1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 /* 12 * Ring initialization rules: 13 * 1. Each segment is initialized to zero, except for link TRBs. 14 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 15 * Consumer Cycle State (CCS), depending on ring function. 16 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 17 * 18 * Ring behavior rules: 19 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 20 * least one free TRB in the ring. This is useful if you want to turn that 21 * into a link TRB and expand the ring. 22 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 23 * link TRB, then load the pointer with the address in the link TRB. If the 24 * link TRB had its toggle bit set, you may need to update the ring cycle 25 * state (see cycle bit rules). You may have to do this multiple times 26 * until you reach a non-link TRB. 27 * 3. A ring is full if enqueue++ (for the definition of increment above) 28 * equals the dequeue pointer. 29 * 30 * Cycle bit rules: 31 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 32 * in a link TRB, it must toggle the ring cycle state. 33 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 34 * in a link TRB, it must toggle the ring cycle state. 35 * 36 * Producer rules: 37 * 1. Check if ring is full before you enqueue. 38 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 39 * Update enqueue pointer between each write (which may update the ring 40 * cycle state). 41 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 42 * and endpoint rings. If HC is the producer for the event ring, 43 * and it generates an interrupt according to interrupt modulation rules. 44 * 45 * Consumer rules: 46 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 47 * the TRB is owned by the consumer. 48 * 2. Update dequeue pointer (which may update the ring cycle state) and 49 * continue processing TRBs until you reach a TRB which is not owned by you. 50 * 3. Notify the producer. SW is the consumer for the event ring, and it 51 * updates event ring dequeue pointer. HC is the consumer for the command and 52 * endpoint rings; it generates events on the event ring for these. 53 */ 54 55 #include <linux/scatterlist.h> 56 #include <linux/slab.h> 57 #include <linux/dma-mapping.h> 58 #include "xhci.h" 59 #include "xhci-trace.h" 60 61 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 62 u32 field1, u32 field2, 63 u32 field3, u32 field4, bool command_must_succeed); 64 65 /* 66 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 67 * address of the TRB. 68 */ 69 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 70 union xhci_trb *trb) 71 { 72 unsigned long segment_offset; 73 74 if (!seg || !trb || trb < seg->trbs) 75 return 0; 76 /* offset in TRBs */ 77 segment_offset = trb - seg->trbs; 78 if (segment_offset >= TRBS_PER_SEGMENT) 79 return 0; 80 return seg->dma + (segment_offset * sizeof(*trb)); 81 } 82 83 static bool trb_is_noop(union xhci_trb *trb) 84 { 85 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); 86 } 87 88 static bool trb_is_link(union xhci_trb *trb) 89 { 90 return TRB_TYPE_LINK_LE32(trb->link.control); 91 } 92 93 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) 94 { 95 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; 96 } 97 98 static bool last_trb_on_ring(struct xhci_ring *ring, 99 struct xhci_segment *seg, union xhci_trb *trb) 100 { 101 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); 102 } 103 104 static bool link_trb_toggles_cycle(union xhci_trb *trb) 105 { 106 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 107 } 108 109 static bool last_td_in_urb(struct xhci_td *td) 110 { 111 struct urb_priv *urb_priv = td->urb->hcpriv; 112 113 return urb_priv->num_tds_done == urb_priv->num_tds; 114 } 115 116 static void inc_td_cnt(struct urb *urb) 117 { 118 struct urb_priv *urb_priv = urb->hcpriv; 119 120 urb_priv->num_tds_done++; 121 } 122 123 static void trb_to_noop(union xhci_trb *trb, u32 noop_type) 124 { 125 if (trb_is_link(trb)) { 126 /* unchain chained link TRBs */ 127 trb->link.control &= cpu_to_le32(~TRB_CHAIN); 128 } else { 129 trb->generic.field[0] = 0; 130 trb->generic.field[1] = 0; 131 trb->generic.field[2] = 0; 132 /* Preserve only the cycle bit of this TRB */ 133 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 134 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); 135 } 136 } 137 138 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 139 * TRB is in a new segment. This does not skip over link TRBs, and it does not 140 * effect the ring dequeue or enqueue pointers. 141 */ 142 static void next_trb(struct xhci_hcd *xhci, 143 struct xhci_ring *ring, 144 struct xhci_segment **seg, 145 union xhci_trb **trb) 146 { 147 if (trb_is_link(*trb) || last_trb_on_seg(*seg, *trb)) { 148 *seg = (*seg)->next; 149 *trb = ((*seg)->trbs); 150 } else { 151 (*trb)++; 152 } 153 } 154 155 /* 156 * See Cycle bit rules. SW is the consumer for the event ring only. 157 */ 158 void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 159 { 160 unsigned int link_trb_count = 0; 161 162 /* event ring doesn't have link trbs, check for last trb */ 163 if (ring->type == TYPE_EVENT) { 164 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 165 ring->dequeue++; 166 goto out; 167 } 168 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) 169 ring->cycle_state ^= 1; 170 ring->deq_seg = ring->deq_seg->next; 171 ring->dequeue = ring->deq_seg->trbs; 172 goto out; 173 } 174 175 /* All other rings have link trbs */ 176 if (!trb_is_link(ring->dequeue)) { 177 if (last_trb_on_seg(ring->deq_seg, ring->dequeue)) 178 xhci_warn(xhci, "Missing link TRB at end of segment\n"); 179 else 180 ring->dequeue++; 181 } 182 183 while (trb_is_link(ring->dequeue)) { 184 ring->deq_seg = ring->deq_seg->next; 185 ring->dequeue = ring->deq_seg->trbs; 186 187 if (link_trb_count++ > ring->num_segs) { 188 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 189 break; 190 } 191 } 192 out: 193 trace_xhci_inc_deq(ring); 194 195 return; 196 } 197 198 /* 199 * See Cycle bit rules. SW is the consumer for the event ring only. 200 * 201 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 202 * chain bit is set), then set the chain bit in all the following link TRBs. 203 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 204 * have their chain bit cleared (so that each Link TRB is a separate TD). 205 * 206 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 207 * set, but other sections talk about dealing with the chain bit set. This was 208 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 209 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 210 * 211 * @more_trbs_coming: Will you enqueue more TRBs before calling 212 * prepare_transfer()? 213 */ 214 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 215 bool more_trbs_coming) 216 { 217 u32 chain; 218 union xhci_trb *next; 219 unsigned int link_trb_count = 0; 220 221 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 222 223 if (last_trb_on_seg(ring->enq_seg, ring->enqueue)) { 224 xhci_err(xhci, "Tried to move enqueue past ring segment\n"); 225 return; 226 } 227 228 next = ++(ring->enqueue); 229 230 /* Update the dequeue pointer further if that was a link TRB */ 231 while (trb_is_link(next)) { 232 233 /* 234 * If the caller doesn't plan on enqueueing more TDs before 235 * ringing the doorbell, then we don't want to give the link TRB 236 * to the hardware just yet. We'll give the link TRB back in 237 * prepare_ring() just before we enqueue the TD at the top of 238 * the ring. 239 */ 240 if (!chain && !more_trbs_coming) 241 break; 242 243 /* If we're not dealing with 0.95 hardware or isoc rings on 244 * AMD 0.96 host, carry over the chain bit of the previous TRB 245 * (which may mean the chain bit is cleared). 246 */ 247 if (!(ring->type == TYPE_ISOC && 248 (xhci->quirks & XHCI_AMD_0x96_HOST)) && 249 !xhci_link_trb_quirk(xhci)) { 250 next->link.control &= cpu_to_le32(~TRB_CHAIN); 251 next->link.control |= cpu_to_le32(chain); 252 } 253 /* Give this link TRB to the hardware */ 254 wmb(); 255 next->link.control ^= cpu_to_le32(TRB_CYCLE); 256 257 /* Toggle the cycle bit after the last ring segment. */ 258 if (link_trb_toggles_cycle(next)) 259 ring->cycle_state ^= 1; 260 261 ring->enq_seg = ring->enq_seg->next; 262 ring->enqueue = ring->enq_seg->trbs; 263 next = ring->enqueue; 264 265 if (link_trb_count++ > ring->num_segs) { 266 xhci_warn(xhci, "%s: Ring link TRB loop\n", __func__); 267 break; 268 } 269 } 270 271 trace_xhci_inc_enq(ring); 272 } 273 274 /* 275 * Return number of free normal TRBs from enqueue to dequeue pointer on ring. 276 * Not counting an assumed link TRB at end of each TRBS_PER_SEGMENT sized segment. 277 * Only for transfer and command rings where driver is the producer, not for 278 * event rings. 279 */ 280 static unsigned int xhci_num_trbs_free(struct xhci_hcd *xhci, struct xhci_ring *ring) 281 { 282 struct xhci_segment *enq_seg = ring->enq_seg; 283 union xhci_trb *enq = ring->enqueue; 284 union xhci_trb *last_on_seg; 285 unsigned int free = 0; 286 int i = 0; 287 288 /* Ring might be empty even if enq != deq if enq is left on a link trb */ 289 if (trb_is_link(enq)) { 290 enq_seg = enq_seg->next; 291 enq = enq_seg->trbs; 292 } 293 294 /* Empty ring, common case, don't walk the segments */ 295 if (enq == ring->dequeue) 296 return ring->num_segs * (TRBS_PER_SEGMENT - 1); 297 298 do { 299 if (ring->deq_seg == enq_seg && ring->dequeue >= enq) 300 return free + (ring->dequeue - enq); 301 last_on_seg = &enq_seg->trbs[TRBS_PER_SEGMENT - 1]; 302 free += last_on_seg - enq; 303 enq_seg = enq_seg->next; 304 enq = enq_seg->trbs; 305 } while (i++ <= ring->num_segs); 306 307 return free; 308 } 309 310 /* 311 * Check to see if there's room to enqueue num_trbs on the ring and make sure 312 * enqueue pointer will not advance into dequeue segment. See rules above. 313 * return number of new segments needed to ensure this. 314 */ 315 316 static unsigned int xhci_ring_expansion_needed(struct xhci_hcd *xhci, struct xhci_ring *ring, 317 unsigned int num_trbs) 318 { 319 struct xhci_segment *seg; 320 int trbs_past_seg; 321 int enq_used; 322 int new_segs; 323 324 enq_used = ring->enqueue - ring->enq_seg->trbs; 325 326 /* how many trbs will be queued past the enqueue segment? */ 327 trbs_past_seg = enq_used + num_trbs - (TRBS_PER_SEGMENT - 1); 328 329 if (trbs_past_seg <= 0) 330 return 0; 331 332 /* Empty ring special case, enqueue stuck on link trb while dequeue advanced */ 333 if (trb_is_link(ring->enqueue) && ring->enq_seg->next->trbs == ring->dequeue) 334 return 0; 335 336 new_segs = 1 + (trbs_past_seg / (TRBS_PER_SEGMENT - 1)); 337 seg = ring->enq_seg; 338 339 while (new_segs > 0) { 340 seg = seg->next; 341 if (seg == ring->deq_seg) { 342 xhci_dbg(xhci, "Ring expansion by %d segments needed\n", 343 new_segs); 344 xhci_dbg(xhci, "Adding %d trbs moves enq %d trbs into deq seg\n", 345 num_trbs, trbs_past_seg % TRBS_PER_SEGMENT); 346 return new_segs; 347 } 348 new_segs--; 349 } 350 351 return 0; 352 } 353 354 /* Ring the host controller doorbell after placing a command on the ring */ 355 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 356 { 357 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 358 return; 359 360 xhci_dbg(xhci, "// Ding dong!\n"); 361 362 trace_xhci_ring_host_doorbell(0, DB_VALUE_HOST); 363 364 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 365 /* Flush PCI posted writes */ 366 readl(&xhci->dba->doorbell[0]); 367 } 368 369 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci) 370 { 371 return mod_delayed_work(system_wq, &xhci->cmd_timer, 372 msecs_to_jiffies(xhci->current_cmd->timeout_ms)); 373 } 374 375 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) 376 { 377 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, 378 cmd_list); 379 } 380 381 /* 382 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 383 * If there are other commands waiting then restart the ring and kick the timer. 384 * This must be called with command ring stopped and xhci->lock held. 385 */ 386 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 387 struct xhci_command *cur_cmd) 388 { 389 struct xhci_command *i_cmd; 390 391 /* Turn all aborted commands in list to no-ops, then restart */ 392 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { 393 394 if (i_cmd->status != COMP_COMMAND_ABORTED) 395 continue; 396 397 i_cmd->status = COMP_COMMAND_RING_STOPPED; 398 399 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 400 i_cmd->command_trb); 401 402 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); 403 404 /* 405 * caller waiting for completion is called when command 406 * completion event is received for these no-op commands 407 */ 408 } 409 410 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 411 412 /* ring command ring doorbell to restart the command ring */ 413 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 414 !(xhci->xhc_state & XHCI_STATE_DYING)) { 415 xhci->current_cmd = cur_cmd; 416 xhci_mod_cmd_timer(xhci); 417 xhci_ring_cmd_db(xhci); 418 } 419 } 420 421 /* Must be called with xhci->lock held, releases and aquires lock back */ 422 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) 423 { 424 struct xhci_segment *new_seg = xhci->cmd_ring->deq_seg; 425 union xhci_trb *new_deq = xhci->cmd_ring->dequeue; 426 u64 crcr; 427 int ret; 428 429 xhci_dbg(xhci, "Abort command ring\n"); 430 431 reinit_completion(&xhci->cmd_ring_stop_completion); 432 433 /* 434 * The control bits like command stop, abort are located in lower 435 * dword of the command ring control register. 436 * Some controllers require all 64 bits to be written to abort the ring. 437 * Make sure the upper dword is valid, pointing to the next command, 438 * avoiding corrupting the command ring pointer in case the command ring 439 * is stopped by the time the upper dword is written. 440 */ 441 next_trb(xhci, NULL, &new_seg, &new_deq); 442 if (trb_is_link(new_deq)) 443 next_trb(xhci, NULL, &new_seg, &new_deq); 444 445 crcr = xhci_trb_virt_to_dma(new_seg, new_deq); 446 xhci_write_64(xhci, crcr | CMD_RING_ABORT, &xhci->op_regs->cmd_ring); 447 448 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the 449 * completion of the Command Abort operation. If CRR is not negated in 5 450 * seconds then driver handles it as if host died (-ENODEV). 451 * In the future we should distinguish between -ENODEV and -ETIMEDOUT 452 * and try to recover a -ETIMEDOUT with a host controller reset. 453 */ 454 ret = xhci_handshake_check_state(xhci, &xhci->op_regs->cmd_ring, 455 CMD_RING_RUNNING, 0, 5 * 1000 * 1000, 456 XHCI_STATE_REMOVING); 457 if (ret < 0) { 458 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret); 459 xhci_halt(xhci); 460 xhci_hc_died(xhci); 461 return ret; 462 } 463 /* 464 * Writing the CMD_RING_ABORT bit should cause a cmd completion event, 465 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared 466 * but the completion event in never sent. Wait 2 secs (arbitrary 467 * number) to handle those cases after negation of CMD_RING_RUNNING. 468 */ 469 spin_unlock_irqrestore(&xhci->lock, flags); 470 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, 471 msecs_to_jiffies(2000)); 472 spin_lock_irqsave(&xhci->lock, flags); 473 if (!ret) { 474 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); 475 xhci_cleanup_command_queue(xhci); 476 } else { 477 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); 478 } 479 return 0; 480 } 481 482 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 483 unsigned int slot_id, 484 unsigned int ep_index, 485 unsigned int stream_id) 486 { 487 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 488 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 489 unsigned int ep_state = ep->ep_state; 490 491 /* Don't ring the doorbell for this endpoint if there are pending 492 * cancellations because we don't want to interrupt processing. 493 * We don't want to restart any stream rings if there's a set dequeue 494 * pointer command pending because the device can choose to start any 495 * stream once the endpoint is on the HW schedule. 496 */ 497 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || 498 (ep_state & EP_HALTED) || (ep_state & EP_CLEARING_TT)) 499 return; 500 501 trace_xhci_ring_ep_doorbell(slot_id, DB_VALUE(ep_index, stream_id)); 502 503 writel(DB_VALUE(ep_index, stream_id), db_addr); 504 /* flush the write */ 505 readl(db_addr); 506 } 507 508 /* Ring the doorbell for any rings with pending URBs */ 509 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 510 unsigned int slot_id, 511 unsigned int ep_index) 512 { 513 unsigned int stream_id; 514 struct xhci_virt_ep *ep; 515 516 ep = &xhci->devs[slot_id]->eps[ep_index]; 517 518 /* A ring has pending URBs if its TD list is not empty */ 519 if (!(ep->ep_state & EP_HAS_STREAMS)) { 520 if (ep->ring && !(list_empty(&ep->ring->td_list))) 521 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 522 return; 523 } 524 525 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 526 stream_id++) { 527 struct xhci_stream_info *stream_info = ep->stream_info; 528 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 529 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 530 stream_id); 531 } 532 } 533 534 void xhci_ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 535 unsigned int slot_id, 536 unsigned int ep_index) 537 { 538 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 539 } 540 541 static struct xhci_virt_ep *xhci_get_virt_ep(struct xhci_hcd *xhci, 542 unsigned int slot_id, 543 unsigned int ep_index) 544 { 545 if (slot_id == 0 || slot_id >= MAX_HC_SLOTS) { 546 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 547 return NULL; 548 } 549 if (ep_index >= EP_CTX_PER_DEV) { 550 xhci_warn(xhci, "Invalid endpoint index %u\n", ep_index); 551 return NULL; 552 } 553 if (!xhci->devs[slot_id]) { 554 xhci_warn(xhci, "No xhci virt device for slot_id %u\n", slot_id); 555 return NULL; 556 } 557 558 return &xhci->devs[slot_id]->eps[ep_index]; 559 } 560 561 static struct xhci_ring *xhci_virt_ep_to_ring(struct xhci_hcd *xhci, 562 struct xhci_virt_ep *ep, 563 unsigned int stream_id) 564 { 565 /* common case, no streams */ 566 if (!