1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 /* 12 * Ring initialization rules: 13 * 1. Each segment is initialized to zero, except for link TRBs. 14 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 15 * Consumer Cycle State (CCS), depending on ring function. 16 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 17 * 18 * Ring behavior rules: 19 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 20 * least one free TRB in the ring. This is useful if you want to turn that 21 * into a link TRB and expand the ring. 22 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 23 * link TRB, then load the pointer with the address in the link TRB. If the 24 * link TRB had its toggle bit set, you may need to update the ring cycle 25 * state (see cycle bit rules). You may have to do this multiple times 26 * until you reach a non-link TRB. 27 * 3. A ring is full if enqueue++ (for the definition of increment above) 28 * equals the dequeue pointer. 29 * 30 * Cycle bit rules: 31 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 32 * in a link TRB, it must toggle the ring cycle state. 33 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 34 * in a link TRB, it must toggle the ring cycle state. 35 * 36 * Producer rules: 37 * 1. Check if ring is full before you enqueue. 38 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 39 * Update enqueue pointer between each write (which may update the ring 40 * cycle state). 41 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 42 * and endpoint rings. If HC is the producer for the event ring, 43 * and it generates an interrupt according to interrupt modulation rules. 44 * 45 * Consumer rules: 46 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 47 * the TRB is owned by the consumer. 48 * 2. Update dequeue pointer (which may update the ring cycle state) and 49 * continue processing TRBs until you reach a TRB which is not owned by you. 50 * 3. Notify the producer. SW is the consumer for the event ring, and it 51 * updates event ring dequeue pointer. HC is the consumer for the command and 52 * endpoint rings; it generates events on the event ring for these. 53 */ 54 55 #include <linux/scatterlist.h> 56 #include <linux/slab.h> 57 #include <linux/dma-mapping.h> 58 #include "xhci.h" 59 #include "xhci-trace.h" 60 61 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 62 u32 field1, u32 field2, 63 u32 field3, u32 field4, bool command_must_succeed); 64 65 /* 66 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 67 * address of the TRB. 68 */ 69 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 70 union xhci_trb *trb) 71 { 72 unsigned long segment_offset; 73 74 if (!seg || !trb || trb < seg->trbs) 75 return 0; 76 /* offset in TRBs */ 77 segment_offset = trb - seg->trbs; 78 if (segment_offset >= TRBS_PER_SEGMENT) 79 return 0; 80 return seg->dma + (segment_offset * sizeof(*trb)); 81 } 82 83 static bool trb_is_noop(union xhci_trb *trb) 84 { 85 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); 86 } 87 88 static bool trb_is_link(union xhci_trb *trb) 89 { 90 return TRB_TYPE_LINK_LE32(trb->link.control); 91 } 92 93 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) 94 { 95 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; 96 } 97 98 static bool last_trb_on_ring(struct xhci_ring *ring, 99 struct xhci_segment *seg, union xhci_trb *trb) 100 { 101 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); 102 } 103 104 static bool link_trb_toggles_cycle(union xhci_trb *trb) 105 { 106 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 107 } 108 109 static bool last_td_in_urb(struct xhci_td *td) 110 { 111 struct urb_priv *urb_priv = td->urb->hcpriv; 112 113 return urb_priv->num_tds_done == urb_priv->num_tds; 114 } 115 116 static bool unhandled_event_trb(struct xhci_ring *ring) 117 { 118 return ((le32_to_cpu(ring->dequeue->event_cmd.flags) & TRB_CYCLE) == 119 ring->cycle_state); 120 } 121 122 static void inc_td_cnt(struct urb *urb) 123 { 124 struct urb_priv *urb_priv = urb->hcpriv; 125 126 urb_priv->num_tds_done++; 127 } 128 129 static void trb_to_noop(union xhci_trb *trb, u32 noop_type) 130 { 131 if (trb_is_link(trb)) { 132 /* unchain chained link TRBs */ 133 trb->link.control &= cpu_to_le32(~TRB_CHAIN); 134 } else { 135 trb->generic.field[0] = 0; 136 trb->generic.field[1] = 0; 137 trb->generic.field[2] = 0; 138 /* Preserve only the cycle bit of this TRB */ 139 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 140 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); 141 } 142 } 143 144 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 145 * TRB is in a new segment. This does not skip over link TRBs, and it does not 146 * effect the ring dequeue or enqueue pointers. 147 */ 148 static void next_trb(struct xhci_hcd *xhci, 149 struct xhci_ring *ring, 150 struct xhci_segment **seg, 151 union xhci_trb **trb) 152 { 153 if (trb_is_link(*trb) || last_trb_on_seg(*seg, *trb)) { 154 *seg = (*seg)->next; 155 *trb = ((*seg)->trbs); 156 } else { 157 (*trb)++; 158 } 159 } 160 161 /* 162 * See Cycle bit rules. SW is the consumer for the event ring only. 163 */ 164 void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 165 { 166 unsigned int link_trb_count = 0; 167 168 /* event ring doesn't have link trbs, check for last trb */ 169 if (ring->type == TYPE_EVENT) { 170 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 171 ring->dequeue++; 172 goto out; 173 } 174 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) 175 ring->cycle_state ^= 1; 176 ring->deq_seg = ring->deq_seg->next; 177 ring->dequeue = ring->deq_seg->trbs; 178 goto out; 179 } 180 181 /* All other rings have link trbs */ 182 if (!trb_is_link(ring->dequeue)) { 183 if (last_trb_on_seg(ring->deq_seg, ring->dequeue)) 184 xhci_warn(xhci, "Missing link TRB at end of segment\n"); 185 else 186 ring->dequeue++; 187 } 188 189 while (trb_is_link(ring->dequeue)) { 190 ring->deq_seg = ring->deq_seg->next; 191 ring->dequeue = ring->deq_seg->trbs; 192 193 if (link_trb_count++ > ring->num_segs) { 194 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 195 break; 196 } 197 } 198 out: 199 trace_xhci_inc_deq(ring); 200 201 return; 202 } 203 204 /* 205 * See Cycle bit rules. SW is the consumer for the event ring only. 206 * 207 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 208 * chain bit is set), then set the chain bit in all the following link TRBs. 209 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 210 * have their chain bit cleared (so that each Link TRB is a separate TD). 211 * 212 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 213 * set, but other sections talk about dealing with the chain bit set. This was 214 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 215 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 216 * 217 * @more_trbs_coming: Will you enqueue more TRBs before calling 218 * prepare_transfer()? 219 */ 220 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 221 bool more_trbs_coming) 222 { 223 u32 chain; 224 union xhci_trb *next; 225 unsigned int link_trb_count = 0; 226 227 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 228 229 if (last_trb_on_seg(ring->enq_seg, ring->enqueue)) { 230 xhci_err(xhci, "Tried to move enqueue past ring segment\n"); 231 return; 232 } 233 234 next = ++(ring->enqueue); 235 236 /* Update the dequeue pointer further if that was a link TRB */ 237 while (trb_is_link(next)) { 238 239 /* 240 * If the caller doesn't plan on enqueueing more TDs before 241 * ringing the doorbell, then we don't want to give the link TRB 242 * to the hardware just yet. We'll give the link TRB back in 243 * prepare_ring() just before we enqueue the TD at the top of 244 * the ring. 245 */ 246 if (!chain && !more_trbs_coming) 247 break; 248 249 /* If we're not dealing with 0.95 hardware or isoc rings on 250 * AMD 0.96 host, carry over the chain bit of the previous TRB 251 * (which may mean the chain bit is cleared). 252 */ 253 if (!(ring->type == TYPE_ISOC && 254 (xhci->quirks & XHCI_AMD_0x96_HOST)) && 255 !xhci_link_trb_quirk(xhci)) { 256 next->link.control &= cpu_to_le32(~TRB_CHAIN); 257 next->link.control |= cpu_to_le32(chain); 258 } 259 /* Give this link TRB to the hardware */ 260 wmb(); 261 next->link.control ^= cpu_to_le32(TRB_CYCLE); 262 263 /* Toggle the cycle bit after the last ring segment. */ 264 if (link_trb_toggles_cycle(next)) 265 ring->cycle_state ^= 1; 266 267 ring->enq_seg = ring->enq_seg->next; 268 ring->enqueue = ring->enq_seg->trbs; 269 next = ring->enqueue; 270 271 if (link_trb_count++ > ring->num_segs) { 272 xhci_warn(xhci, "%s: Ring link TRB loop\n", __func__); 273 break; 274 } 275 } 276 277 trace_xhci_inc_enq(ring); 278 } 279 280 /* 281 * Return number of free normal TRBs from enqueue to dequeue pointer on ring. 282 * Not counting an assumed link TRB at end of each TRBS_PER_SEGMENT sized segment. 283 * Only for transfer and command rings where driver is the producer, not for 284 * event rings. 285 */ 286 static unsigned int xhci_num_trbs_free(struct xhci_hcd *xhci, struct xhci_ring *ring) 287 { 288 struct xhci_segment *enq_seg = ring->enq_seg; 289 union xhci_trb *enq = ring->enqueue; 290 union xhci_trb *last_on_seg; 291 unsigned int free = 0; 292 int i = 0; 293 294 /* Ring might be empty even if enq != deq if enq is left on a link trb */ 295 if (trb_is_link(enq)) { 296 enq_seg = enq_seg->next; 297 enq = enq_seg->trbs; 298 } 299 300 /* Empty ring, common case, don't walk the segments */ 301 if (enq == ring->dequeue) 302 return ring->num_segs * (TRBS_PER_SEGMENT - 1); 303 304 do { 305 if (ring->deq_seg == enq_seg && ring->dequeue >= enq) 306 return free + (ring->dequeue - enq); 307 last_on_seg = &enq_seg->trbs[TRBS_PER_SEGMENT - 1]; 308 free += last_on_seg - enq; 309 enq_seg = enq_seg->next; 310 enq = enq_seg->trbs; 311 } while (i++ < ring->num_segs); 312 313 return free; 314 } 315 316 /* 317 * Check to see if there's room to enqueue num_trbs on the ring and make sure 318 * enqueue pointer will not advance into dequeue segment. See rules above. 319 * return number of new segments needed to ensure this. 320 */ 321 322 static unsigned int xhci_ring_expansion_needed(struct xhci_hcd *xhci, struct xhci_ring *ring, 323 unsigned int num_trbs) 324 { 325 struct xhci_segment *seg; 326 int trbs_past_seg; 327 int enq_used; 328 int new_segs; 329 330 enq_used = ring->enqueue - ring->enq_seg->trbs; 331 332 /* how many trbs will be queued past the enqueue segment? */ 333 trbs_past_seg = enq_used + num_trbs - (TRBS_PER_SEGMENT - 1); 334 335 /* 336 * Consider expanding the ring already if num_trbs fills the current 337 * segment (i.e. trbs_past_seg == 0), not only when num_trbs goes into 338 * the next segment. Avoids confusing full ring with special empty ring 339 * case below 340 */ 341 if (trbs_past_seg < 0) 342 return 0; 343 344 /* Empty ring special case, enqueue stuck on link trb while dequeue advanced */ 345 if (trb_is_link(ring->enqueue) && ring->enq_seg->next->trbs == ring->dequeue) 346 return 0; 347 348 new_segs = 1 + (trbs_past_seg / (TRBS_PER_SEGMENT - 1)); 349 seg = ring->enq_seg; 350 351 while (new_segs > 0) { 352 seg = seg->next; 353 if (seg == ring->deq_seg) { 354 xhci_dbg(xhci, "Adding %d trbs requires expanding ring by %d segments\n", 355 num_trbs, new_segs); 356 return new_segs; 357 } 358 new_segs--; 359 } 360 361 return 0; 362 } 363 364 /* Ring the host controller doorbell after placing a command on the ring */ 365 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 366 { 367 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 368 return; 369 370 xhci_dbg(xhci, "// Ding dong!\n"); 371 372 trace_xhci_ring_host_doorbell(0, DB_VALUE_HOST); 373 374 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 375 /* Flush PCI posted writes */ 376 readl(&xhci->dba->doorbell[0]); 377 } 378 379 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci) 380 { 381 return mod_delayed_work(system_wq, &xhci->cmd_timer, 382 msecs_to_jiffies(xhci->current_cmd->timeout_ms)); 383 } 384 385 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) 386 { 387 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, 388 cmd_list); 389 } 390 391 /* 392 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 393 * If there are other commands waiting then restart the ring and kick the timer. 394 * This must be called with command ring stopped and xhci->lock held. 395 */ 396 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 397 struct xhci_command *cur_cmd) 398 { 399 struct xhci_command *i_cmd; 400 401 /* Turn all aborted commands in list to no-ops, then restart */ 402 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { 403 404 if (i_cmd->status != COMP_COMMAND_ABORTED) 405 continue; 406 407 i_cmd->status = COMP_COMMAND_RING_STOPPED; 408 409 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 410 i_cmd->command_trb); 411 412 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); 413 414 /* 415 * caller waiting for completion is called when command 416 * completion event is received for these no-op commands 417 */ 418 } 419 420 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 421 422 /* ring command ring doorbell to restart the command ring */ 423 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 424 !(xhci->xhc_state & XHCI_STATE_DYING)) { 425 xhci->current_cmd = cur_cmd; 426 xhci_mod_cmd_timer(xhci); 427 xhci_ring_cmd_db(xhci); 428 } 429 } 430 431 /* Must be called with xhci->lock held, releases and aquires lock back */ 432 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) 433 { 434 struct xhci_segment *new_seg = xhci->cmd_ring->deq_seg; 435 union xhci_trb *new_deq = xhci->cmd_ring->dequeue; 436 u64 crcr; 437 int ret; 438 439 xhci_dbg(xhci, "Abort command ring\n"); 440 441 reinit_completion(&xhci->cmd_ring_stop_completion); 442 443 /* 444 * The control bits like command stop, abort are located in lower 445 * dword of the command ring control register. 446 * Some controllers require all 64 bits to be written to abort the ring. 447 * Make sure the upper dword is valid, pointing to the next command, 448 * avoiding corrupting the command ring pointer in case the command ring 449 * is stopped by the time the upper dword is written. 450 */ 451 next_trb(xhci, NULL, &new_seg, &new_deq); 452 if (trb_is_link(new_deq)) 453 next_trb(xhci, NULL, &new_seg, &new_deq); 454 455 crcr = xhci_trb_virt_to_dma(new_seg, new_deq); 456 xhci_write_64(xhci, crcr | CMD_RING_ABORT, &xhci->op_regs->cmd_ring); 457 458 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the 459 * completion of the Command Abort operation. If CRR is not negated in 5 460 * seconds then driver handles it as if host died (-ENODEV). 461 * In the future we should distinguish between -ENODEV and -ETIMEDOUT 462 * and try to recover a -ETIMEDOUT with a host controller reset. 463 */ 464 ret = xhci_handshake_check_state(xhci, &xhci->op_regs->cmd_ring, 465 CMD_RING_RUNNING, 0, 5 * 1000 * 1000, 466 XHCI_STATE_REMOVING); 467 if (ret < 0) { 468 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret); 469 xhci_halt(xhci); 470 xhci_hc_died(xhci); 471 return ret; 472 } 473 /* 474 * Writing the CMD_RING_ABORT bit should cause a cmd completion event, 475 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared 476 * but the completion event in never sent. Wait 2 secs (arbitrary 477 * number) to handle those cases after negation of CMD_RING_RUNNING. 478 */ 479 spin_unlock_irqrestore(&xhci->lock, flags); 480 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, 481 msecs_to_jiffies(2000)); 482 spin_lock_irqsave(&xhci->lock, flags); 483 if (!ret) { 484 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); 485 xhci_cleanup_command_queue(xhci); 486 } else { 487 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); 488 } 489 return 0; 490 } 491 492 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 493 unsigned int slot_id, 494 unsigned int ep_index, 495 unsigned int stream_id) 496 { 497 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 498 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 499 unsigned int ep_state = ep->ep_state; 500 501 /* Don't ring the doorbell for this endpoint if there are pending 502 * cancellations because we don't want to interrupt processing. 503 * We don't want to restart any stream rings if there's a set dequeue 504 * pointer command pending because the device can choose to start any 505 * stream once the endpoint is on the HW schedule. 506 */ 507 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || 508 (ep_state & EP_HALTED) || (ep_state & EP_CLEARING_TT)) 509 return; 510 511 trace_xhci_ring_ep_doorbell(slot_id, DB_VALUE(ep_index, stream_id)); 512 513 writel(DB_VALUE(ep_index, stream_id), db_addr); 514 /* flush the write */ 515 readl(db_addr); 516 } 517 518 /* Ring the doorbell for any rings with pending URBs */ 519 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 520 unsigned int slot_id, 521 unsigned int ep_index) 522 { 523 unsigned int stream_id; 524 struct xhci_virt_ep *ep; 525 526 ep = &xhci->devs[slot_id]->eps[ep_index]; 527 528 /* A ring has pending URBs if its TD list is not empty */ 529 if (!(ep->ep_state & EP_HAS_STREAMS)) { 530 if (ep->ring && !(list_empty(&ep->ring->td_list))) 531 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 532 return; 533 } 534 535 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 536 stream_id++) { 537 struct xhci_stream_info *stream_info = ep->stream_info; 538 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 539 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 540 stream_id); 541 } 542 } 543 544 void xhci_ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 545 unsigned int slot_id, 546 unsigned int ep_index) 547 { 548 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 549 } 550 551 static struct xhci_virt_ep *xhci_get_virt_ep(struct xhci_hcd *xhci, 552 unsigned int slot_id, 553 unsigned int ep_index) 554 { 555 if (slot_id == 0 || slot_id >= MAX_HC_SLOTS) { 556 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 557 return NULL; 558 } 559 if (ep_index >= EP_CTX_PER_DEV) { 560 xhci_warn(xhci, "Invalid endpoint index %u\n", ep_index); 561 return NULL; 562 } 563 if (!xhci->devs[slot_id]) { 564 xhci_warn(xhci, "No xhci virt device for slot_id %u\n", slot_id); 565 return NULL; 566 } 567 568 return &xhci->devs[slot_id]->eps[ep_index]; 569 } 570 571 static struct xhci_ring *xhci_virt_ep_to_ring(struct xhci_hcd *xhci, 572 struct xhci_virt_ep *ep, 573 unsigned int stream_id) 574 { 575 /* common case, no streams */ 576 if (!