1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License version 2 as 12 * published by the Free Software Foundation. 13 * 14 * This program is distributed in the hope that it will be useful, but 15 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 16 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 17 * for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software Foundation, 21 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 22 */ 23 24 /* 25 * Ring initialization rules: 26 * 1. Each segment is initialized to zero, except for link TRBs. 27 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 28 * Consumer Cycle State (CCS), depending on ring function. 29 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 30 * 31 * Ring behavior rules: 32 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 33 * least one free TRB in the ring. This is useful if you want to turn that 34 * into a link TRB and expand the ring. 35 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 36 * link TRB, then load the pointer with the address in the link TRB. If the 37 * link TRB had its toggle bit set, you may need to update the ring cycle 38 * state (see cycle bit rules). You may have to do this multiple times 39 * until you reach a non-link TRB. 40 * 3. A ring is full if enqueue++ (for the definition of increment above) 41 * equals the dequeue pointer. 42 * 43 * Cycle bit rules: 44 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 45 * in a link TRB, it must toggle the ring cycle state. 46 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 47 * in a link TRB, it must toggle the ring cycle state. 48 * 49 * Producer rules: 50 * 1. Check if ring is full before you enqueue. 51 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 52 * Update enqueue pointer between each write (which may update the ring 53 * cycle state). 54 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 55 * and endpoint rings. If HC is the producer for the event ring, 56 * and it generates an interrupt according to interrupt modulation rules. 57 * 58 * Consumer rules: 59 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 60 * the TRB is owned by the consumer. 61 * 2. Update dequeue pointer (which may update the ring cycle state) and 62 * continue processing TRBs until you reach a TRB which is not owned by you. 63 * 3. Notify the producer. SW is the consumer for the event ring, and it 64 * updates event ring dequeue pointer. HC is the consumer for the command and 65 * endpoint rings; it generates events on the event ring for these. 66 */ 67 68 #include <linux/scatterlist.h> 69 #include <linux/slab.h> 70 #include <linux/dma-mapping.h> 71 #include "xhci.h" 72 #include "xhci-trace.h" 73 #include "xhci-mtk.h" 74 75 /* 76 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 77 * address of the TRB. 78 */ 79 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 80 union xhci_trb *trb) 81 { 82 unsigned long segment_offset; 83 84 if (!seg || !trb || trb < seg->trbs) 85 return 0; 86 /* offset in TRBs */ 87 segment_offset = trb - seg->trbs; 88 if (segment_offset >= TRBS_PER_SEGMENT) 89 return 0; 90 return seg->dma + (segment_offset * sizeof(*trb)); 91 } 92 93 static bool trb_is_noop(union xhci_trb *trb) 94 { 95 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); 96 } 97 98 static bool trb_is_link(union xhci_trb *trb) 99 { 100 return TRB_TYPE_LINK_LE32(trb->link.control); 101 } 102 103 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) 104 { 105 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; 106 } 107 108 static bool last_trb_on_ring(struct xhci_ring *ring, 109 struct xhci_segment *seg, union xhci_trb *trb) 110 { 111 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); 112 } 113 114 static bool link_trb_toggles_cycle(union xhci_trb *trb) 115 { 116 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 117 } 118 119 static bool last_td_in_urb(struct xhci_td *td) 120 { 121 struct urb_priv *urb_priv = td->urb->hcpriv; 122 123 return urb_priv->num_tds_done == urb_priv->num_tds; 124 } 125 126 static void inc_td_cnt(struct urb *urb) 127 { 128 struct urb_priv *urb_priv = urb->hcpriv; 129 130 urb_priv->num_tds_done++; 131 } 132 133 static void trb_to_noop(union xhci_trb *trb, u32 noop_type) 134 { 135 if (trb_is_link(trb)) { 136 /* unchain chained link TRBs */ 137 trb->link.control &= cpu_to_le32(~TRB_CHAIN); 138 } else { 139 trb->generic.field[0] = 0; 140 trb->generic.field[1] = 0; 141 trb->generic.field[2] = 0; 142 /* Preserve only the cycle bit of this TRB */ 143 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 144 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); 145 } 146 } 147 148 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 149 * TRB is in a new segment. This does not skip over link TRBs, and it does not 150 * effect the ring dequeue or enqueue pointers. 151 */ 152 static void next_trb(struct xhci_hcd *xhci, 153 struct xhci_ring *ring, 154 struct xhci_segment **seg, 155 union xhci_trb **trb) 156 { 157 if (trb_is_link(*trb)) { 158 *seg = (*seg)->next; 159 *trb = ((*seg)->trbs); 160 } else { 161 (*trb)++; 162 } 163 } 164 165 /* 166 * See Cycle bit rules. SW is the consumer for the event ring only. 167 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 168 */ 169 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 170 { 171 /* event ring doesn't have link trbs, check for last trb */ 172 if (ring->type == TYPE_EVENT) { 173 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 174 ring->dequeue++; 175 goto out; 176 } 177 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) 178 ring->cycle_state ^= 1; 179 ring->deq_seg = ring->deq_seg->next; 180 ring->dequeue = ring->deq_seg->trbs; 181 goto out; 182 } 183 184 /* All other rings have link trbs */ 185 if (!trb_is_link(ring->dequeue)) { 186 ring->dequeue++; 187 ring->num_trbs_free++; 188 } 189 while (trb_is_link(ring->dequeue)) { 190 ring->deq_seg = ring->deq_seg->next; 191 ring->dequeue = ring->deq_seg->trbs; 192 } 193 194 out: 195 trace_xhci_inc_deq(ring); 196 197 return; 198 } 199 200 /* 201 * See Cycle bit rules. SW is the consumer for the event ring only. 202 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 203 * 204 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 205 * chain bit is set), then set the chain bit in all the following link TRBs. 206 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 207 * have their chain bit cleared (so that each Link TRB is a separate TD). 208 * 209 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 210 * set, but other sections talk about dealing with the chain bit set. This was 211 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 212 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 213 * 214 * @more_trbs_coming: Will you enqueue more TRBs before calling 215 * prepare_transfer()? 216 */ 217 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 218 bool more_trbs_coming) 219 { 220 u32 chain; 221 union xhci_trb *next; 222 223 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 224 /* If this is not event ring, there is one less usable TRB */ 225 if (!trb_is_link(ring->enqueue)) 226 ring->num_trbs_free--; 227 next = ++(ring->enqueue); 228 229 /* Update the dequeue pointer further if that was a link TRB */ 230 while (trb_is_link(next)) { 231 232 /* 233 * If the caller doesn't plan on enqueueing more TDs before 234 * ringing the doorbell, then we don't want to give the link TRB 235 * to the hardware just yet. We'll give the link TRB back in 236 * prepare_ring() just before we enqueue the TD at the top of 237 * the ring. 238 */ 239 if (!chain && !more_trbs_coming) 240 break; 241 242 /* If we're not dealing with 0.95 hardware or isoc rings on 243 * AMD 0.96 host, carry over the chain bit of the previous TRB 244 * (which may mean the chain bit is cleared). 245 */ 246 if (!(ring->type == TYPE_ISOC && 247 (xhci->quirks & XHCI_AMD_0x96_HOST)) && 248 !xhci_link_trb_quirk(xhci)) { 249 next->link.control &= cpu_to_le32(~TRB_CHAIN); 250 next->link.control |= cpu_to_le32(chain); 251 } 252 /* Give this link TRB to the hardware */ 253 wmb(); 254 next->link.control ^= cpu_to_le32(TRB_CYCLE); 255 256 /* Toggle the cycle bit after the last ring segment. */ 257 if (link_trb_toggles_cycle(next)) 258 ring->cycle_state ^= 1; 259 260 ring->enq_seg = ring->enq_seg->next; 261 ring->enqueue = ring->enq_seg->trbs; 262 next = ring->enqueue; 263 } 264 265 trace_xhci_inc_enq(ring); 266 } 267 268 /* 269 * Check to see if there's room to enqueue num_trbs on the ring and make sure 270 * enqueue pointer will not advance into dequeue segment. See rules above. 271 */ 272 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 273 unsigned int num_trbs) 274 { 275 int num_trbs_in_deq_seg; 276 277 if (ring->num_trbs_free < num_trbs) 278 return 0; 279 280 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { 281 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; 282 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) 283 return 0; 284 } 285 286 return 1; 287 } 288 289 /* Ring the host controller doorbell after placing a command on the ring */ 290 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 291 { 292 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 293 return; 294 295 xhci_dbg(xhci, "// Ding dong!\n"); 296 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 297 /* Flush PCI posted writes */ 298 readl(&xhci->dba->doorbell[0]); 299 } 300 301 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay) 302 { 303 return mod_delayed_work(system_wq, &xhci->cmd_timer, delay); 304 } 305 306 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) 307 { 308 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, 309 cmd_list); 310 } 311 312 /* 313 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 314 * If there are other commands waiting then restart the ring and kick the timer. 315 * This must be called with command ring stopped and xhci->lock held. 316 */ 317 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 318 struct xhci_command *cur_cmd) 319 { 320 struct xhci_command *i_cmd; 321 322 /* Turn all aborted commands in list to no-ops, then restart */ 323 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { 324 325 if (i_cmd->status != COMP_COMMAND_ABORTED) 326 continue; 327 328 i_cmd->status = COMP_COMMAND_RING_STOPPED; 329 330 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 331 i_cmd->command_trb); 332 333 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); 334 335 /* 336 * caller waiting for completion is called when command 337 * completion event is received for these no-op commands 338 */ 339 } 340 341 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 342 343 /* ring command ring doorbell to restart the command ring */ 344 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 345 !(xhci->xhc_state & XHCI_STATE_DYING)) { 346 xhci->current_cmd = cur_cmd; 347 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 348 xhci_ring_cmd_db(xhci); 349 } 350 } 351 352 /* Must be called with xhci->lock held, releases and aquires lock back */ 353 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) 354 { 355 u64 temp_64; 356 int ret; 357 358 xhci_dbg(xhci, "Abort command ring\n"); 359 360 reinit_completion(&xhci->cmd_ring_stop_completion); 361 362 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 363 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT, 364 &xhci->op_regs->cmd_ring); 365 366 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the 367 * completion of the Command Abort operation. If CRR is not negated in 5 368 * seconds then driver handles it as if host died (-ENODEV). 369 * In the future we should distinguish between -ENODEV and -ETIMEDOUT 370 * and try to recover a -ETIMEDOUT with a host controller reset. 371 */ 372 ret = xhci_handshake(&xhci->op_regs->cmd_ring, 373 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 374 if (ret < 0) { 375 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret); 376 xhci_halt(xhci); 377 xhci_hc_died(xhci); 378 return ret; 379 } 380 /* 381 * Writing the CMD_RING_ABORT bit should cause a cmd completion event, 382 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared 383 * but the completion event in never sent. Wait 2 secs (arbitrary 384 * number) to handle those cases after negation of CMD_RING_RUNNING. 