2377 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2378 td->urb->actual_length = requested - remaining; 2379 else if (!td->urb_length_set) 2380 td->urb->actual_length = 0; 2381 goto finish_td; 2382 } 2383 2384 /* stopped at setup stage, no data transferred */ 2385 if (trb_type == TRB_SETUP) 2386 goto finish_td; 2387 2388 /* 2389 * if on data stage then update the actual_length of the URB and flag it 2390 * as set, so it won't be overwritten in the event for the last TRB. 2391 */ 2392 if (trb_type == TRB_DATA || 2393 trb_type == TRB_NORMAL) { 2394 td->urb_length_set = true; 2395 td->urb->actual_length = requested - remaining; 2396 xhci_dbg(xhci, "Waiting for status stage event\n"); 2397 return; 2398 } 2399 2400 /* at status stage */ 2401 if (!td->urb_length_set) 2402 td->urb->actual_length = requested; 2403 2404 finish_td: 2405 finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2406 } 2407 2408 /* 2409 * Process isochronous tds, update urb packet status and actual_length. 2410 */ 2411 static void process_isoc_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2412 struct xhci_ring *ep_ring, struct xhci_td *td, 2413 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2414 { 2415 struct urb_priv *urb_priv; 2416 int idx; 2417 struct usb_iso_packet_descriptor *frame; 2418 u32 trb_comp_code; 2419 bool sum_trbs_for_length = false; 2420 u32 remaining, requested, ep_trb_len; 2421 int short_framestatus; 2422 2423 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2424 urb_priv = td->urb->hcpriv; 2425 idx = urb_priv->num_tds_done; 2426 frame = &td->urb->iso_frame_desc[idx]; 2427 requested = frame->length; 2428 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2429 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2430 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2431 -EREMOTEIO : 0; 2432 2433 /* handle completion code */ 2434 switch (trb_comp_code) { 2435 case COMP_SUCCESS: 2436 /* Don't overwrite status if TD had an error, see xHCI 4.9.1 */ 2437 if (td->error_mid_td) 2438 break; 2439 if (remaining) { 2440 frame->status = short_framestatus; 2441 sum_trbs_for_length = true; 2442 break; 2443 } 2444 frame->status = 0; 2445 break; 2446 case COMP_SHORT_PACKET: 2447 frame->status = short_framestatus; 2448 sum_trbs_for_length = true; 2449 break; 2450 case COMP_BANDWIDTH_OVERRUN_ERROR: 2451 frame->status = -ECOMM; 2452 break; 2453 case COMP_BABBLE_DETECTED_ERROR: 2454 sum_trbs_for_length = true; 2455 fallthrough; 2456 case COMP_ISOCH_BUFFER_OVERRUN: 2457 frame->status = -EOVERFLOW; 2458 if (ep_trb != td->end_trb) 2459 td->error_mid_td = true; 2460 break; 2461 case COMP_MISSED_SERVICE_ERROR: 2462 frame->status = -EXDEV; 2463 sum_trbs_for_length = true; 2464 if (ep_trb != td->end_trb) 2465 td->error_mid_td = true; 2466 break; 2467 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2468 case COMP_STALL_ERROR: 2469 frame->status = -EPROTO; 2470 break; 2471 case COMP_USB_TRANSACTION_ERROR: 2472 frame->status = -EPROTO; 2473 sum_trbs_for_length = true; 2474 if (ep_trb != td->end_trb) 2475 td->error_mid_td = true; 2476 break; 2477 case COMP_STOPPED: 2478 sum_trbs_for_length = true; 2479 break; 2480 case COMP_STOPPED_SHORT_PACKET: 2481 /* field normally containing residue now contains transferred */ 2482 frame->status = short_framestatus; 2483 requested = remaining; 2484 break; 2485 case COMP_STOPPED_LENGTH_INVALID: 2486 /* exclude stopped trb with invalid length from length sum */ 2487 sum_trbs_for_length = true; 2488 ep_trb_len = 0; 2489 remaining = 0; 2490 break; 2491 default: 2492 sum_trbs_for_length = true; 2493 frame->status = -1; 2494 break; 2495 } 2496 2497 if (td->urb_length_set) 2498 goto finish_td; 2499 2500 if (sum_trbs_for_length) 2501 frame->actual_length = sum_trb_lengths(td, ep_trb) + 2502 ep_trb_len - remaining; 2503 else 2504 frame->actual_length = requested; 2505 2506 td->urb->actual_length += frame->actual_length; 2507 2508 finish_td: 2509 /* Don't give back TD yet if we encountered an error mid TD */ 2510 if (td->error_mid_td && ep_trb != td->end_trb) { 2511 xhci_dbg(xhci, "Error mid isoc TD, wait for final completion event\n"); 2512 td->urb_length_set = true; 2513 return; 2514 } 2515 finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2516 } 2517 2518 static void skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2519 struct xhci_virt_ep *ep, int status) 2520 { 2521 struct urb_priv *urb_priv; 2522 struct usb_iso_packet_descriptor *frame; 2523 int idx; 2524 2525 urb_priv = td->urb->hcpriv; 2526 idx = urb_priv->num_tds_done; 2527 frame = &td->urb->iso_frame_desc[idx]; 2528 2529 /* The transfer is partly done. */ 2530 frame->status = -EXDEV; 2531 2532 /* calc actual length */ 2533 frame->actual_length = 0; 2534 2535 xhci_dequeue_td(xhci, td, ep->ring, status); 2536 } 2537 2538 /* 2539 * Process bulk and interrupt tds, update urb status and actual_length. 2540 */ 2541 static void process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2542 struct xhci_ring *ep_ring, struct xhci_td *td, 2543 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2544 { 2545 struct xhci_slot_ctx *slot_ctx; 2546 u32 trb_comp_code; 2547 u32 remaining, requested, ep_trb_len; 2548 2549 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 2550 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2551 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2552 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2553 requested = td->urb->transfer_buffer_length; 2554 2555 switch (trb_comp_code) { 2556 case COMP_SUCCESS: 2557 ep->err_count = 0; 2558 /* handle success with untransferred data as short packet */ 2559 if (ep_trb != td->end_trb || remaining) { 2560 xhci_warn(xhci, "WARN Successful completion on short TX\n"); 2561 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2562 td->urb->ep->desc.bEndpointAddress, 2563 requested, remaining); 2564 } 2565 td->status = 0; 2566 break; 2567 case COMP_SHORT_PACKET: 2568 td->status = 0; 2569 break; 2570 case COMP_STOPPED_SHORT_PACKET: 2571 td->urb->actual_length = remaining; 2572 goto finish_td; 2573 case COMP_STOPPED_LENGTH_INVALID: 2574 /* stopped on ep trb with invalid length, exclude it */ 2575 td->urb->actual_length = sum_trb_lengths(td, ep_trb); 2576 goto finish_td; 2577 case COMP_USB_TRANSACTION_ERROR: 2578 if (xhci->quirks & XHCI_NO_SOFT_RETRY || 2579 (ep->err_count++ > MAX_SOFT_RETRY) || 2580 le32_to_cpu(slot_ctx->tt_info) & TT_SLOT) 2581 break; 2582 2583 td->status = 0; 2584 2585 xhci_handle_halted_endpoint(xhci, ep, td, EP_SOFT_RESET); 2586 return; 2587 default: 2588 /* do nothing */ 2589 break; 2590 } 2591 2592 if (ep_trb == td->end_trb) 2593 td->urb->actual_length = requested - remaining; 2594 else 2595 td->urb->actual_length = 2596 sum_trb_lengths(td, ep_trb) + 2597 ep_trb_len - remaining; 2598 finish_td: 2599 if (remaining > requested) { 2600 xhci_warn(xhci, "bad transfer trb length %d in event trb\n", 2601 remaining); 2602 td->urb->actual_length = 0; 2603 } 2604 2605 finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2606 } 2607 2608 /* Transfer events which don't point to a transfer TRB, see xhci 4.17.4 */ 2609 static int handle_transferless_tx_event(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2610 u32 trb_comp_code) 2611 { 2612 switch (trb_comp_code) { 2613 case COMP_STALL_ERROR: 2614 case COMP_USB_TRANSACTION_ERROR: 2615 case COMP_INVALID_STREAM_TYPE_ERROR: 2616 case COMP_INVALID_STREAM_ID_ERROR: 2617 xhci_dbg(xhci, "Stream transaction error ep %u no id\n", ep->ep_index); 2618 if (ep->err_count++ > MAX_SOFT_RETRY) 2619 xhci_handle_halted_endpoint(xhci, ep, NULL, EP_HARD_RESET); 2620 else 2621 xhci_handle_halted_endpoint(xhci, ep, NULL, EP_SOFT_RESET); 2622 break; 2623 case COMP_RING_UNDERRUN: 2624 case COMP_RING_OVERRUN: 2625 case COMP_STOPPED_LENGTH_INVALID: 2626 break; 2627 default: 2628 xhci_err(xhci, "Transfer event %u for unknown stream ring slot %u ep %u\n", 2629 trb_comp_code, ep->vdev->slot_id, ep->ep_index); 2630 return -ENODEV; 2631 } 2632 return 0; 2633 } 2634 2635 static bool xhci_spurious_success_tx_event(struct xhci_hcd *xhci, 2636 struct xhci_ring *ring) 2637 { 2638 switch (ring->old_trb_comp_code) { 2639 case COMP_SHORT_PACKET: 2640 return xhci->quirks & XHCI_SPURIOUS_SUCCESS; 2641 case COMP_USB_TRANSACTION_ERROR: 2642 case COMP_BABBLE_DETECTED_ERROR: 2643 case COMP_ISOCH_BUFFER_OVERRUN: 2644 return xhci->quirks & XHCI_ETRON_HOST && 2645 ring->type == TYPE_ISOC; 2646 default: 2647 return false; 2648 } 2649 } 2650 2651 /* 2652 * If this function returns an error condition, it means it got a Transfer 2653 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2654 * At this point, the host controller is probably hosed and should be reset. 