(ep->ep_state & EP_HAS_STREAMS)) 577 return ep->ring; 578 579 if (!ep->stream_info) 580 return NULL; 581 582 if (stream_id == 0 || stream_id >= ep->stream_info->num_streams) { 583 xhci_warn(xhci, "Invalid stream_id %u request for slot_id %u ep_index %u\n", 584 stream_id, ep->vdev->slot_id, ep->ep_index); 585 return NULL; 586 } 587 588 return ep->stream_info->stream_rings[stream_id]; 589 } 590 591 /* Get the right ring for the given slot_id, ep_index and stream_id. 592 * If the endpoint supports streams, boundary check the URB's stream ID. 593 * If the endpoint doesn't support streams, return the singular endpoint ring. 594 */ 595 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 596 unsigned int slot_id, unsigned int ep_index, 597 unsigned int stream_id) 598 { 599 struct xhci_virt_ep *ep; 600 601 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 602 if (!ep) 603 return NULL; 604 605 return xhci_virt_ep_to_ring(xhci, ep, stream_id); 606 } 607 608 609 /* 610 * Get the hw dequeue pointer xHC stopped on, either directly from the 611 * endpoint context, or if streams are in use from the stream context. 612 * The returned hw_dequeue contains the lowest four bits with cycle state 613 * and possbile stream context type. 614 */ 615 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev, 616 unsigned int ep_index, unsigned int stream_id) 617 { 618 struct xhci_ep_ctx *ep_ctx; 619 struct xhci_stream_ctx *st_ctx; 620 struct xhci_virt_ep *ep; 621 622 ep = &vdev->eps[ep_index]; 623 624 if (ep->ep_state & EP_HAS_STREAMS) { 625 st_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 626 return le64_to_cpu(st_ctx->stream_ring); 627 } 628 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 629 return le64_to_cpu(ep_ctx->deq); 630 } 631 632 static int xhci_move_dequeue_past_td(struct xhci_hcd *xhci, 633 unsigned int slot_id, unsigned int ep_index, 634 unsigned int stream_id, struct xhci_td *td) 635 { 636 struct xhci_virt_device *dev = xhci->devs[slot_id]; 637 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 638 struct xhci_ring *ep_ring; 639 struct xhci_command *cmd; 640 struct xhci_segment *new_seg; 641 union xhci_trb *new_deq; 642 int new_cycle; 643 dma_addr_t addr; 644 u64 hw_dequeue; 645 bool cycle_found = false; 646 bool td_last_trb_found = false; 647 u32 trb_sct = 0; 648 int ret; 649 650 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 651 ep_index, stream_id); 652 if (!ep_ring) { 653 xhci_warn(xhci, "WARN can't find new dequeue, invalid stream ID %u\n", 654 stream_id); 655 return -ENODEV; 656 } 657 /* 658 * A cancelled TD can complete with a stall if HW cached the trb. 659 * In this case driver can't find td, but if the ring is empty we 660 * can move the dequeue pointer to the current enqueue position. 661 * We shouldn't hit this anymore as cached cancelled TRBs are given back 662 * after clearing the cache, but be on the safe side and keep it anyway 663 */ 664 if (!td) { 665 if (list_empty(&ep_ring->td_list)) { 666 new_seg = ep_ring->enq_seg; 667 new_deq = ep_ring->enqueue; 668 new_cycle = ep_ring->cycle_state; 669 xhci_dbg(xhci, "ep ring empty, Set new dequeue = enqueue"); 670 goto deq_found; 671 } else { 672 xhci_warn(xhci, "Can't find new dequeue state, missing td\n"); 673 return -EINVAL; 674 } 675 } 676 677 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id); 678 new_seg = ep_ring->deq_seg; 679 new_deq = ep_ring->dequeue; 680 new_cycle = hw_dequeue & 0x1; 681 682 /* 683 * We want to find the pointer, segment and cycle state of the new trb 684 * (the one after current TD's last_trb). We know the cycle state at 685 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are 686 * found. 687 */ 688 do { 689 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) 690 == (dma_addr_t)(hw_dequeue & ~0xf)) { 691 cycle_found = true; 692 if (td_last_trb_found) 693 break; 694 } 695 if (new_deq == td->last_trb) 696 td_last_trb_found = true; 697 698 if (cycle_found && trb_is_link(new_deq) && 699 link_trb_toggles_cycle(new_deq)) 700 new_cycle ^= 0x1; 701 702 next_trb(xhci, ep_ring, &new_seg, &new_deq); 703 704 /* Search wrapped around, bail out */ 705 if (new_deq == ep->ring->dequeue) { 706 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 707 return -EINVAL; 708 } 709 710 } while (!cycle_found || !td_last_trb_found); 711 712 deq_found: 713 714 /* Don't update the ring cycle state for the producer (us). */ 715 addr = xhci_trb_virt_to_dma(new_seg, new_deq); 716 if (addr == 0) { 717 xhci_warn(xhci, "Can't find dma of new dequeue ptr\n"); 718 xhci_warn(xhci, "deq seg = %p, deq ptr = %p\n", new_seg, new_deq); 719 return -EINVAL; 720 } 721 722 if ((ep->ep_state & SET_DEQ_PENDING)) { 723 xhci_warn(xhci, "Set TR Deq already pending, don't submit for 0x%pad\n", 724 &addr); 725 return -EBUSY; 726 } 727 728 /* This function gets called from contexts where it cannot sleep */ 729 cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC); 730 if (!cmd) { 731 xhci_warn(xhci, "Can't alloc Set TR Deq cmd 0x%pad\n", &addr); 732 return -ENOMEM; 733 } 734 735 if (stream_id) 736 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 737 ret = queue_command(xhci, cmd, 738 lower_32_bits(addr) | trb_sct | new_cycle, 739 upper_32_bits(addr), 740 STREAM_ID_FOR_TRB(stream_id), SLOT_ID_FOR_TRB(slot_id) | 741 EP_ID_FOR_TRB(ep_index) | TRB_TYPE(TRB_SET_DEQ), false); 742 if (ret < 0) { 743 xhci_free_command(xhci, cmd); 744 return ret; 745 } 746 ep->queued_deq_seg = new_seg; 747 ep->queued_deq_ptr = new_deq; 748 749 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 750 "Set TR Deq ptr 0x%llx, cycle %u\n", addr, new_cycle); 751 752 /* Stop the TD queueing code from ringing the doorbell until 753 * this command completes. The HC won't set the dequeue pointer 754 * if the ring is running, and ringing the doorbell starts the 755 * ring running. 756 */ 757 ep->ep_state |= SET_DEQ_PENDING; 758 xhci_ring_cmd_db(xhci); 759 return 0; 760 } 761 762 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 763 * (The last TRB actually points to the ring enqueue pointer, which is not part 764 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 765 */ 766 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 767 struct xhci_td *td, bool flip_cycle) 768 { 769 struct xhci_segment *seg = td->start_seg; 770 union xhci_trb *trb = td->first_trb; 771 772 while (1) { 773 trb_to_noop(trb, TRB_TR_NOOP); 774 775 /* flip cycle if asked to */ 776 if (flip_cycle && trb != td->first_trb && trb != td->last_trb) 777 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); 778 779 if (trb == td->last_trb) 780 break; 781 782 next_trb(xhci, ep_ring, &seg, &trb); 783 } 784 } 785 786 /* 787 * Must be called with xhci->lock held in interrupt context, 788 * releases and re-acquires xhci->lock 789 */ 790 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 791 struct xhci_td *cur_td, int status) 792 { 793 struct urb *urb = cur_td->urb; 794 struct urb_priv *urb_priv = urb->hcpriv; 795 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 796 797 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 798 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 799 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 800 if (xhci->quirks & XHCI_AMD_PLL_FIX) 801 usb_amd_quirk_pll_enable(); 802 } 803 } 804 xhci_urb_free_priv(urb_priv); 805 usb_hcd_unlink_urb_from_ep(hcd, urb); 806 trace_xhci_urb_giveback(urb); 807 usb_hcd_giveback_urb(hcd, urb, status); 808 } 809 810 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, 811 struct xhci_ring *ring, struct xhci_td *td) 812 { 813 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 814 struct xhci_segment *seg = td->bounce_seg; 815 struct urb *urb = td->urb; 816 size_t len; 817 818 if (!ring || !seg || !urb) 819 return; 820 821 if (usb_urb_dir_out(urb)) { 822 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 823 DMA_TO_DEVICE); 824 return; 825 } 826 827 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 828 DMA_FROM_DEVICE); 829 /* for in tranfers we need to copy the data from bounce to sg */ 830 if (urb->num_sgs) { 831 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, seg->bounce_buf, 832 seg->bounce_len, seg->bounce_offs); 833 if (len != seg->bounce_len) 834 xhci_warn(xhci, "WARN Wrong bounce buffer read length: %zu != %d\n", 835 len, seg->bounce_len); 836 } else { 837 memcpy(urb->transfer_buffer + seg->bounce_offs, seg->bounce_buf, 838 seg->bounce_len); 839 } 840 seg->bounce_len = 0; 841 seg->bounce_offs = 0; 842 } 843 844 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, 845 struct xhci_ring *ep_ring, int status) 846 { 847 struct urb *urb = NULL; 848 849 /* Clean up the endpoint's TD list */ 850 urb = td->urb; 851 852 /* if a bounce buffer was used to align this td then unmap it */ 853 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); 854 855 /* Do one last check of the actual transfer length. 856 * If the host controller said we transferred more data than the buffer 857 * length, urb->actual_length will be a very big number (since it's 858 * unsigned). Play it safe and say we didn't transfer anything. 859 */ 860 if (urb->actual_length > urb->transfer_buffer_length) { 861 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", 862 urb->transfer_buffer_length, urb->actual_length); 863 urb->actual_length = 0; 864 status = 0; 865 } 866 /* TD might be removed from td_list if we are giving back a cancelled URB */ 867 if (!list_empty(&td->td_list)) 868 list_del_init(&td->td_list); 869 /* Giving back a cancelled URB, or if a slated TD completed anyway */ 870 if (!list_empty(&td->cancelled_td_list)) 871 list_del_init(&td->cancelled_td_list); 872 873 inc_td_cnt(urb); 874 /* Giveback the urb when all the tds are completed */ 875 if (last_td_in_urb(td)) { 876 if ((urb->actual_length != urb->transfer_buffer_length && 877 (urb->transfer_flags & URB_SHORT_NOT_OK)) || 878 (status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) 879 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", 880 urb, urb->actual_length, 881 urb->transfer_buffer_length, status); 882 883 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ 884 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 885 status = 0; 886 xhci_giveback_urb_in_irq(xhci, td, status); 887 } 888 889 return 0; 890 } 891 892 893 /* Complete the cancelled URBs we unlinked from td_list. */ 894 static void xhci_giveback_invalidated_tds(struct xhci_virt_ep *ep) 895 { 896 struct xhci_ring *ring; 897 struct xhci_td *td, *tmp_td; 898 899 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 900 cancelled_td_list) { 901 902 ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 903 904 if (td->cancel_status == TD_CLEARED) { 905 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 906 __func__, td->urb); 907 xhci_td_cleanup(ep->xhci, td, ring, td->status); 908 } else { 909 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 910 __func__, td->urb, td->cancel_status); 911 } 912 if (ep->xhci->xhc_state & XHCI_STATE_DYING) 913 return; 914 } 915 } 916 917 static int xhci_reset_halted_ep(struct xhci_hcd *xhci, unsigned int slot_id, 918 unsigned int ep_index, enum xhci_ep_reset_type reset_type) 919 { 920 struct xhci_command *command; 921 int ret = 0; 922 923 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 924 if (!command) { 925 ret = -ENOMEM; 926 goto done; 927 } 928 929 xhci_dbg(xhci, "%s-reset ep %u, slot %u\n", 930 (reset_type == EP_HARD_RESET) ? "Hard" : "Soft", 931 ep_index, slot_id); 932 933 ret = xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type); 934 done: 935 if (ret) 936 xhci_err(xhci, "ERROR queuing reset endpoint for slot %d ep_index %d, %d\n", 937 slot_id, ep_index, ret); 938 return ret; 939 } 940 941 static int xhci_handle_halted_endpoint(struct xhci_hcd *xhci, 942 struct xhci_virt_ep *ep, 943 struct xhci_td *td, 944 enum xhci_ep_reset_type reset_type) 945 { 946 unsigned int slot_id = ep->vdev->slot_id; 947 int err; 948 949 /* 950 * Avoid resetting endpoint if link is inactive. Can cause host hang. 951 * Device will be reset soon to recover the link so don't do anything 952 */ 953 if (ep->vdev->flags & VDEV_PORT_ERROR) 954 return -ENODEV; 955 956 /* add td to cancelled list and let reset ep handler take care of it */ 957 if (reset_type == EP_HARD_RESET) { 958 ep->ep_state |= EP_HARD_CLEAR_TOGGLE; 959 if (td && list_empty(&td->cancelled_td_list)) { 960 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 961 td->cancel_status = TD_HALTED; 962 } 963 } 964 965 if (ep->ep_state & EP_HALTED) { 966 xhci_dbg(xhci, "Reset ep command for ep_index %d already pending\n", 967 ep->ep_index); 968 return 0; 969 } 970 971 err = xhci_reset_halted_ep(xhci, slot_id, ep->ep_index, reset_type); 972 if (err) 973 return err; 974 975 ep->ep_state |= EP_HALTED; 976 977 xhci_ring_cmd_db(xhci); 978 979 return 0; 980 } 981 982 /* 983 * Fix up the ep ring first, so HW stops executing cancelled TDs. 984 * We have the xHCI lock, so nothing can modify this list until we drop it. 985 * We're also in the event handler, so we can't get re-interrupted if another 986 * Stop Endpoint command completes. 987 * 988 * only call this when ring is not in a running state 989 */ 990 991 static int xhci_invalidate_cancelled_tds(struct xhci_virt_ep *ep) 992 { 993 struct xhci_hcd *xhci; 994 struct xhci_td *td = NULL; 995 struct xhci_td *tmp_td = NULL; 996 struct xhci_td *cached_td = NULL; 997 struct xhci_ring *ring; 998 u64 hw_deq; 999 unsigned int slot_id = ep->vdev->slot_id; 1000 int err; 1001 1002 xhci = ep->xhci; 1003 1004 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 1005 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1006 "Removing canceled TD starting at 0x%llx (dma) in stream %u URB %p", 1007 (unsigned long long)xhci_trb_virt_to_dma( 1008 td->start_seg, td->first_trb), 1009 td->urb->stream_id, td->urb); 1010 list_del_init(&td->td_list); 1011 ring = xhci_urb_to_transfer_ring(xhci, td->urb); 1012 if (!ring) { 1013 xhci_warn(xhci, "WARN Cancelled URB %p has invalid stream ID %u.\n", 1014 td->urb, td->urb->stream_id); 1015 continue; 1016 } 1017 /* 1018 * If a ring stopped on the TD we need to cancel then we have to 1019 * move the xHC endpoint ring dequeue pointer past this TD. 1020 * Rings halted due to STALL may show hw_deq is past the stalled 1021 * TD, but still require a set TR Deq command to flush xHC cache. 1022 */ 1023 hw_deq = xhci_get_hw_deq(xhci, ep->vdev, ep->ep_index, 1024 td->urb->stream_id); 1025 hw_deq &= ~0xf; 1026 1027 if (td->cancel_status == TD_HALTED || trb_in_td(xhci, td, hw_deq, false)) { 1028 switch (td->cancel_status) { 1029 case TD_CLEARED: /* TD is already no-op */ 1030 case TD_CLEARING_CACHE: /* set TR deq command already queued */ 1031 break; 1032 case TD_DIRTY: /* TD is cached, clear it */ 1033 case TD_HALTED: 1034 case TD_CLEARING_CACHE_DEFERRED: 1035 if (cached_td) { 1036 if (cached_td->urb->stream_id != td->urb->stream_id) { 1037 /* Multiple streams case, defer move dq */ 1038 xhci_dbg(xhci, 1039 "Move dq deferred: stream %u URB %p\n", 1040 td->urb->stream_id, td->urb); 1041 td->cancel_status = TD_CLEARING_CACHE_DEFERRED; 1042 break; 1043 } 1044 1045 /* Should never happen, but clear the TD if it does */ 1046 xhci_warn(xhci, 1047 "Found multiple active URBs %p and %p in stream %u?\n", 1048 td->urb, cached_td->urb, 1049 td->urb->stream_id); 1050 td_to_noop(xhci, ring, cached_td, false); 1051 cached_td->cancel_status = TD_CLEARED; 1052 } 1053 1054 td->cancel_status = TD_CLEARING_CACHE; 1055 cached_td = td; 1056 break; 1057 } 1058 } else { 1059 td_to_noop(xhci, ring, td, false); 1060 td->cancel_status = TD_CLEARED; 1061 } 1062 } 1063 1064 /* If there's no need to move the dequeue pointer then we're done */ 1065 if (!cached_td) 1066 return 0; 1067 1068 err = xhci_move_dequeue_past_td(xhci, slot_id, ep->ep_index, 1069 cached_td->urb->stream_id, 1070 cached_td); 1071 if (err) { 1072 /* Failed to move past cached td, just set cached TDs to no-op */ 1073 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 1074 /* 1075 * Deferred TDs need to have the deq pointer set after the above command 1076 * completes, so if that failed we just give up on all of them (and 1077 * complain loudly since this could cause issues due to caching). 1078 */ 1079 if (td->cancel_status != TD_CLEARING_CACHE && 1080 td->cancel_status != TD_CLEARING_CACHE_DEFERRED) 1081 continue; 1082 xhci_warn(xhci, "Failed to clear cancelled cached URB %p, mark clear anyway\n", 1083 td->urb); 1084 td_to_noop(xhci, ring, td, false); 1085 td->cancel_status = TD_CLEARED; 1086 } 1087 } 1088 return 0; 1089 } 1090 1091 /* 1092 * Returns the TD the endpoint ring halted on. 1093 * Only call for non-running rings without streams. 1094 */ 1095 static struct xhci_td *find_halted_td(struct xhci_virt_ep *ep) 1096 { 1097 struct xhci_td *td; 1098 u64 hw_deq; 1099 1100 if (!list_empty(&ep->ring->td_list)) { /* Not streams compatible */ 1101 hw_deq = xhci_get_hw_deq(ep->xhci, ep->vdev, ep->ep_index, 0); 1102 hw_deq &= ~0xf; 1103 td = list_first_entry(&ep->ring->td_list, struct xhci_td, td_list); 1104 if (trb_in_td(ep->xhci, td, hw_deq, false)) 1105 return td; 1106 } 1107 return NULL; 1108 } 1109 1110 /* 1111 * When we get a command completion for a Stop Endpoint Command, we need to 1112 * unlink any cancelled TDs from the ring. There are two ways to do that: 1113 * 1114 * 1. If the HW was in the middle of processing the TD that needs to be 1115 * cancelled, then we must move the ring's dequeue pointer past the last TRB 1116 * in the TD with a Set Dequeue Pointer Command. 