(ep->ep_state & EP_HAS_STREAMS)) 567 return ep->ring; 568 569 if (!ep->stream_info) 570 return NULL; 571 572 if (stream_id == 0 || stream_id >= ep->stream_info->num_streams) { 573 xhci_warn(xhci, "Invalid stream_id %u request for slot_id %u ep_index %u\n", 574 stream_id, ep->vdev->slot_id, ep->ep_index); 575 return NULL; 576 } 577 578 return ep->stream_info->stream_rings[stream_id]; 579 } 580 581 /* Get the right ring for the given slot_id, ep_index and stream_id. 582 * If the endpoint supports streams, boundary check the URB's stream ID. 583 * If the endpoint doesn't support streams, return the singular endpoint ring. 584 */ 585 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 586 unsigned int slot_id, unsigned int ep_index, 587 unsigned int stream_id) 588 { 589 struct xhci_virt_ep *ep; 590 591 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 592 if (!ep) 593 return NULL; 594 595 return xhci_virt_ep_to_ring(xhci, ep, stream_id); 596 } 597 598 599 /* 600 * Get the hw dequeue pointer xHC stopped on, either directly from the 601 * endpoint context, or if streams are in use from the stream context. 602 * The returned hw_dequeue contains the lowest four bits with cycle state 603 * and possbile stream context type. 604 */ 605 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev, 606 unsigned int ep_index, unsigned int stream_id) 607 { 608 struct xhci_ep_ctx *ep_ctx; 609 struct xhci_stream_ctx *st_ctx; 610 struct xhci_virt_ep *ep; 611 612 ep = &vdev->eps[ep_index]; 613 614 if (ep->ep_state & EP_HAS_STREAMS) { 615 st_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 616 return le64_to_cpu(st_ctx->stream_ring); 617 } 618 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 619 return le64_to_cpu(ep_ctx->deq); 620 } 621 622 static int xhci_move_dequeue_past_td(struct xhci_hcd *xhci, 623 unsigned int slot_id, unsigned int ep_index, 624 unsigned int stream_id, struct xhci_td *td) 625 { 626 struct xhci_virt_device *dev = xhci->devs[slot_id]; 627 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 628 struct xhci_ring *ep_ring; 629 struct xhci_command *cmd; 630 struct xhci_segment *new_seg; 631 union xhci_trb *new_deq; 632 int new_cycle; 633 dma_addr_t addr; 634 u64 hw_dequeue; 635 bool cycle_found = false; 636 bool td_last_trb_found = false; 637 u32 trb_sct = 0; 638 int ret; 639 640 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 641 ep_index, stream_id); 642 if (!ep_ring) { 643 xhci_warn(xhci, "WARN can't find new dequeue, invalid stream ID %u\n", 644 stream_id); 645 return -ENODEV; 646 } 647 /* 648 * A cancelled TD can complete with a stall if HW cached the trb. 649 * In this case driver can't find td, but if the ring is empty we 650 * can move the dequeue pointer to the current enqueue position. 651 * We shouldn't hit this anymore as cached cancelled TRBs are given back 652 * after clearing the cache, but be on the safe side and keep it anyway 653 */ 654 if (!td) { 655 if (list_empty(&ep_ring->td_list)) { 656 new_seg = ep_ring->enq_seg; 657 new_deq = ep_ring->enqueue; 658 new_cycle = ep_ring->cycle_state; 659 xhci_dbg(xhci, "ep ring empty, Set new dequeue = enqueue"); 660 goto deq_found; 661 } else { 662 xhci_warn(xhci, "Can't find new dequeue state, missing td\n"); 663 return -EINVAL; 664 } 665 } 666 667 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id); 668 new_seg = ep_ring->deq_seg; 669 new_deq = ep_ring->dequeue; 670 new_cycle = hw_dequeue & 0x1; 671 672 /* 673 * We want to find the pointer, segment and cycle state of the new trb 674 * (the one after current TD's last_trb). We know the cycle state at 675 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are 676 * found. 677 */ 678 do { 679 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) 680 == (dma_addr_t)(hw_dequeue & ~0xf)) { 681 cycle_found = true; 682 if (td_last_trb_found) 683 break; 684 } 685 if (new_deq == td->last_trb) 686 td_last_trb_found = true; 687 688 if (cycle_found && trb_is_link(new_deq) && 689 link_trb_toggles_cycle(new_deq)) 690 new_cycle ^= 0x1; 691 692 next_trb(xhci, ep_ring, &new_seg, &new_deq); 693 694 /* Search wrapped around, bail out */ 695 if (new_deq == ep->ring->dequeue) { 696 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 697 return -EINVAL; 698 } 699 700 } while (!cycle_found || !td_last_trb_found); 701 702 deq_found: 703 704 /* Don't update the ring cycle state for the producer (us). */ 705 addr = xhci_trb_virt_to_dma(new_seg, new_deq); 706 if (addr == 0) { 707 xhci_warn(xhci, "Can't find dma of new dequeue ptr\n"); 708 xhci_warn(xhci, "deq seg = %p, deq ptr = %p\n", new_seg, new_deq); 709 return -EINVAL; 710 } 711 712 if ((ep->ep_state & SET_DEQ_PENDING)) { 713 xhci_warn(xhci, "Set TR Deq already pending, don't submit for 0x%pad\n", 714 &addr); 715 return -EBUSY; 716 } 717 718 /* This function gets called from contexts where it cannot sleep */ 719 cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC); 720 if (!cmd) { 721 xhci_warn(xhci, "Can't alloc Set TR Deq cmd 0x%pad\n", &addr); 722 return -ENOMEM; 723 } 724 725 if (stream_id) 726 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 727 ret = queue_command(xhci, cmd, 728 lower_32_bits(addr) | trb_sct | new_cycle, 729 upper_32_bits(addr), 730 STREAM_ID_FOR_TRB(stream_id), SLOT_ID_FOR_TRB(slot_id) | 731 EP_ID_FOR_TRB(ep_index) | TRB_TYPE(TRB_SET_DEQ), false); 732 if (ret < 0) { 733 xhci_free_command(xhci, cmd); 734 return ret; 735 } 736 ep->queued_deq_seg = new_seg; 737 ep->queued_deq_ptr = new_deq; 738 739 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 740 "Set TR Deq ptr 0x%llx, cycle %u\n", addr, new_cycle); 741 742 /* Stop the TD queueing code from ringing the doorbell until 743 * this command completes. The HC won't set the dequeue pointer 744 * if the ring is running, and ringing the doorbell starts the 745 * ring running. 746 */ 747 ep->ep_state |= SET_DEQ_PENDING; 748 xhci_ring_cmd_db(xhci); 749 return 0; 750 } 751 752 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 753 * (The last TRB actually points to the ring enqueue pointer, which is not part 754 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 755 */ 756 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 757 struct xhci_td *td, bool flip_cycle) 758 { 759 struct xhci_segment *seg = td->start_seg; 760 union xhci_trb *trb = td->first_trb; 761 762 while (1) { 763 trb_to_noop(trb, TRB_TR_NOOP); 764 765 /* flip cycle if asked to */ 766 if (flip_cycle && trb != td->first_trb && trb != td->last_trb) 767 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); 768 769 if (trb == td->last_trb) 770 break; 771 772 next_trb(xhci, ep_ring, &seg, &trb); 773 } 774 } 775 776 /* 777 * Must be called with xhci->lock held in interrupt context, 778 * releases and re-acquires xhci->lock 779 */ 780 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 781 struct xhci_td *cur_td, int status) 782 { 783 struct urb *urb = cur_td->urb; 784 struct urb_priv *urb_priv = urb->hcpriv; 785 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 786 787 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 788 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 789 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 790 if (xhci->quirks & XHCI_AMD_PLL_FIX) 791 usb_amd_quirk_pll_enable(); 792 } 793 } 794 xhci_urb_free_priv(urb_priv); 795 usb_hcd_unlink_urb_from_ep(hcd, urb); 796 trace_xhci_urb_giveback(urb); 797 usb_hcd_giveback_urb(hcd, urb, status); 798 } 799 800 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, 801 struct xhci_ring *ring, struct xhci_td *td) 802 { 803 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 804 struct xhci_segment *seg = td->bounce_seg; 805 struct urb *urb = td->urb; 806 size_t len; 807 808 if (!ring || !seg || !urb) 809 return; 810 811 if (usb_urb_dir_out(urb)) { 812 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 813 DMA_TO_DEVICE); 814 return; 815 } 816 817 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 818 DMA_FROM_DEVICE); 819 /* for in tranfers we need to copy the data from bounce to sg */ 820 if (urb->num_sgs) { 821 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, seg->bounce_buf, 822 seg->bounce_len, seg->bounce_offs); 823 if (len != seg->bounce_len) 824 xhci_warn(xhci, "WARN Wrong bounce buffer read length: %zu != %d\n", 825 len, seg->bounce_len); 826 } else { 827 memcpy(urb->transfer_buffer + seg->bounce_offs, seg->bounce_buf, 828 seg->bounce_len); 829 } 830 seg->bounce_len = 0; 831 seg->bounce_offs = 0; 832 } 833 834 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, 835 struct xhci_ring *ep_ring, int status) 836 { 837 struct urb *urb = NULL; 838 839 /* Clean up the endpoint's TD list */ 840 urb = td->urb; 841 842 /* if a bounce buffer was used to align this td then unmap it */ 843 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); 844 845 /* Do one last check of the actual transfer length. 846 * If the host controller said we transferred more data than the buffer 847 * length, urb->actual_length will be a very big number (since it's 848 * unsigned). Play it safe and say we didn't transfer anything. 849 */ 850 if (urb->actual_length > urb->transfer_buffer_length) { 851 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", 852 urb->transfer_buffer_length, urb->actual_length); 853 urb->actual_length = 0; 854 status = 0; 855 } 856 /* TD might be removed from td_list if we are giving back a cancelled URB */ 857 if (!list_empty(&td->td_list)) 858 list_del_init(&td->td_list); 859 /* Giving back a cancelled URB, or if a slated TD completed anyway */ 860 if (!list_empty(&td->cancelled_td_list)) 861 list_del_init(&td->cancelled_td_list); 862 863 inc_td_cnt(urb); 864 /* Giveback the urb when all the tds are completed */ 865 if (last_td_in_urb(td)) { 866 if ((urb->actual_length != urb->transfer_buffer_length && 867 (urb->transfer_flags & URB_SHORT_NOT_OK)) || 868 (status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) 869 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", 870 urb, urb->actual_length, 871 urb->transfer_buffer_length, status); 872 873 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ 874 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 875 status = 0; 876 xhci_giveback_urb_in_irq(xhci, td, status); 877 } 878 879 return 0; 880 } 881 882 883 /* Complete the cancelled URBs we unlinked from td_list. */ 884 static void xhci_giveback_invalidated_tds(struct xhci_virt_ep *ep) 885 { 886 struct xhci_ring *ring; 887 struct xhci_td *td, *tmp_td; 888 889 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 890 cancelled_td_list) { 891 892 ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 893 894 if (td->cancel_status == TD_CLEARED) { 895 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 896 __func__, td->urb); 897 xhci_td_cleanup(ep->xhci, td, ring, td->status); 898 } else { 899 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 900 __func__, td->urb, td->cancel_status); 901 } 902 if (ep->xhci->xhc_state & XHCI_STATE_DYING) 903 return; 904 } 905 } 906 907 static int xhci_reset_halted_ep(struct xhci_hcd *xhci, unsigned int slot_id, 908 unsigned int ep_index, enum xhci_ep_reset_type reset_type) 909 { 910 struct xhci_command *command; 911 int ret = 0; 912 913 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 914 if (!command) { 915 ret = -ENOMEM; 916 goto done; 917 } 918 919 xhci_dbg(xhci, "%s-reset ep %u, slot %u\n", 920 (reset_type == EP_HARD_RESET) ? "Hard" : "Soft", 921 ep_index, slot_id); 922 923 ret = xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type); 924 done: 925 if (ret) 926 xhci_err(xhci, "ERROR queuing reset endpoint for slot %d ep_index %d, %d\n", 927 slot_id, ep_index, ret); 928 return ret; 929 } 930 931 static int xhci_handle_halted_endpoint(struct xhci_hcd *xhci, 932 struct xhci_virt_ep *ep, 933 struct xhci_td *td, 934 enum xhci_ep_reset_type reset_type) 935 { 936 unsigned int slot_id = ep->vdev->slot_id; 937 int err; 938 939 /* 940 * Avoid resetting endpoint if link is inactive. Can cause host hang. 941 * Device will be reset soon to recover the link so don't do anything 942 */ 943 if (ep->vdev->flags & VDEV_PORT_ERROR) 944 return -ENODEV; 945 946 /* add td to cancelled list and let reset ep handler take care of it */ 947 if (reset_type == EP_HARD_RESET) { 948 ep->ep_state |= EP_HARD_CLEAR_TOGGLE; 949 if (td && list_empty(&td->cancelled_td_list)) { 950 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 951 td->cancel_status = TD_HALTED; 952 } 953 } 954 955 if (ep->ep_state & EP_HALTED) { 956 xhci_dbg(xhci, "Reset ep command for ep_index %d already pending\n", 957 ep->ep_index); 958 return 0; 959 } 960 961 err = xhci_reset_halted_ep(xhci, slot_id, ep->ep_index, reset_type); 962 if (err) 963 return err; 964 965 ep->ep_state |= EP_HALTED; 966 967 xhci_ring_cmd_db(xhci); 968 969 return 0; 970 } 971 972 /* 973 * Fix up the ep ring first, so HW stops executing cancelled TDs. 974 * We have the xHCI lock, so nothing can modify this list until we drop it. 975 * We're also in the event handler, so we can't get re-interrupted if another 976 * Stop Endpoint command completes. 977 * 978 * only call this when ring is not in a running state 979 */ 980 981 static int xhci_invalidate_cancelled_tds(struct xhci_virt_ep *ep) 982 { 983 struct xhci_hcd *xhci; 984 struct xhci_td *td = NULL; 985 struct xhci_td *tmp_td = NULL; 986 struct xhci_td *cached_td = NULL; 987 struct xhci_ring *ring; 988 u64 hw_deq; 989 unsigned int slot_id = ep->vdev->slot_id; 990 int err; 991 992 xhci = ep->xhci; 993 994 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 995 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 996 "Removing canceled TD starting at 0x%llx (dma) in stream %u URB %p", 997 (unsigned long long)xhci_trb_virt_to_dma( 998 td->start_seg, td->first_trb), 999 td->urb->stream_id, td->urb); 1000 list_del_init(&td->td_list); 1001 ring = xhci_urb_to_transfer_ring(xhci, td->urb); 1002 if (!ring) { 1003 xhci_warn(xhci, "WARN Cancelled URB %p has invalid stream ID %u.\n", 1004 td->urb, td->urb->stream_id); 1005 continue; 1006 } 1007 /* 1008 * If a ring stopped on the TD we need to cancel then we have to 1009 * move the xHC endpoint ring dequeue pointer past this TD. 1010 * Rings halted due to STALL may show hw_deq is past the stalled 1011 * TD, but still require a set TR Deq command to flush xHC cache. 1012 */ 1013 hw_deq = xhci_get_hw_deq(xhci, ep->vdev, ep->ep_index, 1014 td->urb->stream_id); 1015 hw_deq &= ~0xf; 1016 1017 if (td->cancel_status == TD_HALTED || 1018 trb_in_td(xhci, td->start_seg, td->first_trb, td->last_trb, hw_deq, false)) { 1019 switch (td->cancel_status) { 1020 case TD_CLEARED: /* TD is already no-op */ 1021 case TD_CLEARING_CACHE: /* set TR deq command already queued */ 1022 break; 1023 case TD_DIRTY: /* TD is cached, clear it */ 1024 case TD_HALTED: 1025 td->cancel_status = TD_CLEARING_CACHE; 1026 if (cached_td) 1027 /* FIXME stream case, several stopped rings */ 1028 xhci_dbg(xhci, 1029 "Move dq past stream %u URB %p instead of stream %u URB %p\n", 1030 td->urb->stream_id, td->urb, 1031 cached_td->urb->stream_id, cached_td->urb); 1032 cached_td = td; 1033 break; 1034 } 1035 } else { 1036 td_to_noop(xhci, ring, td, false); 1037 td->cancel_status = TD_CLEARED; 1038 } 1039 } 1040 1041 /* If there's no need to move the dequeue pointer then we're done */ 1042 if (!cached_td) 1043 return 0; 1044 1045 err = xhci_move_dequeue_past_td(xhci, slot_id, ep->ep_index, 1046 cached_td->urb->stream_id, 1047 cached_td); 1048 if (err) { 1049 /* Failed to move past cached td, just set cached TDs to no-op */ 1050 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 1051 if (td->cancel_status != TD_CLEARING_CACHE) 1052 continue; 1053 xhci_dbg(xhci, "Failed to clear cancelled cached URB %p, mark clear anyway\n", 1054 td->urb); 1055 td_to_noop(xhci, ring, td, false); 1056 td->cancel_status = TD_CLEARED; 1057 } 1058 } 1059 return 0; 1060 } 1061 1062 /* 1063 * Returns the TD the endpoint ring halted on. 1064 * Only call for non-running rings without streams. 1065 */ 1066 static struct xhci_td *find_halted_td(struct xhci_virt_ep *ep) 1067 { 1068 struct xhci_td *td; 1069 u64 hw_deq; 1070 1071 if (!list_empty(&ep->ring->td_list)) { /* Not streams compatible */ 1072 hw_deq = xhci_get_hw_deq(ep->xhci, ep->vdev, ep->ep_index, 0); 1073 hw_deq &= ~0xf; 1074 td = list_first_entry(&ep->ring->td_list, struct xhci_td, td_list); 1075 if (trb_in_td(ep->xhci, td->start_seg, td->first_trb, 1076 td->last_trb, hw_deq, false)) 1077 return td; 1078 } 1079 return NULL; 1080 } 1081 1082 /* 1083 * When we get a command completion for a Stop Endpoint Command, we need to 1084 * unlink any cancelled TDs from the ring. There are two ways to do that: 1085 * 1086 * 1. If the HW was in the middle of processing the TD that needs to be 1087 * cancelled, then we must move the ring's dequeue pointer past the last TRB 1088 * in the TD with a Set Dequeue Pointer Command. 1089 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 1090 * bit cleared) so that the HW will skip over them. 1091 */ 1092 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 1093 union xhci_trb *trb, u32 comp_code) 1094 { 1095 unsigned int ep_index; 1096 struct xhci_virt_ep *ep; 1097 struct xhci_ep_ctx *ep_ctx; 1098 struct xhci_td *td = NULL; 1099 enum xhci_ep_reset_type reset_type; 1100 struct xhci_command *command; 1101 int err; 1102 1103 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 1104 if (!xhci->devs[slot_id]) 1105 xhci_warn(xhci, "Stop endpoint command completion for disabled slot %u\n", 1106 slot_id); 1107 return; 1108 } 1109 1110 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1111 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1112 if (!ep) 1113 return; 1114 1115 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1116 1117 trace_xhci_handle_cmd_stop_ep(ep_ctx); 1118 1119 if (comp_code == COMP_CONTEXT_STATE_ERROR) { 1120 /* 1121 * If stop endpoint command raced with a halting endpoint we need to 1122 * reset the host side endpoint first. 