2655 */ 2656 static int handle_tx_event(struct xhci_hcd *xhci, 2657 struct xhci_interrupter *ir, 2658 struct xhci_transfer_event *event) 2659 { 2660 struct xhci_virt_ep *ep; 2661 struct xhci_ring *ep_ring; 2662 unsigned int slot_id; 2663 int ep_index; 2664 struct xhci_td *td = NULL; 2665 dma_addr_t ep_trb_dma; 2666 struct xhci_segment *ep_seg; 2667 union xhci_trb *ep_trb; 2668 int status = -EINPROGRESS; 2669 struct xhci_ep_ctx *ep_ctx; 2670 u32 trb_comp_code; 2671 bool ring_xrun_event = false; 2672 2673 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2674 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2675 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2676 ep_trb_dma = le64_to_cpu(event->buffer); 2677 2678 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 2679 if (!ep) { 2680 xhci_err(xhci, "ERROR Invalid Transfer event\n"); 2681 goto err_out; 2682 } 2683 2684 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma); 2685 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 2686 2687 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { 2688 xhci_err(xhci, 2689 "ERROR Transfer event for disabled endpoint slot %u ep %u\n", 2690 slot_id, ep_index); 2691 goto err_out; 2692 } 2693 2694 if (!ep_ring) 2695 return handle_transferless_tx_event(xhci, ep, trb_comp_code); 2696 2697 /* Look for common error cases */ 2698 switch (trb_comp_code) { 2699 /* Skip codes that require special handling depending on 2700 * transfer type 2701 */ 2702 case COMP_SUCCESS: 2703 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2704 trb_comp_code = COMP_SHORT_PACKET; 2705 xhci_dbg(xhci, "Successful completion on short TX for slot %u ep %u with last td comp code %d\n", 2706 slot_id, ep_index, ep_ring->old_trb_comp_code); 2707 } 2708 break; 2709 case COMP_SHORT_PACKET: 2710 break; 2711 /* Completion codes for endpoint stopped state */ 2712 case COMP_STOPPED: 2713 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n", 2714 slot_id, ep_index); 2715 break; 2716 case COMP_STOPPED_LENGTH_INVALID: 2717 xhci_dbg(xhci, 2718 "Stopped on No-op or Link TRB for slot %u ep %u\n", 2719 slot_id, ep_index); 2720 break; 2721 case COMP_STOPPED_SHORT_PACKET: 2722 xhci_dbg(xhci, 2723 "Stopped with short packet transfer detected for slot %u ep %u\n", 2724 slot_id, ep_index); 2725 break; 2726 /* Completion codes for endpoint halted state */ 2727 case COMP_STALL_ERROR: 2728 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id, 2729 ep_index); 2730 status = -EPIPE; 2731 break; 2732 case COMP_SPLIT_TRANSACTION_ERROR: 2733 xhci_dbg(xhci, "Split transaction error for slot %u ep %u\n", 2734 slot_id, ep_index); 2735 status = -EPROTO; 2736 break; 2737 case COMP_USB_TRANSACTION_ERROR: 2738 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n", 2739 slot_id, ep_index); 2740 status = -EPROTO; 2741 break; 2742 case COMP_BABBLE_DETECTED_ERROR: 2743 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n", 2744 slot_id, ep_index); 2745 status = -EOVERFLOW; 2746 break; 2747 /* Completion codes for endpoint error state */ 2748 case COMP_TRB_ERROR: 2749 xhci_warn(xhci, 2750 "WARN: TRB error for slot %u ep %u on endpoint\n", 2751 slot_id, ep_index); 2752 status = -EILSEQ; 2753 break; 2754 /* completion codes not indicating endpoint state change */ 2755 case COMP_DATA_BUFFER_ERROR: 2756 xhci_warn(xhci, 2757 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n", 2758 slot_id, ep_index); 2759 status = -ENOSR; 2760 break; 2761 case COMP_BANDWIDTH_OVERRUN_ERROR: 2762 xhci_warn(xhci, 2763 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n", 2764 slot_id, ep_index); 2765 break; 2766 case COMP_ISOCH_BUFFER_OVERRUN: 2767 xhci_warn(xhci, 2768 "WARN: buffer overrun event for slot %u ep %u on endpoint", 2769 slot_id, ep_index); 2770 break; 2771 case COMP_RING_UNDERRUN: 2772 /* 2773 * When the Isoch ring is empty, the xHC will generate 2774 * a Ring Overrun Event for IN Isoch endpoint or Ring 2775 * Underrun Event for OUT Isoch endpoint. 2776 */ 2777 xhci_dbg(xhci, "Underrun event on slot %u ep %u\n", slot_id, ep_index); 2778 ring_xrun_event = true; 2779 break; 2780 case COMP_RING_OVERRUN: 2781 xhci_dbg(xhci, "Overrun event on slot %u ep %u\n", slot_id, ep_index); 2782 ring_xrun_event = true; 2783 break; 2784 case COMP_MISSED_SERVICE_ERROR: 2785 /* 2786 * When encounter missed service error, one or more isoc tds 2787 * may be missed by xHC. 2788 * Set skip flag of the ep_ring; Complete the missed tds as 2789 * short transfer when process the ep_ring next time. 2790 */ 2791 ep->skip = true; 2792 xhci_dbg(xhci, 2793 "Miss service interval error for slot %u ep %u, set skip flag%s\n", 2794 slot_id, ep_index, ep_trb_dma ? ", skip now" : ""); 2795 break; 2796 case COMP_NO_PING_RESPONSE_ERROR: 2797 ep->skip = true; 2798 xhci_dbg(xhci, 2799 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n", 2800 slot_id, ep_index); 2801 return 0; 2802 2803 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2804 /* needs disable slot command to recover */ 2805 xhci_warn(xhci, 2806 "WARN: detect an incompatible device for slot %u ep %u", 2807 slot_id, ep_index); 2808 status = -EPROTO; 2809 break; 2810 default: 2811 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2812 status = 0; 2813 break; 2814 } 2815 xhci_warn(xhci, 2816 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n", 2817 trb_comp_code, slot_id, ep_index); 2818 if (ep->skip) 2819 break; 2820 return 0; 2821 } 2822 2823 /* 2824 * xhci 4.10.2 states isoc endpoints should continue 2825 * processing the next TD if there was an error mid TD. 2826 * So host like NEC don't generate an event for the last 2827 * isoc TRB even if the IOC flag is set. 2828 * xhci 4.9.1 states that if there are errors in mult-TRB 2829 * TDs xHC should generate an error for that TRB, and if xHC 2830 * proceeds to the next TD it should genete an event for 2831 * any TRB with IOC flag on the way. Other host follow this. 2832 * 2833 * We wait for the final IOC event, but if we get an event 2834 * anywhere outside this TD, just give it back already. 2835 */ 2836 td = list_first_entry_or_null(&ep_ring->td_list, struct xhci_td, td_list); 2837 2838 if (td && td->error_mid_td && !trb_in_td(td, ep_trb_dma)) { 2839 xhci_dbg(xhci, "Missing TD completion event after mid TD error\n"); 2840 xhci_dequeue_td(xhci, td, ep_ring, td->status); 2841 } 2842 2843 /* If the TRB pointer is NULL, missed TDs will be skipped on the next event */ 2844 if (trb_comp_code == COMP_MISSED_SERVICE_ERROR && !ep_trb_dma) 2845 return 0; 2846 2847 if (list_empty(&ep_ring->td_list)) { 2848 /* 2849 * Don't print wanings if ring is empty due to a stopped endpoint generating an 2850 * extra completion event if the device was suspended. Or, a event for the last TRB 2851 * of a short TD we already got a short event for. The short TD is already removed 2852 * from the TD list. 2853 */ 2854 if (trb_comp_code != COMP_STOPPED && 2855 trb_comp_code != COMP_STOPPED_LENGTH_INVALID && 2856 !ring_xrun_event && 2857 !xhci_spurious_success_tx_event(xhci, ep_ring)) { 2858 xhci_warn(xhci, "Event TRB for slot %u ep %u with no TDs queued\n", 2859 slot_id, ep_index); 2860 } 2861 2862 ep->skip = false; 2863 goto check_endpoint_halted; 2864 } 2865 2866 do { 2867 td = list_first_entry(&ep_ring->td_list, struct xhci_td, 2868 td_list); 2869 2870 /* Is this a TRB in the currently executing TD? */ 2871 ep_seg = trb_in_td(td, ep_trb_dma); 2872 2873 if (!ep_seg) { 2874 2875 if (ep->skip && usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2876 /* this event is unlikely to match any TD, don't skip them all */ 2877 if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID) 2878 return 0; 2879 2880 skip_isoc_td(xhci, td, ep, status); 2881 2882 if (!list_empty(&ep_ring->td_list)) { 2883 if (ring_xrun_event) { 2884 /* 2885 * If we are here, we are on xHCI 1.0 host with no 2886 * idea how many TDs were missed or where the xrun 2887 * occurred. New TDs may have been added after the 2888 * xrun, so skip only one TD to be safe. 2889 */ 2890 xhci_dbg(xhci, "Skipped one TD for slot %u ep %u", 2891 slot_id, ep_index); 2892 return 0; 2893 } 2894 continue; 2895 } 2896 2897 xhci_dbg(xhci, "All TDs skipped for slot %u ep %u. Clear skip flag.