1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 /* 24 * Ring initialization rules: 25 * 1. Each segment is initialized to zero, except for link TRBs. 26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 27 * Consumer Cycle State (CCS), depending on ring function. 28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 29 * 30 * Ring behavior rules: 31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 32 * least one free TRB in the ring. This is useful if you want to turn that 33 * into a link TRB and expand the ring. 34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 35 * link TRB, then load the pointer with the address in the link TRB. If the 36 * link TRB had its toggle bit set, you may need to update the ring cycle 37 * state (see cycle bit rules). You may have to do this multiple times 38 * until you reach a non-link TRB. 39 * 3. A ring is full if enqueue++ (for the definition of increment above) 40 * equals the dequeue pointer. 41 * 42 * Cycle bit rules: 43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 44 * in a link TRB, it must toggle the ring cycle state. 45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 46 * in a link TRB, it must toggle the ring cycle state. 47 * 48 * Producer rules: 49 * 1. Check if ring is full before you enqueue. 50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 51 * Update enqueue pointer between each write (which may update the ring 52 * cycle state). 53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 54 * and endpoint rings. If HC is the producer for the event ring, 55 * and it generates an interrupt according to interrupt modulation rules. 56 * 57 * Consumer rules: 58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 59 * the TRB is owned by the consumer. 60 * 2. Update dequeue pointer (which may update the ring cycle state) and 61 * continue processing TRBs until you reach a TRB which is not owned by you. 62 * 3. Notify the producer. SW is the consumer for the event ring, and it 63 * updates event ring dequeue pointer. HC is the consumer for the command and 64 * endpoint rings; it generates events on the event ring for these. 65 */ 66 67 #include <linux/scatterlist.h> 68 #include <linux/slab.h> 69 #include "xhci.h" 70 71 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, 72 struct xhci_virt_device *virt_dev, 73 struct xhci_event_cmd *event); 74 75 /* 76 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 77 * address of the TRB. 78 */ 79 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 80 union xhci_trb *trb) 81 { 82 unsigned long segment_offset; 83 84 if (!seg || !trb || trb < seg->trbs) 85 return 0; 86 /* offset in TRBs */ 87 segment_offset = trb - seg->trbs; 88 if (segment_offset > TRBS_PER_SEGMENT) 89 return 0; 90 return seg->dma + (segment_offset * sizeof(*trb)); 91 } 92 93 /* Does this link TRB point to the first segment in a ring, 94 * or was the previous TRB the last TRB on the last segment in the ERST? 95 */ 96 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring, 97 struct xhci_segment *seg, union xhci_trb *trb) 98 { 99 if (ring == xhci->event_ring) 100 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) && 101 (seg->next == xhci->event_ring->first_seg); 102 else 103 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 104 } 105 106 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring 107 * segment? I.e. would the updated event TRB pointer step off the end of the 108 * event seg? 109 */ 110 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 111 struct xhci_segment *seg, union xhci_trb *trb) 112 { 113 if (ring == xhci->event_ring) 114 return trb == &seg->trbs[TRBS_PER_SEGMENT]; 115 else 116 return TRB_TYPE_LINK_LE32(trb->link.control); 117 } 118 119 static int enqueue_is_link_trb(struct xhci_ring *ring) 120 { 121 struct xhci_link_trb *link = &ring->enqueue->link; 122 return TRB_TYPE_LINK_LE32(link->control); 123 } 124 125 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 126 * TRB is in a new segment. This does not skip over link TRBs, and it does not 127 * effect the ring dequeue or enqueue pointers. 128 */ 129 static void next_trb(struct xhci_hcd *xhci, 130 struct xhci_ring *ring, 131 struct xhci_segment **seg, 132 union xhci_trb **trb) 133 { 134 if (last_trb(xhci, ring, *seg, *trb)) { 135 *seg = (*seg)->next; 136 *trb = ((*seg)->trbs); 137 } else { 138 (*trb)++; 139 } 140 } 141 142 /* 143 * See Cycle bit rules. SW is the consumer for the event ring only. 144 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 145 */ 146 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring, bool consumer) 147 { 148 union xhci_trb *next = ++(ring->dequeue); 149 unsigned long long addr; 150 151 ring->deq_updates++; 152 /* Update the dequeue pointer further if that was a link TRB or we're at 153 * the end of an event ring segment (which doesn't have link TRBS) 154 */ 155 while (last_trb(xhci, ring, ring->deq_seg, next)) { 156 if (consumer && last_trb_on_last_seg(xhci, ring, ring->deq_seg, next)) { 157 ring->cycle_state = (ring->cycle_state ? 0 : 1); 158 } 159 ring->deq_seg = ring->deq_seg->next; 160 ring->dequeue = ring->deq_seg->trbs; 161 next = ring->dequeue; 162 } 163 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue); 164 } 165 166 /* 167 * See Cycle bit rules. SW is the consumer for the event ring only. 168 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 169 * 170 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 171 * chain bit is set), then set the chain bit in all the following link TRBs. 172 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 173 * have their chain bit cleared (so that each Link TRB is a separate TD). 174 * 175 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 176 * set, but other sections talk about dealing with the chain bit set. This was 177 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 178 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 179 * 180 * @more_trbs_coming: Will you enqueue more TRBs before calling 181 * prepare_transfer()? 182 */ 183 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 184 bool consumer, bool more_trbs_coming, bool isoc) 185 { 186 u32 chain; 187 union xhci_trb *next; 188 unsigned long long addr; 189 190 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 191 next = ++(ring->enqueue); 192 193 ring->enq_updates++; 194 /* Update the dequeue pointer further if that was a link TRB or we're at 195 * the end of an event ring segment (which doesn't have link TRBS) 196 */ 197 while (last_trb(xhci, ring, ring->enq_seg, next)) { 198 if (!consumer) { 199 if (ring != xhci->event_ring) { 200 /* 201 * If the caller doesn't plan on enqueueing more 202 * TDs before ringing the doorbell, then we 203 * don't want to give the link TRB to the 204 * hardware just yet. We'll give the link TRB 205 * back in prepare_ring() just before we enqueue 206 * the TD at the top of the ring. 207 */ 208 if (!chain && !more_trbs_coming) 209 break; 210 211 /* If we're not dealing with 0.95 hardware or 212 * isoc rings on AMD 0.96 host, 213 * carry over the chain bit of the previous TRB 214 * (which may mean the chain bit is cleared). 215 */ 216 if (!(isoc && (xhci->quirks & XHCI_AMD_0x96_HOST)) 217 && !xhci_link_trb_quirk(xhci)) { 218 next->link.control &= 219 cpu_to_le32(~TRB_CHAIN); 220 next->link.control |= 221 cpu_to_le32(chain); 222 } 223 /* Give this link TRB to the hardware */ 224 wmb(); 225 next->link.control ^= cpu_to_le32(TRB_CYCLE); 226 } 227 /* Toggle the cycle bit after the last ring segment. */ 228 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 229 ring->cycle_state = (ring->cycle_state ? 0 : 1); 230 } 231 } 232 ring->enq_seg = ring->enq_seg->next; 233 ring->enqueue = ring->enq_seg->trbs; 234 next = ring->enqueue; 235 } 236 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue); 237 } 238 239 /* 240 * Check to see if there's room to enqueue num_trbs on the ring. See rules 241 * above. 242 * FIXME: this would be simpler and faster if we just kept track of the number 243 * of free TRBs in a ring. 244 */ 245 static int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 246 unsigned int num_trbs) 247 { 248 int i; 249 union xhci_trb *enq = ring->enqueue; 250 struct xhci_segment *enq_seg = ring->enq_seg; 251 struct xhci_segment *cur_seg; 252 unsigned int left_on_ring; 253 254 /* If we are currently pointing to a link TRB, advance the 255 * enqueue pointer before checking for space */ 256 while (last_trb(xhci, ring, enq_seg, enq)) { 257 enq_seg = enq_seg->next; 258 enq = enq_seg->trbs; 259 } 260 261 /* Check if ring is empty */ 262 if (enq == ring->dequeue) { 263 /* Can't use link trbs */ 264 left_on_ring = TRBS_PER_SEGMENT - 1; 265 for (cur_seg = enq_seg->next; cur_seg != enq_seg; 266 cur_seg = cur_seg->next) 267 left_on_ring += TRBS_PER_SEGMENT - 1; 268 269 /* Always need one TRB free in the ring. */ 270 left_on_ring -= 1; 271 if (num_trbs > left_on_ring) { 272 xhci_warn(xhci, "Not enough room on ring; " 273 "need %u TRBs, %u TRBs left\n", 274 num_trbs, left_on_ring); 275 return 0; 276 } 277 return 1; 278 } 279 /* Make sure there's an extra empty TRB available */ 280 for (i = 0; i <= num_trbs; ++i) { 281 if (enq == ring->dequeue) 282 return 0; 283 enq++; 284 while (last_trb(xhci, ring, enq_seg, enq)) { 285 enq_seg = enq_seg->next; 286 enq = enq_seg->trbs; 287 } 288 } 289 return 1; 290 } 291 292 /* Ring the host controller doorbell after placing a command on the ring */ 293 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 294 { 295 xhci_dbg(xhci, "// Ding dong!\n"); 296 xhci_writel(xhci, DB_VALUE_HOST, &xhci->dba->doorbell[0]); 297 /* Flush PCI posted writes */ 298 xhci_readl(xhci, &xhci->dba->doorbell[0]); 299 } 300 301 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 302 unsigned int slot_id, 303 unsigned int ep_index, 304 unsigned int stream_id) 305 { 306 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 307 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 308 unsigned int ep_state = ep->ep_state; 309 310 /* Don't ring the doorbell for this endpoint if there are pending 311 * cancellations because we don't want to interrupt processing. 312 * We don't want to restart any stream rings if there's a set dequeue 313 * pointer command pending because the device can choose to start any 314 * stream once the endpoint is on the HW schedule. 315 * FIXME - check all the stream rings for pending cancellations. 316 */ 317 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) || 318 (ep_state & EP_HALTED)) 319 return; 320 xhci_writel(xhci, DB_VALUE(ep_index, stream_id), db_addr); 321 /* The CPU has better things to do at this point than wait for a 322 * write-posting flush. It'll get there soon enough. 323 */ 324 } 325 326 /* Ring the doorbell for any rings with pending URBs */ 327 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 328 unsigned int slot_id, 329 unsigned int ep_index) 330 { 331 unsigned int stream_id; 332 struct xhci_virt_ep *ep; 333 334 ep = &xhci->devs[slot_id]->eps[ep_index]; 335 336 /* A ring has pending URBs if its TD list is not empty */ 337 if (!(ep->ep_state & EP_HAS_STREAMS)) { 338 if (!(list_empty(&ep->ring->td_list))) 339 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 340 return; 341 } 342 343 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 344 stream_id++) { 345 struct xhci_stream_info *stream_info = ep->stream_info; 346 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 347 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 348 stream_id); 349 } 350 } 351 352 /* 353 * Find the segment that trb is in. Start searching in start_seg. 354 * If we must move past a segment that has a link TRB with a toggle cycle state 355 * bit set, then we will toggle the value pointed at by cycle_state. 356 */ 357 static struct xhci_segment *find_trb_seg( 358 struct xhci_segment *start_seg, 359 union xhci_trb *trb, int *cycle_state) 360 { 361 struct xhci_segment *cur_seg = start_seg; 362 struct xhci_generic_trb *generic_trb; 363 364 while (cur_seg->trbs > trb || 365 &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) { 366 generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic; 367 if (generic_trb->field[3] & cpu_to_le32(LINK_TOGGLE)) 368 *cycle_state ^= 0x1; 369 cur_seg = cur_seg->next; 370 if (cur_seg == start_seg) 371 /* Looped over the entire list. Oops! */ 372 return NULL; 373 } 374 return cur_seg; 375 } 376 377 378 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 379 unsigned int slot_id, unsigned int ep_index, 380 unsigned int stream_id) 381 { 382 struct xhci_virt_ep *ep; 383 384 ep = &xhci->devs[slot_id]->eps[ep_index]; 385 /* Common case: no streams */ 386 if (!(ep->ep_state & EP_HAS_STREAMS)) 387 return ep->ring; 388 389 if (stream_id == 0) { 390 xhci_warn(xhci, 391 "WARN: Slot ID %u, ep index %u has streams, " 392 "but URB has no stream ID.\n", 393 slot_id, ep_index); 394 return NULL; 395 } 396 397 if (stream_id < ep->stream_info->num_streams) 398 return ep->stream_info->stream_rings[stream_id]; 399 400 xhci_warn(xhci, 401 "WARN: Slot ID %u, ep index %u has " 402 "stream IDs 1 to %u allocated, " 403 "but stream ID %u is requested.\n", 404 slot_id, ep_index, 405 ep->stream_info->num_streams - 1, 406 stream_id); 407 return NULL; 408 } 409 410 /* Get the right ring for the given URB. 411 * If the endpoint supports streams, boundary check the URB's stream ID. 412 * If the endpoint doesn't support streams, return the singular endpoint ring. 413 */ 414 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 415 struct urb *urb) 416 { 417 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id, 418 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id); 419 } 420 421 /* 422 * Move the xHC's endpoint ring dequeue pointer past cur_td. 423 * Record the new state of the xHC's endpoint ring dequeue segment, 424 * dequeue pointer, and new consumer cycle state in state. 425 * Update our internal representation of the ring's dequeue pointer. 426 * 427 * We do this in three jumps: 428 * - First we update our new ring state to be the same as when the xHC stopped. 429 * - Then we traverse the ring to find the segment that contains 430 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass 431 * any link TRBs with the toggle cycle bit set. 432 * - Finally we move the dequeue state one TRB further, toggling the cycle bit 433 * if we've moved it past a link TRB with the toggle cycle bit set. 434 * 435 * Some of the uses of xhci_generic_trb are grotty, but if they're done 436 * with correct __le32 accesses they should work fine. Only users of this are 437 * in here. 438 */ 439 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, 440 unsigned int slot_id, unsigned int ep_index, 441 unsigned int stream_id, struct xhci_td *cur_td, 442 struct xhci_dequeue_state *state) 443 { 444 struct xhci_virt_device *dev = xhci->devs[slot_id]; 445 struct xhci_ring *ep_ring; 446 struct xhci_generic_trb *trb; 447 struct xhci_ep_ctx *ep_ctx; 448 dma_addr_t addr; 449 450 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 451 ep_index, stream_id); 452 if (!ep_ring) { 453 xhci_warn(xhci, "WARN can't find new dequeue state " 454 "for invalid stream ID %u.