385 */ 386 spin_unlock_irqrestore(&xhci->lock, flags); 387 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, 388 msecs_to_jiffies(2000)); 389 spin_lock_irqsave(&xhci->lock, flags); 390 if (!ret) { 391 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); 392 xhci_cleanup_command_queue(xhci); 393 } else { 394 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); 395 } 396 return 0; 397 } 398 399 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 400 unsigned int slot_id, 401 unsigned int ep_index, 402 unsigned int stream_id) 403 { 404 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 405 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 406 unsigned int ep_state = ep->ep_state; 407 408 /* Don't ring the doorbell for this endpoint if there are pending 409 * cancellations because we don't want to interrupt processing. 410 * We don't want to restart any stream rings if there's a set dequeue 411 * pointer command pending because the device can choose to start any 412 * stream once the endpoint is on the HW schedule. 413 */ 414 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || 415 (ep_state & EP_HALTED)) 416 return; 417 writel(DB_VALUE(ep_index, stream_id), db_addr); 418 /* The CPU has better things to do at this point than wait for a 419 * write-posting flush. It'll get there soon enough. 420 */ 421 } 422 423 /* Ring the doorbell for any rings with pending URBs */ 424 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 425 unsigned int slot_id, 426 unsigned int ep_index) 427 { 428 unsigned int stream_id; 429 struct xhci_virt_ep *ep; 430 431 ep = &xhci->devs[slot_id]->eps[ep_index]; 432 433 /* A ring has pending URBs if its TD list is not empty */ 434 if (!(ep->ep_state & EP_HAS_STREAMS)) { 435 if (ep->ring && !(list_empty(&ep->ring->td_list))) 436 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 437 return; 438 } 439 440 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 441 stream_id++) { 442 struct xhci_stream_info *stream_info = ep->stream_info; 443 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 444 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 445 stream_id); 446 } 447 } 448 449 /* Get the right ring for the given slot_id, ep_index and stream_id. 450 * If the endpoint supports streams, boundary check the URB's stream ID. 451 * If the endpoint doesn't support streams, return the singular endpoint ring. 452 */ 453 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 454 unsigned int slot_id, unsigned int ep_index, 455 unsigned int stream_id) 456 { 457 struct xhci_virt_ep *ep; 458 459 ep = &xhci->devs[slot_id]->eps[ep_index]; 460 /* Common case: no streams */ 461 if (!(ep->ep_state & EP_HAS_STREAMS)) 462 return ep->ring; 463 464 if (stream_id == 0) { 465 xhci_warn(xhci, 466 "WARN: Slot ID %u, ep index %u has streams, " 467 "but URB has no stream ID.\n", 468 slot_id, ep_index); 469 return NULL; 470 } 471 472 if (stream_id < ep->stream_info->num_streams) 473 return ep->stream_info->stream_rings[stream_id]; 474 475 xhci_warn(xhci, 476 "WARN: Slot ID %u, ep index %u has " 477 "stream IDs 1 to %u allocated, " 478 "but stream ID %u is requested.\n", 479 slot_id, ep_index, 480 ep->stream_info->num_streams - 1, 481 stream_id); 482 return NULL; 483 } 484 485 486 /* 487 * Get the hw dequeue pointer xHC stopped on, either directly from the 488 * endpoint context, or if streams are in use from the stream context. 489 * The returned hw_dequeue contains the lowest four bits with cycle state 490 * and possbile stream context type. 491 */ 492 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev, 493 unsigned int ep_index, unsigned int stream_id) 494 { 495 struct xhci_ep_ctx *ep_ctx; 496 struct xhci_stream_ctx *st_ctx; 497 struct xhci_virt_ep *ep; 498 499 ep = &vdev->eps[ep_index]; 500 501 if (ep->ep_state & EP_HAS_STREAMS) { 502 st_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 503 return le64_to_cpu(st_ctx->stream_ring); 504 } 505 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 506 return le64_to_cpu(ep_ctx->deq); 507 } 508 509 /* 510 * Move the xHC's endpoint ring dequeue pointer past cur_td. 511 * Record the new state of the xHC's endpoint ring dequeue segment, 512 * dequeue pointer, stream id, and new consumer cycle state in state. 513 * Update our internal representation of the ring's dequeue pointer. 514 * 515 * We do this in three jumps: 516 * - First we update our new ring state to be the same as when the xHC stopped. 517 * - Then we traverse the ring to find the segment that contains 518 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass 519 * any link TRBs with the toggle cycle bit set. 520 * - Finally we move the dequeue state one TRB further, toggling the cycle bit 521 * if we've moved it past a link TRB with the toggle cycle bit set. 522 * 523 * Some of the uses of xhci_generic_trb are grotty, but if they're done 524 * with correct __le32 accesses they should work fine. Only users of this are 525 * in here. 526 */ 527 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, 528 unsigned int slot_id, unsigned int ep_index, 529 unsigned int stream_id, struct xhci_td *cur_td, 530 struct xhci_dequeue_state *state) 531 { 532 struct xhci_virt_device *dev = xhci->devs[slot_id]; 533 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 534 struct xhci_ring *ep_ring; 535 struct xhci_segment *new_seg; 536 union xhci_trb *new_deq; 537 dma_addr_t addr; 538 u64 hw_dequeue; 539 bool cycle_found = false; 540 bool td_last_trb_found = false; 541 542 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 543 ep_index, stream_id); 544 if (!ep_ring) { 545 xhci_warn(xhci, "WARN can't find new dequeue state " 546 "for invalid stream ID %u.\n", 547 stream_id); 548 return; 549 } 550 /* Dig out the cycle state saved by the xHC during the stop ep cmd */ 551 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 552 "Finding endpoint context"); 553 554 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id); 555 new_seg = ep_ring->deq_seg; 556 new_deq = ep_ring->dequeue; 557 state->new_cycle_state = hw_dequeue & 0x1; 558 state->stream_id = stream_id; 559 560 /* 561 * We want to find the pointer, segment and cycle state of the new trb 562 * (the one after current TD's last_trb). We know the cycle state at 563 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are 564 * found. 565 */ 566 do { 567 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) 568 == (dma_addr_t)(hw_dequeue & ~0xf)) { 569 cycle_found = true; 570 if (td_last_trb_found) 571 break; 572 } 573 if (new_deq == cur_td->last_trb) 574 td_last_trb_found = true; 575 576 if (cycle_found && trb_is_link(new_deq) && 577 link_trb_toggles_cycle(new_deq)) 578 state->new_cycle_state ^= 0x1; 579 580 next_trb(xhci, ep_ring, &new_seg, &new_deq); 581 582 /* Search wrapped around, bail out */ 583 if (new_deq == ep->ring->dequeue) { 584 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 585 state->new_deq_seg = NULL; 586 state->new_deq_ptr = NULL; 587 return; 588 } 589 590 } while (!cycle_found || !td_last_trb_found); 591 592 state->new_deq_seg = new_seg; 593 state->new_deq_ptr = new_deq; 594 595 /* Don't update the ring cycle state for the producer (us). */ 596 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 597 "Cycle state = 0x%x", state->new_cycle_state); 598 599 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 600 "New dequeue segment = %p (virtual)", 601 state->new_deq_seg); 602 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); 603 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 604 "New dequeue pointer = 0x%llx (DMA)", 605 (unsigned long long) addr); 606 } 607 608 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 609 * (The last TRB actually points to the ring enqueue pointer, which is not part 610 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 611 */ 612 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 613 struct xhci_td *td, bool flip_cycle) 614 { 615 struct xhci_segment *seg = td->start_seg; 616 union xhci_trb *trb = td->first_trb; 617 618 while (1) { 619 trb_to_noop(trb, TRB_TR_NOOP); 620 621 /* flip cycle if asked to */ 622 if (flip_cycle && trb != td->first_trb && trb != td->last_trb) 623 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); 624 625 if (trb == td->last_trb) 626 break; 627 628 next_trb(xhci, ep_ring, &seg, &trb); 629 } 630 } 631 632 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, 633 struct xhci_virt_ep *ep) 634 { 635 ep->ep_state &= ~EP_STOP_CMD_PENDING; 636 /* Can't del_timer_sync in interrupt */ 637 del_timer(&ep->stop_cmd_timer); 638 } 639 640 /* 641 * Must be called with xhci->lock held in interrupt context, 642 * releases and re-acquires xhci->lock 643 */ 644 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 645 struct xhci_td *cur_td, int status) 646 { 647 struct urb *urb = cur_td->urb; 648 struct urb_priv *urb_priv = urb->hcpriv; 649 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 650 651 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 652 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 653 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 654 if (xhci->quirks & XHCI_AMD_PLL_FIX) 655 usb_amd_quirk_pll_enable(); 656 } 657 } 658 xhci_urb_free_priv(urb_priv); 659 usb_hcd_unlink_urb_from_ep(hcd, urb); 660 spin_unlock(&xhci->lock); 661 trace_xhci_urb_giveback(urb); 662 usb_hcd_giveback_urb(hcd, urb, status); 663 spin_lock(&xhci->lock); 664 } 665 666 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, 667 struct xhci_ring *ring, struct xhci_td *td) 668 { 669 struct device *dev = xhci_to_hcd(xhci)->self.controller; 670 struct xhci_segment *seg = td->bounce_seg; 671 struct urb *urb = td->urb; 672 673 if (!ring || !seg || !urb) 674 return; 675 676 if (usb_urb_dir_out(urb)) { 677 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 678 DMA_TO_DEVICE); 679 return; 680 } 681 682 /* for in tranfers we need to copy the data from bounce to sg */ 683 sg_pcopy_from_buffer(urb->sg, urb->num_mapped_sgs, seg->bounce_buf, 684 seg->bounce_len, seg->bounce_offs); 685 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 686 DMA_FROM_DEVICE); 687 seg->bounce_len = 0; 688 seg->bounce_offs = 0; 689 } 690 691 /* 692 * When we get a command completion for a Stop Endpoint Command, we need to 693 * unlink any cancelled TDs from the ring. There are two ways to do that: 694 * 695 * 1. If the HW was in the middle of processing the TD that needs to be 696 * cancelled, then we must move the ring's dequeue pointer past the last TRB 697 * in the TD with a Set Dequeue Pointer Command. 698 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 699 * bit cleared) so that the HW will skip over them. 700 */ 701 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 702 union xhci_trb *trb, struct xhci_event_cmd *event) 703 { 704 unsigned int ep_index; 705 struct xhci_ring *ep_ring; 706 struct xhci_virt_ep *ep; 707 struct xhci_td *cur_td = NULL; 708 struct xhci_td *last_unlinked_td; 709 struct xhci_ep_ctx *ep_ctx; 710 struct xhci_virt_device *vdev; 711 u64 hw_deq; 712 struct xhci_dequeue_state deq_state; 713 714 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 715 if (!xhci->devs[slot_id]) 716 xhci_warn(xhci, "Stop endpoint command " 717 "completion for disabled slot %u\n", 718 slot_id); 719 return; 720 } 721 722 memset(&deq_state, 0, sizeof(deq_state)); 723 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 724 725 vdev = xhci->devs[slot_id]; 726 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 727 trace_xhci_handle_cmd_stop_ep(ep_ctx); 728 729 ep = &xhci->devs[slot_id]->eps[ep_index]; 730 last_unlinked_td = list_last_entry(&ep->cancelled_td_list, 731 struct xhci_td, cancelled_td_list); 732 733 if (list_empty(&ep->cancelled_td_list)) { 734 xhci_stop_watchdog_timer_in_irq(xhci, ep); 735 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 736 return; 737 } 738 739 /* Fix up the ep ring first, so HW stops executing cancelled TDs. 740 * We have the xHCI lock, so nothing can modify this list until we drop 741 * it. We're also in the event handler, so we can't get re-interrupted 742 * if another Stop Endpoint command completes 743 */ 744 list_for_each_entry(cur_td, &ep->cancelled_td_list, cancelled_td_list) { 745 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 746 "Removing canceled TD starting at 0x%llx (dma).", 747 (unsigned long long)xhci_trb_virt_to_dma( 748 cur_td->start_seg, cur_td->first_trb)); 749 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 750 if (!ep_ring) { 751 /* This shouldn't happen unless a driver is mucking 752 * with the stream ID after submission. This will 753 * leave the TD on the hardware ring, and the hardware 754 * will try to execute it, and may access a buffer 755 * that has already been freed. In the best case, the 756 * hardware will execute it, and the event handler will 757 * ignore the completion event for that TD, since it was 758 * removed from the td_list for that endpoint. In 759 * short, don't muck with the stream ID after 760 * submission. 