\n", 2898 slot_id, ep_index); 2899 ep->skip = false; 2900 td = NULL; 2901 goto check_endpoint_halted; 2902 } 2903 2904 /* TD was queued after xrun, maybe xrun was on a link, don't panic yet */ 2905 if (ring_xrun_event) 2906 return 0; 2907 2908 /* 2909 * Skip the Force Stopped Event. The 'ep_trb' of FSE is not in the current 2910 * TD pointed by 'ep_ring->dequeue' because that the hardware dequeue 2911 * pointer still at the previous TRB of the current TD. The previous TRB 2912 * maybe a Link TD or the last TRB of the previous TD. The command 2913 * completion handle will take care the rest. 2914 */ 2915 if (trb_comp_code == COMP_STOPPED || 2916 trb_comp_code == COMP_STOPPED_LENGTH_INVALID) { 2917 return 0; 2918 } 2919 2920 /* 2921 * Some hosts give a spurious success event after a short 2922 * transfer or error on last TRB. Ignore it. 2923 */ 2924 if (xhci_spurious_success_tx_event(xhci, ep_ring)) { 2925 xhci_dbg(xhci, "Spurious event dma %pad, comp_code %u after %u\n", 2926 &ep_trb_dma, trb_comp_code, ep_ring->old_trb_comp_code); 2927 ep_ring->old_trb_comp_code = 0; 2928 return 0; 2929 } 2930 2931 /* HC is busted, give up! */ 2932 goto debug_finding_td; 2933 } 2934 2935 if (ep->skip) { 2936 xhci_dbg(xhci, 2937 "Found td. Clear skip flag for slot %u ep %u.\n", 2938 slot_id, ep_index); 2939 ep->skip = false; 2940 } 2941 2942 /* 2943 * If ep->skip is set, it means there are missed tds on the 2944 * endpoint ring need to take care of. 2945 * Process them as short transfer until reach the td pointed by 2946 * the event. 2947 */ 2948 } while (ep->skip); 2949 2950 ep_ring->old_trb_comp_code = trb_comp_code; 2951 2952 /* Get out if a TD was queued at enqueue after the xrun occurred */ 2953 if (ring_xrun_event) 2954 return 0; 2955 2956 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / sizeof(*ep_trb)]; 2957 trace_xhci_handle_transfer(ep_ring, (struct xhci_generic_trb *) ep_trb, ep_trb_dma); 2958 2959 /* 2960 * No-op TRB could trigger interrupts in a case where a URB was killed 2961 * and a STALL_ERROR happens right after the endpoint ring stopped. 2962 * Reset the halted endpoint. Otherwise, the endpoint remains stalled 2963 * indefinitely. 2964 */ 2965 2966 if (trb_is_noop(ep_trb)) 2967 goto check_endpoint_halted; 2968 2969 td->status = status; 2970 2971 /* update the urb's actual_length and give back to the core */ 2972 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2973 process_ctrl_td(xhci, ep, ep_ring, td, ep_trb, event); 2974 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2975 process_isoc_td(xhci, ep, ep_ring, td, ep_trb, event); 2976 else 2977 process_bulk_intr_td(xhci, ep, ep_ring, td, ep_trb, event); 2978 return 0; 2979 2980 check_endpoint_halted: 2981 if (xhci_halted_host_endpoint(ep_ctx, trb_comp_code)) 2982 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2983 2984 return 0; 2985 2986 debug_finding_td: 2987 xhci_err(xhci, "Event dma %pad for ep %d status %d not part of TD at %016llx - %016llx\n", 2988 &ep_trb_dma, ep_index, trb_comp_code, 2989 (unsigned long long)xhci_trb_virt_to_dma(td->start_seg, td->start_trb), 2990 (unsigned long long)xhci_trb_virt_to_dma(td->end_seg, td->end_trb)); 2991 2992 return -ESHUTDOWN; 2993 2994 err_out: 2995 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2996 (unsigned long long) xhci_trb_virt_to_dma( 2997 ir->event_ring->deq_seg, 2998 ir->event_ring->dequeue), 2999 lower_32_bits(le64_to_cpu(event->buffer)), 3000 upper_32_bits(le64_to_cpu(event->buffer)), 3001 le32_to_cpu(event->transfer_len), 3002 le32_to_cpu(event->flags)); 3003 return -ENODEV; 3004 } 3005 3006 /* 3007 * This function handles one OS-owned event on the event ring. It may drop 3008 * xhci->lock between event processing (e.g. to pass up port status changes). 3009 */ 3010 static int xhci_handle_event_trb(struct xhci_hcd *xhci, struct xhci_interrupter *ir, 3011 union xhci_trb *event) 3012 { 3013 u32 trb_type; 3014 3015 trace_xhci_handle_event(ir->event_ring, &event->generic, 3016 xhci_trb_virt_to_dma(ir->event_ring->deq_seg, 3017 ir->event_ring->dequeue)); 3018 3019 /* 3020 * Barrier between reading the TRB_CYCLE (valid) flag before, and any 3021 * speculative reads of the event's flags/data below. 3022 */ 3023 rmb(); 3024 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->event_cmd.flags)); 3025 /* FIXME: Handle more event types. */ 3026 3027 switch (trb_type) { 3028 case TRB_COMPLETION: 3029 handle_cmd_completion(xhci, &event->event_cmd); 3030 break; 3031 case TRB_PORT_STATUS: 3032 handle_port_status(xhci, event); 3033 break; 3034 case TRB_TRANSFER: 3035 handle_tx_event(xhci, ir, &event->trans_event); 3036 break; 3037 case TRB_DEV_NOTE: 3038 handle_device_notification(xhci, event); 3039 break; 3040 default: 3041 if (trb_type >= TRB_VENDOR_DEFINED_LOW) 3042 handle_vendor_event(xhci, event, trb_type); 3043 else 3044 xhci_warn(xhci, "ERROR unknown event type %d\n", trb_type); 3045 } 3046 /* Any of the above functions may drop and re-acquire the lock, so check 3047 * to make sure a watchdog timer didn't mark the host as non-responsive. 3048 */ 3049 if (xhci->xhc_state & XHCI_STATE_DYING) { 3050 xhci_dbg(xhci, "xHCI host dying, returning from event handler.\n"); 3051 return -ENODEV; 3052 } 3053 3054 return 0; 3055 } 3056 3057 /* 3058 * Update Event Ring Dequeue Pointer: 3059 * - When all events have finished 3060 * - To avoid "Event Ring Full Error" condition 3061 */ 3062 void xhci_update_erst_dequeue(struct xhci_hcd *xhci, 3063 struct xhci_interrupter *ir, 3064 bool clear_ehb) 3065 { 3066 u64 temp_64; 3067 dma_addr_t deq; 3068 3069 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 3070 deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg, 3071 ir->event_ring->dequeue); 3072 if (deq == 0) 3073 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr\n"); 3074 /* 3075 * Per 4.9.4, Software writes to the ERDP register shall always advance 3076 * the Event Ring Dequeue Pointer value. 3077 */ 3078 if ((temp_64 & ERST_PTR_MASK) == (deq & ERST_PTR_MASK) && !clear_ehb) 3079 return; 3080 3081 /* Update HC event ring dequeue pointer */ 3082 temp_64 = ir->event_ring->deq_seg->num & ERST_DESI_MASK; 3083 temp_64 |= deq & ERST_PTR_MASK; 3084 3085 /* Clear the event handler busy flag (RW1C) */ 3086 if (clear_ehb) 3087 temp_64 |= ERST_EHB; 3088 xhci_write_64(xhci, temp_64, &ir->ir_set->erst_dequeue); 3089 } 3090 3091 /* Clear the interrupt pending bit for a specific interrupter. */ 3092 static void xhci_clear_interrupt_pending(struct xhci_interrupter *ir) 3093 { 3094 if (!ir->ip_autoclear) { 3095 u32 iman; 3096 3097 iman = readl(&ir->ir_set->iman); 3098 iman |= IMAN_IP; 3099 writel(iman, &ir->ir_set->iman); 3100 3101 /* Read operation to guarantee the write has been flushed from posted buffers */ 3102 readl(&ir->ir_set->iman); 3103 } 3104 } 3105 3106 /* 3107 * Handle all OS-owned events on an interrupter event ring. It may drop 3108 * and reaquire xhci->lock between event processing. 3109 */ 3110 static int xhci_handle_events(struct xhci_hcd *xhci, struct xhci_interrupter *ir, 3111 bool skip_events) 3112 { 3113 int event_loop = 0; 3114 int err = 0; 3115 u64 temp; 3116 3117 xhci_clear_interrupt_pending(ir); 3118 3119 /* Event ring hasn't been allocated yet. */ 3120 if (!ir->event_ring || !ir->event_ring->dequeue) { 3121 xhci_err(xhci, "ERROR interrupter event ring not ready\n"); 3122 return -ENOMEM; 3123 } 3124 3125 if (xhci->xhc_state & XHCI_STATE_DYING || 3126 xhci->xhc_state & XHCI_STATE_HALTED) { 3127 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. Shouldn't IRQs be disabled?\n"); 3128 3129 /* Clear the event handler busy flag (RW1C) */ 3130 temp = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 3131 xhci_write_64(xhci, temp | ERST_EHB, &ir->ir_set->erst_dequeue); 3132 return -ENODEV; 3133 } 3134 3135 /* Process all OS owned event TRBs on this event ring */ 3136 while (unhandled_event_trb(ir->event_ring)) { 3137 if (!skip_events) 3138 err = xhci_handle_event_trb(xhci, ir, ir->event_ring->dequeue); 3139 3140 /* 3141 * If half a segment of events have been handled in one go then 3142 * update ERDP, and force isoc trbs to interrupt more often 3143 */ 3144 if (event_loop++ > TRBS_PER_SEGMENT / 2) { 3145 xhci_update_erst_dequeue(xhci, ir, false); 3146 3147 if (ir->isoc_bei_interval > AVOID_BEI_INTERVAL_MIN) 3148 ir->isoc_bei_interval = ir->isoc_bei_interval / 2; 3149 3150 event_loop = 0; 3151 } 3152 3153 /* Update SW event ring dequeue pointer */ 3154 inc_deq(xhci, ir->event_ring); 3155 3156 if (err) 3157 break; 3158 } 3159 3160 xhci_update_erst_dequeue(xhci, ir, true); 3161 3162 return 0; 3163 } 3164 3165 /* 3166 * Move the event ring dequeue pointer to skip events kept in the secondary 3167 * event ring. This is used to ensure that pending events in the ring are 3168 * acknowledged, so the xHCI HCD can properly enter suspend/resume. The 3169 * secondary ring is typically maintained by an external component. 