\n", 455 stream_id); 456 return; 457 } 458 state->new_cycle_state = 0; 459 xhci_dbg(xhci, "Finding segment containing stopped TRB.\n"); 460 state->new_deq_seg = find_trb_seg(cur_td->start_seg, 461 dev->eps[ep_index].stopped_trb, 462 &state->new_cycle_state); 463 if (!state->new_deq_seg) { 464 WARN_ON(1); 465 return; 466 } 467 468 /* Dig out the cycle state saved by the xHC during the stop ep cmd */ 469 xhci_dbg(xhci, "Finding endpoint context\n"); 470 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 471 state->new_cycle_state = 0x1 & le64_to_cpu(ep_ctx->deq); 472 473 state->new_deq_ptr = cur_td->last_trb; 474 xhci_dbg(xhci, "Finding segment containing last TRB in TD.\n"); 475 state->new_deq_seg = find_trb_seg(state->new_deq_seg, 476 state->new_deq_ptr, 477 &state->new_cycle_state); 478 if (!state->new_deq_seg) { 479 WARN_ON(1); 480 return; 481 } 482 483 trb = &state->new_deq_ptr->generic; 484 if (TRB_TYPE_LINK_LE32(trb->field[3]) && 485 (trb->field[3] & cpu_to_le32(LINK_TOGGLE))) 486 state->new_cycle_state ^= 0x1; 487 next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr); 488 489 /* 490 * If there is only one segment in a ring, find_trb_seg()'s while loop 491 * will not run, and it will return before it has a chance to see if it 492 * needs to toggle the cycle bit. It can't tell if the stalled transfer 493 * ended just before the link TRB on a one-segment ring, or if the TD 494 * wrapped around the top of the ring, because it doesn't have the TD in 495 * question. Look for the one-segment case where stalled TRB's address 496 * is greater than the new dequeue pointer address. 497 */ 498 if (ep_ring->first_seg == ep_ring->first_seg->next && 499 state->new_deq_ptr < dev->eps[ep_index].stopped_trb) 500 state->new_cycle_state ^= 0x1; 501 xhci_dbg(xhci, "Cycle state = 0x%x\n", state->new_cycle_state); 502 503 /* Don't update the ring cycle state for the producer (us). */ 504 xhci_dbg(xhci, "New dequeue segment = %p (virtual)\n", 505 state->new_deq_seg); 506 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); 507 xhci_dbg(xhci, "New dequeue pointer = 0x%llx (DMA)\n", 508 (unsigned long long) addr); 509 } 510 511 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 512 * (The last TRB actually points to the ring enqueue pointer, which is not part 513 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 514 */ 515 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 516 struct xhci_td *cur_td, bool flip_cycle) 517 { 518 struct xhci_segment *cur_seg; 519 union xhci_trb *cur_trb; 520 521 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb; 522 true; 523 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 524 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) { 525 /* Unchain any chained Link TRBs, but 526 * leave the pointers intact. 527 */ 528 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN); 529 /* Flip the cycle bit (link TRBs can't be the first 530 * or last TRB). 531 */ 532 if (flip_cycle) 533 cur_trb->generic.field[3] ^= 534 cpu_to_le32(TRB_CYCLE); 535 xhci_dbg(xhci, "Cancel (unchain) link TRB\n"); 536 xhci_dbg(xhci, "Address = %p (0x%llx dma); " 537 "in seg %p (0x%llx dma)\n", 538 cur_trb, 539 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb), 540 cur_seg, 541 (unsigned long long)cur_seg->dma); 542 } else { 543 cur_trb->generic.field[0] = 0; 544 cur_trb->generic.field[1] = 0; 545 cur_trb->generic.field[2] = 0; 546 /* Preserve only the cycle bit of this TRB */ 547 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 548 /* Flip the cycle bit except on the first or last TRB */ 549 if (flip_cycle && cur_trb != cur_td->first_trb && 550 cur_trb != cur_td->last_trb) 551 cur_trb->generic.field[3] ^= 552 cpu_to_le32(TRB_CYCLE); 553 cur_trb->generic.field[3] |= cpu_to_le32( 554 TRB_TYPE(TRB_TR_NOOP)); 555 xhci_dbg(xhci, "TRB to noop at offset 0x%llx\n", 556 (unsigned long long) 557 xhci_trb_virt_to_dma(cur_seg, cur_trb)); 558 } 559 if (cur_trb == cur_td->last_trb) 560 break; 561 } 562 } 563 564 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id, 565 unsigned int ep_index, unsigned int stream_id, 566 struct xhci_segment *deq_seg, 567 union xhci_trb *deq_ptr, u32 cycle_state); 568 569 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, 570 unsigned int slot_id, unsigned int ep_index, 571 unsigned int stream_id, 572 struct xhci_dequeue_state *deq_state) 573 { 574 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 575 576 xhci_dbg(xhci, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), " 577 "new deq ptr = %p (0x%llx dma), new cycle = %u\n", 578 deq_state->new_deq_seg, 579 (unsigned long long)deq_state->new_deq_seg->dma, 580 deq_state->new_deq_ptr, 581 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr), 582 deq_state->new_cycle_state); 583 queue_set_tr_deq(xhci, slot_id, ep_index, stream_id, 584 deq_state->new_deq_seg, 585 deq_state->new_deq_ptr, 586 (u32) deq_state->new_cycle_state); 587 /* Stop the TD queueing code from ringing the doorbell until 588 * this command completes. The HC won't set the dequeue pointer 589 * if the ring is running, and ringing the doorbell starts the 590 * ring running. 591 */ 592 ep->ep_state |= SET_DEQ_PENDING; 593 } 594 595 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, 596 struct xhci_virt_ep *ep) 597 { 598 ep->ep_state &= ~EP_HALT_PENDING; 599 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the 600 * timer is running on another CPU, we don't decrement stop_cmds_pending 601 * (since we didn't successfully stop the watchdog timer). 602 */ 603 if (del_timer(&ep->stop_cmd_timer)) 604 ep->stop_cmds_pending--; 605 } 606 607 /* Must be called with xhci->lock held in interrupt context */ 608 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 609 struct xhci_td *cur_td, int status, char *adjective) 610 { 611 struct usb_hcd *hcd; 612 struct urb *urb; 613 struct urb_priv *urb_priv; 614 615 urb = cur_td->urb; 616 urb_priv = urb->hcpriv; 617 urb_priv->td_cnt++; 618 hcd = bus_to_hcd(urb->dev->bus); 619 620 /* Only giveback urb when this is the last td in urb */ 621 if (urb_priv->td_cnt == urb_priv->length) { 622 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 623 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 624 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 625 if (xhci->quirks & XHCI_AMD_PLL_FIX) 626 usb_amd_quirk_pll_enable(); 627 } 628 } 629 usb_hcd_unlink_urb_from_ep(hcd, urb); 630 631 spin_unlock(&xhci->lock); 632 usb_hcd_giveback_urb(hcd, urb, status); 633 xhci_urb_free_priv(xhci, urb_priv); 634 spin_lock(&xhci->lock); 635 } 636 } 637 638 /* 639 * When we get a command completion for a Stop Endpoint Command, we need to 640 * unlink any cancelled TDs from the ring. There are two ways to do that: 641 * 642 * 1. If the HW was in the middle of processing the TD that needs to be 643 * cancelled, then we must move the ring's dequeue pointer past the last TRB 644 * in the TD with a Set Dequeue Pointer Command. 645 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 646 * bit cleared) so that the HW will skip over them. 647 */ 648 static void handle_stopped_endpoint(struct xhci_hcd *xhci, 649 union xhci_trb *trb, struct xhci_event_cmd *event) 650 { 651 unsigned int slot_id; 652 unsigned int ep_index; 653 struct xhci_virt_device *virt_dev; 654 struct xhci_ring *ep_ring; 655 struct xhci_virt_ep *ep; 656 struct list_head *entry; 657 struct xhci_td *cur_td = NULL; 658 struct xhci_td *last_unlinked_td; 659 660 struct xhci_dequeue_state deq_state; 661 662 if (unlikely(TRB_TO_SUSPEND_PORT( 663 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])))) { 664 slot_id = TRB_TO_SLOT_ID( 665 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])); 666 virt_dev = xhci->devs[slot_id]; 667 if (virt_dev) 668 handle_cmd_in_cmd_wait_list(xhci, virt_dev, 669 event); 670 else 671 xhci_warn(xhci, "Stop endpoint command " 672 "completion for disabled slot %u\n", 673 slot_id); 674 return; 675 } 676 677 memset(&deq_state, 0, sizeof(deq_state)); 678 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3])); 679 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 680 ep = &xhci->devs[slot_id]->eps[ep_index]; 681 682 if (list_empty(&ep->cancelled_td_list)) { 683 xhci_stop_watchdog_timer_in_irq(xhci, ep); 684 ep->stopped_td = NULL; 685 ep->stopped_trb = NULL; 686 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 687 return; 688 } 689 690 /* Fix up the ep ring first, so HW stops executing cancelled TDs. 691 * We have the xHCI lock, so nothing can modify this list until we drop 692 * it. We're also in the event handler, so we can't get re-interrupted 693 * if another Stop Endpoint command completes 694 */ 695 list_for_each(entry, &ep->cancelled_td_list) { 696 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list); 697 xhci_dbg(xhci, "Removing canceled TD starting at 0x%llx (dma).\n", 698 (unsigned long long)xhci_trb_virt_to_dma( 699 cur_td->start_seg, cur_td->first_trb)); 700 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 701 if (!ep_ring) { 702 /* This shouldn't happen unless a driver is mucking 703 * with the stream ID after submission. This will 704 * leave the TD on the hardware ring, and the hardware 705 * will try to execute it, and may access a buffer 706 * that has already been freed. In the best case, the 707 * hardware will execute it, and the event handler will 708 * ignore the completion event for that TD, since it was 709 * removed from the td_list for that endpoint. In 710 * short, don't muck with the stream ID after 711 * submission. 712 */ 713 xhci_warn(xhci, "WARN Cancelled URB %p " 714 "has invalid stream ID %u.\n", 715 cur_td->urb, 716 cur_td->urb->stream_id); 717 goto remove_finished_td; 718 } 719 /* 720 * If we stopped on the TD we need to cancel, then we have to 721 * move the xHC endpoint ring dequeue pointer past this TD. 722 */ 723 if (cur_td == ep->stopped_td) 724 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, 725 cur_td->urb->stream_id, 726 cur_td, &deq_state); 727 else 728 td_to_noop(xhci, ep_ring, cur_td, false); 729 remove_finished_td: 730 /* 731 * The event handler won't see a completion for this TD anymore, 732 * so remove it from the endpoint ring's TD list. Keep it in 733 * the cancelled TD list for URB completion later. 734 */ 735 list_del_init(&cur_td->td_list); 736 } 737 last_unlinked_td = cur_td; 738 xhci_stop_watchdog_timer_in_irq(xhci, ep); 739 740 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ 741 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { 742 xhci_queue_new_dequeue_state(xhci, 743 slot_id, ep_index, 744 ep->stopped_td->urb->stream_id, 745 &deq_state); 746 xhci_ring_cmd_db(xhci); 747 } else { 748 /* Otherwise ring the doorbell(s) to restart queued transfers */ 749 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 750 } 751 ep->stopped_td = NULL; 752 ep->stopped_trb = NULL; 753 754 /* 755 * Drop the lock and complete the URBs in the cancelled TD list. 756 * New TDs to be cancelled might be added to the end of the list before 757 * we can complete all the URBs for the TDs we already unlinked. 758 * So stop when we've completed the URB for the last TD we unlinked. 759 */ 760 do { 761 cur_td = list_entry(ep->cancelled_td_list.next, 762 struct xhci_td, cancelled_td_list); 763 list_del_init(&cur_td->cancelled_td_list); 764 765 /* Clean up the cancelled URB */ 766 /* Doesn't matter what we pass for status, since the core will 767 * just overwrite it (because the URB has been unlinked). 768 */ 769 xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled"); 770 771 /* Stop processing the cancelled list if the watchdog timer is 772 * running. 773 */ 774 if (xhci->xhc_state & XHCI_STATE_DYING) 775 return; 776 } while (cur_td != last_unlinked_td); 777 778 /* Return to the event handler with xhci->lock re-acquired */ 779 } 780 781 /* Watchdog timer function for when a stop endpoint command fails to complete. 782 * In this case, we assume the host controller is broken or dying or dead. The 783 * host may still be completing some other events, so we have to be careful to 784 * let the event ring handler and the URB dequeueing/enqueueing functions know 785 * through xhci->state. 786 * 787 * The timer may also fire if the host takes a very long time to respond to the 788 * command, and the stop endpoint command completion handler cannot delete the 789 * timer before the timer function is called. Another endpoint cancellation may 790 * sneak in before the timer function can grab the lock, and that may queue 791 * another stop endpoint command and add the timer back. So we cannot use a 792 * simple flag to say whether there is a pending stop endpoint command for a 793 * particular endpoint. 794 * 795 * Instead we use a combination of that flag and a counter for the number of 796 * pending stop endpoint commands. If the timer is the tail end of the last 797 * stop endpoint command, and the endpoint's command is still pending, we assume 798 * the host is dying. 799 */ 800 void xhci_stop_endpoint_command_watchdog(unsigned long arg) 801 { 802 struct xhci_hcd *xhci; 803 struct xhci_virt_ep *ep; 804 struct xhci_virt_ep *temp_ep; 805 struct xhci_ring *ring; 806 struct xhci_td *cur_td; 807 int ret, i, j; 808 unsigned long flags; 809 810 ep = (struct xhci_virt_ep *) arg; 811 xhci = ep->xhci; 812 813 spin_lock_irqsave(&xhci->lock, flags); 814 815 ep->stop_cmds_pending--; 816 if (xhci->xhc_state & XHCI_STATE_DYING) { 817 xhci_dbg(xhci, "Stop EP timer ran, but another timer marked " 818 "xHCI as DYING, exiting.\n"); 819 spin_unlock_irqrestore(&xhci->lock, flags); 820 return; 821 } 822 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) { 823 xhci_dbg(xhci, "Stop EP timer ran, but no command pending, " 824 "exiting.\n"); 825 spin_unlock_irqrestore(&xhci->lock, flags); 826 return; 827 } 828 829 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); 830 xhci_warn(xhci, "Assuming host is dying, halting host.\n"); 831 /* Oops, HC is dead or dying or at least not responding to the stop 832 * endpoint command. 833 */ 834 xhci->xhc_state |= XHCI_STATE_DYING; 835 /* Disable interrupts from the host controller and start halting it */ 836 xhci_quiesce(xhci); 837 spin_unlock_irqrestore(&xhci->lock, flags); 838 839 ret = xhci_halt(xhci); 840 841 spin_lock_irqsave(&xhci->lock, flags); 842 if (ret < 0) { 843 /* This is bad; the host is not responding to commands and it's 844 * not allowing itself to be halted. At least interrupts are 845 * disabled. If we call usb_hc_died(), it will attempt to 846 * disconnect all device drivers under this host. Those 847 * disconnect() methods will wait for all URBs to be unlinked, 848 * so we must complete them. 849 */ 850 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n"); 851 xhci_warn(xhci, "Completing active URBs anyway.