761 */ 762 xhci_warn(xhci, "WARN Cancelled URB %p " 763 "has invalid stream ID %u.\n", 764 cur_td->urb, 765 cur_td->urb->stream_id); 766 goto remove_finished_td; 767 } 768 /* 769 * If we stopped on the TD we need to cancel, then we have to 770 * move the xHC endpoint ring dequeue pointer past this TD. 771 */ 772 hw_deq = xhci_get_hw_deq(xhci, vdev, ep_index, 773 cur_td->urb->stream_id); 774 hw_deq &= ~0xf; 775 776 if (trb_in_td(xhci, cur_td->start_seg, cur_td->first_trb, 777 cur_td->last_trb, hw_deq, false)) { 778 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, 779 cur_td->urb->stream_id, 780 cur_td, &deq_state); 781 } else { 782 td_to_noop(xhci, ep_ring, cur_td, false); 783 } 784 785 remove_finished_td: 786 /* 787 * The event handler won't see a completion for this TD anymore, 788 * so remove it from the endpoint ring's TD list. Keep it in 789 * the cancelled TD list for URB completion later. 790 */ 791 list_del_init(&cur_td->td_list); 792 } 793 794 xhci_stop_watchdog_timer_in_irq(xhci, ep); 795 796 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ 797 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { 798 xhci_queue_new_dequeue_state(xhci, slot_id, ep_index, 799 &deq_state); 800 xhci_ring_cmd_db(xhci); 801 } else { 802 /* Otherwise ring the doorbell(s) to restart queued transfers */ 803 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 804 } 805 806 /* 807 * Drop the lock and complete the URBs in the cancelled TD list. 808 * New TDs to be cancelled might be added to the end of the list before 809 * we can complete all the URBs for the TDs we already unlinked. 810 * So stop when we've completed the URB for the last TD we unlinked. 811 */ 812 do { 813 cur_td = list_first_entry(&ep->cancelled_td_list, 814 struct xhci_td, cancelled_td_list); 815 list_del_init(&cur_td->cancelled_td_list); 816 817 /* Clean up the cancelled URB */ 818 /* Doesn't matter what we pass for status, since the core will 819 * just overwrite it (because the URB has been unlinked). 820 */ 821 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 822 xhci_unmap_td_bounce_buffer(xhci, ep_ring, cur_td); 823 inc_td_cnt(cur_td->urb); 824 if (last_td_in_urb(cur_td)) 825 xhci_giveback_urb_in_irq(xhci, cur_td, 0); 826 827 /* Stop processing the cancelled list if the watchdog timer is 828 * running. 829 */ 830 if (xhci->xhc_state & XHCI_STATE_DYING) 831 return; 832 } while (cur_td != last_unlinked_td); 833 834 /* Return to the event handler with xhci->lock re-acquired */ 835 } 836 837 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 838 { 839 struct xhci_td *cur_td; 840 struct xhci_td *tmp; 841 842 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { 843 list_del_init(&cur_td->td_list); 844 845 if (!list_empty(&cur_td->cancelled_td_list)) 846 list_del_init(&cur_td->cancelled_td_list); 847 848 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); 849 850 inc_td_cnt(cur_td->urb); 851 if (last_td_in_urb(cur_td)) 852 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 853 } 854 } 855 856 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 857 int slot_id, int ep_index) 858 { 859 struct xhci_td *cur_td; 860 struct xhci_td *tmp; 861 struct xhci_virt_ep *ep; 862 struct xhci_ring *ring; 863 864 ep = &xhci->devs[slot_id]->eps[ep_index]; 865 if ((ep->ep_state & EP_HAS_STREAMS) || 866 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 867 int stream_id; 868 869 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 870 stream_id++) { 871 ring = ep->stream_info->stream_rings[stream_id]; 872 if (!ring) 873 continue; 874 875 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 876 "Killing URBs for slot ID %u, ep index %u, stream %u", 877 slot_id, ep_index, stream_id); 878 xhci_kill_ring_urbs(xhci, ring); 879 } 880 } else { 881 ring = ep->ring; 882 if (!ring) 883 return; 884 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 885 "Killing URBs for slot ID %u, ep index %u", 886 slot_id, ep_index); 887 xhci_kill_ring_urbs(xhci, ring); 888 } 889 890 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, 891 cancelled_td_list) { 892 list_del_init(&cur_td->cancelled_td_list); 893 inc_td_cnt(cur_td->urb); 894 895 if (last_td_in_urb(cur_td)) 896 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 897 } 898 } 899 900 /* 901 * host controller died, register read returns 0xffffffff 902 * Complete pending commands, mark them ABORTED. 903 * URBs need to be given back as usb core might be waiting with device locks 904 * held for the URBs to finish during device disconnect, blocking host remove. 905 * 906 * Call with xhci->lock held. 907 * lock is relased and re-acquired while giving back urb. 908 */ 909 void xhci_hc_died(struct xhci_hcd *xhci) 910 { 911 int i, j; 912 913 if (xhci->xhc_state & XHCI_STATE_DYING) 914 return; 915 916 xhci_err(xhci, "xHCI host controller not responding, assume dead\n"); 917 xhci->xhc_state |= XHCI_STATE_DYING; 918 919 xhci_cleanup_command_queue(xhci); 920 921 /* return any pending urbs, remove may be waiting for them */ 922 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 923 if (!xhci->devs[i]) 924 continue; 925 for (j = 0; j < 31; j++) 926 xhci_kill_endpoint_urbs(xhci, i, j); 927 } 928 929 /* inform usb core hc died if PCI remove isn't already handling it */ 930 if (!(xhci->xhc_state & XHCI_STATE_REMOVING)) 931 usb_hc_died(xhci_to_hcd(xhci)); 932 } 933 934 /* Watchdog timer function for when a stop endpoint command fails to complete. 935 * In this case, we assume the host controller is broken or dying or dead. The 936 * host may still be completing some other events, so we have to be careful to 937 * let the event ring handler and the URB dequeueing/enqueueing functions know 938 * through xhci->state. 939 * 940 * The timer may also fire if the host takes a very long time to respond to the 941 * command, and the stop endpoint command completion handler cannot delete the 942 * timer before the timer function is called. Another endpoint cancellation may 943 * sneak in before the timer function can grab the lock, and that may queue 944 * another stop endpoint command and add the timer back. So we cannot use a 945 * simple flag to say whether there is a pending stop endpoint command for a 946 * particular endpoint. 947 * 948 * Instead we use a combination of that flag and checking if a new timer is 949 * pending. 950 */ 951 void xhci_stop_endpoint_command_watchdog(struct timer_list *t) 952 { 953 struct xhci_virt_ep *ep = from_timer(ep, t, stop_cmd_timer); 954 struct xhci_hcd *xhci = ep->xhci; 955 unsigned long flags; 956 957 spin_lock_irqsave(&xhci->lock, flags); 958 959 /* bail out if cmd completed but raced with stop ep watchdog timer.*/ 960 if (!(ep->ep_state & EP_STOP_CMD_PENDING) || 961 timer_pending(&ep->stop_cmd_timer)) { 962 spin_unlock_irqrestore(&xhci->lock, flags); 963 xhci_dbg(xhci, "Stop EP timer raced with cmd completion, exit"); 964 return; 965 } 966 967 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); 968 ep->ep_state &= ~EP_STOP_CMD_PENDING; 969 970 xhci_halt(xhci); 971 972 /* 973 * handle a stop endpoint cmd timeout as if host died (-ENODEV). 974 * In the future we could distinguish between -ENODEV and -ETIMEDOUT 975 * and try to recover a -ETIMEDOUT with a host controller reset 976 */ 977 xhci_hc_died(xhci); 978 979 spin_unlock_irqrestore(&xhci->lock, flags); 980 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 981 "xHCI host controller is dead."); 982 } 983 984 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 985 struct xhci_virt_device *dev, 986 struct xhci_ring *ep_ring, 987 unsigned int ep_index) 988 { 989 union xhci_trb *dequeue_temp; 990 int num_trbs_free_temp; 991 bool revert = false; 992 993 num_trbs_free_temp = ep_ring->num_trbs_free; 994 dequeue_temp = ep_ring->dequeue; 995 996 /* If we get two back-to-back stalls, and the first stalled transfer 997 * ends just before a link TRB, the dequeue pointer will be left on 998 * the link TRB by the code in the while loop. So we have to update 999 * the dequeue pointer one segment further, or we'll jump off 1000 * the segment into la-la-land. 1001 */ 1002 if (trb_is_link(ep_ring->dequeue)) { 1003 ep_ring->deq_seg = ep_ring->deq_seg->next; 1004 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1005 } 1006 1007 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 1008 /* We have more usable TRBs */ 1009 ep_ring->num_trbs_free++; 1010 ep_ring->dequeue++; 1011 if (trb_is_link(ep_ring->dequeue)) { 1012 if (ep_ring->dequeue == 1013 dev->eps[ep_index].queued_deq_ptr) 1014 break; 1015 ep_ring->deq_seg = ep_ring->deq_seg->next; 1016 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1017 } 1018 if (ep_ring->dequeue == dequeue_temp) { 1019 revert = true; 1020 break; 1021 } 1022 } 1023 1024 if (revert) { 1025 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 1026 ep_ring->num_trbs_free = num_trbs_free_temp; 1027 } 1028 } 1029 1030 /* 1031 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1032 * we need to clear the set deq pending flag in the endpoint ring state, so that 1033 * the TD queueing code can ring the doorbell again. We also need to ring the 1034 * endpoint doorbell to restart the ring, but only if there aren't more 1035 * cancellations pending. 1036 */ 1037 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1038 union xhci_trb *trb, u32 cmd_comp_code) 1039 { 1040 unsigned int ep_index; 1041 unsigned int stream_id; 1042 struct xhci_ring *ep_ring; 1043 struct xhci_virt_device *dev; 1044 struct xhci_virt_ep *ep; 1045 struct xhci_ep_ctx *ep_ctx; 1046 struct xhci_slot_ctx *slot_ctx; 1047 1048 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1049 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1050 dev = xhci->devs[slot_id]; 1051 ep = &dev->eps[ep_index]; 1052 1053 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); 1054 if (!ep_ring) { 1055 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 1056 stream_id); 1057 /* XXX: Harmless??? */ 1058 goto cleanup; 1059 } 1060 1061 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 1062 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); 1063 trace_xhci_handle_cmd_set_deq(slot_ctx); 1064 trace_xhci_handle_cmd_set_deq_ep(ep_ctx); 1065 1066 if (cmd_comp_code != COMP_SUCCESS) { 1067 unsigned int ep_state; 1068 unsigned int slot_state; 1069 1070 switch (cmd_comp_code) { 1071 case COMP_TRB_ERROR: 1072 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 1073 break; 1074 case COMP_CONTEXT_STATE_ERROR: 1075 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1076 ep_state = GET_EP_CTX_STATE(ep_ctx); 1077 slot_state = le32_to_cpu(slot_ctx->dev_state); 1078 slot_state = GET_SLOT_STATE(slot_state); 1079 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1080 "Slot state = %u, EP state = %u", 1081 slot_state, ep_state); 1082 break; 1083 case COMP_SLOT_NOT_ENABLED_ERROR: 1084 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1085 slot_id); 1086 break; 1087 default: 1088 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1089 cmd_comp_code); 1090 break; 1091 } 1092 /* OK what do we do now? The endpoint state is hosed, and we 1093 * should never get to this point if the synchronization between 1094 * queueing, and endpoint state are correct. This might happen 1095 * if the device gets disconnected after we've finished 1096 * cancelling URBs, which might not be an error... 1097 */ 1098 } else { 1099 u64 deq; 1100 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1101 if (ep->ep_state & EP_HAS_STREAMS) { 1102 struct xhci_stream_ctx *ctx = 1103 &ep->stream_info->stream_ctx_array[stream_id]; 1104 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; 1105 } else { 1106 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1107 } 1108 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1109 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1110 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1111 ep->queued_deq_ptr) == deq) { 1112 /* Update the ring's dequeue segment and dequeue pointer 1113 * to reflect the new position. 