3170 */ 3171 void xhci_skip_sec_intr_events(struct xhci_hcd *xhci, 3172 struct xhci_ring *ring, struct xhci_interrupter *ir) 3173 { 3174 union xhci_trb *current_trb; 3175 u64 erdp_reg; 3176 dma_addr_t deq; 3177 3178 /* disable irq, ack pending interrupt and ack all pending events */ 3179 xhci_disable_interrupter(xhci, ir); 3180 3181 /* last acked event trb is in erdp reg */ 3182 erdp_reg = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 3183 deq = (dma_addr_t)(erdp_reg & ERST_PTR_MASK); 3184 if (!deq) { 3185 xhci_err(xhci, "event ring handling not required\n"); 3186 return; 3187 } 3188 3189 current_trb = ir->event_ring->dequeue; 3190 /* read cycle state of the last acked trb to find out CCS */ 3191 ring->cycle_state = le32_to_cpu(current_trb->event_cmd.flags) & TRB_CYCLE; 3192 3193 xhci_handle_events(xhci, ir, true); 3194 } 3195 3196 /* 3197 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 3198 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 3199 * indicators of an event TRB error, but we check the status *first* to be safe. 3200 */ 3201 irqreturn_t xhci_irq(struct usb_hcd *hcd) 3202 { 3203 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3204 irqreturn_t ret = IRQ_HANDLED; 3205 u32 status; 3206 3207 spin_lock(&xhci->lock); 3208 /* Check if the xHC generated the interrupt, or the irq is shared */ 3209 status = readl(&xhci->op_regs->status); 3210 if (status == ~(u32)0) { 3211 xhci_hc_died(xhci); 3212 goto out; 3213 } 3214 3215 if (!(status & STS_EINT)) { 3216 ret = IRQ_NONE; 3217 goto out; 3218 } 3219 3220 if (status & STS_HCE) { 3221 xhci_warn(xhci, "WARNING: Host Controller Error\n"); 3222 goto out; 3223 } 3224 3225 if (status & STS_FATAL) { 3226 xhci_warn(xhci, "WARNING: Host System Error\n"); 3227 xhci_halt(xhci); 3228 goto out; 3229 } 3230 3231 /* 3232 * Clear the op reg interrupt status first, 3233 * so we can receive interrupts from other MSI-X interrupters. 3234 * Write 1 to clear the interrupt status. 3235 */ 3236 status |= STS_EINT; 3237 writel(status, &xhci->op_regs->status); 3238 3239 /* This is the handler of the primary interrupter */ 3240 xhci_handle_events(xhci, xhci->interrupters[0], false); 3241 out: 3242 spin_unlock(&xhci->lock); 3243 3244 return ret; 3245 } 3246 3247 irqreturn_t xhci_msi_irq(int irq, void *hcd) 3248 { 3249 return xhci_irq(hcd); 3250 } 3251 EXPORT_SYMBOL_GPL(xhci_msi_irq); 3252 3253 /**** Endpoint Ring Operations ****/ 3254 3255 /* 3256 * Generic function for queueing a TRB on a ring. 3257 * The caller must have checked to make sure there's room on the ring. 3258 * 3259 * @more_trbs_coming: Will you enqueue more TRBs before calling 3260 * prepare_transfer()? 3261 */ 3262 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 3263 bool more_trbs_coming, 3264 u32 field1, u32 field2, u32 field3, u32 field4) 3265 { 3266 struct xhci_generic_trb *trb; 3267 3268 trb = &ring->enqueue->generic; 3269 trb->field[0] = cpu_to_le32(field1); 3270 trb->field[1] = cpu_to_le32(field2); 3271 trb->field[2] = cpu_to_le32(field3); 3272 /* make sure TRB is fully written before giving it to the controller */ 3273 wmb(); 3274 trb->field[3] = cpu_to_le32(field4); 3275 3276 trace_xhci_queue_trb(ring, trb, 3277 xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue)); 3278 3279 inc_enq(xhci, ring, more_trbs_coming); 3280 } 3281 3282 /* 3283 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 3284 * expand ring if it start to be full. 3285 */ 3286 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 3287 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 3288 { 3289 unsigned int new_segs = 0; 3290 3291 /* Make sure the endpoint has been added to xHC schedule */ 3292 switch (ep_state) { 3293 case EP_STATE_DISABLED: 3294 /* 3295 * USB core changed config/interfaces without notifying us, 3296 * or hardware is reporting the wrong state. 3297 */ 3298 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 3299 return -ENOENT; 3300 case EP_STATE_ERROR: 3301 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 3302 /* FIXME event handling code for error needs to clear it */ 3303 /* XXX not sure if this should be -ENOENT or not */ 3304 return -EINVAL; 3305 case EP_STATE_HALTED: 3306 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 3307 break; 3308 case EP_STATE_STOPPED: 3309 case EP_STATE_RUNNING: 3310 break; 3311 default: 3312 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 3313 /* 3314 * FIXME issue Configure Endpoint command to try to get the HC 3315 * back into a known state. 3316 */ 3317 return -EINVAL; 3318 } 3319 3320 if (ep_ring != xhci->cmd_ring) { 3321 new_segs = xhci_ring_expansion_needed(xhci, ep_ring, num_trbs); 3322 } else if (xhci_num_trbs_free(ep_ring) <= num_trbs) { 3323 xhci_err(xhci, "Do not support expand command ring\n"); 3324 return -ENOMEM; 3325 } 3326 3327 if (new_segs) { 3328 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 3329 "ERROR no room on ep ring, try ring expansion"); 3330 if (xhci_ring_expansion(xhci, ep_ring, new_segs, mem_flags)) { 3331 xhci_err(xhci, "Ring expansion failed\n"); 3332 return -ENOMEM; 3333 } 3334 } 3335 3336 /* Ensure that new TRBs won't overwrite a link */ 3337 if (trb_is_link(ep_ring->enqueue)) 3338 inc_enq_past_link(xhci, ep_ring, 0); 3339 3340 if (last_trb_on_seg(ep_ring->enq_seg, ep_ring->enqueue)) { 3341 xhci_warn(xhci, "Missing link TRB at end of ring segment\n"); 3342 return -EINVAL; 3343 } 3344 3345 return 0; 3346 } 3347 3348 static int prepare_transfer(struct xhci_hcd *xhci, 3349 struct xhci_virt_device *xdev, 3350 unsigned int ep_index, 3351 unsigned int stream_id, 3352 unsigned int num_trbs, 3353 struct urb *urb, 3354 unsigned int td_index, 3355 gfp_t mem_flags) 3356 { 3357 int ret; 3358 struct urb_priv *urb_priv; 3359 struct xhci_td *td; 3360 struct xhci_ring *ep_ring; 3361 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3362 3363 ep_ring = xhci_triad_to_transfer_ring(xhci, xdev->slot_id, ep_index, 3364 stream_id); 3365 if (!ep_ring) { 3366 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 3367 stream_id); 3368 return -EINVAL; 3369 } 3370 3371 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 3372 num_trbs, mem_flags); 3373 if (ret) 3374 return ret; 3375 3376 urb_priv = urb->hcpriv; 3377 td = &urb_priv->td[td_index]; 3378 3379 INIT_LIST_HEAD(&td->td_list); 3380 INIT_LIST_HEAD(&td->cancelled_td_list); 3381 3382 if (td_index == 0) { 3383 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 3384 if (unlikely(ret)) 3385 return ret; 3386 } 3387 3388 td->urb = urb; 3389 /* Add this TD to the tail of the endpoint ring's TD list */ 3390 list_add_tail(&td->td_list, &ep_ring->td_list); 3391 td->start_seg = ep_ring->enq_seg; 3392 td->start_trb = ep_ring->enqueue; 3393 3394 return 0; 3395 } 3396 3397 unsigned int count_trbs(u64 addr, u64 len) 3398 { 3399 unsigned int num_trbs; 3400 3401 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3402 TRB_MAX_BUFF_SIZE); 3403 if (num_trbs == 0) 3404 num_trbs++; 3405 3406 return num_trbs; 3407 } 3408 3409 static inline unsigned int count_trbs_needed(struct urb *urb) 3410 { 3411 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); 3412 } 3413 3414 static unsigned int count_sg_trbs_needed(struct urb *urb) 3415 { 3416 struct scatterlist *sg; 3417 unsigned int i, len, full_len, num_trbs = 0; 3418 3419 full_len = urb->transfer_buffer_length; 3420 3421 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { 3422 len = sg_dma_len(sg); 3423 num_trbs += count_trbs(sg_dma_address(sg), len); 3424 len = min_t(unsigned int, len, full_len); 3425 full_len -= len; 3426 if (full_len == 0) 3427 break; 3428 } 3429 3430 return num_trbs; 3431 } 3432 3433 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) 3434 { 3435 u64 addr, len; 3436 3437 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3438 len = urb->iso_frame_desc[i].length; 3439 3440 return count_trbs(addr, len); 3441 } 3442 3443 static void check_trb_math(struct urb *urb, int running_total) 3444 { 3445 if (unlikely(running_total != urb->transfer_buffer_length)) 3446 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3447 "queued %#x (%d), asked for %#x (%d)\n", 3448 __func__, 3449 urb->ep->desc.bEndpointAddress, 3450 running_total, running_total, 3451 urb->transfer_buffer_length, 3452 urb->transfer_buffer_length); 3453 } 3454 3455 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3456 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3457 struct xhci_generic_trb *start_trb) 3458 { 3459 /* 3460 * Pass all the TRBs to the hardware at once and make sure this write 3461 * isn't reordered. 3462 */ 3463 wmb(); 3464 if (start_cycle) 3465 start_trb->field[3] |= cpu_to_le32(start_cycle); 3466 else 3467 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3468 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3469 } 3470 3471 static void check_interval(struct urb *urb, struct xhci_ep_ctx *ep_ctx) 3472 { 3473 int xhci_interval; 3474 int ep_interval; 3475 3476 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3477 ep_interval = urb->interval; 3478 3479 /* Convert to microframes */ 3480 if (urb->dev->speed == USB_SPEED_LOW || 3481 urb->dev->speed == USB_SPEED_FULL) 3482 ep_interval *= 8; 3483 3484 /* FIXME change this to a warning and a suggestion to use the new API 3485 * to set the polling interval (once the API is added). 