1123 * If the TD we halted on isn't cancelled the TD should be given back 1124 * with a proper error code, and the ring dequeue moved past the TD. 1125 * If streams case we can't find hw_deq, or the TD we halted on so do a 1126 * soft reset. 1127 * 1128 * Proper error code is unknown here, it would be -EPIPE if device side 1129 * of enadpoit halted (aka STALL), and -EPROTO if not (transaction error) 1130 * We use -EPROTO, if device is stalled it should return a stall error on 1131 * next transfer, which then will return -EPIPE, and device side stall is 1132 * noted and cleared by class driver. 1133 */ 1134 switch (GET_EP_CTX_STATE(ep_ctx)) { 1135 case EP_STATE_HALTED: 1136 xhci_dbg(xhci, "Stop ep completion raced with stall, reset ep\n"); 1137 if (ep->ep_state & EP_HAS_STREAMS) { 1138 reset_type = EP_SOFT_RESET; 1139 } else { 1140 reset_type = EP_HARD_RESET; 1141 td = find_halted_td(ep); 1142 if (td) 1143 td->status = -EPROTO; 1144 } 1145 /* reset ep, reset handler cleans up cancelled tds */ 1146 err = xhci_handle_halted_endpoint(xhci, ep, td, reset_type); 1147 if (err) 1148 break; 1149 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1150 return; 1151 case EP_STATE_RUNNING: 1152 /* Race, HW handled stop ep cmd before ep was running */ 1153 xhci_dbg(xhci, "Stop ep completion ctx error, ep is running\n"); 1154 1155 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1156 if (!command) { 1157 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1158 return; 1159 } 1160 xhci_queue_stop_endpoint(xhci, command, slot_id, ep_index, 0); 1161 xhci_ring_cmd_db(xhci); 1162 1163 return; 1164 default: 1165 break; 1166 } 1167 } 1168 1169 /* will queue a set TR deq if stopped on a cancelled, uncleared TD */ 1170 xhci_invalidate_cancelled_tds(ep); 1171 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1172 1173 /* Otherwise ring the doorbell(s) to restart queued transfers */ 1174 xhci_giveback_invalidated_tds(ep); 1175 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1176 } 1177 1178 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 1179 { 1180 struct xhci_td *cur_td; 1181 struct xhci_td *tmp; 1182 1183 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { 1184 list_del_init(&cur_td->td_list); 1185 1186 if (!list_empty(&cur_td->cancelled_td_list)) 1187 list_del_init(&cur_td->cancelled_td_list); 1188 1189 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); 1190 1191 inc_td_cnt(cur_td->urb); 1192 if (last_td_in_urb(cur_td)) 1193 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1194 } 1195 } 1196 1197 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 1198 int slot_id, int ep_index) 1199 { 1200 struct xhci_td *cur_td; 1201 struct xhci_td *tmp; 1202 struct xhci_virt_ep *ep; 1203 struct xhci_ring *ring; 1204 1205 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1206 if (!ep) 1207 return; 1208 1209 if ((ep->ep_state & EP_HAS_STREAMS) || 1210 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 1211 int stream_id; 1212 1213 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 1214 stream_id++) { 1215 ring = ep->stream_info->stream_rings[stream_id]; 1216 if (!ring) 1217 continue; 1218 1219 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1220 "Killing URBs for slot ID %u, ep index %u, stream %u", 1221 slot_id, ep_index, stream_id); 1222 xhci_kill_ring_urbs(xhci, ring); 1223 } 1224 } else { 1225 ring = ep->ring; 1226 if (!ring) 1227 return; 1228 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1229 "Killing URBs for slot ID %u, ep index %u", 1230 slot_id, ep_index); 1231 xhci_kill_ring_urbs(xhci, ring); 1232 } 1233 1234 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, 1235 cancelled_td_list) { 1236 list_del_init(&cur_td->cancelled_td_list); 1237 inc_td_cnt(cur_td->urb); 1238 1239 if (last_td_in_urb(cur_td)) 1240 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1241 } 1242 } 1243 1244 /* 1245 * host controller died, register read returns 0xffffffff 1246 * Complete pending commands, mark them ABORTED. 1247 * URBs need to be given back as usb core might be waiting with device locks 1248 * held for the URBs to finish during device disconnect, blocking host remove. 1249 * 1250 * Call with xhci->lock held. 1251 * lock is relased and re-acquired while giving back urb. 1252 */ 1253 void xhci_hc_died(struct xhci_hcd *xhci) 1254 { 1255 int i, j; 1256 1257 if (xhci->xhc_state & XHCI_STATE_DYING) 1258 return; 1259 1260 xhci_err(xhci, "xHCI host controller not responding, assume dead\n"); 1261 xhci->xhc_state |= XHCI_STATE_DYING; 1262 1263 xhci_cleanup_command_queue(xhci); 1264 1265 /* return any pending urbs, remove may be waiting for them */ 1266 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 1267 if (!xhci->devs[i]) 1268 continue; 1269 for (j = 0; j < 31; j++) 1270 xhci_kill_endpoint_urbs(xhci, i, j); 1271 } 1272 1273 /* inform usb core hc died if PCI remove isn't already handling it */ 1274 if (!(xhci->xhc_state & XHCI_STATE_REMOVING)) 1275 usb_hc_died(xhci_to_hcd(xhci)); 1276 } 1277 1278 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 1279 struct xhci_virt_device *dev, 1280 struct xhci_ring *ep_ring, 1281 unsigned int ep_index) 1282 { 1283 union xhci_trb *dequeue_temp; 1284 1285 dequeue_temp = ep_ring->dequeue; 1286 1287 /* If we get two back-to-back stalls, and the first stalled transfer 1288 * ends just before a link TRB, the dequeue pointer will be left on 1289 * the link TRB by the code in the while loop. So we have to update 1290 * the dequeue pointer one segment further, or we'll jump off 1291 * the segment into la-la-land. 1292 */ 1293 if (trb_is_link(ep_ring->dequeue)) { 1294 ep_ring->deq_seg = ep_ring->deq_seg->next; 1295 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1296 } 1297 1298 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 1299 /* We have more usable TRBs */ 1300 ep_ring->dequeue++; 1301 if (trb_is_link(ep_ring->dequeue)) { 1302 if (ep_ring->dequeue == 1303 dev->eps[ep_index].queued_deq_ptr) 1304 break; 1305 ep_ring->deq_seg = ep_ring->deq_seg->next; 1306 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1307 } 1308 if (ep_ring->dequeue == dequeue_temp) { 1309 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 1310 break; 1311 } 1312 } 1313 } 1314 1315 /* 1316 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1317 * we need to clear the set deq pending flag in the endpoint ring state, so that 1318 * the TD queueing code can ring the doorbell again. We also need to ring the 1319 * endpoint doorbell to restart the ring, but only if there aren't more 1320 * cancellations pending. 1321 */ 1322 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1323 union xhci_trb *trb, u32 cmd_comp_code) 1324 { 1325 unsigned int ep_index; 1326 unsigned int stream_id; 1327 struct xhci_ring *ep_ring; 1328 struct xhci_virt_ep *ep; 1329 struct xhci_ep_ctx *ep_ctx; 1330 struct xhci_slot_ctx *slot_ctx; 1331 struct xhci_td *td, *tmp_td; 1332 1333 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1334 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1335 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1336 if (!ep) 1337 return; 1338 1339 ep_ring = xhci_virt_ep_to_ring(xhci, ep, stream_id); 1340 if (!ep_ring) { 1341 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 1342 stream_id); 1343 /* XXX: Harmless??? */ 1344 goto cleanup; 1345 } 1346 1347 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1348 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 1349 trace_xhci_handle_cmd_set_deq(slot_ctx); 1350 trace_xhci_handle_cmd_set_deq_ep(ep_ctx); 1351 1352 if (cmd_comp_code != COMP_SUCCESS) { 1353 unsigned int ep_state; 1354 unsigned int slot_state; 1355 1356 switch (cmd_comp_code) { 1357 case COMP_TRB_ERROR: 1358 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 1359 break; 1360 case COMP_CONTEXT_STATE_ERROR: 1361 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1362 ep_state = GET_EP_CTX_STATE(ep_ctx); 1363 slot_state = le32_to_cpu(slot_ctx->dev_state); 1364 slot_state = GET_SLOT_STATE(slot_state); 1365 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1366 "Slot state = %u, EP state = %u", 1367 slot_state, ep_state); 1368 break; 1369 case COMP_SLOT_NOT_ENABLED_ERROR: 1370 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1371 slot_id); 1372 break; 1373 default: 1374 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1375 cmd_comp_code); 1376 break; 1377 } 1378 /* OK what do we do now? The endpoint state is hosed, and we 1379 * should never get to this point if the synchronization between 1380 * queueing, and endpoint state are correct. This might happen 1381 * if the device gets disconnected after we've finished 1382 * cancelling URBs, which might not be an error... 1383 */ 1384 } else { 1385 u64 deq; 1386 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1387 if (ep->ep_state & EP_HAS_STREAMS) { 1388 struct xhci_stream_ctx *ctx = 1389 &ep->stream_info->stream_ctx_array[stream_id]; 1390 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; 1391 } else { 1392 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1393 } 1394 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1395 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1396 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1397 ep->queued_deq_ptr) == deq) { 1398 /* Update the ring's dequeue segment and dequeue pointer 1399 * to reflect the new position. 1400 */ 1401 update_ring_for_set_deq_completion(xhci, ep->vdev, 1402 ep_ring, ep_index); 1403 } else { 1404 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1405 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1406 ep->queued_deq_seg, ep->queued_deq_ptr); 1407 } 1408 } 1409 /* HW cached TDs cleared from cache, give them back */ 1410 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 1411 cancelled_td_list) { 1412 ep_ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 1413 if (td->cancel_status == TD_CLEARING_CACHE) { 1414 td->cancel_status = TD_CLEARED; 1415 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 1416 __func__, td->urb); 1417 xhci_td_cleanup(ep->xhci, td, ep_ring, td->status); 1418 } else { 1419 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 1420 __func__, td->urb, td->cancel_status); 1421 } 1422 } 1423 cleanup: 1424 ep->ep_state &= ~SET_DEQ_PENDING; 1425 ep->queued_deq_seg = NULL; 1426 ep->queued_deq_ptr = NULL; 1427 /* Restart any rings with pending URBs */ 1428 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1429 } 1430 1431 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1432 union xhci_trb *trb, u32 cmd_comp_code) 1433 { 1434 struct xhci_virt_ep *ep; 1435 struct xhci_ep_ctx *ep_ctx; 1436 unsigned int ep_index; 1437 1438 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1439 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1440 if (!ep) 1441 return; 1442 1443 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1444 trace_xhci_handle_cmd_reset_ep(ep_ctx); 1445 1446 /* This command will only fail if the endpoint wasn't halted, 1447 * but we don't care. 1448 */ 1449 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1450 "Ignoring reset ep completion code of %u", cmd_comp_code); 1451 1452 /* Cleanup cancelled TDs as ep is stopped. May queue a Set TR Deq cmd */ 1453 xhci_invalidate_cancelled_tds(ep); 1454 1455 /* Clear our internal halted state */ 1456 ep->ep_state &= ~EP_HALTED; 1457 1458 xhci_giveback_invalidated_tds(ep); 1459 1460 /* if this was a soft reset, then restart */ 1461 if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP) 1462 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1463 } 1464 1465 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, 1466 struct xhci_command *command, u32 cmd_comp_code) 1467 { 1468 if (cmd_comp_code == COMP_SUCCESS) 1469 command->slot_id = slot_id; 1470 else 1471 command->slot_id = 0; 1472 } 1473 1474 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1475 { 1476 struct xhci_virt_device *virt_dev; 1477 struct xhci_slot_ctx *slot_ctx; 1478 1479 virt_dev = xhci->devs[slot_id]; 1480 if (!virt_dev) 1481 return; 1482 1483 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 1484 trace_xhci_handle_cmd_disable_slot(slot_ctx); 1485 1486 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1487 /* Delete default control endpoint resources */ 1488 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1489 } 1490 1491 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, 1492 u32 cmd_comp_code) 1493 { 1494 struct xhci_virt_device *virt_dev; 1495 struct xhci_input_control_ctx *ctrl_ctx; 1496 struct xhci_ep_ctx *ep_ctx; 1497 unsigned int ep_index; 1498 u32 add_flags; 1499 1500 /* 1501 * Configure endpoint commands can come from the USB core configuration 1502 * or alt setting changes, or when streams were being configured. 1503 */ 1504 1505 virt_dev = xhci->devs[slot_id]; 1506 if (!virt_dev) 1507 return; 1508 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1509 if (!ctrl_ctx) { 1510 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1511 return; 1512 } 1513 1514 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1515 1516 /* Input ctx add_flags are the endpoint index plus one */ 1517 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1518 1519 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index); 1520 trace_xhci_handle_cmd_config_ep(ep_ctx); 1521 1522 return; 1523 } 1524 1525 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id) 1526 { 1527 struct xhci_virt_device *vdev; 1528 struct xhci_slot_ctx *slot_ctx; 1529 1530 vdev = xhci->devs[slot_id]; 1531 if (!vdev) 1532 return; 1533 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1534 trace_xhci_handle_cmd_addr_dev(slot_ctx); 1535 } 1536 1537 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id) 1538 { 1539 struct xhci_virt_device *vdev; 1540 struct xhci_slot_ctx *slot_ctx; 1541 1542 vdev = xhci->devs[slot_id]; 1543 if (!vdev) { 1544 xhci_warn(xhci, "Reset device command completion for disabled slot %u\n", 1545 slot_id); 1546 return; 1547 } 1548 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1549 trace_xhci_handle_cmd_reset_dev(slot_ctx); 1550 1551 xhci_dbg(xhci, "Completed reset device command.\n"); 1552 } 1553 1554 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1555 struct xhci_event_cmd *event) 1556 { 1557 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1558 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); 1559 return; 1560 } 1561 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1562 "NEC firmware version %2x.%02x", 1563 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1564 NEC_FW_MINOR(le32_to_cpu(event->status))); 1565 } 1566 1567 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) 1568 { 1569 list_del(&cmd->cmd_list); 1570 1571 if (cmd->completion) { 1572 cmd->status = status; 1573 complete(cmd->completion); 1574 } else { 1575 kfree(cmd); 1576 } 1577 } 1578 1579 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1580 { 1581 struct xhci_command *cur_cmd, *tmp_cmd; 1582 xhci->current_cmd = NULL; 1583 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1584 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED); 1585 } 1586 1587 void xhci_handle_command_timeout(struct work_struct *work) 1588 { 1589 struct xhci_hcd *xhci; 1590 unsigned long flags; 1591 char str[XHCI_MSG_MAX]; 1592 u64 hw_ring_state; 1593 u32 cmd_field3; 1594 u32 usbsts; 1595 1596 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); 1597 1598 spin_lock_irqsave(&xhci->lock, flags); 1599 1600 /* 1601 * If timeout work is pending, or current_cmd is NULL, it means we 1602 * raced with command completion. Command is handled so just return. 1603 */ 1604 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { 1605 spin_unlock_irqrestore(&xhci->lock, flags); 1606 return; 1607 } 1608 1609 cmd_field3 = le32_to_cpu(xhci->current_cmd->command_trb->generic.field[3]); 1610 usbsts = readl(&xhci->op_regs->status); 1611 xhci_dbg(xhci, "Command timeout, USBSTS:%s\n", xhci_decode_usbsts(str, usbsts)); 1612 1613 /* Bail out and tear down xhci if a stop endpoint command failed */ 1614 if (TRB_FIELD_TO_TYPE(cmd_field3) == TRB_STOP_RING) { 1615 struct xhci_virt_ep *ep; 1616 1617 xhci_warn(xhci, "xHCI host not responding to stop endpoint command\n"); 1618 1619 ep = xhci_get_virt_ep(xhci, TRB_TO_SLOT_ID(cmd_field3), 1620 TRB_TO_EP_INDEX(cmd_field3)); 1621 if (ep) 1622 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1623 1624 xhci_halt(xhci); 1625 xhci_hc_died(xhci); 1626 goto time_out_completed; 1627 } 1628 1629 /* mark this command to be cancelled */ 1630 xhci->current_cmd->status = COMP_COMMAND_ABORTED; 1631 1632 /* Make sure command ring is running before aborting it */ 1633 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1634 if (hw_ring_state == ~(u64)0) { 1635 xhci_hc_died(xhci); 1636 goto time_out_completed; 1637 } 1638 1639 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1640 (hw_ring_state & CMD_RING_RUNNING)) { 1641 /* Prevent new doorbell, and start command abort */ 1642 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 1643 xhci_dbg(xhci, "Command timeout\n"); 1644 xhci_abort_cmd_ring(xhci, flags); 1645 goto time_out_completed; 1646 } 1647 1648 /* host removed. Bail out */ 1649 if (xhci->xhc_state & XHCI_STATE_REMOVING) { 1650 xhci_dbg(xhci, "host removed, ring start fail?\n"); 1651 xhci_cleanup_command_queue(xhci); 1652 1653 goto time_out_completed; 1654 } 1655 1656 /* command timeout on stopped ring, ring can't be aborted */ 1657 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1658 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1659 1660 time_out_completed: 1661 spin_unlock_irqrestore(&xhci->lock, flags); 1662 return; 1663 } 1664 1665 static void handle_cmd_completion(struct xhci_hcd *xhci, 1666 struct xhci_event_cmd *event) 1667 { 1668 unsigned int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1669 u64 cmd_dma; 1670 dma_addr_t cmd_dequeue_dma; 1671 u32 cmd_comp_code; 1672 union xhci_trb *cmd_trb; 1673 struct xhci_command *cmd; 1674 u32 cmd_type; 1675 1676 if (slot_id >= MAX_HC_SLOTS) { 1677 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 1678 return; 1679 } 1680 1681 cmd_dma = le64_to_cpu(event->cmd_trb); 1682 cmd_trb = xhci->cmd_ring->dequeue; 1683 1684 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic); 1685 1686 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1687 cmd_trb); 1688 /* 1689 * Check whether the completion event is for our internal kept 1690 * command. 