\n"); 852 /* We could turn all TDs on the rings to no-ops. This won't 853 * help if the host has cached part of the ring, and is slow if 854 * we want to preserve the cycle bit. Skip it and hope the host 855 * doesn't touch the memory. 856 */ 857 } 858 for (i = 0; i < MAX_HC_SLOTS; i++) { 859 if (!xhci->devs[i]) 860 continue; 861 for (j = 0; j < 31; j++) { 862 temp_ep = &xhci->devs[i]->eps[j]; 863 ring = temp_ep->ring; 864 if (!ring) 865 continue; 866 xhci_dbg(xhci, "Killing URBs for slot ID %u, " 867 "ep index %u\n", i, j); 868 while (!list_empty(&ring->td_list)) { 869 cur_td = list_first_entry(&ring->td_list, 870 struct xhci_td, 871 td_list); 872 list_del_init(&cur_td->td_list); 873 if (!list_empty(&cur_td->cancelled_td_list)) 874 list_del_init(&cur_td->cancelled_td_list); 875 xhci_giveback_urb_in_irq(xhci, cur_td, 876 -ESHUTDOWN, "killed"); 877 } 878 while (!list_empty(&temp_ep->cancelled_td_list)) { 879 cur_td = list_first_entry( 880 &temp_ep->cancelled_td_list, 881 struct xhci_td, 882 cancelled_td_list); 883 list_del_init(&cur_td->cancelled_td_list); 884 xhci_giveback_urb_in_irq(xhci, cur_td, 885 -ESHUTDOWN, "killed"); 886 } 887 } 888 } 889 spin_unlock_irqrestore(&xhci->lock, flags); 890 xhci_dbg(xhci, "Calling usb_hc_died()\n"); 891 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); 892 xhci_dbg(xhci, "xHCI host controller is dead.\n"); 893 } 894 895 /* 896 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 897 * we need to clear the set deq pending flag in the endpoint ring state, so that 898 * the TD queueing code can ring the doorbell again. We also need to ring the 899 * endpoint doorbell to restart the ring, but only if there aren't more 900 * cancellations pending. 901 */ 902 static void handle_set_deq_completion(struct xhci_hcd *xhci, 903 struct xhci_event_cmd *event, 904 union xhci_trb *trb) 905 { 906 unsigned int slot_id; 907 unsigned int ep_index; 908 unsigned int stream_id; 909 struct xhci_ring *ep_ring; 910 struct xhci_virt_device *dev; 911 struct xhci_ep_ctx *ep_ctx; 912 struct xhci_slot_ctx *slot_ctx; 913 914 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3])); 915 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 916 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 917 dev = xhci->devs[slot_id]; 918 919 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); 920 if (!ep_ring) { 921 xhci_warn(xhci, "WARN Set TR deq ptr command for " 922 "freed stream ID %u\n", 923 stream_id); 924 /* XXX: Harmless??? */ 925 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 926 return; 927 } 928 929 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 930 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); 931 932 if (GET_COMP_CODE(le32_to_cpu(event->status)) != COMP_SUCCESS) { 933 unsigned int ep_state; 934 unsigned int slot_state; 935 936 switch (GET_COMP_CODE(le32_to_cpu(event->status))) { 937 case COMP_TRB_ERR: 938 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because " 939 "of stream ID configuration\n"); 940 break; 941 case COMP_CTX_STATE: 942 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due " 943 "to incorrect slot or ep state.\n"); 944 ep_state = le32_to_cpu(ep_ctx->ep_info); 945 ep_state &= EP_STATE_MASK; 946 slot_state = le32_to_cpu(slot_ctx->dev_state); 947 slot_state = GET_SLOT_STATE(slot_state); 948 xhci_dbg(xhci, "Slot state = %u, EP state = %u\n", 949 slot_state, ep_state); 950 break; 951 case COMP_EBADSLT: 952 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because " 953 "slot %u was not enabled.\n", slot_id); 954 break; 955 default: 956 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown " 957 "completion code of %u.\n", 958 GET_COMP_CODE(le32_to_cpu(event->status))); 959 break; 960 } 961 /* OK what do we do now? The endpoint state is hosed, and we 962 * should never get to this point if the synchronization between 963 * queueing, and endpoint state are correct. This might happen 964 * if the device gets disconnected after we've finished 965 * cancelling URBs, which might not be an error... 966 */ 967 } else { 968 xhci_dbg(xhci, "Successful Set TR Deq Ptr cmd, deq = @%08llx\n", 969 le64_to_cpu(ep_ctx->deq)); 970 if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg, 971 dev->eps[ep_index].queued_deq_ptr) == 972 (le64_to_cpu(ep_ctx->deq) & ~(EP_CTX_CYCLE_MASK))) { 973 /* Update the ring's dequeue segment and dequeue pointer 974 * to reflect the new position. 975 */ 976 ep_ring->deq_seg = dev->eps[ep_index].queued_deq_seg; 977 ep_ring->dequeue = dev->eps[ep_index].queued_deq_ptr; 978 } else { 979 xhci_warn(xhci, "Mismatch between completed Set TR Deq " 980 "Ptr command & xHCI internal state.\n"); 981 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 982 dev->eps[ep_index].queued_deq_seg, 983 dev->eps[ep_index].queued_deq_ptr); 984 } 985 } 986 987 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 988 dev->eps[ep_index].queued_deq_seg = NULL; 989 dev->eps[ep_index].queued_deq_ptr = NULL; 990 /* Restart any rings with pending URBs */ 991 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 992 } 993 994 static void handle_reset_ep_completion(struct xhci_hcd *xhci, 995 struct xhci_event_cmd *event, 996 union xhci_trb *trb) 997 { 998 int slot_id; 999 unsigned int ep_index; 1000 1001 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3])); 1002 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1003 /* This command will only fail if the endpoint wasn't halted, 1004 * but we don't care. 1005 */ 1006 xhci_dbg(xhci, "Ignoring reset ep completion code of %u\n", 1007 GET_COMP_CODE(le32_to_cpu(event->status))); 1008 1009 /* HW with the reset endpoint quirk needs to have a configure endpoint 1010 * command complete before the endpoint can be used. Queue that here 1011 * because the HW can't handle two commands being queued in a row. 1012 */ 1013 if (xhci->quirks & XHCI_RESET_EP_QUIRK) { 1014 xhci_dbg(xhci, "Queueing configure endpoint command\n"); 1015 xhci_queue_configure_endpoint(xhci, 1016 xhci->devs[slot_id]->in_ctx->dma, slot_id, 1017 false); 1018 xhci_ring_cmd_db(xhci); 1019 } else { 1020 /* Clear our internal halted state and restart the ring(s) */ 1021 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; 1022 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1023 } 1024 } 1025 1026 /* Check to see if a command in the device's command queue matches this one. 1027 * Signal the completion or free the command, and return 1. Return 0 if the 1028 * completed command isn't at the head of the command list. 1029 */ 1030 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, 1031 struct xhci_virt_device *virt_dev, 1032 struct xhci_event_cmd *event) 1033 { 1034 struct xhci_command *command; 1035 1036 if (list_empty(&virt_dev->cmd_list)) 1037 return 0; 1038 1039 command = list_entry(virt_dev->cmd_list.next, 1040 struct xhci_command, cmd_list); 1041 if (xhci->cmd_ring->dequeue != command->command_trb) 1042 return 0; 1043 1044 command->status = GET_COMP_CODE(le32_to_cpu(event->status)); 1045 list_del(&command->cmd_list); 1046 if (command->completion) 1047 complete(command->completion); 1048 else 1049 xhci_free_command(xhci, command); 1050 return 1; 1051 } 1052 1053 static void handle_cmd_completion(struct xhci_hcd *xhci, 1054 struct xhci_event_cmd *event) 1055 { 1056 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1057 u64 cmd_dma; 1058 dma_addr_t cmd_dequeue_dma; 1059 struct xhci_input_control_ctx *ctrl_ctx; 1060 struct xhci_virt_device *virt_dev; 1061 unsigned int ep_index; 1062 struct xhci_ring *ep_ring; 1063 unsigned int ep_state; 1064 1065 cmd_dma = le64_to_cpu(event->cmd_trb); 1066 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1067 xhci->cmd_ring->dequeue); 1068 /* Is the command ring deq ptr out of sync with the deq seg ptr? */ 1069 if (cmd_dequeue_dma == 0) { 1070 xhci->error_bitmask |= 1 << 4; 1071 return; 1072 } 1073 /* Does the DMA address match our internal dequeue pointer address? */ 1074 if (cmd_dma != (u64) cmd_dequeue_dma) { 1075 xhci->error_bitmask |= 1 << 5; 1076 return; 1077 } 1078 switch (le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]) 1079 & TRB_TYPE_BITMASK) { 1080 case TRB_TYPE(TRB_ENABLE_SLOT): 1081 if (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_SUCCESS) 1082 xhci->slot_id = slot_id; 1083 else 1084 xhci->slot_id = 0; 1085 complete(&xhci->addr_dev); 1086 break; 1087 case TRB_TYPE(TRB_DISABLE_SLOT): 1088 if (xhci->devs[slot_id]) { 1089 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1090 /* Delete default control endpoint resources */ 1091 xhci_free_device_endpoint_resources(xhci, 1092 xhci->devs[slot_id], true); 1093 xhci_free_virt_device(xhci, slot_id); 1094 } 1095 break; 1096 case TRB_TYPE(TRB_CONFIG_EP): 1097 virt_dev = xhci->devs[slot_id]; 1098 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event)) 1099 break; 1100 /* 1101 * Configure endpoint commands can come from the USB core 1102 * configuration or alt setting changes, or because the HW 1103 * needed an extra configure endpoint command after a reset 1104 * endpoint command or streams were being configured. 1105 * If the command was for a halted endpoint, the xHCI driver 1106 * is not waiting on the configure endpoint command. 1107 */ 1108 ctrl_ctx = xhci_get_input_control_ctx(xhci, 1109 virt_dev->in_ctx); 1110 /* Input ctx add_flags are the endpoint index plus one */ 1111 ep_index = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)) - 1; 1112 /* A usb_set_interface() call directly after clearing a halted 1113 * condition may race on this quirky hardware. Not worth 1114 * worrying about, since this is prototype hardware. Not sure 1115 * if this will work for streams, but streams support was 1116 * untested on this prototype. 1117 */ 1118 if (xhci->quirks & XHCI_RESET_EP_QUIRK && 1119 ep_index != (unsigned int) -1 && 1120 le32_to_cpu(ctrl_ctx->add_flags) - SLOT_FLAG == 1121 le32_to_cpu(ctrl_ctx->drop_flags)) { 1122 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 1123 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 1124 if (!(ep_state & EP_HALTED)) 1125 goto bandwidth_change; 1126 xhci_dbg(xhci, "Completed config ep cmd - " 1127 "last ep index = %d, state = %d\n", 1128 ep_index, ep_state); 1129 /* Clear internal halted state and restart ring(s) */ 1130 xhci->devs[slot_id]->eps[ep_index].ep_state &= 1131 ~EP_HALTED; 1132 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1133 break; 1134 } 1135 bandwidth_change: 1136 xhci_dbg(xhci, "Completed config ep cmd\n"); 1137 xhci->devs[slot_id]->cmd_status = 1138 GET_COMP_CODE(le32_to_cpu(event->status)); 1139 complete(&xhci->devs[slot_id]->cmd_completion); 1140 break; 1141 case TRB_TYPE(TRB_EVAL_CONTEXT): 1142 virt_dev = xhci->devs[slot_id]; 1143 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event)) 1144 break; 1145 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status)); 1146 complete(&xhci->devs[slot_id]->cmd_completion); 1147 break; 1148 case TRB_TYPE(TRB_ADDR_DEV): 1149 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status)); 1150 complete(&xhci->addr_dev); 1151 break; 1152 case TRB_TYPE(TRB_STOP_RING): 1153 handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue, event); 1154 break; 1155 case TRB_TYPE(TRB_SET_DEQ): 1156 handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue); 1157 break; 1158 case TRB_TYPE(TRB_CMD_NOOP): 1159 break; 1160 case TRB_TYPE(TRB_RESET_EP): 1161 handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue); 1162 break; 1163 case TRB_TYPE(TRB_RESET_DEV): 1164 xhci_dbg(xhci, "Completed reset device command.\n"); 1165 slot_id = TRB_TO_SLOT_ID( 1166 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])); 1167 virt_dev = xhci->devs[slot_id]; 1168 if (virt_dev) 1169 handle_cmd_in_cmd_wait_list(xhci, virt_dev, event); 1170 else 1171 xhci_warn(xhci, "Reset device command completion " 1172 "for disabled slot %u\n", slot_id); 1173 break; 1174 case TRB_TYPE(TRB_NEC_GET_FW): 1175 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1176 xhci->error_bitmask |= 1 << 6; 1177 break; 1178 } 1179 xhci_dbg(xhci, "NEC firmware version %2x.%02x\n", 1180 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1181 NEC_FW_MINOR(le32_to_cpu(event->status))); 1182 break; 1183 default: 1184 /* Skip over unknown commands on the event ring */ 1185 xhci->error_bitmask |= 1 << 6; 1186 break; 1187 } 1188 inc_deq(xhci, xhci->cmd_ring, false); 1189 } 1190 1191 static void handle_vendor_event(struct xhci_hcd *xhci, 1192 union xhci_trb *event) 1193 { 1194 u32 trb_type; 1195 1196 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3])); 1197 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1198 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1199 handle_cmd_completion(xhci, &event->event_cmd); 1200 } 1201 1202 /* @port_id: the one-based port ID from the hardware (indexed from array of all 1203 * port registers -- USB 3.0 and USB 2.0). 1204 * 1205 * Returns a zero-based port number, which is suitable for indexing into each of 1206 * the split roothubs' port arrays and bus state arrays. 1207 * Add one to it in order to call xhci_find_slot_id_by_port. 1208 */ 1209 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd, 1210 struct xhci_hcd *xhci, u32 port_id) 1211 { 1212 unsigned int i; 1213 unsigned int num_similar_speed_ports = 0; 1214 1215 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[], 1216 * and usb2_ports are 0-based indexes. Count the number of similar 1217 * speed ports, up to 1 port before this port. 1218 */ 1219 for (i = 0; i < (port_id - 1); i++) { 1220 u8 port_speed = xhci->port_array[i]; 1221 1222 /* 1223 * Skip ports that don't have known speeds, or have duplicate 1224 * Extended Capabilities port speed entries. 1225 */ 1226 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY) 1227 continue; 1228 1229 /* 1230 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and 1231 * 1.1 ports are under the USB 2.0 hub. If the port speed 1232 * matches the device speed, it's a similar speed port. 1233 */ 1234 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3)) 1235 num_similar_speed_ports++; 1236 } 1237 return num_similar_speed_ports; 1238 } 1239 1240 static void handle_port_status(struct xhci_hcd *xhci, 1241 union xhci_trb *event) 1242 { 1243 struct usb_hcd *hcd; 1244 u32 port_id; 1245 u32 temp, temp1; 1246 int max_ports; 1247 int slot_id; 1248 unsigned int faked_port_index; 1249 u8 major_revision; 1250 struct xhci_bus_state *bus_state; 1251 __le32 __iomem **port_array; 1252 bool bogus_port_status = false; 1253 1254 /* Port status change events always have a successful completion code */ 1255 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) { 1256 xhci_warn(xhci, "WARN: xHC returned failed port status event\n"); 1257 xhci->error_bitmask |= 1 << 8; 1258 } 1259 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1260 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id); 1261 1262 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1263 if ((port_id <= 0) || (port_id > max_ports)) { 1264 xhci_warn(xhci, "Invalid port id %d\n", port_id); 1265 bogus_port_status = true; 1266 goto cleanup; 1267 } 1268 1269 /* Figure out which usb_hcd this port is attached to: 1270 * is it a USB 3.0 port or a USB 2.0/1.1 port? 1271 */ 1272 major_revision = xhci->port_array[port_id - 1]; 1273 if (major_revision == 0) { 1274 xhci_warn(xhci, "Event for port %u not in " 1275 "Extended Capabilities, ignoring.