1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 /* 12 * Ring initialization rules: 13 * 1. Each segment is initialized to zero, except for link TRBs. 14 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 15 * Consumer Cycle State (CCS), depending on ring function. 16 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 17 * 18 * Ring behavior rules: 19 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 20 * least one free TRB in the ring. This is useful if you want to turn that 21 * into a link TRB and expand the ring. 22 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 23 * link TRB, then load the pointer with the address in the link TRB. If the 24 * link TRB had its toggle bit set, you may need to update the ring cycle 25 * state (see cycle bit rules). You may have to do this multiple times 26 * until you reach a non-link TRB. 27 * 3. A ring is full if enqueue++ (for the definition of increment above) 28 * equals the dequeue pointer. 29 * 30 * Cycle bit rules: 31 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 32 * in a link TRB, it must toggle the ring cycle state. 33 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 34 * in a link TRB, it must toggle the ring cycle state. 35 * 36 * Producer rules: 37 * 1. Check if ring is full before you enqueue. 38 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 39 * Update enqueue pointer between each write (which may update the ring 40 * cycle state). 41 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 42 * and endpoint rings. If HC is the producer for the event ring, 43 * and it generates an interrupt according to interrupt modulation rules. 44 * 45 * Consumer rules: 46 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 47 * the TRB is owned by the consumer. 48 * 2. Update dequeue pointer (which may update the ring cycle state) and 49 * continue processing TRBs until you reach a TRB which is not owned by you. 50 * 3. Notify the producer. SW is the consumer for the event ring, and it 51 * updates event ring dequeue pointer. HC is the consumer for the command and 52 * endpoint rings; it generates events on the event ring for these. 53 */ 54 55 #include <linux/jiffies.h> 56 #include <linux/scatterlist.h> 57 #include <linux/slab.h> 58 #include <linux/dma-mapping.h> 59 #include "xhci.h" 60 #include "xhci-trace.h" 61 62 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 63 u32 field1, u32 field2, 64 u32 field3, u32 field4, bool command_must_succeed); 65 66 /* 67 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 68 * address of the TRB. 69 */ 70 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 71 union xhci_trb *trb) 72 { 73 unsigned long segment_offset; 74 75 if (!seg || !trb || trb < seg->trbs) 76 return 0; 77 /* offset in TRBs */ 78 segment_offset = trb - seg->trbs; 79 if (segment_offset >= TRBS_PER_SEGMENT) 80 return 0; 81 return seg->dma + (segment_offset * sizeof(*trb)); 82 } 83 84 static bool trb_is_noop(union xhci_trb *trb) 85 { 86 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); 87 } 88 89 static bool trb_is_link(union xhci_trb *trb) 90 { 91 return TRB_TYPE_LINK_LE32(trb->link.control); 92 } 93 94 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) 95 { 96 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; 97 } 98 99 static bool last_trb_on_ring(struct xhci_ring *ring, 100 struct xhci_segment *seg, union xhci_trb *trb) 101 { 102 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); 103 } 104 105 static bool link_trb_toggles_cycle(union xhci_trb *trb) 106 { 107 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 108 } 109 110 static bool last_td_in_urb(struct xhci_td *td) 111 { 112 struct urb_priv *urb_priv = td->urb->hcpriv; 113 114 return urb_priv->num_tds_done == urb_priv->num_tds; 115 } 116 117 static bool unhandled_event_trb(struct xhci_ring *ring) 118 { 119 return ((le32_to_cpu(ring->dequeue->event_cmd.flags) & TRB_CYCLE) == 120 ring->cycle_state); 121 } 122 123 static void inc_td_cnt(struct urb *urb) 124 { 125 struct urb_priv *urb_priv = urb->hcpriv; 126 127 urb_priv->num_tds_done++; 128 } 129 130 static void trb_to_noop(union xhci_trb *trb, u32 noop_type) 131 { 132 if (trb_is_link(trb)) { 133 /* unchain chained link TRBs */ 134 trb->link.control &= cpu_to_le32(~TRB_CHAIN); 135 } else { 136 trb->generic.field[0] = 0; 137 trb->generic.field[1] = 0; 138 trb->generic.field[2] = 0; 139 /* Preserve only the cycle bit of this TRB */ 140 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 141 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); 142 } 143 } 144 145 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 146 * TRB is in a new segment. This does not skip over link TRBs, and it does not 147 * effect the ring dequeue or enqueue pointers. 148 */ 149 static void next_trb(struct xhci_segment **seg, 150 union xhci_trb **trb) 151 { 152 if (trb_is_link(*trb) || last_trb_on_seg(*seg, *trb)) { 153 *seg = (*seg)->next; 154 *trb = ((*seg)->trbs); 155 } else { 156 (*trb)++; 157 } 158 } 159 160 /* 161 * See Cycle bit rules. SW is the consumer for the event ring only. 162 */ 163 void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 164 { 165 unsigned int link_trb_count = 0; 166 167 /* event ring doesn't have link trbs, check for last trb */ 168 if (ring->type == TYPE_EVENT) { 169 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 170 ring->dequeue++; 171 return; 172 } 173 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) 174 ring->cycle_state ^= 1; 175 ring->deq_seg = ring->deq_seg->next; 176 ring->dequeue = ring->deq_seg->trbs; 177 178 trace_xhci_inc_deq(ring); 179 180 return; 181 } 182 183 /* All other rings have link trbs */ 184 if (!trb_is_link(ring->dequeue)) { 185 if (last_trb_on_seg(ring->deq_seg, ring->dequeue)) 186 xhci_warn(xhci, "Missing link TRB at end of segment\n"); 187 else 188 ring->dequeue++; 189 } 190 191 while (trb_is_link(ring->dequeue)) { 192 ring->deq_seg = ring->deq_seg->next; 193 ring->dequeue = ring->deq_seg->trbs; 194 195 trace_xhci_inc_deq(ring); 196 197 if (link_trb_count++ > ring->num_segs) { 198 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 199 break; 200 } 201 } 202 return; 203 } 204 205 /* 206 * See Cycle bit rules. SW is the consumer for the event ring only. 207 * 208 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 209 * chain bit is set), then set the chain bit in all the following link TRBs. 210 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 211 * have their chain bit cleared (so that each Link TRB is a separate TD). 212 * 213 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 214 * set, but other sections talk about dealing with the chain bit set. This was 215 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 216 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 217 * 218 * @more_trbs_coming: Will you enqueue more TRBs before calling 219 * prepare_transfer()? 220 */ 221 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 222 bool more_trbs_coming) 223 { 224 u32 chain; 225 union xhci_trb *next; 226 unsigned int link_trb_count = 0; 227 228 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 229 230 if (last_trb_on_seg(ring->enq_seg, ring->enqueue)) { 231 xhci_err(xhci, "Tried to move enqueue past ring segment\n"); 232 return; 233 } 234 235 next = ++(ring->enqueue); 236 237 /* Update the dequeue pointer further if that was a link TRB */ 238 while (trb_is_link(next)) { 239 240 /* 241 * If the caller doesn't plan on enqueueing more TDs before 242 * ringing the doorbell, then we don't want to give the link TRB 243 * to the hardware just yet. We'll give the link TRB back in 244 * prepare_ring() just before we enqueue the TD at the top of 245 * the ring. 246 */ 247 if (!chain && !more_trbs_coming) 248 break; 249 250 /* If we're not dealing with 0.95 hardware or isoc rings on 251 * AMD 0.96 host, carry over the chain bit of the previous TRB 252 * (which may mean the chain bit is cleared). 253 */ 254 if (!xhci_link_chain_quirk(xhci, ring->type)) { 255 next->link.control &= cpu_to_le32(~TRB_CHAIN); 256 next->link.control |= cpu_to_le32(chain); 257 } 258 /* Give this link TRB to the hardware */ 259 wmb(); 260 next->link.control ^= cpu_to_le32(TRB_CYCLE); 261 262 /* Toggle the cycle bit after the last ring segment. */ 263 if (link_trb_toggles_cycle(next)) 264 ring->cycle_state ^= 1; 265 266 ring->enq_seg = ring->enq_seg->next; 267 ring->enqueue = ring->enq_seg->trbs; 268 next = ring->enqueue; 269 270 trace_xhci_inc_enq(ring); 271 272 if (link_trb_count++ > ring->num_segs) { 273 xhci_warn(xhci, "%s: Ring link TRB loop\n", __func__); 274 break; 275 } 276 } 277 } 278 279 /* 280 * Return number of free normal TRBs from enqueue to dequeue pointer on ring. 281 * Not counting an assumed link TRB at end of each TRBS_PER_SEGMENT sized segment. 282 * Only for transfer and command rings where driver is the producer, not for 283 * event rings. 284 */ 285 static unsigned int xhci_num_trbs_free(struct xhci_ring *ring) 286 { 287 struct xhci_segment *enq_seg = ring->enq_seg; 288 union xhci_trb *enq = ring->enqueue; 289 union xhci_trb *last_on_seg; 290 unsigned int free = 0; 291 int i = 0; 292 293 /* Ring might be empty even if enq != deq if enq is left on a link trb */ 294 if (trb_is_link(enq)) { 295 enq_seg = enq_seg->next; 296 enq = enq_seg->trbs; 297 } 298 299 /* Empty ring, common case, don't walk the segments */ 300 if (enq == ring->dequeue) 301 return ring->num_segs * (TRBS_PER_SEGMENT - 1); 302 303 do { 304 if (ring->deq_seg == enq_seg && ring->dequeue >= enq) 305 return free + (ring->dequeue - enq); 306 last_on_seg = &enq_seg->trbs[TRBS_PER_SEGMENT - 1]; 307 free += last_on_seg - enq; 308 enq_seg = enq_seg->next; 309 enq = enq_seg->trbs; 310 } while (i++ < ring->num_segs); 311 312 return free; 313 } 314 315 /* 316 * Check to see if there's room to enqueue num_trbs on the ring and make sure 317 * enqueue pointer will not advance into dequeue segment. See rules above. 318 * return number of new segments needed to ensure this. 319 */ 320 321 static unsigned int xhci_ring_expansion_needed(struct xhci_hcd *xhci, struct xhci_ring *ring, 322 unsigned int num_trbs) 323 { 324 struct xhci_segment *seg; 325 int trbs_past_seg; 326 int enq_used; 327 int new_segs; 328 329 enq_used = ring->enqueue - ring->enq_seg->trbs; 330 331 /* how many trbs will be queued past the enqueue segment? */ 332 trbs_past_seg = enq_used + num_trbs - (TRBS_PER_SEGMENT - 1); 333 334 /* 335 * Consider expanding the ring already if num_trbs fills the current 336 * segment (i.e. trbs_past_seg == 0), not only when num_trbs goes into 337 * the next segment. Avoids confusing full ring with special empty ring 338 * case below 339 */ 340 if (trbs_past_seg < 0) 341 return 0; 342 343 /* Empty ring special case, enqueue stuck on link trb while dequeue advanced */ 344 if (trb_is_link(ring->enqueue) && ring->enq_seg->next->trbs == ring->dequeue) 345 return 0; 346 347 new_segs = 1 + (trbs_past_seg / (TRBS_PER_SEGMENT - 1)); 348 seg = ring->enq_seg; 349 350 while (new_segs > 0) { 351 seg = seg->next; 352 if (seg == ring->deq_seg) { 353 xhci_dbg(xhci, "Adding %d trbs requires expanding ring by %d segments\n", 354 num_trbs, new_segs); 355 return new_segs; 356 } 357 new_segs--; 358 } 359 360 return 0; 361 } 362 363 /* Ring the host controller doorbell after placing a command on the ring */ 364 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 365 { 366 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 367 return; 368 369 xhci_dbg(xhci, "// Ding dong!\n"); 370 371 trace_xhci_ring_host_doorbell(0, DB_VALUE_HOST); 372 373 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 374 /* Flush PCI posted writes */ 375 readl(&xhci->dba->doorbell[0]); 376 } 377 378 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci) 379 { 380 return mod_delayed_work(system_wq, &xhci->cmd_timer, 381 msecs_to_jiffies(xhci->current_cmd->timeout_ms)); 382 } 383 384 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) 385 { 386 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, 387 cmd_list); 388 } 389 390 /* 391 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 392 * If there are other commands waiting then restart the ring and kick the timer. 393 * This must be called with command ring stopped and xhci->lock held. 394 */ 395 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 396 struct xhci_command *cur_cmd) 397 { 398 struct xhci_command *i_cmd; 399 400 /* Turn all aborted commands in list to no-ops, then restart */ 401 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { 402 403 if (i_cmd->status != COMP_COMMAND_ABORTED) 404 continue; 405 406 i_cmd->status = COMP_COMMAND_RING_STOPPED; 407 408 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 409 i_cmd->command_trb); 410 411 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); 412 413 /* 414 * caller waiting for completion is called when command 415 * completion event is received for these no-op commands 416 */ 417 } 418 419 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 420 421 /* ring command ring doorbell to restart the command ring */ 422 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 423 !(xhci->xhc_state & XHCI_STATE_DYING)) { 424 xhci->current_cmd = cur_cmd; 425 xhci_mod_cmd_timer(xhci); 426 xhci_ring_cmd_db(xhci); 427 } 428 } 429 430 /* Must be called with xhci->lock held, releases and acquires lock back */ 431 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) 432 { 433 struct xhci_segment *new_seg = xhci->cmd_ring->deq_seg; 434 union xhci_trb *new_deq = xhci->cmd_ring->dequeue; 435 u64 crcr; 436 int ret; 437 438 xhci_dbg(xhci, "Abort command ring\n"); 439 440 reinit_completion(&xhci->cmd_ring_stop_completion); 441 442 /* 443 * The control bits like command stop, abort are located in lower 444 * dword of the command ring control register. 445 * Some controllers require all 64 bits to be written to abort the ring. 446 * Make sure the upper dword is valid, pointing to the next command, 447 * avoiding corrupting the command ring pointer in case the command ring 448 * is stopped by the time the upper dword is written. 449 */ 450 next_trb(&new_seg, &new_deq); 451 if (trb_is_link(new_deq)) 452 next_trb(&new_seg, &new_deq); 453 454 crcr = xhci_trb_virt_to_dma(new_seg, new_deq); 455 xhci_write_64(xhci, crcr | CMD_RING_ABORT, &xhci->op_regs->cmd_ring); 456 457 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the 458 * completion of the Command Abort operation. If CRR is not negated in 5 459 * seconds then driver handles it as if host died (-ENODEV). 460 * In the future we should distinguish between -ENODEV and -ETIMEDOUT 461 * and try to recover a -ETIMEDOUT with a host controller reset. 462 */ 463 ret = xhci_handshake_check_state(xhci, &xhci->op_regs->cmd_ring, 464 CMD_RING_RUNNING, 0, 5 * 1000 * 1000, 465 XHCI_STATE_REMOVING); 466 if (ret < 0) { 467 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret); 468 xhci_halt(xhci); 469 xhci_hc_died(xhci); 470 return ret; 471 } 472 /* 473 * Writing the CMD_RING_ABORT bit should cause a cmd completion event, 474 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared 475 * but the completion event in never sent. Wait 2 secs (arbitrary 476 * number) to handle those cases after negation of CMD_RING_RUNNING. 477 */ 478 spin_unlock_irqrestore(&xhci->lock, flags); 479 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, 480 msecs_to_jiffies(2000)); 481 spin_lock_irqsave(&xhci->lock, flags); 482 if (!ret) { 483 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); 484 xhci_cleanup_command_queue(xhci); 485 } else { 486 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); 487 } 488 return 0; 489 } 490 491 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 492 unsigned int slot_id, 493 unsigned int ep_index, 494 unsigned int stream_id) 495 { 496 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 497 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 498 unsigned int ep_state = ep->ep_state; 499 500 /* Don't ring the doorbell for this endpoint if there are pending 501 * cancellations because we don't want to interrupt processing. 502 * We don't want to restart any stream rings if there's a set dequeue 503 * pointer command pending because the device can choose to start any 504 * stream once the endpoint is on the HW schedule. 505 */ 506 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || 507 (ep_state & EP_HALTED) || (ep_state & EP_CLEARING_TT)) 508 return; 509 510 trace_xhci_ring_ep_doorbell(slot_id, DB_VALUE(ep_index, stream_id)); 511 512 writel(DB_VALUE(ep_index, stream_id), db_addr); 513 /* flush the write */ 514 readl(db_addr); 515 } 516 517 /* Ring the doorbell for any rings with pending URBs */ 518 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 519 unsigned int slot_id, 520 unsigned int ep_index) 521 { 522 unsigned int stream_id; 523 struct xhci_virt_ep *ep; 524 525 ep = &xhci->devs[slot_id]->eps[ep_index]; 526 527 /* A ring has pending URBs if its TD list is not empty */ 528 if (!(ep->ep_state & EP_HAS_STREAMS)) { 529 if (ep->ring && !(list_empty(&ep->ring->td_list))) 530 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 531 return; 532 } 533 534 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 535 stream_id++) { 536 struct xhci_stream_info *stream_info = ep->stream_info; 537 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 538 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 539 stream_id); 540 } 541 } 542 543 void xhci_ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 544 unsigned int slot_id, 545 unsigned int ep_index) 546 { 547 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 548 } 549 550 static struct xhci_virt_ep *xhci_get_virt_ep(struct xhci_hcd *xhci, 551 unsigned int slot_id, 552 unsigned int ep_index) 553 { 554 if (slot_id == 0 || slot_id >= MAX_HC_SLOTS) { 555 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 556 return NULL; 557 } 558 if (ep_index >= EP_CTX_PER_DEV) { 559 xhci_warn(xhci, "Invalid endpoint index %u\n", ep_index); 560 return NULL; 561 } 562 if (!xhci->devs[slot_id]) { 563 xhci_warn(xhci, "No xhci virt device for slot_id %u\n", slot_id); 564 return NULL; 565 } 566 567 return &xhci->devs[slot_id]->eps[ep_index]; 568 } 569 570 static struct xhci_ring *xhci_virt_ep_to_ring(struct xhci_hcd *xhci, 571 struct xhci_virt_ep *ep, 572 unsigned int stream_id) 573 { 574 /* common case, no streams */ 575 if (!