1691 */ 1692 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { 1693 xhci_warn(xhci, 1694 "ERROR mismatched command completion event\n"); 1695 return; 1696 } 1697 1698 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); 1699 1700 cancel_delayed_work(&xhci->cmd_timer); 1701 1702 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1703 1704 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1705 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) { 1706 complete_all(&xhci->cmd_ring_stop_completion); 1707 return; 1708 } 1709 1710 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1711 xhci_err(xhci, 1712 "Command completion event does not match command\n"); 1713 return; 1714 } 1715 1716 /* 1717 * Host aborted the command ring, check if the current command was 1718 * supposed to be aborted, otherwise continue normally. 1719 * The command ring is stopped now, but the xHC will issue a Command 1720 * Ring Stopped event which will cause us to restart it. 1721 */ 1722 if (cmd_comp_code == COMP_COMMAND_ABORTED) { 1723 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1724 if (cmd->status == COMP_COMMAND_ABORTED) { 1725 if (xhci->current_cmd == cmd) 1726 xhci->current_cmd = NULL; 1727 goto event_handled; 1728 } 1729 } 1730 1731 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1732 switch (cmd_type) { 1733 case TRB_ENABLE_SLOT: 1734 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code); 1735 break; 1736 case TRB_DISABLE_SLOT: 1737 xhci_handle_cmd_disable_slot(xhci, slot_id); 1738 break; 1739 case TRB_CONFIG_EP: 1740 if (!cmd->completion) 1741 xhci_handle_cmd_config_ep(xhci, slot_id, cmd_comp_code); 1742 break; 1743 case TRB_EVAL_CONTEXT: 1744 break; 1745 case TRB_ADDR_DEV: 1746 xhci_handle_cmd_addr_dev(xhci, slot_id); 1747 break; 1748 case TRB_STOP_RING: 1749 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1750 le32_to_cpu(cmd_trb->generic.field[3]))); 1751 if (!cmd->completion) 1752 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, 1753 cmd_comp_code); 1754 break; 1755 case TRB_SET_DEQ: 1756 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1757 le32_to_cpu(cmd_trb->generic.field[3]))); 1758 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1759 break; 1760 case TRB_CMD_NOOP: 1761 /* Is this an aborted command turned to NO-OP? */ 1762 if (cmd->status == COMP_COMMAND_RING_STOPPED) 1763 cmd_comp_code = COMP_COMMAND_RING_STOPPED; 1764 break; 1765 case TRB_RESET_EP: 1766 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1767 le32_to_cpu(cmd_trb->generic.field[3]))); 1768 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1769 break; 1770 case TRB_RESET_DEV: 1771 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1772 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1773 */ 1774 slot_id = TRB_TO_SLOT_ID( 1775 le32_to_cpu(cmd_trb->generic.field[3])); 1776 xhci_handle_cmd_reset_dev(xhci, slot_id); 1777 break; 1778 case TRB_NEC_GET_FW: 1779 xhci_handle_cmd_nec_get_fw(xhci, event); 1780 break; 1781 default: 1782 /* Skip over unknown commands on the event ring */ 1783 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); 1784 break; 1785 } 1786 1787 /* restart timer if this wasn't the last command */ 1788 if (!list_is_singular(&xhci->cmd_list)) { 1789 xhci->current_cmd = list_first_entry(&cmd->cmd_list, 1790 struct xhci_command, cmd_list); 1791 xhci_mod_cmd_timer(xhci); 1792 } else if (xhci->current_cmd == cmd) { 1793 xhci->current_cmd = NULL; 1794 } 1795 1796 event_handled: 1797 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); 1798 1799 inc_deq(xhci, xhci->cmd_ring); 1800 } 1801 1802 static void handle_vendor_event(struct xhci_hcd *xhci, 1803 union xhci_trb *event, u32 trb_type) 1804 { 1805 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1806 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1807 handle_cmd_completion(xhci, &event->event_cmd); 1808 } 1809 1810 static void handle_device_notification(struct xhci_hcd *xhci, 1811 union xhci_trb *event) 1812 { 1813 u32 slot_id; 1814 struct usb_device *udev; 1815 1816 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1817 if (!xhci->devs[slot_id]) { 1818 xhci_warn(xhci, "Device Notification event for " 1819 "unused slot %u\n", slot_id); 1820 return; 1821 } 1822 1823 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1824 slot_id); 1825 udev = xhci->devs[slot_id]->udev; 1826 if (udev && udev->parent) 1827 usb_wakeup_notification(udev->parent, udev->portnum); 1828 } 1829 1830 /* 1831 * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI 1832 * Controller. 1833 * As per ThunderX2errata-129 USB 2 device may come up as USB 1 1834 * If a connection to a USB 1 device is followed by another connection 1835 * to a USB 2 device. 1836 * 1837 * Reset the PHY after the USB device is disconnected if device speed 1838 * is less than HCD_USB3. 1839 * Retry the reset sequence max of 4 times checking the PLL lock status. 1840 * 1841 */ 1842 static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci) 1843 { 1844 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1845 u32 pll_lock_check; 1846 u32 retry_count = 4; 1847 1848 do { 1849 /* Assert PHY reset */ 1850 writel(0x6F, hcd->regs + 0x1048); 1851 udelay(10); 1852 /* De-assert the PHY reset */ 1853 writel(0x7F, hcd->regs + 0x1048); 1854 udelay(200); 1855 pll_lock_check = readl(hcd->regs + 0x1070); 1856 } while (!(pll_lock_check & 0x1) && --retry_count); 1857 } 1858 1859 static void handle_port_status(struct xhci_hcd *xhci, 1860 struct xhci_interrupter *ir, 1861 union xhci_trb *event) 1862 { 1863 struct usb_hcd *hcd; 1864 u32 port_id; 1865 u32 portsc, cmd_reg; 1866 int max_ports; 1867 int slot_id; 1868 unsigned int hcd_portnum; 1869 struct xhci_bus_state *bus_state; 1870 bool bogus_port_status = false; 1871 struct xhci_port *port; 1872 1873 /* Port status change events always have a successful completion code */ 1874 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) 1875 xhci_warn(xhci, 1876 "WARN: xHC returned failed port status event\n"); 1877 1878 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1879 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1880 1881 if ((port_id <= 0) || (port_id > max_ports)) { 1882 xhci_warn(xhci, "Port change event with invalid port ID %d\n", 1883 port_id); 1884 return; 1885 } 1886 1887 port = &xhci->hw_ports[port_id - 1]; 1888 if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) { 1889 xhci_warn(xhci, "Port change event, no port for port ID %u\n", 1890 port_id); 1891 bogus_port_status = true; 1892 goto cleanup; 1893 } 1894 1895 /* We might get interrupts after shared_hcd is removed */ 1896 if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) { 1897 xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n"); 1898 bogus_port_status = true; 1899 goto cleanup; 1900 } 1901 1902 hcd = port->rhub->hcd; 1903 bus_state = &port->rhub->bus_state; 1904 hcd_portnum = port->hcd_portnum; 1905 portsc = readl(port->addr); 1906 1907 xhci_dbg(xhci, "Port change event, %d-%d, id %d, portsc: 0x%x\n", 1908 hcd->self.busnum, hcd_portnum + 1, port_id, portsc); 1909 1910 trace_xhci_handle_port_status(port, portsc); 1911 1912 if (hcd->state == HC_STATE_SUSPENDED) { 1913 xhci_dbg(xhci, "resume root hub\n"); 1914 usb_hcd_resume_root_hub(hcd); 1915 } 1916 1917 if (hcd->speed >= HCD_USB3 && 1918 (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) { 1919 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1); 1920 if (slot_id && xhci->devs[slot_id]) 1921 xhci->devs[slot_id]->flags |= VDEV_PORT_ERROR; 1922 } 1923 1924 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) { 1925 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1926 1927 cmd_reg = readl(&xhci->op_regs->command); 1928 if (!(cmd_reg & CMD_RUN)) { 1929 xhci_warn(xhci, "xHC is not running.\n"); 1930 goto cleanup; 1931 } 1932 1933 if (DEV_SUPERSPEED_ANY(portsc)) { 1934 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1935 /* Set a flag to say the port signaled remote wakeup, 1936 * so we can tell the difference between the end of 1937 * device and host initiated resume. 1938 */ 1939 bus_state->port_remote_wakeup |= 1 << hcd_portnum; 1940 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1941 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 1942 xhci_set_link_state(xhci, port, XDEV_U0); 1943 /* Need to wait until the next link state change 1944 * indicates the device is actually in U0. 1945 */ 1946 bogus_port_status = true; 1947 goto cleanup; 1948 } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) { 1949 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1950 port->resume_timestamp = jiffies + 1951 msecs_to_jiffies(USB_RESUME_TIMEOUT); 1952 set_bit(hcd_portnum, &bus_state->resuming_ports); 1953 /* Do the rest in GetPortStatus after resume time delay. 1954 * Avoid polling roothub status before that so that a 1955 * usb device auto-resume latency around ~40ms. 1956 */ 1957 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1958 mod_timer(&hcd->rh_timer, 1959 port->resume_timestamp); 1960 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 1961 bogus_port_status = true; 1962 } 1963 } 1964 1965 if ((portsc & PORT_PLC) && 1966 DEV_SUPERSPEED_ANY(portsc) && 1967 ((portsc & PORT_PLS_MASK) == XDEV_U0 || 1968 (portsc & PORT_PLS_MASK) == XDEV_U1 || 1969 (portsc & PORT_PLS_MASK) == XDEV_U2)) { 1970 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1971 complete(&port->u3exit_done); 1972 /* We've just brought the device into U0/1/2 through either the 1973 * Resume state after a device remote wakeup, or through the 1974 * U3Exit state after a host-initiated resume. If it's a device 1975 * initiated remote wake, don't pass up the link state change, 1976 * so the roothub behavior is consistent with external 1977 * USB 3.0 hub behavior. 1978 */ 1979 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1); 1980 if (slot_id && xhci->devs[slot_id]) 1981 xhci_ring_device(xhci, slot_id); 1982 if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) { 1983 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1984 usb_wakeup_notification(hcd->self.root_hub, 1985 hcd_portnum + 1); 1986 bogus_port_status = true; 1987 goto cleanup; 1988 } 1989 } 1990 1991 /* 1992 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 1993 * RExit to a disconnect state). If so, let the driver know it's 1994 * out of the RExit state. 1995 */ 1996 if (hcd->speed < HCD_USB3 && port->rexit_active) { 1997 complete(&port->rexit_done); 1998 port->rexit_active = false; 1999 bogus_port_status = true; 2000 goto cleanup; 2001 } 2002 2003 if (hcd->speed < HCD_USB3) { 2004 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2005 if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) && 2006 (portsc & PORT_CSC) && !(portsc & PORT_CONNECT)) 2007 xhci_cavium_reset_phy_quirk(xhci); 2008 } 2009 2010 cleanup: 2011 2012 /* Don't make the USB core poll the roothub if we got a bad port status 2013 * change event. Besides, at that point we can't tell which roothub 2014 * (USB 2.0 or USB 3.0) to kick. 2015 */ 2016 if (bogus_port_status) 2017 return; 2018 2019 /* 2020 * xHCI port-status-change events occur when the "or" of all the 2021 * status-change bits in the portsc register changes from 0 to 1. 2022 * New status changes won't cause an event if any other change 2023 * bits are still set. When an event occurs, switch over to 2024 * polling to avoid losing status changes. 2025 */ 2026 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 2027 __func__, hcd->self.busnum); 2028 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2029 spin_unlock(&xhci->lock); 2030 /* Pass this up to the core */ 2031 usb_hcd_poll_rh_status(hcd); 2032 spin_lock(&xhci->lock); 2033 } 2034 2035 /* 2036 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 2037 * at end_trb, which may be in another segment. If the suspect DMA address is a 2038 * TRB in this TD, this function returns that TRB's segment. Otherwise it 2039 * returns 0. 2040 */ 2041 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, 2042 struct xhci_segment *start_seg, 2043 union xhci_trb *start_trb, 2044 union xhci_trb *end_trb, 2045 dma_addr_t suspect_dma, 2046 bool debug) 2047 { 2048 dma_addr_t start_dma; 2049 dma_addr_t end_seg_dma; 2050 dma_addr_t end_trb_dma; 2051 struct xhci_segment *cur_seg; 2052 2053 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 2054 cur_seg = start_seg; 2055 2056 do { 2057 if (start_dma == 0) 2058 return NULL; 2059 /* We may get an event for a Link TRB in the middle of a TD */ 2060 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 2061 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 2062 /* If the end TRB isn't in this segment, this is set to 0 */ 2063 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 2064 2065 if (debug) 2066 xhci_warn(xhci, 2067 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", 2068 (unsigned long long)suspect_dma, 2069 (unsigned long long)start_dma, 2070 (unsigned long long)end_trb_dma, 2071 (unsigned long long)cur_seg->dma, 2072 (unsigned long long)end_seg_dma); 2073 2074 if (end_trb_dma > 0) { 2075 /* The end TRB is in this segment, so suspect should be here */ 2076 if (start_dma <= end_trb_dma) { 2077 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 2078 return cur_seg; 2079 } else { 2080 /* Case for one segment with 2081 * a TD wrapped around to the top 2082 */ 2083 if ((suspect_dma >= start_dma && 2084 suspect_dma <= end_seg_dma) || 2085 (suspect_dma >= cur_seg->dma && 2086 suspect_dma <= end_trb_dma)) 2087 return cur_seg; 2088 } 2089 return NULL; 2090 } else { 2091 /* Might still be somewhere in this segment */ 2092 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 2093 return cur_seg; 2094 } 2095 cur_seg = cur_seg->next; 2096 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 2097 } while (cur_seg != start_seg); 2098 2099 return NULL; 2100 } 2101 2102 static void xhci_clear_hub_tt_buffer(struct xhci_hcd *xhci, struct xhci_td *td, 2103 struct xhci_virt_ep *ep) 2104 { 2105 /* 2106 * As part of low/full-speed endpoint-halt processing 2107 * we must clear the TT buffer (USB 2.0 specification 11.17.5). 2108 */ 2109 if (td->urb->dev->tt && !usb_pipeint(td->urb->pipe) && 2110 (td->urb->dev->tt->hub != xhci_to_hcd(xhci)->self.root_hub) && 2111 !(ep->ep_state & EP_CLEARING_TT)) { 2112 ep->ep_state |= EP_CLEARING_TT; 2113 td->urb->ep->hcpriv = td->urb->dev; 2114 if (usb_hub_clear_tt_buffer(td->urb)) 2115 ep->ep_state &= ~EP_CLEARING_TT; 2116 } 2117 } 2118 2119 /* Check if an error has halted the endpoint ring. The class driver will 2120 * cleanup the halt for a non-default control endpoint if we indicate a stall. 2121 * However, a babble and other errors also halt the endpoint ring, and the class 2122 * driver won't clear the halt in that case, so we need to issue a Set Transfer 2123 * Ring Dequeue Pointer command manually. 2124 */ 2125 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 2126 struct xhci_ep_ctx *ep_ctx, 2127 unsigned int trb_comp_code) 2128 { 2129 /* TRB completion codes that may require a manual halt cleanup */ 2130 if (trb_comp_code == COMP_USB_TRANSACTION_ERROR || 2131 trb_comp_code == COMP_BABBLE_DETECTED_ERROR || 2132 trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR) 2133 /* The 0.95 spec says a babbling control endpoint 2134 * is not halted. The 0.96 spec says it is. Some HW 2135 * claims to be 0.95 compliant, but it halts the control 2136 * endpoint anyway. Check if a babble halted the 2137 * endpoint. 2138 */ 2139 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) 2140 return 1; 2141 2142 return 0; 2143 } 2144 2145 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 2146 { 2147 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 2148 /* Vendor defined "informational" completion code, 2149 * treat as not-an-error. 2150 */ 2151 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 2152 trb_comp_code); 2153 xhci_dbg(xhci, "Treating code as success.\n"); 2154 return 1; 2155 } 2156 return 0; 2157 } 2158 2159 static int finish_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2160 struct xhci_ring *ep_ring, struct xhci_td *td, 2161 u32 trb_comp_code) 2162 { 2163 struct xhci_ep_ctx *ep_ctx; 2164 2165 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2166 2167 switch (trb_comp_code) { 2168 case COMP_STOPPED_LENGTH_INVALID: 2169 case COMP_STOPPED_SHORT_PACKET: 2170 case COMP_STOPPED: 2171 /* 2172 * The "Stop Endpoint" completion will take care of any 2173 * stopped TDs. A stopped TD may be restarted, so don't update 2174 * the ring dequeue pointer or take this TD off any lists yet. 2175 */ 2176 return 0; 2177 case COMP_USB_TRANSACTION_ERROR: 2178 case COMP_BABBLE_DETECTED_ERROR: 2179 case COMP_SPLIT_TRANSACTION_ERROR: 2180 /* 2181 * If endpoint context state is not halted we might be 2182 * racing with a reset endpoint command issued by a unsuccessful 2183 * stop endpoint completion (context error). In that case the 2184 * td should be on the cancelled list, and EP_HALTED flag set. 2185 * 2186 * Or then it's not halted due to the 0.95 spec stating that a 2187 * babbling control endpoint should not halt. The 0.96 spec 2188 * again says it should. Some HW claims to be 0.95 compliant, 2189 * but it halts the control endpoint anyway. 