\n", 1276 port_id); 1277 bogus_port_status = true; 1278 goto cleanup; 1279 } 1280 if (major_revision == DUPLICATE_ENTRY) { 1281 xhci_warn(xhci, "Event for port %u duplicated in" 1282 "Extended Capabilities, ignoring.\n", 1283 port_id); 1284 bogus_port_status = true; 1285 goto cleanup; 1286 } 1287 1288 /* 1289 * Hardware port IDs reported by a Port Status Change Event include USB 1290 * 3.0 and USB 2.0 ports. We want to check if the port has reported a 1291 * resume event, but we first need to translate the hardware port ID 1292 * into the index into the ports on the correct split roothub, and the 1293 * correct bus_state structure. 1294 */ 1295 /* Find the right roothub. */ 1296 hcd = xhci_to_hcd(xhci); 1297 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3)) 1298 hcd = xhci->shared_hcd; 1299 bus_state = &xhci->bus_state[hcd_index(hcd)]; 1300 if (hcd->speed == HCD_USB3) 1301 port_array = xhci->usb3_ports; 1302 else 1303 port_array = xhci->usb2_ports; 1304 /* Find the faked port hub number */ 1305 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci, 1306 port_id); 1307 1308 temp = xhci_readl(xhci, port_array[faked_port_index]); 1309 if (hcd->state == HC_STATE_SUSPENDED) { 1310 xhci_dbg(xhci, "resume root hub\n"); 1311 usb_hcd_resume_root_hub(hcd); 1312 } 1313 1314 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) { 1315 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1316 1317 temp1 = xhci_readl(xhci, &xhci->op_regs->command); 1318 if (!(temp1 & CMD_RUN)) { 1319 xhci_warn(xhci, "xHC is not running.\n"); 1320 goto cleanup; 1321 } 1322 1323 if (DEV_SUPERSPEED(temp)) { 1324 xhci_dbg(xhci, "resume SS port %d\n", port_id); 1325 xhci_set_link_state(xhci, port_array, faked_port_index, 1326 XDEV_U0); 1327 slot_id = xhci_find_slot_id_by_port(hcd, xhci, 1328 faked_port_index + 1); 1329 if (!slot_id) { 1330 xhci_dbg(xhci, "slot_id is zero\n"); 1331 goto cleanup; 1332 } 1333 xhci_ring_device(xhci, slot_id); 1334 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1335 /* Clear PORT_PLC */ 1336 xhci_test_and_clear_bit(xhci, port_array, 1337 faked_port_index, PORT_PLC); 1338 } else { 1339 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1340 bus_state->resume_done[faked_port_index] = jiffies + 1341 msecs_to_jiffies(20); 1342 mod_timer(&hcd->rh_timer, 1343 bus_state->resume_done[faked_port_index]); 1344 /* Do the rest in GetPortStatus */ 1345 } 1346 } 1347 1348 if (hcd->speed != HCD_USB3) 1349 xhci_test_and_clear_bit(xhci, port_array, faked_port_index, 1350 PORT_PLC); 1351 1352 cleanup: 1353 /* Update event ring dequeue pointer before dropping the lock */ 1354 inc_deq(xhci, xhci->event_ring, true); 1355 1356 /* Don't make the USB core poll the roothub if we got a bad port status 1357 * change event. Besides, at that point we can't tell which roothub 1358 * (USB 2.0 or USB 3.0) to kick. 1359 */ 1360 if (bogus_port_status) 1361 return; 1362 1363 spin_unlock(&xhci->lock); 1364 /* Pass this up to the core */ 1365 usb_hcd_poll_rh_status(hcd); 1366 spin_lock(&xhci->lock); 1367 } 1368 1369 /* 1370 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 1371 * at end_trb, which may be in another segment. If the suspect DMA address is a 1372 * TRB in this TD, this function returns that TRB's segment. Otherwise it 1373 * returns 0. 1374 */ 1375 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg, 1376 union xhci_trb *start_trb, 1377 union xhci_trb *end_trb, 1378 dma_addr_t suspect_dma) 1379 { 1380 dma_addr_t start_dma; 1381 dma_addr_t end_seg_dma; 1382 dma_addr_t end_trb_dma; 1383 struct xhci_segment *cur_seg; 1384 1385 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 1386 cur_seg = start_seg; 1387 1388 do { 1389 if (start_dma == 0) 1390 return NULL; 1391 /* We may get an event for a Link TRB in the middle of a TD */ 1392 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 1393 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 1394 /* If the end TRB isn't in this segment, this is set to 0 */ 1395 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 1396 1397 if (end_trb_dma > 0) { 1398 /* The end TRB is in this segment, so suspect should be here */ 1399 if (start_dma <= end_trb_dma) { 1400 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 1401 return cur_seg; 1402 } else { 1403 /* Case for one segment with 1404 * a TD wrapped around to the top 1405 */ 1406 if ((suspect_dma >= start_dma && 1407 suspect_dma <= end_seg_dma) || 1408 (suspect_dma >= cur_seg->dma && 1409 suspect_dma <= end_trb_dma)) 1410 return cur_seg; 1411 } 1412 return NULL; 1413 } else { 1414 /* Might still be somewhere in this segment */ 1415 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 1416 return cur_seg; 1417 } 1418 cur_seg = cur_seg->next; 1419 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 1420 } while (cur_seg != start_seg); 1421 1422 return NULL; 1423 } 1424 1425 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, 1426 unsigned int slot_id, unsigned int ep_index, 1427 unsigned int stream_id, 1428 struct xhci_td *td, union xhci_trb *event_trb) 1429 { 1430 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 1431 ep->ep_state |= EP_HALTED; 1432 ep->stopped_td = td; 1433 ep->stopped_trb = event_trb; 1434 ep->stopped_stream = stream_id; 1435 1436 xhci_queue_reset_ep(xhci, slot_id, ep_index); 1437 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index); 1438 1439 ep->stopped_td = NULL; 1440 ep->stopped_trb = NULL; 1441 ep->stopped_stream = 0; 1442 1443 xhci_ring_cmd_db(xhci); 1444 } 1445 1446 /* Check if an error has halted the endpoint ring. The class driver will 1447 * cleanup the halt for a non-default control endpoint if we indicate a stall. 1448 * However, a babble and other errors also halt the endpoint ring, and the class 1449 * driver won't clear the halt in that case, so we need to issue a Set Transfer 1450 * Ring Dequeue Pointer command manually. 1451 */ 1452 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 1453 struct xhci_ep_ctx *ep_ctx, 1454 unsigned int trb_comp_code) 1455 { 1456 /* TRB completion codes that may require a manual halt cleanup */ 1457 if (trb_comp_code == COMP_TX_ERR || 1458 trb_comp_code == COMP_BABBLE || 1459 trb_comp_code == COMP_SPLIT_ERR) 1460 /* The 0.96 spec says a babbling control endpoint 1461 * is not halted. The 0.96 spec says it is. Some HW 1462 * claims to be 0.95 compliant, but it halts the control 1463 * endpoint anyway. Check if a babble halted the 1464 * endpoint. 1465 */ 1466 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1467 cpu_to_le32(EP_STATE_HALTED)) 1468 return 1; 1469 1470 return 0; 1471 } 1472 1473 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 1474 { 1475 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 1476 /* Vendor defined "informational" completion code, 1477 * treat as not-an-error. 1478 */ 1479 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 1480 trb_comp_code); 1481 xhci_dbg(xhci, "Treating code as success.\n"); 1482 return 1; 1483 } 1484 return 0; 1485 } 1486 1487 /* 1488 * Finish the td processing, remove the td from td list; 1489 * Return 1 if the urb can be given back. 1490 */ 1491 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, 1492 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1493 struct xhci_virt_ep *ep, int *status, bool skip) 1494 { 1495 struct xhci_virt_device *xdev; 1496 struct xhci_ring *ep_ring; 1497 unsigned int slot_id; 1498 int ep_index; 1499 struct urb *urb = NULL; 1500 struct xhci_ep_ctx *ep_ctx; 1501 int ret = 0; 1502 struct urb_priv *urb_priv; 1503 u32 trb_comp_code; 1504 1505 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1506 xdev = xhci->devs[slot_id]; 1507 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1508 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1509 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1510 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1511 1512 if (skip) 1513 goto td_cleanup; 1514 1515 if (trb_comp_code == COMP_STOP_INVAL || 1516 trb_comp_code == COMP_STOP) { 1517 /* The Endpoint Stop Command completion will take care of any 1518 * stopped TDs. A stopped TD may be restarted, so don't update 1519 * the ring dequeue pointer or take this TD off any lists yet. 1520 */ 1521 ep->stopped_td = td; 1522 ep->stopped_trb = event_trb; 1523 return 0; 1524 } else { 1525 if (trb_comp_code == COMP_STALL) { 1526 /* The transfer is completed from the driver's 1527 * perspective, but we need to issue a set dequeue 1528 * command for this stalled endpoint to move the dequeue 1529 * pointer past the TD. We can't do that here because 1530 * the halt condition must be cleared first. Let the 1531 * USB class driver clear the stall later. 1532 */ 1533 ep->stopped_td = td; 1534 ep->stopped_trb = event_trb; 1535 ep->stopped_stream = ep_ring->stream_id; 1536 } else if (xhci_requires_manual_halt_cleanup(xhci, 1537 ep_ctx, trb_comp_code)) { 1538 /* Other types of errors halt the endpoint, but the 1539 * class driver doesn't call usb_reset_endpoint() unless 1540 * the error is -EPIPE. Clear the halted status in the 1541 * xHCI hardware manually. 1542 */ 1543 xhci_cleanup_halted_endpoint(xhci, 1544 slot_id, ep_index, ep_ring->stream_id, 1545 td, event_trb); 1546 } else { 1547 /* Update ring dequeue pointer */ 1548 while (ep_ring->dequeue != td->last_trb) 1549 inc_deq(xhci, ep_ring, false); 1550 inc_deq(xhci, ep_ring, false); 1551 } 1552 1553 td_cleanup: 1554 /* Clean up the endpoint's TD list */ 1555 urb = td->urb; 1556 urb_priv = urb->hcpriv; 1557 1558 /* Do one last check of the actual transfer length. 1559 * If the host controller said we transferred more data than 1560 * the buffer length, urb->actual_length will be a very big 1561 * number (since it's unsigned). Play it safe and say we didn't 1562 * transfer anything. 1563 */ 1564 if (urb->actual_length > urb->transfer_buffer_length) { 1565 xhci_warn(xhci, "URB transfer length is wrong, " 1566 "xHC issue? req. len = %u, " 1567 "act. len = %u\n", 1568 urb->transfer_buffer_length, 1569 urb->actual_length); 1570 urb->actual_length = 0; 1571 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1572 *status = -EREMOTEIO; 1573 else 1574 *status = 0; 1575 } 1576 list_del_init(&td->td_list); 1577 /* Was this TD slated to be cancelled but completed anyway? */ 1578 if (!list_empty(&td->cancelled_td_list)) 1579 list_del_init(&td->cancelled_td_list); 1580 1581 urb_priv->td_cnt++; 1582 /* Giveback the urb when all the tds are completed */ 1583 if (urb_priv->td_cnt == urb_priv->length) { 1584 ret = 1; 1585 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 1586 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 1587 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs 1588 == 0) { 1589 if (xhci->quirks & XHCI_AMD_PLL_FIX) 1590 usb_amd_quirk_pll_enable(); 1591 } 1592 } 1593 } 1594 } 1595 1596 return ret; 1597 } 1598 1599 /* 1600 * Process control tds, update urb status and actual_length. 1601 */ 1602 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, 1603 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1604 struct xhci_virt_ep *ep, int *status) 1605 { 1606 struct xhci_virt_device *xdev; 1607 struct xhci_ring *ep_ring; 1608 unsigned int slot_id; 1609 int ep_index; 1610 struct xhci_ep_ctx *ep_ctx; 1611 u32 trb_comp_code; 1612 1613 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1614 xdev = xhci->devs[slot_id]; 1615 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1616 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1617 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1618 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1619 1620 switch (trb_comp_code) { 1621 case COMP_SUCCESS: 1622 if (event_trb == ep_ring->dequeue) { 1623 xhci_warn(xhci, "WARN: Success on ctrl setup TRB " 1624 "without IOC set??\n"); 1625 *status = -ESHUTDOWN; 1626 } else if (event_trb != td->last_trb) { 1627 xhci_warn(xhci, "WARN: Success on ctrl data TRB " 1628 "without IOC set??\n"); 1629 *status = -ESHUTDOWN; 1630 } else { 1631 *status = 0; 1632 } 1633 break; 1634 case COMP_SHORT_TX: 1635 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1636 *status = -EREMOTEIO; 1637 else 1638 *status = 0; 1639 break; 1640 case COMP_STOP_INVAL: 1641 case COMP_STOP: 1642 return finish_td(xhci, td, event_trb, event, ep, status, false); 1643 default: 1644 if (!xhci_requires_manual_halt_cleanup(xhci, 1645 ep_ctx, trb_comp_code)) 1646 break; 1647 xhci_dbg(xhci, "TRB error code %u, " 1648 "halted endpoint index = %u\n", 1649 trb_comp_code, ep_index); 1650 /* else fall through */ 1651 case COMP_STALL: 1652 /* Did we transfer part of the data (middle) phase? */ 1653 if (event_trb != ep_ring->dequeue && 1654 event_trb != td->last_trb) 1655 td->urb->actual_length = 1656 td->urb->transfer_buffer_length 1657 - TRB_LEN(le32_to_cpu(event->transfer_len)); 1658 else 1659 td->urb->actual_length = 0; 1660 1661 xhci_cleanup_halted_endpoint(xhci, 1662 slot_id, ep_index, 0, td, event_trb); 1663 return finish_td(xhci, td, event_trb, event, ep, status, true); 1664 } 1665 /* 1666 * Did we transfer any data, despite the errors that might have 1667 * happened? I.e. did we get past the setup stage? 1668 */ 1669 if (event_trb != ep_ring->dequeue) { 1670 /* The event was for the status stage */ 1671 if (event_trb == td->last_trb) { 1672 if (td->urb->actual_length != 0) { 1673 /* Don't overwrite a previously set error code 1674 */ 1675 if ((*status == -EINPROGRESS || *status == 0) && 1676 (td->urb->transfer_flags 1677 & URB_SHORT_NOT_OK)) 1678 /* Did we already see a short data 1679 * stage? */ 1680 *status = -EREMOTEIO; 1681 } else { 1682 td->urb->actual_length = 1683 td->urb->transfer_buffer_length; 1684 } 1685 } else { 1686 /* Maybe the event was for the data stage? */ 1687 td->urb->actual_length = 1688 td->urb->transfer_buffer_length - 1689 TRB_LEN(le32_to_cpu(event->transfer_len)); 1690 xhci_dbg(xhci, "Waiting for status " 1691 "stage event\n"); 1692 return 0; 1693 } 1694 } 1695 1696 return finish_td(xhci, td, event_trb, event, ep, status, false); 1697 } 1698 1699 /* 1700 * Process isochronous tds, update urb packet status and actual_length. 