1114 */ 1115 update_ring_for_set_deq_completion(xhci, dev, 1116 ep_ring, ep_index); 1117 } else { 1118 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1119 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1120 ep->queued_deq_seg, ep->queued_deq_ptr); 1121 } 1122 } 1123 1124 cleanup: 1125 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 1126 dev->eps[ep_index].queued_deq_seg = NULL; 1127 dev->eps[ep_index].queued_deq_ptr = NULL; 1128 /* Restart any rings with pending URBs */ 1129 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1130 } 1131 1132 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1133 union xhci_trb *trb, u32 cmd_comp_code) 1134 { 1135 struct xhci_virt_device *vdev; 1136 struct xhci_ep_ctx *ep_ctx; 1137 unsigned int ep_index; 1138 1139 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1140 vdev = xhci->devs[slot_id]; 1141 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 1142 trace_xhci_handle_cmd_reset_ep(ep_ctx); 1143 1144 /* This command will only fail if the endpoint wasn't halted, 1145 * but we don't care. 1146 */ 1147 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1148 "Ignoring reset ep completion code of %u", cmd_comp_code); 1149 1150 /* HW with the reset endpoint quirk needs to have a configure endpoint 1151 * command complete before the endpoint can be used. Queue that here 1152 * because the HW can't handle two commands being queued in a row. 1153 */ 1154 if (xhci->quirks & XHCI_RESET_EP_QUIRK) { 1155 struct xhci_command *command; 1156 1157 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1158 if (!command) 1159 return; 1160 1161 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1162 "Queueing configure endpoint command"); 1163 xhci_queue_configure_endpoint(xhci, command, 1164 xhci->devs[slot_id]->in_ctx->dma, slot_id, 1165 false); 1166 xhci_ring_cmd_db(xhci); 1167 } else { 1168 /* Clear our internal halted state */ 1169 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; 1170 } 1171 } 1172 1173 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, 1174 struct xhci_command *command, u32 cmd_comp_code) 1175 { 1176 if (cmd_comp_code == COMP_SUCCESS) 1177 command->slot_id = slot_id; 1178 else 1179 command->slot_id = 0; 1180 } 1181 1182 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1183 { 1184 struct xhci_virt_device *virt_dev; 1185 struct xhci_slot_ctx *slot_ctx; 1186 1187 virt_dev = xhci->devs[slot_id]; 1188 if (!virt_dev) 1189 return; 1190 1191 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 1192 trace_xhci_handle_cmd_disable_slot(slot_ctx); 1193 1194 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1195 /* Delete default control endpoint resources */ 1196 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1197 xhci_free_virt_device(xhci, slot_id); 1198 } 1199 1200 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, 1201 struct xhci_event_cmd *event, u32 cmd_comp_code) 1202 { 1203 struct xhci_virt_device *virt_dev; 1204 struct xhci_input_control_ctx *ctrl_ctx; 1205 struct xhci_ep_ctx *ep_ctx; 1206 unsigned int ep_index; 1207 unsigned int ep_state; 1208 u32 add_flags, drop_flags; 1209 1210 /* 1211 * Configure endpoint commands can come from the USB core 1212 * configuration or alt setting changes, or because the HW 1213 * needed an extra configure endpoint command after a reset 1214 * endpoint command or streams were being configured. 1215 * If the command was for a halted endpoint, the xHCI driver 1216 * is not waiting on the configure endpoint command. 1217 */ 1218 virt_dev = xhci->devs[slot_id]; 1219 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1220 if (!ctrl_ctx) { 1221 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1222 return; 1223 } 1224 1225 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1226 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1227 /* Input ctx add_flags are the endpoint index plus one */ 1228 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1229 1230 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index); 1231 trace_xhci_handle_cmd_config_ep(ep_ctx); 1232 1233 /* A usb_set_interface() call directly after clearing a halted 1234 * condition may race on this quirky hardware. Not worth 1235 * worrying about, since this is prototype hardware. Not sure 1236 * if this will work for streams, but streams support was 1237 * untested on this prototype. 1238 */ 1239 if (xhci->quirks & XHCI_RESET_EP_QUIRK && 1240 ep_index != (unsigned int) -1 && 1241 add_flags - SLOT_FLAG == drop_flags) { 1242 ep_state = virt_dev->eps[ep_index].ep_state; 1243 if (!(ep_state & EP_HALTED)) 1244 return; 1245 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1246 "Completed config ep cmd - " 1247 "last ep index = %d, state = %d", 1248 ep_index, ep_state); 1249 /* Clear internal halted state and restart ring(s) */ 1250 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED; 1251 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1252 return; 1253 } 1254 return; 1255 } 1256 1257 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id) 1258 { 1259 struct xhci_virt_device *vdev; 1260 struct xhci_slot_ctx *slot_ctx; 1261 1262 vdev = xhci->devs[slot_id]; 1263 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1264 trace_xhci_handle_cmd_addr_dev(slot_ctx); 1265 } 1266 1267 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id, 1268 struct xhci_event_cmd *event) 1269 { 1270 struct xhci_virt_device *vdev; 1271 struct xhci_slot_ctx *slot_ctx; 1272 1273 vdev = xhci->devs[slot_id]; 1274 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1275 trace_xhci_handle_cmd_reset_dev(slot_ctx); 1276 1277 xhci_dbg(xhci, "Completed reset device command.\n"); 1278 if (!xhci->devs[slot_id]) 1279 xhci_warn(xhci, "Reset device command completion " 1280 "for disabled slot %u\n", slot_id); 1281 } 1282 1283 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1284 struct xhci_event_cmd *event) 1285 { 1286 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1287 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); 1288 return; 1289 } 1290 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1291 "NEC firmware version %2x.%02x", 1292 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1293 NEC_FW_MINOR(le32_to_cpu(event->status))); 1294 } 1295 1296 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) 1297 { 1298 list_del(&cmd->cmd_list); 1299 1300 if (cmd->completion) { 1301 cmd->status = status; 1302 complete(cmd->completion); 1303 } else { 1304 kfree(cmd); 1305 } 1306 } 1307 1308 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1309 { 1310 struct xhci_command *cur_cmd, *tmp_cmd; 1311 xhci->current_cmd = NULL; 1312 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1313 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED); 1314 } 1315 1316 void xhci_handle_command_timeout(struct work_struct *work) 1317 { 1318 struct xhci_hcd *xhci; 1319 unsigned long flags; 1320 u64 hw_ring_state; 1321 1322 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); 1323 1324 spin_lock_irqsave(&xhci->lock, flags); 1325 1326 /* 1327 * If timeout work is pending, or current_cmd is NULL, it means we 1328 * raced with command completion. Command is handled so just return. 1329 */ 1330 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { 1331 spin_unlock_irqrestore(&xhci->lock, flags); 1332 return; 1333 } 1334 /* mark this command to be cancelled */ 1335 xhci->current_cmd->status = COMP_COMMAND_ABORTED; 1336 1337 /* Make sure command ring is running before aborting it */ 1338 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1339 if (hw_ring_state == ~(u64)0) { 1340 xhci_hc_died(xhci); 1341 goto time_out_completed; 1342 } 1343 1344 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1345 (hw_ring_state & CMD_RING_RUNNING)) { 1346 /* Prevent new doorbell, and start command abort */ 1347 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 1348 xhci_dbg(xhci, "Command timeout\n"); 1349 xhci_abort_cmd_ring(xhci, flags); 1350 goto time_out_completed; 1351 } 1352 1353 /* host removed. Bail out */ 1354 if (xhci->xhc_state & XHCI_STATE_REMOVING) { 1355 xhci_dbg(xhci, "host removed, ring start fail?\n"); 1356 xhci_cleanup_command_queue(xhci); 1357 1358 goto time_out_completed; 1359 } 1360 1361 /* command timeout on stopped ring, ring can't be aborted */ 1362 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1363 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1364 1365 time_out_completed: 1366 spin_unlock_irqrestore(&xhci->lock, flags); 1367 return; 1368 } 1369 1370 static void handle_cmd_completion(struct xhci_hcd *xhci, 1371 struct xhci_event_cmd *event) 1372 { 1373 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1374 u64 cmd_dma; 1375 dma_addr_t cmd_dequeue_dma; 1376 u32 cmd_comp_code; 1377 union xhci_trb *cmd_trb; 1378 struct xhci_command *cmd; 1379 u32 cmd_type; 1380 1381 cmd_dma = le64_to_cpu(event->cmd_trb); 1382 cmd_trb = xhci->cmd_ring->dequeue; 1383 1384 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic); 1385 1386 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1387 cmd_trb); 1388 /* 1389 * Check whether the completion event is for our internal kept 1390 * command. 1391 */ 1392 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { 1393 xhci_warn(xhci, 1394 "ERROR mismatched command completion event\n"); 1395 return; 1396 } 1397 1398 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); 1399 1400 cancel_delayed_work(&xhci->cmd_timer); 1401 1402 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1403 1404 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1405 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) { 1406 complete_all(&xhci->cmd_ring_stop_completion); 1407 return; 1408 } 1409 1410 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1411 xhci_err(xhci, 1412 "Command completion event does not match command\n"); 1413 return; 1414 } 1415 1416 /* 1417 * Host aborted the command ring, check if the current command was 1418 * supposed to be aborted, otherwise continue normally. 1419 * The command ring is stopped now, but the xHC will issue a Command 1420 * Ring Stopped event which will cause us to restart it. 1421 */ 1422 if (cmd_comp_code == COMP_COMMAND_ABORTED) { 1423 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1424 if (cmd->status == COMP_COMMAND_ABORTED) { 1425 if (xhci->current_cmd == cmd) 1426 xhci->current_cmd = NULL; 1427 goto event_handled; 1428 } 1429 } 1430 1431 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1432 switch (cmd_type) { 1433 case TRB_ENABLE_SLOT: 1434 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code); 1435 break; 1436 case TRB_DISABLE_SLOT: 1437 xhci_handle_cmd_disable_slot(xhci, slot_id); 1438 break; 1439 case TRB_CONFIG_EP: 1440 if (!cmd->completion) 1441 xhci_handle_cmd_config_ep(xhci, slot_id, event, 1442 cmd_comp_code); 1443 break; 1444 case TRB_EVAL_CONTEXT: 1445 break; 1446 case TRB_ADDR_DEV: 1447 xhci_handle_cmd_addr_dev(xhci, slot_id); 1448 break; 1449 case TRB_STOP_RING: 1450 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1451 le32_to_cpu(cmd_trb->generic.field[3]))); 1452 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event); 1453 break; 1454 case TRB_SET_DEQ: 1455 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1456 le32_to_cpu(cmd_trb->generic.field[3]))); 1457 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1458 break; 1459 case TRB_CMD_NOOP: 1460 /* Is this an aborted command turned to NO-OP? */ 1461 if (cmd->status == COMP_COMMAND_RING_STOPPED) 1462 cmd_comp_code = COMP_COMMAND_RING_STOPPED; 1463 break; 1464 case TRB_RESET_EP: 1465 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1466 le32_to_cpu(cmd_trb->generic.field[3]))); 1467 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1468 break; 1469 case TRB_RESET_DEV: 1470 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1471 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1472 */ 1473 slot_id = TRB_TO_SLOT_ID( 1474 le32_to_cpu(cmd_trb->generic.field[3])); 1475 xhci_handle_cmd_reset_dev(xhci, slot_id, event); 1476 break; 1477 case TRB_NEC_GET_FW: 1478 xhci_handle_cmd_nec_get_fw(xhci, event); 1479 break; 1480 default: 1481 /* Skip over unknown commands on the event ring */ 1482 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); 1483 break; 1484 } 1485 1486 /* restart timer if this wasn't the last command */ 1487 if (!list_is_singular(&xhci->cmd_list)) { 1488 xhci->current_cmd = list_first_entry(&cmd->cmd_list, 1489 struct xhci_command, cmd_list); 1490 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 1491 } else if (xhci->current_cmd == cmd) { 1492 xhci->current_cmd = NULL; 1493 } 1494 1495 event_handled: 1496 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); 1497 1498 inc_deq(xhci, xhci->cmd_ring); 1499 } 1500 1501 static void handle_vendor_event(struct xhci_hcd *xhci, 1502 union xhci_trb *event) 1503 { 1504 u32 trb_type; 1505 1506 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3])); 1507 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1508 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1509 handle_cmd_completion(xhci, &event->event_cmd); 1510 } 1511 1512 /* @port_id: the one-based port ID from the hardware (indexed from array of all 1513 * port registers -- USB 3.0 and USB 2.0). 