3486 */ 3487 if (xhci_interval != ep_interval) { 3488 dev_dbg_ratelimited(&urb->dev->dev, 3489 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3490 ep_interval, str_plural(ep_interval), 3491 xhci_interval, str_plural(xhci_interval)); 3492 urb->interval = xhci_interval; 3493 /* Convert back to frames for LS/FS devices */ 3494 if (urb->dev->speed == USB_SPEED_LOW || 3495 urb->dev->speed == USB_SPEED_FULL) 3496 urb->interval /= 8; 3497 } 3498 } 3499 3500 /* 3501 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3502 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3503 * (comprised of sg list entries) can take several service intervals to 3504 * transmit. 3505 */ 3506 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3507 struct urb *urb, int slot_id, unsigned int ep_index) 3508 { 3509 struct xhci_ep_ctx *ep_ctx; 3510 3511 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); 3512 check_interval(urb, ep_ctx); 3513 3514 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3515 } 3516 3517 /* 3518 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3519 * packets remaining in the TD (*not* including this TRB). 3520 * 3521 * Total TD packet count = total_packet_count = 3522 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3523 * 3524 * Packets transferred up to and including this TRB = packets_transferred = 3525 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3526 * 3527 * TD size = total_packet_count - packets_transferred 3528 * 3529 * For xHCI 0.96 and older, TD size field should be the remaining bytes 3530 * including this TRB, right shifted by 10 3531 * 3532 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. 3533 * This is taken care of in the TRB_TD_SIZE() macro 3534 * 3535 * The last TRB in a TD must have the TD size set to zero. 3536 */ 3537 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, 3538 int trb_buff_len, unsigned int td_total_len, 3539 struct urb *urb, bool more_trbs_coming) 3540 { 3541 u32 maxp, total_packet_count; 3542 3543 /* MTK xHCI 0.96 contains some features from 1.0 */ 3544 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) 3545 return ((td_total_len - transferred) >> 10); 3546 3547 /* One TRB with a zero-length data packet. */ 3548 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || 3549 trb_buff_len == td_total_len) 3550 return 0; 3551 3552 /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */ 3553 if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100)) 3554 trb_buff_len = 0; 3555 3556 maxp = xhci_usb_endpoint_maxp(urb->dev, urb->ep); 3557 total_packet_count = DIV_ROUND_UP(td_total_len, maxp); 3558 3559 /* Queueing functions don't count the current TRB into transferred */ 3560 return (total_packet_count - ((transferred + trb_buff_len) / maxp)); 3561 } 3562 3563 3564 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, 3565 u32 *trb_buff_len, struct xhci_segment *seg) 3566 { 3567 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 3568 unsigned int unalign; 3569 unsigned int max_pkt; 3570 u32 new_buff_len; 3571 size_t len; 3572 3573 max_pkt = xhci_usb_endpoint_maxp(urb->dev, urb->ep); 3574 unalign = (enqd_len + *trb_buff_len) % max_pkt; 3575 3576 /* we got lucky, last normal TRB data on segment is packet aligned */ 3577 if (unalign == 0) 3578 return 0; 3579 3580 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", 3581 unalign, *trb_buff_len); 3582 3583 /* is the last nornal TRB alignable by splitting it */ 3584 if (*trb_buff_len > unalign) { 3585 *trb_buff_len -= unalign; 3586 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); 3587 return 0; 3588 } 3589 3590 /* 3591 * We want enqd_len + trb_buff_len to sum up to a number aligned to 3592 * number which is divisible by the endpoint's wMaxPacketSize. IOW: 3593 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. 3594 */ 3595 new_buff_len = max_pkt - (enqd_len % max_pkt); 3596 3597 if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) 3598 new_buff_len = (urb->transfer_buffer_length - enqd_len); 3599 3600 /* create a max max_pkt sized bounce buffer pointed to by last trb */ 3601 if (usb_urb_dir_out(urb)) { 3602 if (urb->num_sgs) { 3603 len = sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 3604 seg->bounce_buf, new_buff_len, enqd_len); 3605 if (len != new_buff_len) 3606 xhci_warn(xhci, "WARN Wrong bounce buffer write length: %zu != %d\n", 3607 len, new_buff_len); 3608 } else { 3609 memcpy(seg->bounce_buf, urb->transfer_buffer + enqd_len, new_buff_len); 3610 } 3611 3612 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3613 max_pkt, DMA_TO_DEVICE); 3614 } else { 3615 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3616 max_pkt, DMA_FROM_DEVICE); 3617 } 3618 3619 if (dma_mapping_error(dev, seg->bounce_dma)) { 3620 /* try without aligning. Some host controllers survive */ 3621 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); 3622 return 0; 3623 } 3624 *trb_buff_len = new_buff_len; 3625 seg->bounce_len = new_buff_len; 3626 seg->bounce_offs = enqd_len; 3627 3628 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); 3629 3630 return 1; 3631 } 3632 3633 /* This is very similar to what ehci-q.c qtd_fill() does */ 3634 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3635 struct urb *urb, int slot_id, unsigned int ep_index) 3636 { 3637 struct xhci_ring *ring; 3638 struct urb_priv *urb_priv; 3639 struct xhci_td *td; 3640 struct xhci_generic_trb *start_trb; 3641 struct scatterlist *sg = NULL; 3642 bool more_trbs_coming = true; 3643 bool need_zero_pkt = false; 3644 bool first_trb = true; 3645 unsigned int num_trbs; 3646 unsigned int start_cycle, num_sgs = 0; 3647 unsigned int enqd_len, block_len, trb_buff_len, full_len; 3648 int sent_len, ret; 3649 u32 field, length_field, remainder; 3650 u64 addr, send_addr; 3651 3652 ring = xhci_urb_to_transfer_ring(xhci, urb); 3653 if (!ring) 3654 return -EINVAL; 3655 3656 full_len = urb->transfer_buffer_length; 3657 /* If we have scatter/gather list, we use it. */ 3658 if (urb->num_sgs && !(urb->transfer_flags & URB_DMA_MAP_SINGLE)) { 3659 num_sgs = urb->num_mapped_sgs; 3660 sg = urb->sg; 3661 addr = (u64) sg_dma_address(sg); 3662 block_len = sg_dma_len(sg); 3663 num_trbs = count_sg_trbs_needed(urb); 3664 } else { 3665 num_trbs = count_trbs_needed(urb); 3666 addr = (u64) urb->transfer_dma; 3667 block_len = full_len; 3668 } 3669 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3670 ep_index, urb->stream_id, 3671 num_trbs, urb, 0, mem_flags); 3672 if (unlikely(ret < 0)) 3673 return ret; 3674 3675 urb_priv = urb->hcpriv; 3676 3677 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3678 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) 3679 need_zero_pkt = true; 3680 3681 td = &urb_priv->td[0]; 3682 3683 /* 3684 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3685 * until we've finished creating all the other TRBs. The ring's cycle 3686 * state may change as we enqueue the other TRBs, so save it too. 3687 */ 3688 start_trb = &ring->enqueue->generic; 3689 start_cycle = ring->cycle_state; 3690 send_addr = addr; 3691 3692 /* Queue the TRBs, even if they are zero-length */ 3693 for (enqd_len = 0; first_trb || enqd_len < full_len; 3694 enqd_len += trb_buff_len) { 3695 field = TRB_TYPE(TRB_NORMAL); 3696 3697 /* TRB buffer should not cross 64KB boundaries */ 3698 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3699 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); 3700 3701 if (enqd_len + trb_buff_len > full_len) 3702 trb_buff_len = full_len - enqd_len; 3703 3704 /* Don't change the cycle bit of the first TRB until later */ 3705 if (first_trb) { 3706 first_trb = false; 3707 if (start_cycle == 0) 3708 field |= TRB_CYCLE; 3709 } else 3710 field |= ring->cycle_state; 3711 3712 /* Chain all the TRBs together; clear the chain bit in the last 3713 * TRB to indicate it's the last TRB in the chain. 