1701 */ 1702 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 1703 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1704 struct xhci_virt_ep *ep, int *status) 1705 { 1706 struct xhci_ring *ep_ring; 1707 struct urb_priv *urb_priv; 1708 int idx; 1709 int len = 0; 1710 union xhci_trb *cur_trb; 1711 struct xhci_segment *cur_seg; 1712 struct usb_iso_packet_descriptor *frame; 1713 u32 trb_comp_code; 1714 bool skip_td = false; 1715 1716 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1717 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1718 urb_priv = td->urb->hcpriv; 1719 idx = urb_priv->td_cnt; 1720 frame = &td->urb->iso_frame_desc[idx]; 1721 1722 /* handle completion code */ 1723 switch (trb_comp_code) { 1724 case COMP_SUCCESS: 1725 frame->status = 0; 1726 break; 1727 case COMP_SHORT_TX: 1728 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 1729 -EREMOTEIO : 0; 1730 break; 1731 case COMP_BW_OVER: 1732 frame->status = -ECOMM; 1733 skip_td = true; 1734 break; 1735 case COMP_BUFF_OVER: 1736 case COMP_BABBLE: 1737 frame->status = -EOVERFLOW; 1738 skip_td = true; 1739 break; 1740 case COMP_DEV_ERR: 1741 case COMP_STALL: 1742 frame->status = -EPROTO; 1743 skip_td = true; 1744 break; 1745 case COMP_STOP: 1746 case COMP_STOP_INVAL: 1747 break; 1748 default: 1749 frame->status = -1; 1750 break; 1751 } 1752 1753 if (trb_comp_code == COMP_SUCCESS || skip_td) { 1754 frame->actual_length = frame->length; 1755 td->urb->actual_length += frame->length; 1756 } else { 1757 for (cur_trb = ep_ring->dequeue, 1758 cur_seg = ep_ring->deq_seg; cur_trb != event_trb; 1759 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 1760 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 1761 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 1762 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 1763 } 1764 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 1765 TRB_LEN(le32_to_cpu(event->transfer_len)); 1766 1767 if (trb_comp_code != COMP_STOP_INVAL) { 1768 frame->actual_length = len; 1769 td->urb->actual_length += len; 1770 } 1771 } 1772 1773 return finish_td(xhci, td, event_trb, event, ep, status, false); 1774 } 1775 1776 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 1777 struct xhci_transfer_event *event, 1778 struct xhci_virt_ep *ep, int *status) 1779 { 1780 struct xhci_ring *ep_ring; 1781 struct urb_priv *urb_priv; 1782 struct usb_iso_packet_descriptor *frame; 1783 int idx; 1784 1785 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1786 urb_priv = td->urb->hcpriv; 1787 idx = urb_priv->td_cnt; 1788 frame = &td->urb->iso_frame_desc[idx]; 1789 1790 /* The transfer is partly done. */ 1791 frame->status = -EXDEV; 1792 1793 /* calc actual length */ 1794 frame->actual_length = 0; 1795 1796 /* Update ring dequeue pointer */ 1797 while (ep_ring->dequeue != td->last_trb) 1798 inc_deq(xhci, ep_ring, false); 1799 inc_deq(xhci, ep_ring, false); 1800 1801 return finish_td(xhci, td, NULL, event, ep, status, true); 1802 } 1803 1804 /* 1805 * Process bulk and interrupt tds, update urb status and actual_length. 1806 */ 1807 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, 1808 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1809 struct xhci_virt_ep *ep, int *status) 1810 { 1811 struct xhci_ring *ep_ring; 1812 union xhci_trb *cur_trb; 1813 struct xhci_segment *cur_seg; 1814 u32 trb_comp_code; 1815 1816 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1817 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1818 1819 switch (trb_comp_code) { 1820 case COMP_SUCCESS: 1821 /* Double check that the HW transferred everything. */ 1822 if (event_trb != td->last_trb) { 1823 xhci_warn(xhci, "WARN Successful completion " 1824 "on short TX\n"); 1825 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1826 *status = -EREMOTEIO; 1827 else 1828 *status = 0; 1829 } else { 1830 *status = 0; 1831 } 1832 break; 1833 case COMP_SHORT_TX: 1834 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1835 *status = -EREMOTEIO; 1836 else 1837 *status = 0; 1838 break; 1839 default: 1840 /* Others already handled above */ 1841 break; 1842 } 1843 if (trb_comp_code == COMP_SHORT_TX) 1844 xhci_dbg(xhci, "ep %#x - asked for %d bytes, " 1845 "%d bytes untransferred\n", 1846 td->urb->ep->desc.bEndpointAddress, 1847 td->urb->transfer_buffer_length, 1848 TRB_LEN(le32_to_cpu(event->transfer_len))); 1849 /* Fast path - was this the last TRB in the TD for this URB? */ 1850 if (event_trb == td->last_trb) { 1851 if (TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 1852 td->urb->actual_length = 1853 td->urb->transfer_buffer_length - 1854 TRB_LEN(le32_to_cpu(event->transfer_len)); 1855 if (td->urb->transfer_buffer_length < 1856 td->urb->actual_length) { 1857 xhci_warn(xhci, "HC gave bad length " 1858 "of %d bytes left\n", 1859 TRB_LEN(le32_to_cpu(event->transfer_len))); 1860 td->urb->actual_length = 0; 1861 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1862 *status = -EREMOTEIO; 1863 else 1864 *status = 0; 1865 } 1866 /* Don't overwrite a previously set error code */ 1867 if (*status == -EINPROGRESS) { 1868 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1869 *status = -EREMOTEIO; 1870 else 1871 *status = 0; 1872 } 1873 } else { 1874 td->urb->actual_length = 1875 td->urb->transfer_buffer_length; 1876 /* Ignore a short packet completion if the 1877 * untransferred length was zero. 1878 */ 1879 if (*status == -EREMOTEIO) 1880 *status = 0; 1881 } 1882 } else { 1883 /* Slow path - walk the list, starting from the dequeue 1884 * pointer, to get the actual length transferred. 1885 */ 1886 td->urb->actual_length = 0; 1887 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg; 1888 cur_trb != event_trb; 1889 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 1890 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 1891 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 1892 td->urb->actual_length += 1893 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 1894 } 1895 /* If the ring didn't stop on a Link or No-op TRB, add 1896 * in the actual bytes transferred from the Normal TRB 1897 */ 1898 if (trb_comp_code != COMP_STOP_INVAL) 1899 td->urb->actual_length += 1900 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 1901 TRB_LEN(le32_to_cpu(event->transfer_len)); 1902 } 1903 1904 return finish_td(xhci, td, event_trb, event, ep, status, false); 1905 } 1906 1907 /* 1908 * If this function returns an error condition, it means it got a Transfer 1909 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 1910 * At this point, the host controller is probably hosed and should be reset. 1911 */ 1912 static int handle_tx_event(struct xhci_hcd *xhci, 1913 struct xhci_transfer_event *event) 1914 { 1915 struct xhci_virt_device *xdev; 1916 struct xhci_virt_ep *ep; 1917 struct xhci_ring *ep_ring; 1918 unsigned int slot_id; 1919 int ep_index; 1920 struct xhci_td *td = NULL; 1921 dma_addr_t event_dma; 1922 struct xhci_segment *event_seg; 1923 union xhci_trb *event_trb; 1924 struct urb *urb = NULL; 1925 int status = -EINPROGRESS; 1926 struct urb_priv *urb_priv; 1927 struct xhci_ep_ctx *ep_ctx; 1928 struct list_head *tmp; 1929 u32 trb_comp_code; 1930 int ret = 0; 1931 int td_num = 0; 1932 1933 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1934 xdev = xhci->devs[slot_id]; 1935 if (!xdev) { 1936 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n"); 1937 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 1938 (unsigned long long) xhci_trb_virt_to_dma( 1939 xhci->event_ring->deq_seg, 1940 xhci->event_ring->dequeue), 1941 lower_32_bits(le64_to_cpu(event->buffer)), 1942 upper_32_bits(le64_to_cpu(event->buffer)), 1943 le32_to_cpu(event->transfer_len), 1944 le32_to_cpu(event->flags)); 1945 xhci_dbg(xhci, "Event ring:\n"); 1946 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 1947 return -ENODEV; 1948 } 1949 1950 /* Endpoint ID is 1 based, our index is zero based */ 1951 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1952 ep = &xdev->eps[ep_index]; 1953 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1954 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1955 if (!ep_ring || 1956 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) == 1957 EP_STATE_DISABLED) { 1958 xhci_err(xhci, "ERROR Transfer event for disabled endpoint " 1959 "or incorrect stream ring\n"); 1960 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 1961 (unsigned long long) xhci_trb_virt_to_dma( 1962 xhci->event_ring->deq_seg, 1963 xhci->event_ring->dequeue), 1964 lower_32_bits(le64_to_cpu(event->buffer)), 1965 upper_32_bits(le64_to_cpu(event->buffer)), 1966 le32_to_cpu(event->transfer_len), 1967 le32_to_cpu(event->flags)); 1968 xhci_dbg(xhci, "Event ring:\n"); 1969 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 1970 return -ENODEV; 1971 } 1972 1973 /* Count current td numbers if ep->skip is set */ 1974 if (ep->skip) { 1975 list_for_each(tmp, &ep_ring->td_list) 1976 td_num++; 1977 } 1978 1979 event_dma = le64_to_cpu(event->buffer); 1980 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1981 /* Look for common error cases */ 1982 switch (trb_comp_code) { 1983 /* Skip codes that require special handling depending on 1984 * transfer type 1985 */ 1986 case COMP_SUCCESS: 1987 case COMP_SHORT_TX: 1988 break; 1989 case COMP_STOP: 1990 xhci_dbg(xhci, "Stopped on Transfer TRB\n"); 1991 break; 1992 case COMP_STOP_INVAL: 1993 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n"); 1994 break; 1995 case COMP_STALL: 1996 xhci_dbg(xhci, "Stalled endpoint\n"); 1997 ep->ep_state |= EP_HALTED; 1998 status = -EPIPE; 1999 break; 2000 case COMP_TRB_ERR: 2001 xhci_warn(xhci, "WARN: TRB error on endpoint\n"); 2002 status = -EILSEQ; 2003 break; 2004 case COMP_SPLIT_ERR: 2005 case COMP_TX_ERR: 2006 xhci_dbg(xhci, "Transfer error on endpoint\n"); 2007 status = -EPROTO; 2008 break; 2009 case COMP_BABBLE: 2010 xhci_dbg(xhci, "Babble error on endpoint\n"); 2011 status = -EOVERFLOW; 2012 break; 2013 case COMP_DB_ERR: 2014 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n"); 2015 status = -ENOSR; 2016 break; 2017 case COMP_BW_OVER: 2018 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n"); 2019 break; 2020 case COMP_BUFF_OVER: 2021 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n"); 2022 break; 2023 case COMP_UNDERRUN: 2024 /* 2025 * When the Isoch ring is empty, the xHC will generate 2026 * a Ring Overrun Event for IN Isoch endpoint or Ring 2027 * Underrun Event for OUT Isoch endpoint. 2028 */ 2029 xhci_dbg(xhci, "underrun event on endpoint\n"); 2030 if (!list_empty(&ep_ring->td_list)) 2031 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2032 "still with TDs queued?\n", 2033 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2034 ep_index); 2035 goto cleanup; 2036 case COMP_OVERRUN: 2037 xhci_dbg(xhci, "overrun event on endpoint\n"); 2038 if (!list_empty(&ep_ring->td_list)) 2039 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2040 "still with TDs queued?\n", 2041 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2042 ep_index); 2043 goto cleanup; 2044 case COMP_DEV_ERR: 2045 xhci_warn(xhci, "WARN: detect an incompatible device"); 2046 status = -EPROTO; 2047 break; 2048 case COMP_MISSED_INT: 2049 /* 2050 * When encounter missed service error, one or more isoc tds 2051 * may be missed by xHC. 2052 * Set skip flag of the ep_ring; Complete the missed tds as 2053 * short transfer when process the ep_ring next time. 2054 */ 2055 ep->skip = true; 2056 xhci_dbg(xhci, "Miss service interval error, set skip flag\n"); 2057 goto cleanup; 2058 default: 2059 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2060 status = 0; 2061 break; 2062 } 2063 xhci_warn(xhci, "ERROR Unknown event condition, HC probably " 2064 "busted\n"); 2065 goto cleanup; 2066 } 2067 2068 do { 2069 /* This TRB should be in the TD at the head of this ring's 2070 * TD list. 2071 */ 2072 if (list_empty(&ep_ring->td_list)) { 2073 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d " 2074 "with no TDs queued?\n", 2075 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2076 ep_index); 2077 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n", 2078 (le32_to_cpu(event->flags) & 2079 TRB_TYPE_BITMASK)>>10); 2080 xhci_print_trb_offsets(xhci, (union xhci_trb *) event); 2081 if (ep->skip) { 2082 ep->skip = false; 2083 xhci_dbg(xhci, "td_list is empty while skip " 2084 "flag set. Clear skip flag.\n"); 2085 } 2086 ret = 0; 2087 goto cleanup; 2088 } 2089 2090 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2091 if (ep->skip && td_num == 0) { 2092 ep->skip = false; 2093 xhci_dbg(xhci, "All tds on the ep_ring skipped. " 2094 "Clear skip flag.\n"); 2095 ret = 0; 2096 goto cleanup; 2097 } 2098 2099 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list); 2100 if (ep->skip) 2101 td_num--; 2102 2103 /* Is this a TRB in the currently executing TD? */ 2104 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue, 2105 td->last_trb, event_dma); 2106 2107 /* 2108 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2109 * is not in the current TD pointed by ep_ring->dequeue because 2110 * that the hardware dequeue pointer still at the previous TRB 2111 * of the current TD. The previous TRB maybe a Link TD or the 2112 * last TRB of the previous TD. The command completion handle 2113 * will take care the rest. 2114 */ 2115 if (!event_seg && trb_comp_code == COMP_STOP_INVAL) { 2116 ret = 0; 2117 goto cleanup; 2118 } 2119 2120 if (!event_seg) { 2121 if (!ep->skip || 2122 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2123 /* Some host controllers give a spurious 2124 * successful event after a short transfer. 2125 * Ignore it. 2126 */ 2127 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2128 ep_ring->last_td_was_short) { 2129 ep_ring->last_td_was_short = false; 2130 ret = 0; 2131 goto cleanup; 2132 } 2133 /* HC is busted, give up! */ 2134 xhci_err(xhci, 2135 "ERROR Transfer event TRB DMA ptr not " 2136 "part of current TD\n"); 2137 return -ESHUTDOWN; 2138 } 2139 2140 ret = skip_isoc_td(xhci, td, event, ep, &status); 2141 goto cleanup; 2142 } 2143 if (trb_comp_code == COMP_SHORT_TX) 2144 ep_ring->last_td_was_short = true; 2145 else 2146 ep_ring->last_td_was_short = false; 2147 2148 if (ep->skip) { 2149 xhci_dbg(xhci, "Found td. Clear skip flag.\n"); 2150 ep->skip = false; 2151 } 2152 2153 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) / 2154 sizeof(*event_trb)]; 2155 /* 2156 * No-op TRB should not trigger interrupts. 2157 * If event_trb is a no-op TRB, it means the 2158 * corresponding TD has been cancelled. Just ignore 2159 * the TD. 2160 */ 2161 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) { 2162 xhci_dbg(xhci, 2163 "event_trb is a no-op TRB. Skip it\n"); 2164 goto cleanup; 2165 } 2166 2167 /* Now update the urb's actual_length and give back to 2168 * the core 2169 */ 2170 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2171 ret = process_ctrl_td(xhci, td, event_trb, event, ep, 2172 &status); 2173 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2174 ret = process_isoc_td(xhci, td, event_trb, event, ep, 2175 &status); 2176 else 2177 ret = process_bulk_intr_td(xhci, td, event_trb, event, 2178 ep, &status); 2179 2180 cleanup: 2181 /* 2182 * Do not update event ring dequeue pointer if ep->skip is set. 2183 * Will roll back to continue process missed tds. 2184 */ 2185 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) { 2186 inc_deq(xhci, xhci->event_ring, true); 2187 } 2188 2189 if (ret) { 2190 urb = td->urb; 2191 urb_priv = urb->hcpriv; 2192 /* Leave the TD around for the reset endpoint function 2193 * to use(but only if it's not a control endpoint, 2194 * since we already queued the Set TR dequeue pointer 2195 * command for stalled control endpoints). 