1514 * 1515 * Returns a zero-based port number, which is suitable for indexing into each of 1516 * the split roothubs' port arrays and bus state arrays. 1517 * Add one to it in order to call xhci_find_slot_id_by_port. 1518 */ 1519 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd, 1520 struct xhci_hcd *xhci, u32 port_id) 1521 { 1522 unsigned int i; 1523 unsigned int num_similar_speed_ports = 0; 1524 1525 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[], 1526 * and usb2_ports are 0-based indexes. Count the number of similar 1527 * speed ports, up to 1 port before this port. 1528 */ 1529 for (i = 0; i < (port_id - 1); i++) { 1530 u8 port_speed = xhci->port_array[i]; 1531 1532 /* 1533 * Skip ports that don't have known speeds, or have duplicate 1534 * Extended Capabilities port speed entries. 1535 */ 1536 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY) 1537 continue; 1538 1539 /* 1540 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and 1541 * 1.1 ports are under the USB 2.0 hub. If the port speed 1542 * matches the device speed, it's a similar speed port. 1543 */ 1544 if ((port_speed == 0x03) == (hcd->speed >= HCD_USB3)) 1545 num_similar_speed_ports++; 1546 } 1547 return num_similar_speed_ports; 1548 } 1549 1550 static void handle_device_notification(struct xhci_hcd *xhci, 1551 union xhci_trb *event) 1552 { 1553 u32 slot_id; 1554 struct usb_device *udev; 1555 1556 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1557 if (!xhci->devs[slot_id]) { 1558 xhci_warn(xhci, "Device Notification event for " 1559 "unused slot %u\n", slot_id); 1560 return; 1561 } 1562 1563 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1564 slot_id); 1565 udev = xhci->devs[slot_id]->udev; 1566 if (udev && udev->parent) 1567 usb_wakeup_notification(udev->parent, udev->portnum); 1568 } 1569 1570 static void handle_port_status(struct xhci_hcd *xhci, 1571 union xhci_trb *event) 1572 { 1573 struct usb_hcd *hcd; 1574 u32 port_id; 1575 u32 portsc, cmd_reg; 1576 int max_ports; 1577 int slot_id; 1578 unsigned int faked_port_index; 1579 u8 major_revision; 1580 struct xhci_bus_state *bus_state; 1581 __le32 __iomem **port_array; 1582 bool bogus_port_status = false; 1583 1584 /* Port status change events always have a successful completion code */ 1585 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) 1586 xhci_warn(xhci, 1587 "WARN: xHC returned failed port status event\n"); 1588 1589 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1590 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id); 1591 1592 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1593 if ((port_id <= 0) || (port_id > max_ports)) { 1594 xhci_warn(xhci, "Invalid port id %d\n", port_id); 1595 inc_deq(xhci, xhci->event_ring); 1596 return; 1597 } 1598 1599 /* Figure out which usb_hcd this port is attached to: 1600 * is it a USB 3.0 port or a USB 2.0/1.1 port? 1601 */ 1602 major_revision = xhci->port_array[port_id - 1]; 1603 1604 /* Find the right roothub. */ 1605 hcd = xhci_to_hcd(xhci); 1606 if ((major_revision == 0x03) != (hcd->speed >= HCD_USB3)) 1607 hcd = xhci->shared_hcd; 1608 1609 if (major_revision == 0) { 1610 xhci_warn(xhci, "Event for port %u not in " 1611 "Extended Capabilities, ignoring.\n", 1612 port_id); 1613 bogus_port_status = true; 1614 goto cleanup; 1615 } 1616 if (major_revision == DUPLICATE_ENTRY) { 1617 xhci_warn(xhci, "Event for port %u duplicated in" 1618 "Extended Capabilities, ignoring.\n", 1619 port_id); 1620 bogus_port_status = true; 1621 goto cleanup; 1622 } 1623 1624 /* 1625 * Hardware port IDs reported by a Port Status Change Event include USB 1626 * 3.0 and USB 2.0 ports. We want to check if the port has reported a 1627 * resume event, but we first need to translate the hardware port ID 1628 * into the index into the ports on the correct split roothub, and the 1629 * correct bus_state structure. 1630 */ 1631 bus_state = &xhci->bus_state[hcd_index(hcd)]; 1632 if (hcd->speed >= HCD_USB3) 1633 port_array = xhci->usb3_ports; 1634 else 1635 port_array = xhci->usb2_ports; 1636 /* Find the faked port hub number */ 1637 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci, 1638 port_id); 1639 portsc = readl(port_array[faked_port_index]); 1640 1641 trace_xhci_handle_port_status(faked_port_index, portsc); 1642 1643 if (hcd->state == HC_STATE_SUSPENDED) { 1644 xhci_dbg(xhci, "resume root hub\n"); 1645 usb_hcd_resume_root_hub(hcd); 1646 } 1647 1648 if (hcd->speed >= HCD_USB3 && (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) 1649 bus_state->port_remote_wakeup &= ~(1 << faked_port_index); 1650 1651 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) { 1652 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1653 1654 cmd_reg = readl(&xhci->op_regs->command); 1655 if (!(cmd_reg & CMD_RUN)) { 1656 xhci_warn(xhci, "xHC is not running.\n"); 1657 goto cleanup; 1658 } 1659 1660 if (DEV_SUPERSPEED_ANY(portsc)) { 1661 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1662 /* Set a flag to say the port signaled remote wakeup, 1663 * so we can tell the difference between the end of 1664 * device and host initiated resume. 1665 */ 1666 bus_state->port_remote_wakeup |= 1 << faked_port_index; 1667 xhci_test_and_clear_bit(xhci, port_array, 1668 faked_port_index, PORT_PLC); 1669 xhci_set_link_state(xhci, port_array, faked_port_index, 1670 XDEV_U0); 1671 /* Need to wait until the next link state change 1672 * indicates the device is actually in U0. 1673 */ 1674 bogus_port_status = true; 1675 goto cleanup; 1676 } else if (!test_bit(faked_port_index, 1677 &bus_state->resuming_ports)) { 1678 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1679 bus_state->resume_done[faked_port_index] = jiffies + 1680 msecs_to_jiffies(USB_RESUME_TIMEOUT); 1681 set_bit(faked_port_index, &bus_state->resuming_ports); 1682 /* Do the rest in GetPortStatus after resume time delay. 1683 * Avoid polling roothub status before that so that a 1684 * usb device auto-resume latency around ~40ms. 1685 */ 1686 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1687 mod_timer(&hcd->rh_timer, 1688 bus_state->resume_done[faked_port_index]); 1689 bogus_port_status = true; 1690 } 1691 } 1692 1693 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_U0 && 1694 DEV_SUPERSPEED_ANY(portsc)) { 1695 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1696 /* We've just brought the device into U0 through either the 1697 * Resume state after a device remote wakeup, or through the 1698 * U3Exit state after a host-initiated resume. If it's a device 1699 * initiated remote wake, don't pass up the link state change, 1700 * so the roothub behavior is consistent with external 1701 * USB 3.0 hub behavior. 1702 */ 1703 slot_id = xhci_find_slot_id_by_port(hcd, xhci, 1704 faked_port_index + 1); 1705 if (slot_id && xhci->devs[slot_id]) 1706 xhci_ring_device(xhci, slot_id); 1707 if (bus_state->port_remote_wakeup & (1 << faked_port_index)) { 1708 bus_state->port_remote_wakeup &= 1709 ~(1 << faked_port_index); 1710 xhci_test_and_clear_bit(xhci, port_array, 1711 faked_port_index, PORT_PLC); 1712 usb_wakeup_notification(hcd->self.root_hub, 1713 faked_port_index + 1); 1714 bogus_port_status = true; 1715 goto cleanup; 1716 } 1717 } 1718 1719 /* 1720 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 1721 * RExit to a disconnect state). If so, let the the driver know it's 1722 * out of the RExit state. 1723 */ 1724 if (!DEV_SUPERSPEED_ANY(portsc) && 1725 test_and_clear_bit(faked_port_index, 1726 &bus_state->rexit_ports)) { 1727 complete(&bus_state->rexit_done[faked_port_index]); 1728 bogus_port_status = true; 1729 goto cleanup; 1730 } 1731 1732 if (hcd->speed < HCD_USB3) 1733 xhci_test_and_clear_bit(xhci, port_array, faked_port_index, 1734 PORT_PLC); 1735 1736 cleanup: 1737 /* Update event ring dequeue pointer before dropping the lock */ 1738 inc_deq(xhci, xhci->event_ring); 1739 1740 /* Don't make the USB core poll the roothub if we got a bad port status 1741 * change event. Besides, at that point we can't tell which roothub 1742 * (USB 2.0 or USB 3.0) to kick. 1743 */ 1744 if (bogus_port_status) 1745 return; 1746 1747 /* 1748 * xHCI port-status-change events occur when the "or" of all the 1749 * status-change bits in the portsc register changes from 0 to 1. 1750 * New status changes won't cause an event if any other change 1751 * bits are still set. When an event occurs, switch over to 1752 * polling to avoid losing status changes. 1753 */ 1754 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1755 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1756 spin_unlock(&xhci->lock); 1757 /* Pass this up to the core */ 1758 usb_hcd_poll_rh_status(hcd); 1759 spin_lock(&xhci->lock); 1760 } 1761 1762 /* 1763 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 1764 * at end_trb, which may be in another segment. If the suspect DMA address is a 1765 * TRB in this TD, this function returns that TRB's segment. Otherwise it 1766 * returns 0. 1767 */ 1768 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, 1769 struct xhci_segment *start_seg, 1770 union xhci_trb *start_trb, 1771 union xhci_trb *end_trb, 1772 dma_addr_t suspect_dma, 1773 bool debug) 1774 { 1775 dma_addr_t start_dma; 1776 dma_addr_t end_seg_dma; 1777 dma_addr_t end_trb_dma; 1778 struct xhci_segment *cur_seg; 1779 1780 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 1781 cur_seg = start_seg; 1782 1783 do { 1784 if (start_dma == 0) 1785 return NULL; 1786 /* We may get an event for a Link TRB in the middle of a TD */ 1787 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 1788 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 1789 /* If the end TRB isn't in this segment, this is set to 0 */ 1790 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 1791 1792 if (debug) 1793 xhci_warn(xhci, 1794 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", 1795 (unsigned long long)suspect_dma, 1796 (unsigned long long)start_dma, 1797 (unsigned long long)end_trb_dma, 1798 (unsigned long long)cur_seg->dma, 1799 (unsigned long long)end_seg_dma); 1800 1801 if (end_trb_dma > 0) { 1802 /* The end TRB is in this segment, so suspect should be here */ 1803 if (start_dma <= end_trb_dma) { 1804 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 1805 return cur_seg; 1806 } else { 1807 /* Case for one segment with 1808 * a TD wrapped around to the top 1809 */ 1810 if ((suspect_dma >= start_dma && 1811 suspect_dma <= end_seg_dma) || 1812 (suspect_dma >= cur_seg->dma && 1813 suspect_dma <= end_trb_dma)) 1814 return cur_seg; 1815 } 1816 return NULL; 1817 } else { 1818 /* Might still be somewhere in this segment */ 1819 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 1820 return cur_seg; 1821 } 1822 cur_seg = cur_seg->next; 1823 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 1824 } while (cur_seg != start_seg); 1825 1826 return NULL; 1827 } 1828 1829 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, 1830 unsigned int slot_id, unsigned int ep_index, 1831 unsigned int stream_id, 1832 struct xhci_td *td, union xhci_trb *ep_trb, 1833 enum xhci_ep_reset_type reset_type) 1834 { 1835 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 1836 struct xhci_command *command; 1837 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1838 if (!command) 1839 return; 1840 1841 ep->ep_state |= EP_HALTED; 1842 1843 xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type); 1844 1845 if (reset_type == EP_HARD_RESET) 1846 xhci_cleanup_stalled_ring(xhci, ep_index, stream_id, td); 1847 1848 xhci_ring_cmd_db(xhci); 1849 } 1850 1851 /* Check if an error has halted the endpoint ring. The class driver will 1852 * cleanup the halt for a non-default control endpoint if we indicate a stall. 1853 * However, a babble and other errors also halt the endpoint ring, and the class 1854 * driver won't clear the halt in that case, so we need to issue a Set Transfer 1855 * Ring Dequeue Pointer command manually. 1856 */ 1857 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 1858 struct xhci_ep_ctx *ep_ctx, 1859 unsigned int trb_comp_code) 1860 { 1861 /* TRB completion codes that may require a manual halt cleanup */ 1862 if (trb_comp_code == COMP_USB_TRANSACTION_ERROR || 1863 trb_comp_code == COMP_BABBLE_DETECTED_ERROR || 1864 trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR) 1865 /* The 0.95 spec says a babbling control endpoint 1866 * is not halted. The 0.96 spec says it is. Some HW 1867 * claims to be 0.95 compliant, but it halts the control 1868 * endpoint anyway. Check if a babble halted the 1869 * endpoint. 