3714 */ 3715 if (enqd_len + trb_buff_len < full_len) { 3716 field |= TRB_CHAIN; 3717 if (trb_is_link(ring->enqueue + 1)) { 3718 if (xhci_align_td(xhci, urb, enqd_len, 3719 &trb_buff_len, 3720 ring->enq_seg)) { 3721 send_addr = ring->enq_seg->bounce_dma; 3722 /* assuming TD won't span 2 segs */ 3723 td->bounce_seg = ring->enq_seg; 3724 } 3725 } 3726 } 3727 if (enqd_len + trb_buff_len >= full_len) { 3728 field &= ~TRB_CHAIN; 3729 field |= TRB_IOC; 3730 more_trbs_coming = false; 3731 td->end_trb = ring->enqueue; 3732 td->end_seg = ring->enq_seg; 3733 if (xhci_urb_suitable_for_idt(urb)) { 3734 memcpy(&send_addr, urb->transfer_buffer, 3735 trb_buff_len); 3736 le64_to_cpus(&send_addr); 3737 field |= TRB_IDT; 3738 } 3739 } 3740 3741 /* Only set interrupt on short packet for IN endpoints */ 3742 if (usb_urb_dir_in(urb)) 3743 field |= TRB_ISP; 3744 3745 /* Set the TRB length, TD size, and interrupter fields. */ 3746 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, 3747 full_len, urb, more_trbs_coming); 3748 3749 length_field = TRB_LEN(trb_buff_len) | 3750 TRB_TD_SIZE(remainder) | 3751 TRB_INTR_TARGET(0); 3752 3753 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, 3754 lower_32_bits(send_addr), 3755 upper_32_bits(send_addr), 3756 length_field, 3757 field); 3758 addr += trb_buff_len; 3759 sent_len = trb_buff_len; 3760 3761 while (sg && sent_len >= block_len) { 3762 /* New sg entry */ 3763 --num_sgs; 3764 sent_len -= block_len; 3765 sg = sg_next(sg); 3766 if (num_sgs != 0 && sg) { 3767 block_len = sg_dma_len(sg); 3768 addr = (u64) sg_dma_address(sg); 3769 addr += sent_len; 3770 } 3771 } 3772 block_len -= sent_len; 3773 send_addr = addr; 3774 } 3775 3776 if (need_zero_pkt) { 3777 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3778 ep_index, urb->stream_id, 3779 1, urb, 1, mem_flags); 3780 urb_priv->td[1].end_trb = ring->enqueue; 3781 urb_priv->td[1].end_seg = ring->enq_seg; 3782 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; 3783 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); 3784 } 3785 3786 check_trb_math(urb, enqd_len); 3787 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3788 start_cycle, start_trb); 3789 return 0; 3790 } 3791 3792 /* Caller must have locked xhci->lock */ 3793 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3794 struct urb *urb, int slot_id, unsigned int ep_index) 3795 { 3796 struct xhci_ring *ep_ring; 3797 int num_trbs; 3798 int ret; 3799 struct usb_ctrlrequest *setup; 3800 struct xhci_generic_trb *start_trb; 3801 int start_cycle; 3802 u32 field; 3803 struct urb_priv *urb_priv; 3804 struct xhci_td *td; 3805 3806 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3807 if (!ep_ring) 3808 return -EINVAL; 3809 3810 /* 3811 * Need to copy setup packet into setup TRB, so we can't use the setup 3812 * DMA address. 3813 */ 3814 if (!urb->setup_packet) 3815 return -EINVAL; 3816 3817 if ((xhci->quirks & XHCI_ETRON_HOST) && 3818 urb->dev->speed >= USB_SPEED_SUPER) { 3819 /* 3820 * If next available TRB is the Link TRB in the ring segment then 3821 * enqueue a No Op TRB, this can prevent the Setup and Data Stage 3822 * TRB to be breaked by the Link TRB. 3823 */ 3824 if (last_trb_on_seg(ep_ring->enq_seg, ep_ring->enqueue + 1)) { 3825 field = TRB_TYPE(TRB_TR_NOOP) | ep_ring->cycle_state; 3826 queue_trb(xhci, ep_ring, false, 0, 0, 3827 TRB_INTR_TARGET(0), field); 3828 } 3829 } 3830 3831 /* 1 TRB for setup, 1 for status */ 3832 num_trbs = 2; 3833 /* 3834 * Don't need to check if we need additional event data and normal TRBs, 3835 * since data in control transfers will never get bigger than 16MB 3836 * XXX: can we get a buffer that crosses 64KB boundaries? 3837 */ 3838 if (urb->transfer_buffer_length > 0) 3839 num_trbs++; 3840 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3841 ep_index, urb->stream_id, 3842 num_trbs, urb, 0, mem_flags); 3843 if (ret < 0) 3844 return ret; 3845 3846 urb_priv = urb->hcpriv; 3847 td = &urb_priv->td[0]; 3848 3849 /* 3850 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3851 * until we've finished creating all the other TRBs. The ring's cycle 3852 * state may change as we enqueue the other TRBs, so save it too. 3853 */ 3854 start_trb = &ep_ring->enqueue->generic; 3855 start_cycle = ep_ring->cycle_state; 3856 3857 /* Queue setup TRB - see section 6.4.1.2.1 */ 3858 /* FIXME better way to translate setup_packet into two u32 fields? */ 3859 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3860 field = 0; 3861 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3862 if (start_cycle == 0) 3863 field |= 0x1; 3864 3865 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ 3866 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { 3867 if (urb->transfer_buffer_length > 0) { 3868 if (setup->bRequestType & USB_DIR_IN) 3869 field |= TRB_TX_TYPE(TRB_DATA_IN); 3870 else 3871 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3872 } 3873 } 3874 3875 queue_trb(xhci, ep_ring, true, 3876 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3877 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3878 TRB_LEN(8) | TRB_INTR_TARGET(0), 3879 /* Immediate data in pointer */ 3880 field); 3881 3882 /* If there's data, queue data TRBs */ 3883 /* Only set interrupt on short packet for IN endpoints */ 3884 if (usb_urb_dir_in(urb)) 3885 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3886 else 3887 field = TRB_TYPE(TRB_DATA); 3888 3889 if (urb->transfer_buffer_length > 0) { 3890 u32 length_field, remainder; 3891 u64 addr; 3892 3893 if (xhci_urb_suitable_for_idt(urb)) { 3894 memcpy(&addr, urb->transfer_buffer, 3895 urb->transfer_buffer_length); 3896 le64_to_cpus(&addr); 3897 field |= TRB_IDT; 3898 } else { 3899 addr = (u64) urb->transfer_dma; 3900 } 3901 3902 remainder = xhci_td_remainder(xhci, 0, 3903 urb->transfer_buffer_length, 3904 urb->transfer_buffer_length, 3905 urb, 1); 3906 length_field = TRB_LEN(urb->transfer_buffer_length) | 3907 TRB_TD_SIZE(remainder) | 3908 TRB_INTR_TARGET(0); 3909 if (setup->bRequestType & USB_DIR_IN) 3910 field |= TRB_DIR_IN; 3911 queue_trb(xhci, ep_ring, true, 3912 lower_32_bits(addr), 3913 upper_32_bits(addr), 3914 length_field, 3915 field | ep_ring->cycle_state); 3916 } 3917 3918 /* Save the DMA address of the last TRB in the TD */ 3919 td->end_trb = ep_ring->enqueue; 3920 td->end_seg = ep_ring->enq_seg; 3921 3922 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3923 /* If the device sent data, the status stage is an OUT transfer */ 3924 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3925 field = 0; 3926 else 3927 field = TRB_DIR_IN; 3928 queue_trb(xhci, ep_ring, false, 3929 0, 3930 0, 3931 TRB_INTR_TARGET(0), 3932 /* Event on completion */ 3933 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3934 3935 giveback_first_trb(xhci, slot_id, ep_index, 0, 3936 start_cycle, start_trb); 3937 return 0; 3938 } 3939 3940 /* 3941 * The transfer burst count field of the isochronous TRB defines the number of 3942 * bursts that are required to move all packets in this TD. Only SuperSpeed 3943 * devices can burst up to bMaxBurst number of packets per service interval. 3944 * This field is zero based, meaning a value of zero in the field means one 3945 * burst. Basically, for everything but SuperSpeed devices, this field will be 3946 * zero. Only xHCI 1.0 host controllers support this field. 3947 */ 3948 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3949 struct urb *urb, unsigned int total_packet_count) 3950 { 3951 unsigned int max_burst; 3952 3953 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) 3954 return 0; 3955 3956 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3957 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3958 } 3959 3960 /* 3961 * Returns the number of packets in the last "burst" of packets. This field is 3962 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3963 * the last burst packet count is equal to the total number of packets in the 3964 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3965 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3966 * contain 1 to (bMaxBurst + 1) packets. 3967 */ 3968 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3969 struct urb *urb, unsigned int total_packet_count) 3970 { 3971 unsigned int max_burst; 3972 unsigned int residue; 3973 3974 if (xhci->hci_version < 0x100) 3975 return 0; 3976 3977 if (urb->dev->speed >= USB_SPEED_SUPER) { 3978 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3979 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3980 residue = total_packet_count % (max_burst + 1); 3981 /* If residue is zero, the last burst contains (max_burst + 1) 3982 * number of packets, but the TLBPC field is zero-based. 3983 */ 3984 if (residue == 0) 3985 return max_burst; 3986 return residue - 1; 3987 } 3988 if (total_packet_count == 0) 3989 return 0; 3990 return total_packet_count - 1; 3991 } 3992 3993 /* 3994 * Calculates Frame ID field of the isochronous TRB identifies the 3995 * target frame that the Interval associated with this Isochronous 3996 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. 3997 * 3998 * Returns actual frame id on success, negative value on error. 