2196 */ 2197 if (usb_endpoint_xfer_control(&urb->ep->desc) || 2198 (trb_comp_code != COMP_STALL && 2199 trb_comp_code != COMP_BABBLE)) 2200 xhci_urb_free_priv(xhci, urb_priv); 2201 2202 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 2203 if ((urb->actual_length != urb->transfer_buffer_length && 2204 (urb->transfer_flags & 2205 URB_SHORT_NOT_OK)) || 2206 (status != 0 && 2207 !usb_endpoint_xfer_isoc(&urb->ep->desc))) 2208 xhci_dbg(xhci, "Giveback URB %p, len = %d, " 2209 "expected = %x, status = %d\n", 2210 urb, urb->actual_length, 2211 urb->transfer_buffer_length, 2212 status); 2213 spin_unlock(&xhci->lock); 2214 /* EHCI, UHCI, and OHCI always unconditionally set the 2215 * urb->status of an isochronous endpoint to 0. 2216 */ 2217 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 2218 status = 0; 2219 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status); 2220 spin_lock(&xhci->lock); 2221 } 2222 2223 /* 2224 * If ep->skip is set, it means there are missed tds on the 2225 * endpoint ring need to take care of. 2226 * Process them as short transfer until reach the td pointed by 2227 * the event. 2228 */ 2229 } while (ep->skip && trb_comp_code != COMP_MISSED_INT); 2230 2231 return 0; 2232 } 2233 2234 /* 2235 * This function handles all OS-owned events on the event ring. It may drop 2236 * xhci->lock between event processing (e.g. to pass up port status changes). 2237 * Returns >0 for "possibly more events to process" (caller should call again), 2238 * otherwise 0 if done. In future, <0 returns should indicate error code. 2239 */ 2240 static int xhci_handle_event(struct xhci_hcd *xhci) 2241 { 2242 union xhci_trb *event; 2243 int update_ptrs = 1; 2244 int ret; 2245 2246 if (!xhci->event_ring || !xhci->event_ring->dequeue) { 2247 xhci->error_bitmask |= 1 << 1; 2248 return 0; 2249 } 2250 2251 event = xhci->event_ring->dequeue; 2252 /* Does the HC or OS own the TRB? */ 2253 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2254 xhci->event_ring->cycle_state) { 2255 xhci->error_bitmask |= 1 << 2; 2256 return 0; 2257 } 2258 2259 /* 2260 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2261 * speculative reads of the event's flags/data below. 2262 */ 2263 rmb(); 2264 /* FIXME: Handle more event types. */ 2265 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) { 2266 case TRB_TYPE(TRB_COMPLETION): 2267 handle_cmd_completion(xhci, &event->event_cmd); 2268 break; 2269 case TRB_TYPE(TRB_PORT_STATUS): 2270 handle_port_status(xhci, event); 2271 update_ptrs = 0; 2272 break; 2273 case TRB_TYPE(TRB_TRANSFER): 2274 ret = handle_tx_event(xhci, &event->trans_event); 2275 if (ret < 0) 2276 xhci->error_bitmask |= 1 << 9; 2277 else 2278 update_ptrs = 0; 2279 break; 2280 default: 2281 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >= 2282 TRB_TYPE(48)) 2283 handle_vendor_event(xhci, event); 2284 else 2285 xhci->error_bitmask |= 1 << 3; 2286 } 2287 /* Any of the above functions may drop and re-acquire the lock, so check 2288 * to make sure a watchdog timer didn't mark the host as non-responsive. 2289 */ 2290 if (xhci->xhc_state & XHCI_STATE_DYING) { 2291 xhci_dbg(xhci, "xHCI host dying, returning from " 2292 "event handler.\n"); 2293 return 0; 2294 } 2295 2296 if (update_ptrs) 2297 /* Update SW event ring dequeue pointer */ 2298 inc_deq(xhci, xhci->event_ring, true); 2299 2300 /* Are there more items on the event ring? Caller will call us again to 2301 * check. 2302 */ 2303 return 1; 2304 } 2305 2306 /* 2307 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 2308 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 2309 * indicators of an event TRB error, but we check the status *first* to be safe. 2310 */ 2311 irqreturn_t xhci_irq(struct usb_hcd *hcd) 2312 { 2313 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2314 u32 status; 2315 union xhci_trb *trb; 2316 u64 temp_64; 2317 union xhci_trb *event_ring_deq; 2318 dma_addr_t deq; 2319 2320 spin_lock(&xhci->lock); 2321 trb = xhci->event_ring->dequeue; 2322 /* Check if the xHC generated the interrupt, or the irq is shared */ 2323 status = xhci_readl(xhci, &xhci->op_regs->status); 2324 if (status == 0xffffffff) 2325 goto hw_died; 2326 2327 if (!(status & STS_EINT)) { 2328 spin_unlock(&xhci->lock); 2329 return IRQ_NONE; 2330 } 2331 if (status & STS_FATAL) { 2332 xhci_warn(xhci, "WARNING: Host System Error\n"); 2333 xhci_halt(xhci); 2334 hw_died: 2335 spin_unlock(&xhci->lock); 2336 return -ESHUTDOWN; 2337 } 2338 2339 /* 2340 * Clear the op reg interrupt status first, 2341 * so we can receive interrupts from other MSI-X interrupters. 2342 * Write 1 to clear the interrupt status. 2343 */ 2344 status |= STS_EINT; 2345 xhci_writel(xhci, status, &xhci->op_regs->status); 2346 /* FIXME when MSI-X is supported and there are multiple vectors */ 2347 /* Clear the MSI-X event interrupt status */ 2348 2349 if (hcd->irq != -1) { 2350 u32 irq_pending; 2351 /* Acknowledge the PCI interrupt */ 2352 irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending); 2353 irq_pending |= 0x3; 2354 xhci_writel(xhci, irq_pending, &xhci->ir_set->irq_pending); 2355 } 2356 2357 if (xhci->xhc_state & XHCI_STATE_DYING) { 2358 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 2359 "Shouldn't IRQs be disabled?\n"); 2360 /* Clear the event handler busy flag (RW1C); 2361 * the event ring should be empty. 2362 */ 2363 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2364 xhci_write_64(xhci, temp_64 | ERST_EHB, 2365 &xhci->ir_set->erst_dequeue); 2366 spin_unlock(&xhci->lock); 2367 2368 return IRQ_HANDLED; 2369 } 2370 2371 event_ring_deq = xhci->event_ring->dequeue; 2372 /* FIXME this should be a delayed service routine 2373 * that clears the EHB. 2374 */ 2375 while (xhci_handle_event(xhci) > 0) {} 2376 2377 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2378 /* If necessary, update the HW's version of the event ring deq ptr. */ 2379 if (event_ring_deq != xhci->event_ring->dequeue) { 2380 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2381 xhci->event_ring->dequeue); 2382 if (deq == 0) 2383 xhci_warn(xhci, "WARN something wrong with SW event " 2384 "ring dequeue ptr.\n"); 2385 /* Update HC event ring dequeue pointer */ 2386 temp_64 &= ERST_PTR_MASK; 2387 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 2388 } 2389 2390 /* Clear the event handler busy flag (RW1C); event ring is empty. */ 2391 temp_64 |= ERST_EHB; 2392 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); 2393 2394 spin_unlock(&xhci->lock); 2395 2396 return IRQ_HANDLED; 2397 } 2398 2399 irqreturn_t xhci_msi_irq(int irq, struct usb_hcd *hcd) 2400 { 2401 return xhci_irq(hcd); 2402 } 2403 2404 /**** Endpoint Ring Operations ****/ 2405 2406 /* 2407 * Generic function for queueing a TRB on a ring. 2408 * The caller must have checked to make sure there's room on the ring. 2409 * 2410 * @more_trbs_coming: Will you enqueue more TRBs before calling 2411 * prepare_transfer()? 2412 */ 2413 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 2414 bool consumer, bool more_trbs_coming, bool isoc, 2415 u32 field1, u32 field2, u32 field3, u32 field4) 2416 { 2417 struct xhci_generic_trb *trb; 2418 2419 trb = &ring->enqueue->generic; 2420 trb->field[0] = cpu_to_le32(field1); 2421 trb->field[1] = cpu_to_le32(field2); 2422 trb->field[2] = cpu_to_le32(field3); 2423 trb->field[3] = cpu_to_le32(field4); 2424 inc_enq(xhci, ring, consumer, more_trbs_coming, isoc); 2425 } 2426 2427 /* 2428 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 2429 * FIXME allocate segments if the ring is full. 2430 */ 2431 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 2432 u32 ep_state, unsigned int num_trbs, bool isoc, gfp_t mem_flags) 2433 { 2434 /* Make sure the endpoint has been added to xHC schedule */ 2435 switch (ep_state) { 2436 case EP_STATE_DISABLED: 2437 /* 2438 * USB core changed config/interfaces without notifying us, 2439 * or hardware is reporting the wrong state. 2440 */ 2441 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 2442 return -ENOENT; 2443 case EP_STATE_ERROR: 2444 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 2445 /* FIXME event handling code for error needs to clear it */ 2446 /* XXX not sure if this should be -ENOENT or not */ 2447 return -EINVAL; 2448 case EP_STATE_HALTED: 2449 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 2450 case EP_STATE_STOPPED: 2451 case EP_STATE_RUNNING: 2452 break; 2453 default: 2454 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 2455 /* 2456 * FIXME issue Configure Endpoint command to try to get the HC 2457 * back into a known state. 2458 */ 2459 return -EINVAL; 2460 } 2461 if (!room_on_ring(xhci, ep_ring, num_trbs)) { 2462 /* FIXME allocate more room */ 2463 xhci_err(xhci, "ERROR no room on ep ring\n"); 2464 return -ENOMEM; 2465 } 2466 2467 if (enqueue_is_link_trb(ep_ring)) { 2468 struct xhci_ring *ring = ep_ring; 2469 union xhci_trb *next; 2470 2471 next = ring->enqueue; 2472 2473 while (last_trb(xhci, ring, ring->enq_seg, next)) { 2474 /* If we're not dealing with 0.95 hardware or isoc rings 2475 * on AMD 0.96 host, clear the chain bit. 2476 */ 2477 if (!xhci_link_trb_quirk(xhci) && !(isoc && 2478 (xhci->quirks & XHCI_AMD_0x96_HOST))) 2479 next->link.control &= cpu_to_le32(~TRB_CHAIN); 2480 else 2481 next->link.control |= cpu_to_le32(TRB_CHAIN); 2482 2483 wmb(); 2484 next->link.control ^= cpu_to_le32(TRB_CYCLE); 2485 2486 /* Toggle the cycle bit after the last ring segment. */ 2487 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 2488 ring->cycle_state = (ring->cycle_state ? 0 : 1); 2489 } 2490 ring->enq_seg = ring->enq_seg->next; 2491 ring->enqueue = ring->enq_seg->trbs; 2492 next = ring->enqueue; 2493 } 2494 } 2495 2496 return 0; 2497 } 2498 2499 static int prepare_transfer(struct xhci_hcd *xhci, 2500 struct xhci_virt_device *xdev, 2501 unsigned int ep_index, 2502 unsigned int stream_id, 2503 unsigned int num_trbs, 2504 struct urb *urb, 2505 unsigned int td_index, 2506 bool isoc, 2507 gfp_t mem_flags) 2508 { 2509 int ret; 2510 struct urb_priv *urb_priv; 2511 struct xhci_td *td; 2512 struct xhci_ring *ep_ring; 2513 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2514 2515 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); 2516 if (!ep_ring) { 2517 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 2518 stream_id); 2519 return -EINVAL; 2520 } 2521 2522 ret = prepare_ring(xhci, ep_ring, 2523 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 2524 num_trbs, isoc, mem_flags); 2525 if (ret) 2526 return ret; 2527 2528 urb_priv = urb->hcpriv; 2529 td = urb_priv->td[td_index]; 2530 2531 INIT_LIST_HEAD(&td->td_list); 2532 INIT_LIST_HEAD(&td->cancelled_td_list); 2533 2534 if (td_index == 0) { 2535 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 2536 if (unlikely(ret)) 2537 return ret; 2538 } 2539 2540 td->urb = urb; 2541 /* Add this TD to the tail of the endpoint ring's TD list */ 2542 list_add_tail(&td->td_list, &ep_ring->td_list); 2543 td->start_seg = ep_ring->enq_seg; 2544 td->first_trb = ep_ring->enqueue; 2545 2546 urb_priv->td[td_index] = td; 2547 2548 return 0; 2549 } 2550 2551 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb) 2552 { 2553 int num_sgs, num_trbs, running_total, temp, i; 2554 struct scatterlist *sg; 2555 2556 sg = NULL; 2557 num_sgs = urb->num_mapped_sgs; 2558 temp = urb->transfer_buffer_length; 2559 2560 num_trbs = 0; 2561 for_each_sg(urb->sg, sg, num_sgs, i) { 2562 unsigned int len = sg_dma_len(sg); 2563 2564 /* Scatter gather list entries may cross 64KB boundaries */ 2565 running_total = TRB_MAX_BUFF_SIZE - 2566 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1)); 2567 running_total &= TRB_MAX_BUFF_SIZE - 1; 2568 if (running_total != 0) 2569 num_trbs++; 2570 2571 /* How many more 64KB chunks to transfer, how many more TRBs? */ 2572 while (running_total < sg_dma_len(sg) && running_total < temp) { 2573 num_trbs++; 2574 running_total += TRB_MAX_BUFF_SIZE; 2575 } 2576 len = min_t(int, len, temp); 2577 temp -= len; 2578 if (temp == 0) 2579 break; 2580 } 2581 return num_trbs; 2582 } 2583 2584 static void check_trb_math(struct urb *urb, int num_trbs, int running_total) 2585 { 2586 if (num_trbs != 0) 2587 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of " 2588 "TRBs, %d left\n", __func__, 2589 urb->ep->desc.bEndpointAddress, num_trbs); 2590 if (running_total != urb->transfer_buffer_length) 2591 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 2592 "queued %#x (%d), asked for %#x (%d)\n", 2593 __func__, 2594 urb->ep->desc.bEndpointAddress, 2595 running_total, running_total, 2596 urb->transfer_buffer_length, 2597 urb->transfer_buffer_length); 2598 } 2599 2600 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 2601 unsigned int ep_index, unsigned int stream_id, int start_cycle, 2602 struct xhci_generic_trb *start_trb) 2603 { 2604 /* 2605 * Pass all the TRBs to the hardware at once and make sure this write 2606 * isn't reordered. 2607 */ 2608 wmb(); 2609 if (start_cycle) 2610 start_trb->field[3] |= cpu_to_le32(start_cycle); 2611 else 2612 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 2613 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 2614 } 2615 2616 /* 2617 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 2618 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 2619 * (comprised of sg list entries) can take several service intervals to 2620 * transmit. 2621 */ 2622 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 2623 struct urb *urb, int slot_id, unsigned int ep_index) 2624 { 2625 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, 2626 xhci->devs[slot_id]->out_ctx, ep_index); 2627 int xhci_interval; 2628 int ep_interval; 2629 2630 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 2631 ep_interval = urb->interval; 2632 /* Convert to microframes */ 2633 if (urb->dev->speed == USB_SPEED_LOW || 2634 urb->dev->speed == USB_SPEED_FULL) 2635 ep_interval *= 8; 2636 /* FIXME change this to a warning and a suggestion to use the new API 2637 * to set the polling interval (once the API is added). 2638 */ 2639 if (xhci_interval != ep_interval) { 2640 if (printk_ratelimit()) 2641 dev_dbg(&urb->dev->dev, "Driver uses different interval" 2642 " (%d microframe%s) than xHCI " 2643 "(%d microframe%s)\n", 2644 ep_interval, 2645 ep_interval == 1 ? "" : "s", 2646 xhci_interval, 2647 xhci_interval == 1 ? "" : "s"); 2648 urb->interval = xhci_interval; 2649 /* Convert back to frames for LS/FS devices */ 2650 if (urb->dev->speed == USB_SPEED_LOW || 2651 urb->dev->speed == USB_SPEED_FULL) 2652 urb->interval /= 8; 2653 } 2654 return xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index); 2655 } 2656 2657 /* 2658 * The TD size is the number of bytes remaining in the TD (including this TRB), 2659 * right shifted by 10. 2660 * It must fit in bits 21:17, so it can't be bigger than 31. 