1870 */ 1871 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) 1872 return 1; 1873 1874 return 0; 1875 } 1876 1877 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 1878 { 1879 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 1880 /* Vendor defined "informational" completion code, 1881 * treat as not-an-error. 1882 */ 1883 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 1884 trb_comp_code); 1885 xhci_dbg(xhci, "Treating code as success.\n"); 1886 return 1; 1887 } 1888 return 0; 1889 } 1890 1891 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, 1892 struct xhci_ring *ep_ring, int *status) 1893 { 1894 struct urb_priv *urb_priv; 1895 struct urb *urb = NULL; 1896 1897 /* Clean up the endpoint's TD list */ 1898 urb = td->urb; 1899 urb_priv = urb->hcpriv; 1900 1901 /* if a bounce buffer was used to align this td then unmap it */ 1902 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); 1903 1904 /* Do one last check of the actual transfer length. 1905 * If the host controller said we transferred more data than the buffer 1906 * length, urb->actual_length will be a very big number (since it's 1907 * unsigned). Play it safe and say we didn't transfer anything. 1908 */ 1909 if (urb->actual_length > urb->transfer_buffer_length) { 1910 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", 1911 urb->transfer_buffer_length, urb->actual_length); 1912 urb->actual_length = 0; 1913 *status = 0; 1914 } 1915 list_del_init(&td->td_list); 1916 /* Was this TD slated to be cancelled but completed anyway? */ 1917 if (!list_empty(&td->cancelled_td_list)) 1918 list_del_init(&td->cancelled_td_list); 1919 1920 inc_td_cnt(urb); 1921 /* Giveback the urb when all the tds are completed */ 1922 if (last_td_in_urb(td)) { 1923 if ((urb->actual_length != urb->transfer_buffer_length && 1924 (urb->transfer_flags & URB_SHORT_NOT_OK)) || 1925 (*status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) 1926 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", 1927 urb, urb->actual_length, 1928 urb->transfer_buffer_length, *status); 1929 1930 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ 1931 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 1932 *status = 0; 1933 xhci_giveback_urb_in_irq(xhci, td, *status); 1934 } 1935 1936 return 0; 1937 } 1938 1939 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, 1940 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 1941 struct xhci_virt_ep *ep, int *status) 1942 { 1943 struct xhci_virt_device *xdev; 1944 struct xhci_ep_ctx *ep_ctx; 1945 struct xhci_ring *ep_ring; 1946 unsigned int slot_id; 1947 u32 trb_comp_code; 1948 int ep_index; 1949 1950 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1951 xdev = xhci->devs[slot_id]; 1952 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1953 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1954 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1955 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1956 1957 if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID || 1958 trb_comp_code == COMP_STOPPED || 1959 trb_comp_code == COMP_STOPPED_SHORT_PACKET) { 1960 /* The Endpoint Stop Command completion will take care of any 1961 * stopped TDs. A stopped TD may be restarted, so don't update 1962 * the ring dequeue pointer or take this TD off any lists yet. 1963 */ 1964 return 0; 1965 } 1966 if (trb_comp_code == COMP_STALL_ERROR || 1967 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 1968 trb_comp_code)) { 1969 /* Issue a reset endpoint command to clear the host side 1970 * halt, followed by a set dequeue command to move the 1971 * dequeue pointer past the TD. 1972 * The class driver clears the device side halt later. 1973 */ 1974 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 1975 ep_ring->stream_id, td, ep_trb, 1976 EP_HARD_RESET); 1977 } else { 1978 /* Update ring dequeue pointer */ 1979 while (ep_ring->dequeue != td->last_trb) 1980 inc_deq(xhci, ep_ring); 1981 inc_deq(xhci, ep_ring); 1982 } 1983 1984 return xhci_td_cleanup(xhci, td, ep_ring, status); 1985 } 1986 1987 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */ 1988 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring, 1989 union xhci_trb *stop_trb) 1990 { 1991 u32 sum; 1992 union xhci_trb *trb = ring->dequeue; 1993 struct xhci_segment *seg = ring->deq_seg; 1994 1995 for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) { 1996 if (!trb_is_noop(trb) && !trb_is_link(trb)) 1997 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); 1998 } 1999 return sum; 2000 } 2001 2002 /* 2003 * Process control tds, update urb status and actual_length. 2004 */ 2005 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, 2006 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 2007 struct xhci_virt_ep *ep, int *status) 2008 { 2009 struct xhci_virt_device *xdev; 2010 struct xhci_ring *ep_ring; 2011 unsigned int slot_id; 2012 int ep_index; 2013 struct xhci_ep_ctx *ep_ctx; 2014 u32 trb_comp_code; 2015 u32 remaining, requested; 2016 u32 trb_type; 2017 2018 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); 2019 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2020 xdev = xhci->devs[slot_id]; 2021 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2022 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2023 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2024 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2025 requested = td->urb->transfer_buffer_length; 2026 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2027 2028 switch (trb_comp_code) { 2029 case COMP_SUCCESS: 2030 if (trb_type != TRB_STATUS) { 2031 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n", 2032 (trb_type == TRB_DATA) ? "data" : "setup"); 2033 *status = -ESHUTDOWN; 2034 break; 2035 } 2036 *status = 0; 2037 break; 2038 case COMP_SHORT_PACKET: 2039 *status = 0; 2040 break; 2041 case COMP_STOPPED_SHORT_PACKET: 2042 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2043 td->urb->actual_length = remaining; 2044 else 2045 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); 2046 goto finish_td; 2047 case COMP_STOPPED: 2048 switch (trb_type) { 2049 case TRB_SETUP: 2050 td->urb->actual_length = 0; 2051 goto finish_td; 2052 case TRB_DATA: 2053 case TRB_NORMAL: 2054 td->urb->actual_length = requested - remaining; 2055 goto finish_td; 2056 case TRB_STATUS: 2057 td->urb->actual_length = requested; 2058 goto finish_td; 2059 default: 2060 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", 2061 trb_type); 2062 goto finish_td; 2063 } 2064 case COMP_STOPPED_LENGTH_INVALID: 2065 goto finish_td; 2066 default: 2067 if (!xhci_requires_manual_halt_cleanup(xhci, 2068 ep_ctx, trb_comp_code)) 2069 break; 2070 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", 2071 trb_comp_code, ep_index); 2072 /* else fall through */ 2073 case COMP_STALL_ERROR: 2074 /* Did we transfer part of the data (middle) phase? */ 2075 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2076 td->urb->actual_length = requested - remaining; 2077 else if (!td->urb_length_set) 2078 td->urb->actual_length = 0; 2079 goto finish_td; 2080 } 2081 2082 /* stopped at setup stage, no data transferred */ 2083 if (trb_type == TRB_SETUP) 2084 goto finish_td; 2085 2086 /* 2087 * if on data stage then update the actual_length of the URB and flag it 2088 * as set, so it won't be overwritten in the event for the last TRB. 2089 */ 2090 if (trb_type == TRB_DATA || 2091 trb_type == TRB_NORMAL) { 2092 td->urb_length_set = true; 2093 td->urb->actual_length = requested - remaining; 2094 xhci_dbg(xhci, "Waiting for status stage event\n"); 2095 return 0; 2096 } 2097 2098 /* at status stage */ 2099 if (!td->urb_length_set) 2100 td->urb->actual_length = requested; 2101 2102 finish_td: 2103 return finish_td(xhci, td, ep_trb, event, ep, status); 2104 } 2105 2106 /* 2107 * Process isochronous tds, update urb packet status and actual_length. 2108 */ 2109 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2110 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 2111 struct xhci_virt_ep *ep, int *status) 2112 { 2113 struct xhci_ring *ep_ring; 2114 struct urb_priv *urb_priv; 2115 int idx; 2116 struct usb_iso_packet_descriptor *frame; 2117 u32 trb_comp_code; 2118 bool sum_trbs_for_length = false; 2119 u32 remaining, requested, ep_trb_len; 2120 int short_framestatus; 2121 2122 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2123 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2124 urb_priv = td->urb->hcpriv; 2125 idx = urb_priv->num_tds_done; 2126 frame = &td->urb->iso_frame_desc[idx]; 2127 requested = frame->length; 2128 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2129 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2130 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2131 -EREMOTEIO : 0; 2132 2133 /* handle completion code */ 2134 switch (trb_comp_code) { 2135 case COMP_SUCCESS: 2136 if (remaining) { 2137 frame->status = short_framestatus; 2138 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2139 sum_trbs_for_length = true; 2140 break; 2141 } 2142 frame->status = 0; 2143 break; 2144 case COMP_SHORT_PACKET: 2145 frame->status = short_framestatus; 2146 sum_trbs_for_length = true; 2147 break; 2148 case COMP_BANDWIDTH_OVERRUN_ERROR: 2149 frame->status = -ECOMM; 2150 break; 2151 case COMP_ISOCH_BUFFER_OVERRUN: 2152 case COMP_BABBLE_DETECTED_ERROR: 2153 frame->status = -EOVERFLOW; 2154 break; 2155 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2156 case COMP_STALL_ERROR: 2157 frame->status = -EPROTO; 2158 break; 2159 case COMP_USB_TRANSACTION_ERROR: 2160 frame->status = -EPROTO; 2161 if (ep_trb != td->last_trb) 2162 return 0; 2163 break; 2164 case COMP_STOPPED: 2165 sum_trbs_for_length = true; 2166 break; 2167 case COMP_STOPPED_SHORT_PACKET: 2168 /* field normally containing residue now contains tranferred */ 2169 frame->status = short_framestatus; 2170 requested = remaining; 2171 break; 2172 case COMP_STOPPED_LENGTH_INVALID: 2173 requested = 0; 2174 remaining = 0; 2175 break; 2176 default: 2177 sum_trbs_for_length = true; 2178 frame->status = -1; 2179 break; 2180 } 2181 2182 if (sum_trbs_for_length) 2183 frame->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb) + 2184 ep_trb_len - remaining; 2185 else 2186 frame->actual_length = requested; 2187 2188 td->urb->actual_length += frame->actual_length; 2189 2190 return finish_td(xhci, td, ep_trb, event, ep, status); 2191 } 2192 2193 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2194 struct xhci_transfer_event *event, 2195 struct xhci_virt_ep *ep, int *status) 2196 { 2197 struct xhci_ring *ep_ring; 2198 struct urb_priv *urb_priv; 2199 struct usb_iso_packet_descriptor *frame; 2200 int idx; 2201 2202 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2203 urb_priv = td->urb->hcpriv; 2204 idx = urb_priv->num_tds_done; 2205 frame = &td->urb->iso_frame_desc[idx]; 2206 2207 /* The transfer is partly done. */ 2208 frame->status = -EXDEV; 2209 2210 /* calc actual length */ 2211 frame->actual_length = 0; 2212 2213 /* Update ring dequeue pointer */ 2214 while (ep_ring->dequeue != td->last_trb) 2215 inc_deq(xhci, ep_ring); 2216 inc_deq(xhci, ep_ring); 2217 2218 return xhci_td_cleanup(xhci, td, ep_ring, status); 2219 } 2220 2221 /* 2222 * Process bulk and interrupt tds, update urb status and actual_length. 2223 */ 2224 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, 2225 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 2226 struct xhci_virt_ep *ep, int *status) 2227 { 2228 struct xhci_ring *ep_ring; 2229 u32 trb_comp_code; 2230 u32 remaining, requested, ep_trb_len; 2231 2232 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2233 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2234 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2235 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2236 requested = td->urb->transfer_buffer_length; 2237 2238 switch (trb_comp_code) { 2239 case COMP_SUCCESS: 2240 /* handle success with untransferred data as short packet */ 2241 if (ep_trb != td->last_trb || remaining) { 2242 xhci_warn(xhci, "WARN Successful completion on short TX\n"); 2243 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2244 td->urb->ep->desc.bEndpointAddress, 2245 requested, remaining); 2246 } 2247 *status = 0; 2248 break; 2249 case COMP_SHORT_PACKET: 2250 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2251 td->urb->ep->desc.bEndpointAddress, 2252 requested, remaining); 2253 *status = 0; 2254 break; 2255 case COMP_STOPPED_SHORT_PACKET: 2256 td->urb->actual_length = remaining; 2257 goto finish_td; 2258 case COMP_STOPPED_LENGTH_INVALID: 2259 /* stopped on ep trb with invalid length, exclude it */ 2260 ep_trb_len = 0; 2261 remaining = 0; 2262 break; 2263 default: 2264 /* do nothing */ 2265 break; 2266 } 2267 2268 if (ep_trb == td->last_trb) 2269 td->urb->actual_length = requested - remaining; 2270 else 2271 td->urb->actual_length = 2272 sum_trb_lengths(xhci, ep_ring, ep_trb) + 2273 ep_trb_len - remaining; 2274 finish_td: 2275 if (remaining > requested) { 2276 xhci_warn(xhci, "bad transfer trb length %d in event trb\n", 2277 remaining); 2278 td->urb->actual_length = 0; 2279 } 2280 return finish_td(xhci, td, ep_trb, event, ep, status); 2281 } 2282 2283 /* 2284 * If this function returns an error condition, it means it got a Transfer 2285 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2286 * At this point, the host controller is probably hosed and should be reset. 