(ep->ep_state & EP_HAS_STREAMS)) 576 return ep->ring; 577 578 if (!ep->stream_info) 579 return NULL; 580 581 if (stream_id == 0 || stream_id >= ep->stream_info->num_streams) { 582 xhci_warn(xhci, "Invalid stream_id %u request for slot_id %u ep_index %u\n", 583 stream_id, ep->vdev->slot_id, ep->ep_index); 584 return NULL; 585 } 586 587 return ep->stream_info->stream_rings[stream_id]; 588 } 589 590 /* Get the right ring for the given slot_id, ep_index and stream_id. 591 * If the endpoint supports streams, boundary check the URB's stream ID. 592 * If the endpoint doesn't support streams, return the singular endpoint ring. 593 */ 594 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 595 unsigned int slot_id, unsigned int ep_index, 596 unsigned int stream_id) 597 { 598 struct xhci_virt_ep *ep; 599 600 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 601 if (!ep) 602 return NULL; 603 604 return xhci_virt_ep_to_ring(xhci, ep, stream_id); 605 } 606 607 608 /* 609 * Get the hw dequeue pointer xHC stopped on, either directly from the 610 * endpoint context, or if streams are in use from the stream context. 611 * The returned hw_dequeue contains the lowest four bits with cycle state 612 * and possbile stream context type. 613 */ 614 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev, 615 unsigned int ep_index, unsigned int stream_id) 616 { 617 struct xhci_ep_ctx *ep_ctx; 618 struct xhci_stream_ctx *st_ctx; 619 struct xhci_virt_ep *ep; 620 621 ep = &vdev->eps[ep_index]; 622 623 if (ep->ep_state & EP_HAS_STREAMS) { 624 st_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 625 return le64_to_cpu(st_ctx->stream_ring); 626 } 627 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 628 return le64_to_cpu(ep_ctx->deq); 629 } 630 631 static int xhci_move_dequeue_past_td(struct xhci_hcd *xhci, 632 unsigned int slot_id, unsigned int ep_index, 633 unsigned int stream_id, struct xhci_td *td) 634 { 635 struct xhci_virt_device *dev = xhci->devs[slot_id]; 636 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 637 struct xhci_ring *ep_ring; 638 struct xhci_command *cmd; 639 struct xhci_segment *new_seg; 640 union xhci_trb *new_deq; 641 int new_cycle; 642 dma_addr_t addr; 643 u64 hw_dequeue; 644 bool cycle_found = false; 645 bool td_last_trb_found = false; 646 u32 trb_sct = 0; 647 int ret; 648 649 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 650 ep_index, stream_id); 651 if (!ep_ring) { 652 xhci_warn(xhci, "WARN can't find new dequeue, invalid stream ID %u\n", 653 stream_id); 654 return -ENODEV; 655 } 656 657 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id); 658 new_seg = ep_ring->deq_seg; 659 new_deq = ep_ring->dequeue; 660 new_cycle = hw_dequeue & 0x1; 661 662 /* 663 * We want to find the pointer, segment and cycle state of the new trb 664 * (the one after current TD's end_trb). We know the cycle state at 665 * hw_dequeue, so walk the ring until both hw_dequeue and end_trb are 666 * found. 667 */ 668 do { 669 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) 670 == (dma_addr_t)(hw_dequeue & ~0xf)) { 671 cycle_found = true; 672 if (td_last_trb_found) 673 break; 674 } 675 if (new_deq == td->end_trb) 676 td_last_trb_found = true; 677 678 if (cycle_found && trb_is_link(new_deq) && 679 link_trb_toggles_cycle(new_deq)) 680 new_cycle ^= 0x1; 681 682 next_trb(&new_seg, &new_deq); 683 684 /* Search wrapped around, bail out */ 685 if (new_deq == ep->ring->dequeue) { 686 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 687 return -EINVAL; 688 } 689 690 } while (!cycle_found || !td_last_trb_found); 691 692 /* Don't update the ring cycle state for the producer (us). */ 693 addr = xhci_trb_virt_to_dma(new_seg, new_deq); 694 if (addr == 0) { 695 xhci_warn(xhci, "Can't find dma of new dequeue ptr\n"); 696 xhci_warn(xhci, "deq seg = %p, deq ptr = %p\n", new_seg, new_deq); 697 return -EINVAL; 698 } 699 700 if ((ep->ep_state & SET_DEQ_PENDING)) { 701 xhci_warn(xhci, "Set TR Deq already pending, don't submit for 0x%pad\n", 702 &addr); 703 return -EBUSY; 704 } 705 706 /* This function gets called from contexts where it cannot sleep */ 707 cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC); 708 if (!cmd) { 709 xhci_warn(xhci, "Can't alloc Set TR Deq cmd 0x%pad\n", &addr); 710 return -ENOMEM; 711 } 712 713 if (stream_id) 714 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 715 ret = queue_command(xhci, cmd, 716 lower_32_bits(addr) | trb_sct | new_cycle, 717 upper_32_bits(addr), 718 STREAM_ID_FOR_TRB(stream_id), SLOT_ID_FOR_TRB(slot_id) | 719 EP_INDEX_FOR_TRB(ep_index) | TRB_TYPE(TRB_SET_DEQ), false); 720 if (ret < 0) { 721 xhci_free_command(xhci, cmd); 722 return ret; 723 } 724 ep->queued_deq_seg = new_seg; 725 ep->queued_deq_ptr = new_deq; 726 727 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 728 "Set TR Deq ptr 0x%llx, cycle %u\n", addr, new_cycle); 729 730 /* Stop the TD queueing code from ringing the doorbell until 731 * this command completes. The HC won't set the dequeue pointer 732 * if the ring is running, and ringing the doorbell starts the 733 * ring running. 734 */ 735 ep->ep_state |= SET_DEQ_PENDING; 736 xhci_ring_cmd_db(xhci); 737 return 0; 738 } 739 740 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 741 * (The last TRB actually points to the ring enqueue pointer, which is not part 742 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 743 */ 744 static void td_to_noop(struct xhci_td *td, bool flip_cycle) 745 { 746 struct xhci_segment *seg = td->start_seg; 747 union xhci_trb *trb = td->start_trb; 748 749 while (1) { 750 trb_to_noop(trb, TRB_TR_NOOP); 751 752 /* flip cycle if asked to */ 753 if (flip_cycle && trb != td->start_trb && trb != td->end_trb) 754 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); 755 756 if (trb == td->end_trb) 757 break; 758 759 next_trb(&seg, &trb); 760 } 761 } 762 763 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 764 struct xhci_td *cur_td, int status) 765 { 766 struct urb *urb = cur_td->urb; 767 struct urb_priv *urb_priv = urb->hcpriv; 768 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 769 770 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 771 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 772 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 773 if (xhci->quirks & XHCI_AMD_PLL_FIX) 774 usb_amd_quirk_pll_enable(); 775 } 776 } 777 xhci_urb_free_priv(urb_priv); 778 usb_hcd_unlink_urb_from_ep(hcd, urb); 779 trace_xhci_urb_giveback(urb); 780 usb_hcd_giveback_urb(hcd, urb, status); 781 } 782 783 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, 784 struct xhci_ring *ring, struct xhci_td *td) 785 { 786 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 787 struct xhci_segment *seg = td->bounce_seg; 788 struct urb *urb = td->urb; 789 size_t len; 790 791 if (!ring || !seg || !urb) 792 return; 793 794 if (usb_urb_dir_out(urb)) { 795 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 796 DMA_TO_DEVICE); 797 return; 798 } 799 800 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 801 DMA_FROM_DEVICE); 802 /* for in transfers we need to copy the data from bounce to sg */ 803 if (urb->num_sgs) { 804 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, seg->bounce_buf, 805 seg->bounce_len, seg->bounce_offs); 806 if (len != seg->bounce_len) 807 xhci_warn(xhci, "WARN Wrong bounce buffer read length: %zu != %d\n", 808 len, seg->bounce_len); 809 } else { 810 memcpy(urb->transfer_buffer + seg->bounce_offs, seg->bounce_buf, 811 seg->bounce_len); 812 } 813 seg->bounce_len = 0; 814 seg->bounce_offs = 0; 815 } 816 817 static void xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, 818 struct xhci_ring *ep_ring, int status) 819 { 820 struct urb *urb = NULL; 821 822 /* Clean up the endpoint's TD list */ 823 urb = td->urb; 824 825 /* if a bounce buffer was used to align this td then unmap it */ 826 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); 827 828 /* Do one last check of the actual transfer length. 829 * If the host controller said we transferred more data than the buffer 830 * length, urb->actual_length will be a very big number (since it's 831 * unsigned). Play it safe and say we didn't transfer anything. 832 */ 833 if (urb->actual_length > urb->transfer_buffer_length) { 834 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", 835 urb->transfer_buffer_length, urb->actual_length); 836 urb->actual_length = 0; 837 status = 0; 838 } 839 /* TD might be removed from td_list if we are giving back a cancelled URB */ 840 if (!list_empty(&td->td_list)) 841 list_del_init(&td->td_list); 842 /* Giving back a cancelled URB, or if a slated TD completed anyway */ 843 if (!list_empty(&td->cancelled_td_list)) 844 list_del_init(&td->cancelled_td_list); 845 846 inc_td_cnt(urb); 847 /* Giveback the urb when all the tds are completed */ 848 if (last_td_in_urb(td)) { 849 if ((urb->actual_length != urb->transfer_buffer_length && 850 (urb->transfer_flags & URB_SHORT_NOT_OK)) || 851 (status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) 852 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", 853 urb, urb->actual_length, 854 urb->transfer_buffer_length, status); 855 856 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ 857 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 858 status = 0; 859 xhci_giveback_urb_in_irq(xhci, td, status); 860 } 861 } 862 863 /* Give back previous TD and move on to the next TD. */ 864 static void xhci_dequeue_td(struct xhci_hcd *xhci, struct xhci_td *td, struct xhci_ring *ring, 865 u32 status) 866 { 867 ring->dequeue = td->end_trb; 868 ring->deq_seg = td->end_seg; 869 inc_deq(xhci, ring); 870 871 xhci_td_cleanup(xhci, td, ring, status); 872 } 873 874 /* Complete the cancelled URBs we unlinked from td_list. */ 875 static void xhci_giveback_invalidated_tds(struct xhci_virt_ep *ep) 876 { 877 struct xhci_ring *ring; 878 struct xhci_td *td, *tmp_td; 879 880 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 881 cancelled_td_list) { 882 883 ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 884 885 if (td->cancel_status == TD_CLEARED) { 886 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 887 __func__, td->urb); 888 xhci_td_cleanup(ep->xhci, td, ring, td->status); 889 } else { 890 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 891 __func__, td->urb, td->cancel_status); 892 } 893 if (ep->xhci->xhc_state & XHCI_STATE_DYING) 894 return; 895 } 896 } 897 898 static int xhci_reset_halted_ep(struct xhci_hcd *xhci, unsigned int slot_id, 899 unsigned int ep_index, enum xhci_ep_reset_type reset_type) 900 { 901 struct xhci_command *command; 902 int ret = 0; 903 904 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 905 if (!command) { 906 ret = -ENOMEM; 907 goto done; 908 } 909 910 xhci_dbg(xhci, "%s-reset ep %u, slot %u\n", 911 (reset_type == EP_HARD_RESET) ? "Hard" : "Soft", 912 ep_index, slot_id); 913 914 ret = xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type); 915 done: 916 if (ret) 917 xhci_err(xhci, "ERROR queuing reset endpoint for slot %d ep_index %d, %d\n", 918 slot_id, ep_index, ret); 919 return ret; 920 } 921 922 static int xhci_handle_halted_endpoint(struct xhci_hcd *xhci, 923 struct xhci_virt_ep *ep, 924 struct xhci_td *td, 925 enum xhci_ep_reset_type reset_type) 926 { 927 unsigned int slot_id = ep->vdev->slot_id; 928 int err; 929 930 /* 931 * Avoid resetting endpoint if link is inactive. Can cause host hang. 932 * Device will be reset soon to recover the link so don't do anything 933 */ 934 if (ep->vdev->flags & VDEV_PORT_ERROR) 935 return -ENODEV; 936 937 /* add td to cancelled list and let reset ep handler take care of it */ 938 if (reset_type == EP_HARD_RESET) { 939 ep->ep_state |= EP_HARD_CLEAR_TOGGLE; 940 if (td && list_empty(&td->cancelled_td_list)) { 941 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 942 td->cancel_status = TD_HALTED; 943 } 944 } 945 946 if (ep->ep_state & EP_HALTED) { 947 xhci_dbg(xhci, "Reset ep command for ep_index %d already pending\n", 948 ep->ep_index); 949 return 0; 950 } 951 952 err = xhci_reset_halted_ep(xhci, slot_id, ep->ep_index, reset_type); 953 if (err) 954 return err; 955 956 ep->ep_state |= EP_HALTED; 957 958 xhci_ring_cmd_db(xhci); 959 960 return 0; 961 } 962 963 /* 964 * Fix up the ep ring first, so HW stops executing cancelled TDs. 965 * We have the xHCI lock, so nothing can modify this list until we drop it. 966 * We're also in the event handler, so we can't get re-interrupted if another 967 * Stop Endpoint command completes. 968 * 969 * only call this when ring is not in a running state 970 */ 971 972 static int xhci_invalidate_cancelled_tds(struct xhci_virt_ep *ep) 973 { 974 struct xhci_hcd *xhci; 975 struct xhci_td *td = NULL; 976 struct xhci_td *tmp_td = NULL; 977 struct xhci_td *cached_td = NULL; 978 struct xhci_ring *ring; 979 u64 hw_deq; 980 unsigned int slot_id = ep->vdev->slot_id; 981 int err; 982 983 /* 984 * This is not going to work if the hardware is changing its dequeue 985 * pointers as we look at them. Completion handler will call us later. 986 */ 987 if (ep->ep_state & SET_DEQ_PENDING) 988 return 0; 989 990 xhci = ep->xhci; 991 992 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 993 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 994 "Removing canceled TD starting at 0x%llx (dma) in stream %u URB %p", 995 (unsigned long long)xhci_trb_virt_to_dma( 996 td->start_seg, td->start_trb), 997 td->urb->stream_id, td->urb); 998 list_del_init(&td->td_list); 999 ring = xhci_urb_to_transfer_ring(xhci, td->urb); 1000 if (!ring) { 1001 xhci_warn(xhci, "WARN Cancelled URB %p has invalid stream ID %u.\n", 1002 td->urb, td->urb->stream_id); 1003 continue; 1004 } 1005 /* 1006 * If a ring stopped on the TD we need to cancel then we have to 1007 * move the xHC endpoint ring dequeue pointer past this TD. 1008 * Rings halted due to STALL may show hw_deq is past the stalled 1009 * TD, but still require a set TR Deq command to flush xHC cache. 1010 */ 1011 hw_deq = xhci_get_hw_deq(xhci, ep->vdev, ep->ep_index, 1012 td->urb->stream_id); 1013 hw_deq &= ~0xf; 1014 1015 if (td->cancel_status == TD_HALTED || trb_in_td(xhci, td, hw_deq, false)) { 1016 switch (td->cancel_status) { 1017 case TD_CLEARED: /* TD is already no-op */ 1018 case TD_CLEARING_CACHE: /* set TR deq command already queued */ 1019 break; 1020 case TD_DIRTY: /* TD is cached, clear it */ 1021 case TD_HALTED: 1022 case TD_CLEARING_CACHE_DEFERRED: 1023 if (cached_td) { 1024 if (cached_td->urb->stream_id != td->urb->stream_id) { 1025 /* Multiple streams case, defer move dq */ 1026 xhci_dbg(xhci, 1027 "Move dq deferred: stream %u URB %p\n", 1028 td->urb->stream_id, td->urb); 1029 td->cancel_status = TD_CLEARING_CACHE_DEFERRED; 1030 break; 1031 } 1032 1033 /* Should never happen, but clear the TD if it does */ 1034 xhci_warn(xhci, 1035 "Found multiple active URBs %p and %p in stream %u?\n", 1036 td->urb, cached_td->urb, 1037 td->urb->stream_id); 1038 td_to_noop(cached_td, false); 1039 cached_td->cancel_status = TD_CLEARED; 1040 } 1041 td_to_noop(td, false); 1042 td->cancel_status = TD_CLEARING_CACHE; 1043 cached_td = td; 1044 break; 1045 } 1046 } else { 1047 td_to_noop(td, false); 1048 td->cancel_status = TD_CLEARED; 1049 } 1050 } 1051 1052 /* If there's no need to move the dequeue pointer then we're done */ 1053 if (!cached_td) 1054 return 0; 1055 1056 err = xhci_move_dequeue_past_td(xhci, slot_id, ep->ep_index, 1057 cached_td->urb->stream_id, 1058 cached_td); 1059 if (err) { 1060 /* Failed to move past cached td, just set cached TDs to no-op */ 1061 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 1062 /* 1063 * Deferred TDs need to have the deq pointer set after the above command 1064 * completes, so if that failed we just give up on all of them (and 1065 * complain loudly since this could cause issues due to caching). 1066 */ 1067 if (td->cancel_status != TD_CLEARING_CACHE && 1068 td->cancel_status != TD_CLEARING_CACHE_DEFERRED) 1069 continue; 1070 xhci_warn(xhci, "Failed to clear cancelled cached URB %p, mark clear anyway\n", 1071 td->urb); 1072 td_to_noop(td, false); 1073 td->cancel_status = TD_CLEARED; 1074 } 1075 } 1076 return 0; 1077 } 1078 1079 /* 1080 * Erase queued TDs from transfer ring(s) and give back those the xHC didn't 1081 * stop on. If necessary, queue commands to move the xHC off cancelled TDs it 1082 * stopped on. Those will be given back later when the commands complete. 1083 * 1084 * Call under xhci->lock on a stopped endpoint. 1085 */ 1086 void xhci_process_cancelled_tds(struct xhci_virt_ep *ep) 1087 { 1088 xhci_invalidate_cancelled_tds(ep); 1089 xhci_giveback_invalidated_tds(ep); 1090 } 1091 1092 /* 1093 * Returns the TD the endpoint ring halted on. 1094 * Only call for non-running rings without streams. 1095 */ 1096 static struct xhci_td *find_halted_td(struct xhci_virt_ep *ep) 1097 { 1098 struct xhci_td *td; 1099 u64 hw_deq; 1100 1101 if (!list_empty(&ep->ring->td_list)) { /* Not streams compatible */ 1102 hw_deq = xhci_get_hw_deq(ep->xhci, ep->vdev, ep->ep_index, 0); 1103 hw_deq &= ~0xf; 1104 td = list_first_entry(&ep->ring->td_list, struct xhci_td, td_list); 1105 if (trb_in_td(ep->xhci, td, hw_deq, false)) 1106 return td; 1107 } 1108 return NULL; 1109 } 1110 1111 /* 1112 * When we get a command completion for a Stop Endpoint Command, we need to 1113 * unlink any cancelled TDs from the ring. There are two ways to do that: 1114 * 1115 * 1. If the HW was in the middle of processing the TD that needs to be 1116 * cancelled, then we must move the ring's dequeue pointer past the last TRB 1117 * in the TD with a Set Dequeue Pointer Command. 