3999 */ 4000 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, 4001 struct urb *urb, int index) 4002 { 4003 int start_frame, ist, ret = 0; 4004 int start_frame_id, end_frame_id, current_frame_id; 4005 4006 if (urb->dev->speed == USB_SPEED_LOW || 4007 urb->dev->speed == USB_SPEED_FULL) 4008 start_frame = urb->start_frame + index * urb->interval; 4009 else 4010 start_frame = (urb->start_frame + index * urb->interval) >> 3; 4011 4012 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): 4013 * 4014 * If bit [3] of IST is cleared to '0', software can add a TRB no 4015 * later than IST[2:0] Microframes before that TRB is scheduled to 4016 * be executed. 4017 * If bit [3] of IST is set to '1', software can add a TRB no later 4018 * than IST[2:0] Frames before that TRB is scheduled to be executed. 4019 */ 4020 ist = HCS_IST(xhci->hcs_params2) & 0x7; 4021 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 4022 ist <<= 3; 4023 4024 /* Software shall not schedule an Isoch TD with a Frame ID value that 4025 * is less than the Start Frame ID or greater than the End Frame ID, 4026 * where: 4027 * 4028 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 4029 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 4030 * 4031 * Both the End Frame ID and Start Frame ID values are calculated 4032 * in microframes. When software determines the valid Frame ID value; 4033 * The End Frame ID value should be rounded down to the nearest Frame 4034 * boundary, and the Start Frame ID value should be rounded up to the 4035 * nearest Frame boundary. 4036 */ 4037 current_frame_id = readl(&xhci->run_regs->microframe_index); 4038 start_frame_id = roundup(current_frame_id + ist + 1, 8); 4039 end_frame_id = rounddown(current_frame_id + 895 * 8, 8); 4040 4041 start_frame &= 0x7ff; 4042 start_frame_id = (start_frame_id >> 3) & 0x7ff; 4043 end_frame_id = (end_frame_id >> 3) & 0x7ff; 4044 4045 if (start_frame_id < end_frame_id) { 4046 if (start_frame > end_frame_id || 4047 start_frame < start_frame_id) 4048 ret = -EINVAL; 4049 } else if (start_frame_id > end_frame_id) { 4050 if ((start_frame > end_frame_id && 4051 start_frame < start_frame_id)) 4052 ret = -EINVAL; 4053 } else { 4054 ret = -EINVAL; 4055 } 4056 4057 if (index == 0) { 4058 if (ret == -EINVAL || start_frame == start_frame_id) { 4059 start_frame = start_frame_id + 1; 4060 if (urb->dev->speed == USB_SPEED_LOW || 4061 urb->dev->speed == USB_SPEED_FULL) 4062 urb->start_frame = start_frame; 4063 else 4064 urb->start_frame = start_frame << 3; 4065 ret = 0; 4066 } 4067 } 4068 4069 if (ret) { 4070 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", 4071 start_frame, current_frame_id, index, 4072 start_frame_id, end_frame_id); 4073 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); 4074 return ret; 4075 } 4076 4077 return start_frame; 4078 } 4079 4080 /* Check if we should generate event interrupt for a TD in an isoc URB */ 4081 static bool trb_block_event_intr(struct xhci_hcd *xhci, int num_tds, int i, 4082 struct xhci_interrupter *ir) 4083 { 4084 if (xhci->hci_version < 0x100) 4085 return false; 4086 /* always generate an event interrupt for the last TD */ 4087 if (i == num_tds - 1) 4088 return false; 4089 /* 4090 * If AVOID_BEI is set the host handles full event rings poorly, 4091 * generate an event at least every 8th TD to clear the event ring 4092 */ 4093 if (i && ir->isoc_bei_interval && xhci->quirks & XHCI_AVOID_BEI) 4094 return !!(i % ir->isoc_bei_interval); 4095 4096 return true; 4097 } 4098 4099 /* This is for isoc transfer */ 4100 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 4101 struct urb *urb, int slot_id, unsigned int ep_index) 4102 { 4103 struct xhci_interrupter *ir; 4104 struct xhci_ring *ep_ring; 4105 struct urb_priv *urb_priv; 4106 struct xhci_td *td; 4107 int num_tds, trbs_per_td; 4108 struct xhci_generic_trb *start_trb; 4109 bool first_trb; 4110 int start_cycle; 4111 u32 field, length_field; 4112 int running_total, trb_buff_len, td_len, td_remain_len, ret; 4113 u64 start_addr, addr; 4114 int i, j; 4115 bool more_trbs_coming; 4116 struct xhci_virt_ep *xep; 4117 int frame_id; 4118 4119 xep = &xhci->devs[slot_id]->eps[ep_index]; 4120 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 4121 ir = xhci->interrupters[0]; 4122 4123 num_tds = urb->number_of_packets; 4124 if (num_tds < 1) { 4125 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 4126 return -EINVAL; 4127 } 4128 start_addr = (u64) urb->transfer_dma; 4129 start_trb = &ep_ring->enqueue->generic; 4130 start_cycle = ep_ring->cycle_state; 4131 4132 urb_priv = urb->hcpriv; 4133 /* Queue the TRBs for each TD, even if they are zero-length */ 4134 for (i = 0; i < num_tds; i++) { 4135 unsigned int total_pkt_count, max_pkt; 4136 unsigned int burst_count, last_burst_pkt_count; 4137 u32 sia_frame_id; 4138 4139 first_trb = true; 4140 running_total = 0; 4141 addr = start_addr + urb->iso_frame_desc[i].offset; 4142 td_len = urb->iso_frame_desc[i].length; 4143 td_remain_len = td_len; 4144 max_pkt = xhci_usb_endpoint_maxp(urb->dev, urb->ep); 4145 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); 4146 4147 /* A zero-length transfer still involves at least one packet. */ 4148 if (total_pkt_count == 0) 4149 total_pkt_count++; 4150 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); 4151 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, 4152 urb, total_pkt_count); 4153 4154 trbs_per_td = count_isoc_trbs_needed(urb, i); 4155 4156 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 4157 urb->stream_id, trbs_per_td, urb, i, mem_flags); 4158 if (ret < 0) { 4159 if (i == 0) 4160 return ret; 4161 goto cleanup; 4162 } 4163 td = &urb_priv->td[i]; 4164 /* use SIA as default, if frame id is used overwrite it */ 4165 sia_frame_id = TRB_SIA; 4166 if (!(urb->transfer_flags & URB_ISO_ASAP) && 4167 HCC_CFC(xhci->hcc_params)) { 4168 frame_id = xhci_get_isoc_frame_id(xhci, urb, i); 4169 if (frame_id >= 0) 4170 sia_frame_id = TRB_FRAME_ID(frame_id); 4171 } 4172 /* 4173 * Set isoc specific data for the first TRB in a TD. 4174 * Prevent HW from getting the TRBs by keeping the cycle state 4175 * inverted in the first TDs isoc TRB. 4176 */ 4177 field = TRB_TYPE(TRB_ISOC) | 4178 TRB_TLBPC(last_burst_pkt_count) | 4179 sia_frame_id | 4180 (i ? ep_ring->cycle_state : !start_cycle); 4181 4182 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ 4183 if (!xep->use_extended_tbc) 4184 field |= TRB_TBC(burst_count); 4185 4186 /* fill the rest of the TRB fields, and remaining normal TRBs */ 4187 for (j = 0; j < trbs_per_td; j++) { 4188 u32 remainder = 0; 4189 4190 /* only first TRB is isoc, overwrite otherwise */ 4191 if (!first_trb) 4192 field = TRB_TYPE(TRB_NORMAL) | 4193 ep_ring->cycle_state; 4194 4195 /* Only set interrupt on short packet for IN EPs */ 4196 if (usb_urb_dir_in(urb)) 4197 field |= TRB_ISP; 4198 4199 /* Set the chain bit for all except the last TRB */ 4200 if (j < trbs_per_td - 1) { 4201 more_trbs_coming = true; 4202 field |= TRB_CHAIN; 4203 } else { 4204 more_trbs_coming = false; 4205 td->end_trb = ep_ring->enqueue; 4206 td->end_seg = ep_ring->enq_seg; 4207 field |= TRB_IOC; 4208 if (trb_block_event_intr(xhci, num_tds, i, ir)) 4209 field |= TRB_BEI; 4210 } 4211 /* Calculate TRB length */ 4212 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 4213 if (trb_buff_len > td_remain_len) 4214 trb_buff_len = td_remain_len; 4215 4216 /* Set the TRB length, TD size, & interrupter fields. */ 4217 remainder = xhci_td_remainder(xhci, running_total, 4218 trb_buff_len, td_len, 4219 urb, more_trbs_coming); 4220 4221 length_field = TRB_LEN(trb_buff_len) | 4222 TRB_INTR_TARGET(0); 4223 4224 /* xhci 1.1 with ETE uses TD Size field for TBC */ 4225 if (first_trb && xep->use_extended_tbc) 4226 length_field |= TRB_TD_SIZE_TBC(burst_count); 4227 else 4228 length_field |= TRB_TD_SIZE(remainder); 4229 first_trb = false; 4230 4231 queue_trb(xhci, ep_ring, more_trbs_coming, 4232 lower_32_bits(addr), 4233 upper_32_bits(addr), 4234 length_field, 4235 field); 4236 running_total += trb_buff_len; 4237 4238 addr += trb_buff_len; 4239 td_remain_len -= trb_buff_len; 4240 } 4241 4242 /* Check TD length */ 4243 if (running_total != td_len) { 4244 xhci_err(xhci, "ISOC TD length unmatch\n"); 4245 ret = -EINVAL; 4246 goto cleanup; 4247 } 4248 } 4249 4250 /* store the next frame id */ 4251 if (HCC_CFC(xhci->hcc_params)) 4252 xep->next_frame_id = urb->start_frame + num_tds * urb->interval; 4253 4254 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 4255 if (xhci->quirks & XHCI_AMD_PLL_FIX) 4256 usb_amd_quirk_pll_disable(); 4257 } 4258 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 4259 4260 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 4261 start_cycle, start_trb); 4262 return 0; 4263 cleanup: 4264 /* Clean up a partially enqueued isoc transfer. */ 4265 4266 for (i--; i >= 0; i--) 4267 list_del_init(&urb_priv->td[i].td_list); 4268 4269 /* Use the first TD as a temporary variable to turn the TDs we've queued 4270 * into No-ops with a software-owned cycle bit. That way the hardware 4271 * won't accidentally start executing bogus TDs when we partially 4272 * overwrite them. td->start_trb and td->start_seg are already set. 4273 */ 4274 urb_priv->td[0].end_trb = ep_ring->enqueue; 4275 /* Every TRB except the first & last will have its cycle bit flipped. */ 4276 td_to_noop(&urb_priv->td[0], true); 4277 4278 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 4279 ep_ring->enqueue = urb_priv->td[0].start_trb; 4280 ep_ring->enq_seg = urb_priv->td[0].start_seg; 4281 ep_ring->cycle_state = start_cycle; 4282 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 4283 return ret; 4284 } 4285 4286 /* 4287 * Check transfer ring to guarantee there is enough room for the urb. 4288 * Update ISO URB start_frame and interval. 