2661 */ 2662 static u32 xhci_td_remainder(unsigned int remainder) 2663 { 2664 u32 max = (1 << (21 - 17 + 1)) - 1; 2665 2666 if ((remainder >> 10) >= max) 2667 return max << 17; 2668 else 2669 return (remainder >> 10) << 17; 2670 } 2671 2672 /* 2673 * For xHCI 1.0 host controllers, TD size is the number of packets remaining in 2674 * the TD (*not* including this TRB). 2675 * 2676 * Total TD packet count = total_packet_count = 2677 * roundup(TD size in bytes / wMaxPacketSize) 2678 * 2679 * Packets transferred up to and including this TRB = packets_transferred = 2680 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 2681 * 2682 * TD size = total_packet_count - packets_transferred 2683 * 2684 * It must fit in bits 21:17, so it can't be bigger than 31. 2685 */ 2686 2687 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len, 2688 unsigned int total_packet_count, struct urb *urb) 2689 { 2690 int packets_transferred; 2691 2692 /* One TRB with a zero-length data packet. */ 2693 if (running_total == 0 && trb_buff_len == 0) 2694 return 0; 2695 2696 /* All the TRB queueing functions don't count the current TRB in 2697 * running_total. 2698 */ 2699 packets_transferred = (running_total + trb_buff_len) / 2700 usb_endpoint_maxp(&urb->ep->desc); 2701 2702 return xhci_td_remainder(total_packet_count - packets_transferred); 2703 } 2704 2705 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 2706 struct urb *urb, int slot_id, unsigned int ep_index) 2707 { 2708 struct xhci_ring *ep_ring; 2709 unsigned int num_trbs; 2710 struct urb_priv *urb_priv; 2711 struct xhci_td *td; 2712 struct scatterlist *sg; 2713 int num_sgs; 2714 int trb_buff_len, this_sg_len, running_total; 2715 unsigned int total_packet_count; 2716 bool first_trb; 2717 u64 addr; 2718 bool more_trbs_coming; 2719 2720 struct xhci_generic_trb *start_trb; 2721 int start_cycle; 2722 2723 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 2724 if (!ep_ring) 2725 return -EINVAL; 2726 2727 num_trbs = count_sg_trbs_needed(xhci, urb); 2728 num_sgs = urb->num_mapped_sgs; 2729 total_packet_count = roundup(urb->transfer_buffer_length, 2730 usb_endpoint_maxp(&urb->ep->desc)); 2731 2732 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id], 2733 ep_index, urb->stream_id, 2734 num_trbs, urb, 0, false, mem_flags); 2735 if (trb_buff_len < 0) 2736 return trb_buff_len; 2737 2738 urb_priv = urb->hcpriv; 2739 td = urb_priv->td[0]; 2740 2741 /* 2742 * Don't give the first TRB to the hardware (by toggling the cycle bit) 2743 * until we've finished creating all the other TRBs. The ring's cycle 2744 * state may change as we enqueue the other TRBs, so save it too. 2745 */ 2746 start_trb = &ep_ring->enqueue->generic; 2747 start_cycle = ep_ring->cycle_state; 2748 2749 running_total = 0; 2750 /* 2751 * How much data is in the first TRB? 2752 * 2753 * There are three forces at work for TRB buffer pointers and lengths: 2754 * 1. We don't want to walk off the end of this sg-list entry buffer. 2755 * 2. The transfer length that the driver requested may be smaller than 2756 * the amount of memory allocated for this scatter-gather list. 2757 * 3. TRBs buffers can't cross 64KB boundaries. 2758 */ 2759 sg = urb->sg; 2760 addr = (u64) sg_dma_address(sg); 2761 this_sg_len = sg_dma_len(sg); 2762 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1)); 2763 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 2764 if (trb_buff_len > urb->transfer_buffer_length) 2765 trb_buff_len = urb->transfer_buffer_length; 2766 2767 first_trb = true; 2768 /* Queue the first TRB, even if it's zero-length */ 2769 do { 2770 u32 field = 0; 2771 u32 length_field = 0; 2772 u32 remainder = 0; 2773 2774 /* Don't change the cycle bit of the first TRB until later */ 2775 if (first_trb) { 2776 first_trb = false; 2777 if (start_cycle == 0) 2778 field |= 0x1; 2779 } else 2780 field |= ep_ring->cycle_state; 2781 2782 /* Chain all the TRBs together; clear the chain bit in the last 2783 * TRB to indicate it's the last TRB in the chain. 2784 */ 2785 if (num_trbs > 1) { 2786 field |= TRB_CHAIN; 2787 } else { 2788 /* FIXME - add check for ZERO_PACKET flag before this */ 2789 td->last_trb = ep_ring->enqueue; 2790 field |= TRB_IOC; 2791 } 2792 2793 /* Only set interrupt on short packet for IN endpoints */ 2794 if (usb_urb_dir_in(urb)) 2795 field |= TRB_ISP; 2796 2797 if (TRB_MAX_BUFF_SIZE - 2798 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) { 2799 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n"); 2800 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n", 2801 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1), 2802 (unsigned int) addr + trb_buff_len); 2803 } 2804 2805 /* Set the TRB length, TD size, and interrupter fields. */ 2806 if (xhci->hci_version < 0x100) { 2807 remainder = xhci_td_remainder( 2808 urb->transfer_buffer_length - 2809 running_total); 2810 } else { 2811 remainder = xhci_v1_0_td_remainder(running_total, 2812 trb_buff_len, total_packet_count, urb); 2813 } 2814 length_field = TRB_LEN(trb_buff_len) | 2815 remainder | 2816 TRB_INTR_TARGET(0); 2817 2818 if (num_trbs > 1) 2819 more_trbs_coming = true; 2820 else 2821 more_trbs_coming = false; 2822 queue_trb(xhci, ep_ring, false, more_trbs_coming, false, 2823 lower_32_bits(addr), 2824 upper_32_bits(addr), 2825 length_field, 2826 field | TRB_TYPE(TRB_NORMAL)); 2827 --num_trbs; 2828 running_total += trb_buff_len; 2829 2830 /* Calculate length for next transfer -- 2831 * Are we done queueing all the TRBs for this sg entry? 2832 */ 2833 this_sg_len -= trb_buff_len; 2834 if (this_sg_len == 0) { 2835 --num_sgs; 2836 if (num_sgs == 0) 2837 break; 2838 sg = sg_next(sg); 2839 addr = (u64) sg_dma_address(sg); 2840 this_sg_len = sg_dma_len(sg); 2841 } else { 2842 addr += trb_buff_len; 2843 } 2844 2845 trb_buff_len = TRB_MAX_BUFF_SIZE - 2846 (addr & (TRB_MAX_BUFF_SIZE - 1)); 2847 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 2848 if (running_total + trb_buff_len > urb->transfer_buffer_length) 2849 trb_buff_len = 2850 urb->transfer_buffer_length - running_total; 2851 } while (running_total < urb->transfer_buffer_length); 2852 2853 check_trb_math(urb, num_trbs, running_total); 2854 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 2855 start_cycle, start_trb); 2856 return 0; 2857 } 2858 2859 /* This is very similar to what ehci-q.c qtd_fill() does */ 2860 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 2861 struct urb *urb, int slot_id, unsigned int ep_index) 2862 { 2863 struct xhci_ring *ep_ring; 2864 struct urb_priv *urb_priv; 2865 struct xhci_td *td; 2866 int num_trbs; 2867 struct xhci_generic_trb *start_trb; 2868 bool first_trb; 2869 bool more_trbs_coming; 2870 int start_cycle; 2871 u32 field, length_field; 2872 2873 int running_total, trb_buff_len, ret; 2874 unsigned int total_packet_count; 2875 u64 addr; 2876 2877 if (urb->num_sgs) 2878 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index); 2879 2880 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 2881 if (!ep_ring) 2882 return -EINVAL; 2883 2884 num_trbs = 0; 2885 /* How much data is (potentially) left before the 64KB boundary? */ 2886 running_total = TRB_MAX_BUFF_SIZE - 2887 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 2888 running_total &= TRB_MAX_BUFF_SIZE - 1; 2889 2890 /* If there's some data on this 64KB chunk, or we have to send a 2891 * zero-length transfer, we need at least one TRB 2892 */ 2893 if (running_total != 0 || urb->transfer_buffer_length == 0) 2894 num_trbs++; 2895 /* How many more 64KB chunks to transfer, how many more TRBs? */ 2896 while (running_total < urb->transfer_buffer_length) { 2897 num_trbs++; 2898 running_total += TRB_MAX_BUFF_SIZE; 2899 } 2900 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */ 2901 2902 ret = prepare_transfer(xhci, xhci->devs[slot_id], 2903 ep_index, urb->stream_id, 2904 num_trbs, urb, 0, false, mem_flags); 2905 if (ret < 0) 2906 return ret; 2907 2908 urb_priv = urb->hcpriv; 2909 td = urb_priv->td[0]; 2910 2911 /* 2912 * Don't give the first TRB to the hardware (by toggling the cycle bit) 2913 * until we've finished creating all the other TRBs. The ring's cycle 2914 * state may change as we enqueue the other TRBs, so save it too. 2915 */ 2916 start_trb = &ep_ring->enqueue->generic; 2917 start_cycle = ep_ring->cycle_state; 2918 2919 running_total = 0; 2920 total_packet_count = roundup(urb->transfer_buffer_length, 2921 usb_endpoint_maxp(&urb->ep->desc)); 2922 /* How much data is in the first TRB? */ 2923 addr = (u64) urb->transfer_dma; 2924 trb_buff_len = TRB_MAX_BUFF_SIZE - 2925 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 2926 if (trb_buff_len > urb->transfer_buffer_length) 2927 trb_buff_len = urb->transfer_buffer_length; 2928 2929 first_trb = true; 2930 2931 /* Queue the first TRB, even if it's zero-length */ 2932 do { 2933 u32 remainder = 0; 2934 field = 0; 2935 2936 /* Don't change the cycle bit of the first TRB until later */ 2937 if (first_trb) { 2938 first_trb = false; 2939 if (start_cycle == 0) 2940 field |= 0x1; 2941 } else 2942 field |= ep_ring->cycle_state; 2943 2944 /* Chain all the TRBs together; clear the chain bit in the last 2945 * TRB to indicate it's the last TRB in the chain. 2946 */ 2947 if (num_trbs > 1) { 2948 field |= TRB_CHAIN; 2949 } else { 2950 /* FIXME - add check for ZERO_PACKET flag before this */ 2951 td->last_trb = ep_ring->enqueue; 2952 field |= TRB_IOC; 2953 } 2954 2955 /* Only set interrupt on short packet for IN endpoints */ 2956 if (usb_urb_dir_in(urb)) 2957 field |= TRB_ISP; 2958 2959 /* Set the TRB length, TD size, and interrupter fields. */ 2960 if (xhci->hci_version < 0x100) { 2961 remainder = xhci_td_remainder( 2962 urb->transfer_buffer_length - 2963 running_total); 2964 } else { 2965 remainder = xhci_v1_0_td_remainder(running_total, 2966 trb_buff_len, total_packet_count, urb); 2967 } 2968 length_field = TRB_LEN(trb_buff_len) | 2969 remainder | 2970 TRB_INTR_TARGET(0); 2971 2972 if (num_trbs > 1) 2973 more_trbs_coming = true; 2974 else 2975 more_trbs_coming = false; 2976 queue_trb(xhci, ep_ring, false, more_trbs_coming, false, 2977 lower_32_bits(addr), 2978 upper_32_bits(addr), 2979 length_field, 2980 field | TRB_TYPE(TRB_NORMAL)); 2981 --num_trbs; 2982 running_total += trb_buff_len; 2983 2984 /* Calculate length for next transfer */ 2985 addr += trb_buff_len; 2986 trb_buff_len = urb->transfer_buffer_length - running_total; 2987 if (trb_buff_len > TRB_MAX_BUFF_SIZE) 2988 trb_buff_len = TRB_MAX_BUFF_SIZE; 2989 } while (running_total < urb->transfer_buffer_length); 2990 2991 check_trb_math(urb, num_trbs, running_total); 2992 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 2993 start_cycle, start_trb); 2994 return 0; 2995 } 2996 2997 /* Caller must have locked xhci->lock */ 2998 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 2999 struct urb *urb, int slot_id, unsigned int ep_index) 3000 { 3001 struct xhci_ring *ep_ring; 3002 int num_trbs; 3003 int ret; 3004 struct usb_ctrlrequest *setup; 3005 struct xhci_generic_trb *start_trb; 3006 int start_cycle; 3007 u32 field, length_field; 3008 struct urb_priv *urb_priv; 3009 struct xhci_td *td; 3010 3011 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3012 if (!ep_ring) 3013 return -EINVAL; 3014 3015 /* 3016 * Need to copy setup packet into setup TRB, so we can't use the setup 3017 * DMA address. 3018 */ 3019 if (!urb->setup_packet) 3020 return -EINVAL; 3021 3022 /* 1 TRB for setup, 1 for status */ 3023 num_trbs = 2; 3024 /* 3025 * Don't need to check if we need additional event data and normal TRBs, 3026 * since data in control transfers will never get bigger than 16MB 3027 * XXX: can we get a buffer that crosses 64KB boundaries? 3028 */ 3029 if (urb->transfer_buffer_length > 0) 3030 num_trbs++; 3031 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3032 ep_index, urb->stream_id, 3033 num_trbs, urb, 0, false, mem_flags); 3034 if (ret < 0) 3035 return ret; 3036 3037 urb_priv = urb->hcpriv; 3038 td = urb_priv->td[0]; 3039 3040 /* 3041 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3042 * until we've finished creating all the other TRBs. The ring's cycle 3043 * state may change as we enqueue the other TRBs, so save it too. 3044 */ 3045 start_trb = &ep_ring->enqueue->generic; 3046 start_cycle = ep_ring->cycle_state; 3047 3048 /* Queue setup TRB - see section 6.4.1.2.1 */ 3049 /* FIXME better way to translate setup_packet into two u32 fields? */ 3050 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3051 field = 0; 3052 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3053 if (start_cycle == 0) 3054 field |= 0x1; 3055 3056 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */ 3057 if (xhci->hci_version == 0x100) { 3058 if (urb->transfer_buffer_length > 0) { 3059 if (setup->bRequestType & USB_DIR_IN) 3060 field |= TRB_TX_TYPE(TRB_DATA_IN); 3061 else 3062 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3063 } 3064 } 3065 3066 queue_trb(xhci, ep_ring, false, true, false, 3067 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3068 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3069 TRB_LEN(8) | TRB_INTR_TARGET(0), 3070 /* Immediate data in pointer */ 3071 field); 3072 3073 /* If there's data, queue data TRBs */ 3074 /* Only set interrupt on short packet for IN endpoints */ 3075 if (usb_urb_dir_in(urb)) 3076 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3077 else 3078 field = TRB_TYPE(TRB_DATA); 3079 3080 length_field = TRB_LEN(urb->transfer_buffer_length) | 3081 xhci_td_remainder(urb->transfer_buffer_length) | 3082 TRB_INTR_TARGET(0); 3083 if (urb->transfer_buffer_length > 0) { 3084 if (setup->bRequestType & USB_DIR_IN) 3085 field |= TRB_DIR_IN; 3086 queue_trb(xhci, ep_ring, false, true, false, 3087 lower_32_bits(urb->transfer_dma), 3088 upper_32_bits(urb->transfer_dma), 3089 length_field, 3090 field | ep_ring->cycle_state); 3091 } 3092 3093 /* Save the DMA address of the last TRB in the TD */ 3094 td->last_trb = ep_ring->enqueue; 3095 3096 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3097 /* If the device sent data, the status stage is an OUT transfer */ 3098 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3099 field = 0; 3100 else 3101 field = TRB_DIR_IN; 3102 queue_trb(xhci, ep_ring, false, false, false, 3103 0, 3104 0, 3105 TRB_INTR_TARGET(0), 3106 /* Event on completion */ 3107 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3108 3109 giveback_first_trb(xhci, slot_id, ep_index, 0, 3110 start_cycle, start_trb); 3111 return 0; 3112 } 3113 3114 static int count_isoc_trbs_needed(struct xhci_hcd *xhci, 3115 struct urb *urb, int i) 3116 { 3117 int num_trbs = 0; 3118 u64 addr, td_len; 3119 3120 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3121 td_len = urb->iso_frame_desc[i].length; 3122 3123 num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3124 TRB_MAX_BUFF_SIZE); 3125 if (num_trbs == 0) 3126 num_trbs++; 3127 3128 return num_trbs; 3129 } 3130 3131 /* 3132 * The transfer burst count field of the isochronous TRB defines the number of 3133 * bursts that are required to move all packets in this TD. Only SuperSpeed 3134 * devices can burst up to bMaxBurst number of packets per service interval. 