1118 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 1119 * bit cleared) so that the HW will skip over them. 1120 */ 1121 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 1122 union xhci_trb *trb, u32 comp_code) 1123 { 1124 unsigned int ep_index; 1125 struct xhci_virt_ep *ep; 1126 struct xhci_ep_ctx *ep_ctx; 1127 struct xhci_td *td = NULL; 1128 enum xhci_ep_reset_type reset_type; 1129 struct xhci_command *command; 1130 int err; 1131 1132 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 1133 if (!xhci->devs[slot_id]) 1134 xhci_warn(xhci, "Stop endpoint command completion for disabled slot %u\n", 1135 slot_id); 1136 return; 1137 } 1138 1139 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1140 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1141 if (!ep) 1142 return; 1143 1144 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1145 1146 trace_xhci_handle_cmd_stop_ep(ep_ctx); 1147 1148 if (comp_code == COMP_CONTEXT_STATE_ERROR) { 1149 /* 1150 * If stop endpoint command raced with a halting endpoint we need to 1151 * reset the host side endpoint first. 1152 * If the TD we halted on isn't cancelled the TD should be given back 1153 * with a proper error code, and the ring dequeue moved past the TD. 1154 * If streams case we can't find hw_deq, or the TD we halted on so do a 1155 * soft reset. 1156 * 1157 * Proper error code is unknown here, it would be -EPIPE if device side 1158 * of enadpoit halted (aka STALL), and -EPROTO if not (transaction error) 1159 * We use -EPROTO, if device is stalled it should return a stall error on 1160 * next transfer, which then will return -EPIPE, and device side stall is 1161 * noted and cleared by class driver. 1162 */ 1163 switch (GET_EP_CTX_STATE(ep_ctx)) { 1164 case EP_STATE_HALTED: 1165 xhci_dbg(xhci, "Stop ep completion raced with stall, reset ep\n"); 1166 if (ep->ep_state & EP_HAS_STREAMS) { 1167 reset_type = EP_SOFT_RESET; 1168 } else { 1169 reset_type = EP_HARD_RESET; 1170 td = find_halted_td(ep); 1171 if (td) 1172 td->status = -EPROTO; 1173 } 1174 /* reset ep, reset handler cleans up cancelled tds */ 1175 err = xhci_handle_halted_endpoint(xhci, ep, td, reset_type); 1176 if (err) 1177 break; 1178 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1179 return; 1180 case EP_STATE_STOPPED: 1181 /* 1182 * Per xHCI 4.6.9, Stop Endpoint command on a Stopped 1183 * EP is a Context State Error, and EP stays Stopped. 1184 * 1185 * But maybe it failed on Halted, and somebody ran Reset 1186 * Endpoint later. EP state is now Stopped and EP_HALTED 1187 * still set because Reset EP handler will run after us. 1188 */ 1189 if (ep->ep_state & EP_HALTED) 1190 break; 1191 /* 1192 * On some HCs EP state remains Stopped for some tens of 1193 * us to a few ms or more after a doorbell ring, and any 1194 * new Stop Endpoint fails without aborting the restart. 1195 * This handler may run quickly enough to still see this 1196 * Stopped state, but it will soon change to Running. 1197 * 1198 * Assume this bug on unexpected Stop Endpoint failures. 1199 * Keep retrying until the EP starts and stops again, on 1200 * chips where this is known to help. Wait for 100ms. 1201 */ 1202 if (!(xhci->quirks & XHCI_NEC_HOST)) 1203 break; 1204 if (time_is_before_jiffies(ep->stop_time + msecs_to_jiffies(100))) 1205 break; 1206 fallthrough; 1207 case EP_STATE_RUNNING: 1208 /* Race, HW handled stop ep cmd before ep was running */ 1209 xhci_dbg(xhci, "Stop ep completion ctx error, ctx_state %d\n", 1210 GET_EP_CTX_STATE(ep_ctx)); 1211 1212 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1213 if (!command) { 1214 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1215 return; 1216 } 1217 xhci_queue_stop_endpoint(xhci, command, slot_id, ep_index, 0); 1218 xhci_ring_cmd_db(xhci); 1219 1220 return; 1221 default: 1222 break; 1223 } 1224 } 1225 1226 /* will queue a set TR deq if stopped on a cancelled, uncleared TD */ 1227 xhci_invalidate_cancelled_tds(ep); 1228 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1229 1230 /* Otherwise ring the doorbell(s) to restart queued transfers */ 1231 xhci_giveback_invalidated_tds(ep); 1232 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1233 } 1234 1235 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 1236 { 1237 struct xhci_td *cur_td; 1238 struct xhci_td *tmp; 1239 1240 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { 1241 list_del_init(&cur_td->td_list); 1242 1243 if (!list_empty(&cur_td->cancelled_td_list)) 1244 list_del_init(&cur_td->cancelled_td_list); 1245 1246 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); 1247 1248 inc_td_cnt(cur_td->urb); 1249 if (last_td_in_urb(cur_td)) 1250 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1251 } 1252 } 1253 1254 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 1255 int slot_id, int ep_index) 1256 { 1257 struct xhci_td *cur_td; 1258 struct xhci_td *tmp; 1259 struct xhci_virt_ep *ep; 1260 struct xhci_ring *ring; 1261 1262 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1263 if (!ep) 1264 return; 1265 1266 if ((ep->ep_state & EP_HAS_STREAMS) || 1267 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 1268 int stream_id; 1269 1270 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 1271 stream_id++) { 1272 ring = ep->stream_info->stream_rings[stream_id]; 1273 if (!ring) 1274 continue; 1275 1276 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1277 "Killing URBs for slot ID %u, ep index %u, stream %u", 1278 slot_id, ep_index, stream_id); 1279 xhci_kill_ring_urbs(xhci, ring); 1280 } 1281 } else { 1282 ring = ep->ring; 1283 if (!ring) 1284 return; 1285 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1286 "Killing URBs for slot ID %u, ep index %u", 1287 slot_id, ep_index); 1288 xhci_kill_ring_urbs(xhci, ring); 1289 } 1290 1291 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, 1292 cancelled_td_list) { 1293 list_del_init(&cur_td->cancelled_td_list); 1294 inc_td_cnt(cur_td->urb); 1295 1296 if (last_td_in_urb(cur_td)) 1297 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1298 } 1299 } 1300 1301 /* 1302 * host controller died, register read returns 0xffffffff 1303 * Complete pending commands, mark them ABORTED. 1304 * URBs need to be given back as usb core might be waiting with device locks 1305 * held for the URBs to finish during device disconnect, blocking host remove. 1306 * 1307 * Call with xhci->lock held. 1308 * lock is relased and re-acquired while giving back urb. 1309 */ 1310 void xhci_hc_died(struct xhci_hcd *xhci) 1311 { 1312 int i, j; 1313 1314 if (xhci->xhc_state & XHCI_STATE_DYING) 1315 return; 1316 1317 xhci_err(xhci, "xHCI host controller not responding, assume dead\n"); 1318 xhci->xhc_state |= XHCI_STATE_DYING; 1319 1320 xhci_cleanup_command_queue(xhci); 1321 1322 /* return any pending urbs, remove may be waiting for them */ 1323 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 1324 if (!xhci->devs[i]) 1325 continue; 1326 for (j = 0; j < 31; j++) 1327 xhci_kill_endpoint_urbs(xhci, i, j); 1328 } 1329 1330 /* inform usb core hc died if PCI remove isn't already handling it */ 1331 if (!(xhci->xhc_state & XHCI_STATE_REMOVING)) 1332 usb_hc_died(xhci_to_hcd(xhci)); 1333 } 1334 1335 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 1336 struct xhci_virt_device *dev, 1337 struct xhci_ring *ep_ring, 1338 unsigned int ep_index) 1339 { 1340 union xhci_trb *dequeue_temp; 1341 1342 dequeue_temp = ep_ring->dequeue; 1343 1344 /* If we get two back-to-back stalls, and the first stalled transfer 1345 * ends just before a link TRB, the dequeue pointer will be left on 1346 * the link TRB by the code in the while loop. So we have to update 1347 * the dequeue pointer one segment further, or we'll jump off 1348 * the segment into la-la-land. 1349 */ 1350 if (trb_is_link(ep_ring->dequeue)) { 1351 ep_ring->deq_seg = ep_ring->deq_seg->next; 1352 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1353 } 1354 1355 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 1356 /* We have more usable TRBs */ 1357 ep_ring->dequeue++; 1358 if (trb_is_link(ep_ring->dequeue)) { 1359 if (ep_ring->dequeue == 1360 dev->eps[ep_index].queued_deq_ptr) 1361 break; 1362 ep_ring->deq_seg = ep_ring->deq_seg->next; 1363 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1364 } 1365 if (ep_ring->dequeue == dequeue_temp) { 1366 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 1367 break; 1368 } 1369 } 1370 } 1371 1372 /* 1373 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1374 * we need to clear the set deq pending flag in the endpoint ring state, so that 1375 * the TD queueing code can ring the doorbell again. We also need to ring the 1376 * endpoint doorbell to restart the ring, but only if there aren't more 1377 * cancellations pending. 1378 */ 1379 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1380 union xhci_trb *trb, u32 cmd_comp_code) 1381 { 1382 unsigned int ep_index; 1383 unsigned int stream_id; 1384 struct xhci_ring *ep_ring; 1385 struct xhci_virt_ep *ep; 1386 struct xhci_ep_ctx *ep_ctx; 1387 struct xhci_slot_ctx *slot_ctx; 1388 struct xhci_stream_ctx *stream_ctx; 1389 struct xhci_td *td, *tmp_td; 1390 1391 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1392 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1393 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1394 if (!ep) 1395 return; 1396 1397 ep_ring = xhci_virt_ep_to_ring(xhci, ep, stream_id); 1398 if (!ep_ring) { 1399 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 1400 stream_id); 1401 /* XXX: Harmless??? */ 1402 goto cleanup; 1403 } 1404 1405 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1406 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 1407 trace_xhci_handle_cmd_set_deq(slot_ctx); 1408 trace_xhci_handle_cmd_set_deq_ep(ep_ctx); 1409 1410 if (ep->ep_state & EP_HAS_STREAMS) { 1411 stream_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 1412 trace_xhci_handle_cmd_set_deq_stream(ep->stream_info, stream_id); 1413 } 1414 1415 if (cmd_comp_code != COMP_SUCCESS) { 1416 unsigned int ep_state; 1417 unsigned int slot_state; 1418 1419 switch (cmd_comp_code) { 1420 case COMP_TRB_ERROR: 1421 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 1422 break; 1423 case COMP_CONTEXT_STATE_ERROR: 1424 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1425 ep_state = GET_EP_CTX_STATE(ep_ctx); 1426 slot_state = le32_to_cpu(slot_ctx->dev_state); 1427 slot_state = GET_SLOT_STATE(slot_state); 1428 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1429 "Slot state = %u, EP state = %u", 1430 slot_state, ep_state); 1431 break; 1432 case COMP_SLOT_NOT_ENABLED_ERROR: 1433 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1434 slot_id); 1435 break; 1436 default: 1437 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1438 cmd_comp_code); 1439 break; 1440 } 1441 /* OK what do we do now? The endpoint state is hosed, and we 1442 * should never get to this point if the synchronization between 1443 * queueing, and endpoint state are correct. This might happen 1444 * if the device gets disconnected after we've finished 1445 * cancelling URBs, which might not be an error... 1446 */ 1447 } else { 1448 u64 deq; 1449 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1450 if (ep->ep_state & EP_HAS_STREAMS) { 1451 deq = le64_to_cpu(stream_ctx->stream_ring) & SCTX_DEQ_MASK; 1452 1453 /* 1454 * Cadence xHCI controllers store some endpoint state 1455 * information within Rsvd0 fields of Stream Endpoint 1456 * context. This field is not cleared during Set TR 1457 * Dequeue Pointer command which causes XDMA to skip 1458 * over transfer ring and leads to data loss on stream 1459 * pipe. 1460 * To fix this issue driver must clear Rsvd0 field. 1461 */ 1462 if (xhci->quirks & XHCI_CDNS_SCTX_QUIRK) { 1463 stream_ctx->reserved[0] = 0; 1464 stream_ctx->reserved[1] = 0; 1465 } 1466 } else { 1467 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1468 } 1469 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1470 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1471 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1472 ep->queued_deq_ptr) == deq) { 1473 /* Update the ring's dequeue segment and dequeue pointer 1474 * to reflect the new position. 1475 */ 1476 update_ring_for_set_deq_completion(xhci, ep->vdev, 1477 ep_ring, ep_index); 1478 } else { 1479 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1480 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1481 ep->queued_deq_seg, ep->queued_deq_ptr); 1482 } 1483 } 1484 /* HW cached TDs cleared from cache, give them back */ 1485 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 1486 cancelled_td_list) { 1487 ep_ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 1488 if (td->cancel_status == TD_CLEARING_CACHE) { 1489 td->cancel_status = TD_CLEARED; 1490 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 1491 __func__, td->urb); 1492 xhci_td_cleanup(ep->xhci, td, ep_ring, td->status); 1493 } else { 1494 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 1495 __func__, td->urb, td->cancel_status); 1496 } 1497 } 1498 cleanup: 1499 ep->ep_state &= ~SET_DEQ_PENDING; 1500 ep->queued_deq_seg = NULL; 1501 ep->queued_deq_ptr = NULL; 1502 1503 /* Check for deferred or newly cancelled TDs */ 1504 if (!list_empty(&ep->cancelled_td_list)) { 1505 xhci_dbg(ep->xhci, "%s: Pending TDs to clear, continuing with invalidation\n", 1506 __func__); 1507 xhci_invalidate_cancelled_tds(ep); 1508 /* Try to restart the endpoint if all is done */ 1509 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1510 /* Start giving back any TDs invalidated above */ 1511 xhci_giveback_invalidated_tds(ep); 1512 } else { 1513 /* Restart any rings with pending URBs */ 1514 xhci_dbg(ep->xhci, "%s: All TDs cleared, ring doorbell\n", __func__); 1515 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1516 } 1517 } 1518 1519 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1520 union xhci_trb *trb, u32 cmd_comp_code) 1521 { 1522 struct xhci_virt_ep *ep; 1523 struct xhci_ep_ctx *ep_ctx; 1524 unsigned int ep_index; 1525 1526 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1527 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1528 if (!ep) 1529 return; 1530 1531 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1532 trace_xhci_handle_cmd_reset_ep(ep_ctx); 1533 1534 /* This command will only fail if the endpoint wasn't halted, 1535 * but we don't care. 1536 */ 1537 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1538 "Ignoring reset ep completion code of %u", cmd_comp_code); 1539 1540 /* Cleanup cancelled TDs as ep is stopped. May queue a Set TR Deq cmd */ 1541 xhci_invalidate_cancelled_tds(ep); 1542 1543 /* Clear our internal halted state */ 1544 ep->ep_state &= ~EP_HALTED; 1545 1546 xhci_giveback_invalidated_tds(ep); 1547 1548 /* if this was a soft reset, then restart */ 1549 if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP) 1550 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1551 } 1552 1553 static void xhci_handle_cmd_enable_slot(int slot_id, struct xhci_command *command, 1554 u32 cmd_comp_code) 1555 { 1556 if (cmd_comp_code == COMP_SUCCESS) 1557 command->slot_id = slot_id; 1558 else 1559 command->slot_id = 0; 1560 } 1561 1562 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1563 { 1564 struct xhci_virt_device *virt_dev; 1565 struct xhci_slot_ctx *slot_ctx; 1566 1567 virt_dev = xhci->devs[slot_id]; 1568 if (!virt_dev) 1569 return; 1570 1571 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 1572 trace_xhci_handle_cmd_disable_slot(slot_ctx); 1573 1574 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1575 /* Delete default control endpoint resources */ 1576 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1577 } 1578 1579 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id) 1580 { 1581 struct xhci_virt_device *virt_dev; 1582 struct xhci_input_control_ctx *ctrl_ctx; 1583 struct xhci_ep_ctx *ep_ctx; 1584 unsigned int ep_index; 1585 u32 add_flags; 1586 1587 /* 1588 * Configure endpoint commands can come from the USB core configuration 1589 * or alt setting changes, or when streams were being configured. 1590 */ 1591 1592 virt_dev = xhci->devs[slot_id]; 1593 if (!virt_dev) 1594 return; 1595 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1596 if (!ctrl_ctx) { 1597 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1598 return; 1599 } 1600 1601 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1602 1603 /* Input ctx add_flags are the endpoint index plus one */ 1604 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1605 1606 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index); 1607 trace_xhci_handle_cmd_config_ep(ep_ctx); 1608 1609 return; 1610 } 1611 1612 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id) 1613 { 1614 struct xhci_virt_device *vdev; 1615 struct xhci_slot_ctx *slot_ctx; 1616 1617 vdev = xhci->devs[slot_id]; 1618 if (!vdev) 1619 return; 1620 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1621 trace_xhci_handle_cmd_addr_dev(slot_ctx); 1622 } 1623 1624 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id) 1625 { 1626 struct xhci_virt_device *vdev; 1627 struct xhci_slot_ctx *slot_ctx; 1628 1629 vdev = xhci->devs[slot_id]; 1630 if (!vdev) { 1631 xhci_warn(xhci, "Reset device command completion for disabled slot %u\n", 1632 slot_id); 1633 return; 1634 } 1635 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1636 trace_xhci_handle_cmd_reset_dev(slot_ctx); 1637 1638 xhci_dbg(xhci, "Completed reset device command.\n"); 1639 } 1640 1641 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1642 struct xhci_event_cmd *event) 1643 { 1644 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1645 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); 1646 return; 1647 } 1648 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1649 "NEC firmware version %2x.%02x", 1650 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1651 NEC_FW_MINOR(le32_to_cpu(event->status))); 1652 } 1653 1654 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) 1655 { 1656 list_del(&cmd->cmd_list); 1657 1658 if (cmd->completion) { 1659 cmd->status = status; 1660 complete(cmd->completion); 1661 } else { 1662 kfree(cmd); 1663 } 1664 } 1665 1666 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1667 { 1668 struct xhci_command *cur_cmd, *tmp_cmd; 1669 xhci->current_cmd = NULL; 1670 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1671 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED); 1672 } 1673 1674 void xhci_handle_command_timeout(struct work_struct *work) 1675 { 1676 struct xhci_hcd *xhci; 1677 unsigned long flags; 1678 char str[XHCI_MSG_MAX]; 1679 u64 hw_ring_state; 1680 u32 cmd_field3; 1681 u32 usbsts; 1682 1683 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); 1684 1685 spin_lock_irqsave(&xhci->lock, flags); 1686 1687 /* 1688 * If timeout work is pending, or current_cmd is NULL, it means we 1689 * raced with command completion. Command is handled so just return. 