2190 */ 2191 if (GET_EP_CTX_STATE(ep_ctx) != EP_STATE_HALTED) { 2192 /* 2193 * If EP_HALTED is set and TD is on the cancelled list 2194 * the TD and dequeue pointer will be handled by reset 2195 * ep command completion 2196 */ 2197 if ((ep->ep_state & EP_HALTED) && 2198 !list_empty(&td->cancelled_td_list)) { 2199 xhci_dbg(xhci, "Already resolving halted ep for 0x%llx\n", 2200 (unsigned long long)xhci_trb_virt_to_dma( 2201 td->start_seg, td->first_trb)); 2202 return 0; 2203 } 2204 /* endpoint not halted, don't reset it */ 2205 break; 2206 } 2207 /* Almost same procedure as for STALL_ERROR below */ 2208 xhci_clear_hub_tt_buffer(xhci, td, ep); 2209 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2210 return 0; 2211 case COMP_STALL_ERROR: 2212 /* 2213 * xhci internal endpoint state will go to a "halt" state for 2214 * any stall, including default control pipe protocol stall. 2215 * To clear the host side halt we need to issue a reset endpoint 2216 * command, followed by a set dequeue command to move past the 2217 * TD. 2218 * Class drivers clear the device side halt from a functional 2219 * stall later. Hub TT buffer should only be cleared for FS/LS 2220 * devices behind HS hubs for functional stalls. 2221 */ 2222 if (ep->ep_index != 0) 2223 xhci_clear_hub_tt_buffer(xhci, td, ep); 2224 2225 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2226 2227 return 0; /* xhci_handle_halted_endpoint marked td cancelled */ 2228 default: 2229 break; 2230 } 2231 2232 /* Update ring dequeue pointer */ 2233 ep_ring->dequeue = td->last_trb; 2234 ep_ring->deq_seg = td->last_trb_seg; 2235 inc_deq(xhci, ep_ring); 2236 2237 return xhci_td_cleanup(xhci, td, ep_ring, td->status); 2238 } 2239 2240 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */ 2241 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring, 2242 union xhci_trb *stop_trb) 2243 { 2244 u32 sum; 2245 union xhci_trb *trb = ring->dequeue; 2246 struct xhci_segment *seg = ring->deq_seg; 2247 2248 for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) { 2249 if (!trb_is_noop(trb) && !trb_is_link(trb)) 2250 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); 2251 } 2252 return sum; 2253 } 2254 2255 /* 2256 * Process control tds, update urb status and actual_length. 2257 */ 2258 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2259 struct xhci_ring *ep_ring, struct xhci_td *td, 2260 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2261 { 2262 struct xhci_ep_ctx *ep_ctx; 2263 u32 trb_comp_code; 2264 u32 remaining, requested; 2265 u32 trb_type; 2266 2267 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); 2268 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2269 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2270 requested = td->urb->transfer_buffer_length; 2271 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2272 2273 switch (trb_comp_code) { 2274 case COMP_SUCCESS: 2275 if (trb_type != TRB_STATUS) { 2276 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n", 2277 (trb_type == TRB_DATA) ? "data" : "setup"); 2278 td->status = -ESHUTDOWN; 2279 break; 2280 } 2281 td->status = 0; 2282 break; 2283 case COMP_SHORT_PACKET: 2284 td->status = 0; 2285 break; 2286 case COMP_STOPPED_SHORT_PACKET: 2287 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2288 td->urb->actual_length = remaining; 2289 else 2290 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); 2291 goto finish_td; 2292 case COMP_STOPPED: 2293 switch (trb_type) { 2294 case TRB_SETUP: 2295 td->urb->actual_length = 0; 2296 goto finish_td; 2297 case TRB_DATA: 2298 case TRB_NORMAL: 2299 td->urb->actual_length = requested - remaining; 2300 goto finish_td; 2301 case TRB_STATUS: 2302 td->urb->actual_length = requested; 2303 goto finish_td; 2304 default: 2305 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", 2306 trb_type); 2307 goto finish_td; 2308 } 2309 case COMP_STOPPED_LENGTH_INVALID: 2310 goto finish_td; 2311 default: 2312 if (!xhci_requires_manual_halt_cleanup(xhci, 2313 ep_ctx, trb_comp_code)) 2314 break; 2315 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", 2316 trb_comp_code, ep->ep_index); 2317 fallthrough; 2318 case COMP_STALL_ERROR: 2319 /* Did we transfer part of the data (middle) phase? */ 2320 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2321 td->urb->actual_length = requested - remaining; 2322 else if (!td->urb_length_set) 2323 td->urb->actual_length = 0; 2324 goto finish_td; 2325 } 2326 2327 /* stopped at setup stage, no data transferred */ 2328 if (trb_type == TRB_SETUP) 2329 goto finish_td; 2330 2331 /* 2332 * if on data stage then update the actual_length of the URB and flag it 2333 * as set, so it won't be overwritten in the event for the last TRB. 2334 */ 2335 if (trb_type == TRB_DATA || 2336 trb_type == TRB_NORMAL) { 2337 td->urb_length_set = true; 2338 td->urb->actual_length = requested - remaining; 2339 xhci_dbg(xhci, "Waiting for status stage event\n"); 2340 return 0; 2341 } 2342 2343 /* at status stage */ 2344 if (!td->urb_length_set) 2345 td->urb->actual_length = requested; 2346 2347 finish_td: 2348 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2349 } 2350 2351 /* 2352 * Process isochronous tds, update urb packet status and actual_length. 2353 */ 2354 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2355 struct xhci_ring *ep_ring, struct xhci_td *td, 2356 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2357 { 2358 struct urb_priv *urb_priv; 2359 int idx; 2360 struct usb_iso_packet_descriptor *frame; 2361 u32 trb_comp_code; 2362 bool sum_trbs_for_length = false; 2363 u32 remaining, requested, ep_trb_len; 2364 int short_framestatus; 2365 2366 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2367 urb_priv = td->urb->hcpriv; 2368 idx = urb_priv->num_tds_done; 2369 frame = &td->urb->iso_frame_desc[idx]; 2370 requested = frame->length; 2371 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2372 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2373 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2374 -EREMOTEIO : 0; 2375 2376 /* handle completion code */ 2377 switch (trb_comp_code) { 2378 case COMP_SUCCESS: 2379 /* Don't overwrite status if TD had an error, see xHCI 4.9.1 */ 2380 if (td->error_mid_td) 2381 break; 2382 if (remaining) { 2383 frame->status = short_framestatus; 2384 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2385 sum_trbs_for_length = true; 2386 break; 2387 } 2388 frame->status = 0; 2389 break; 2390 case COMP_SHORT_PACKET: 2391 frame->status = short_framestatus; 2392 sum_trbs_for_length = true; 2393 break; 2394 case COMP_BANDWIDTH_OVERRUN_ERROR: 2395 frame->status = -ECOMM; 2396 break; 2397 case COMP_BABBLE_DETECTED_ERROR: 2398 sum_trbs_for_length = true; 2399 fallthrough; 2400 case COMP_ISOCH_BUFFER_OVERRUN: 2401 frame->status = -EOVERFLOW; 2402 if (ep_trb != td->last_trb) 2403 td->error_mid_td = true; 2404 break; 2405 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2406 case COMP_STALL_ERROR: 2407 frame->status = -EPROTO; 2408 break; 2409 case COMP_USB_TRANSACTION_ERROR: 2410 frame->status = -EPROTO; 2411 sum_trbs_for_length = true; 2412 if (ep_trb != td->last_trb) 2413 td->error_mid_td = true; 2414 break; 2415 case COMP_STOPPED: 2416 sum_trbs_for_length = true; 2417 break; 2418 case COMP_STOPPED_SHORT_PACKET: 2419 /* field normally containing residue now contains tranferred */ 2420 frame->status = short_framestatus; 2421 requested = remaining; 2422 break; 2423 case COMP_STOPPED_LENGTH_INVALID: 2424 requested = 0; 2425 remaining = 0; 2426 break; 2427 default: 2428 sum_trbs_for_length = true; 2429 frame->status = -1; 2430 break; 2431 } 2432 2433 if (td->urb_length_set) 2434 goto finish_td; 2435 2436 if (sum_trbs_for_length) 2437 frame->actual_length = sum_trb_lengths(xhci, ep->ring, ep_trb) + 2438 ep_trb_len - remaining; 2439 else 2440 frame->actual_length = requested; 2441 2442 td->urb->actual_length += frame->actual_length; 2443 2444 finish_td: 2445 /* Don't give back TD yet if we encountered an error mid TD */ 2446 if (td->error_mid_td && ep_trb != td->last_trb) { 2447 xhci_dbg(xhci, "Error mid isoc TD, wait for final completion event\n"); 2448 td->urb_length_set = true; 2449 return 0; 2450 } 2451 2452 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2453 } 2454 2455 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2456 struct xhci_virt_ep *ep, int status) 2457 { 2458 struct urb_priv *urb_priv; 2459 struct usb_iso_packet_descriptor *frame; 2460 int idx; 2461 2462 urb_priv = td->urb->hcpriv; 2463 idx = urb_priv->num_tds_done; 2464 frame = &td->urb->iso_frame_desc[idx]; 2465 2466 /* The transfer is partly done. */ 2467 frame->status = -EXDEV; 2468 2469 /* calc actual length */ 2470 frame->actual_length = 0; 2471 2472 /* Update ring dequeue pointer */ 2473 ep->ring->dequeue = td->last_trb; 2474 ep->ring->deq_seg = td->last_trb_seg; 2475 inc_deq(xhci, ep->ring); 2476 2477 return xhci_td_cleanup(xhci, td, ep->ring, status); 2478 } 2479 2480 /* 2481 * Process bulk and interrupt tds, update urb status and actual_length. 2482 */ 2483 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2484 struct xhci_ring *ep_ring, struct xhci_td *td, 2485 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2486 { 2487 struct xhci_slot_ctx *slot_ctx; 2488 u32 trb_comp_code; 2489 u32 remaining, requested, ep_trb_len; 2490 2491 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 2492 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2493 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2494 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2495 requested = td->urb->transfer_buffer_length; 2496 2497 switch (trb_comp_code) { 2498 case COMP_SUCCESS: 2499 ep->err_count = 0; 2500 /* handle success with untransferred data as short packet */ 2501 if (ep_trb != td->last_trb || remaining) { 2502 xhci_warn(xhci, "WARN Successful completion on short TX\n"); 2503 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2504 td->urb->ep->desc.bEndpointAddress, 2505 requested, remaining); 2506 } 2507 td->status = 0; 2508 break; 2509 case COMP_SHORT_PACKET: 2510 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2511 td->urb->ep->desc.bEndpointAddress, 2512 requested, remaining); 2513 td->status = 0; 2514 break; 2515 case COMP_STOPPED_SHORT_PACKET: 2516 td->urb->actual_length = remaining; 2517 goto finish_td; 2518 case COMP_STOPPED_LENGTH_INVALID: 2519 /* stopped on ep trb with invalid length, exclude it */ 2520 ep_trb_len = 0; 2521 remaining = 0; 2522 break; 2523 case COMP_USB_TRANSACTION_ERROR: 2524 if (xhci->quirks & XHCI_NO_SOFT_RETRY || 2525 (ep->err_count++ > MAX_SOFT_RETRY) || 2526 le32_to_cpu(slot_ctx->tt_info) & TT_SLOT) 2527 break; 2528 2529 td->status = 0; 2530 2531 xhci_handle_halted_endpoint(xhci, ep, td, EP_SOFT_RESET); 2532 return 0; 2533 default: 2534 /* do nothing */ 2535 break; 2536 } 2537 2538 if (ep_trb == td->last_trb) 2539 td->urb->actual_length = requested - remaining; 2540 else 2541 td->urb->actual_length = 2542 sum_trb_lengths(xhci, ep_ring, ep_trb) + 2543 ep_trb_len - remaining; 2544 finish_td: 2545 if (remaining > requested) { 2546 xhci_warn(xhci, "bad transfer trb length %d in event trb\n", 2547 remaining); 2548 td->urb->actual_length = 0; 2549 } 2550 2551 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2552 } 2553 2554 /* 2555 * If this function returns an error condition, it means it got a Transfer 2556 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2557 * At this point, the host controller is probably hosed and should be reset. 2558 */ 2559 static int handle_tx_event(struct xhci_hcd *xhci, 2560 struct xhci_interrupter *ir, 2561 struct xhci_transfer_event *event) 2562 { 2563 struct xhci_virt_ep *ep; 2564 struct xhci_ring *ep_ring; 2565 unsigned int slot_id; 2566 int ep_index; 2567 struct xhci_td *td = NULL; 2568 dma_addr_t ep_trb_dma; 2569 struct xhci_segment *ep_seg; 2570 union xhci_trb *ep_trb; 2571 int status = -EINPROGRESS; 2572 struct xhci_ep_ctx *ep_ctx; 2573 u32 trb_comp_code; 2574 int td_num = 0; 2575 bool handling_skipped_tds = false; 2576 2577 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2578 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2579 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2580 ep_trb_dma = le64_to_cpu(event->buffer); 2581 2582 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 2583 if (!ep) { 2584 xhci_err(xhci, "ERROR Invalid Transfer event\n"); 2585 goto err_out; 2586 } 2587 2588 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma); 2589 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 2590 2591 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { 2592 xhci_err(xhci, 2593 "ERROR Transfer event for disabled endpoint slot %u ep %u\n", 2594 slot_id, ep_index); 2595 goto err_out; 2596 } 2597 2598 /* Some transfer events don't always point to a trb, see xhci 4.17.4 */ 2599 if (!ep_ring) { 2600 switch (trb_comp_code) { 2601 case COMP_STALL_ERROR: 2602 case COMP_USB_TRANSACTION_ERROR: 2603 case COMP_INVALID_STREAM_TYPE_ERROR: 2604 case COMP_INVALID_STREAM_ID_ERROR: 2605 xhci_dbg(xhci, "Stream transaction error ep %u no id\n", 2606 ep_index); 2607 if (ep->err_count++ > MAX_SOFT_RETRY) 2608 xhci_handle_halted_endpoint(xhci, ep, NULL, 2609 EP_HARD_RESET); 2610 else 2611 xhci_handle_halted_endpoint(xhci, ep, NULL, 2612 EP_SOFT_RESET); 2613 goto cleanup; 2614 case COMP_RING_UNDERRUN: 2615 case COMP_RING_OVERRUN: 2616 case COMP_STOPPED_LENGTH_INVALID: 2617 goto cleanup; 2618 default: 2619 xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n", 2620 slot_id, ep_index); 2621 goto err_out; 2622 } 2623 } 2624 2625 /* Count current td numbers if ep->skip is set */ 2626 if (ep->skip) 2627 td_num += list_count_nodes(&ep_ring->td_list); 2628 2629 /* Look for common error cases */ 2630 switch (trb_comp_code) { 2631 /* Skip codes that require special handling depending on 2632 * transfer type 2633 */ 2634 case COMP_SUCCESS: 2635 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2636 break; 2637 if (xhci->quirks & XHCI_TRUST_TX_LENGTH || 2638 ep_ring->last_td_was_short) 2639 trb_comp_code = COMP_SHORT_PACKET; 2640 else 2641 xhci_warn_ratelimited(xhci, 2642 "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n", 2643 slot_id, ep_index); 2644 break; 2645 case COMP_SHORT_PACKET: 2646 break; 2647 /* Completion codes for endpoint stopped state */ 2648 case COMP_STOPPED: 2649 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n", 2650 slot_id, ep_index); 2651 break; 2652 case COMP_STOPPED_LENGTH_INVALID: 2653 xhci_dbg(xhci, 2654 "Stopped on No-op or Link TRB for slot %u ep %u\n", 2655 slot_id, ep_index); 2656 break; 2657 case COMP_STOPPED_SHORT_PACKET: 2658 xhci_dbg(xhci, 2659 "Stopped with short packet transfer detected for slot %u ep %u\n", 2660 slot_id, ep_index); 2661 break; 2662 /* Completion codes for endpoint halted state */ 2663 case COMP_STALL_ERROR: 2664 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id, 2665 ep_index); 2666 status = -EPIPE; 2667 break; 2668 case COMP_SPLIT_TRANSACTION_ERROR: 2669 xhci_dbg(xhci, "Split transaction error for slot %u ep %u\n", 2670 slot_id, ep_index); 2671 status = -EPROTO; 2672 break; 2673 case COMP_USB_TRANSACTION_ERROR: 2674 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n", 2675 slot_id, ep_index); 2676 status = -EPROTO; 2677 break; 2678 case COMP_BABBLE_DETECTED_ERROR: 2679 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n", 2680 slot_id, ep_index); 2681 status = -EOVERFLOW; 2682 break; 2683 /* Completion codes for endpoint error state */ 2684 case COMP_TRB_ERROR: 2685 xhci_warn(xhci, 2686 "WARN: TRB error for slot %u ep %u on endpoint\n", 2687 slot_id, ep_index); 2688 status = -EILSEQ; 2689 break; 2690 /* completion codes not indicating endpoint state change */ 2691 case COMP_DATA_BUFFER_ERROR: 2692 xhci_warn(xhci, 2693 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n", 2694 slot_id, ep_index); 2695 status = -ENOSR; 2696 break; 2697 case COMP_BANDWIDTH_OVERRUN_ERROR: 2698 xhci_warn(xhci, 2699 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n", 2700 slot_id, ep_index); 2701 break; 2702 case COMP_ISOCH_BUFFER_OVERRUN: 2703 xhci_warn(xhci, 2704 "WARN: buffer overrun event for slot %u ep %u on endpoint", 2705 slot_id, ep_index); 2706 break; 2707 case COMP_RING_UNDERRUN: 2708 /* 2709 * When the Isoch ring is empty, the xHC will generate 2710 * a Ring Overrun Event for IN Isoch endpoint or Ring 2711 * Underrun Event for OUT Isoch endpoint. 2712 */ 2713 xhci_dbg(xhci, "underrun event on endpoint\n"); 2714 if (!list_empty(&ep_ring->td_list)) 2715 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2716 "still with TDs queued?\n", 2717 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2718 ep_index); 2719 goto cleanup; 2720 case COMP_RING_OVERRUN: 2721 xhci_dbg(xhci, "overrun event on endpoint\n"); 2722 if (!list_empty(&ep_ring->td_list)) 2723 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2724 "still with TDs queued?\n", 2725 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2726 ep_index); 2727 goto cleanup; 2728 case COMP_MISSED_SERVICE_ERROR: 2729 /* 2730 * When encounter missed service error, one or more isoc tds 2731 * may be missed by xHC. 2732 * Set skip flag of the ep_ring; Complete the missed tds as 2733 * short transfer when process the ep_ring next time. 2734 */ 2735 ep->skip = true; 2736 xhci_dbg(xhci, 2737 "Miss service interval error for slot %u ep %u, set skip flag\n", 2738 slot_id, ep_index); 2739 goto cleanup; 2740 case COMP_NO_PING_RESPONSE_ERROR: 2741 ep->skip = true; 2742 xhci_dbg(xhci, 2743 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n", 2744 slot_id, ep_index); 2745 goto cleanup; 2746 2747 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2748 /* needs disable slot command to recover */ 2749 xhci_warn(xhci, 2750 "WARN: detect an incompatible device for slot %u ep %u", 2751 slot_id, ep_index); 2752 status = -EPROTO; 2753 break; 2754 default: 2755 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2756 status = 0; 2757 break; 2758 } 2759 xhci_warn(xhci, 2760 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n", 2761 trb_comp_code, slot_id, ep_index); 2762 goto cleanup; 2763 } 2764 2765 do { 2766 /* This TRB should be in the TD at the head of this ring's 2767 * TD list. 2768 */ 2769 if (list_empty(&ep_ring->td_list)) { 2770 /* 2771 * Don't print wanings if it's due to a stopped endpoint 2772 * generating an extra completion event if the device 2773 * was suspended. Or, a event for the last TRB of a 2774 * short TD we already got a short event for. 2775 * The short TD is already removed from the TD list. 2776 */ 2777 2778 if (!