4289 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to 4290 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or 4291 * Contiguous Frame ID is not supported by HC. 4292 */ 4293 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 4294 struct urb *urb, int slot_id, unsigned int ep_index) 4295 { 4296 struct xhci_virt_device *xdev; 4297 struct xhci_ring *ep_ring; 4298 struct xhci_ep_ctx *ep_ctx; 4299 int start_frame; 4300 int num_tds, num_trbs, i; 4301 int ret; 4302 struct xhci_virt_ep *xep; 4303 int ist; 4304 4305 xdev = xhci->devs[slot_id]; 4306 xep = &xhci->devs[slot_id]->eps[ep_index]; 4307 ep_ring = xdev->eps[ep_index].ring; 4308 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 4309 4310 num_trbs = 0; 4311 num_tds = urb->number_of_packets; 4312 for (i = 0; i < num_tds; i++) 4313 num_trbs += count_isoc_trbs_needed(urb, i); 4314 4315 /* Check the ring to guarantee there is enough room for the whole urb. 4316 * Do not insert any td of the urb to the ring if the check failed. 4317 */ 4318 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 4319 num_trbs, mem_flags); 4320 if (ret) 4321 return ret; 4322 4323 /* 4324 * Check interval value. This should be done before we start to 4325 * calculate the start frame value. 4326 */ 4327 check_interval(urb, ep_ctx); 4328 4329 /* Calculate the start frame and put it in urb->start_frame. */ 4330 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { 4331 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) { 4332 urb->start_frame = xep->next_frame_id; 4333 goto skip_start_over; 4334 } 4335 } 4336 4337 start_frame = readl(&xhci->run_regs->microframe_index); 4338 start_frame &= 0x3fff; 4339 /* 4340 * Round up to the next frame and consider the time before trb really 4341 * gets scheduled by hardare. 4342 */ 4343 ist = HCS_IST(xhci->hcs_params2) & 0x7; 4344 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 4345 ist <<= 3; 4346 start_frame += ist + XHCI_CFC_DELAY; 4347 start_frame = roundup(start_frame, 8); 4348 4349 /* 4350 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT 4351 * is greate than 8 microframes. 4352 */ 4353 if (urb->dev->speed == USB_SPEED_LOW || 4354 urb->dev->speed == USB_SPEED_FULL) { 4355 start_frame = roundup(start_frame, urb->interval << 3); 4356 urb->start_frame = start_frame >> 3; 4357 } else { 4358 start_frame = roundup(start_frame, urb->interval); 4359 urb->start_frame = start_frame; 4360 } 4361 4362 skip_start_over: 4363 4364 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 4365 } 4366 4367 /**** Command Ring Operations ****/ 4368 4369 /* Generic function for queueing a command TRB on the command ring. 4370 * Check to make sure there's room on the command ring for one command TRB. 4371 * Also check that there's room reserved for commands that must not fail. 4372 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 4373 * then only check for the number of reserved spots. 4374 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 4375 * because the command event handler may want to resubmit a failed command. 4376 */ 4377 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4378 u32 field1, u32 field2, 4379 u32 field3, u32 field4, bool command_must_succeed) 4380 { 4381 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 4382 int ret; 4383 4384 if ((xhci->xhc_state & XHCI_STATE_DYING) || 4385 (xhci->xhc_state & XHCI_STATE_HALTED)) { 4386 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command. state: 0x%x\n", 4387 xhci->xhc_state); 4388 return -ESHUTDOWN; 4389 } 4390 4391 if (!command_must_succeed) 4392 reserved_trbs++; 4393 4394 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 4395 reserved_trbs, GFP_ATOMIC); 4396 if (ret < 0) { 4397 xhci_err(xhci, "ERR: No room for command on command ring\n"); 4398 if (command_must_succeed) 4399 xhci_err(xhci, "ERR: Reserved TRB counting for " 4400 "unfailable commands failed.\n"); 4401 return ret; 4402 } 4403 4404 cmd->command_trb = xhci->cmd_ring->enqueue; 4405 4406 /* if there are no other commands queued we start the timeout timer */ 4407 if (list_empty(&xhci->cmd_list)) { 4408 xhci->current_cmd = cmd; 4409 xhci_mod_cmd_timer(xhci); 4410 } 4411 4412 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 4413 4414 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 4415 field4 | xhci->cmd_ring->cycle_state); 4416 return 0; 4417 } 4418 4419 /* Queue a slot enable or disable request on the command ring */ 4420 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 4421 u32 trb_type, u32 slot_id) 4422 { 4423 return queue_command(xhci, cmd, 0, 0, 0, 4424 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 4425 } 4426 4427 /* Queue an address device command TRB */ 4428 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4429 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 4430 { 4431 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4432 upper_32_bits(in_ctx_ptr), 0, 4433 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 4434 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 4435 } 4436 4437 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4438 u32 field1, u32 field2, u32 field3, u32 field4) 4439 { 4440 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 4441 } 4442 4443 /* Queue a reset device command TRB */ 4444 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4445 u32 slot_id) 4446 { 4447 return queue_command(xhci, cmd, 0, 0, 0, 4448 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 4449 false); 4450 } 4451 4452 /* Queue a configure endpoint command TRB */ 4453 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 4454 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 4455 u32 slot_id, bool command_must_succeed) 4456 { 4457 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4458 upper_32_bits(in_ctx_ptr), 0, 4459 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 4460 command_must_succeed); 4461 } 4462 4463 /* Queue a get root hub port bandwidth command TRB */ 4464 int xhci_queue_get_port_bw(struct xhci_hcd *xhci, 4465 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 4466 u8 dev_speed, bool command_must_succeed) 4467 { 4468 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4469 upper_32_bits(in_ctx_ptr), 0, 4470 TRB_TYPE(TRB_GET_BW) | DEV_SPEED_FOR_TRB(dev_speed), 4471 command_must_succeed); 4472 } 4473 4474 /* Queue an evaluate context command TRB */ 4475 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 4476 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 4477 { 4478 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4479 upper_32_bits(in_ctx_ptr), 0, 4480 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 4481 command_must_succeed); 4482 } 4483 4484 /* 4485 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 4486 * activity on an endpoint that is about to be suspended. 4487 */ 4488 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 4489 int slot_id, unsigned int ep_index, int suspend) 4490 { 4491 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4492 u32 trb_ep_index = EP_INDEX_FOR_TRB(ep_index); 4493 u32 type = TRB_TYPE(TRB_STOP_RING); 4494 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 4495 4496 return queue_command(xhci, cmd, 0, 0, 0, 4497 trb_slot_id | trb_ep_index | type | trb_suspend, false); 4498 } 4499 4500 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 4501 int slot_id, unsigned int ep_index, 4502 enum xhci_ep_reset_type reset_type) 4503 { 4504 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4505 u32 trb_ep_index = EP_INDEX_FOR_TRB(ep_index); 4506 u32 type = TRB_TYPE(TRB_RESET_EP); 4507 4508 if (reset_type == EP_SOFT_RESET) 4509 type |= TRB_TSP; 4510 4511 return queue_command(xhci, cmd, 0, 0, 0, 4512 trb_slot_id | trb_ep_index | type, false); 4513 } 4514