1690 */ 1691 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { 1692 spin_unlock_irqrestore(&xhci->lock, flags); 1693 return; 1694 } 1695 1696 cmd_field3 = le32_to_cpu(xhci->current_cmd->command_trb->generic.field[3]); 1697 usbsts = readl(&xhci->op_regs->status); 1698 xhci_dbg(xhci, "Command timeout, USBSTS:%s\n", xhci_decode_usbsts(str, usbsts)); 1699 1700 /* Bail out and tear down xhci if a stop endpoint command failed */ 1701 if (TRB_FIELD_TO_TYPE(cmd_field3) == TRB_STOP_RING) { 1702 struct xhci_virt_ep *ep; 1703 1704 xhci_warn(xhci, "xHCI host not responding to stop endpoint command\n"); 1705 1706 ep = xhci_get_virt_ep(xhci, TRB_TO_SLOT_ID(cmd_field3), 1707 TRB_TO_EP_INDEX(cmd_field3)); 1708 if (ep) 1709 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1710 1711 xhci_halt(xhci); 1712 xhci_hc_died(xhci); 1713 goto time_out_completed; 1714 } 1715 1716 /* mark this command to be cancelled */ 1717 xhci->current_cmd->status = COMP_COMMAND_ABORTED; 1718 1719 /* Make sure command ring is running before aborting it */ 1720 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1721 if (hw_ring_state == ~(u64)0) { 1722 xhci_hc_died(xhci); 1723 goto time_out_completed; 1724 } 1725 1726 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1727 (hw_ring_state & CMD_RING_RUNNING)) { 1728 /* Prevent new doorbell, and start command abort */ 1729 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 1730 xhci_dbg(xhci, "Command timeout\n"); 1731 xhci_abort_cmd_ring(xhci, flags); 1732 goto time_out_completed; 1733 } 1734 1735 /* host removed. Bail out */ 1736 if (xhci->xhc_state & XHCI_STATE_REMOVING) { 1737 xhci_dbg(xhci, "host removed, ring start fail?\n"); 1738 xhci_cleanup_command_queue(xhci); 1739 1740 goto time_out_completed; 1741 } 1742 1743 /* command timeout on stopped ring, ring can't be aborted */ 1744 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1745 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1746 1747 time_out_completed: 1748 spin_unlock_irqrestore(&xhci->lock, flags); 1749 return; 1750 } 1751 1752 static void handle_cmd_completion(struct xhci_hcd *xhci, 1753 struct xhci_event_cmd *event) 1754 { 1755 unsigned int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1756 u64 cmd_dma; 1757 dma_addr_t cmd_dequeue_dma; 1758 u32 cmd_comp_code; 1759 union xhci_trb *cmd_trb; 1760 struct xhci_command *cmd; 1761 u32 cmd_type; 1762 1763 if (slot_id >= MAX_HC_SLOTS) { 1764 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 1765 return; 1766 } 1767 1768 cmd_dma = le64_to_cpu(event->cmd_trb); 1769 cmd_trb = xhci->cmd_ring->dequeue; 1770 1771 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic, cmd_dma); 1772 1773 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1774 1775 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1776 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) { 1777 complete_all(&xhci->cmd_ring_stop_completion); 1778 return; 1779 } 1780 1781 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1782 cmd_trb); 1783 /* 1784 * Check whether the completion event is for our internal kept 1785 * command. 1786 */ 1787 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { 1788 xhci_warn(xhci, 1789 "ERROR mismatched command completion event\n"); 1790 return; 1791 } 1792 1793 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); 1794 1795 cancel_delayed_work(&xhci->cmd_timer); 1796 1797 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1798 xhci_err(xhci, 1799 "Command completion event does not match command\n"); 1800 return; 1801 } 1802 1803 /* 1804 * Host aborted the command ring, check if the current command was 1805 * supposed to be aborted, otherwise continue normally. 1806 * The command ring is stopped now, but the xHC will issue a Command 1807 * Ring Stopped event which will cause us to restart it. 1808 */ 1809 if (cmd_comp_code == COMP_COMMAND_ABORTED) { 1810 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1811 if (cmd->status == COMP_COMMAND_ABORTED) { 1812 if (xhci->current_cmd == cmd) 1813 xhci->current_cmd = NULL; 1814 goto event_handled; 1815 } 1816 } 1817 1818 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1819 switch (cmd_type) { 1820 case TRB_ENABLE_SLOT: 1821 xhci_handle_cmd_enable_slot(slot_id, cmd, cmd_comp_code); 1822 break; 1823 case TRB_DISABLE_SLOT: 1824 xhci_handle_cmd_disable_slot(xhci, slot_id); 1825 break; 1826 case TRB_CONFIG_EP: 1827 if (!cmd->completion) 1828 xhci_handle_cmd_config_ep(xhci, slot_id); 1829 break; 1830 case TRB_EVAL_CONTEXT: 1831 break; 1832 case TRB_ADDR_DEV: 1833 xhci_handle_cmd_addr_dev(xhci, slot_id); 1834 break; 1835 case TRB_STOP_RING: 1836 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1837 le32_to_cpu(cmd_trb->generic.field[3]))); 1838 if (!cmd->completion) 1839 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, 1840 cmd_comp_code); 1841 break; 1842 case TRB_SET_DEQ: 1843 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1844 le32_to_cpu(cmd_trb->generic.field[3]))); 1845 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1846 break; 1847 case TRB_CMD_NOOP: 1848 /* Is this an aborted command turned to NO-OP? */ 1849 if (cmd->status == COMP_COMMAND_RING_STOPPED) 1850 cmd_comp_code = COMP_COMMAND_RING_STOPPED; 1851 break; 1852 case TRB_RESET_EP: 1853 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1854 le32_to_cpu(cmd_trb->generic.field[3]))); 1855 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1856 break; 1857 case TRB_RESET_DEV: 1858 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1859 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1860 */ 1861 slot_id = TRB_TO_SLOT_ID( 1862 le32_to_cpu(cmd_trb->generic.field[3])); 1863 xhci_handle_cmd_reset_dev(xhci, slot_id); 1864 break; 1865 case TRB_NEC_GET_FW: 1866 xhci_handle_cmd_nec_get_fw(xhci, event); 1867 break; 1868 default: 1869 /* Skip over unknown commands on the event ring */ 1870 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); 1871 break; 1872 } 1873 1874 /* restart timer if this wasn't the last command */ 1875 if (!list_is_singular(&xhci->cmd_list)) { 1876 xhci->current_cmd = list_first_entry(&cmd->cmd_list, 1877 struct xhci_command, cmd_list); 1878 xhci_mod_cmd_timer(xhci); 1879 } else if (xhci->current_cmd == cmd) { 1880 xhci->current_cmd = NULL; 1881 } 1882 1883 event_handled: 1884 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); 1885 1886 inc_deq(xhci, xhci->cmd_ring); 1887 } 1888 1889 static void handle_vendor_event(struct xhci_hcd *xhci, 1890 union xhci_trb *event, u32 trb_type) 1891 { 1892 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1893 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1894 handle_cmd_completion(xhci, &event->event_cmd); 1895 } 1896 1897 static void handle_device_notification(struct xhci_hcd *xhci, 1898 union xhci_trb *event) 1899 { 1900 u32 slot_id; 1901 struct usb_device *udev; 1902 1903 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1904 if (!xhci->devs[slot_id]) { 1905 xhci_warn(xhci, "Device Notification event for " 1906 "unused slot %u\n", slot_id); 1907 return; 1908 } 1909 1910 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1911 slot_id); 1912 udev = xhci->devs[slot_id]->udev; 1913 if (udev && udev->parent) 1914 usb_wakeup_notification(udev->parent, udev->portnum); 1915 } 1916 1917 /* 1918 * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI 1919 * Controller. 1920 * As per ThunderX2errata-129 USB 2 device may come up as USB 1 1921 * If a connection to a USB 1 device is followed by another connection 1922 * to a USB 2 device. 1923 * 1924 * Reset the PHY after the USB device is disconnected if device speed 1925 * is less than HCD_USB3. 1926 * Retry the reset sequence max of 4 times checking the PLL lock status. 1927 * 1928 */ 1929 static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci) 1930 { 1931 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1932 u32 pll_lock_check; 1933 u32 retry_count = 4; 1934 1935 do { 1936 /* Assert PHY reset */ 1937 writel(0x6F, hcd->regs + 0x1048); 1938 udelay(10); 1939 /* De-assert the PHY reset */ 1940 writel(0x7F, hcd->regs + 0x1048); 1941 udelay(200); 1942 pll_lock_check = readl(hcd->regs + 0x1070); 1943 } while (!(pll_lock_check & 0x1) && --retry_count); 1944 } 1945 1946 static void handle_port_status(struct xhci_hcd *xhci, union xhci_trb *event) 1947 { 1948 struct usb_hcd *hcd; 1949 u32 port_id; 1950 u32 portsc, cmd_reg; 1951 int max_ports; 1952 unsigned int hcd_portnum; 1953 struct xhci_bus_state *bus_state; 1954 bool bogus_port_status = false; 1955 struct xhci_port *port; 1956 1957 /* Port status change events always have a successful completion code */ 1958 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) 1959 xhci_warn(xhci, 1960 "WARN: xHC returned failed port status event\n"); 1961 1962 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1963 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1964 1965 if ((port_id <= 0) || (port_id > max_ports)) { 1966 xhci_warn(xhci, "Port change event with invalid port ID %d\n", 1967 port_id); 1968 return; 1969 } 1970 1971 port = &xhci->hw_ports[port_id - 1]; 1972 if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) { 1973 xhci_warn(xhci, "Port change event, no port for port ID %u\n", 1974 port_id); 1975 bogus_port_status = true; 1976 goto cleanup; 1977 } 1978 1979 /* We might get interrupts after shared_hcd is removed */ 1980 if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) { 1981 xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n"); 1982 bogus_port_status = true; 1983 goto cleanup; 1984 } 1985 1986 hcd = port->rhub->hcd; 1987 bus_state = &port->rhub->bus_state; 1988 hcd_portnum = port->hcd_portnum; 1989 portsc = readl(port->addr); 1990 1991 xhci_dbg(xhci, "Port change event, %d-%d, id %d, portsc: 0x%x\n", 1992 hcd->self.busnum, hcd_portnum + 1, port_id, portsc); 1993 1994 trace_xhci_handle_port_status(port, portsc); 1995 1996 if (hcd->state == HC_STATE_SUSPENDED) { 1997 xhci_dbg(xhci, "resume root hub\n"); 1998 usb_hcd_resume_root_hub(hcd); 1999 } 2000 2001 if (hcd->speed >= HCD_USB3 && 2002 (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) { 2003 if (port->slot_id && xhci->devs[port->slot_id]) 2004 xhci->devs[port->slot_id]->flags |= VDEV_PORT_ERROR; 2005 } 2006 2007 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) { 2008 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 2009 2010 cmd_reg = readl(&xhci->op_regs->command); 2011 if (!(cmd_reg & CMD_RUN)) { 2012 xhci_warn(xhci, "xHC is not running.\n"); 2013 goto cleanup; 2014 } 2015 2016 if (DEV_SUPERSPEED_ANY(portsc)) { 2017 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 2018 /* Set a flag to say the port signaled remote wakeup, 2019 * so we can tell the difference between the end of 2020 * device and host initiated resume. 2021 */ 2022 bus_state->port_remote_wakeup |= 1 << hcd_portnum; 2023 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2024 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 2025 xhci_set_link_state(xhci, port, XDEV_U0); 2026 /* Need to wait until the next link state change 2027 * indicates the device is actually in U0. 2028 */ 2029 bogus_port_status = true; 2030 goto cleanup; 2031 } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) { 2032 xhci_dbg(xhci, "resume HS port %d\n", port_id); 2033 port->resume_timestamp = jiffies + 2034 msecs_to_jiffies(USB_RESUME_TIMEOUT); 2035 set_bit(hcd_portnum, &bus_state->resuming_ports); 2036 /* Do the rest in GetPortStatus after resume time delay. 2037 * Avoid polling roothub status before that so that a 2038 * usb device auto-resume latency around ~40ms. 2039 */ 2040 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2041 mod_timer(&hcd->rh_timer, 2042 port->resume_timestamp); 2043 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 2044 bogus_port_status = true; 2045 } 2046 } 2047 2048 if ((portsc & PORT_PLC) && 2049 DEV_SUPERSPEED_ANY(portsc) && 2050 ((portsc & PORT_PLS_MASK) == XDEV_U0 || 2051 (portsc & PORT_PLS_MASK) == XDEV_U1 || 2052 (portsc & PORT_PLS_MASK) == XDEV_U2)) { 2053 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 2054 complete(&port->u3exit_done); 2055 /* We've just brought the device into U0/1/2 through either the 2056 * Resume state after a device remote wakeup, or through the 2057 * U3Exit state after a host-initiated resume. If it's a device 2058 * initiated remote wake, don't pass up the link state change, 2059 * so the roothub behavior is consistent with external 2060 * USB 3.0 hub behavior. 2061 */ 2062 if (port->slot_id && xhci->devs[port->slot_id]) 2063 xhci_ring_device(xhci, port->slot_id); 2064 if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) { 2065 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2066 usb_wakeup_notification(hcd->self.root_hub, 2067 hcd_portnum + 1); 2068 bogus_port_status = true; 2069 goto cleanup; 2070 } 2071 } 2072 2073 /* 2074 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 2075 * RExit to a disconnect state). If so, let the driver know it's 2076 * out of the RExit state. 2077 */ 2078 if (hcd->speed < HCD_USB3 && port->rexit_active) { 2079 complete(&port->rexit_done); 2080 port->rexit_active = false; 2081 bogus_port_status = true; 2082 goto cleanup; 2083 } 2084 2085 if (hcd->speed < HCD_USB3) { 2086 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2087 if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) && 2088 (portsc & PORT_CSC) && !(portsc & PORT_CONNECT)) 2089 xhci_cavium_reset_phy_quirk(xhci); 2090 } 2091 2092 cleanup: 2093 2094 /* Don't make the USB core poll the roothub if we got a bad port status 2095 * change event. Besides, at that point we can't tell which roothub 2096 * (USB 2.0 or USB 3.0) to kick. 2097 */ 2098 if (bogus_port_status) 2099 return; 2100 2101 /* 2102 * xHCI port-status-change events occur when the "or" of all the 2103 * status-change bits in the portsc register changes from 0 to 1. 2104 * New status changes won't cause an event if any other change 2105 * bits are still set. When an event occurs, switch over to 2106 * polling to avoid losing status changes. 2107 */ 2108 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 2109 __func__, hcd->self.busnum); 2110 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2111 spin_unlock(&xhci->lock); 2112 /* Pass this up to the core */ 2113 usb_hcd_poll_rh_status(hcd); 2114 spin_lock(&xhci->lock); 2115 } 2116 2117 /* 2118 * If the suspect DMA address is a TRB in this TD, this function returns that 2119 * TRB's segment. Otherwise it returns 0. 2120 */ 2121 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, struct xhci_td *td, dma_addr_t suspect_dma, 2122 bool debug) 2123 { 2124 dma_addr_t start_dma; 2125 dma_addr_t end_seg_dma; 2126 dma_addr_t end_trb_dma; 2127 struct xhci_segment *cur_seg; 2128 2129 start_dma = xhci_trb_virt_to_dma(td->start_seg, td->start_trb); 2130 cur_seg = td->start_seg; 2131 2132 do { 2133 if (start_dma == 0) 2134 return NULL; 2135 /* We may get an event for a Link TRB in the middle of a TD */ 2136 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 2137 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 2138 /* If the end TRB isn't in this segment, this is set to 0 */ 2139 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, td->end_trb); 2140 2141 if (debug) 2142 xhci_warn(xhci, 2143 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", 2144 (unsigned long long)suspect_dma, 2145 (unsigned long long)start_dma, 2146 (unsigned long long)end_trb_dma, 2147 (unsigned long long)cur_seg->dma, 2148 (unsigned long long)end_seg_dma); 2149 2150 if (end_trb_dma > 0) { 2151 /* The end TRB is in this segment, so suspect should be here */ 2152 if (start_dma <= end_trb_dma) { 2153 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 2154 return cur_seg; 2155 } else { 2156 /* Case for one segment with 2157 * a TD wrapped around to the top 2158 */ 2159 if ((suspect_dma >= start_dma && 2160 suspect_dma <= end_seg_dma) || 2161 (suspect_dma >= cur_seg->dma && 2162 suspect_dma <= end_trb_dma)) 2163 return cur_seg; 2164 } 2165 return NULL; 2166 } else { 2167 /* Might still be somewhere in this segment */ 2168 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 2169 return cur_seg; 2170 } 2171 cur_seg = cur_seg->next; 2172 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 2173 } while (cur_seg != td->start_seg); 2174 2175 return NULL; 2176 } 2177 2178 static void xhci_clear_hub_tt_buffer(struct xhci_hcd *xhci, struct xhci_td *td, 2179 struct xhci_virt_ep *ep) 2180 { 2181 /* 2182 * As part of low/full-speed endpoint-halt processing 2183 * we must clear the TT buffer (USB 2.0 specification 11.17.5). 2184 */ 2185 if (td->urb->dev->tt && !usb_pipeint(td->urb->pipe) && 2186 (td->urb->dev->tt->hub != xhci_to_hcd(xhci)->self.root_hub) && 2187 !(ep->ep_state & EP_CLEARING_TT)) { 2188 ep->ep_state |= EP_CLEARING_TT; 2189 td->urb->ep->hcpriv = td->urb->dev; 2190 if (usb_hub_clear_tt_buffer(td->urb)) 2191 ep->ep_state &= ~EP_CLEARING_TT; 2192 } 2193 } 2194 2195 /* 2196 * Check if xhci internal endpoint state has gone to a "halt" state due to an 2197 * error or stall, including default control pipe protocol stall. 2198 * The internal halt needs to be cleared with a reset endpoint command. 2199 * 2200 * External device side is also halted in functional stall cases. Class driver 2201 * will clear the device halt with a CLEAR_FEATURE(ENDPOINT_HALT) request later. 2202 */ 2203 static bool xhci_halted_host_endpoint(struct xhci_ep_ctx *ep_ctx, unsigned int comp_code) 2204 { 2205 /* Stall halts both internal and device side endpoint */ 2206 if (comp_code == COMP_STALL_ERROR) 2207 return true; 2208 2209 /* TRB completion codes that may require internal halt cleanup */ 2210 if (comp_code == COMP_USB_TRANSACTION_ERROR || 2211 comp_code == COMP_BABBLE_DETECTED_ERROR || 2212 comp_code == COMP_SPLIT_TRANSACTION_ERROR) 2213 /* 2214 * The 0.95 spec says a babbling control endpoint is not halted. 