2287 */ 2288 static int handle_tx_event(struct xhci_hcd *xhci, 2289 struct xhci_transfer_event *event) 2290 { 2291 struct xhci_virt_device *xdev; 2292 struct xhci_virt_ep *ep; 2293 struct xhci_ring *ep_ring; 2294 unsigned int slot_id; 2295 int ep_index; 2296 struct xhci_td *td = NULL; 2297 dma_addr_t ep_trb_dma; 2298 struct xhci_segment *ep_seg; 2299 union xhci_trb *ep_trb; 2300 int status = -EINPROGRESS; 2301 struct xhci_ep_ctx *ep_ctx; 2302 struct list_head *tmp; 2303 u32 trb_comp_code; 2304 int td_num = 0; 2305 bool handling_skipped_tds = false; 2306 2307 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2308 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2309 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2310 ep_trb_dma = le64_to_cpu(event->buffer); 2311 2312 xdev = xhci->devs[slot_id]; 2313 if (!xdev) { 2314 xhci_err(xhci, "ERROR Transfer event pointed to bad slot %u\n", 2315 slot_id); 2316 goto err_out; 2317 } 2318 2319 ep = &xdev->eps[ep_index]; 2320 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma); 2321 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2322 2323 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { 2324 xhci_err(xhci, 2325 "ERROR Transfer event for disabled endpoint slot %u ep %u\n", 2326 slot_id, ep_index); 2327 goto err_out; 2328 } 2329 2330 /* Some transfer events don't always point to a trb, see xhci 4.17.4 */ 2331 if (!ep_ring) { 2332 switch (trb_comp_code) { 2333 case COMP_STALL_ERROR: 2334 case COMP_USB_TRANSACTION_ERROR: 2335 case COMP_INVALID_STREAM_TYPE_ERROR: 2336 case COMP_INVALID_STREAM_ID_ERROR: 2337 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 0, 2338 NULL, NULL, EP_SOFT_RESET); 2339 goto cleanup; 2340 case COMP_RING_UNDERRUN: 2341 case COMP_RING_OVERRUN: 2342 goto cleanup; 2343 default: 2344 xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n", 2345 slot_id, ep_index); 2346 goto err_out; 2347 } 2348 } 2349 2350 /* Count current td numbers if ep->skip is set */ 2351 if (ep->skip) { 2352 list_for_each(tmp, &ep_ring->td_list) 2353 td_num++; 2354 } 2355 2356 /* Look for common error cases */ 2357 switch (trb_comp_code) { 2358 /* Skip codes that require special handling depending on 2359 * transfer type 2360 */ 2361 case COMP_SUCCESS: 2362 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2363 break; 2364 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2365 trb_comp_code = COMP_SHORT_PACKET; 2366 else 2367 xhci_warn_ratelimited(xhci, 2368 "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n", 2369 slot_id, ep_index); 2370 case COMP_SHORT_PACKET: 2371 break; 2372 /* Completion codes for endpoint stopped state */ 2373 case COMP_STOPPED: 2374 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n", 2375 slot_id, ep_index); 2376 break; 2377 case COMP_STOPPED_LENGTH_INVALID: 2378 xhci_dbg(xhci, 2379 "Stopped on No-op or Link TRB for slot %u ep %u\n", 2380 slot_id, ep_index); 2381 break; 2382 case COMP_STOPPED_SHORT_PACKET: 2383 xhci_dbg(xhci, 2384 "Stopped with short packet transfer detected for slot %u ep %u\n", 2385 slot_id, ep_index); 2386 break; 2387 /* Completion codes for endpoint halted state */ 2388 case COMP_STALL_ERROR: 2389 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id, 2390 ep_index); 2391 ep->ep_state |= EP_HALTED; 2392 status = -EPIPE; 2393 break; 2394 case COMP_SPLIT_TRANSACTION_ERROR: 2395 case COMP_USB_TRANSACTION_ERROR: 2396 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n", 2397 slot_id, ep_index); 2398 status = -EPROTO; 2399 break; 2400 case COMP_BABBLE_DETECTED_ERROR: 2401 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n", 2402 slot_id, ep_index); 2403 status = -EOVERFLOW; 2404 break; 2405 /* Completion codes for endpoint error state */ 2406 case COMP_TRB_ERROR: 2407 xhci_warn(xhci, 2408 "WARN: TRB error for slot %u ep %u on endpoint\n", 2409 slot_id, ep_index); 2410 status = -EILSEQ; 2411 break; 2412 /* completion codes not indicating endpoint state change */ 2413 case COMP_DATA_BUFFER_ERROR: 2414 xhci_warn(xhci, 2415 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n", 2416 slot_id, ep_index); 2417 status = -ENOSR; 2418 break; 2419 case COMP_BANDWIDTH_OVERRUN_ERROR: 2420 xhci_warn(xhci, 2421 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n", 2422 slot_id, ep_index); 2423 break; 2424 case COMP_ISOCH_BUFFER_OVERRUN: 2425 xhci_warn(xhci, 2426 "WARN: buffer overrun event for slot %u ep %u on endpoint", 2427 slot_id, ep_index); 2428 break; 2429 case COMP_RING_UNDERRUN: 2430 /* 2431 * When the Isoch ring is empty, the xHC will generate 2432 * a Ring Overrun Event for IN Isoch endpoint or Ring 2433 * Underrun Event for OUT Isoch endpoint. 2434 */ 2435 xhci_dbg(xhci, "underrun event on endpoint\n"); 2436 if (!list_empty(&ep_ring->td_list)) 2437 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2438 "still with TDs queued?\n", 2439 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2440 ep_index); 2441 goto cleanup; 2442 case COMP_RING_OVERRUN: 2443 xhci_dbg(xhci, "overrun event on endpoint\n"); 2444 if (!list_empty(&ep_ring->td_list)) 2445 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2446 "still with TDs queued?\n", 2447 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2448 ep_index); 2449 goto cleanup; 2450 case COMP_MISSED_SERVICE_ERROR: 2451 /* 2452 * When encounter missed service error, one or more isoc tds 2453 * may be missed by xHC. 2454 * Set skip flag of the ep_ring; Complete the missed tds as 2455 * short transfer when process the ep_ring next time. 2456 */ 2457 ep->skip = true; 2458 xhci_dbg(xhci, 2459 "Miss service interval error for slot %u ep %u, set skip flag\n", 2460 slot_id, ep_index); 2461 goto cleanup; 2462 case COMP_NO_PING_RESPONSE_ERROR: 2463 ep->skip = true; 2464 xhci_dbg(xhci, 2465 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n", 2466 slot_id, ep_index); 2467 goto cleanup; 2468 2469 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2470 /* needs disable slot command to recover */ 2471 xhci_warn(xhci, 2472 "WARN: detect an incompatible device for slot %u ep %u", 2473 slot_id, ep_index); 2474 status = -EPROTO; 2475 break; 2476 default: 2477 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2478 status = 0; 2479 break; 2480 } 2481 xhci_warn(xhci, 2482 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n", 2483 trb_comp_code, slot_id, ep_index); 2484 goto cleanup; 2485 } 2486 2487 do { 2488 /* This TRB should be in the TD at the head of this ring's 2489 * TD list. 2490 */ 2491 if (list_empty(&ep_ring->td_list)) { 2492 /* 2493 * A stopped endpoint may generate an extra completion 2494 * event if the device was suspended. Don't print 2495 * warnings. 2496 */ 2497 if (!(trb_comp_code == COMP_STOPPED || 2498 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) { 2499 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2500 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2501 ep_index); 2502 } 2503 if (ep->skip) { 2504 ep->skip = false; 2505 xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n", 2506 slot_id, ep_index); 2507 } 2508 goto cleanup; 2509 } 2510 2511 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2512 if (ep->skip && td_num == 0) { 2513 ep->skip = false; 2514 xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n", 2515 slot_id, ep_index); 2516 goto cleanup; 2517 } 2518 2519 td = list_first_entry(&ep_ring->td_list, struct xhci_td, 2520 td_list); 2521 if (ep->skip) 2522 td_num--; 2523 2524 /* Is this a TRB in the currently executing TD? */ 2525 ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue, 2526 td->last_trb, ep_trb_dma, false); 2527 2528 /* 2529 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2530 * is not in the current TD pointed by ep_ring->dequeue because 2531 * that the hardware dequeue pointer still at the previous TRB 2532 * of the current TD. The previous TRB maybe a Link TD or the 2533 * last TRB of the previous TD. The command completion handle 2534 * will take care the rest. 2535 */ 2536 if (!ep_seg && (trb_comp_code == COMP_STOPPED || 2537 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) { 2538 goto cleanup; 2539 } 2540 2541 if (!ep_seg) { 2542 if (!ep->skip || 2543 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2544 /* Some host controllers give a spurious 2545 * successful event after a short transfer. 2546 * Ignore it. 2547 */ 2548 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2549 ep_ring->last_td_was_short) { 2550 ep_ring->last_td_was_short = false; 2551 goto cleanup; 2552 } 2553 /* HC is busted, give up! */ 2554 xhci_err(xhci, 2555 "ERROR Transfer event TRB DMA ptr not " 2556 "part of current TD ep_index %d " 2557 "comp_code %u\n", ep_index, 2558 trb_comp_code); 2559 trb_in_td(xhci, ep_ring->deq_seg, 2560 ep_ring->dequeue, td->last_trb, 2561 ep_trb_dma, true); 2562 return -ESHUTDOWN; 2563 } 2564 2565 skip_isoc_td(xhci, td, event, ep, &status); 2566 goto cleanup; 2567 } 2568 if (trb_comp_code == COMP_SHORT_PACKET) 2569 ep_ring->last_td_was_short = true; 2570 else 2571 ep_ring->last_td_was_short = false; 2572 2573 if (ep->skip) { 2574 xhci_dbg(xhci, 2575 "Found td. Clear skip flag for slot %u ep %u.\n", 2576 slot_id, ep_index); 2577 ep->skip = false; 2578 } 2579 2580 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / 2581 sizeof(*ep_trb)]; 2582 2583 trace_xhci_handle_transfer(ep_ring, 2584 (struct xhci_generic_trb *) ep_trb); 2585 2586 /* 2587 * No-op TRB could trigger interrupts in a case where 2588 * a URB was killed and a STALL_ERROR happens right 2589 * after the endpoint ring stopped. Reset the halted 2590 * endpoint. Otherwise, the endpoint remains stalled 2591 * indefinitely. 2592 */ 2593 if (trb_is_noop(ep_trb)) { 2594 if (trb_comp_code == COMP_STALL_ERROR || 2595 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2596 trb_comp_code)) 2597 xhci_cleanup_halted_endpoint(xhci, slot_id, 2598 ep_index, 2599 ep_ring->stream_id, 2600 td, ep_trb, 2601 EP_HARD_RESET); 2602 goto cleanup; 2603 } 2604 2605 /* update the urb's actual_length and give back to the core */ 2606 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2607 process_ctrl_td(xhci, td, ep_trb, event, ep, &status); 2608 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2609 process_isoc_td(xhci, td, ep_trb, event, ep, &status); 2610 else 2611 process_bulk_intr_td(xhci, td, ep_trb, event, ep, 2612 &status); 2613 cleanup: 2614 handling_skipped_tds = ep->skip && 2615 trb_comp_code != COMP_MISSED_SERVICE_ERROR && 2616 trb_comp_code != COMP_NO_PING_RESPONSE_ERROR; 2617 2618 /* 2619 * Do not update event ring dequeue pointer if we're in a loop 2620 * processing missed tds. 2621 */ 2622 if (!handling_skipped_tds) 2623 inc_deq(xhci, xhci->event_ring); 2624 2625 /* 2626 * If ep->skip is set, it means there are missed tds on the 2627 * endpoint ring need to take care of. 2628 * Process them as short transfer until reach the td pointed by 2629 * the event. 2630 */ 2631 } while (handling_skipped_tds); 2632 2633 return 0; 2634 2635 err_out: 2636 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2637 (unsigned long long) xhci_trb_virt_to_dma( 2638 xhci->event_ring->deq_seg, 2639 xhci->event_ring->dequeue), 2640 lower_32_bits(le64_to_cpu(event->buffer)), 2641 upper_32_bits(le64_to_cpu(event->buffer)), 2642 le32_to_cpu(event->transfer_len), 2643 le32_to_cpu(event->flags)); 2644 return -ENODEV; 2645 } 2646 2647 /* 2648 * This function handles all OS-owned events on the event ring. It may drop 2649 * xhci->lock between event processing (e.g. to pass up port status changes). 2650 * Returns >0 for "possibly more events to process" (caller should call again), 2651 * otherwise 0 if done. In future, <0 returns should indicate error code. 2652 */ 2653 static int xhci_handle_event(struct xhci_hcd *xhci) 2654 { 2655 union xhci_trb *event; 2656 int update_ptrs = 1; 2657 int ret; 2658 2659 /* Event ring hasn't been allocated yet. */ 2660 if (!xhci->event_ring || !xhci->event_ring->dequeue) { 2661 xhci_err(xhci, "ERROR event ring not ready\n"); 2662 return -ENOMEM; 2663 } 2664 2665 event = xhci->event_ring->dequeue; 2666 /* Does the HC or OS own the TRB? */ 2667 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2668 xhci->event_ring->cycle_state) 2669 return 0; 2670 2671 trace_xhci_handle_event(xhci->event_ring, &event->generic); 2672 2673 /* 2674 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2675 * speculative reads of the event's flags/data below. 