1117 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 1118 * bit cleared) so that the HW will skip over them. 1119 */ 1120 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 1121 union xhci_trb *trb, u32 comp_code) 1122 { 1123 unsigned int ep_index; 1124 struct xhci_virt_ep *ep; 1125 struct xhci_ep_ctx *ep_ctx; 1126 struct xhci_td *td = NULL; 1127 enum xhci_ep_reset_type reset_type; 1128 struct xhci_command *command; 1129 int err; 1130 1131 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 1132 if (!xhci->devs[slot_id]) 1133 xhci_warn(xhci, "Stop endpoint command completion for disabled slot %u\n", 1134 slot_id); 1135 return; 1136 } 1137 1138 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1139 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1140 if (!ep) 1141 return; 1142 1143 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1144 1145 trace_xhci_handle_cmd_stop_ep(ep_ctx); 1146 1147 if (comp_code == COMP_CONTEXT_STATE_ERROR) { 1148 /* 1149 * If stop endpoint command raced with a halting endpoint we need to 1150 * reset the host side endpoint first. 1151 * If the TD we halted on isn't cancelled the TD should be given back 1152 * with a proper error code, and the ring dequeue moved past the TD. 1153 * If streams case we can't find hw_deq, or the TD we halted on so do a 1154 * soft reset. 1155 * 1156 * Proper error code is unknown here, it would be -EPIPE if device side 1157 * of enadpoit halted (aka STALL), and -EPROTO if not (transaction error) 1158 * We use -EPROTO, if device is stalled it should return a stall error on 1159 * next transfer, which then will return -EPIPE, and device side stall is 1160 * noted and cleared by class driver. 1161 */ 1162 switch (GET_EP_CTX_STATE(ep_ctx)) { 1163 case EP_STATE_HALTED: 1164 xhci_dbg(xhci, "Stop ep completion raced with stall, reset ep\n"); 1165 if (ep->ep_state & EP_HAS_STREAMS) { 1166 reset_type = EP_SOFT_RESET; 1167 } else { 1168 reset_type = EP_HARD_RESET; 1169 td = find_halted_td(ep); 1170 if (td) 1171 td->status = -EPROTO; 1172 } 1173 /* reset ep, reset handler cleans up cancelled tds */ 1174 err = xhci_handle_halted_endpoint(xhci, ep, td, reset_type); 1175 if (err) 1176 break; 1177 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1178 return; 1179 case EP_STATE_STOPPED: 1180 /* 1181 * NEC uPD720200 sometimes sets this state and fails with 1182 * Context Error while continuing to process TRBs. 1183 * Be conservative and trust EP_CTX_STATE on other chips. 1184 */ 1185 if (!(xhci->quirks & XHCI_NEC_HOST)) 1186 break; 1187 fallthrough; 1188 case EP_STATE_RUNNING: 1189 /* Race, HW handled stop ep cmd before ep was running */ 1190 xhci_dbg(xhci, "Stop ep completion ctx error, ep is running\n"); 1191 1192 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1193 if (!command) { 1194 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1195 return; 1196 } 1197 xhci_queue_stop_endpoint(xhci, command, slot_id, ep_index, 0); 1198 xhci_ring_cmd_db(xhci); 1199 1200 return; 1201 default: 1202 break; 1203 } 1204 } 1205 1206 /* will queue a set TR deq if stopped on a cancelled, uncleared TD */ 1207 xhci_invalidate_cancelled_tds(ep); 1208 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1209 1210 /* Otherwise ring the doorbell(s) to restart queued transfers */ 1211 xhci_giveback_invalidated_tds(ep); 1212 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1213 } 1214 1215 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 1216 { 1217 struct xhci_td *cur_td; 1218 struct xhci_td *tmp; 1219 1220 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { 1221 list_del_init(&cur_td->td_list); 1222 1223 if (!list_empty(&cur_td->cancelled_td_list)) 1224 list_del_init(&cur_td->cancelled_td_list); 1225 1226 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); 1227 1228 inc_td_cnt(cur_td->urb); 1229 if (last_td_in_urb(cur_td)) 1230 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1231 } 1232 } 1233 1234 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 1235 int slot_id, int ep_index) 1236 { 1237 struct xhci_td *cur_td; 1238 struct xhci_td *tmp; 1239 struct xhci_virt_ep *ep; 1240 struct xhci_ring *ring; 1241 1242 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1243 if (!ep) 1244 return; 1245 1246 if ((ep->ep_state & EP_HAS_STREAMS) || 1247 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 1248 int stream_id; 1249 1250 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 1251 stream_id++) { 1252 ring = ep->stream_info->stream_rings[stream_id]; 1253 if (!ring) 1254 continue; 1255 1256 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1257 "Killing URBs for slot ID %u, ep index %u, stream %u", 1258 slot_id, ep_index, stream_id); 1259 xhci_kill_ring_urbs(xhci, ring); 1260 } 1261 } else { 1262 ring = ep->ring; 1263 if (!ring) 1264 return; 1265 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1266 "Killing URBs for slot ID %u, ep index %u", 1267 slot_id, ep_index); 1268 xhci_kill_ring_urbs(xhci, ring); 1269 } 1270 1271 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, 1272 cancelled_td_list) { 1273 list_del_init(&cur_td->cancelled_td_list); 1274 inc_td_cnt(cur_td->urb); 1275 1276 if (last_td_in_urb(cur_td)) 1277 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1278 } 1279 } 1280 1281 /* 1282 * host controller died, register read returns 0xffffffff 1283 * Complete pending commands, mark them ABORTED. 1284 * URBs need to be given back as usb core might be waiting with device locks 1285 * held for the URBs to finish during device disconnect, blocking host remove. 1286 * 1287 * Call with xhci->lock held. 1288 * lock is relased and re-acquired while giving back urb. 1289 */ 1290 void xhci_hc_died(struct xhci_hcd *xhci) 1291 { 1292 int i, j; 1293 1294 if (xhci->xhc_state & XHCI_STATE_DYING) 1295 return; 1296 1297 xhci_err(xhci, "xHCI host controller not responding, assume dead\n"); 1298 xhci->xhc_state |= XHCI_STATE_DYING; 1299 1300 xhci_cleanup_command_queue(xhci); 1301 1302 /* return any pending urbs, remove may be waiting for them */ 1303 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 1304 if (!xhci->devs[i]) 1305 continue; 1306 for (j = 0; j < 31; j++) 1307 xhci_kill_endpoint_urbs(xhci, i, j); 1308 } 1309 1310 /* inform usb core hc died if PCI remove isn't already handling it */ 1311 if (!(xhci->xhc_state & XHCI_STATE_REMOVING)) 1312 usb_hc_died(xhci_to_hcd(xhci)); 1313 } 1314 1315 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 1316 struct xhci_virt_device *dev, 1317 struct xhci_ring *ep_ring, 1318 unsigned int ep_index) 1319 { 1320 union xhci_trb *dequeue_temp; 1321 1322 dequeue_temp = ep_ring->dequeue; 1323 1324 /* If we get two back-to-back stalls, and the first stalled transfer 1325 * ends just before a link TRB, the dequeue pointer will be left on 1326 * the link TRB by the code in the while loop. So we have to update 1327 * the dequeue pointer one segment further, or we'll jump off 1328 * the segment into la-la-land. 1329 */ 1330 if (trb_is_link(ep_ring->dequeue)) { 1331 ep_ring->deq_seg = ep_ring->deq_seg->next; 1332 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1333 } 1334 1335 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 1336 /* We have more usable TRBs */ 1337 ep_ring->dequeue++; 1338 if (trb_is_link(ep_ring->dequeue)) { 1339 if (ep_ring->dequeue == 1340 dev->eps[ep_index].queued_deq_ptr) 1341 break; 1342 ep_ring->deq_seg = ep_ring->deq_seg->next; 1343 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1344 } 1345 if (ep_ring->dequeue == dequeue_temp) { 1346 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 1347 break; 1348 } 1349 } 1350 } 1351 1352 /* 1353 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1354 * we need to clear the set deq pending flag in the endpoint ring state, so that 1355 * the TD queueing code can ring the doorbell again. We also need to ring the 1356 * endpoint doorbell to restart the ring, but only if there aren't more 1357 * cancellations pending. 1358 */ 1359 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1360 union xhci_trb *trb, u32 cmd_comp_code) 1361 { 1362 unsigned int ep_index; 1363 unsigned int stream_id; 1364 struct xhci_ring *ep_ring; 1365 struct xhci_virt_ep *ep; 1366 struct xhci_ep_ctx *ep_ctx; 1367 struct xhci_slot_ctx *slot_ctx; 1368 struct xhci_td *td, *tmp_td; 1369 bool deferred = false; 1370 1371 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1372 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1373 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1374 if (!ep) 1375 return; 1376 1377 ep_ring = xhci_virt_ep_to_ring(xhci, ep, stream_id); 1378 if (!ep_ring) { 1379 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 1380 stream_id); 1381 /* XXX: Harmless??? */ 1382 goto cleanup; 1383 } 1384 1385 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1386 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 1387 trace_xhci_handle_cmd_set_deq(slot_ctx); 1388 trace_xhci_handle_cmd_set_deq_ep(ep_ctx); 1389 1390 if (cmd_comp_code != COMP_SUCCESS) { 1391 unsigned int ep_state; 1392 unsigned int slot_state; 1393 1394 switch (cmd_comp_code) { 1395 case COMP_TRB_ERROR: 1396 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 1397 break; 1398 case COMP_CONTEXT_STATE_ERROR: 1399 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1400 ep_state = GET_EP_CTX_STATE(ep_ctx); 1401 slot_state = le32_to_cpu(slot_ctx->dev_state); 1402 slot_state = GET_SLOT_STATE(slot_state); 1403 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1404 "Slot state = %u, EP state = %u", 1405 slot_state, ep_state); 1406 break; 1407 case COMP_SLOT_NOT_ENABLED_ERROR: 1408 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1409 slot_id); 1410 break; 1411 default: 1412 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1413 cmd_comp_code); 1414 break; 1415 } 1416 /* OK what do we do now? The endpoint state is hosed, and we 1417 * should never get to this point if the synchronization between 1418 * queueing, and endpoint state are correct. This might happen 1419 * if the device gets disconnected after we've finished 1420 * cancelling URBs, which might not be an error... 1421 */ 1422 } else { 1423 u64 deq; 1424 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1425 if (ep->ep_state & EP_HAS_STREAMS) { 1426 struct xhci_stream_ctx *ctx = 1427 &ep->stream_info->stream_ctx_array[stream_id]; 1428 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; 1429 } else { 1430 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1431 } 1432 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1433 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1434 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1435 ep->queued_deq_ptr) == deq) { 1436 /* Update the ring's dequeue segment and dequeue pointer 1437 * to reflect the new position. 1438 */ 1439 update_ring_for_set_deq_completion(xhci, ep->vdev, 1440 ep_ring, ep_index); 1441 } else { 1442 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1443 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1444 ep->queued_deq_seg, ep->queued_deq_ptr); 1445 } 1446 } 1447 /* HW cached TDs cleared from cache, give them back */ 1448 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 1449 cancelled_td_list) { 1450 ep_ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 1451 if (td->cancel_status == TD_CLEARING_CACHE) { 1452 td->cancel_status = TD_CLEARED; 1453 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 1454 __func__, td->urb); 1455 xhci_td_cleanup(ep->xhci, td, ep_ring, td->status); 1456 } else if (td->cancel_status == TD_CLEARING_CACHE_DEFERRED) { 1457 deferred = true; 1458 } else { 1459 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 1460 __func__, td->urb, td->cancel_status); 1461 } 1462 } 1463 cleanup: 1464 ep->ep_state &= ~SET_DEQ_PENDING; 1465 ep->queued_deq_seg = NULL; 1466 ep->queued_deq_ptr = NULL; 1467 1468 if (deferred) { 1469 /* We have more streams to clear */ 1470 xhci_dbg(ep->xhci, "%s: Pending TDs to clear, continuing with invalidation\n", 1471 __func__); 1472 xhci_invalidate_cancelled_tds(ep); 1473 } else { 1474 /* Restart any rings with pending URBs */ 1475 xhci_dbg(ep->xhci, "%s: All TDs cleared, ring doorbell\n", __func__); 1476 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1477 } 1478 } 1479 1480 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1481 union xhci_trb *trb, u32 cmd_comp_code) 1482 { 1483 struct xhci_virt_ep *ep; 1484 struct xhci_ep_ctx *ep_ctx; 1485 unsigned int ep_index; 1486 1487 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1488 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1489 if (!ep) 1490 return; 1491 1492 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1493 trace_xhci_handle_cmd_reset_ep(ep_ctx); 1494 1495 /* This command will only fail if the endpoint wasn't halted, 1496 * but we don't care. 1497 */ 1498 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1499 "Ignoring reset ep completion code of %u", cmd_comp_code); 1500 1501 /* Cleanup cancelled TDs as ep is stopped. May queue a Set TR Deq cmd */ 1502 xhci_invalidate_cancelled_tds(ep); 1503 1504 /* Clear our internal halted state */ 1505 ep->ep_state &= ~EP_HALTED; 1506 1507 xhci_giveback_invalidated_tds(ep); 1508 1509 /* if this was a soft reset, then restart */ 1510 if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP) 1511 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1512 } 1513 1514 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, 1515 struct xhci_command *command, u32 cmd_comp_code) 1516 { 1517 if (cmd_comp_code == COMP_SUCCESS) 1518 command->slot_id = slot_id; 1519 else 1520 command->slot_id = 0; 1521 } 1522 1523 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1524 { 1525 struct xhci_virt_device *virt_dev; 1526 struct xhci_slot_ctx *slot_ctx; 1527 1528 virt_dev = xhci->devs[slot_id]; 1529 if (!virt_dev) 1530 return; 1531 1532 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 1533 trace_xhci_handle_cmd_disable_slot(slot_ctx); 1534 1535 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1536 /* Delete default control endpoint resources */ 1537 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1538 } 1539 1540 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, 1541 u32 cmd_comp_code) 1542 { 1543 struct xhci_virt_device *virt_dev; 1544 struct xhci_input_control_ctx *ctrl_ctx; 1545 struct xhci_ep_ctx *ep_ctx; 1546 unsigned int ep_index; 1547 u32 add_flags; 1548 1549 /* 1550 * Configure endpoint commands can come from the USB core configuration 1551 * or alt setting changes, or when streams were being configured. 1552 */ 1553 1554 virt_dev = xhci->devs[slot_id]; 1555 if (!virt_dev) 1556 return; 1557 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1558 if (!ctrl_ctx) { 1559 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1560 return; 1561 } 1562 1563 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1564 1565 /* Input ctx add_flags are the endpoint index plus one */ 1566 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1567 1568 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index); 1569 trace_xhci_handle_cmd_config_ep(ep_ctx); 1570 1571 return; 1572 } 1573 1574 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id) 1575 { 1576 struct xhci_virt_device *vdev; 1577 struct xhci_slot_ctx *slot_ctx; 1578 1579 vdev = xhci->devs[slot_id]; 1580 if (!vdev) 1581 return; 1582 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1583 trace_xhci_handle_cmd_addr_dev(slot_ctx); 1584 } 1585 1586 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id) 1587 { 1588 struct xhci_virt_device *vdev; 1589 struct xhci_slot_ctx *slot_ctx; 1590 1591 vdev = xhci->devs[slot_id]; 1592 if (!vdev) { 1593 xhci_warn(xhci, "Reset device command completion for disabled slot %u\n", 1594 slot_id); 1595 return; 1596 } 1597 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1598 trace_xhci_handle_cmd_reset_dev(slot_ctx); 1599 1600 xhci_dbg(xhci, "Completed reset device command.\n"); 1601 } 1602 1603 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1604 struct xhci_event_cmd *event) 1605 { 1606 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1607 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); 1608 return; 1609 } 1610 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1611 "NEC firmware version %2x.%02x", 1612 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1613 NEC_FW_MINOR(le32_to_cpu(event->status))); 1614 } 1615 1616 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) 1617 { 1618 list_del(&cmd->cmd_list); 1619 1620 if (cmd->completion) { 1621 cmd->status = status; 1622 complete(cmd->completion); 1623 } else { 1624 kfree(cmd); 1625 } 1626 } 1627 1628 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1629 { 1630 struct xhci_command *cur_cmd, *tmp_cmd; 1631 xhci->current_cmd = NULL; 1632 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1633 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED); 1634 } 1635 1636 void xhci_handle_command_timeout(struct work_struct *work) 1637 { 1638 struct xhci_hcd *xhci; 1639 unsigned long flags; 1640 char str[XHCI_MSG_MAX]; 1641 u64 hw_ring_state; 1642 u32 cmd_field3; 1643 u32 usbsts; 1644 1645 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); 1646 1647 spin_lock_irqsave(&xhci->lock, flags); 1648 1649 /* 1650 * If timeout work is pending, or current_cmd is NULL, it means we 1651 * raced with command completion. Command is handled so just return. 1652 */ 1653 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { 1654 spin_unlock_irqrestore(&xhci->lock, flags); 1655 return; 1656 } 1657 1658 cmd_field3 = le32_to_cpu(xhci->current_cmd->command_trb->generic.field[3]); 1659 usbsts = readl(&xhci->op_regs->status); 1660 xhci_dbg(xhci, "Command timeout, USBSTS:%s\n", xhci_decode_usbsts(str, usbsts)); 1661 1662 /* Bail out and tear down xhci if a stop endpoint command failed */ 1663 if (TRB_FIELD_TO_TYPE(cmd_field3) == TRB_STOP_RING) { 1664 struct xhci_virt_ep *ep; 1665 1666 xhci_warn(xhci, "xHCI host not responding to stop endpoint command\n"); 1667 1668 ep = xhci_get_virt_ep(xhci, TRB_TO_SLOT_ID(cmd_field3), 1669 TRB_TO_EP_INDEX(cmd_field3)); 1670 if (ep) 1671 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1672 1673 xhci_halt(xhci); 1674 xhci_hc_died(xhci); 1675 goto time_out_completed; 1676 } 1677 1678 /* mark this command to be cancelled */ 1679 xhci->current_cmd->status = COMP_COMMAND_ABORTED; 1680 1681 /* Make sure command ring is running before aborting it */ 1682 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1683 if (hw_ring_state == ~(u64)0) { 1684 xhci_hc_died(xhci); 1685 goto time_out_completed; 1686 } 1687 1688 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1689 (hw_ring_state & CMD_RING_RUNNING)) { 1690 /* Prevent new doorbell, and start command abort */ 1691 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 1692 xhci_dbg(xhci, "Command timeout\n"); 1693 xhci_abort_cmd_ring(xhci, flags); 1694 goto time_out_completed; 1695 } 1696 1697 /* host removed. Bail out */ 1698 if (xhci->xhc_state & XHCI_STATE_REMOVING) { 1699 xhci_dbg(xhci, "host removed, ring start fail?