2215 * The 0.96 spec says it is. Some HW claims to be 0.95 2216 * compliant, but it halts the control endpoint anyway. 2217 * Check endpoint context if endpoint is halted. 2218 */ 2219 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) 2220 return true; 2221 2222 return false; 2223 } 2224 2225 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 2226 { 2227 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 2228 /* Vendor defined "informational" completion code, 2229 * treat as not-an-error. 2230 */ 2231 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 2232 trb_comp_code); 2233 xhci_dbg(xhci, "Treating code as success.\n"); 2234 return 1; 2235 } 2236 return 0; 2237 } 2238 2239 static void finish_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2240 struct xhci_ring *ep_ring, struct xhci_td *td, 2241 u32 trb_comp_code) 2242 { 2243 struct xhci_ep_ctx *ep_ctx; 2244 2245 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2246 2247 switch (trb_comp_code) { 2248 case COMP_STOPPED_LENGTH_INVALID: 2249 case COMP_STOPPED_SHORT_PACKET: 2250 case COMP_STOPPED: 2251 /* 2252 * The "Stop Endpoint" completion will take care of any 2253 * stopped TDs. A stopped TD may be restarted, so don't update 2254 * the ring dequeue pointer or take this TD off any lists yet. 2255 */ 2256 return; 2257 case COMP_USB_TRANSACTION_ERROR: 2258 case COMP_BABBLE_DETECTED_ERROR: 2259 case COMP_SPLIT_TRANSACTION_ERROR: 2260 /* 2261 * If endpoint context state is not halted we might be 2262 * racing with a reset endpoint command issued by a unsuccessful 2263 * stop endpoint completion (context error). In that case the 2264 * td should be on the cancelled list, and EP_HALTED flag set. 2265 * 2266 * Or then it's not halted due to the 0.95 spec stating that a 2267 * babbling control endpoint should not halt. The 0.96 spec 2268 * again says it should. Some HW claims to be 0.95 compliant, 2269 * but it halts the control endpoint anyway. 2270 */ 2271 if (GET_EP_CTX_STATE(ep_ctx) != EP_STATE_HALTED) { 2272 /* 2273 * If EP_HALTED is set and TD is on the cancelled list 2274 * the TD and dequeue pointer will be handled by reset 2275 * ep command completion 2276 */ 2277 if ((ep->ep_state & EP_HALTED) && 2278 !list_empty(&td->cancelled_td_list)) { 2279 xhci_dbg(xhci, "Already resolving halted ep for 0x%llx\n", 2280 (unsigned long long)xhci_trb_virt_to_dma( 2281 td->start_seg, td->start_trb)); 2282 return; 2283 } 2284 /* endpoint not halted, don't reset it */ 2285 break; 2286 } 2287 /* Almost same procedure as for STALL_ERROR below */ 2288 xhci_clear_hub_tt_buffer(xhci, td, ep); 2289 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2290 return; 2291 case COMP_STALL_ERROR: 2292 /* 2293 * xhci internal endpoint state will go to a "halt" state for 2294 * any stall, including default control pipe protocol stall. 2295 * To clear the host side halt we need to issue a reset endpoint 2296 * command, followed by a set dequeue command to move past the 2297 * TD. 2298 * Class drivers clear the device side halt from a functional 2299 * stall later. Hub TT buffer should only be cleared for FS/LS 2300 * devices behind HS hubs for functional stalls. 2301 */ 2302 if (ep->ep_index != 0) 2303 xhci_clear_hub_tt_buffer(xhci, td, ep); 2304 2305 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2306 2307 return; /* xhci_handle_halted_endpoint marked td cancelled */ 2308 default: 2309 break; 2310 } 2311 2312 xhci_dequeue_td(xhci, td, ep_ring, td->status); 2313 } 2314 2315 /* sum trb lengths from the first trb up to stop_trb, _excluding_ stop_trb */ 2316 static u32 sum_trb_lengths(struct xhci_td *td, union xhci_trb *stop_trb) 2317 { 2318 u32 sum; 2319 union xhci_trb *trb = td->start_trb; 2320 struct xhci_segment *seg = td->start_seg; 2321 2322 for (sum = 0; trb != stop_trb; next_trb(&seg, &trb)) { 2323 if (!trb_is_noop(trb) && !trb_is_link(trb)) 2324 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); 2325 } 2326 return sum; 2327 } 2328 2329 /* 2330 * Process control tds, update urb status and actual_length. 2331 */ 2332 static void process_ctrl_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2333 struct xhci_ring *ep_ring, struct xhci_td *td, 2334 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2335 { 2336 struct xhci_ep_ctx *ep_ctx; 2337 u32 trb_comp_code; 2338 u32 remaining, requested; 2339 u32 trb_type; 2340 2341 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); 2342 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2343 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2344 requested = td->urb->transfer_buffer_length; 2345 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2346 2347 switch (trb_comp_code) { 2348 case COMP_SUCCESS: 2349 if (trb_type != TRB_STATUS) { 2350 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n", 2351 (trb_type == TRB_DATA) ? "data" : "setup"); 2352 td->status = -ESHUTDOWN; 2353 break; 2354 } 2355 td->status = 0; 2356 break; 2357 case COMP_SHORT_PACKET: 2358 td->status = 0; 2359 break; 2360 case COMP_STOPPED_SHORT_PACKET: 2361 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2362 td->urb->actual_length = remaining; 2363 else 2364 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); 2365 goto finish_td; 2366 case COMP_STOPPED: 2367 switch (trb_type) { 2368 case TRB_SETUP: 2369 td->urb->actual_length = 0; 2370 goto finish_td; 2371 case TRB_DATA: 2372 case TRB_NORMAL: 2373 td->urb->actual_length = requested - remaining; 2374 goto finish_td; 2375 case TRB_STATUS: 2376 td->urb->actual_length = requested; 2377 goto finish_td; 2378 default: 2379 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", 2380 trb_type); 2381 goto finish_td; 2382 } 2383 case COMP_STOPPED_LENGTH_INVALID: 2384 goto finish_td; 2385 default: 2386 if (!xhci_halted_host_endpoint(ep_ctx, trb_comp_code)) 2387 break; 2388 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", 2389 trb_comp_code, ep->ep_index); 2390 fallthrough; 2391 case COMP_STALL_ERROR: 2392 /* Did we transfer part of the data (middle) phase? */ 2393 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2394 td->urb->actual_length = requested - remaining; 2395 else if (!td->urb_length_set) 2396 td->urb->actual_length = 0; 2397 goto finish_td; 2398 } 2399 2400 /* stopped at setup stage, no data transferred */ 2401 if (trb_type == TRB_SETUP) 2402 goto finish_td; 2403 2404 /* 2405 * if on data stage then update the actual_length of the URB and flag it 2406 * as set, so it won't be overwritten in the event for the last TRB. 2407 */ 2408 if (trb_type == TRB_DATA || 2409 trb_type == TRB_NORMAL) { 2410 td->urb_length_set = true; 2411 td->urb->actual_length = requested - remaining; 2412 xhci_dbg(xhci, "Waiting for status stage event\n"); 2413 return; 2414 } 2415 2416 /* at status stage */ 2417 if (!td->urb_length_set) 2418 td->urb->actual_length = requested; 2419 2420 finish_td: 2421 finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2422 } 2423 2424 /* 2425 * Process isochronous tds, update urb packet status and actual_length. 2426 */ 2427 static void process_isoc_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2428 struct xhci_ring *ep_ring, struct xhci_td *td, 2429 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2430 { 2431 struct urb_priv *urb_priv; 2432 int idx; 2433 struct usb_iso_packet_descriptor *frame; 2434 u32 trb_comp_code; 2435 bool sum_trbs_for_length = false; 2436 u32 remaining, requested, ep_trb_len; 2437 int short_framestatus; 2438 2439 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2440 urb_priv = td->urb->hcpriv; 2441 idx = urb_priv->num_tds_done; 2442 frame = &td->urb->iso_frame_desc[idx]; 2443 requested = frame->length; 2444 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2445 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2446 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2447 -EREMOTEIO : 0; 2448 2449 /* handle completion code */ 2450 switch (trb_comp_code) { 2451 case COMP_SUCCESS: 2452 /* Don't overwrite status if TD had an error, see xHCI 4.9.1 */ 2453 if (td->error_mid_td) 2454 break; 2455 if (remaining) { 2456 frame->status = short_framestatus; 2457 sum_trbs_for_length = true; 2458 break; 2459 } 2460 frame->status = 0; 2461 break; 2462 case COMP_SHORT_PACKET: 2463 frame->status = short_framestatus; 2464 sum_trbs_for_length = true; 2465 break; 2466 case COMP_BANDWIDTH_OVERRUN_ERROR: 2467 frame->status = -ECOMM; 2468 break; 2469 case COMP_BABBLE_DETECTED_ERROR: 2470 sum_trbs_for_length = true; 2471 fallthrough; 2472 case COMP_ISOCH_BUFFER_OVERRUN: 2473 frame->status = -EOVERFLOW; 2474 if (ep_trb != td->end_trb) 2475 td->error_mid_td = true; 2476 break; 2477 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2478 case COMP_STALL_ERROR: 2479 frame->status = -EPROTO; 2480 break; 2481 case COMP_USB_TRANSACTION_ERROR: 2482 frame->status = -EPROTO; 2483 sum_trbs_for_length = true; 2484 if (ep_trb != td->end_trb) 2485 td->error_mid_td = true; 2486 break; 2487 case COMP_STOPPED: 2488 sum_trbs_for_length = true; 2489 break; 2490 case COMP_STOPPED_SHORT_PACKET: 2491 /* field normally containing residue now contains transferred */ 2492 frame->status = short_framestatus; 2493 requested = remaining; 2494 break; 2495 case COMP_STOPPED_LENGTH_INVALID: 2496 /* exclude stopped trb with invalid length from length sum */ 2497 sum_trbs_for_length = true; 2498 ep_trb_len = 0; 2499 remaining = 0; 2500 break; 2501 default: 2502 sum_trbs_for_length = true; 2503 frame->status = -1; 2504 break; 2505 } 2506 2507 if (td->urb_length_set) 2508 goto finish_td; 2509 2510 if (sum_trbs_for_length) 2511 frame->actual_length = sum_trb_lengths(td, ep_trb) + 2512 ep_trb_len - remaining; 2513 else 2514 frame->actual_length = requested; 2515 2516 td->urb->actual_length += frame->actual_length; 2517 2518 finish_td: 2519 /* Don't give back TD yet if we encountered an error mid TD */ 2520 if (td->error_mid_td && ep_trb != td->end_trb) { 2521 xhci_dbg(xhci, "Error mid isoc TD, wait for final completion event\n"); 2522 td->urb_length_set = true; 2523 return; 2524 } 2525 finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2526 } 2527 2528 static void skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2529 struct xhci_virt_ep *ep, int status) 2530 { 2531 struct urb_priv *urb_priv; 2532 struct usb_iso_packet_descriptor *frame; 2533 int idx; 2534 2535 urb_priv = td->urb->hcpriv; 2536 idx = urb_priv->num_tds_done; 2537 frame = &td->urb->iso_frame_desc[idx]; 2538 2539 /* The transfer is partly done. */ 2540 frame->status = -EXDEV; 2541 2542 /* calc actual length */ 2543 frame->actual_length = 0; 2544 2545 xhci_dequeue_td(xhci, td, ep->ring, status); 2546 } 2547 2548 /* 2549 * Process bulk and interrupt tds, update urb status and actual_length. 2550 */ 2551 static void process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2552 struct xhci_ring *ep_ring, struct xhci_td *td, 2553 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2554 { 2555 struct xhci_slot_ctx *slot_ctx; 2556 u32 trb_comp_code; 2557 u32 remaining, requested, ep_trb_len; 2558 2559 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 2560 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2561 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2562 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2563 requested = td->urb->transfer_buffer_length; 2564 2565 switch (trb_comp_code) { 2566 case COMP_SUCCESS: 2567 ep->err_count = 0; 2568 /* handle success with untransferred data as short packet */ 2569 if (ep_trb != td->end_trb || remaining) { 2570 xhci_warn(xhci, "WARN Successful completion on short TX\n"); 2571 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2572 td->urb->ep->desc.bEndpointAddress, 2573 requested, remaining); 2574 } 2575 td->status = 0; 2576 break; 2577 case COMP_SHORT_PACKET: 2578 td->status = 0; 2579 break; 2580 case COMP_STOPPED_SHORT_PACKET: 2581 td->urb->actual_length = remaining; 2582 goto finish_td; 2583 case COMP_STOPPED_LENGTH_INVALID: 2584 /* stopped on ep trb with invalid length, exclude it */ 2585 td->urb->actual_length = sum_trb_lengths(td, ep_trb); 2586 goto finish_td; 2587 case COMP_USB_TRANSACTION_ERROR: 2588 if (xhci->quirks & XHCI_NO_SOFT_RETRY || 2589 (ep->err_count++ > MAX_SOFT_RETRY) || 2590 le32_to_cpu(slot_ctx->tt_info) & TT_SLOT) 2591 break; 2592 2593 td->status = 0; 2594 2595 xhci_handle_halted_endpoint(xhci, ep, td, EP_SOFT_RESET); 2596 return; 2597 default: 2598 /* do nothing */ 2599 break; 2600 } 2601 2602 if (ep_trb == td->end_trb) 2603 td->urb->actual_length = requested - remaining; 2604 else 2605 td->urb->actual_length = 2606 sum_trb_lengths(td, ep_trb) + 2607 ep_trb_len - remaining; 2608 finish_td: 2609 if (remaining > requested) { 2610 xhci_warn(xhci, "bad transfer trb length %d in event trb\n", 2611 remaining); 2612 td->urb->actual_length = 0; 2613 } 2614 2615 finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2616 } 2617 2618 /* Transfer events which don't point to a transfer TRB, see xhci 4.17.4 */ 2619 static int handle_transferless_tx_event(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2620 u32 trb_comp_code) 2621 { 2622 switch (trb_comp_code) { 2623 case COMP_STALL_ERROR: 2624 case COMP_USB_TRANSACTION_ERROR: 2625 case COMP_INVALID_STREAM_TYPE_ERROR: 2626 case COMP_INVALID_STREAM_ID_ERROR: 2627 xhci_dbg(xhci, "Stream transaction error ep %u no id\n", ep->ep_index); 2628 if (ep->err_count++ > MAX_SOFT_RETRY) 2629 xhci_handle_halted_endpoint(xhci, ep, NULL, EP_HARD_RESET); 2630 else 2631 xhci_handle_halted_endpoint(xhci, ep, NULL, EP_SOFT_RESET); 2632 break; 2633 case COMP_RING_UNDERRUN: 2634 case COMP_RING_OVERRUN: 2635 case COMP_STOPPED_LENGTH_INVALID: 2636 break; 2637 default: 2638 xhci_err(xhci, "Transfer event %u for unknown stream ring slot %u ep %u\n", 2639 trb_comp_code, ep->vdev->slot_id, ep->ep_index); 2640 return -ENODEV; 2641 } 2642 return 0; 2643 } 2644 2645 /* 2646 * If this function returns an error condition, it means it got a Transfer 2647 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2648 * At this point, the host controller is probably hosed and should be reset. 2649 */ 2650 static int handle_tx_event(struct xhci_hcd *xhci, 2651 struct xhci_interrupter *ir, 2652 struct xhci_transfer_event *event) 2653 { 2654 struct xhci_virt_ep *ep; 2655 struct xhci_ring *ep_ring; 2656 unsigned int slot_id; 2657 int ep_index; 2658 struct xhci_td *td = NULL; 2659 dma_addr_t ep_trb_dma; 2660 struct xhci_segment *ep_seg; 2661 union xhci_trb *ep_trb; 2662 int status = -EINPROGRESS; 2663 struct xhci_ep_ctx *ep_ctx; 2664 u32 trb_comp_code; 2665 2666 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2667 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2668 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2669 ep_trb_dma = le64_to_cpu(event->buffer); 2670 2671 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 2672 if (!ep) { 2673 xhci_err(xhci, "ERROR Invalid Transfer event\n"); 2674 goto err_out; 2675 } 2676 2677 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma); 2678 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 2679 2680 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { 2681 xhci_err(xhci, 2682 "ERROR Transfer event for disabled endpoint slot %u ep %u\n", 2683 slot_id, ep_index); 2684 goto err_out; 2685 } 2686 2687 if (!ep_ring) 2688 return handle_transferless_tx_event(xhci, ep, trb_comp_code); 2689 2690 /* Look for common error cases */ 2691 switch (trb_comp_code) { 2692 /* Skip codes that require special handling depending on 2693 * transfer type 2694 */ 2695 case COMP_SUCCESS: 2696 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2697 trb_comp_code = COMP_SHORT_PACKET; 2698 xhci_dbg(xhci, "Successful completion on short TX for slot %u ep %u with last td short %d\n", 2699 slot_id, ep_index, ep_ring->last_td_was_short); 2700 } 2701 break; 2702 case COMP_SHORT_PACKET: 2703 break; 2704 /* Completion codes for endpoint stopped state */ 2705 case COMP_STOPPED: 2706 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n", 2707 slot_id, ep_index); 2708 break; 2709 case COMP_STOPPED_LENGTH_INVALID: 2710 xhci_dbg(xhci, 2711 "Stopped on No-op or Link TRB for slot %u ep %u\n", 2712 slot_id, ep_index); 2713 break; 2714 case COMP_STOPPED_SHORT_PACKET: 2715 xhci_dbg(xhci, 2716 "Stopped with short packet transfer detected for slot %u ep %u\n", 2717 slot_id, ep_index); 2718 break; 2719 /* Completion codes for endpoint halted state */ 2720 case COMP_STALL_ERROR: 2721 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id, 2722 ep_index); 2723 status = -EPIPE; 2724 break; 2725 case COMP_SPLIT_TRANSACTION_ERROR: 2726 xhci_dbg(xhci, "Split transaction error for slot %u ep %u\n", 2727 slot_id, ep_index); 2728 status = -EPROTO; 2729 break; 2730 case COMP_USB_TRANSACTION_ERROR: 2731 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n", 2732 slot_id, ep_index); 2733 status = -EPROTO; 2734 break; 2735 case COMP_BABBLE_DETECTED_ERROR: 2736 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n", 2737 slot_id, ep_index); 2738 status = -EOVERFLOW; 2739 break; 2740 /* Completion codes for endpoint error state */ 2741 case COMP_TRB_ERROR: 2742 xhci_warn(xhci, 2743 "WARN: TRB error for slot %u ep %u on endpoint\n", 2744 slot_id, ep_index); 2745 status = -EILSEQ; 2746 break; 2747 /* completion codes not indicating endpoint state change */ 2748 case COMP_DATA_BUFFER_ERROR: 2749 xhci_warn(xhci, 2750 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n", 2751 slot_id, ep_index); 2752 status = -ENOSR; 2753 break; 2754 case COMP_BANDWIDTH_OVERRUN_ERROR: 2755 xhci_warn(xhci, 2756 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n", 2757 slot_id, ep_index); 2758 break; 2759 case COMP_ISOCH_BUFFER_OVERRUN: 2760 xhci_warn(xhci, 2761 "WARN: buffer overrun event for slot %u ep %u on endpoint", 2762 slot_id, ep_index); 2763 break; 2764 case COMP_RING_UNDERRUN: 2765 /* 2766 * When the Isoch ring is empty, the xHC will generate 2767 * a Ring Overrun Event for IN Isoch endpoint or Ring 2768 * Underrun Event for OUT Isoch endpoint. 