(trb_comp_code == COMP_STOPPED || 2779 trb_comp_code == COMP_STOPPED_LENGTH_INVALID || 2780 ep_ring->last_td_was_short)) { 2781 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2782 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2783 ep_index); 2784 } 2785 if (ep->skip) { 2786 ep->skip = false; 2787 xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n", 2788 slot_id, ep_index); 2789 } 2790 if (trb_comp_code == COMP_STALL_ERROR || 2791 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2792 trb_comp_code)) { 2793 xhci_handle_halted_endpoint(xhci, ep, NULL, 2794 EP_HARD_RESET); 2795 } 2796 goto cleanup; 2797 } 2798 2799 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2800 if (ep->skip && td_num == 0) { 2801 ep->skip = false; 2802 xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n", 2803 slot_id, ep_index); 2804 goto cleanup; 2805 } 2806 2807 td = list_first_entry(&ep_ring->td_list, struct xhci_td, 2808 td_list); 2809 if (ep->skip) 2810 td_num--; 2811 2812 /* Is this a TRB in the currently executing TD? */ 2813 ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue, 2814 td->last_trb, ep_trb_dma, false); 2815 2816 /* 2817 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2818 * is not in the current TD pointed by ep_ring->dequeue because 2819 * that the hardware dequeue pointer still at the previous TRB 2820 * of the current TD. The previous TRB maybe a Link TD or the 2821 * last TRB of the previous TD. The command completion handle 2822 * will take care the rest. 2823 */ 2824 if (!ep_seg && (trb_comp_code == COMP_STOPPED || 2825 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) { 2826 goto cleanup; 2827 } 2828 2829 if (!ep_seg) { 2830 2831 if (ep->skip && usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2832 skip_isoc_td(xhci, td, ep, status); 2833 goto cleanup; 2834 } 2835 2836 /* 2837 * Some hosts give a spurious success event after a short 2838 * transfer. Ignore it. 2839 */ 2840 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2841 ep_ring->last_td_was_short) { 2842 ep_ring->last_td_was_short = false; 2843 goto cleanup; 2844 } 2845 2846 /* 2847 * xhci 4.10.2 states isoc endpoints should continue 2848 * processing the next TD if there was an error mid TD. 2849 * So host like NEC don't generate an event for the last 2850 * isoc TRB even if the IOC flag is set. 2851 * xhci 4.9.1 states that if there are errors in mult-TRB 2852 * TDs xHC should generate an error for that TRB, and if xHC 2853 * proceeds to the next TD it should genete an event for 2854 * any TRB with IOC flag on the way. Other host follow this. 2855 * So this event might be for the next TD. 2856 */ 2857 if (td->error_mid_td && 2858 !list_is_last(&td->td_list, &ep_ring->td_list)) { 2859 struct xhci_td *td_next = list_next_entry(td, td_list); 2860 2861 ep_seg = trb_in_td(xhci, td_next->start_seg, td_next->first_trb, 2862 td_next->last_trb, ep_trb_dma, false); 2863 if (ep_seg) { 2864 /* give back previous TD, start handling new */ 2865 xhci_dbg(xhci, "Missing TD completion event after mid TD error\n"); 2866 ep_ring->dequeue = td->last_trb; 2867 ep_ring->deq_seg = td->last_trb_seg; 2868 inc_deq(xhci, ep_ring); 2869 xhci_td_cleanup(xhci, td, ep_ring, td->status); 2870 td = td_next; 2871 } 2872 } 2873 2874 if (!ep_seg) { 2875 /* HC is busted, give up! */ 2876 xhci_err(xhci, 2877 "ERROR Transfer event TRB DMA ptr not " 2878 "part of current TD ep_index %d " 2879 "comp_code %u\n", ep_index, 2880 trb_comp_code); 2881 trb_in_td(xhci, ep_ring->deq_seg, 2882 ep_ring->dequeue, td->last_trb, 2883 ep_trb_dma, true); 2884 return -ESHUTDOWN; 2885 } 2886 } 2887 if (trb_comp_code == COMP_SHORT_PACKET) 2888 ep_ring->last_td_was_short = true; 2889 else 2890 ep_ring->last_td_was_short = false; 2891 2892 if (ep->skip) { 2893 xhci_dbg(xhci, 2894 "Found td. Clear skip flag for slot %u ep %u.\n", 2895 slot_id, ep_index); 2896 ep->skip = false; 2897 } 2898 2899 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / 2900 sizeof(*ep_trb)]; 2901 2902 trace_xhci_handle_transfer(ep_ring, 2903 (struct xhci_generic_trb *) ep_trb); 2904 2905 /* 2906 * No-op TRB could trigger interrupts in a case where 2907 * a URB was killed and a STALL_ERROR happens right 2908 * after the endpoint ring stopped. Reset the halted 2909 * endpoint. Otherwise, the endpoint remains stalled 2910 * indefinitely. 2911 */ 2912 2913 if (trb_is_noop(ep_trb)) { 2914 if (trb_comp_code == COMP_STALL_ERROR || 2915 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2916 trb_comp_code)) 2917 xhci_handle_halted_endpoint(xhci, ep, td, 2918 EP_HARD_RESET); 2919 goto cleanup; 2920 } 2921 2922 td->status = status; 2923 2924 /* update the urb's actual_length and give back to the core */ 2925 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2926 process_ctrl_td(xhci, ep, ep_ring, td, ep_trb, event); 2927 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2928 process_isoc_td(xhci, ep, ep_ring, td, ep_trb, event); 2929 else 2930 process_bulk_intr_td(xhci, ep, ep_ring, td, ep_trb, event); 2931 cleanup: 2932 handling_skipped_tds = ep->skip && 2933 trb_comp_code != COMP_MISSED_SERVICE_ERROR && 2934 trb_comp_code != COMP_NO_PING_RESPONSE_ERROR; 2935 2936 /* 2937 * If ep->skip is set, it means there are missed tds on the 2938 * endpoint ring need to take care of. 2939 * Process them as short transfer until reach the td pointed by 2940 * the event. 2941 */ 2942 } while (handling_skipped_tds); 2943 2944 return 0; 2945 2946 err_out: 2947 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2948 (unsigned long long) xhci_trb_virt_to_dma( 2949 ir->event_ring->deq_seg, 2950 ir->event_ring->dequeue), 2951 lower_32_bits(le64_to_cpu(event->buffer)), 2952 upper_32_bits(le64_to_cpu(event->buffer)), 2953 le32_to_cpu(event->transfer_len), 2954 le32_to_cpu(event->flags)); 2955 return -ENODEV; 2956 } 2957 2958 /* 2959 * This function handles all OS-owned events on the event ring. It may drop 2960 * xhci->lock between event processing (e.g. to pass up port status changes). 2961 * Returns >0 for "possibly more events to process" (caller should call again), 2962 * otherwise 0 if done. In future, <0 returns should indicate error code. 2963 */ 2964 static int xhci_handle_event(struct xhci_hcd *xhci, struct xhci_interrupter *ir) 2965 { 2966 union xhci_trb *event; 2967 u32 trb_type; 2968 2969 /* Event ring hasn't been allocated yet. */ 2970 if (!ir || !ir->event_ring || !ir->event_ring->dequeue) { 2971 xhci_err(xhci, "ERROR interrupter not ready\n"); 2972 return -ENOMEM; 2973 } 2974 2975 event = ir->event_ring->dequeue; 2976 /* Does the HC or OS own the TRB? */ 2977 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2978 ir->event_ring->cycle_state) 2979 return 0; 2980 2981 trace_xhci_handle_event(ir->event_ring, &event->generic); 2982 2983 /* 2984 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2985 * speculative reads of the event's flags/data below. 2986 */ 2987 rmb(); 2988 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->event_cmd.flags)); 2989 /* FIXME: Handle more event types. */ 2990 2991 switch (trb_type) { 2992 case TRB_COMPLETION: 2993 handle_cmd_completion(xhci, &event->event_cmd); 2994 break; 2995 case TRB_PORT_STATUS: 2996 handle_port_status(xhci, ir, event); 2997 break; 2998 case TRB_TRANSFER: 2999 handle_tx_event(xhci, ir, &event->trans_event); 3000 break; 3001 case TRB_DEV_NOTE: 3002 handle_device_notification(xhci, event); 3003 break; 3004 default: 3005 if (trb_type >= TRB_VENDOR_DEFINED_LOW) 3006 handle_vendor_event(xhci, event, trb_type); 3007 else 3008 xhci_warn(xhci, "ERROR unknown event type %d\n", trb_type); 3009 } 3010 /* Any of the above functions may drop and re-acquire the lock, so check 3011 * to make sure a watchdog timer didn't mark the host as non-responsive. 3012 */ 3013 if (xhci->xhc_state & XHCI_STATE_DYING) { 3014 xhci_dbg(xhci, "xHCI host dying, returning from " 3015 "event handler.\n"); 3016 return 0; 3017 } 3018 3019 /* Update SW event ring dequeue pointer */ 3020 inc_deq(xhci, ir->event_ring); 3021 3022 /* Are there more items on the event ring? Caller will call us again to 3023 * check. 3024 */ 3025 return 1; 3026 } 3027 3028 /* 3029 * Update Event Ring Dequeue Pointer: 3030 * - When all events have finished 3031 * - To avoid "Event Ring Full Error" condition 3032 */ 3033 static void xhci_update_erst_dequeue(struct xhci_hcd *xhci, 3034 struct xhci_interrupter *ir, 3035 union xhci_trb *event_ring_deq, 3036 bool clear_ehb) 3037 { 3038 u64 temp_64; 3039 dma_addr_t deq; 3040 3041 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 3042 /* If necessary, update the HW's version of the event ring deq ptr. */ 3043 if (event_ring_deq != ir->event_ring->dequeue) { 3044 deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg, 3045 ir->event_ring->dequeue); 3046 if (deq == 0) 3047 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr\n"); 3048 /* 3049 * Per 4.9.4, Software writes to the ERDP register shall 3050 * always advance the Event Ring Dequeue Pointer value. 3051 */ 3052 if ((temp_64 & ERST_PTR_MASK) == (deq & ERST_PTR_MASK)) 3053 return; 3054 3055 /* Update HC event ring dequeue pointer */ 3056 temp_64 = ir->event_ring->deq_seg->num & ERST_DESI_MASK; 3057 temp_64 |= deq & ERST_PTR_MASK; 3058 } 3059 3060 /* Clear the event handler busy flag (RW1C) */ 3061 if (clear_ehb) 3062 temp_64 |= ERST_EHB; 3063 xhci_write_64(xhci, temp_64, &ir->ir_set->erst_dequeue); 3064 } 3065 3066 /* 3067 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 3068 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 3069 * indicators of an event TRB error, but we check the status *first* to be safe. 3070 */ 3071 irqreturn_t xhci_irq(struct usb_hcd *hcd) 3072 { 3073 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3074 union xhci_trb *event_ring_deq; 3075 struct xhci_interrupter *ir; 3076 irqreturn_t ret = IRQ_NONE; 3077 u64 temp_64; 3078 u32 status; 3079 int event_loop = 0; 3080 3081 spin_lock(&xhci->lock); 3082 /* Check if the xHC generated the interrupt, or the irq is shared */ 3083 status = readl(&xhci->op_regs->status); 3084 if (status == ~(u32)0) { 3085 xhci_hc_died(xhci); 3086 ret = IRQ_HANDLED; 3087 goto out; 3088 } 3089 3090 if (!(status & STS_EINT)) 3091 goto out; 3092 3093 if (status & STS_HCE) { 3094 xhci_warn(xhci, "WARNING: Host Controller Error\n"); 3095 goto out; 3096 } 3097 3098 if (status & STS_FATAL) { 3099 xhci_warn(xhci, "WARNING: Host System Error\n"); 3100 xhci_halt(xhci); 3101 ret = IRQ_HANDLED; 3102 goto out; 3103 } 3104 3105 /* 3106 * Clear the op reg interrupt status first, 3107 * so we can receive interrupts from other MSI-X interrupters. 3108 * Write 1 to clear the interrupt status. 3109 */ 3110 status |= STS_EINT; 3111 writel(status, &xhci->op_regs->status); 3112 3113 /* This is the handler of the primary interrupter */ 3114 ir = xhci->interrupters[0]; 3115 if (!hcd->msi_enabled) { 3116 u32 irq_pending; 3117 irq_pending = readl(&ir->ir_set->irq_pending); 3118 irq_pending |= IMAN_IP; 3119 writel(irq_pending, &ir->ir_set->irq_pending); 3120 } 3121 3122 if (xhci->xhc_state & XHCI_STATE_DYING || 3123 xhci->xhc_state & XHCI_STATE_HALTED) { 3124 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 3125 "Shouldn't IRQs be disabled?\n"); 3126 /* Clear the event handler busy flag (RW1C); 3127 * the event ring should be empty. 3128 */ 3129 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 3130 xhci_write_64(xhci, temp_64 | ERST_EHB, 3131 &ir->ir_set->erst_dequeue); 3132 ret = IRQ_HANDLED; 3133 goto out; 3134 } 3135 3136 event_ring_deq = ir->event_ring->dequeue; 3137 /* FIXME this should be a delayed service routine 3138 * that clears the EHB. 3139 */ 3140 while (xhci_handle_event(xhci, ir) > 0) { 3141 if (event_loop++ < TRBS_PER_SEGMENT / 2) 3142 continue; 3143 xhci_update_erst_dequeue(xhci, ir, event_ring_deq, false); 3144 event_ring_deq = ir->event_ring->dequeue; 3145 3146 /* ring is half-full, force isoc trbs to interrupt more often */ 3147 if (xhci->isoc_bei_interval > AVOID_BEI_INTERVAL_MIN) 3148 xhci->isoc_bei_interval = xhci->isoc_bei_interval / 2; 3149 3150 event_loop = 0; 3151 } 3152 3153 xhci_update_erst_dequeue(xhci, ir, event_ring_deq, true); 3154 ret = IRQ_HANDLED; 3155 3156 out: 3157 spin_unlock(&xhci->lock); 3158 3159 return ret; 3160 } 3161 3162 irqreturn_t xhci_msi_irq(int irq, void *hcd) 3163 { 3164 return xhci_irq(hcd); 3165 } 3166 EXPORT_SYMBOL_GPL(xhci_msi_irq); 3167 3168 /**** Endpoint Ring Operations ****/ 3169 3170 /* 3171 * Generic function for queueing a TRB on a ring. 3172 * The caller must have checked to make sure there's room on the ring. 3173 * 3174 * @more_trbs_coming: Will you enqueue more TRBs before calling 3175 * prepare_transfer()? 3176 */ 3177 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 3178 bool more_trbs_coming, 3179 u32 field1, u32 field2, u32 field3, u32 field4) 3180 { 3181 struct xhci_generic_trb *trb; 3182 3183 trb = &ring->enqueue->generic; 3184 trb->field[0] = cpu_to_le32(field1); 3185 trb->field[1] = cpu_to_le32(field2); 3186 trb->field[2] = cpu_to_le32(field3); 3187 /* make sure TRB is fully written before giving it to the controller */ 3188 wmb(); 3189 trb->field[3] = cpu_to_le32(field4); 3190 3191 trace_xhci_queue_trb(ring, trb); 3192 3193 inc_enq(xhci, ring, more_trbs_coming); 3194 } 3195 3196 /* 3197 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 3198 * expand ring if it start to be full. 3199 */ 3200 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 3201 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 3202 { 3203 unsigned int link_trb_count = 0; 3204 unsigned int new_segs = 0; 3205 3206 /* Make sure the endpoint has been added to xHC schedule */ 3207 switch (ep_state) { 3208 case EP_STATE_DISABLED: 3209 /* 3210 * USB core changed config/interfaces without notifying us, 3211 * or hardware is reporting the wrong state. 3212 */ 3213 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 3214 return -ENOENT; 3215 case EP_STATE_ERROR: 3216 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 3217 /* FIXME event handling code for error needs to clear it */ 3218 /* XXX not sure if this should be -ENOENT or not */ 3219 return -EINVAL; 3220 case EP_STATE_HALTED: 3221 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 3222 break; 3223 case EP_STATE_STOPPED: 3224 case EP_STATE_RUNNING: 3225 break; 3226 default: 3227 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 3228 /* 3229 * FIXME issue Configure Endpoint command to try to get the HC 3230 * back into a known state. 3231 */ 3232 return -EINVAL; 3233 } 3234 3235 if (ep_ring != xhci->cmd_ring) { 3236 new_segs = xhci_ring_expansion_needed(xhci, ep_ring, num_trbs); 3237 } else if (xhci_num_trbs_free(xhci, ep_ring) <= num_trbs) { 3238 xhci_err(xhci, "Do not support expand command ring\n"); 3239 return -ENOMEM; 3240 } 3241 3242 if (new_segs) { 3243 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 3244 "ERROR no room on ep ring, try ring expansion"); 3245 if (xhci_ring_expansion(xhci, ep_ring, new_segs, mem_flags)) { 3246 xhci_err(xhci, "Ring expansion failed\n"); 3247 return -ENOMEM; 3248 } 3249 } 3250 3251 while (trb_is_link(ep_ring->enqueue)) { 3252 /* If we're not dealing with 0.95 hardware or isoc rings 3253 * on AMD 0.96 host, clear the chain bit. 3254 */ 3255 if (!xhci_link_trb_quirk(xhci) && 3256 !(ep_ring->type == TYPE_ISOC && 3257 (xhci->quirks & XHCI_AMD_0x96_HOST))) 3258 ep_ring->enqueue->link.control &= 3259 cpu_to_le32(~TRB_CHAIN); 3260 else 3261 ep_ring->enqueue->link.control |= 3262 cpu_to_le32(TRB_CHAIN); 3263 3264 wmb(); 3265 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); 3266 3267 /* Toggle the cycle bit after the last ring segment. */ 3268 if (link_trb_toggles_cycle(ep_ring->enqueue)) 3269 ep_ring->cycle_state ^= 1; 3270 3271 ep_ring->enq_seg = ep_ring->enq_seg->next; 3272 ep_ring->enqueue = ep_ring->enq_seg->trbs; 3273 3274 /* prevent infinite loop if all first trbs are link trbs */ 3275 if (link_trb_count++ > ep_ring->num_segs) { 3276 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 3277 return -EINVAL; 3278 } 3279 } 3280 3281 if (last_trb_on_seg(ep_ring->enq_seg, ep_ring->enqueue)) { 3282 xhci_warn(xhci, "Missing link TRB at end of ring segment\n"); 3283 return -EINVAL; 3284 } 3285 3286 return 0; 3287 } 3288 3289 static int prepare_transfer(struct xhci_hcd *xhci, 3290 struct xhci_virt_device *xdev, 3291 unsigned int ep_index, 3292 unsigned int stream_id, 3293 unsigned int num_trbs, 3294 struct urb *urb, 3295 unsigned int td_index, 3296 gfp_t mem_flags) 3297 { 3298 int ret; 3299 struct urb_priv *urb_priv; 3300 struct xhci_td *td; 3301 struct xhci_ring *ep_ring; 3302 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3303 3304 ep_ring = xhci_triad_to_transfer_ring(xhci, xdev->slot_id, ep_index, 3305 stream_id); 3306 if (!ep_ring) { 3307 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 3308 stream_id); 3309 return -EINVAL; 3310 } 3311 3312 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 3313 num_trbs, mem_flags); 3314 if (ret) 3315 return ret; 3316 3317 urb_priv = urb->hcpriv; 3318 td = &urb_priv->td[td_index]; 3319 3320 INIT_LIST_HEAD(&td->td_list); 3321 INIT_LIST_HEAD(&td->cancelled_td_list); 3322 3323 if (td_index == 0) { 3324 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 3325 if (unlikely(ret)) 3326 return ret; 3327 } 3328 3329 td->urb = urb; 3330 /* Add this TD to the tail of the endpoint ring's TD list */ 3331 list_add_tail(&td->td_list, &ep_ring->td_list); 3332 td->start_seg = ep_ring->enq_seg; 3333 td->first_trb = ep_ring->enqueue; 3334 3335 return 0; 3336 } 3337 3338 unsigned int count_trbs(u64 addr, u64 len) 3339 { 3340 unsigned int num_trbs; 3341 3342 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3343 TRB_MAX_BUFF_SIZE); 3344 if (num_trbs == 0) 3345 num_trbs++; 3346 3347 return num_trbs; 3348 } 3349 3350 static inline unsigned int count_trbs_needed(struct urb *urb) 3351 { 3352 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); 3353 } 3354 3355 static unsigned int count_sg_trbs_needed(struct urb *urb) 3356 { 3357 struct scatterlist *sg; 3358 unsigned int i, len, full_len, num_trbs = 0; 3359 3360 full_len = urb->transfer_buffer_length; 3361 3362 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { 3363 len = sg_dma_len(sg); 3364 num_trbs += count_trbs(sg_dma_address(sg), len); 3365 len = min_t(unsigned int, len, full_len); 3366 full_len -= len; 3367 if (full_len == 0) 3368 break; 3369 } 3370 3371 return num_trbs; 3372 } 3373 3374 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) 3375 { 3376 u64 addr, len; 3377 3378 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3379 len = urb->iso_frame_desc[i].length; 3380 3381 return count_trbs(addr, len); 3382 } 3383 3384 static void check_trb_math(struct urb *urb, int running_total) 3385 { 3386 if (unlikely(running_total != urb->transfer_buffer_length)) 3387 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3388 "queued %#x (%d), asked for %#x (%d)\n", 3389 __func__, 3390 urb->ep->desc.bEndpointAddress, 3391 running_total, running_total, 3392 urb->transfer_buffer_length, 3393 urb->transfer_buffer_length); 3394 } 3395 3396 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3397 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3398 struct xhci_generic_trb *start_trb) 3399 { 3400 /* 3401 * Pass all the TRBs to the hardware at once and make sure this write 3402 * isn't reordered. 