\n"); 1700 xhci_cleanup_command_queue(xhci); 1701 1702 goto time_out_completed; 1703 } 1704 1705 /* command timeout on stopped ring, ring can't be aborted */ 1706 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1707 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1708 1709 time_out_completed: 1710 spin_unlock_irqrestore(&xhci->lock, flags); 1711 return; 1712 } 1713 1714 static void handle_cmd_completion(struct xhci_hcd *xhci, 1715 struct xhci_event_cmd *event) 1716 { 1717 unsigned int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1718 u64 cmd_dma; 1719 dma_addr_t cmd_dequeue_dma; 1720 u32 cmd_comp_code; 1721 union xhci_trb *cmd_trb; 1722 struct xhci_command *cmd; 1723 u32 cmd_type; 1724 1725 if (slot_id >= MAX_HC_SLOTS) { 1726 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 1727 return; 1728 } 1729 1730 cmd_dma = le64_to_cpu(event->cmd_trb); 1731 cmd_trb = xhci->cmd_ring->dequeue; 1732 1733 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic); 1734 1735 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1736 cmd_trb); 1737 /* 1738 * Check whether the completion event is for our internal kept 1739 * command. 1740 */ 1741 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { 1742 xhci_warn(xhci, 1743 "ERROR mismatched command completion event\n"); 1744 return; 1745 } 1746 1747 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); 1748 1749 cancel_delayed_work(&xhci->cmd_timer); 1750 1751 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1752 1753 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1754 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) { 1755 complete_all(&xhci->cmd_ring_stop_completion); 1756 return; 1757 } 1758 1759 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1760 xhci_err(xhci, 1761 "Command completion event does not match command\n"); 1762 return; 1763 } 1764 1765 /* 1766 * Host aborted the command ring, check if the current command was 1767 * supposed to be aborted, otherwise continue normally. 1768 * The command ring is stopped now, but the xHC will issue a Command 1769 * Ring Stopped event which will cause us to restart it. 1770 */ 1771 if (cmd_comp_code == COMP_COMMAND_ABORTED) { 1772 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1773 if (cmd->status == COMP_COMMAND_ABORTED) { 1774 if (xhci->current_cmd == cmd) 1775 xhci->current_cmd = NULL; 1776 goto event_handled; 1777 } 1778 } 1779 1780 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1781 switch (cmd_type) { 1782 case TRB_ENABLE_SLOT: 1783 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code); 1784 break; 1785 case TRB_DISABLE_SLOT: 1786 xhci_handle_cmd_disable_slot(xhci, slot_id); 1787 break; 1788 case TRB_CONFIG_EP: 1789 if (!cmd->completion) 1790 xhci_handle_cmd_config_ep(xhci, slot_id, cmd_comp_code); 1791 break; 1792 case TRB_EVAL_CONTEXT: 1793 break; 1794 case TRB_ADDR_DEV: 1795 xhci_handle_cmd_addr_dev(xhci, slot_id); 1796 break; 1797 case TRB_STOP_RING: 1798 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1799 le32_to_cpu(cmd_trb->generic.field[3]))); 1800 if (!cmd->completion) 1801 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, 1802 cmd_comp_code); 1803 break; 1804 case TRB_SET_DEQ: 1805 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1806 le32_to_cpu(cmd_trb->generic.field[3]))); 1807 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1808 break; 1809 case TRB_CMD_NOOP: 1810 /* Is this an aborted command turned to NO-OP? */ 1811 if (cmd->status == COMP_COMMAND_RING_STOPPED) 1812 cmd_comp_code = COMP_COMMAND_RING_STOPPED; 1813 break; 1814 case TRB_RESET_EP: 1815 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1816 le32_to_cpu(cmd_trb->generic.field[3]))); 1817 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1818 break; 1819 case TRB_RESET_DEV: 1820 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1821 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1822 */ 1823 slot_id = TRB_TO_SLOT_ID( 1824 le32_to_cpu(cmd_trb->generic.field[3])); 1825 xhci_handle_cmd_reset_dev(xhci, slot_id); 1826 break; 1827 case TRB_NEC_GET_FW: 1828 xhci_handle_cmd_nec_get_fw(xhci, event); 1829 break; 1830 default: 1831 /* Skip over unknown commands on the event ring */ 1832 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); 1833 break; 1834 } 1835 1836 /* restart timer if this wasn't the last command */ 1837 if (!list_is_singular(&xhci->cmd_list)) { 1838 xhci->current_cmd = list_first_entry(&cmd->cmd_list, 1839 struct xhci_command, cmd_list); 1840 xhci_mod_cmd_timer(xhci); 1841 } else if (xhci->current_cmd == cmd) { 1842 xhci->current_cmd = NULL; 1843 } 1844 1845 event_handled: 1846 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); 1847 1848 inc_deq(xhci, xhci->cmd_ring); 1849 } 1850 1851 static void handle_vendor_event(struct xhci_hcd *xhci, 1852 union xhci_trb *event, u32 trb_type) 1853 { 1854 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1855 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1856 handle_cmd_completion(xhci, &event->event_cmd); 1857 } 1858 1859 static void handle_device_notification(struct xhci_hcd *xhci, 1860 union xhci_trb *event) 1861 { 1862 u32 slot_id; 1863 struct usb_device *udev; 1864 1865 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1866 if (!xhci->devs[slot_id]) { 1867 xhci_warn(xhci, "Device Notification event for " 1868 "unused slot %u\n", slot_id); 1869 return; 1870 } 1871 1872 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1873 slot_id); 1874 udev = xhci->devs[slot_id]->udev; 1875 if (udev && udev->parent) 1876 usb_wakeup_notification(udev->parent, udev->portnum); 1877 } 1878 1879 /* 1880 * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI 1881 * Controller. 1882 * As per ThunderX2errata-129 USB 2 device may come up as USB 1 1883 * If a connection to a USB 1 device is followed by another connection 1884 * to a USB 2 device. 1885 * 1886 * Reset the PHY after the USB device is disconnected if device speed 1887 * is less than HCD_USB3. 1888 * Retry the reset sequence max of 4 times checking the PLL lock status. 1889 * 1890 */ 1891 static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci) 1892 { 1893 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1894 u32 pll_lock_check; 1895 u32 retry_count = 4; 1896 1897 do { 1898 /* Assert PHY reset */ 1899 writel(0x6F, hcd->regs + 0x1048); 1900 udelay(10); 1901 /* De-assert the PHY reset */ 1902 writel(0x7F, hcd->regs + 0x1048); 1903 udelay(200); 1904 pll_lock_check = readl(hcd->regs + 0x1070); 1905 } while (!(pll_lock_check & 0x1) && --retry_count); 1906 } 1907 1908 static void handle_port_status(struct xhci_hcd *xhci, 1909 struct xhci_interrupter *ir, 1910 union xhci_trb *event) 1911 { 1912 struct usb_hcd *hcd; 1913 u32 port_id; 1914 u32 portsc, cmd_reg; 1915 int max_ports; 1916 unsigned int hcd_portnum; 1917 struct xhci_bus_state *bus_state; 1918 bool bogus_port_status = false; 1919 struct xhci_port *port; 1920 1921 /* Port status change events always have a successful completion code */ 1922 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) 1923 xhci_warn(xhci, 1924 "WARN: xHC returned failed port status event\n"); 1925 1926 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1927 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1928 1929 if ((port_id <= 0) || (port_id > max_ports)) { 1930 xhci_warn(xhci, "Port change event with invalid port ID %d\n", 1931 port_id); 1932 return; 1933 } 1934 1935 port = &xhci->hw_ports[port_id - 1]; 1936 if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) { 1937 xhci_warn(xhci, "Port change event, no port for port ID %u\n", 1938 port_id); 1939 bogus_port_status = true; 1940 goto cleanup; 1941 } 1942 1943 /* We might get interrupts after shared_hcd is removed */ 1944 if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) { 1945 xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n"); 1946 bogus_port_status = true; 1947 goto cleanup; 1948 } 1949 1950 hcd = port->rhub->hcd; 1951 bus_state = &port->rhub->bus_state; 1952 hcd_portnum = port->hcd_portnum; 1953 portsc = readl(port->addr); 1954 1955 xhci_dbg(xhci, "Port change event, %d-%d, id %d, portsc: 0x%x\n", 1956 hcd->self.busnum, hcd_portnum + 1, port_id, portsc); 1957 1958 trace_xhci_handle_port_status(port, portsc); 1959 1960 if (hcd->state == HC_STATE_SUSPENDED) { 1961 xhci_dbg(xhci, "resume root hub\n"); 1962 usb_hcd_resume_root_hub(hcd); 1963 } 1964 1965 if (hcd->speed >= HCD_USB3 && 1966 (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) { 1967 if (port->slot_id && xhci->devs[port->slot_id]) 1968 xhci->devs[port->slot_id]->flags |= VDEV_PORT_ERROR; 1969 } 1970 1971 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) { 1972 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1973 1974 cmd_reg = readl(&xhci->op_regs->command); 1975 if (!(cmd_reg & CMD_RUN)) { 1976 xhci_warn(xhci, "xHC is not running.\n"); 1977 goto cleanup; 1978 } 1979 1980 if (DEV_SUPERSPEED_ANY(portsc)) { 1981 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1982 /* Set a flag to say the port signaled remote wakeup, 1983 * so we can tell the difference between the end of 1984 * device and host initiated resume. 1985 */ 1986 bus_state->port_remote_wakeup |= 1 << hcd_portnum; 1987 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1988 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 1989 xhci_set_link_state(xhci, port, XDEV_U0); 1990 /* Need to wait until the next link state change 1991 * indicates the device is actually in U0. 1992 */ 1993 bogus_port_status = true; 1994 goto cleanup; 1995 } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) { 1996 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1997 port->resume_timestamp = jiffies + 1998 msecs_to_jiffies(USB_RESUME_TIMEOUT); 1999 set_bit(hcd_portnum, &bus_state->resuming_ports); 2000 /* Do the rest in GetPortStatus after resume time delay. 2001 * Avoid polling roothub status before that so that a 2002 * usb device auto-resume latency around ~40ms. 2003 */ 2004 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2005 mod_timer(&hcd->rh_timer, 2006 port->resume_timestamp); 2007 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 2008 bogus_port_status = true; 2009 } 2010 } 2011 2012 if ((portsc & PORT_PLC) && 2013 DEV_SUPERSPEED_ANY(portsc) && 2014 ((portsc & PORT_PLS_MASK) == XDEV_U0 || 2015 (portsc & PORT_PLS_MASK) == XDEV_U1 || 2016 (portsc & PORT_PLS_MASK) == XDEV_U2)) { 2017 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 2018 complete(&port->u3exit_done); 2019 /* We've just brought the device into U0/1/2 through either the 2020 * Resume state after a device remote wakeup, or through the 2021 * U3Exit state after a host-initiated resume. If it's a device 2022 * initiated remote wake, don't pass up the link state change, 2023 * so the roothub behavior is consistent with external 2024 * USB 3.0 hub behavior. 2025 */ 2026 if (port->slot_id && xhci->devs[port->slot_id]) 2027 xhci_ring_device(xhci, port->slot_id); 2028 if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) { 2029 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2030 usb_wakeup_notification(hcd->self.root_hub, 2031 hcd_portnum + 1); 2032 bogus_port_status = true; 2033 goto cleanup; 2034 } 2035 } 2036 2037 /* 2038 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 2039 * RExit to a disconnect state). If so, let the driver know it's 2040 * out of the RExit state. 2041 */ 2042 if (hcd->speed < HCD_USB3 && port->rexit_active) { 2043 complete(&port->rexit_done); 2044 port->rexit_active = false; 2045 bogus_port_status = true; 2046 goto cleanup; 2047 } 2048 2049 if (hcd->speed < HCD_USB3) { 2050 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2051 if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) && 2052 (portsc & PORT_CSC) && !(portsc & PORT_CONNECT)) 2053 xhci_cavium_reset_phy_quirk(xhci); 2054 } 2055 2056 cleanup: 2057 2058 /* Don't make the USB core poll the roothub if we got a bad port status 2059 * change event. Besides, at that point we can't tell which roothub 2060 * (USB 2.0 or USB 3.0) to kick. 2061 */ 2062 if (bogus_port_status) 2063 return; 2064 2065 /* 2066 * xHCI port-status-change events occur when the "or" of all the 2067 * status-change bits in the portsc register changes from 0 to 1. 2068 * New status changes won't cause an event if any other change 2069 * bits are still set. When an event occurs, switch over to 2070 * polling to avoid losing status changes. 2071 */ 2072 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 2073 __func__, hcd->self.busnum); 2074 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2075 spin_unlock(&xhci->lock); 2076 /* Pass this up to the core */ 2077 usb_hcd_poll_rh_status(hcd); 2078 spin_lock(&xhci->lock); 2079 } 2080 2081 /* 2082 * If the suspect DMA address is a TRB in this TD, this function returns that 2083 * TRB's segment. Otherwise it returns 0. 2084 */ 2085 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, struct xhci_td *td, dma_addr_t suspect_dma, 2086 bool debug) 2087 { 2088 dma_addr_t start_dma; 2089 dma_addr_t end_seg_dma; 2090 dma_addr_t end_trb_dma; 2091 struct xhci_segment *cur_seg; 2092 2093 start_dma = xhci_trb_virt_to_dma(td->start_seg, td->first_trb); 2094 cur_seg = td->start_seg; 2095 2096 do { 2097 if (start_dma == 0) 2098 return NULL; 2099 /* We may get an event for a Link TRB in the middle of a TD */ 2100 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 2101 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 2102 /* If the end TRB isn't in this segment, this is set to 0 */ 2103 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, td->last_trb); 2104 2105 if (debug) 2106 xhci_warn(xhci, 2107 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", 2108 (unsigned long long)suspect_dma, 2109 (unsigned long long)start_dma, 2110 (unsigned long long)end_trb_dma, 2111 (unsigned long long)cur_seg->dma, 2112 (unsigned long long)end_seg_dma); 2113 2114 if (end_trb_dma > 0) { 2115 /* The end TRB is in this segment, so suspect should be here */ 2116 if (start_dma <= end_trb_dma) { 2117 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 2118 return cur_seg; 2119 } else { 2120 /* Case for one segment with 2121 * a TD wrapped around to the top 2122 */ 2123 if ((suspect_dma >= start_dma && 2124 suspect_dma <= end_seg_dma) || 2125 (suspect_dma >= cur_seg->dma && 2126 suspect_dma <= end_trb_dma)) 2127 return cur_seg; 2128 } 2129 return NULL; 2130 } else { 2131 /* Might still be somewhere in this segment */ 2132 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 2133 return cur_seg; 2134 } 2135 cur_seg = cur_seg->next; 2136 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 2137 } while (cur_seg != td->start_seg); 2138 2139 return NULL; 2140 } 2141 2142 static void xhci_clear_hub_tt_buffer(struct xhci_hcd *xhci, struct xhci_td *td, 2143 struct xhci_virt_ep *ep) 2144 { 2145 /* 2146 * As part of low/full-speed endpoint-halt processing 2147 * we must clear the TT buffer (USB 2.0 specification 11.17.5). 2148 */ 2149 if (td->urb->dev->tt && !usb_pipeint(td->urb->pipe) && 2150 (td->urb->dev->tt->hub != xhci_to_hcd(xhci)->self.root_hub) && 2151 !(ep->ep_state & EP_CLEARING_TT)) { 2152 ep->ep_state |= EP_CLEARING_TT; 2153 td->urb->ep->hcpriv = td->urb->dev; 2154 if (usb_hub_clear_tt_buffer(td->urb)) 2155 ep->ep_state &= ~EP_CLEARING_TT; 2156 } 2157 } 2158 2159 /* Check if an error has halted the endpoint ring. The class driver will 2160 * cleanup the halt for a non-default control endpoint if we indicate a stall. 2161 * However, a babble and other errors also halt the endpoint ring, and the class 2162 * driver won't clear the halt in that case, so we need to issue a Set Transfer 2163 * Ring Dequeue Pointer command manually. 2164 */ 2165 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 2166 struct xhci_ep_ctx *ep_ctx, 2167 unsigned int trb_comp_code) 2168 { 2169 /* TRB completion codes that may require a manual halt cleanup */ 2170 if (trb_comp_code == COMP_USB_TRANSACTION_ERROR || 2171 trb_comp_code == COMP_BABBLE_DETECTED_ERROR || 2172 trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR) 2173 /* The 0.95 spec says a babbling control endpoint 2174 * is not halted. The 0.96 spec says it is. Some HW 2175 * claims to be 0.95 compliant, but it halts the control 2176 * endpoint anyway. Check if a babble halted the 2177 * endpoint. 2178 */ 2179 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) 2180 return 1; 2181 2182 return 0; 2183 } 2184 2185 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 2186 { 2187 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 2188 /* Vendor defined "informational" completion code, 2189 * treat as not-an-error. 2190 */ 2191 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 2192 trb_comp_code); 2193 xhci_dbg(xhci, "Treating code as success.\n"); 2194 return 1; 2195 } 2196 return 0; 2197 } 2198 2199 static int finish_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2200 struct xhci_ring *ep_ring, struct xhci_td *td, 2201 u32 trb_comp_code) 2202 { 2203 struct xhci_ep_ctx *ep_ctx; 2204 2205 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2206 2207 switch (trb_comp_code) { 2208 case COMP_STOPPED_LENGTH_INVALID: 2209 case COMP_STOPPED_SHORT_PACKET: 2210 case COMP_STOPPED: 2211 /* 2212 * The "Stop Endpoint" completion will take care of any 2213 * stopped TDs. A stopped TD may be restarted, so don't update 2214 * the ring dequeue pointer or take this TD off any lists yet. 2215 */ 2216 return 0; 2217 case COMP_USB_TRANSACTION_ERROR: 2218 case COMP_BABBLE_DETECTED_ERROR: 2219 case COMP_SPLIT_TRANSACTION_ERROR: 2220 /* 2221 * If endpoint context state is not halted we might be 2222 * racing with a reset endpoint command issued by a unsuccessful 2223 * stop endpoint completion (context error). In that case the 2224 * td should be on the cancelled list, and EP_HALTED flag set. 2225 * 2226 * Or then it's not halted due to the 0.95 spec stating that a 2227 * babbling control endpoint should not halt. The 0.96 spec 2228 * again says it should. Some HW claims to be 0.95 compliant, 2229 * but it halts the control endpoint anyway. 