2769 */ 2770 xhci_dbg(xhci, "Underrun event on slot %u ep %u\n", slot_id, ep_index); 2771 if (ep->skip) 2772 break; 2773 return 0; 2774 case COMP_RING_OVERRUN: 2775 xhci_dbg(xhci, "Overrun event on slot %u ep %u\n", slot_id, ep_index); 2776 if (ep->skip) 2777 break; 2778 return 0; 2779 case COMP_MISSED_SERVICE_ERROR: 2780 /* 2781 * When encounter missed service error, one or more isoc tds 2782 * may be missed by xHC. 2783 * Set skip flag of the ep_ring; Complete the missed tds as 2784 * short transfer when process the ep_ring next time. 2785 */ 2786 ep->skip = true; 2787 xhci_dbg(xhci, 2788 "Miss service interval error for slot %u ep %u, set skip flag\n", 2789 slot_id, ep_index); 2790 return 0; 2791 case COMP_NO_PING_RESPONSE_ERROR: 2792 ep->skip = true; 2793 xhci_dbg(xhci, 2794 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n", 2795 slot_id, ep_index); 2796 return 0; 2797 2798 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2799 /* needs disable slot command to recover */ 2800 xhci_warn(xhci, 2801 "WARN: detect an incompatible device for slot %u ep %u", 2802 slot_id, ep_index); 2803 status = -EPROTO; 2804 break; 2805 default: 2806 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2807 status = 0; 2808 break; 2809 } 2810 xhci_warn(xhci, 2811 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n", 2812 trb_comp_code, slot_id, ep_index); 2813 if (ep->skip) 2814 break; 2815 return 0; 2816 } 2817 2818 /* 2819 * xhci 4.10.2 states isoc endpoints should continue 2820 * processing the next TD if there was an error mid TD. 2821 * So host like NEC don't generate an event for the last 2822 * isoc TRB even if the IOC flag is set. 2823 * xhci 4.9.1 states that if there are errors in mult-TRB 2824 * TDs xHC should generate an error for that TRB, and if xHC 2825 * proceeds to the next TD it should genete an event for 2826 * any TRB with IOC flag on the way. Other host follow this. 2827 * 2828 * We wait for the final IOC event, but if we get an event 2829 * anywhere outside this TD, just give it back already. 2830 */ 2831 td = list_first_entry_or_null(&ep_ring->td_list, struct xhci_td, td_list); 2832 2833 if (td && td->error_mid_td && !trb_in_td(xhci, td, ep_trb_dma, false)) { 2834 xhci_dbg(xhci, "Missing TD completion event after mid TD error\n"); 2835 xhci_dequeue_td(xhci, td, ep_ring, td->status); 2836 } 2837 2838 if (list_empty(&ep_ring->td_list)) { 2839 /* 2840 * Don't print wanings if ring is empty due to a stopped endpoint generating an 2841 * extra completion event if the device was suspended. Or, a event for the last TRB 2842 * of a short TD we already got a short event for. The short TD is already removed 2843 * from the TD list. 2844 */ 2845 if (trb_comp_code != COMP_STOPPED && 2846 trb_comp_code != COMP_STOPPED_LENGTH_INVALID && 2847 !ep_ring->last_td_was_short) { 2848 xhci_warn(xhci, "Event TRB for slot %u ep %u with no TDs queued\n", 2849 slot_id, ep_index); 2850 } 2851 2852 ep->skip = false; 2853 goto check_endpoint_halted; 2854 } 2855 2856 do { 2857 td = list_first_entry(&ep_ring->td_list, struct xhci_td, 2858 td_list); 2859 2860 /* Is this a TRB in the currently executing TD? */ 2861 ep_seg = trb_in_td(xhci, td, ep_trb_dma, false); 2862 2863 if (!ep_seg) { 2864 2865 if (ep->skip && usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2866 skip_isoc_td(xhci, td, ep, status); 2867 if (!list_empty(&ep_ring->td_list)) 2868 continue; 2869 2870 xhci_dbg(xhci, "All TDs skipped for slot %u ep %u. Clear skip flag.\n", 2871 slot_id, ep_index); 2872 ep->skip = false; 2873 td = NULL; 2874 goto check_endpoint_halted; 2875 } 2876 2877 /* 2878 * Skip the Force Stopped Event. The 'ep_trb' of FSE is not in the current 2879 * TD pointed by 'ep_ring->dequeue' because that the hardware dequeue 2880 * pointer still at the previous TRB of the current TD. The previous TRB 2881 * maybe a Link TD or the last TRB of the previous TD. The command 2882 * completion handle will take care the rest. 2883 */ 2884 if (trb_comp_code == COMP_STOPPED || 2885 trb_comp_code == COMP_STOPPED_LENGTH_INVALID) { 2886 return 0; 2887 } 2888 2889 /* 2890 * Some hosts give a spurious success event after a short 2891 * transfer. Ignore it. 2892 */ 2893 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2894 ep_ring->last_td_was_short) { 2895 ep_ring->last_td_was_short = false; 2896 return 0; 2897 } 2898 2899 /* HC is busted, give up! */ 2900 xhci_err(xhci, 2901 "ERROR Transfer event TRB DMA ptr not part of current TD ep_index %d comp_code %u\n", 2902 ep_index, trb_comp_code); 2903 trb_in_td(xhci, td, ep_trb_dma, true); 2904 2905 return -ESHUTDOWN; 2906 } 2907 2908 if (ep->skip) { 2909 xhci_dbg(xhci, 2910 "Found td. Clear skip flag for slot %u ep %u.\n", 2911 slot_id, ep_index); 2912 ep->skip = false; 2913 } 2914 2915 /* 2916 * If ep->skip is set, it means there are missed tds on the 2917 * endpoint ring need to take care of. 2918 * Process them as short transfer until reach the td pointed by 2919 * the event. 2920 */ 2921 } while (ep->skip); 2922 2923 if (trb_comp_code == COMP_SHORT_PACKET) 2924 ep_ring->last_td_was_short = true; 2925 else 2926 ep_ring->last_td_was_short = false; 2927 2928 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / sizeof(*ep_trb)]; 2929 trace_xhci_handle_transfer(ep_ring, (struct xhci_generic_trb *) ep_trb, ep_trb_dma); 2930 2931 /* 2932 * No-op TRB could trigger interrupts in a case where a URB was killed 2933 * and a STALL_ERROR happens right after the endpoint ring stopped. 2934 * Reset the halted endpoint. Otherwise, the endpoint remains stalled 2935 * indefinitely. 2936 */ 2937 2938 if (trb_is_noop(ep_trb)) 2939 goto check_endpoint_halted; 2940 2941 td->status = status; 2942 2943 /* update the urb's actual_length and give back to the core */ 2944 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2945 process_ctrl_td(xhci, ep, ep_ring, td, ep_trb, event); 2946 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2947 process_isoc_td(xhci, ep, ep_ring, td, ep_trb, event); 2948 else 2949 process_bulk_intr_td(xhci, ep, ep_ring, td, ep_trb, event); 2950 return 0; 2951 2952 check_endpoint_halted: 2953 if (xhci_halted_host_endpoint(ep_ctx, trb_comp_code)) 2954 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2955 2956 return 0; 2957 2958 err_out: 2959 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2960 (unsigned long long) xhci_trb_virt_to_dma( 2961 ir->event_ring->deq_seg, 2962 ir->event_ring->dequeue), 2963 lower_32_bits(le64_to_cpu(event->buffer)), 2964 upper_32_bits(le64_to_cpu(event->buffer)), 2965 le32_to_cpu(event->transfer_len), 2966 le32_to_cpu(event->flags)); 2967 return -ENODEV; 2968 } 2969 2970 /* 2971 * This function handles one OS-owned event on the event ring. It may drop 2972 * xhci->lock between event processing (e.g. to pass up port status changes). 2973 */ 2974 static int xhci_handle_event_trb(struct xhci_hcd *xhci, struct xhci_interrupter *ir, 2975 union xhci_trb *event) 2976 { 2977 u32 trb_type; 2978 2979 trace_xhci_handle_event(ir->event_ring, &event->generic, 2980 xhci_trb_virt_to_dma(ir->event_ring->deq_seg, 2981 ir->event_ring->dequeue)); 2982 2983 /* 2984 * Barrier between reading the TRB_CYCLE (valid) flag before, and any 2985 * speculative reads of the event's flags/data below. 2986 */ 2987 rmb(); 2988 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->event_cmd.flags)); 2989 /* FIXME: Handle more event types. */ 2990 2991 switch (trb_type) { 2992 case TRB_COMPLETION: 2993 handle_cmd_completion(xhci, &event->event_cmd); 2994 break; 2995 case TRB_PORT_STATUS: 2996 handle_port_status(xhci, event); 2997 break; 2998 case TRB_TRANSFER: 2999 handle_tx_event(xhci, ir, &event->trans_event); 3000 break; 3001 case TRB_DEV_NOTE: 3002 handle_device_notification(xhci, event); 3003 break; 3004 default: 3005 if (trb_type >= TRB_VENDOR_DEFINED_LOW) 3006 handle_vendor_event(xhci, event, trb_type); 3007 else 3008 xhci_warn(xhci, "ERROR unknown event type %d\n", trb_type); 3009 } 3010 /* Any of the above functions may drop and re-acquire the lock, so check 3011 * to make sure a watchdog timer didn't mark the host as non-responsive. 3012 */ 3013 if (xhci->xhc_state & XHCI_STATE_DYING) { 3014 xhci_dbg(xhci, "xHCI host dying, returning from event handler.\n"); 3015 return -ENODEV; 3016 } 3017 3018 return 0; 3019 } 3020 3021 /* 3022 * Update Event Ring Dequeue Pointer: 3023 * - When all events have finished 3024 * - To avoid "Event Ring Full Error" condition 3025 */ 3026 static void xhci_update_erst_dequeue(struct xhci_hcd *xhci, 3027 struct xhci_interrupter *ir, 3028 bool clear_ehb) 3029 { 3030 u64 temp_64; 3031 dma_addr_t deq; 3032 3033 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 3034 deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg, 3035 ir->event_ring->dequeue); 3036 if (deq == 0) 3037 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr\n"); 3038 /* 3039 * Per 4.9.4, Software writes to the ERDP register shall always advance 3040 * the Event Ring Dequeue Pointer value. 3041 */ 3042 if ((temp_64 & ERST_PTR_MASK) == (deq & ERST_PTR_MASK) && !clear_ehb) 3043 return; 3044 3045 /* Update HC event ring dequeue pointer */ 3046 temp_64 = ir->event_ring->deq_seg->num & ERST_DESI_MASK; 3047 temp_64 |= deq & ERST_PTR_MASK; 3048 3049 /* Clear the event handler busy flag (RW1C) */ 3050 if (clear_ehb) 3051 temp_64 |= ERST_EHB; 3052 xhci_write_64(xhci, temp_64, &ir->ir_set->erst_dequeue); 3053 } 3054 3055 /* Clear the interrupt pending bit for a specific interrupter. */ 3056 static void xhci_clear_interrupt_pending(struct xhci_interrupter *ir) 3057 { 3058 if (!ir->ip_autoclear) { 3059 u32 irq_pending; 3060 3061 irq_pending = readl(&ir->ir_set->irq_pending); 3062 irq_pending |= IMAN_IP; 3063 writel(irq_pending, &ir->ir_set->irq_pending); 3064 } 3065 } 3066 3067 /* 3068 * Handle all OS-owned events on an interrupter event ring. It may drop 3069 * and reaquire xhci->lock between event processing. 3070 */ 3071 static int xhci_handle_events(struct xhci_hcd *xhci, struct xhci_interrupter *ir) 3072 { 3073 int event_loop = 0; 3074 int err; 3075 u64 temp; 3076 3077 xhci_clear_interrupt_pending(ir); 3078 3079 /* Event ring hasn't been allocated yet. */ 3080 if (!ir->event_ring || !ir->event_ring->dequeue) { 3081 xhci_err(xhci, "ERROR interrupter event ring not ready\n"); 3082 return -ENOMEM; 3083 } 3084 3085 if (xhci->xhc_state & XHCI_STATE_DYING || 3086 xhci->xhc_state & XHCI_STATE_HALTED) { 3087 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. Shouldn't IRQs be disabled?\n"); 3088 3089 /* Clear the event handler busy flag (RW1C) */ 3090 temp = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 3091 xhci_write_64(xhci, temp | ERST_EHB, &ir->ir_set->erst_dequeue); 3092 return -ENODEV; 3093 } 3094 3095 /* Process all OS owned event TRBs on this event ring */ 3096 while (unhandled_event_trb(ir->event_ring)) { 3097 err = xhci_handle_event_trb(xhci, ir, ir->event_ring->dequeue); 3098 3099 /* 3100 * If half a segment of events have been handled in one go then 3101 * update ERDP, and force isoc trbs to interrupt more often 3102 */ 3103 if (event_loop++ > TRBS_PER_SEGMENT / 2) { 3104 xhci_update_erst_dequeue(xhci, ir, false); 3105 3106 if (ir->isoc_bei_interval > AVOID_BEI_INTERVAL_MIN) 3107 ir->isoc_bei_interval = ir->isoc_bei_interval / 2; 3108 3109 event_loop = 0; 3110 } 3111 3112 /* Update SW event ring dequeue pointer */ 3113 inc_deq(xhci, ir->event_ring); 3114 3115 if (err) 3116 break; 3117 } 3118 3119 xhci_update_erst_dequeue(xhci, ir, true); 3120 3121 return 0; 3122 } 3123 3124 /* 3125 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 3126 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 3127 * indicators of an event TRB error, but we check the status *first* to be safe. 3128 */ 3129 irqreturn_t xhci_irq(struct usb_hcd *hcd) 3130 { 3131 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3132 irqreturn_t ret = IRQ_HANDLED; 3133 u32 status; 3134 3135 spin_lock(&xhci->lock); 3136 /* Check if the xHC generated the interrupt, or the irq is shared */ 3137 status = readl(&xhci->op_regs->status); 3138 if (status == ~(u32)0) { 3139 xhci_hc_died(xhci); 3140 goto out; 3141 } 3142 3143 if (!(status & STS_EINT)) { 3144 ret = IRQ_NONE; 3145 goto out; 3146 } 3147 3148 if (status & STS_HCE) { 3149 xhci_warn(xhci, "WARNING: Host Controller Error\n"); 3150 goto out; 3151 } 3152 3153 if (status & STS_FATAL) { 3154 xhci_warn(xhci, "WARNING: Host System Error\n"); 3155 xhci_halt(xhci); 3156 goto out; 3157 } 3158 3159 /* 3160 * Clear the op reg interrupt status first, 3161 * so we can receive interrupts from other MSI-X interrupters. 3162 * Write 1 to clear the interrupt status. 3163 */ 3164 status |= STS_EINT; 3165 writel(status, &xhci->op_regs->status); 3166 3167 /* This is the handler of the primary interrupter */ 3168 xhci_handle_events(xhci, xhci->interrupters[0]); 3169 out: 3170 spin_unlock(&xhci->lock); 3171 3172 return ret; 3173 } 3174 3175 irqreturn_t xhci_msi_irq(int irq, void *hcd) 3176 { 3177 return xhci_irq(hcd); 3178 } 3179 EXPORT_SYMBOL_GPL(xhci_msi_irq); 3180 3181 /**** Endpoint Ring Operations ****/ 3182 3183 /* 3184 * Generic function for queueing a TRB on a ring. 3185 * The caller must have checked to make sure there's room on the ring. 3186 * 3187 * @more_trbs_coming: Will you enqueue more TRBs before calling 3188 * prepare_transfer()? 3189 */ 3190 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 3191 bool more_trbs_coming, 3192 u32 field1, u32 field2, u32 field3, u32 field4) 3193 { 3194 struct xhci_generic_trb *trb; 3195 3196 trb = &ring->enqueue->generic; 3197 trb->field[0] = cpu_to_le32(field1); 3198 trb->field[1] = cpu_to_le32(field2); 3199 trb->field[2] = cpu_to_le32(field3); 3200 /* make sure TRB is fully written before giving it to the controller */ 3201 wmb(); 3202 trb->field[3] = cpu_to_le32(field4); 3203 3204 trace_xhci_queue_trb(ring, trb, 3205 xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue)); 3206 3207 inc_enq(xhci, ring, more_trbs_coming); 3208 } 3209 3210 /* 3211 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 3212 * expand ring if it start to be full. 3213 */ 3214 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 3215 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 3216 { 3217 unsigned int link_trb_count = 0; 3218 unsigned int new_segs = 0; 3219 3220 /* Make sure the endpoint has been added to xHC schedule */ 3221 switch (ep_state) { 3222 case EP_STATE_DISABLED: 3223 /* 3224 * USB core changed config/interfaces without notifying us, 3225 * or hardware is reporting the wrong state. 3226 */ 3227 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 3228 return -ENOENT; 3229 case EP_STATE_ERROR: 3230 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 3231 /* FIXME event handling code for error needs to clear it */ 3232 /* XXX not sure if this should be -ENOENT or not */ 3233 return -EINVAL; 3234 case EP_STATE_HALTED: 3235 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 3236 break; 3237 case EP_STATE_STOPPED: 3238 case EP_STATE_RUNNING: 3239 break; 3240 default: 3241 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 3242 /* 3243 * FIXME issue Configure Endpoint command to try to get the HC 3244 * back into a known state. 3245 */ 3246 return -EINVAL; 3247 } 3248 3249 if (ep_ring != xhci->cmd_ring) { 3250 new_segs = xhci_ring_expansion_needed(xhci, ep_ring, num_trbs); 3251 } else if (xhci_num_trbs_free(ep_ring) <= num_trbs) { 3252 xhci_err(xhci, "Do not support expand command ring\n"); 3253 return -ENOMEM; 3254 } 3255 3256 if (new_segs) { 3257 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 3258 "ERROR no room on ep ring, try ring expansion"); 3259 if (xhci_ring_expansion(xhci, ep_ring, new_segs, mem_flags)) { 3260 xhci_err(xhci, "Ring expansion failed\n"); 3261 return -ENOMEM; 3262 } 3263 } 3264 3265 while (trb_is_link(ep_ring->enqueue)) { 3266 /* If we're not dealing with 0.95 hardware or isoc rings 3267 * on AMD 0.96 host, clear the chain bit. 3268 */ 3269 if (!xhci_link_chain_quirk(xhci, ep_ring->type)) 3270 ep_ring->enqueue->link.control &= 3271 cpu_to_le32(~TRB_CHAIN); 3272 else 3273 ep_ring->enqueue->link.control |= 3274 cpu_to_le32(TRB_CHAIN); 3275 3276 wmb(); 3277 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); 3278 3279 /* Toggle the cycle bit after the last ring segment. */ 3280 if (link_trb_toggles_cycle(ep_ring->enqueue)) 3281 ep_ring->cycle_state ^= 1; 3282 3283 ep_ring->enq_seg = ep_ring->enq_seg->next; 3284 ep_ring->enqueue = ep_ring->enq_seg->trbs; 3285 3286 /* prevent infinite loop if all first trbs are link trbs */ 3287 if (link_trb_count++ > ep_ring->num_segs) { 3288 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 3289 return -EINVAL; 3290 } 3291 } 3292 3293 if (last_trb_on_seg(ep_ring->enq_seg, ep_ring->enqueue)) { 3294 xhci_warn(xhci, "Missing link TRB at end of ring segment\n"); 3295 return -EINVAL; 3296 } 3297 3298 return 0; 3299 } 3300 3301 static int prepare_transfer(struct xhci_hcd *xhci, 3302 struct xhci_virt_device *xdev, 3303 unsigned int ep_index, 3304 unsigned int stream_id, 3305 unsigned int num_trbs, 3306 struct urb *urb, 3307 unsigned int td_index, 3308 gfp_t mem_flags) 3309 { 3310 int ret; 3311 struct urb_priv *urb_priv; 3312 struct xhci_td *td; 3313 struct xhci_ring *ep_ring; 3314 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3315 3316 ep_ring = xhci_triad_to_transfer_ring(xhci, xdev->slot_id, ep_index, 3317 stream_id); 3318 if (!ep_ring) { 3319 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 3320 stream_id); 3321 return -EINVAL; 3322 } 3323 3324 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 3325 num_trbs, mem_flags); 3326 if (ret) 3327 return ret; 3328 3329 urb_priv = urb->hcpriv; 3330 td = &urb_priv->td[td_index]; 3331 3332 INIT_LIST_HEAD(&td->td_list); 3333 INIT_LIST_HEAD(&td->cancelled_td_list); 3334 3335 if (td_index == 0) { 3336 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 3337 if (unlikely(ret)) 3338 return ret; 3339 } 3340 3341 td->urb = urb; 3342 /* Add this TD to the tail of the endpoint ring's TD list */ 3343 list_add_tail(&td->td_list, &ep_ring->td_list); 3344 td->start_seg = ep_ring->enq_seg; 3345 td->start_trb = ep_ring->enqueue; 3346 3347 return 0; 3348 } 3349 3350 unsigned int count_trbs(u64 addr, u64 len) 3351 { 3352 unsigned int num_trbs; 3353 3354 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3355 TRB_MAX_BUFF_SIZE); 3356 if (num_trbs == 0) 3357 num_trbs++; 3358 3359 return num_trbs; 3360 } 3361 3362 static inline unsigned int count_trbs_needed(struct urb *urb) 3363 { 3364 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); 3365 } 3366 3367 static unsigned int count_sg_trbs_needed(struct urb *urb) 3368 { 3369 struct scatterlist *sg; 3370 unsigned int i, len, full_len, num_trbs = 0; 3371 3372 full_len = urb->transfer_buffer_length; 3373 3374 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { 3375 len = sg_dma_len(sg); 3376 num_trbs += count_trbs(sg_dma_address(sg), len); 3377 len = min_t(unsigned int, len, full_len); 3378 full_len -= len; 3379 if (full_len == 0) 3380 break; 3381 } 3382 3383 return num_trbs; 3384 } 3385 3386 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) 3387 { 3388 u64 addr, len; 3389 3390 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3391 len = urb->iso_frame_desc[i].length; 3392 3393 return count_trbs(addr, len); 3394 } 3395 3396 static void check_trb_math(struct urb *urb, int running_total) 3397 { 3398 if (unlikely(running_total != urb->transfer_buffer_length)) 3399 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3400 "queued %#x (%d), asked for %#x (%d)\n", 3401 __func__, 3402 urb->ep->desc.bEndpointAddress, 3403 running_total, running_total, 3404 urb->transfer_buffer_length, 3405 urb->transfer_buffer_length); 3406 } 3407 3408 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3409 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3410 struct xhci_generic_trb *start_trb) 3411 { 3412 /* 3413 * Pass all the TRBs to the hardware at once and make sure this write 3414 * isn't reordered. 