3403 */ 3404 wmb(); 3405 if (start_cycle) 3406 start_trb->field[3] |= cpu_to_le32(start_cycle); 3407 else 3408 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3409 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3410 } 3411 3412 static void check_interval(struct xhci_hcd *xhci, struct urb *urb, 3413 struct xhci_ep_ctx *ep_ctx) 3414 { 3415 int xhci_interval; 3416 int ep_interval; 3417 3418 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3419 ep_interval = urb->interval; 3420 3421 /* Convert to microframes */ 3422 if (urb->dev->speed == USB_SPEED_LOW || 3423 urb->dev->speed == USB_SPEED_FULL) 3424 ep_interval *= 8; 3425 3426 /* FIXME change this to a warning and a suggestion to use the new API 3427 * to set the polling interval (once the API is added). 3428 */ 3429 if (xhci_interval != ep_interval) { 3430 dev_dbg_ratelimited(&urb->dev->dev, 3431 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3432 ep_interval, ep_interval == 1 ? "" : "s", 3433 xhci_interval, xhci_interval == 1 ? "" : "s"); 3434 urb->interval = xhci_interval; 3435 /* Convert back to frames for LS/FS devices */ 3436 if (urb->dev->speed == USB_SPEED_LOW || 3437 urb->dev->speed == USB_SPEED_FULL) 3438 urb->interval /= 8; 3439 } 3440 } 3441 3442 /* 3443 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3444 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3445 * (comprised of sg list entries) can take several service intervals to 3446 * transmit. 3447 */ 3448 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3449 struct urb *urb, int slot_id, unsigned int ep_index) 3450 { 3451 struct xhci_ep_ctx *ep_ctx; 3452 3453 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); 3454 check_interval(xhci, urb, ep_ctx); 3455 3456 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3457 } 3458 3459 /* 3460 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3461 * packets remaining in the TD (*not* including this TRB). 3462 * 3463 * Total TD packet count = total_packet_count = 3464 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3465 * 3466 * Packets transferred up to and including this TRB = packets_transferred = 3467 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3468 * 3469 * TD size = total_packet_count - packets_transferred 3470 * 3471 * For xHCI 0.96 and older, TD size field should be the remaining bytes 3472 * including this TRB, right shifted by 10 3473 * 3474 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. 3475 * This is taken care of in the TRB_TD_SIZE() macro 3476 * 3477 * The last TRB in a TD must have the TD size set to zero. 3478 */ 3479 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, 3480 int trb_buff_len, unsigned int td_total_len, 3481 struct urb *urb, bool more_trbs_coming) 3482 { 3483 u32 maxp, total_packet_count; 3484 3485 /* MTK xHCI 0.96 contains some features from 1.0 */ 3486 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) 3487 return ((td_total_len - transferred) >> 10); 3488 3489 /* One TRB with a zero-length data packet. */ 3490 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || 3491 trb_buff_len == td_total_len) 3492 return 0; 3493 3494 /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */ 3495 if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100)) 3496 trb_buff_len = 0; 3497 3498 maxp = usb_endpoint_maxp(&urb->ep->desc); 3499 total_packet_count = DIV_ROUND_UP(td_total_len, maxp); 3500 3501 /* Queueing functions don't count the current TRB into transferred */ 3502 return (total_packet_count - ((transferred + trb_buff_len) / maxp)); 3503 } 3504 3505 3506 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, 3507 u32 *trb_buff_len, struct xhci_segment *seg) 3508 { 3509 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 3510 unsigned int unalign; 3511 unsigned int max_pkt; 3512 u32 new_buff_len; 3513 size_t len; 3514 3515 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3516 unalign = (enqd_len + *trb_buff_len) % max_pkt; 3517 3518 /* we got lucky, last normal TRB data on segment is packet aligned */ 3519 if (unalign == 0) 3520 return 0; 3521 3522 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", 3523 unalign, *trb_buff_len); 3524 3525 /* is the last nornal TRB alignable by splitting it */ 3526 if (*trb_buff_len > unalign) { 3527 *trb_buff_len -= unalign; 3528 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); 3529 return 0; 3530 } 3531 3532 /* 3533 * We want enqd_len + trb_buff_len to sum up to a number aligned to 3534 * number which is divisible by the endpoint's wMaxPacketSize. IOW: 3535 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. 3536 */ 3537 new_buff_len = max_pkt - (enqd_len % max_pkt); 3538 3539 if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) 3540 new_buff_len = (urb->transfer_buffer_length - enqd_len); 3541 3542 /* create a max max_pkt sized bounce buffer pointed to by last trb */ 3543 if (usb_urb_dir_out(urb)) { 3544 if (urb->num_sgs) { 3545 len = sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 3546 seg->bounce_buf, new_buff_len, enqd_len); 3547 if (len != new_buff_len) 3548 xhci_warn(xhci, "WARN Wrong bounce buffer write length: %zu != %d\n", 3549 len, new_buff_len); 3550 } else { 3551 memcpy(seg->bounce_buf, urb->transfer_buffer + enqd_len, new_buff_len); 3552 } 3553 3554 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3555 max_pkt, DMA_TO_DEVICE); 3556 } else { 3557 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3558 max_pkt, DMA_FROM_DEVICE); 3559 } 3560 3561 if (dma_mapping_error(dev, seg->bounce_dma)) { 3562 /* try without aligning. Some host controllers survive */ 3563 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); 3564 return 0; 3565 } 3566 *trb_buff_len = new_buff_len; 3567 seg->bounce_len = new_buff_len; 3568 seg->bounce_offs = enqd_len; 3569 3570 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); 3571 3572 return 1; 3573 } 3574 3575 /* This is very similar to what ehci-q.c qtd_fill() does */ 3576 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3577 struct urb *urb, int slot_id, unsigned int ep_index) 3578 { 3579 struct xhci_ring *ring; 3580 struct urb_priv *urb_priv; 3581 struct xhci_td *td; 3582 struct xhci_generic_trb *start_trb; 3583 struct scatterlist *sg = NULL; 3584 bool more_trbs_coming = true; 3585 bool need_zero_pkt = false; 3586 bool first_trb = true; 3587 unsigned int num_trbs; 3588 unsigned int start_cycle, num_sgs = 0; 3589 unsigned int enqd_len, block_len, trb_buff_len, full_len; 3590 int sent_len, ret; 3591 u32 field, length_field, remainder; 3592 u64 addr, send_addr; 3593 3594 ring = xhci_urb_to_transfer_ring(xhci, urb); 3595 if (!ring) 3596 return -EINVAL; 3597 3598 full_len = urb->transfer_buffer_length; 3599 /* If we have scatter/gather list, we use it. */ 3600 if (urb->num_sgs && !(urb->transfer_flags & URB_DMA_MAP_SINGLE)) { 3601 num_sgs = urb->num_mapped_sgs; 3602 sg = urb->sg; 3603 addr = (u64) sg_dma_address(sg); 3604 block_len = sg_dma_len(sg); 3605 num_trbs = count_sg_trbs_needed(urb); 3606 } else { 3607 num_trbs = count_trbs_needed(urb); 3608 addr = (u64) urb->transfer_dma; 3609 block_len = full_len; 3610 } 3611 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3612 ep_index, urb->stream_id, 3613 num_trbs, urb, 0, mem_flags); 3614 if (unlikely(ret < 0)) 3615 return ret; 3616 3617 urb_priv = urb->hcpriv; 3618 3619 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3620 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) 3621 need_zero_pkt = true; 3622 3623 td = &urb_priv->td[0]; 3624 3625 /* 3626 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3627 * until we've finished creating all the other TRBs. The ring's cycle 3628 * state may change as we enqueue the other TRBs, so save it too. 3629 */ 3630 start_trb = &ring->enqueue->generic; 3631 start_cycle = ring->cycle_state; 3632 send_addr = addr; 3633 3634 /* Queue the TRBs, even if they are zero-length */ 3635 for (enqd_len = 0; first_trb || enqd_len < full_len; 3636 enqd_len += trb_buff_len) { 3637 field = TRB_TYPE(TRB_NORMAL); 3638 3639 /* TRB buffer should not cross 64KB boundaries */ 3640 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3641 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); 3642 3643 if (enqd_len + trb_buff_len > full_len) 3644 trb_buff_len = full_len - enqd_len; 3645 3646 /* Don't change the cycle bit of the first TRB until later */ 3647 if (first_trb) { 3648 first_trb = false; 3649 if (start_cycle == 0) 3650 field |= TRB_CYCLE; 3651 } else 3652 field |= ring->cycle_state; 3653 3654 /* Chain all the TRBs together; clear the chain bit in the last 3655 * TRB to indicate it's the last TRB in the chain. 3656 */ 3657 if (enqd_len + trb_buff_len < full_len) { 3658 field |= TRB_CHAIN; 3659 if (trb_is_link(ring->enqueue + 1)) { 3660 if (xhci_align_td(xhci, urb, enqd_len, 3661 &trb_buff_len, 3662 ring->enq_seg)) { 3663 send_addr = ring->enq_seg->bounce_dma; 3664 /* assuming TD won't span 2 segs */ 3665 td->bounce_seg = ring->enq_seg; 3666 } 3667 } 3668 } 3669 if (enqd_len + trb_buff_len >= full_len) { 3670 field &= ~TRB_CHAIN; 3671 field |= TRB_IOC; 3672 more_trbs_coming = false; 3673 td->last_trb = ring->enqueue; 3674 td->last_trb_seg = ring->enq_seg; 3675 if (xhci_urb_suitable_for_idt(urb)) { 3676 memcpy(&send_addr, urb->transfer_buffer, 3677 trb_buff_len); 3678 le64_to_cpus(&send_addr); 3679 field |= TRB_IDT; 3680 } 3681 } 3682 3683 /* Only set interrupt on short packet for IN endpoints */ 3684 if (usb_urb_dir_in(urb)) 3685 field |= TRB_ISP; 3686 3687 /* Set the TRB length, TD size, and interrupter fields. */ 3688 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, 3689 full_len, urb, more_trbs_coming); 3690 3691 length_field = TRB_LEN(trb_buff_len) | 3692 TRB_TD_SIZE(remainder) | 3693 TRB_INTR_TARGET(0); 3694 3695 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, 3696 lower_32_bits(send_addr), 3697 upper_32_bits(send_addr), 3698 length_field, 3699 field); 3700 td->num_trbs++; 3701 addr += trb_buff_len; 3702 sent_len = trb_buff_len; 3703 3704 while (sg && sent_len >= block_len) { 3705 /* New sg entry */ 3706 --num_sgs; 3707 sent_len -= block_len; 3708 sg = sg_next(sg); 3709 if (num_sgs != 0 && sg) { 3710 block_len = sg_dma_len(sg); 3711 addr = (u64) sg_dma_address(sg); 3712 addr += sent_len; 3713 } 3714 } 3715 block_len -= sent_len; 3716 send_addr = addr; 3717 } 3718 3719 if (need_zero_pkt) { 3720 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3721 ep_index, urb->stream_id, 3722 1, urb, 1, mem_flags); 3723 urb_priv->td[1].last_trb = ring->enqueue; 3724 urb_priv->td[1].last_trb_seg = ring->enq_seg; 3725 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; 3726 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); 3727 urb_priv->td[1].num_trbs++; 3728 } 3729 3730 check_trb_math(urb, enqd_len); 3731 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3732 start_cycle, start_trb); 3733 return 0; 3734 } 3735 3736 /* Caller must have locked xhci->lock */ 3737 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3738 struct urb *urb, int slot_id, unsigned int ep_index) 3739 { 3740 struct xhci_ring *ep_ring; 3741 int num_trbs; 3742 int ret; 3743 struct usb_ctrlrequest *setup; 3744 struct xhci_generic_trb *start_trb; 3745 int start_cycle; 3746 u32 field; 3747 struct urb_priv *urb_priv; 3748 struct xhci_td *td; 3749 3750 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3751 if (!ep_ring) 3752 return -EINVAL; 3753 3754 /* 3755 * Need to copy setup packet into setup TRB, so we can't use the setup 3756 * DMA address. 3757 */ 3758 if (!urb->setup_packet) 3759 return -EINVAL; 3760 3761 /* 1 TRB for setup, 1 for status */ 3762 num_trbs = 2; 3763 /* 3764 * Don't need to check if we need additional event data and normal TRBs, 3765 * since data in control transfers will never get bigger than 16MB 3766 * XXX: can we get a buffer that crosses 64KB boundaries? 3767 */ 3768 if (urb->transfer_buffer_length > 0) 3769 num_trbs++; 3770 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3771 ep_index, urb->stream_id, 3772 num_trbs, urb, 0, mem_flags); 3773 if (ret < 0) 3774 return ret; 3775 3776 urb_priv = urb->hcpriv; 3777 td = &urb_priv->td[0]; 3778 td->num_trbs = num_trbs; 3779 3780 /* 3781 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3782 * until we've finished creating all the other TRBs. The ring's cycle 3783 * state may change as we enqueue the other TRBs, so save it too. 3784 */ 3785 start_trb = &ep_ring->enqueue->generic; 3786 start_cycle = ep_ring->cycle_state; 3787 3788 /* Queue setup TRB - see section 6.4.1.2.1 */ 3789 /* FIXME better way to translate setup_packet into two u32 fields? */ 3790 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3791 field = 0; 3792 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3793 if (start_cycle == 0) 3794 field |= 0x1; 3795 3796 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ 3797 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { 3798 if (urb->transfer_buffer_length > 0) { 3799 if (setup->bRequestType & USB_DIR_IN) 3800 field |= TRB_TX_TYPE(TRB_DATA_IN); 3801 else 3802 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3803 } 3804 } 3805 3806 queue_trb(xhci, ep_ring, true, 3807 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3808 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3809 TRB_LEN(8) | TRB_INTR_TARGET(0), 3810 /* Immediate data in pointer */ 3811 field); 3812 3813 /* If there's data, queue data TRBs */ 3814 /* Only set interrupt on short packet for IN endpoints */ 3815 if (usb_urb_dir_in(urb)) 3816 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3817 else 3818 field = TRB_TYPE(TRB_DATA); 3819 3820 if (urb->transfer_buffer_length > 0) { 3821 u32 length_field, remainder; 3822 u64 addr; 3823 3824 if (xhci_urb_suitable_for_idt(urb)) { 3825 memcpy(&addr, urb->transfer_buffer, 3826 urb->transfer_buffer_length); 3827 le64_to_cpus(&addr); 3828 field |= TRB_IDT; 3829 } else { 3830 addr = (u64) urb->transfer_dma; 3831 } 3832 3833 remainder = xhci_td_remainder(xhci, 0, 3834 urb->transfer_buffer_length, 3835 urb->transfer_buffer_length, 3836 urb, 1); 3837 length_field = TRB_LEN(urb->transfer_buffer_length) | 3838 TRB_TD_SIZE(remainder) | 3839 TRB_INTR_TARGET(0); 3840 if (setup->bRequestType & USB_DIR_IN) 3841 field |= TRB_DIR_IN; 3842 queue_trb(xhci, ep_ring, true, 3843 lower_32_bits(addr), 3844 upper_32_bits(addr), 3845 length_field, 3846 field | ep_ring->cycle_state); 3847 } 3848 3849 /* Save the DMA address of the last TRB in the TD */ 3850 td->last_trb = ep_ring->enqueue; 3851 td->last_trb_seg = ep_ring->enq_seg; 3852 3853 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3854 /* If the device sent data, the status stage is an OUT transfer */ 3855 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3856 field = 0; 3857 else 3858 field = TRB_DIR_IN; 3859 queue_trb(xhci, ep_ring, false, 3860 0, 3861 0, 3862 TRB_INTR_TARGET(0), 3863 /* Event on completion */ 3864 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3865 3866 giveback_first_trb(xhci, slot_id, ep_index, 0, 3867 start_cycle, start_trb); 3868 return 0; 3869 } 3870 3871 /* 3872 * The transfer burst count field of the isochronous TRB defines the number of 3873 * bursts that are required to move all packets in this TD. Only SuperSpeed 3874 * devices can burst up to bMaxBurst number of packets per service interval. 3875 * This field is zero based, meaning a value of zero in the field means one 3876 * burst. Basically, for everything but SuperSpeed devices, this field will be 3877 * zero. Only xHCI 1.0 host controllers support this field. 3878 */ 3879 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3880 struct urb *urb, unsigned int total_packet_count) 3881 { 3882 unsigned int max_burst; 3883 3884 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) 3885 return 0; 3886 3887 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3888 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3889 } 3890 3891 /* 3892 * Returns the number of packets in the last "burst" of packets. This field is 3893 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3894 * the last burst packet count is equal to the total number of packets in the 3895 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3896 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3897 * contain 1 to (bMaxBurst + 1) packets. 