2230 */ 2231 if (GET_EP_CTX_STATE(ep_ctx) != EP_STATE_HALTED) { 2232 /* 2233 * If EP_HALTED is set and TD is on the cancelled list 2234 * the TD and dequeue pointer will be handled by reset 2235 * ep command completion 2236 */ 2237 if ((ep->ep_state & EP_HALTED) && 2238 !list_empty(&td->cancelled_td_list)) { 2239 xhci_dbg(xhci, "Already resolving halted ep for 0x%llx\n", 2240 (unsigned long long)xhci_trb_virt_to_dma( 2241 td->start_seg, td->first_trb)); 2242 return 0; 2243 } 2244 /* endpoint not halted, don't reset it */ 2245 break; 2246 } 2247 /* Almost same procedure as for STALL_ERROR below */ 2248 xhci_clear_hub_tt_buffer(xhci, td, ep); 2249 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2250 return 0; 2251 case COMP_STALL_ERROR: 2252 /* 2253 * xhci internal endpoint state will go to a "halt" state for 2254 * any stall, including default control pipe protocol stall. 2255 * To clear the host side halt we need to issue a reset endpoint 2256 * command, followed by a set dequeue command to move past the 2257 * TD. 2258 * Class drivers clear the device side halt from a functional 2259 * stall later. Hub TT buffer should only be cleared for FS/LS 2260 * devices behind HS hubs for functional stalls. 2261 */ 2262 if (ep->ep_index != 0) 2263 xhci_clear_hub_tt_buffer(xhci, td, ep); 2264 2265 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2266 2267 return 0; /* xhci_handle_halted_endpoint marked td cancelled */ 2268 default: 2269 break; 2270 } 2271 2272 /* Update ring dequeue pointer */ 2273 ep_ring->dequeue = td->last_trb; 2274 ep_ring->deq_seg = td->last_trb_seg; 2275 inc_deq(xhci, ep_ring); 2276 2277 return xhci_td_cleanup(xhci, td, ep_ring, td->status); 2278 } 2279 2280 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */ 2281 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring, 2282 union xhci_trb *stop_trb) 2283 { 2284 u32 sum; 2285 union xhci_trb *trb = ring->dequeue; 2286 struct xhci_segment *seg = ring->deq_seg; 2287 2288 for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) { 2289 if (!trb_is_noop(trb) && !trb_is_link(trb)) 2290 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); 2291 } 2292 return sum; 2293 } 2294 2295 /* 2296 * Process control tds, update urb status and actual_length. 2297 */ 2298 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2299 struct xhci_ring *ep_ring, struct xhci_td *td, 2300 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2301 { 2302 struct xhci_ep_ctx *ep_ctx; 2303 u32 trb_comp_code; 2304 u32 remaining, requested; 2305 u32 trb_type; 2306 2307 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); 2308 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2309 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2310 requested = td->urb->transfer_buffer_length; 2311 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2312 2313 switch (trb_comp_code) { 2314 case COMP_SUCCESS: 2315 if (trb_type != TRB_STATUS) { 2316 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n", 2317 (trb_type == TRB_DATA) ? "data" : "setup"); 2318 td->status = -ESHUTDOWN; 2319 break; 2320 } 2321 td->status = 0; 2322 break; 2323 case COMP_SHORT_PACKET: 2324 td->status = 0; 2325 break; 2326 case COMP_STOPPED_SHORT_PACKET: 2327 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2328 td->urb->actual_length = remaining; 2329 else 2330 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); 2331 goto finish_td; 2332 case COMP_STOPPED: 2333 switch (trb_type) { 2334 case TRB_SETUP: 2335 td->urb->actual_length = 0; 2336 goto finish_td; 2337 case TRB_DATA: 2338 case TRB_NORMAL: 2339 td->urb->actual_length = requested - remaining; 2340 goto finish_td; 2341 case TRB_STATUS: 2342 td->urb->actual_length = requested; 2343 goto finish_td; 2344 default: 2345 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", 2346 trb_type); 2347 goto finish_td; 2348 } 2349 case COMP_STOPPED_LENGTH_INVALID: 2350 goto finish_td; 2351 default: 2352 if (!xhci_requires_manual_halt_cleanup(xhci, 2353 ep_ctx, trb_comp_code)) 2354 break; 2355 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", 2356 trb_comp_code, ep->ep_index); 2357 fallthrough; 2358 case COMP_STALL_ERROR: 2359 /* Did we transfer part of the data (middle) phase? */ 2360 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2361 td->urb->actual_length = requested - remaining; 2362 else if (!td->urb_length_set) 2363 td->urb->actual_length = 0; 2364 goto finish_td; 2365 } 2366 2367 /* stopped at setup stage, no data transferred */ 2368 if (trb_type == TRB_SETUP) 2369 goto finish_td; 2370 2371 /* 2372 * if on data stage then update the actual_length of the URB and flag it 2373 * as set, so it won't be overwritten in the event for the last TRB. 2374 */ 2375 if (trb_type == TRB_DATA || 2376 trb_type == TRB_NORMAL) { 2377 td->urb_length_set = true; 2378 td->urb->actual_length = requested - remaining; 2379 xhci_dbg(xhci, "Waiting for status stage event\n"); 2380 return 0; 2381 } 2382 2383 /* at status stage */ 2384 if (!td->urb_length_set) 2385 td->urb->actual_length = requested; 2386 2387 finish_td: 2388 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2389 } 2390 2391 /* 2392 * Process isochronous tds, update urb packet status and actual_length. 2393 */ 2394 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2395 struct xhci_ring *ep_ring, struct xhci_td *td, 2396 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2397 { 2398 struct urb_priv *urb_priv; 2399 int idx; 2400 struct usb_iso_packet_descriptor *frame; 2401 u32 trb_comp_code; 2402 bool sum_trbs_for_length = false; 2403 u32 remaining, requested, ep_trb_len; 2404 int short_framestatus; 2405 2406 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2407 urb_priv = td->urb->hcpriv; 2408 idx = urb_priv->num_tds_done; 2409 frame = &td->urb->iso_frame_desc[idx]; 2410 requested = frame->length; 2411 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2412 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2413 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2414 -EREMOTEIO : 0; 2415 2416 /* handle completion code */ 2417 switch (trb_comp_code) { 2418 case COMP_SUCCESS: 2419 /* Don't overwrite status if TD had an error, see xHCI 4.9.1 */ 2420 if (td->error_mid_td) 2421 break; 2422 if (remaining) { 2423 frame->status = short_framestatus; 2424 sum_trbs_for_length = true; 2425 break; 2426 } 2427 frame->status = 0; 2428 break; 2429 case COMP_SHORT_PACKET: 2430 frame->status = short_framestatus; 2431 sum_trbs_for_length = true; 2432 break; 2433 case COMP_BANDWIDTH_OVERRUN_ERROR: 2434 frame->status = -ECOMM; 2435 break; 2436 case COMP_BABBLE_DETECTED_ERROR: 2437 sum_trbs_for_length = true; 2438 fallthrough; 2439 case COMP_ISOCH_BUFFER_OVERRUN: 2440 frame->status = -EOVERFLOW; 2441 if (ep_trb != td->last_trb) 2442 td->error_mid_td = true; 2443 break; 2444 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2445 case COMP_STALL_ERROR: 2446 frame->status = -EPROTO; 2447 break; 2448 case COMP_USB_TRANSACTION_ERROR: 2449 frame->status = -EPROTO; 2450 sum_trbs_for_length = true; 2451 if (ep_trb != td->last_trb) 2452 td->error_mid_td = true; 2453 break; 2454 case COMP_STOPPED: 2455 sum_trbs_for_length = true; 2456 break; 2457 case COMP_STOPPED_SHORT_PACKET: 2458 /* field normally containing residue now contains tranferred */ 2459 frame->status = short_framestatus; 2460 requested = remaining; 2461 break; 2462 case COMP_STOPPED_LENGTH_INVALID: 2463 requested = 0; 2464 remaining = 0; 2465 break; 2466 default: 2467 sum_trbs_for_length = true; 2468 frame->status = -1; 2469 break; 2470 } 2471 2472 if (td->urb_length_set) 2473 goto finish_td; 2474 2475 if (sum_trbs_for_length) 2476 frame->actual_length = sum_trb_lengths(xhci, ep->ring, ep_trb) + 2477 ep_trb_len - remaining; 2478 else 2479 frame->actual_length = requested; 2480 2481 td->urb->actual_length += frame->actual_length; 2482 2483 finish_td: 2484 /* Don't give back TD yet if we encountered an error mid TD */ 2485 if (td->error_mid_td && ep_trb != td->last_trb) { 2486 xhci_dbg(xhci, "Error mid isoc TD, wait for final completion event\n"); 2487 td->urb_length_set = true; 2488 return 0; 2489 } 2490 2491 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2492 } 2493 2494 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2495 struct xhci_virt_ep *ep, int status) 2496 { 2497 struct urb_priv *urb_priv; 2498 struct usb_iso_packet_descriptor *frame; 2499 int idx; 2500 2501 urb_priv = td->urb->hcpriv; 2502 idx = urb_priv->num_tds_done; 2503 frame = &td->urb->iso_frame_desc[idx]; 2504 2505 /* The transfer is partly done. */ 2506 frame->status = -EXDEV; 2507 2508 /* calc actual length */ 2509 frame->actual_length = 0; 2510 2511 /* Update ring dequeue pointer */ 2512 ep->ring->dequeue = td->last_trb; 2513 ep->ring->deq_seg = td->last_trb_seg; 2514 inc_deq(xhci, ep->ring); 2515 2516 return xhci_td_cleanup(xhci, td, ep->ring, status); 2517 } 2518 2519 /* 2520 * Process bulk and interrupt tds, update urb status and actual_length. 2521 */ 2522 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2523 struct xhci_ring *ep_ring, struct xhci_td *td, 2524 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2525 { 2526 struct xhci_slot_ctx *slot_ctx; 2527 u32 trb_comp_code; 2528 u32 remaining, requested, ep_trb_len; 2529 2530 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 2531 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2532 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2533 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2534 requested = td->urb->transfer_buffer_length; 2535 2536 switch (trb_comp_code) { 2537 case COMP_SUCCESS: 2538 ep->err_count = 0; 2539 /* handle success with untransferred data as short packet */ 2540 if (ep_trb != td->last_trb || remaining) { 2541 xhci_warn(xhci, "WARN Successful completion on short TX\n"); 2542 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2543 td->urb->ep->desc.bEndpointAddress, 2544 requested, remaining); 2545 } 2546 td->status = 0; 2547 break; 2548 case COMP_SHORT_PACKET: 2549 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2550 td->urb->ep->desc.bEndpointAddress, 2551 requested, remaining); 2552 td->status = 0; 2553 break; 2554 case COMP_STOPPED_SHORT_PACKET: 2555 td->urb->actual_length = remaining; 2556 goto finish_td; 2557 case COMP_STOPPED_LENGTH_INVALID: 2558 /* stopped on ep trb with invalid length, exclude it */ 2559 td->urb->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb); 2560 goto finish_td; 2561 case COMP_USB_TRANSACTION_ERROR: 2562 if (xhci->quirks & XHCI_NO_SOFT_RETRY || 2563 (ep->err_count++ > MAX_SOFT_RETRY) || 2564 le32_to_cpu(slot_ctx->tt_info) & TT_SLOT) 2565 break; 2566 2567 td->status = 0; 2568 2569 xhci_handle_halted_endpoint(xhci, ep, td, EP_SOFT_RESET); 2570 return 0; 2571 default: 2572 /* do nothing */ 2573 break; 2574 } 2575 2576 if (ep_trb == td->last_trb) 2577 td->urb->actual_length = requested - remaining; 2578 else 2579 td->urb->actual_length = 2580 sum_trb_lengths(xhci, ep_ring, ep_trb) + 2581 ep_trb_len - remaining; 2582 finish_td: 2583 if (remaining > requested) { 2584 xhci_warn(xhci, "bad transfer trb length %d in event trb\n", 2585 remaining); 2586 td->urb->actual_length = 0; 2587 } 2588 2589 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2590 } 2591 2592 /* 2593 * If this function returns an error condition, it means it got a Transfer 2594 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2595 * At this point, the host controller is probably hosed and should be reset. 2596 */ 2597 static int handle_tx_event(struct xhci_hcd *xhci, 2598 struct xhci_interrupter *ir, 2599 struct xhci_transfer_event *event) 2600 { 2601 struct xhci_virt_ep *ep; 2602 struct xhci_ring *ep_ring; 2603 unsigned int slot_id; 2604 int ep_index; 2605 struct xhci_td *td = NULL; 2606 dma_addr_t ep_trb_dma; 2607 struct xhci_segment *ep_seg; 2608 union xhci_trb *ep_trb; 2609 int status = -EINPROGRESS; 2610 struct xhci_ep_ctx *ep_ctx; 2611 u32 trb_comp_code; 2612 int td_num = 0; 2613 2614 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2615 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2616 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2617 ep_trb_dma = le64_to_cpu(event->buffer); 2618 2619 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 2620 if (!ep) { 2621 xhci_err(xhci, "ERROR Invalid Transfer event\n"); 2622 goto err_out; 2623 } 2624 2625 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma); 2626 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 2627 2628 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { 2629 xhci_err(xhci, 2630 "ERROR Transfer event for disabled endpoint slot %u ep %u\n", 2631 slot_id, ep_index); 2632 goto err_out; 2633 } 2634 2635 /* Some transfer events don't always point to a trb, see xhci 4.17.4 */ 2636 if (!ep_ring) { 2637 switch (trb_comp_code) { 2638 case COMP_STALL_ERROR: 2639 case COMP_USB_TRANSACTION_ERROR: 2640 case COMP_INVALID_STREAM_TYPE_ERROR: 2641 case COMP_INVALID_STREAM_ID_ERROR: 2642 xhci_dbg(xhci, "Stream transaction error ep %u no id\n", 2643 ep_index); 2644 if (ep->err_count++ > MAX_SOFT_RETRY) 2645 xhci_handle_halted_endpoint(xhci, ep, NULL, 2646 EP_HARD_RESET); 2647 else 2648 xhci_handle_halted_endpoint(xhci, ep, NULL, 2649 EP_SOFT_RESET); 2650 break; 2651 case COMP_RING_UNDERRUN: 2652 case COMP_RING_OVERRUN: 2653 case COMP_STOPPED_LENGTH_INVALID: 2654 break; 2655 default: 2656 xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n", 2657 slot_id, ep_index); 2658 goto err_out; 2659 } 2660 return 0; 2661 } 2662 2663 /* Count current td numbers if ep->skip is set */ 2664 if (ep->skip) 2665 td_num += list_count_nodes(&ep_ring->td_list); 2666 2667 /* Look for common error cases */ 2668 switch (trb_comp_code) { 2669 /* Skip codes that require special handling depending on 2670 * transfer type 2671 */ 2672 case COMP_SUCCESS: 2673 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2674 trb_comp_code = COMP_SHORT_PACKET; 2675 xhci_dbg(xhci, "Successful completion on short TX for slot %u ep %u with last td short %d\n", 2676 slot_id, ep_index, ep_ring->last_td_was_short); 2677 } 2678 break; 2679 case COMP_SHORT_PACKET: 2680 break; 2681 /* Completion codes for endpoint stopped state */ 2682 case COMP_STOPPED: 2683 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n", 2684 slot_id, ep_index); 2685 break; 2686 case COMP_STOPPED_LENGTH_INVALID: 2687 xhci_dbg(xhci, 2688 "Stopped on No-op or Link TRB for slot %u ep %u\n", 2689 slot_id, ep_index); 2690 break; 2691 case COMP_STOPPED_SHORT_PACKET: 2692 xhci_dbg(xhci, 2693 "Stopped with short packet transfer detected for slot %u ep %u\n", 2694 slot_id, ep_index); 2695 break; 2696 /* Completion codes for endpoint halted state */ 2697 case COMP_STALL_ERROR: 2698 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id, 2699 ep_index); 2700 status = -EPIPE; 2701 break; 2702 case COMP_SPLIT_TRANSACTION_ERROR: 2703 xhci_dbg(xhci, "Split transaction error for slot %u ep %u\n", 2704 slot_id, ep_index); 2705 status = -EPROTO; 2706 break; 2707 case COMP_USB_TRANSACTION_ERROR: 2708 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n", 2709 slot_id, ep_index); 2710 status = -EPROTO; 2711 break; 2712 case COMP_BABBLE_DETECTED_ERROR: 2713 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n", 2714 slot_id, ep_index); 2715 status = -EOVERFLOW; 2716 break; 2717 /* Completion codes for endpoint error state */ 2718 case COMP_TRB_ERROR: 2719 xhci_warn(xhci, 2720 "WARN: TRB error for slot %u ep %u on endpoint\n", 2721 slot_id, ep_index); 2722 status = -EILSEQ; 2723 break; 2724 /* completion codes not indicating endpoint state change */ 2725 case COMP_DATA_BUFFER_ERROR: 2726 xhci_warn(xhci, 2727 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n", 2728 slot_id, ep_index); 2729 status = -ENOSR; 2730 break; 2731 case COMP_BANDWIDTH_OVERRUN_ERROR: 2732 xhci_warn(xhci, 2733 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n", 2734 slot_id, ep_index); 2735 break; 2736 case COMP_ISOCH_BUFFER_OVERRUN: 2737 xhci_warn(xhci, 2738 "WARN: buffer overrun event for slot %u ep %u on endpoint", 2739 slot_id, ep_index); 2740 break; 2741 case COMP_RING_UNDERRUN: 2742 /* 2743 * When the Isoch ring is empty, the xHC will generate 2744 * a Ring Overrun Event for IN Isoch endpoint or Ring 2745 * Underrun Event for OUT Isoch endpoint. 2746 */ 2747 xhci_dbg(xhci, "underrun event on endpoint\n"); 2748 if (!list_empty(&ep_ring->td_list)) 2749 xhci_dbg(xhci, "Underrun Event for slot %u ep %d still with TDs queued?\n", 2750 slot_id, ep_index); 2751 if (ep->skip) 2752 break; 2753 return 0; 2754 case COMP_RING_OVERRUN: 2755 xhci_dbg(xhci, "overrun event on endpoint\n"); 2756 if (!list_empty(&ep_ring->td_list)) 2757 xhci_dbg(xhci, "Overrun Event for slot %u ep %d still with TDs queued?