3415 */ 3416 wmb(); 3417 if (start_cycle) 3418 start_trb->field[3] |= cpu_to_le32(start_cycle); 3419 else 3420 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3421 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3422 } 3423 3424 static void check_interval(struct urb *urb, struct xhci_ep_ctx *ep_ctx) 3425 { 3426 int xhci_interval; 3427 int ep_interval; 3428 3429 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3430 ep_interval = urb->interval; 3431 3432 /* Convert to microframes */ 3433 if (urb->dev->speed == USB_SPEED_LOW || 3434 urb->dev->speed == USB_SPEED_FULL) 3435 ep_interval *= 8; 3436 3437 /* FIXME change this to a warning and a suggestion to use the new API 3438 * to set the polling interval (once the API is added). 3439 */ 3440 if (xhci_interval != ep_interval) { 3441 dev_dbg_ratelimited(&urb->dev->dev, 3442 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3443 ep_interval, ep_interval == 1 ? "" : "s", 3444 xhci_interval, xhci_interval == 1 ? "" : "s"); 3445 urb->interval = xhci_interval; 3446 /* Convert back to frames for LS/FS devices */ 3447 if (urb->dev->speed == USB_SPEED_LOW || 3448 urb->dev->speed == USB_SPEED_FULL) 3449 urb->interval /= 8; 3450 } 3451 } 3452 3453 /* 3454 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3455 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3456 * (comprised of sg list entries) can take several service intervals to 3457 * transmit. 3458 */ 3459 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3460 struct urb *urb, int slot_id, unsigned int ep_index) 3461 { 3462 struct xhci_ep_ctx *ep_ctx; 3463 3464 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); 3465 check_interval(urb, ep_ctx); 3466 3467 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3468 } 3469 3470 /* 3471 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3472 * packets remaining in the TD (*not* including this TRB). 3473 * 3474 * Total TD packet count = total_packet_count = 3475 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3476 * 3477 * Packets transferred up to and including this TRB = packets_transferred = 3478 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3479 * 3480 * TD size = total_packet_count - packets_transferred 3481 * 3482 * For xHCI 0.96 and older, TD size field should be the remaining bytes 3483 * including this TRB, right shifted by 10 3484 * 3485 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. 3486 * This is taken care of in the TRB_TD_SIZE() macro 3487 * 3488 * The last TRB in a TD must have the TD size set to zero. 3489 */ 3490 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, 3491 int trb_buff_len, unsigned int td_total_len, 3492 struct urb *urb, bool more_trbs_coming) 3493 { 3494 u32 maxp, total_packet_count; 3495 3496 /* MTK xHCI 0.96 contains some features from 1.0 */ 3497 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) 3498 return ((td_total_len - transferred) >> 10); 3499 3500 /* One TRB with a zero-length data packet. */ 3501 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || 3502 trb_buff_len == td_total_len) 3503 return 0; 3504 3505 /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */ 3506 if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100)) 3507 trb_buff_len = 0; 3508 3509 maxp = usb_endpoint_maxp(&urb->ep->desc); 3510 total_packet_count = DIV_ROUND_UP(td_total_len, maxp); 3511 3512 /* Queueing functions don't count the current TRB into transferred */ 3513 return (total_packet_count - ((transferred + trb_buff_len) / maxp)); 3514 } 3515 3516 3517 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, 3518 u32 *trb_buff_len, struct xhci_segment *seg) 3519 { 3520 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 3521 unsigned int unalign; 3522 unsigned int max_pkt; 3523 u32 new_buff_len; 3524 size_t len; 3525 3526 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3527 unalign = (enqd_len + *trb_buff_len) % max_pkt; 3528 3529 /* we got lucky, last normal TRB data on segment is packet aligned */ 3530 if (unalign == 0) 3531 return 0; 3532 3533 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", 3534 unalign, *trb_buff_len); 3535 3536 /* is the last nornal TRB alignable by splitting it */ 3537 if (*trb_buff_len > unalign) { 3538 *trb_buff_len -= unalign; 3539 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); 3540 return 0; 3541 } 3542 3543 /* 3544 * We want enqd_len + trb_buff_len to sum up to a number aligned to 3545 * number which is divisible by the endpoint's wMaxPacketSize. IOW: 3546 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. 3547 */ 3548 new_buff_len = max_pkt - (enqd_len % max_pkt); 3549 3550 if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) 3551 new_buff_len = (urb->transfer_buffer_length - enqd_len); 3552 3553 /* create a max max_pkt sized bounce buffer pointed to by last trb */ 3554 if (usb_urb_dir_out(urb)) { 3555 if (urb->num_sgs) { 3556 len = sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 3557 seg->bounce_buf, new_buff_len, enqd_len); 3558 if (len != new_buff_len) 3559 xhci_warn(xhci, "WARN Wrong bounce buffer write length: %zu != %d\n", 3560 len, new_buff_len); 3561 } else { 3562 memcpy(seg->bounce_buf, urb->transfer_buffer + enqd_len, new_buff_len); 3563 } 3564 3565 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3566 max_pkt, DMA_TO_DEVICE); 3567 } else { 3568 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3569 max_pkt, DMA_FROM_DEVICE); 3570 } 3571 3572 if (dma_mapping_error(dev, seg->bounce_dma)) { 3573 /* try without aligning. Some host controllers survive */ 3574 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); 3575 return 0; 3576 } 3577 *trb_buff_len = new_buff_len; 3578 seg->bounce_len = new_buff_len; 3579 seg->bounce_offs = enqd_len; 3580 3581 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); 3582 3583 return 1; 3584 } 3585 3586 /* This is very similar to what ehci-q.c qtd_fill() does */ 3587 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3588 struct urb *urb, int slot_id, unsigned int ep_index) 3589 { 3590 struct xhci_ring *ring; 3591 struct urb_priv *urb_priv; 3592 struct xhci_td *td; 3593 struct xhci_generic_trb *start_trb; 3594 struct scatterlist *sg = NULL; 3595 bool more_trbs_coming = true; 3596 bool need_zero_pkt = false; 3597 bool first_trb = true; 3598 unsigned int num_trbs; 3599 unsigned int start_cycle, num_sgs = 0; 3600 unsigned int enqd_len, block_len, trb_buff_len, full_len; 3601 int sent_len, ret; 3602 u32 field, length_field, remainder; 3603 u64 addr, send_addr; 3604 3605 ring = xhci_urb_to_transfer_ring(xhci, urb); 3606 if (!ring) 3607 return -EINVAL; 3608 3609 full_len = urb->transfer_buffer_length; 3610 /* If we have scatter/gather list, we use it. */ 3611 if (urb->num_sgs && !(urb->transfer_flags & URB_DMA_MAP_SINGLE)) { 3612 num_sgs = urb->num_mapped_sgs; 3613 sg = urb->sg; 3614 addr = (u64) sg_dma_address(sg); 3615 block_len = sg_dma_len(sg); 3616 num_trbs = count_sg_trbs_needed(urb); 3617 } else { 3618 num_trbs = count_trbs_needed(urb); 3619 addr = (u64) urb->transfer_dma; 3620 block_len = full_len; 3621 } 3622 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3623 ep_index, urb->stream_id, 3624 num_trbs, urb, 0, mem_flags); 3625 if (unlikely(ret < 0)) 3626 return ret; 3627 3628 urb_priv = urb->hcpriv; 3629 3630 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3631 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) 3632 need_zero_pkt = true; 3633 3634 td = &urb_priv->td[0]; 3635 3636 /* 3637 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3638 * until we've finished creating all the other TRBs. The ring's cycle 3639 * state may change as we enqueue the other TRBs, so save it too. 3640 */ 3641 start_trb = &ring->enqueue->generic; 3642 start_cycle = ring->cycle_state; 3643 send_addr = addr; 3644 3645 /* Queue the TRBs, even if they are zero-length */ 3646 for (enqd_len = 0; first_trb || enqd_len < full_len; 3647 enqd_len += trb_buff_len) { 3648 field = TRB_TYPE(TRB_NORMAL); 3649 3650 /* TRB buffer should not cross 64KB boundaries */ 3651 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3652 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); 3653 3654 if (enqd_len + trb_buff_len > full_len) 3655 trb_buff_len = full_len - enqd_len; 3656 3657 /* Don't change the cycle bit of the first TRB until later */ 3658 if (first_trb) { 3659 first_trb = false; 3660 if (start_cycle == 0) 3661 field |= TRB_CYCLE; 3662 } else 3663 field |= ring->cycle_state; 3664 3665 /* Chain all the TRBs together; clear the chain bit in the last 3666 * TRB to indicate it's the last TRB in the chain. 3667 */ 3668 if (enqd_len + trb_buff_len < full_len) { 3669 field |= TRB_CHAIN; 3670 if (trb_is_link(ring->enqueue + 1)) { 3671 if (xhci_align_td(xhci, urb, enqd_len, 3672 &trb_buff_len, 3673 ring->enq_seg)) { 3674 send_addr = ring->enq_seg->bounce_dma; 3675 /* assuming TD won't span 2 segs */ 3676 td->bounce_seg = ring->enq_seg; 3677 } 3678 } 3679 } 3680 if (enqd_len + trb_buff_len >= full_len) { 3681 field &= ~TRB_CHAIN; 3682 field |= TRB_IOC; 3683 more_trbs_coming = false; 3684 td->end_trb = ring->enqueue; 3685 td->end_seg = ring->enq_seg; 3686 if (xhci_urb_suitable_for_idt(urb)) { 3687 memcpy(&send_addr, urb->transfer_buffer, 3688 trb_buff_len); 3689 le64_to_cpus(&send_addr); 3690 field |= TRB_IDT; 3691 } 3692 } 3693 3694 /* Only set interrupt on short packet for IN endpoints */ 3695 if (usb_urb_dir_in(urb)) 3696 field |= TRB_ISP; 3697 3698 /* Set the TRB length, TD size, and interrupter fields. */ 3699 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, 3700 full_len, urb, more_trbs_coming); 3701 3702 length_field = TRB_LEN(trb_buff_len) | 3703 TRB_TD_SIZE(remainder) | 3704 TRB_INTR_TARGET(0); 3705 3706 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, 3707 lower_32_bits(send_addr), 3708 upper_32_bits(send_addr), 3709 length_field, 3710 field); 3711 addr += trb_buff_len; 3712 sent_len = trb_buff_len; 3713 3714 while (sg && sent_len >= block_len) { 3715 /* New sg entry */ 3716 --num_sgs; 3717 sent_len -= block_len; 3718 sg = sg_next(sg); 3719 if (num_sgs != 0 && sg) { 3720 block_len = sg_dma_len(sg); 3721 addr = (u64) sg_dma_address(sg); 3722 addr += sent_len; 3723 } 3724 } 3725 block_len -= sent_len; 3726 send_addr = addr; 3727 } 3728 3729 if (need_zero_pkt) { 3730 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3731 ep_index, urb->stream_id, 3732 1, urb, 1, mem_flags); 3733 urb_priv->td[1].end_trb = ring->enqueue; 3734 urb_priv->td[1].end_seg = ring->enq_seg; 3735 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; 3736 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); 3737 } 3738 3739 check_trb_math(urb, enqd_len); 3740 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3741 start_cycle, start_trb); 3742 return 0; 3743 } 3744 3745 /* Caller must have locked xhci->lock */ 3746 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3747 struct urb *urb, int slot_id, unsigned int ep_index) 3748 { 3749 struct xhci_ring *ep_ring; 3750 int num_trbs; 3751 int ret; 3752 struct usb_ctrlrequest *setup; 3753 struct xhci_generic_trb *start_trb; 3754 int start_cycle; 3755 u32 field; 3756 struct urb_priv *urb_priv; 3757 struct xhci_td *td; 3758 3759 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3760 if (!ep_ring) 3761 return -EINVAL; 3762 3763 /* 3764 * Need to copy setup packet into setup TRB, so we can't use the setup 3765 * DMA address. 3766 */ 3767 if (!urb->setup_packet) 3768 return -EINVAL; 3769 3770 if ((xhci->quirks & XHCI_ETRON_HOST) && 3771 urb->dev->speed >= USB_SPEED_SUPER) { 3772 /* 3773 * If next available TRB is the Link TRB in the ring segment then 3774 * enqueue a No Op TRB, this can prevent the Setup and Data Stage 3775 * TRB to be breaked by the Link TRB. 3776 */ 3777 if (trb_is_link(ep_ring->enqueue + 1)) { 3778 field = TRB_TYPE(TRB_TR_NOOP) | ep_ring->cycle_state; 3779 queue_trb(xhci, ep_ring, false, 0, 0, 3780 TRB_INTR_TARGET(0), field); 3781 } 3782 } 3783 3784 /* 1 TRB for setup, 1 for status */ 3785 num_trbs = 2; 3786 /* 3787 * Don't need to check if we need additional event data and normal TRBs, 3788 * since data in control transfers will never get bigger than 16MB 3789 * XXX: can we get a buffer that crosses 64KB boundaries? 3790 */ 3791 if (urb->transfer_buffer_length > 0) 3792 num_trbs++; 3793 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3794 ep_index, urb->stream_id, 3795 num_trbs, urb, 0, mem_flags); 3796 if (ret < 0) 3797 return ret; 3798 3799 urb_priv = urb->hcpriv; 3800 td = &urb_priv->td[0]; 3801 3802 /* 3803 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3804 * until we've finished creating all the other TRBs. The ring's cycle 3805 * state may change as we enqueue the other TRBs, so save it too. 3806 */ 3807 start_trb = &ep_ring->enqueue->generic; 3808 start_cycle = ep_ring->cycle_state; 3809 3810 /* Queue setup TRB - see section 6.4.1.2.1 */ 3811 /* FIXME better way to translate setup_packet into two u32 fields? */ 3812 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3813 field = 0; 3814 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3815 if (start_cycle == 0) 3816 field |= 0x1; 3817 3818 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ 3819 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { 3820 if (urb->transfer_buffer_length > 0) { 3821 if (setup->bRequestType & USB_DIR_IN) 3822 field |= TRB_TX_TYPE(TRB_DATA_IN); 3823 else 3824 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3825 } 3826 } 3827 3828 queue_trb(xhci, ep_ring, true, 3829 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3830 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3831 TRB_LEN(8) | TRB_INTR_TARGET(0), 3832 /* Immediate data in pointer */ 3833 field); 3834 3835 /* If there's data, queue data TRBs */ 3836 /* Only set interrupt on short packet for IN endpoints */ 3837 if (usb_urb_dir_in(urb)) 3838 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3839 else 3840 field = TRB_TYPE(TRB_DATA); 3841 3842 if (urb->transfer_buffer_length > 0) { 3843 u32 length_field, remainder; 3844 u64 addr; 3845 3846 if (xhci_urb_suitable_for_idt(urb)) { 3847 memcpy(&addr, urb->transfer_buffer, 3848 urb->transfer_buffer_length); 3849 le64_to_cpus(&addr); 3850 field |= TRB_IDT; 3851 } else { 3852 addr = (u64) urb->transfer_dma; 3853 } 3854 3855 remainder = xhci_td_remainder(xhci, 0, 3856 urb->transfer_buffer_length, 3857 urb->transfer_buffer_length, 3858 urb, 1); 3859 length_field = TRB_LEN(urb->transfer_buffer_length) | 3860 TRB_TD_SIZE(remainder) | 3861 TRB_INTR_TARGET(0); 3862 if (setup->bRequestType & USB_DIR_IN) 3863 field |= TRB_DIR_IN; 3864 queue_trb(xhci, ep_ring, true, 3865 lower_32_bits(addr), 3866 upper_32_bits(addr), 3867 length_field, 3868 field | ep_ring->cycle_state); 3869 } 3870 3871 /* Save the DMA address of the last TRB in the TD */ 3872 td->end_trb = ep_ring->enqueue; 3873 td->end_seg = ep_ring->enq_seg; 3874 3875 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3876 /* If the device sent data, the status stage is an OUT transfer */ 3877 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3878 field = 0; 3879 else 3880 field = TRB_DIR_IN; 3881 queue_trb(xhci, ep_ring, false, 3882 0, 3883 0, 3884 TRB_INTR_TARGET(0), 3885 /* Event on completion */ 3886 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3887 3888 giveback_first_trb(xhci, slot_id, ep_index, 0, 3889 start_cycle, start_trb); 3890 return 0; 3891 } 3892 3893 /* 3894 * The transfer burst count field of the isochronous TRB defines the number of 3895 * bursts that are required to move all packets in this TD. Only SuperSpeed 3896 * devices can burst up to bMaxBurst number of packets per service interval. 3897 * This field is zero based, meaning a value of zero in the field means one 3898 * burst. Basically, for everything but SuperSpeed devices, this field will be 3899 * zero. Only xHCI 1.0 host controllers support this field. 3900 */ 3901 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3902 struct urb *urb, unsigned int total_packet_count) 3903 { 3904 unsigned int max_burst; 3905 3906 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) 3907 return 0; 3908 3909 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3910 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3911 } 3912 3913 /* 3914 * Returns the number of packets in the last "burst" of packets. This field is 3915 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3916 * the last burst packet count is equal to the total number of packets in the 3917 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3918 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3919 * contain 1 to (bMaxBurst + 1) packets. 