3135 * This field is zero based, meaning a value of zero in the field means one 3136 * burst. Basically, for everything but SuperSpeed devices, this field will be 3137 * zero. Only xHCI 1.0 host controllers support this field. 3138 */ 3139 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3140 struct usb_device *udev, 3141 struct urb *urb, unsigned int total_packet_count) 3142 { 3143 unsigned int max_burst; 3144 3145 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER) 3146 return 0; 3147 3148 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3149 return roundup(total_packet_count, max_burst + 1) - 1; 3150 } 3151 3152 /* 3153 * Returns the number of packets in the last "burst" of packets. This field is 3154 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3155 * the last burst packet count is equal to the total number of packets in the 3156 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3157 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3158 * contain 1 to (bMaxBurst + 1) packets. 3159 */ 3160 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3161 struct usb_device *udev, 3162 struct urb *urb, unsigned int total_packet_count) 3163 { 3164 unsigned int max_burst; 3165 unsigned int residue; 3166 3167 if (xhci->hci_version < 0x100) 3168 return 0; 3169 3170 switch (udev->speed) { 3171 case USB_SPEED_SUPER: 3172 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3173 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3174 residue = total_packet_count % (max_burst + 1); 3175 /* If residue is zero, the last burst contains (max_burst + 1) 3176 * number of packets, but the TLBPC field is zero-based. 3177 */ 3178 if (residue == 0) 3179 return max_burst; 3180 return residue - 1; 3181 default: 3182 if (total_packet_count == 0) 3183 return 0; 3184 return total_packet_count - 1; 3185 } 3186 } 3187 3188 /* This is for isoc transfer */ 3189 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3190 struct urb *urb, int slot_id, unsigned int ep_index) 3191 { 3192 struct xhci_ring *ep_ring; 3193 struct urb_priv *urb_priv; 3194 struct xhci_td *td; 3195 int num_tds, trbs_per_td; 3196 struct xhci_generic_trb *start_trb; 3197 bool first_trb; 3198 int start_cycle; 3199 u32 field, length_field; 3200 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3201 u64 start_addr, addr; 3202 int i, j; 3203 bool more_trbs_coming; 3204 3205 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 3206 3207 num_tds = urb->number_of_packets; 3208 if (num_tds < 1) { 3209 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 3210 return -EINVAL; 3211 } 3212 3213 start_addr = (u64) urb->transfer_dma; 3214 start_trb = &ep_ring->enqueue->generic; 3215 start_cycle = ep_ring->cycle_state; 3216 3217 urb_priv = urb->hcpriv; 3218 /* Queue the first TRB, even if it's zero-length */ 3219 for (i = 0; i < num_tds; i++) { 3220 unsigned int total_packet_count; 3221 unsigned int burst_count; 3222 unsigned int residue; 3223 3224 first_trb = true; 3225 running_total = 0; 3226 addr = start_addr + urb->iso_frame_desc[i].offset; 3227 td_len = urb->iso_frame_desc[i].length; 3228 td_remain_len = td_len; 3229 total_packet_count = roundup(td_len, 3230 usb_endpoint_maxp(&urb->ep->desc)); 3231 /* A zero-length transfer still involves at least one packet. */ 3232 if (total_packet_count == 0) 3233 total_packet_count++; 3234 burst_count = xhci_get_burst_count(xhci, urb->dev, urb, 3235 total_packet_count); 3236 residue = xhci_get_last_burst_packet_count(xhci, 3237 urb->dev, urb, total_packet_count); 3238 3239 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i); 3240 3241 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 3242 urb->stream_id, trbs_per_td, urb, i, true, 3243 mem_flags); 3244 if (ret < 0) { 3245 if (i == 0) 3246 return ret; 3247 goto cleanup; 3248 } 3249 3250 td = urb_priv->td[i]; 3251 for (j = 0; j < trbs_per_td; j++) { 3252 u32 remainder = 0; 3253 field = TRB_TBC(burst_count) | TRB_TLBPC(residue); 3254 3255 if (first_trb) { 3256 /* Queue the isoc TRB */ 3257 field |= TRB_TYPE(TRB_ISOC); 3258 /* Assume URB_ISO_ASAP is set */ 3259 field |= TRB_SIA; 3260 if (i == 0) { 3261 if (start_cycle == 0) 3262 field |= 0x1; 3263 } else 3264 field |= ep_ring->cycle_state; 3265 first_trb = false; 3266 } else { 3267 /* Queue other normal TRBs */ 3268 field |= TRB_TYPE(TRB_NORMAL); 3269 field |= ep_ring->cycle_state; 3270 } 3271 3272 /* Only set interrupt on short packet for IN EPs */ 3273 if (usb_urb_dir_in(urb)) 3274 field |= TRB_ISP; 3275 3276 /* Chain all the TRBs together; clear the chain bit in 3277 * the last TRB to indicate it's the last TRB in the 3278 * chain. 3279 */ 3280 if (j < trbs_per_td - 1) { 3281 field |= TRB_CHAIN; 3282 more_trbs_coming = true; 3283 } else { 3284 td->last_trb = ep_ring->enqueue; 3285 field |= TRB_IOC; 3286 if (xhci->hci_version == 0x100) { 3287 /* Set BEI bit except for the last td */ 3288 if (i < num_tds - 1) 3289 field |= TRB_BEI; 3290 } 3291 more_trbs_coming = false; 3292 } 3293 3294 /* Calculate TRB length */ 3295 trb_buff_len = TRB_MAX_BUFF_SIZE - 3296 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1)); 3297 if (trb_buff_len > td_remain_len) 3298 trb_buff_len = td_remain_len; 3299 3300 /* Set the TRB length, TD size, & interrupter fields. */ 3301 if (xhci->hci_version < 0x100) { 3302 remainder = xhci_td_remainder( 3303 td_len - running_total); 3304 } else { 3305 remainder = xhci_v1_0_td_remainder( 3306 running_total, trb_buff_len, 3307 total_packet_count, urb); 3308 } 3309 length_field = TRB_LEN(trb_buff_len) | 3310 remainder | 3311 TRB_INTR_TARGET(0); 3312 3313 queue_trb(xhci, ep_ring, false, more_trbs_coming, true, 3314 lower_32_bits(addr), 3315 upper_32_bits(addr), 3316 length_field, 3317 field); 3318 running_total += trb_buff_len; 3319 3320 addr += trb_buff_len; 3321 td_remain_len -= trb_buff_len; 3322 } 3323 3324 /* Check TD length */ 3325 if (running_total != td_len) { 3326 xhci_err(xhci, "ISOC TD length unmatch\n"); 3327 ret = -EINVAL; 3328 goto cleanup; 3329 } 3330 } 3331 3332 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 3333 if (xhci->quirks & XHCI_AMD_PLL_FIX) 3334 usb_amd_quirk_pll_disable(); 3335 } 3336 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 3337 3338 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3339 start_cycle, start_trb); 3340 return 0; 3341 cleanup: 3342 /* Clean up a partially enqueued isoc transfer. */ 3343 3344 for (i--; i >= 0; i--) 3345 list_del_init(&urb_priv->td[i]->td_list); 3346 3347 /* Use the first TD as a temporary variable to turn the TDs we've queued 3348 * into No-ops with a software-owned cycle bit. That way the hardware 3349 * won't accidentally start executing bogus TDs when we partially 3350 * overwrite them. td->first_trb and td->start_seg are already set. 3351 */ 3352 urb_priv->td[0]->last_trb = ep_ring->enqueue; 3353 /* Every TRB except the first & last will have its cycle bit flipped. */ 3354 td_to_noop(xhci, ep_ring, urb_priv->td[0], true); 3355 3356 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 3357 ep_ring->enqueue = urb_priv->td[0]->first_trb; 3358 ep_ring->enq_seg = urb_priv->td[0]->start_seg; 3359 ep_ring->cycle_state = start_cycle; 3360 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 3361 return ret; 3362 } 3363 3364 /* 3365 * Check transfer ring to guarantee there is enough room for the urb. 3366 * Update ISO URB start_frame and interval. 3367 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to 3368 * update the urb->start_frame by now. 3369 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input. 3370 */ 3371 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 3372 struct urb *urb, int slot_id, unsigned int ep_index) 3373 { 3374 struct xhci_virt_device *xdev; 3375 struct xhci_ring *ep_ring; 3376 struct xhci_ep_ctx *ep_ctx; 3377 int start_frame; 3378 int xhci_interval; 3379 int ep_interval; 3380 int num_tds, num_trbs, i; 3381 int ret; 3382 3383 xdev = xhci->devs[slot_id]; 3384 ep_ring = xdev->eps[ep_index].ring; 3385 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3386 3387 num_trbs = 0; 3388 num_tds = urb->number_of_packets; 3389 for (i = 0; i < num_tds; i++) 3390 num_trbs += count_isoc_trbs_needed(xhci, urb, i); 3391 3392 /* Check the ring to guarantee there is enough room for the whole urb. 3393 * Do not insert any td of the urb to the ring if the check failed. 3394 */ 3395 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 3396 num_trbs, true, mem_flags); 3397 if (ret) 3398 return ret; 3399 3400 start_frame = xhci_readl(xhci, &xhci->run_regs->microframe_index); 3401 start_frame &= 0x3fff; 3402 3403 urb->start_frame = start_frame; 3404 if (urb->dev->speed == USB_SPEED_LOW || 3405 urb->dev->speed == USB_SPEED_FULL) 3406 urb->start_frame >>= 3; 3407 3408 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3409 ep_interval = urb->interval; 3410 /* Convert to microframes */ 3411 if (urb->dev->speed == USB_SPEED_LOW || 3412 urb->dev->speed == USB_SPEED_FULL) 3413 ep_interval *= 8; 3414 /* FIXME change this to a warning and a suggestion to use the new API 3415 * to set the polling interval (once the API is added). 3416 */ 3417 if (xhci_interval != ep_interval) { 3418 if (printk_ratelimit()) 3419 dev_dbg(&urb->dev->dev, "Driver uses different interval" 3420 " (%d microframe%s) than xHCI " 3421 "(%d microframe%s)\n", 3422 ep_interval, 3423 ep_interval == 1 ? "" : "s", 3424 xhci_interval, 3425 xhci_interval == 1 ? "" : "s"); 3426 urb->interval = xhci_interval; 3427 /* Convert back to frames for LS/FS devices */ 3428 if (urb->dev->speed == USB_SPEED_LOW || 3429 urb->dev->speed == USB_SPEED_FULL) 3430 urb->interval /= 8; 3431 } 3432 return xhci_queue_isoc_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index); 3433 } 3434 3435 /**** Command Ring Operations ****/ 3436 3437 /* Generic function for queueing a command TRB on the command ring. 3438 * Check to make sure there's room on the command ring for one command TRB. 3439 * Also check that there's room reserved for commands that must not fail. 3440 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 3441 * then only check for the number of reserved spots. 3442 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 3443 * because the command event handler may want to resubmit a failed command. 3444 */ 3445 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2, 3446 u32 field3, u32 field4, bool command_must_succeed) 3447 { 3448 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 3449 int ret; 3450 3451 if (!command_must_succeed) 3452 reserved_trbs++; 3453 3454 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 3455 reserved_trbs, false, GFP_ATOMIC); 3456 if (ret < 0) { 3457 xhci_err(xhci, "ERR: No room for command on command ring\n"); 3458 if (command_must_succeed) 3459 xhci_err(xhci, "ERR: Reserved TRB counting for " 3460 "unfailable commands failed.\n"); 3461 return ret; 3462 } 3463 queue_trb(xhci, xhci->cmd_ring, false, false, false, field1, field2, 3464 field3, field4 | xhci->cmd_ring->cycle_state); 3465 return 0; 3466 } 3467 3468 /* Queue a slot enable or disable request on the command ring */ 3469 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id) 3470 { 3471 return queue_command(xhci, 0, 0, 0, 3472 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 3473 } 3474 3475 /* Queue an address device command TRB */ 3476 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 3477 u32 slot_id) 3478 { 3479 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 3480 upper_32_bits(in_ctx_ptr), 0, 3481 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id), 3482 false); 3483 } 3484 3485 int xhci_queue_vendor_command(struct xhci_hcd *xhci, 3486 u32 field1, u32 field2, u32 field3, u32 field4) 3487 { 3488 return queue_command(xhci, field1, field2, field3, field4, false); 3489 } 3490 3491 /* Queue a reset device command TRB */ 3492 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id) 3493 { 3494 return queue_command(xhci, 0, 0, 0, 3495 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 3496 false); 3497 } 3498 3499 /* Queue a configure endpoint command TRB */ 3500 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 3501 u32 slot_id, bool command_must_succeed) 3502 { 3503 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 3504 upper_32_bits(in_ctx_ptr), 0, 3505 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 3506 command_must_succeed); 3507 } 3508 3509 /* Queue an evaluate context command TRB */ 3510 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 3511 u32 slot_id) 3512 { 3513 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 3514 upper_32_bits(in_ctx_ptr), 0, 3515 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 3516 false); 3517 } 3518 3519 /* 3520 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 3521 * activity on an endpoint that is about to be suspended. 3522 */ 3523 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id, 3524 unsigned int ep_index, int suspend) 3525 { 3526 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3527 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3528 u32 type = TRB_TYPE(TRB_STOP_RING); 3529 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 3530 3531 return queue_command(xhci, 0, 0, 0, 3532 trb_slot_id | trb_ep_index | type | trb_suspend, false); 3533 } 3534 3535 /* Set Transfer Ring Dequeue Pointer command. 3536 * This should not be used for endpoints that have streams enabled. 3537 */ 3538 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id, 3539 unsigned int ep_index, unsigned int stream_id, 3540 struct xhci_segment *deq_seg, 3541 union xhci_trb *deq_ptr, u32 cycle_state) 3542 { 3543 dma_addr_t addr; 3544 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3545 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3546 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id); 3547 u32 type = TRB_TYPE(TRB_SET_DEQ); 3548 struct xhci_virt_ep *ep; 3549 3550 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr); 3551 if (addr == 0) { 3552 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 3553 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", 3554 deq_seg, deq_ptr); 3555 return 0; 3556 } 3557 ep = &xhci->devs[slot_id]->eps[ep_index]; 3558 if ((ep->ep_state & SET_DEQ_PENDING)) { 3559 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 3560 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n"); 3561 return 0; 3562 } 3563 ep->queued_deq_seg = deq_seg; 3564 ep->queued_deq_ptr = deq_ptr; 3565 return queue_command(xhci, lower_32_bits(addr) | cycle_state, 3566 upper_32_bits(addr), trb_stream_id, 3567 trb_slot_id | trb_ep_index | type, false); 3568 } 3569 3570 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id, 3571 unsigned int ep_index) 3572 { 3573 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3574 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3575 u32 type = TRB_TYPE(TRB_RESET_EP); 3576 3577 return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type, 3578 false); 3579 } 3580