\n", 2758 slot_id, ep_index); 2759 if (ep->skip) 2760 break; 2761 return 0; 2762 case COMP_MISSED_SERVICE_ERROR: 2763 /* 2764 * When encounter missed service error, one or more isoc tds 2765 * may be missed by xHC. 2766 * Set skip flag of the ep_ring; Complete the missed tds as 2767 * short transfer when process the ep_ring next time. 2768 */ 2769 ep->skip = true; 2770 xhci_dbg(xhci, 2771 "Miss service interval error for slot %u ep %u, set skip flag\n", 2772 slot_id, ep_index); 2773 return 0; 2774 case COMP_NO_PING_RESPONSE_ERROR: 2775 ep->skip = true; 2776 xhci_dbg(xhci, 2777 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n", 2778 slot_id, ep_index); 2779 return 0; 2780 2781 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2782 /* needs disable slot command to recover */ 2783 xhci_warn(xhci, 2784 "WARN: detect an incompatible device for slot %u ep %u", 2785 slot_id, ep_index); 2786 status = -EPROTO; 2787 break; 2788 default: 2789 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2790 status = 0; 2791 break; 2792 } 2793 xhci_warn(xhci, 2794 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n", 2795 trb_comp_code, slot_id, ep_index); 2796 if (ep->skip) 2797 break; 2798 return 0; 2799 } 2800 2801 do { 2802 /* This TRB should be in the TD at the head of this ring's 2803 * TD list. 2804 */ 2805 if (list_empty(&ep_ring->td_list)) { 2806 /* 2807 * Don't print wanings if it's due to a stopped endpoint 2808 * generating an extra completion event if the device 2809 * was suspended. Or, a event for the last TRB of a 2810 * short TD we already got a short event for. 2811 * The short TD is already removed from the TD list. 2812 */ 2813 2814 if (!(trb_comp_code == COMP_STOPPED || 2815 trb_comp_code == COMP_STOPPED_LENGTH_INVALID || 2816 ep_ring->last_td_was_short)) { 2817 xhci_warn(xhci, "WARN Event TRB for slot %u ep %d with no TDs queued?\n", 2818 slot_id, ep_index); 2819 } 2820 if (ep->skip) { 2821 ep->skip = false; 2822 xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n", 2823 slot_id, ep_index); 2824 } 2825 if (trb_comp_code == COMP_STALL_ERROR || 2826 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2827 trb_comp_code)) { 2828 xhci_handle_halted_endpoint(xhci, ep, NULL, 2829 EP_HARD_RESET); 2830 } 2831 return 0; 2832 } 2833 2834 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2835 if (ep->skip && td_num == 0) { 2836 ep->skip = false; 2837 xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n", 2838 slot_id, ep_index); 2839 return 0; 2840 } 2841 2842 td = list_first_entry(&ep_ring->td_list, struct xhci_td, 2843 td_list); 2844 if (ep->skip) 2845 td_num--; 2846 2847 /* Is this a TRB in the currently executing TD? */ 2848 ep_seg = trb_in_td(xhci, td, ep_trb_dma, false); 2849 2850 /* 2851 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2852 * is not in the current TD pointed by ep_ring->dequeue because 2853 * that the hardware dequeue pointer still at the previous TRB 2854 * of the current TD. The previous TRB maybe a Link TD or the 2855 * last TRB of the previous TD. The command completion handle 2856 * will take care the rest. 2857 */ 2858 if (!ep_seg && (trb_comp_code == COMP_STOPPED || 2859 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) { 2860 continue; 2861 } 2862 2863 if (!ep_seg) { 2864 2865 if (ep->skip && usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2866 skip_isoc_td(xhci, td, ep, status); 2867 continue; 2868 } 2869 2870 /* 2871 * Some hosts give a spurious success event after a short 2872 * transfer. Ignore it. 2873 */ 2874 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2875 ep_ring->last_td_was_short) { 2876 ep_ring->last_td_was_short = false; 2877 return 0; 2878 } 2879 2880 /* 2881 * xhci 4.10.2 states isoc endpoints should continue 2882 * processing the next TD if there was an error mid TD. 2883 * So host like NEC don't generate an event for the last 2884 * isoc TRB even if the IOC flag is set. 2885 * xhci 4.9.1 states that if there are errors in mult-TRB 2886 * TDs xHC should generate an error for that TRB, and if xHC 2887 * proceeds to the next TD it should genete an event for 2888 * any TRB with IOC flag on the way. Other host follow this. 2889 * So this event might be for the next TD. 2890 */ 2891 if (td->error_mid_td && 2892 !list_is_last(&td->td_list, &ep_ring->td_list)) { 2893 struct xhci_td *td_next = list_next_entry(td, td_list); 2894 2895 ep_seg = trb_in_td(xhci, td_next, ep_trb_dma, false); 2896 if (ep_seg) { 2897 /* give back previous TD, start handling new */ 2898 xhci_dbg(xhci, "Missing TD completion event after mid TD error\n"); 2899 ep_ring->dequeue = td->last_trb; 2900 ep_ring->deq_seg = td->last_trb_seg; 2901 inc_deq(xhci, ep_ring); 2902 xhci_td_cleanup(xhci, td, ep_ring, td->status); 2903 td = td_next; 2904 } 2905 } 2906 2907 if (!ep_seg) { 2908 /* HC is busted, give up! */ 2909 xhci_err(xhci, 2910 "ERROR Transfer event TRB DMA ptr not " 2911 "part of current TD ep_index %d " 2912 "comp_code %u\n", ep_index, 2913 trb_comp_code); 2914 trb_in_td(xhci, td, ep_trb_dma, true); 2915 2916 return -ESHUTDOWN; 2917 } 2918 } 2919 if (trb_comp_code == COMP_SHORT_PACKET) 2920 ep_ring->last_td_was_short = true; 2921 else 2922 ep_ring->last_td_was_short = false; 2923 2924 if (ep->skip) { 2925 xhci_dbg(xhci, 2926 "Found td. Clear skip flag for slot %u ep %u.\n", 2927 slot_id, ep_index); 2928 ep->skip = false; 2929 } 2930 2931 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / 2932 sizeof(*ep_trb)]; 2933 2934 trace_xhci_handle_transfer(ep_ring, 2935 (struct xhci_generic_trb *) ep_trb); 2936 2937 /* 2938 * No-op TRB could trigger interrupts in a case where 2939 * a URB was killed and a STALL_ERROR happens right 2940 * after the endpoint ring stopped. Reset the halted 2941 * endpoint. Otherwise, the endpoint remains stalled 2942 * indefinitely. 2943 */ 2944 2945 if (trb_is_noop(ep_trb)) { 2946 if (trb_comp_code == COMP_STALL_ERROR || 2947 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2948 trb_comp_code)) 2949 xhci_handle_halted_endpoint(xhci, ep, td, 2950 EP_HARD_RESET); 2951 } else { 2952 td->status = status; 2953 2954 /* update the urb's actual_length and give back to the core */ 2955 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2956 process_ctrl_td(xhci, ep, ep_ring, td, ep_trb, event); 2957 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2958 process_isoc_td(xhci, ep, ep_ring, td, ep_trb, event); 2959 else 2960 process_bulk_intr_td(xhci, ep, ep_ring, td, ep_trb, event); 2961 } 2962 /* 2963 * If ep->skip is set, it means there are missed tds on the 2964 * endpoint ring need to take care of. 2965 * Process them as short transfer until reach the td pointed by 2966 * the event. 2967 */ 2968 } while (ep->skip); 2969 2970 return 0; 2971 2972 err_out: 2973 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2974 (unsigned long long) xhci_trb_virt_to_dma( 2975 ir->event_ring->deq_seg, 2976 ir->event_ring->dequeue), 2977 lower_32_bits(le64_to_cpu(event->buffer)), 2978 upper_32_bits(le64_to_cpu(event->buffer)), 2979 le32_to_cpu(event->transfer_len), 2980 le32_to_cpu(event->flags)); 2981 return -ENODEV; 2982 } 2983 2984 /* 2985 * This function handles one OS-owned event on the event ring. It may drop 2986 * xhci->lock between event processing (e.g. to pass up port status changes). 2987 */ 2988 static int xhci_handle_event_trb(struct xhci_hcd *xhci, struct xhci_interrupter *ir, 2989 union xhci_trb *event) 2990 { 2991 u32 trb_type; 2992 2993 trace_xhci_handle_event(ir->event_ring, &event->generic); 2994 2995 /* 2996 * Barrier between reading the TRB_CYCLE (valid) flag before, and any 2997 * speculative reads of the event's flags/data below. 2998 */ 2999 rmb(); 3000 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->event_cmd.flags)); 3001 /* FIXME: Handle more event types. */ 3002 3003 switch (trb_type) { 3004 case TRB_COMPLETION: 3005 handle_cmd_completion(xhci, &event->event_cmd); 3006 break; 3007 case TRB_PORT_STATUS: 3008 handle_port_status(xhci, ir, event); 3009 break; 3010 case TRB_TRANSFER: 3011 handle_tx_event(xhci, ir, &event->trans_event); 3012 break; 3013 case TRB_DEV_NOTE: 3014 handle_device_notification(xhci, event); 3015 break; 3016 default: 3017 if (trb_type >= TRB_VENDOR_DEFINED_LOW) 3018 handle_vendor_event(xhci, event, trb_type); 3019 else 3020 xhci_warn(xhci, "ERROR unknown event type %d\n", trb_type); 3021 } 3022 /* Any of the above functions may drop and re-acquire the lock, so check 3023 * to make sure a watchdog timer didn't mark the host as non-responsive. 3024 */ 3025 if (xhci->xhc_state & XHCI_STATE_DYING) { 3026 xhci_dbg(xhci, "xHCI host dying, returning from event handler.\n"); 3027 return -ENODEV; 3028 } 3029 3030 return 0; 3031 } 3032 3033 /* 3034 * Update Event Ring Dequeue Pointer: 3035 * - When all events have finished 3036 * - To avoid "Event Ring Full Error" condition 3037 */ 3038 static void xhci_update_erst_dequeue(struct xhci_hcd *xhci, 3039 struct xhci_interrupter *ir, 3040 bool clear_ehb) 3041 { 3042 u64 temp_64; 3043 dma_addr_t deq; 3044 3045 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 3046 deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg, 3047 ir->event_ring->dequeue); 3048 if (deq == 0) 3049 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr\n"); 3050 /* 3051 * Per 4.9.4, Software writes to the ERDP register shall always advance 3052 * the Event Ring Dequeue Pointer value. 3053 */ 3054 if ((temp_64 & ERST_PTR_MASK) == (deq & ERST_PTR_MASK) && !clear_ehb) 3055 return; 3056 3057 /* Update HC event ring dequeue pointer */ 3058 temp_64 = ir->event_ring->deq_seg->num & ERST_DESI_MASK; 3059 temp_64 |= deq & ERST_PTR_MASK; 3060 3061 /* Clear the event handler busy flag (RW1C) */ 3062 if (clear_ehb) 3063 temp_64 |= ERST_EHB; 3064 xhci_write_64(xhci, temp_64, &ir->ir_set->erst_dequeue); 3065 } 3066 3067 /* Clear the interrupt pending bit for a specific interrupter. */ 3068 static void xhci_clear_interrupt_pending(struct xhci_hcd *xhci, 3069 struct xhci_interrupter *ir) 3070 { 3071 if (!ir->ip_autoclear) { 3072 u32 irq_pending; 3073 3074 irq_pending = readl(&ir->ir_set->irq_pending); 3075 irq_pending |= IMAN_IP; 3076 writel(irq_pending, &ir->ir_set->irq_pending); 3077 } 3078 } 3079 3080 /* 3081 * Handle all OS-owned events on an interrupter event ring. It may drop 3082 * and reaquire xhci->lock between event processing. 3083 */ 3084 static int xhci_handle_events(struct xhci_hcd *xhci, struct xhci_interrupter *ir) 3085 { 3086 int event_loop = 0; 3087 int err; 3088 u64 temp; 3089 3090 xhci_clear_interrupt_pending(xhci, ir); 3091 3092 /* Event ring hasn't been allocated yet. */ 3093 if (!ir->event_ring || !ir->event_ring->dequeue) { 3094 xhci_err(xhci, "ERROR interrupter event ring not ready\n"); 3095 return -ENOMEM; 3096 } 3097 3098 if (xhci->xhc_state & XHCI_STATE_DYING || 3099 xhci->xhc_state & XHCI_STATE_HALTED) { 3100 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. Shouldn't IRQs be disabled?\n"); 3101 3102 /* Clear the event handler busy flag (RW1C) */ 3103 temp = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 3104 xhci_write_64(xhci, temp | ERST_EHB, &ir->ir_set->erst_dequeue); 3105 return -ENODEV; 3106 } 3107 3108 /* Process all OS owned event TRBs on this event ring */ 3109 while (unhandled_event_trb(ir->event_ring)) { 3110 err = xhci_handle_event_trb(xhci, ir, ir->event_ring->dequeue); 3111 3112 /* 3113 * If half a segment of events have been handled in one go then 3114 * update ERDP, and force isoc trbs to interrupt more often 3115 */ 3116 if (event_loop++ > TRBS_PER_SEGMENT / 2) { 3117 xhci_update_erst_dequeue(xhci, ir, false); 3118 3119 if (ir->isoc_bei_interval > AVOID_BEI_INTERVAL_MIN) 3120 ir->isoc_bei_interval = ir->isoc_bei_interval / 2; 3121 3122 event_loop = 0; 3123 } 3124 3125 /* Update SW event ring dequeue pointer */ 3126 inc_deq(xhci, ir->event_ring); 3127 3128 if (err) 3129 break; 3130 } 3131 3132 xhci_update_erst_dequeue(xhci, ir, true); 3133 3134 return 0; 3135 } 3136 3137 /* 3138 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 3139 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 3140 * indicators of an event TRB error, but we check the status *first* to be safe. 3141 */ 3142 irqreturn_t xhci_irq(struct usb_hcd *hcd) 3143 { 3144 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3145 irqreturn_t ret = IRQ_HANDLED; 3146 u32 status; 3147 3148 spin_lock(&xhci->lock); 3149 /* Check if the xHC generated the interrupt, or the irq is shared */ 3150 status = readl(&xhci->op_regs->status); 3151 if (status == ~(u32)0) { 3152 xhci_hc_died(xhci); 3153 goto out; 3154 } 3155 3156 if (!(status & STS_EINT)) { 3157 ret = IRQ_NONE; 3158 goto out; 3159 } 3160 3161 if (status & STS_HCE) { 3162 xhci_warn(xhci, "WARNING: Host Controller Error\n"); 3163 goto out; 3164 } 3165 3166 if (status & STS_FATAL) { 3167 xhci_warn(xhci, "WARNING: Host System Error\n"); 3168 xhci_halt(xhci); 3169 goto out; 3170 } 3171 3172 /* 3173 * Clear the op reg interrupt status first, 3174 * so we can receive interrupts from other MSI-X interrupters. 3175 * Write 1 to clear the interrupt status. 3176 */ 3177 status |= STS_EINT; 3178 writel(status, &xhci->op_regs->status); 3179 3180 /* This is the handler of the primary interrupter */ 3181 xhci_handle_events(xhci, xhci->interrupters[0]); 3182 out: 3183 spin_unlock(&xhci->lock); 3184 3185 return ret; 3186 } 3187 3188 irqreturn_t xhci_msi_irq(int irq, void *hcd) 3189 { 3190 return xhci_irq(hcd); 3191 } 3192 EXPORT_SYMBOL_GPL(xhci_msi_irq); 3193 3194 /**** Endpoint Ring Operations ****/ 3195 3196 /* 3197 * Generic function for queueing a TRB on a ring. 3198 * The caller must have checked to make sure there's room on the ring. 3199 * 3200 * @more_trbs_coming: Will you enqueue more TRBs before calling 3201 * prepare_transfer()? 3202 */ 3203 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 3204 bool more_trbs_coming, 3205 u32 field1, u32 field2, u32 field3, u32 field4) 3206 { 3207 struct xhci_generic_trb *trb; 3208 3209 trb = &ring->enqueue->generic; 3210 trb->field[0] = cpu_to_le32(field1); 3211 trb->field[1] = cpu_to_le32(field2); 3212 trb->field[2] = cpu_to_le32(field3); 3213 /* make sure TRB is fully written before giving it to the controller */ 3214 wmb(); 3215 trb->field[3] = cpu_to_le32(field4); 3216 3217 trace_xhci_queue_trb(ring, trb); 3218 3219 inc_enq(xhci, ring, more_trbs_coming); 3220 } 3221 3222 /* 3223 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 3224 * expand ring if it start to be full. 3225 */ 3226 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 3227 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 3228 { 3229 unsigned int link_trb_count = 0; 3230 unsigned int new_segs = 0; 3231 3232 /* Make sure the endpoint has been added to xHC schedule */ 3233 switch (ep_state) { 3234 case EP_STATE_DISABLED: 3235 /* 3236 * USB core changed config/interfaces without notifying us, 3237 * or hardware is reporting the wrong state. 3238 */ 3239 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 3240 return -ENOENT; 3241 case EP_STATE_ERROR: 3242 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 3243 /* FIXME event handling code for error needs to clear it */ 3244 /* XXX not sure if this should be -ENOENT or not */ 3245 return -EINVAL; 3246 case EP_STATE_HALTED: 3247 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 3248 break; 3249 case EP_STATE_STOPPED: 3250 case EP_STATE_RUNNING: 3251 break; 3252 default: 3253 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 3254 /* 3255 * FIXME issue Configure Endpoint command to try to get the HC 3256 * back into a known state. 3257 */ 3258 return -EINVAL; 3259 } 3260 3261 if (ep_ring != xhci->cmd_ring) { 3262 new_segs = xhci_ring_expansion_needed(xhci, ep_ring, num_trbs); 3263 } else if (xhci_num_trbs_free(xhci, ep_ring) <= num_trbs) { 3264 xhci_err(xhci, "Do not support expand command ring\n"); 3265 return -ENOMEM; 3266 } 3267 3268 if (new_segs) { 3269 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 3270 "ERROR no room on ep ring, try ring expansion"); 3271 if (xhci_ring_expansion(xhci, ep_ring, new_segs, mem_flags)) { 3272 xhci_err(xhci, "Ring expansion failed\n"); 3273 return -ENOMEM; 3274 } 3275 } 3276 3277 while (trb_is_link(ep_ring->enqueue)) { 3278 /* If we're not dealing with 0.95 hardware or isoc rings 3279 * on AMD 0.96 host, clear the chain bit. 3280 */ 3281 if (!xhci_link_trb_quirk(xhci) && 3282 !(ep_ring->type == TYPE_ISOC && 3283 (xhci->quirks & XHCI_AMD_0x96_HOST))) 3284 ep_ring->enqueue->link.control &= 3285 cpu_to_le32(~TRB_CHAIN); 3286 else 3287 ep_ring->enqueue->link.control |= 3288 cpu_to_le32(TRB_CHAIN); 3289 3290 wmb(); 3291 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); 3292 3293 /* Toggle the cycle bit after the last ring segment. */ 3294 if (link_trb_toggles_cycle(ep_ring->enqueue)) 3295 ep_ring->cycle_state ^= 1; 3296 3297 ep_ring->enq_seg = ep_ring->enq_seg->next; 3298 ep_ring->enqueue = ep_ring->enq_seg->trbs; 3299 3300 /* prevent infinite loop if all first trbs are link trbs */ 3301 if (link_trb_count++ > ep_ring->num_segs) { 3302 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 3303 return -EINVAL; 3304 } 3305 } 3306 3307 if (last_trb_on_seg(ep_ring->enq_seg, ep_ring->enqueue)) { 3308 xhci_warn(xhci, "Missing link TRB at end of ring segment\n"); 3309 return -EINVAL; 3310 } 3311 3312 return 0; 3313 } 3314 3315 static int prepare_transfer(struct xhci_hcd *xhci, 3316 struct xhci_virt_device *xdev, 3317 unsigned int ep_index, 3318 unsigned int stream_id, 3319 unsigned int num_trbs, 3320 struct urb *urb, 3321 unsigned int td_index, 3322 gfp_t mem_flags) 3323 { 3324 int ret; 3325 struct urb_priv *urb_priv; 3326 struct xhci_td *td; 3327 struct xhci_ring *ep_ring; 3328 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3329 3330 ep_ring = xhci_triad_to_transfer_ring(xhci, xdev->slot_id, ep_index, 3331 stream_id); 3332 if (!ep_ring) { 3333 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 3334 stream_id); 3335 return -EINVAL; 3336 } 3337 3338 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 3339 num_trbs, mem_flags); 3340 if (ret) 3341 return ret; 3342 3343 urb_priv = urb->hcpriv; 3344 td = &urb_priv->td[td_index]; 3345 3346 INIT_LIST_HEAD(&td->td_list); 3347 INIT_LIST_HEAD(&td->cancelled_td_list); 3348 3349 if (td_index == 0) { 3350 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 3351 if (unlikely(ret)) 3352 return ret; 3353 } 3354 3355 td->urb = urb; 3356 /* Add this TD to the tail of the endpoint ring's TD list */ 3357 list_add_tail(&td->td_list, &ep_ring->td_list); 3358 td->start_seg = ep_ring->enq_seg; 3359 td->first_trb = ep_ring->enqueue; 3360 3361 return 0; 3362 } 3363 3364 unsigned int count_trbs(u64 addr, u64 len) 3365 { 3366 unsigned int num_trbs; 3367 3368 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3369 TRB_MAX_BUFF_SIZE); 3370 if (num_trbs == 0) 3371 num_trbs++; 3372 3373 return num_trbs; 3374 } 3375 3376 static inline unsigned int count_trbs_needed(struct urb *urb) 3377 { 3378 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); 3379 } 3380 3381 static unsigned int count_sg_trbs_needed(struct urb *urb) 3382 { 3383 struct scatterlist *sg; 3384 unsigned int i, len, full_len, num_trbs = 0; 3385 3386 full_len = urb->transfer_buffer_length; 3387 3388 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { 3389 len = sg_dma_len(sg); 3390 num_trbs += count_trbs(sg_dma_address(sg), len); 3391 len = min_t(unsigned int, len, full_len); 3392 full_len -= len; 3393 if (full_len == 0) 3394 break; 3395 } 3396 3397 return num_trbs; 3398 } 3399 3400 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) 3401 { 3402 u64 addr, len; 3403 3404 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3405 len = urb->iso_frame_desc[i].length; 3406 3407 return count_trbs(addr, len); 3408 } 3409 3410 static void check_trb_math(struct urb *urb, int running_total) 3411 { 3412 if (unlikely(running_total != urb->transfer_buffer_length)) 3413 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3414 "queued %#x (%d), asked for %#x (%d)\n", 3415 __func__, 3416 urb->ep->desc.bEndpointAddress, 3417 running_total, running_total, 3418 urb->transfer_buffer_length, 3419 urb->transfer_buffer_length); 3420 } 3421 3422 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3423 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3424 struct xhci_generic_trb *start_trb) 3425 { 3426 /* 3427 * Pass all the TRBs to the hardware at once and make sure this write 3428 * isn't reordered. 