3920 */ 3921 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3922 struct urb *urb, unsigned int total_packet_count) 3923 { 3924 unsigned int max_burst; 3925 unsigned int residue; 3926 3927 if (xhci->hci_version < 0x100) 3928 return 0; 3929 3930 if (urb->dev->speed >= USB_SPEED_SUPER) { 3931 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3932 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3933 residue = total_packet_count % (max_burst + 1); 3934 /* If residue is zero, the last burst contains (max_burst + 1) 3935 * number of packets, but the TLBPC field is zero-based. 3936 */ 3937 if (residue == 0) 3938 return max_burst; 3939 return residue - 1; 3940 } 3941 if (total_packet_count == 0) 3942 return 0; 3943 return total_packet_count - 1; 3944 } 3945 3946 /* 3947 * Calculates Frame ID field of the isochronous TRB identifies the 3948 * target frame that the Interval associated with this Isochronous 3949 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. 3950 * 3951 * Returns actual frame id on success, negative value on error. 3952 */ 3953 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, 3954 struct urb *urb, int index) 3955 { 3956 int start_frame, ist, ret = 0; 3957 int start_frame_id, end_frame_id, current_frame_id; 3958 3959 if (urb->dev->speed == USB_SPEED_LOW || 3960 urb->dev->speed == USB_SPEED_FULL) 3961 start_frame = urb->start_frame + index * urb->interval; 3962 else 3963 start_frame = (urb->start_frame + index * urb->interval) >> 3; 3964 3965 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): 3966 * 3967 * If bit [3] of IST is cleared to '0', software can add a TRB no 3968 * later than IST[2:0] Microframes before that TRB is scheduled to 3969 * be executed. 3970 * If bit [3] of IST is set to '1', software can add a TRB no later 3971 * than IST[2:0] Frames before that TRB is scheduled to be executed. 3972 */ 3973 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3974 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3975 ist <<= 3; 3976 3977 /* Software shall not schedule an Isoch TD with a Frame ID value that 3978 * is less than the Start Frame ID or greater than the End Frame ID, 3979 * where: 3980 * 3981 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 3982 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 3983 * 3984 * Both the End Frame ID and Start Frame ID values are calculated 3985 * in microframes. When software determines the valid Frame ID value; 3986 * The End Frame ID value should be rounded down to the nearest Frame 3987 * boundary, and the Start Frame ID value should be rounded up to the 3988 * nearest Frame boundary. 3989 */ 3990 current_frame_id = readl(&xhci->run_regs->microframe_index); 3991 start_frame_id = roundup(current_frame_id + ist + 1, 8); 3992 end_frame_id = rounddown(current_frame_id + 895 * 8, 8); 3993 3994 start_frame &= 0x7ff; 3995 start_frame_id = (start_frame_id >> 3) & 0x7ff; 3996 end_frame_id = (end_frame_id >> 3) & 0x7ff; 3997 3998 if (start_frame_id < end_frame_id) { 3999 if (start_frame > end_frame_id || 4000 start_frame < start_frame_id) 4001 ret = -EINVAL; 4002 } else if (start_frame_id > end_frame_id) { 4003 if ((start_frame > end_frame_id && 4004 start_frame < start_frame_id)) 4005 ret = -EINVAL; 4006 } else { 4007 ret = -EINVAL; 4008 } 4009 4010 if (index == 0) { 4011 if (ret == -EINVAL || start_frame == start_frame_id) { 4012 start_frame = start_frame_id + 1; 4013 if (urb->dev->speed == USB_SPEED_LOW || 4014 urb->dev->speed == USB_SPEED_FULL) 4015 urb->start_frame = start_frame; 4016 else 4017 urb->start_frame = start_frame << 3; 4018 ret = 0; 4019 } 4020 } 4021 4022 if (ret) { 4023 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", 4024 start_frame, current_frame_id, index, 4025 start_frame_id, end_frame_id); 4026 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); 4027 return ret; 4028 } 4029 4030 return start_frame; 4031 } 4032 4033 /* Check if we should generate event interrupt for a TD in an isoc URB */ 4034 static bool trb_block_event_intr(struct xhci_hcd *xhci, int num_tds, int i, 4035 struct xhci_interrupter *ir) 4036 { 4037 if (xhci->hci_version < 0x100) 4038 return false; 4039 /* always generate an event interrupt for the last TD */ 4040 if (i == num_tds - 1) 4041 return false; 4042 /* 4043 * If AVOID_BEI is set the host handles full event rings poorly, 4044 * generate an event at least every 8th TD to clear the event ring 4045 */ 4046 if (i && ir->isoc_bei_interval && xhci->quirks & XHCI_AVOID_BEI) 4047 return !!(i % ir->isoc_bei_interval); 4048 4049 return true; 4050 } 4051 4052 /* This is for isoc transfer */ 4053 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 4054 struct urb *urb, int slot_id, unsigned int ep_index) 4055 { 4056 struct xhci_interrupter *ir; 4057 struct xhci_ring *ep_ring; 4058 struct urb_priv *urb_priv; 4059 struct xhci_td *td; 4060 int num_tds, trbs_per_td; 4061 struct xhci_generic_trb *start_trb; 4062 bool first_trb; 4063 int start_cycle; 4064 u32 field, length_field; 4065 int running_total, trb_buff_len, td_len, td_remain_len, ret; 4066 u64 start_addr, addr; 4067 int i, j; 4068 bool more_trbs_coming; 4069 struct xhci_virt_ep *xep; 4070 int frame_id; 4071 4072 xep = &xhci->devs[slot_id]->eps[ep_index]; 4073 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 4074 ir = xhci->interrupters[0]; 4075 4076 num_tds = urb->number_of_packets; 4077 if (num_tds < 1) { 4078 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 4079 return -EINVAL; 4080 } 4081 start_addr = (u64) urb->transfer_dma; 4082 start_trb = &ep_ring->enqueue->generic; 4083 start_cycle = ep_ring->cycle_state; 4084 4085 urb_priv = urb->hcpriv; 4086 /* Queue the TRBs for each TD, even if they are zero-length */ 4087 for (i = 0; i < num_tds; i++) { 4088 unsigned int total_pkt_count, max_pkt; 4089 unsigned int burst_count, last_burst_pkt_count; 4090 u32 sia_frame_id; 4091 4092 first_trb = true; 4093 running_total = 0; 4094 addr = start_addr + urb->iso_frame_desc[i].offset; 4095 td_len = urb->iso_frame_desc[i].length; 4096 td_remain_len = td_len; 4097 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 4098 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); 4099 4100 /* A zero-length transfer still involves at least one packet. */ 4101 if (total_pkt_count == 0) 4102 total_pkt_count++; 4103 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); 4104 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, 4105 urb, total_pkt_count); 4106 4107 trbs_per_td = count_isoc_trbs_needed(urb, i); 4108 4109 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 4110 urb->stream_id, trbs_per_td, urb, i, mem_flags); 4111 if (ret < 0) { 4112 if (i == 0) 4113 return ret; 4114 goto cleanup; 4115 } 4116 td = &urb_priv->td[i]; 4117 /* use SIA as default, if frame id is used overwrite it */ 4118 sia_frame_id = TRB_SIA; 4119 if (!(urb->transfer_flags & URB_ISO_ASAP) && 4120 HCC_CFC(xhci->hcc_params)) { 4121 frame_id = xhci_get_isoc_frame_id(xhci, urb, i); 4122 if (frame_id >= 0) 4123 sia_frame_id = TRB_FRAME_ID(frame_id); 4124 } 4125 /* 4126 * Set isoc specific data for the first TRB in a TD. 4127 * Prevent HW from getting the TRBs by keeping the cycle state 4128 * inverted in the first TDs isoc TRB. 4129 */ 4130 field = TRB_TYPE(TRB_ISOC) | 4131 TRB_TLBPC(last_burst_pkt_count) | 4132 sia_frame_id | 4133 (i ? ep_ring->cycle_state : !start_cycle); 4134 4135 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ 4136 if (!xep->use_extended_tbc) 4137 field |= TRB_TBC(burst_count); 4138 4139 /* fill the rest of the TRB fields, and remaining normal TRBs */ 4140 for (j = 0; j < trbs_per_td; j++) { 4141 u32 remainder = 0; 4142 4143 /* only first TRB is isoc, overwrite otherwise */ 4144 if (!first_trb) 4145 field = TRB_TYPE(TRB_NORMAL) | 4146 ep_ring->cycle_state; 4147 4148 /* Only set interrupt on short packet for IN EPs */ 4149 if (usb_urb_dir_in(urb)) 4150 field |= TRB_ISP; 4151 4152 /* Set the chain bit for all except the last TRB */ 4153 if (j < trbs_per_td - 1) { 4154 more_trbs_coming = true; 4155 field |= TRB_CHAIN; 4156 } else { 4157 more_trbs_coming = false; 4158 td->end_trb = ep_ring->enqueue; 4159 td->end_seg = ep_ring->enq_seg; 4160 field |= TRB_IOC; 4161 if (trb_block_event_intr(xhci, num_tds, i, ir)) 4162 field |= TRB_BEI; 4163 } 4164 /* Calculate TRB length */ 4165 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 4166 if (trb_buff_len > td_remain_len) 4167 trb_buff_len = td_remain_len; 4168 4169 /* Set the TRB length, TD size, & interrupter fields. */ 4170 remainder = xhci_td_remainder(xhci, running_total, 4171 trb_buff_len, td_len, 4172 urb, more_trbs_coming); 4173 4174 length_field = TRB_LEN(trb_buff_len) | 4175 TRB_INTR_TARGET(0); 4176 4177 /* xhci 1.1 with ETE uses TD Size field for TBC */ 4178 if (first_trb && xep->use_extended_tbc) 4179 length_field |= TRB_TD_SIZE_TBC(burst_count); 4180 else 4181 length_field |= TRB_TD_SIZE(remainder); 4182 first_trb = false; 4183 4184 queue_trb(xhci, ep_ring, more_trbs_coming, 4185 lower_32_bits(addr), 4186 upper_32_bits(addr), 4187 length_field, 4188 field); 4189 running_total += trb_buff_len; 4190 4191 addr += trb_buff_len; 4192 td_remain_len -= trb_buff_len; 4193 } 4194 4195 /* Check TD length */ 4196 if (running_total != td_len) { 4197 xhci_err(xhci, "ISOC TD length unmatch\n"); 4198 ret = -EINVAL; 4199 goto cleanup; 4200 } 4201 } 4202 4203 /* store the next frame id */ 4204 if (HCC_CFC(xhci->hcc_params)) 4205 xep->next_frame_id = urb->start_frame + num_tds * urb->interval; 4206 4207 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 4208 if (xhci->quirks & XHCI_AMD_PLL_FIX) 4209 usb_amd_quirk_pll_disable(); 4210 } 4211 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 4212 4213 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 4214 start_cycle, start_trb); 4215 return 0; 4216 cleanup: 4217 /* Clean up a partially enqueued isoc transfer. */ 4218 4219 for (i--; i >= 0; i--) 4220 list_del_init(&urb_priv->td[i].td_list); 4221 4222 /* Use the first TD as a temporary variable to turn the TDs we've queued 4223 * into No-ops with a software-owned cycle bit. That way the hardware 4224 * won't accidentally start executing bogus TDs when we partially 4225 * overwrite them. td->start_trb and td->start_seg are already set. 4226 */ 4227 urb_priv->td[0].end_trb = ep_ring->enqueue; 4228 /* Every TRB except the first & last will have its cycle bit flipped. */ 4229 td_to_noop(&urb_priv->td[0], true); 4230 4231 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 4232 ep_ring->enqueue = urb_priv->td[0].start_trb; 4233 ep_ring->enq_seg = urb_priv->td[0].start_seg; 4234 ep_ring->cycle_state = start_cycle; 4235 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 4236 return ret; 4237 } 4238 4239 /* 4240 * Check transfer ring to guarantee there is enough room for the urb. 4241 * Update ISO URB start_frame and interval. 4242 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to 4243 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or 4244 * Contiguous Frame ID is not supported by HC. 4245 */ 4246 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 4247 struct urb *urb, int slot_id, unsigned int ep_index) 4248 { 4249 struct xhci_virt_device *xdev; 4250 struct xhci_ring *ep_ring; 4251 struct xhci_ep_ctx *ep_ctx; 4252 int start_frame; 4253 int num_tds, num_trbs, i; 4254 int ret; 4255 struct xhci_virt_ep *xep; 4256 int ist; 4257 4258 xdev = xhci->devs[slot_id]; 4259 xep = &xhci->devs[slot_id]->eps[ep_index]; 4260 ep_ring = xdev->eps[ep_index].ring; 4261 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 4262 4263 num_trbs = 0; 4264 num_tds = urb->number_of_packets; 4265 for (i = 0; i < num_tds; i++) 4266 num_trbs += count_isoc_trbs_needed(urb, i); 4267 4268 /* Check the ring to guarantee there is enough room for the whole urb. 4269 * Do not insert any td of the urb to the ring if the check failed. 4270 */ 4271 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 4272 num_trbs, mem_flags); 4273 if (ret) 4274 return ret; 4275 4276 /* 4277 * Check interval value. This should be done before we start to 4278 * calculate the start frame value. 4279 */ 4280 check_interval(urb, ep_ctx); 4281 4282 /* Calculate the start frame and put it in urb->start_frame. */ 4283 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { 4284 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) { 4285 urb->start_frame = xep->next_frame_id; 4286 goto skip_start_over; 4287 } 4288 } 4289 4290 start_frame = readl(&xhci->run_regs->microframe_index); 4291 start_frame &= 0x3fff; 4292 /* 4293 * Round up to the next frame and consider the time before trb really 4294 * gets scheduled by hardare. 4295 */ 4296 ist = HCS_IST(xhci->hcs_params2) & 0x7; 4297 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 4298 ist <<= 3; 4299 start_frame += ist + XHCI_CFC_DELAY; 4300 start_frame = roundup(start_frame, 8); 4301 4302 /* 4303 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT 4304 * is greate than 8 microframes. 4305 */ 4306 if (urb->dev->speed == USB_SPEED_LOW || 4307 urb->dev->speed == USB_SPEED_FULL) { 4308 start_frame = roundup(start_frame, urb->interval << 3); 4309 urb->start_frame = start_frame >> 3; 4310 } else { 4311 start_frame = roundup(start_frame, urb->interval); 4312 urb->start_frame = start_frame; 4313 } 4314 4315 skip_start_over: 4316 4317 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 4318 } 4319 4320 /**** Command Ring Operations ****/ 4321 4322 /* Generic function for queueing a command TRB on the command ring. 4323 * Check to make sure there's room on the command ring for one command TRB. 4324 * Also check that there's room reserved for commands that must not fail. 4325 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 4326 * then only check for the number of reserved spots. 4327 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 4328 * because the command event handler may want to resubmit a failed command. 4329 */ 4330 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4331 u32 field1, u32 field2, 4332 u32 field3, u32 field4, bool command_must_succeed) 4333 { 4334 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 4335 int ret; 4336 4337 if ((xhci->xhc_state & XHCI_STATE_DYING) || 4338 (xhci->xhc_state & XHCI_STATE_HALTED)) { 4339 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); 4340 return -ESHUTDOWN; 4341 } 4342 4343 if (!command_must_succeed) 4344 reserved_trbs++; 4345 4346 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 4347 reserved_trbs, GFP_ATOMIC); 4348 if (ret < 0) { 4349 xhci_err(xhci, "ERR: No room for command on command ring\n"); 4350 if (command_must_succeed) 4351 xhci_err(xhci, "ERR: Reserved TRB counting for " 4352 "unfailable commands failed.\n"); 4353 return ret; 4354 } 4355 4356 cmd->command_trb = xhci->cmd_ring->enqueue; 4357 4358 /* if there are no other commands queued we start the timeout timer */ 4359 if (list_empty(&xhci->cmd_list)) { 4360 xhci->current_cmd = cmd; 4361 xhci_mod_cmd_timer(xhci); 4362 } 4363 4364 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 4365 4366 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 4367 field4 | xhci->cmd_ring->cycle_state); 4368 return 0; 4369 } 4370 4371 /* Queue a slot enable or disable request on the command ring */ 4372 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 4373 u32 trb_type, u32 slot_id) 4374 { 4375 return queue_command(xhci, cmd, 0, 0, 0, 4376 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 4377 } 4378 4379 /* Queue an address device command TRB */ 4380 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4381 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 4382 { 4383 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4384 upper_32_bits(in_ctx_ptr), 0, 4385 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 4386 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 4387 } 4388 4389 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4390 u32 field1, u32 field2, u32 field3, u32 field4) 4391 { 4392 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 4393 } 4394 4395 /* Queue a reset device command TRB */ 4396 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4397 u32 slot_id) 4398 { 4399 return queue_command(xhci, cmd, 0, 0, 0, 4400 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 4401 false); 4402 } 4403 4404 /* Queue a configure endpoint command TRB */ 4405 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 4406 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 4407 u32 slot_id, bool command_must_succeed) 4408 { 4409 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4410 upper_32_bits(in_ctx_ptr), 0, 4411 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 4412 command_must_succeed); 4413 } 4414 4415 /* Queue an evaluate context command TRB */ 4416 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 4417 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 4418 { 4419 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4420 upper_32_bits(in_ctx_ptr), 0, 4421 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 4422 command_must_succeed); 4423 } 4424 4425 /* 4426 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 4427 * activity on an endpoint that is about to be suspended. 4428 */ 4429 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 4430 int slot_id, unsigned int ep_index, int suspend) 4431 { 4432 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4433 u32 trb_ep_index = EP_INDEX_FOR_TRB(ep_index); 4434 u32 type = TRB_TYPE(TRB_STOP_RING); 4435 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 4436 4437 return queue_command(xhci, cmd, 0, 0, 0, 4438 trb_slot_id | trb_ep_index | type | trb_suspend, false); 4439 } 4440 4441 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 4442 int slot_id, unsigned int ep_index, 4443 enum xhci_ep_reset_type reset_type) 4444 { 4445 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4446 u32 trb_ep_index = EP_INDEX_FOR_TRB(ep_index); 4447 u32 type = TRB_TYPE(TRB_RESET_EP); 4448 4449 if (reset_type == EP_SOFT_RESET) 4450 type |= TRB_TSP; 4451 4452 return queue_command(xhci, cmd, 0, 0, 0, 4453 trb_slot_id | trb_ep_index | type, false); 4454 } 4455