3898 */ 3899 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3900 struct urb *urb, unsigned int total_packet_count) 3901 { 3902 unsigned int max_burst; 3903 unsigned int residue; 3904 3905 if (xhci->hci_version < 0x100) 3906 return 0; 3907 3908 if (urb->dev->speed >= USB_SPEED_SUPER) { 3909 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3910 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3911 residue = total_packet_count % (max_burst + 1); 3912 /* If residue is zero, the last burst contains (max_burst + 1) 3913 * number of packets, but the TLBPC field is zero-based. 3914 */ 3915 if (residue == 0) 3916 return max_burst; 3917 return residue - 1; 3918 } 3919 if (total_packet_count == 0) 3920 return 0; 3921 return total_packet_count - 1; 3922 } 3923 3924 /* 3925 * Calculates Frame ID field of the isochronous TRB identifies the 3926 * target frame that the Interval associated with this Isochronous 3927 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. 3928 * 3929 * Returns actual frame id on success, negative value on error. 3930 */ 3931 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, 3932 struct urb *urb, int index) 3933 { 3934 int start_frame, ist, ret = 0; 3935 int start_frame_id, end_frame_id, current_frame_id; 3936 3937 if (urb->dev->speed == USB_SPEED_LOW || 3938 urb->dev->speed == USB_SPEED_FULL) 3939 start_frame = urb->start_frame + index * urb->interval; 3940 else 3941 start_frame = (urb->start_frame + index * urb->interval) >> 3; 3942 3943 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): 3944 * 3945 * If bit [3] of IST is cleared to '0', software can add a TRB no 3946 * later than IST[2:0] Microframes before that TRB is scheduled to 3947 * be executed. 3948 * If bit [3] of IST is set to '1', software can add a TRB no later 3949 * than IST[2:0] Frames before that TRB is scheduled to be executed. 3950 */ 3951 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3952 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3953 ist <<= 3; 3954 3955 /* Software shall not schedule an Isoch TD with a Frame ID value that 3956 * is less than the Start Frame ID or greater than the End Frame ID, 3957 * where: 3958 * 3959 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 3960 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 3961 * 3962 * Both the End Frame ID and Start Frame ID values are calculated 3963 * in microframes. When software determines the valid Frame ID value; 3964 * The End Frame ID value should be rounded down to the nearest Frame 3965 * boundary, and the Start Frame ID value should be rounded up to the 3966 * nearest Frame boundary. 3967 */ 3968 current_frame_id = readl(&xhci->run_regs->microframe_index); 3969 start_frame_id = roundup(current_frame_id + ist + 1, 8); 3970 end_frame_id = rounddown(current_frame_id + 895 * 8, 8); 3971 3972 start_frame &= 0x7ff; 3973 start_frame_id = (start_frame_id >> 3) & 0x7ff; 3974 end_frame_id = (end_frame_id >> 3) & 0x7ff; 3975 3976 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n", 3977 __func__, index, readl(&xhci->run_regs->microframe_index), 3978 start_frame_id, end_frame_id, start_frame); 3979 3980 if (start_frame_id < end_frame_id) { 3981 if (start_frame > end_frame_id || 3982 start_frame < start_frame_id) 3983 ret = -EINVAL; 3984 } else if (start_frame_id > end_frame_id) { 3985 if ((start_frame > end_frame_id && 3986 start_frame < start_frame_id)) 3987 ret = -EINVAL; 3988 } else { 3989 ret = -EINVAL; 3990 } 3991 3992 if (index == 0) { 3993 if (ret == -EINVAL || start_frame == start_frame_id) { 3994 start_frame = start_frame_id + 1; 3995 if (urb->dev->speed == USB_SPEED_LOW || 3996 urb->dev->speed == USB_SPEED_FULL) 3997 urb->start_frame = start_frame; 3998 else 3999 urb->start_frame = start_frame << 3; 4000 ret = 0; 4001 } 4002 } 4003 4004 if (ret) { 4005 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", 4006 start_frame, current_frame_id, index, 4007 start_frame_id, end_frame_id); 4008 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); 4009 return ret; 4010 } 4011 4012 return start_frame; 4013 } 4014 4015 /* Check if we should generate event interrupt for a TD in an isoc URB */ 4016 static bool trb_block_event_intr(struct xhci_hcd *xhci, int num_tds, int i) 4017 { 4018 if (xhci->hci_version < 0x100) 4019 return false; 4020 /* always generate an event interrupt for the last TD */ 4021 if (i == num_tds - 1) 4022 return false; 4023 /* 4024 * If AVOID_BEI is set the host handles full event rings poorly, 4025 * generate an event at least every 8th TD to clear the event ring 4026 */ 4027 if (i && xhci->quirks & XHCI_AVOID_BEI) 4028 return !!(i % xhci->isoc_bei_interval); 4029 4030 return true; 4031 } 4032 4033 /* This is for isoc transfer */ 4034 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 4035 struct urb *urb, int slot_id, unsigned int ep_index) 4036 { 4037 struct xhci_ring *ep_ring; 4038 struct urb_priv *urb_priv; 4039 struct xhci_td *td; 4040 int num_tds, trbs_per_td; 4041 struct xhci_generic_trb *start_trb; 4042 bool first_trb; 4043 int start_cycle; 4044 u32 field, length_field; 4045 int running_total, trb_buff_len, td_len, td_remain_len, ret; 4046 u64 start_addr, addr; 4047 int i, j; 4048 bool more_trbs_coming; 4049 struct xhci_virt_ep *xep; 4050 int frame_id; 4051 4052 xep = &xhci->devs[slot_id]->eps[ep_index]; 4053 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 4054 4055 num_tds = urb->number_of_packets; 4056 if (num_tds < 1) { 4057 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 4058 return -EINVAL; 4059 } 4060 start_addr = (u64) urb->transfer_dma; 4061 start_trb = &ep_ring->enqueue->generic; 4062 start_cycle = ep_ring->cycle_state; 4063 4064 urb_priv = urb->hcpriv; 4065 /* Queue the TRBs for each TD, even if they are zero-length */ 4066 for (i = 0; i < num_tds; i++) { 4067 unsigned int total_pkt_count, max_pkt; 4068 unsigned int burst_count, last_burst_pkt_count; 4069 u32 sia_frame_id; 4070 4071 first_trb = true; 4072 running_total = 0; 4073 addr = start_addr + urb->iso_frame_desc[i].offset; 4074 td_len = urb->iso_frame_desc[i].length; 4075 td_remain_len = td_len; 4076 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 4077 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); 4078 4079 /* A zero-length transfer still involves at least one packet. */ 4080 if (total_pkt_count == 0) 4081 total_pkt_count++; 4082 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); 4083 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, 4084 urb, total_pkt_count); 4085 4086 trbs_per_td = count_isoc_trbs_needed(urb, i); 4087 4088 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 4089 urb->stream_id, trbs_per_td, urb, i, mem_flags); 4090 if (ret < 0) { 4091 if (i == 0) 4092 return ret; 4093 goto cleanup; 4094 } 4095 td = &urb_priv->td[i]; 4096 td->num_trbs = trbs_per_td; 4097 /* use SIA as default, if frame id is used overwrite it */ 4098 sia_frame_id = TRB_SIA; 4099 if (!(urb->transfer_flags & URB_ISO_ASAP) && 4100 HCC_CFC(xhci->hcc_params)) { 4101 frame_id = xhci_get_isoc_frame_id(xhci, urb, i); 4102 if (frame_id >= 0) 4103 sia_frame_id = TRB_FRAME_ID(frame_id); 4104 } 4105 /* 4106 * Set isoc specific data for the first TRB in a TD. 4107 * Prevent HW from getting the TRBs by keeping the cycle state 4108 * inverted in the first TDs isoc TRB. 4109 */ 4110 field = TRB_TYPE(TRB_ISOC) | 4111 TRB_TLBPC(last_burst_pkt_count) | 4112 sia_frame_id | 4113 (i ? ep_ring->cycle_state : !start_cycle); 4114 4115 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ 4116 if (!xep->use_extended_tbc) 4117 field |= TRB_TBC(burst_count); 4118 4119 /* fill the rest of the TRB fields, and remaining normal TRBs */ 4120 for (j = 0; j < trbs_per_td; j++) { 4121 u32 remainder = 0; 4122 4123 /* only first TRB is isoc, overwrite otherwise */ 4124 if (!first_trb) 4125 field = TRB_TYPE(TRB_NORMAL) | 4126 ep_ring->cycle_state; 4127 4128 /* Only set interrupt on short packet for IN EPs */ 4129 if (usb_urb_dir_in(urb)) 4130 field |= TRB_ISP; 4131 4132 /* Set the chain bit for all except the last TRB */ 4133 if (j < trbs_per_td - 1) { 4134 more_trbs_coming = true; 4135 field |= TRB_CHAIN; 4136 } else { 4137 more_trbs_coming = false; 4138 td->last_trb = ep_ring->enqueue; 4139 td->last_trb_seg = ep_ring->enq_seg; 4140 field |= TRB_IOC; 4141 if (trb_block_event_intr(xhci, num_tds, i)) 4142 field |= TRB_BEI; 4143 } 4144 /* Calculate TRB length */ 4145 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 4146 if (trb_buff_len > td_remain_len) 4147 trb_buff_len = td_remain_len; 4148 4149 /* Set the TRB length, TD size, & interrupter fields. */ 4150 remainder = xhci_td_remainder(xhci, running_total, 4151 trb_buff_len, td_len, 4152 urb, more_trbs_coming); 4153 4154 length_field = TRB_LEN(trb_buff_len) | 4155 TRB_INTR_TARGET(0); 4156 4157 /* xhci 1.1 with ETE uses TD Size field for TBC */ 4158 if (first_trb && xep->use_extended_tbc) 4159 length_field |= TRB_TD_SIZE_TBC(burst_count); 4160 else 4161 length_field |= TRB_TD_SIZE(remainder); 4162 first_trb = false; 4163 4164 queue_trb(xhci, ep_ring, more_trbs_coming, 4165 lower_32_bits(addr), 4166 upper_32_bits(addr), 4167 length_field, 4168 field); 4169 running_total += trb_buff_len; 4170 4171 addr += trb_buff_len; 4172 td_remain_len -= trb_buff_len; 4173 } 4174 4175 /* Check TD length */ 4176 if (running_total != td_len) { 4177 xhci_err(xhci, "ISOC TD length unmatch\n"); 4178 ret = -EINVAL; 4179 goto cleanup; 4180 } 4181 } 4182 4183 /* store the next frame id */ 4184 if (HCC_CFC(xhci->hcc_params)) 4185 xep->next_frame_id = urb->start_frame + num_tds * urb->interval; 4186 4187 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 4188 if (xhci->quirks & XHCI_AMD_PLL_FIX) 4189 usb_amd_quirk_pll_disable(); 4190 } 4191 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 4192 4193 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 4194 start_cycle, start_trb); 4195 return 0; 4196 cleanup: 4197 /* Clean up a partially enqueued isoc transfer. */ 4198 4199 for (i--; i >= 0; i--) 4200 list_del_init(&urb_priv->td[i].td_list); 4201 4202 /* Use the first TD as a temporary variable to turn the TDs we've queued 4203 * into No-ops with a software-owned cycle bit. That way the hardware 4204 * won't accidentally start executing bogus TDs when we partially 4205 * overwrite them. td->first_trb and td->start_seg are already set. 4206 */ 4207 urb_priv->td[0].last_trb = ep_ring->enqueue; 4208 /* Every TRB except the first & last will have its cycle bit flipped. */ 4209 td_to_noop(xhci, ep_ring, &urb_priv->td[0], true); 4210 4211 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 4212 ep_ring->enqueue = urb_priv->td[0].first_trb; 4213 ep_ring->enq_seg = urb_priv->td[0].start_seg; 4214 ep_ring->cycle_state = start_cycle; 4215 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 4216 return ret; 4217 } 4218 4219 /* 4220 * Check transfer ring to guarantee there is enough room for the urb. 4221 * Update ISO URB start_frame and interval. 4222 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to 4223 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or 4224 * Contiguous Frame ID is not supported by HC. 4225 */ 4226 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 4227 struct urb *urb, int slot_id, unsigned int ep_index) 4228 { 4229 struct xhci_virt_device *xdev; 4230 struct xhci_ring *ep_ring; 4231 struct xhci_ep_ctx *ep_ctx; 4232 int start_frame; 4233 int num_tds, num_trbs, i; 4234 int ret; 4235 struct xhci_virt_ep *xep; 4236 int ist; 4237 4238 xdev = xhci->devs[slot_id]; 4239 xep = &xhci->devs[slot_id]->eps[ep_index]; 4240 ep_ring = xdev->eps[ep_index].ring; 4241 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 4242 4243 num_trbs = 0; 4244 num_tds = urb->number_of_packets; 4245 for (i = 0; i < num_tds; i++) 4246 num_trbs += count_isoc_trbs_needed(urb, i); 4247 4248 /* Check the ring to guarantee there is enough room for the whole urb. 4249 * Do not insert any td of the urb to the ring if the check failed. 4250 */ 4251 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 4252 num_trbs, mem_flags); 4253 if (ret) 4254 return ret; 4255 4256 /* 4257 * Check interval value. This should be done before we start to 4258 * calculate the start frame value. 4259 */ 4260 check_interval(xhci, urb, ep_ctx); 4261 4262 /* Calculate the start frame and put it in urb->start_frame. */ 4263 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { 4264 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) { 4265 urb->start_frame = xep->next_frame_id; 4266 goto skip_start_over; 4267 } 4268 } 4269 4270 start_frame = readl(&xhci->run_regs->microframe_index); 4271 start_frame &= 0x3fff; 4272 /* 4273 * Round up to the next frame and consider the time before trb really 4274 * gets scheduled by hardare. 4275 */ 4276 ist = HCS_IST(xhci->hcs_params2) & 0x7; 4277 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 4278 ist <<= 3; 4279 start_frame += ist + XHCI_CFC_DELAY; 4280 start_frame = roundup(start_frame, 8); 4281 4282 /* 4283 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT 4284 * is greate than 8 microframes. 4285 */ 4286 if (urb->dev->speed == USB_SPEED_LOW || 4287 urb->dev->speed == USB_SPEED_FULL) { 4288 start_frame = roundup(start_frame, urb->interval << 3); 4289 urb->start_frame = start_frame >> 3; 4290 } else { 4291 start_frame = roundup(start_frame, urb->interval); 4292 urb->start_frame = start_frame; 4293 } 4294 4295 skip_start_over: 4296 4297 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 4298 } 4299 4300 /**** Command Ring Operations ****/ 4301 4302 /* Generic function for queueing a command TRB on the command ring. 4303 * Check to make sure there's room on the command ring for one command TRB. 4304 * Also check that there's room reserved for commands that must not fail. 4305 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 4306 * then only check for the number of reserved spots. 4307 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 4308 * because the command event handler may want to resubmit a failed command. 4309 */ 4310 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4311 u32 field1, u32 field2, 4312 u32 field3, u32 field4, bool command_must_succeed) 4313 { 4314 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 4315 int ret; 4316 4317 if ((xhci->xhc_state & XHCI_STATE_DYING) || 4318 (xhci->xhc_state & XHCI_STATE_HALTED)) { 4319 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); 4320 return -ESHUTDOWN; 4321 } 4322 4323 if (!command_must_succeed) 4324 reserved_trbs++; 4325 4326 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 4327 reserved_trbs, GFP_ATOMIC); 4328 if (ret < 0) { 4329 xhci_err(xhci, "ERR: No room for command on command ring\n"); 4330 if (command_must_succeed) 4331 xhci_err(xhci, "ERR: Reserved TRB counting for " 4332 "unfailable commands failed.\n"); 4333 return ret; 4334 } 4335 4336 cmd->command_trb = xhci->cmd_ring->enqueue; 4337 4338 /* if there are no other commands queued we start the timeout timer */ 4339 if (list_empty(&xhci->cmd_list)) { 4340 xhci->current_cmd = cmd; 4341 xhci_mod_cmd_timer(xhci); 4342 } 4343 4344 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 4345 4346 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 4347 field4 | xhci->cmd_ring->cycle_state); 4348 return 0; 4349 } 4350 4351 /* Queue a slot enable or disable request on the command ring */ 4352 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 4353 u32 trb_type, u32 slot_id) 4354 { 4355 return queue_command(xhci, cmd, 0, 0, 0, 4356 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 4357 } 4358 4359 /* Queue an address device command TRB */ 4360 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4361 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 4362 { 4363 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4364 upper_32_bits(in_ctx_ptr), 0, 4365 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 4366 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 4367 } 4368 4369 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4370 u32 field1, u32 field2, u32 field3, u32 field4) 4371 { 4372 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 4373 } 4374 4375 /* Queue a reset device command TRB */ 4376 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4377 u32 slot_id) 4378 { 4379 return queue_command(xhci, cmd, 0, 0, 0, 4380 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 4381 false); 4382 } 4383 4384 /* Queue a configure endpoint command TRB */ 4385 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 4386 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 4387 u32 slot_id, bool command_must_succeed) 4388 { 4389 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4390 upper_32_bits(in_ctx_ptr), 0, 4391 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 4392 command_must_succeed); 4393 } 4394 4395 /* Queue an evaluate context command TRB */ 4396 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 4397 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 4398 { 4399 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4400 upper_32_bits(in_ctx_ptr), 0, 4401 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 4402 command_must_succeed); 4403 } 4404 4405 /* 4406 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 4407 * activity on an endpoint that is about to be suspended. 4408 */ 4409 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 4410 int slot_id, unsigned int ep_index, int suspend) 4411 { 4412 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4413 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4414 u32 type = TRB_TYPE(TRB_STOP_RING); 4415 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 4416 4417 return queue_command(xhci, cmd, 0, 0, 0, 4418 trb_slot_id | trb_ep_index | type | trb_suspend, false); 4419 } 4420 4421 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 4422 int slot_id, unsigned int ep_index, 4423 enum xhci_ep_reset_type reset_type) 4424 { 4425 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4426 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4427 u32 type = TRB_TYPE(TRB_RESET_EP); 4428 4429 if (reset_type == EP_SOFT_RESET) 4430 type |= TRB_TSP; 4431 4432 return queue_command(xhci, cmd, 0, 0, 0, 4433 trb_slot_id | trb_ep_index | type, false); 4434 } 4435