3429 */ 3430 wmb(); 3431 if (start_cycle) 3432 start_trb->field[3] |= cpu_to_le32(start_cycle); 3433 else 3434 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3435 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3436 } 3437 3438 static void check_interval(struct xhci_hcd *xhci, struct urb *urb, 3439 struct xhci_ep_ctx *ep_ctx) 3440 { 3441 int xhci_interval; 3442 int ep_interval; 3443 3444 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3445 ep_interval = urb->interval; 3446 3447 /* Convert to microframes */ 3448 if (urb->dev->speed == USB_SPEED_LOW || 3449 urb->dev->speed == USB_SPEED_FULL) 3450 ep_interval *= 8; 3451 3452 /* FIXME change this to a warning and a suggestion to use the new API 3453 * to set the polling interval (once the API is added). 3454 */ 3455 if (xhci_interval != ep_interval) { 3456 dev_dbg_ratelimited(&urb->dev->dev, 3457 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3458 ep_interval, ep_interval == 1 ? "" : "s", 3459 xhci_interval, xhci_interval == 1 ? "" : "s"); 3460 urb->interval = xhci_interval; 3461 /* Convert back to frames for LS/FS devices */ 3462 if (urb->dev->speed == USB_SPEED_LOW || 3463 urb->dev->speed == USB_SPEED_FULL) 3464 urb->interval /= 8; 3465 } 3466 } 3467 3468 /* 3469 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3470 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3471 * (comprised of sg list entries) can take several service intervals to 3472 * transmit. 3473 */ 3474 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3475 struct urb *urb, int slot_id, unsigned int ep_index) 3476 { 3477 struct xhci_ep_ctx *ep_ctx; 3478 3479 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); 3480 check_interval(xhci, urb, ep_ctx); 3481 3482 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3483 } 3484 3485 /* 3486 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3487 * packets remaining in the TD (*not* including this TRB). 3488 * 3489 * Total TD packet count = total_packet_count = 3490 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3491 * 3492 * Packets transferred up to and including this TRB = packets_transferred = 3493 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3494 * 3495 * TD size = total_packet_count - packets_transferred 3496 * 3497 * For xHCI 0.96 and older, TD size field should be the remaining bytes 3498 * including this TRB, right shifted by 10 3499 * 3500 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. 3501 * This is taken care of in the TRB_TD_SIZE() macro 3502 * 3503 * The last TRB in a TD must have the TD size set to zero. 3504 */ 3505 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, 3506 int trb_buff_len, unsigned int td_total_len, 3507 struct urb *urb, bool more_trbs_coming) 3508 { 3509 u32 maxp, total_packet_count; 3510 3511 /* MTK xHCI 0.96 contains some features from 1.0 */ 3512 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) 3513 return ((td_total_len - transferred) >> 10); 3514 3515 /* One TRB with a zero-length data packet. */ 3516 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || 3517 trb_buff_len == td_total_len) 3518 return 0; 3519 3520 /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */ 3521 if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100)) 3522 trb_buff_len = 0; 3523 3524 maxp = usb_endpoint_maxp(&urb->ep->desc); 3525 total_packet_count = DIV_ROUND_UP(td_total_len, maxp); 3526 3527 /* Queueing functions don't count the current TRB into transferred */ 3528 return (total_packet_count - ((transferred + trb_buff_len) / maxp)); 3529 } 3530 3531 3532 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, 3533 u32 *trb_buff_len, struct xhci_segment *seg) 3534 { 3535 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 3536 unsigned int unalign; 3537 unsigned int max_pkt; 3538 u32 new_buff_len; 3539 size_t len; 3540 3541 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3542 unalign = (enqd_len + *trb_buff_len) % max_pkt; 3543 3544 /* we got lucky, last normal TRB data on segment is packet aligned */ 3545 if (unalign == 0) 3546 return 0; 3547 3548 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", 3549 unalign, *trb_buff_len); 3550 3551 /* is the last nornal TRB alignable by splitting it */ 3552 if (*trb_buff_len > unalign) { 3553 *trb_buff_len -= unalign; 3554 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); 3555 return 0; 3556 } 3557 3558 /* 3559 * We want enqd_len + trb_buff_len to sum up to a number aligned to 3560 * number which is divisible by the endpoint's wMaxPacketSize. IOW: 3561 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. 3562 */ 3563 new_buff_len = max_pkt - (enqd_len % max_pkt); 3564 3565 if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) 3566 new_buff_len = (urb->transfer_buffer_length - enqd_len); 3567 3568 /* create a max max_pkt sized bounce buffer pointed to by last trb */ 3569 if (usb_urb_dir_out(urb)) { 3570 if (urb->num_sgs) { 3571 len = sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 3572 seg->bounce_buf, new_buff_len, enqd_len); 3573 if (len != new_buff_len) 3574 xhci_warn(xhci, "WARN Wrong bounce buffer write length: %zu != %d\n", 3575 len, new_buff_len); 3576 } else { 3577 memcpy(seg->bounce_buf, urb->transfer_buffer + enqd_len, new_buff_len); 3578 } 3579 3580 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3581 max_pkt, DMA_TO_DEVICE); 3582 } else { 3583 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3584 max_pkt, DMA_FROM_DEVICE); 3585 } 3586 3587 if (dma_mapping_error(dev, seg->bounce_dma)) { 3588 /* try without aligning. Some host controllers survive */ 3589 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); 3590 return 0; 3591 } 3592 *trb_buff_len = new_buff_len; 3593 seg->bounce_len = new_buff_len; 3594 seg->bounce_offs = enqd_len; 3595 3596 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); 3597 3598 return 1; 3599 } 3600 3601 /* This is very similar to what ehci-q.c qtd_fill() does */ 3602 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3603 struct urb *urb, int slot_id, unsigned int ep_index) 3604 { 3605 struct xhci_ring *ring; 3606 struct urb_priv *urb_priv; 3607 struct xhci_td *td; 3608 struct xhci_generic_trb *start_trb; 3609 struct scatterlist *sg = NULL; 3610 bool more_trbs_coming = true; 3611 bool need_zero_pkt = false; 3612 bool first_trb = true; 3613 unsigned int num_trbs; 3614 unsigned int start_cycle, num_sgs = 0; 3615 unsigned int enqd_len, block_len, trb_buff_len, full_len; 3616 int sent_len, ret; 3617 u32 field, length_field, remainder; 3618 u64 addr, send_addr; 3619 3620 ring = xhci_urb_to_transfer_ring(xhci, urb); 3621 if (!ring) 3622 return -EINVAL; 3623 3624 full_len = urb->transfer_buffer_length; 3625 /* If we have scatter/gather list, we use it. */ 3626 if (urb->num_sgs && !(urb->transfer_flags & URB_DMA_MAP_SINGLE)) { 3627 num_sgs = urb->num_mapped_sgs; 3628 sg = urb->sg; 3629 addr = (u64) sg_dma_address(sg); 3630 block_len = sg_dma_len(sg); 3631 num_trbs = count_sg_trbs_needed(urb); 3632 } else { 3633 num_trbs = count_trbs_needed(urb); 3634 addr = (u64) urb->transfer_dma; 3635 block_len = full_len; 3636 } 3637 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3638 ep_index, urb->stream_id, 3639 num_trbs, urb, 0, mem_flags); 3640 if (unlikely(ret < 0)) 3641 return ret; 3642 3643 urb_priv = urb->hcpriv; 3644 3645 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3646 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) 3647 need_zero_pkt = true; 3648 3649 td = &urb_priv->td[0]; 3650 3651 /* 3652 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3653 * until we've finished creating all the other TRBs. The ring's cycle 3654 * state may change as we enqueue the other TRBs, so save it too. 3655 */ 3656 start_trb = &ring->enqueue->generic; 3657 start_cycle = ring->cycle_state; 3658 send_addr = addr; 3659 3660 /* Queue the TRBs, even if they are zero-length */ 3661 for (enqd_len = 0; first_trb || enqd_len < full_len; 3662 enqd_len += trb_buff_len) { 3663 field = TRB_TYPE(TRB_NORMAL); 3664 3665 /* TRB buffer should not cross 64KB boundaries */ 3666 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3667 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); 3668 3669 if (enqd_len + trb_buff_len > full_len) 3670 trb_buff_len = full_len - enqd_len; 3671 3672 /* Don't change the cycle bit of the first TRB until later */ 3673 if (first_trb) { 3674 first_trb = false; 3675 if (start_cycle == 0) 3676 field |= TRB_CYCLE; 3677 } else 3678 field |= ring->cycle_state; 3679 3680 /* Chain all the TRBs together; clear the chain bit in the last 3681 * TRB to indicate it's the last TRB in the chain. 3682 */ 3683 if (enqd_len + trb_buff_len < full_len) { 3684 field |= TRB_CHAIN; 3685 if (trb_is_link(ring->enqueue + 1)) { 3686 if (xhci_align_td(xhci, urb, enqd_len, 3687 &trb_buff_len, 3688 ring->enq_seg)) { 3689 send_addr = ring->enq_seg->bounce_dma; 3690 /* assuming TD won't span 2 segs */ 3691 td->bounce_seg = ring->enq_seg; 3692 } 3693 } 3694 } 3695 if (enqd_len + trb_buff_len >= full_len) { 3696 field &= ~TRB_CHAIN; 3697 field |= TRB_IOC; 3698 more_trbs_coming = false; 3699 td->last_trb = ring->enqueue; 3700 td->last_trb_seg = ring->enq_seg; 3701 if (xhci_urb_suitable_for_idt(urb)) { 3702 memcpy(&send_addr, urb->transfer_buffer, 3703 trb_buff_len); 3704 le64_to_cpus(&send_addr); 3705 field |= TRB_IDT; 3706 } 3707 } 3708 3709 /* Only set interrupt on short packet for IN endpoints */ 3710 if (usb_urb_dir_in(urb)) 3711 field |= TRB_ISP; 3712 3713 /* Set the TRB length, TD size, and interrupter fields. */ 3714 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, 3715 full_len, urb, more_trbs_coming); 3716 3717 length_field = TRB_LEN(trb_buff_len) | 3718 TRB_TD_SIZE(remainder) | 3719 TRB_INTR_TARGET(0); 3720 3721 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, 3722 lower_32_bits(send_addr), 3723 upper_32_bits(send_addr), 3724 length_field, 3725 field); 3726 td->num_trbs++; 3727 addr += trb_buff_len; 3728 sent_len = trb_buff_len; 3729 3730 while (sg && sent_len >= block_len) { 3731 /* New sg entry */ 3732 --num_sgs; 3733 sent_len -= block_len; 3734 sg = sg_next(sg); 3735 if (num_sgs != 0 && sg) { 3736 block_len = sg_dma_len(sg); 3737 addr = (u64) sg_dma_address(sg); 3738 addr += sent_len; 3739 } 3740 } 3741 block_len -= sent_len; 3742 send_addr = addr; 3743 } 3744 3745 if (need_zero_pkt) { 3746 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3747 ep_index, urb->stream_id, 3748 1, urb, 1, mem_flags); 3749 urb_priv->td[1].last_trb = ring->enqueue; 3750 urb_priv->td[1].last_trb_seg = ring->enq_seg; 3751 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; 3752 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); 3753 urb_priv->td[1].num_trbs++; 3754 } 3755 3756 check_trb_math(urb, enqd_len); 3757 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3758 start_cycle, start_trb); 3759 return 0; 3760 } 3761 3762 /* Caller must have locked xhci->lock */ 3763 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3764 struct urb *urb, int slot_id, unsigned int ep_index) 3765 { 3766 struct xhci_ring *ep_ring; 3767 int num_trbs; 3768 int ret; 3769 struct usb_ctrlrequest *setup; 3770 struct xhci_generic_trb *start_trb; 3771 int start_cycle; 3772 u32 field; 3773 struct urb_priv *urb_priv; 3774 struct xhci_td *td; 3775 3776 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3777 if (!ep_ring) 3778 return -EINVAL; 3779 3780 /* 3781 * Need to copy setup packet into setup TRB, so we can't use the setup 3782 * DMA address. 3783 */ 3784 if (!urb->setup_packet) 3785 return -EINVAL; 3786 3787 /* 1 TRB for setup, 1 for status */ 3788 num_trbs = 2; 3789 /* 3790 * Don't need to check if we need additional event data and normal TRBs, 3791 * since data in control transfers will never get bigger than 16MB 3792 * XXX: can we get a buffer that crosses 64KB boundaries? 3793 */ 3794 if (urb->transfer_buffer_length > 0) 3795 num_trbs++; 3796 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3797 ep_index, urb->stream_id, 3798 num_trbs, urb, 0, mem_flags); 3799 if (ret < 0) 3800 return ret; 3801 3802 urb_priv = urb->hcpriv; 3803 td = &urb_priv->td[0]; 3804 td->num_trbs = num_trbs; 3805 3806 /* 3807 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3808 * until we've finished creating all the other TRBs. The ring's cycle 3809 * state may change as we enqueue the other TRBs, so save it too. 3810 */ 3811 start_trb = &ep_ring->enqueue->generic; 3812 start_cycle = ep_ring->cycle_state; 3813 3814 /* Queue setup TRB - see section 6.4.1.2.1 */ 3815 /* FIXME better way to translate setup_packet into two u32 fields? */ 3816 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3817 field = 0; 3818 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3819 if (start_cycle == 0) 3820 field |= 0x1; 3821 3822 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ 3823 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { 3824 if (urb->transfer_buffer_length > 0) { 3825 if (setup->bRequestType & USB_DIR_IN) 3826 field |= TRB_TX_TYPE(TRB_DATA_IN); 3827 else 3828 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3829 } 3830 } 3831 3832 queue_trb(xhci, ep_ring, true, 3833 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3834 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3835 TRB_LEN(8) | TRB_INTR_TARGET(0), 3836 /* Immediate data in pointer */ 3837 field); 3838 3839 /* If there's data, queue data TRBs */ 3840 /* Only set interrupt on short packet for IN endpoints */ 3841 if (usb_urb_dir_in(urb)) 3842 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3843 else 3844 field = TRB_TYPE(TRB_DATA); 3845 3846 if (urb->transfer_buffer_length > 0) { 3847 u32 length_field, remainder; 3848 u64 addr; 3849 3850 if (xhci_urb_suitable_for_idt(urb)) { 3851 memcpy(&addr, urb->transfer_buffer, 3852 urb->transfer_buffer_length); 3853 le64_to_cpus(&addr); 3854 field |= TRB_IDT; 3855 } else { 3856 addr = (u64) urb->transfer_dma; 3857 } 3858 3859 remainder = xhci_td_remainder(xhci, 0, 3860 urb->transfer_buffer_length, 3861 urb->transfer_buffer_length, 3862 urb, 1); 3863 length_field = TRB_LEN(urb->transfer_buffer_length) | 3864 TRB_TD_SIZE(remainder) | 3865 TRB_INTR_TARGET(0); 3866 if (setup->bRequestType & USB_DIR_IN) 3867 field |= TRB_DIR_IN; 3868 queue_trb(xhci, ep_ring, true, 3869 lower_32_bits(addr), 3870 upper_32_bits(addr), 3871 length_field, 3872 field | ep_ring->cycle_state); 3873 } 3874 3875 /* Save the DMA address of the last TRB in the TD */ 3876 td->last_trb = ep_ring->enqueue; 3877 td->last_trb_seg = ep_ring->enq_seg; 3878 3879 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3880 /* If the device sent data, the status stage is an OUT transfer */ 3881 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3882 field = 0; 3883 else 3884 field = TRB_DIR_IN; 3885 queue_trb(xhci, ep_ring, false, 3886 0, 3887 0, 3888 TRB_INTR_TARGET(0), 3889 /* Event on completion */ 3890 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3891 3892 giveback_first_trb(xhci, slot_id, ep_index, 0, 3893 start_cycle, start_trb); 3894 return 0; 3895 } 3896 3897 /* 3898 * The transfer burst count field of the isochronous TRB defines the number of 3899 * bursts that are required to move all packets in this TD. Only SuperSpeed 3900 * devices can burst up to bMaxBurst number of packets per service interval. 3901 * This field is zero based, meaning a value of zero in the field means one 3902 * burst. Basically, for everything but SuperSpeed devices, this field will be 3903 * zero. Only xHCI 1.0 host controllers support this field. 3904 */ 3905 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3906 struct urb *urb, unsigned int total_packet_count) 3907 { 3908 unsigned int max_burst; 3909 3910 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) 3911 return 0; 3912 3913 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3914 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3915 } 3916 3917 /* 3918 * Returns the number of packets in the last "burst" of packets. This field is 3919 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3920 * the last burst packet count is equal to the total number of packets in the 3921 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3922 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3923 * contain 1 to (bMaxBurst + 1) packets. 3924 */ 3925 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3926 struct urb *urb, unsigned int total_packet_count) 3927 { 3928 unsigned int max_burst; 3929 unsigned int residue; 3930 3931 if (xhci->hci_version < 0x100) 3932 return 0; 3933 3934 if (urb->dev->speed >= USB_SPEED_SUPER) { 3935 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3936 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3937 residue = total_packet_count % (max_burst + 1); 3938 /* If residue is zero, the last burst contains (max_burst + 1) 3939 * number of packets, but the TLBPC field is zero-based. 3940 */ 3941 if (residue == 0) 3942 return max_burst; 3943 return residue - 1; 3944 } 3945 if (total_packet_count == 0) 3946 return 0; 3947 return total_packet_count - 1; 3948 } 3949 3950 /* 3951 * Calculates Frame ID field of the isochronous TRB identifies the 3952 * target frame that the Interval associated with this Isochronous 3953 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. 3954 * 3955 * Returns actual frame id on success, negative value on error. 3956 */ 3957 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, 3958 struct urb *urb, int index) 3959 { 3960 int start_frame, ist, ret = 0; 3961 int start_frame_id, end_frame_id, current_frame_id; 3962 3963 if (urb->dev->speed == USB_SPEED_LOW || 3964 urb->dev->speed == USB_SPEED_FULL) 3965 start_frame = urb->start_frame + index * urb->interval; 3966 else 3967 start_frame = (urb->start_frame + index * urb->interval) >> 3; 3968 3969 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): 3970 * 3971 * If bit [3] of IST is cleared to '0', software can add a TRB no 3972 * later than IST[2:0] Microframes before that TRB is scheduled to 3973 * be executed. 3974 * If bit [3] of IST is set to '1', software can add a TRB no later 3975 * than IST[2:0] Frames before that TRB is scheduled to be executed. 3976 */ 3977 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3978 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3979 ist <<= 3; 3980 3981 /* Software shall not schedule an Isoch TD with a Frame ID value that 3982 * is less than the Start Frame ID or greater than the End Frame ID, 3983 * where: 3984 * 3985 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 3986 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 3987 * 3988 * Both the End Frame ID and Start Frame ID values are calculated 3989 * in microframes. When software determines the valid Frame ID value; 3990 * The End Frame ID value should be rounded down to the nearest Frame 3991 * boundary, and the Start Frame ID value should be rounded up to the 3992 * nearest Frame boundary. 3993 */ 3994 current_frame_id = readl(&xhci->run_regs->microframe_index); 3995 start_frame_id = roundup(current_frame_id + ist + 1, 8); 3996 end_frame_id = rounddown(current_frame_id + 895 * 8, 8); 3997 3998 start_frame &= 0x7ff; 3999 start_frame_id = (start_frame_id >> 3) & 0x7ff; 4000 end_frame_id = (end_frame_id >> 3) & 0x7ff; 4001 4002 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n", 4003 __func__, index, readl(&xhci->run_regs->microframe_index), 4004 start_frame_id, end_frame_id, start_frame); 4005 4006 if (start_frame_id < end_frame_id) { 4007 if (start_frame > end_frame_id || 4008 start_frame < start_frame_id) 4009 ret = -EINVAL; 4010 } else if (start_frame_id > end_frame_id) { 4011 if ((start_frame > end_frame_id && 4012 start_frame < start_frame_id)) 4013 ret = -EINVAL; 4014 } else { 4015 ret = -EINVAL; 4016 } 4017 4018 if (index == 0) { 4019 if (ret == -EINVAL || start_frame == start_frame_id) { 4020 start_frame = start_frame_id + 1; 4021 if (urb->dev->speed == USB_SPEED_LOW || 4022 urb->dev->speed == USB_SPEED_FULL) 4023 urb->start_frame = start_frame; 4024 else 4025 urb->start_frame = start_frame << 3; 4026 ret = 0; 4027 } 4028 } 4029 4030 if (ret) { 4031 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", 4032 start_frame, current_frame_id, index, 4033 start_frame_id, end_frame_id); 4034 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); 4035 return ret; 4036 } 4037 4038 return start_frame; 4039 } 4040 4041 /* Check if we should generate event interrupt for a TD in an isoc URB */ 4042 static bool trb_block_event_intr(struct xhci_hcd *xhci, int num_tds, int i, 4043 struct xhci_interrupter *ir) 4044 { 4045 if (xhci->hci_version < 0x100) 4046 return false; 4047 /* always generate an event interrupt for the last TD */ 4048 if (i == num_tds - 1) 4049 return false; 4050 /* 4051 * If AVOID_BEI is set the host handles full event rings poorly, 4052 * generate an event at least every 8th TD to clear the event ring 4053 */ 4054 if (i && ir->isoc_bei_interval && xhci->quirks & XHCI_AVOID_BEI) 4055 return !!(i % ir->isoc_bei_interval); 4056 4057 return true; 4058 } 4059 4060 /* This is for isoc transfer */ 4061 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 4062 struct urb *urb, int slot_id, unsigned int ep_index) 4063 { 4064 struct xhci_interrupter *ir; 4065 struct xhci_ring *ep_ring; 4066 struct urb_priv *urb_priv; 4067 struct xhci_td *td; 4068 int num_tds, trbs_per_td; 4069 struct xhci_generic_trb *start_trb; 4070 bool first_trb; 4071 int start_cycle; 4072 u32 field, length_field; 4073 int running_total, trb_buff_len, td_len, td_remain_len, ret; 4074 u64 start_addr, addr; 4075 int i, j; 4076 bool more_trbs_coming; 4077 struct xhci_virt_ep *xep; 4078 int frame_id; 4079 4080 xep = &xhci->devs[slot_id]->eps[ep_index]; 4081 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 4082 ir = xhci->interrupters[0]; 4083 4084 num_tds = urb->number_of_packets; 4085 if (num_tds < 1) { 4086 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 4087 return -EINVAL; 4088 } 4089 start_addr = (u64) urb->transfer_dma; 4090 start_trb = &ep_ring->enqueue->generic; 4091 start_cycle = ep_ring->cycle_state; 4092 4093 urb_priv = urb->hcpriv; 4094 /* Queue the TRBs for each TD, even if they are zero-length */ 4095 for (i = 0; i < num_tds; i++) { 4096 unsigned int total_pkt_count, max_pkt; 4097 unsigned int burst_count, last_burst_pkt_count; 4098 u32 sia_frame_id; 4099 4100 first_trb = true; 4101 running_total = 0; 4102 addr = start_addr + urb->iso_frame_desc[i].offset; 4103 td_len = urb->iso_frame_desc[i].length; 4104 td_remain_len = td_len; 4105 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 4106 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); 4107 4108 /* A zero-length transfer still involves at least one packet. */ 4109 if (total_pkt_count == 0) 4110 total_pkt_count++; 4111 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); 4112 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, 4113 urb, total_pkt_count); 4114 4115 trbs_per_td = count_isoc_trbs_needed(urb, i); 4116 4117 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 4118 urb->stream_id, trbs_per_td, urb, i, mem_flags); 4119 if (ret < 0) { 4120 if (i == 0) 4121 return ret; 4122 goto cleanup; 4123 } 4124 td = &urb_priv->td[i]; 4125 td->num_trbs = trbs_per_td; 4126 /* use SIA as default, if frame id is used overwrite it */ 4127 sia_frame_id = TRB_SIA; 4128 if (!(urb->transfer_flags & URB_ISO_ASAP) && 4129 HCC_CFC(xhci->hcc_params)) { 4130 frame_id = xhci_get_isoc_frame_id(xhci, urb, i); 4131 if (frame_id >= 0) 4132 sia_frame_id = TRB_FRAME_ID(frame_id); 4133 } 4134 /* 4135 * Set isoc specific data for the first TRB in a TD. 4136 * Prevent HW from getting the TRBs by keeping the cycle state 4137 * inverted in the first TDs isoc TRB. 4138 */ 4139 field = TRB_TYPE(TRB_ISOC) | 4140 TRB_TLBPC(last_burst_pkt_count) | 4141 sia_frame_id | 4142 (i ? ep_ring->cycle_state : !start_cycle); 4143 4144 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ 4145 if (!xep->use_extended_tbc) 4146 field |= TRB_TBC(burst_count); 4147 4148 /* fill the rest of the TRB fields, and remaining normal TRBs */ 4149 for (j = 0; j < trbs_per_td; j++) { 4150 u32 remainder = 0; 4151 4152 /* only first TRB is isoc, overwrite otherwise */ 4153 if (!first_trb) 4154 field = TRB_TYPE(TRB_NORMAL) | 4155 ep_ring->cycle_state; 4156 4157 /* Only set interrupt on short packet for IN EPs */ 4158 if (usb_urb_dir_in(urb)) 4159 field |= TRB_ISP; 4160 4161 /* Set the chain bit for all except the last TRB */ 4162 if (j < trbs_per_td - 1) { 4163 more_trbs_coming = true; 4164 field |= TRB_CHAIN; 4165 } else { 4166 more_trbs_coming = false; 4167 td->last_trb = ep_ring->enqueue; 4168 td->last_trb_seg = ep_ring->enq_seg; 4169 field |= TRB_IOC; 4170 if (trb_block_event_intr(xhci, num_tds, i, ir)) 4171 field |= TRB_BEI; 4172 } 4173 /* Calculate TRB length */ 4174 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 4175 if (trb_buff_len > td_remain_len) 4176 trb_buff_len = td_remain_len; 4177 4178 /* Set the TRB length, TD size, & interrupter fields. */ 4179 remainder = xhci_td_remainder(xhci, running_total, 4180 trb_buff_len, td_len, 4181 urb, more_trbs_coming); 4182 4183 length_field = TRB_LEN(trb_buff_len) | 4184 TRB_INTR_TARGET(0); 4185 4186 /* xhci 1.1 with ETE uses TD Size field for TBC */ 4187 if (first_trb && xep->use_extended_tbc) 4188 length_field |= TRB_TD_SIZE_TBC(burst_count); 4189 else 4190 length_field |= TRB_TD_SIZE(remainder); 4191 first_trb = false; 4192 4193 queue_trb(xhci, ep_ring, more_trbs_coming, 4194 lower_32_bits(addr), 4195 upper_32_bits(addr), 4196 length_field, 4197 field); 4198 running_total += trb_buff_len; 4199 4200 addr += trb_buff_len; 4201 td_remain_len -= trb_buff_len; 4202 } 4203 4204 /* Check TD length */ 4205 if (running_total != td_len) { 4206 xhci_err(xhci, "ISOC TD length unmatch\n"); 4207 ret = -EINVAL; 4208 goto cleanup; 4209 } 4210 } 4211 4212 /* store the next frame id */ 4213 if (HCC_CFC(xhci->hcc_params)) 4214 xep->next_frame_id = urb->start_frame + num_tds * urb->interval; 4215 4216 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 4217 if (xhci->quirks & XHCI_AMD_PLL_FIX) 4218 usb_amd_quirk_pll_disable(); 4219 } 4220 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 4221 4222 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 4223 start_cycle, start_trb); 4224 return 0; 4225 cleanup: 4226 /* Clean up a partially enqueued isoc transfer. */ 4227 4228 for (i--; i >= 0; i--) 4229 list_del_init(&urb_priv->td[i].td_list); 4230 4231 /* Use the first TD as a temporary variable to turn the TDs we've queued 4232 * into No-ops with a software-owned cycle bit. That way the hardware 4233 * won't accidentally start executing bogus TDs when we partially 4234 * overwrite them. td->first_trb and td->start_seg are already set. 4235 */ 4236 urb_priv->td[0].last_trb = ep_ring->enqueue; 4237 /* Every TRB except the first & last will have its cycle bit flipped. */ 4238 td_to_noop(xhci, ep_ring, &urb_priv->td[0], true); 4239 4240 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 4241 ep_ring->enqueue = urb_priv->td[0].first_trb; 4242 ep_ring->enq_seg = urb_priv->td[0].start_seg; 4243 ep_ring->cycle_state = start_cycle; 4244 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 4245 return ret; 4246 } 4247 4248 /* 4249 * Check transfer ring to guarantee there is enough room for the urb. 4250 * Update ISO URB start_frame and interval. 4251 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to 4252 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or 4253 * Contiguous Frame ID is not supported by HC. 4254 */ 4255 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 4256 struct urb *urb, int slot_id, unsigned int ep_index) 4257 { 4258 struct xhci_virt_device *xdev; 4259 struct xhci_ring *ep_ring; 4260 struct xhci_ep_ctx *ep_ctx; 4261 int start_frame; 4262 int num_tds, num_trbs, i; 4263 int ret; 4264 struct xhci_virt_ep *xep; 4265 int ist; 4266 4267 xdev = xhci->devs[slot_id]; 4268 xep = &xhci->devs[slot_id]->eps[ep_index]; 4269 ep_ring = xdev->eps[ep_index].ring; 4270 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 4271 4272 num_trbs = 0; 4273 num_tds = urb->number_of_packets; 4274 for (i = 0; i < num_tds; i++) 4275 num_trbs += count_isoc_trbs_needed(urb, i); 4276 4277 /* Check the ring to guarantee there is enough room for the whole urb. 4278 * Do not insert any td of the urb to the ring if the check failed. 4279 */ 4280 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 4281 num_trbs, mem_flags); 4282 if (ret) 4283 return ret; 4284 4285 /* 4286 * Check interval value. This should be done before we start to 4287 * calculate the start frame value. 4288 */ 4289 check_interval(xhci, urb, ep_ctx); 4290 4291 /* Calculate the start frame and put it in urb->start_frame. */ 4292 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { 4293 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) { 4294 urb->start_frame = xep->next_frame_id; 4295 goto skip_start_over; 4296 } 4297 } 4298 4299 start_frame = readl(&xhci->run_regs->microframe_index); 4300 start_frame &= 0x3fff; 4301 /* 4302 * Round up to the next frame and consider the time before trb really 4303 * gets scheduled by hardare. 4304 */ 4305 ist = HCS_IST(xhci->hcs_params2) & 0x7; 4306 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 4307 ist <<= 3; 4308 start_frame += ist + XHCI_CFC_DELAY; 4309 start_frame = roundup(start_frame, 8); 4310 4311 /* 4312 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT 4313 * is greate than 8 microframes. 4314 */ 4315 if (urb->dev->speed == USB_SPEED_LOW || 4316 urb->dev->speed == USB_SPEED_FULL) { 4317 start_frame = roundup(start_frame, urb->interval << 3); 4318 urb->start_frame = start_frame >> 3; 4319 } else { 4320 start_frame = roundup(start_frame, urb->interval); 4321 urb->start_frame = start_frame; 4322 } 4323 4324 skip_start_over: 4325 4326 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 4327 } 4328 4329 /**** Command Ring Operations ****/ 4330 4331 /* Generic function for queueing a command TRB on the command ring. 4332 * Check to make sure there's room on the command ring for one command TRB. 4333 * Also check that there's room reserved for commands that must not fail. 4334 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 4335 * then only check for the number of reserved spots. 4336 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 4337 * because the command event handler may want to resubmit a failed command. 4338 */ 4339 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4340 u32 field1, u32 field2, 4341 u32 field3, u32 field4, bool command_must_succeed) 4342 { 4343 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 4344 int ret; 4345 4346 if ((xhci->xhc_state & XHCI_STATE_DYING) || 4347 (xhci->xhc_state & XHCI_STATE_HALTED)) { 4348 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); 4349 return -ESHUTDOWN; 4350 } 4351 4352 if (!command_must_succeed) 4353 reserved_trbs++; 4354 4355 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 4356 reserved_trbs, GFP_ATOMIC); 4357 if (ret < 0) { 4358 xhci_err(xhci, "ERR: No room for command on command ring\n"); 4359 if (command_must_succeed) 4360 xhci_err(xhci, "ERR: Reserved TRB counting for " 4361 "unfailable commands failed.\n"); 4362 return ret; 4363 } 4364 4365 cmd->command_trb = xhci->cmd_ring->enqueue; 4366 4367 /* if there are no other commands queued we start the timeout timer */ 4368 if (list_empty(&xhci->cmd_list)) { 4369 xhci->current_cmd = cmd; 4370 xhci_mod_cmd_timer(xhci); 4371 } 4372 4373 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 4374 4375 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 4376 field4 | xhci->cmd_ring->cycle_state); 4377 return 0; 4378 } 4379 4380 /* Queue a slot enable or disable request on the command ring */ 4381 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 4382 u32 trb_type, u32 slot_id) 4383 { 4384 return queue_command(xhci, cmd, 0, 0, 0, 4385 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 4386 } 4387 4388 /* Queue an address device command TRB */ 4389 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4390 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 4391 { 4392 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4393 upper_32_bits(in_ctx_ptr), 0, 4394 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 4395 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 4396 } 4397 4398 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4399 u32 field1, u32 field2, u32 field3, u32 field4) 4400 { 4401 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 4402 } 4403 4404 /* Queue a reset device command TRB */ 4405 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4406 u32 slot_id) 4407 { 4408 return queue_command(xhci, cmd, 0, 0, 0, 4409 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 4410 false); 4411 } 4412 4413 /* Queue a configure endpoint command TRB */ 4414 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 4415 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 4416 u32 slot_id, bool command_must_succeed) 4417 { 4418 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4419 upper_32_bits(in_ctx_ptr), 0, 4420 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 4421 command_must_succeed); 4422 } 4423 4424 /* Queue an evaluate context command TRB */ 4425 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 4426 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 4427 { 4428 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4429 upper_32_bits(in_ctx_ptr), 0, 4430 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 4431 command_must_succeed); 4432 } 4433 4434 /* 4435 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 4436 * activity on an endpoint that is about to be suspended. 4437 */ 4438 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 4439 int slot_id, unsigned int ep_index, int suspend) 4440 { 4441 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4442 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4443 u32 type = TRB_TYPE(TRB_STOP_RING); 4444 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 4445 4446 return queue_command(xhci, cmd, 0, 0, 0, 4447 trb_slot_id | trb_ep_index | type | trb_suspend, false); 4448 } 4449 4450 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 4451 int slot_id, unsigned int ep_index, 4452 enum xhci_ep_reset_type reset_type) 4453 { 4454 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4455 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4456 u32 type = TRB_TYPE(TRB_RESET_EP); 4457 4458 if (reset_type == EP_SOFT_RESET) 4459 type |= TRB_TSP; 4460 4461 return queue_command(xhci, cmd, 0, 0, 0, 4462 trb_slot_id | trb_ep_index | type, false); 4463 } 4464