2676 */ 2677 rmb(); 2678 /* FIXME: Handle more event types. */ 2679 switch (le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) { 2680 case TRB_TYPE(TRB_COMPLETION): 2681 handle_cmd_completion(xhci, &event->event_cmd); 2682 break; 2683 case TRB_TYPE(TRB_PORT_STATUS): 2684 handle_port_status(xhci, event); 2685 update_ptrs = 0; 2686 break; 2687 case TRB_TYPE(TRB_TRANSFER): 2688 ret = handle_tx_event(xhci, &event->trans_event); 2689 if (ret >= 0) 2690 update_ptrs = 0; 2691 break; 2692 case TRB_TYPE(TRB_DEV_NOTE): 2693 handle_device_notification(xhci, event); 2694 break; 2695 default: 2696 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >= 2697 TRB_TYPE(48)) 2698 handle_vendor_event(xhci, event); 2699 else 2700 xhci_warn(xhci, "ERROR unknown event type %d\n", 2701 TRB_FIELD_TO_TYPE( 2702 le32_to_cpu(event->event_cmd.flags))); 2703 } 2704 /* Any of the above functions may drop and re-acquire the lock, so check 2705 * to make sure a watchdog timer didn't mark the host as non-responsive. 2706 */ 2707 if (xhci->xhc_state & XHCI_STATE_DYING) { 2708 xhci_dbg(xhci, "xHCI host dying, returning from " 2709 "event handler.\n"); 2710 return 0; 2711 } 2712 2713 if (update_ptrs) 2714 /* Update SW event ring dequeue pointer */ 2715 inc_deq(xhci, xhci->event_ring); 2716 2717 /* Are there more items on the event ring? Caller will call us again to 2718 * check. 2719 */ 2720 return 1; 2721 } 2722 2723 /* 2724 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 2725 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 2726 * indicators of an event TRB error, but we check the status *first* to be safe. 2727 */ 2728 irqreturn_t xhci_irq(struct usb_hcd *hcd) 2729 { 2730 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2731 union xhci_trb *event_ring_deq; 2732 irqreturn_t ret = IRQ_NONE; 2733 unsigned long flags; 2734 dma_addr_t deq; 2735 u64 temp_64; 2736 u32 status; 2737 2738 spin_lock_irqsave(&xhci->lock, flags); 2739 /* Check if the xHC generated the interrupt, or the irq is shared */ 2740 status = readl(&xhci->op_regs->status); 2741 if (status == ~(u32)0) { 2742 xhci_hc_died(xhci); 2743 ret = IRQ_HANDLED; 2744 goto out; 2745 } 2746 2747 if (!(status & STS_EINT)) 2748 goto out; 2749 2750 if (status & STS_FATAL) { 2751 xhci_warn(xhci, "WARNING: Host System Error\n"); 2752 xhci_halt(xhci); 2753 ret = IRQ_HANDLED; 2754 goto out; 2755 } 2756 2757 /* 2758 * Clear the op reg interrupt status first, 2759 * so we can receive interrupts from other MSI-X interrupters. 2760 * Write 1 to clear the interrupt status. 2761 */ 2762 status |= STS_EINT; 2763 writel(status, &xhci->op_regs->status); 2764 2765 if (!hcd->msi_enabled) { 2766 u32 irq_pending; 2767 irq_pending = readl(&xhci->ir_set->irq_pending); 2768 irq_pending |= IMAN_IP; 2769 writel(irq_pending, &xhci->ir_set->irq_pending); 2770 } 2771 2772 if (xhci->xhc_state & XHCI_STATE_DYING || 2773 xhci->xhc_state & XHCI_STATE_HALTED) { 2774 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 2775 "Shouldn't IRQs be disabled?\n"); 2776 /* Clear the event handler busy flag (RW1C); 2777 * the event ring should be empty. 2778 */ 2779 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2780 xhci_write_64(xhci, temp_64 | ERST_EHB, 2781 &xhci->ir_set->erst_dequeue); 2782 ret = IRQ_HANDLED; 2783 goto out; 2784 } 2785 2786 event_ring_deq = xhci->event_ring->dequeue; 2787 /* FIXME this should be a delayed service routine 2788 * that clears the EHB. 2789 */ 2790 while (xhci_handle_event(xhci) > 0) {} 2791 2792 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2793 /* If necessary, update the HW's version of the event ring deq ptr. */ 2794 if (event_ring_deq != xhci->event_ring->dequeue) { 2795 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2796 xhci->event_ring->dequeue); 2797 if (deq == 0) 2798 xhci_warn(xhci, "WARN something wrong with SW event " 2799 "ring dequeue ptr.\n"); 2800 /* Update HC event ring dequeue pointer */ 2801 temp_64 &= ERST_PTR_MASK; 2802 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 2803 } 2804 2805 /* Clear the event handler busy flag (RW1C); event ring is empty. */ 2806 temp_64 |= ERST_EHB; 2807 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); 2808 ret = IRQ_HANDLED; 2809 2810 out: 2811 spin_unlock_irqrestore(&xhci->lock, flags); 2812 2813 return ret; 2814 } 2815 2816 irqreturn_t xhci_msi_irq(int irq, void *hcd) 2817 { 2818 return xhci_irq(hcd); 2819 } 2820 2821 /**** Endpoint Ring Operations ****/ 2822 2823 /* 2824 * Generic function for queueing a TRB on a ring. 2825 * The caller must have checked to make sure there's room on the ring. 2826 * 2827 * @more_trbs_coming: Will you enqueue more TRBs before calling 2828 * prepare_transfer()? 2829 */ 2830 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 2831 bool more_trbs_coming, 2832 u32 field1, u32 field2, u32 field3, u32 field4) 2833 { 2834 struct xhci_generic_trb *trb; 2835 2836 trb = &ring->enqueue->generic; 2837 trb->field[0] = cpu_to_le32(field1); 2838 trb->field[1] = cpu_to_le32(field2); 2839 trb->field[2] = cpu_to_le32(field3); 2840 trb->field[3] = cpu_to_le32(field4); 2841 2842 trace_xhci_queue_trb(ring, trb); 2843 2844 inc_enq(xhci, ring, more_trbs_coming); 2845 } 2846 2847 /* 2848 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 2849 * FIXME allocate segments if the ring is full. 2850 */ 2851 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 2852 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 2853 { 2854 unsigned int num_trbs_needed; 2855 2856 /* Make sure the endpoint has been added to xHC schedule */ 2857 switch (ep_state) { 2858 case EP_STATE_DISABLED: 2859 /* 2860 * USB core changed config/interfaces without notifying us, 2861 * or hardware is reporting the wrong state. 2862 */ 2863 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 2864 return -ENOENT; 2865 case EP_STATE_ERROR: 2866 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 2867 /* FIXME event handling code for error needs to clear it */ 2868 /* XXX not sure if this should be -ENOENT or not */ 2869 return -EINVAL; 2870 case EP_STATE_HALTED: 2871 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 2872 case EP_STATE_STOPPED: 2873 case EP_STATE_RUNNING: 2874 break; 2875 default: 2876 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 2877 /* 2878 * FIXME issue Configure Endpoint command to try to get the HC 2879 * back into a known state. 2880 */ 2881 return -EINVAL; 2882 } 2883 2884 while (1) { 2885 if (room_on_ring(xhci, ep_ring, num_trbs)) 2886 break; 2887 2888 if (ep_ring == xhci->cmd_ring) { 2889 xhci_err(xhci, "Do not support expand command ring\n"); 2890 return -ENOMEM; 2891 } 2892 2893 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 2894 "ERROR no room on ep ring, try ring expansion"); 2895 num_trbs_needed = num_trbs - ep_ring->num_trbs_free; 2896 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed, 2897 mem_flags)) { 2898 xhci_err(xhci, "Ring expansion failed\n"); 2899 return -ENOMEM; 2900 } 2901 } 2902 2903 while (trb_is_link(ep_ring->enqueue)) { 2904 /* If we're not dealing with 0.95 hardware or isoc rings 2905 * on AMD 0.96 host, clear the chain bit. 2906 */ 2907 if (!xhci_link_trb_quirk(xhci) && 2908 !(ep_ring->type == TYPE_ISOC && 2909 (xhci->quirks & XHCI_AMD_0x96_HOST))) 2910 ep_ring->enqueue->link.control &= 2911 cpu_to_le32(~TRB_CHAIN); 2912 else 2913 ep_ring->enqueue->link.control |= 2914 cpu_to_le32(TRB_CHAIN); 2915 2916 wmb(); 2917 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); 2918 2919 /* Toggle the cycle bit after the last ring segment. */ 2920 if (link_trb_toggles_cycle(ep_ring->enqueue)) 2921 ep_ring->cycle_state ^= 1; 2922 2923 ep_ring->enq_seg = ep_ring->enq_seg->next; 2924 ep_ring->enqueue = ep_ring->enq_seg->trbs; 2925 } 2926 return 0; 2927 } 2928 2929 static int prepare_transfer(struct xhci_hcd *xhci, 2930 struct xhci_virt_device *xdev, 2931 unsigned int ep_index, 2932 unsigned int stream_id, 2933 unsigned int num_trbs, 2934 struct urb *urb, 2935 unsigned int td_index, 2936 gfp_t mem_flags) 2937 { 2938 int ret; 2939 struct urb_priv *urb_priv; 2940 struct xhci_td *td; 2941 struct xhci_ring *ep_ring; 2942 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2943 2944 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); 2945 if (!ep_ring) { 2946 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 2947 stream_id); 2948 return -EINVAL; 2949 } 2950 2951 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 2952 num_trbs, mem_flags); 2953 if (ret) 2954 return ret; 2955 2956 urb_priv = urb->hcpriv; 2957 td = &urb_priv->td[td_index]; 2958 2959 INIT_LIST_HEAD(&td->td_list); 2960 INIT_LIST_HEAD(&td->cancelled_td_list); 2961 2962 if (td_index == 0) { 2963 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 2964 if (unlikely(ret)) 2965 return ret; 2966 } 2967 2968 td->urb = urb; 2969 /* Add this TD to the tail of the endpoint ring's TD list */ 2970 list_add_tail(&td->td_list, &ep_ring->td_list); 2971 td->start_seg = ep_ring->enq_seg; 2972 td->first_trb = ep_ring->enqueue; 2973 2974 return 0; 2975 } 2976 2977 static unsigned int count_trbs(u64 addr, u64 len) 2978 { 2979 unsigned int num_trbs; 2980 2981 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 2982 TRB_MAX_BUFF_SIZE); 2983 if (num_trbs == 0) 2984 num_trbs++; 2985 2986 return num_trbs; 2987 } 2988 2989 static inline unsigned int count_trbs_needed(struct urb *urb) 2990 { 2991 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); 2992 } 2993 2994 static unsigned int count_sg_trbs_needed(struct urb *urb) 2995 { 2996 struct scatterlist *sg; 2997 unsigned int i, len, full_len, num_trbs = 0; 2998 2999 full_len = urb->transfer_buffer_length; 3000 3001 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { 3002 len = sg_dma_len(sg); 3003 num_trbs += count_trbs(sg_dma_address(sg), len); 3004 len = min_t(unsigned int, len, full_len); 3005 full_len -= len; 3006 if (full_len == 0) 3007 break; 3008 } 3009 3010 return num_trbs; 3011 } 3012 3013 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) 3014 { 3015 u64 addr, len; 3016 3017 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3018 len = urb->iso_frame_desc[i].length; 3019 3020 return count_trbs(addr, len); 3021 } 3022 3023 static void check_trb_math(struct urb *urb, int running_total) 3024 { 3025 if (unlikely(running_total != urb->transfer_buffer_length)) 3026 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3027 "queued %#x (%d), asked for %#x (%d)\n", 3028 __func__, 3029 urb->ep->desc.bEndpointAddress, 3030 running_total, running_total, 3031 urb->transfer_buffer_length, 3032 urb->transfer_buffer_length); 3033 } 3034 3035 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3036 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3037 struct xhci_generic_trb *start_trb) 3038 { 3039 /* 3040 * Pass all the TRBs to the hardware at once and make sure this write 3041 * isn't reordered. 3042 */ 3043 wmb(); 3044 if (start_cycle) 3045 start_trb->field[3] |= cpu_to_le32(start_cycle); 3046 else 3047 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3048 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3049 } 3050 3051 static void check_interval(struct xhci_hcd *xhci, struct urb *urb, 3052 struct xhci_ep_ctx *ep_ctx) 3053 { 3054 int xhci_interval; 3055 int ep_interval; 3056 3057 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3058 ep_interval = urb->interval; 3059 3060 /* Convert to microframes */ 3061 if (urb->dev->speed == USB_SPEED_LOW || 3062 urb->dev->speed == USB_SPEED_FULL) 3063 ep_interval *= 8; 3064 3065 /* FIXME change this to a warning and a suggestion to use the new API 3066 * to set the polling interval (once the API is added). 3067 */ 3068 if (xhci_interval != ep_interval) { 3069 dev_dbg_ratelimited(&urb->dev->dev, 3070 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3071 ep_interval, ep_interval == 1 ? "" : "s", 3072 xhci_interval, xhci_interval == 1 ? "" : "s"); 3073 urb->interval = xhci_interval; 3074 /* Convert back to frames for LS/FS devices */ 3075 if (urb->dev->speed == USB_SPEED_LOW || 3076 urb->dev->speed == USB_SPEED_FULL) 3077 urb->interval /= 8; 3078 } 3079 } 3080 3081 /* 3082 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3083 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3084 * (comprised of sg list entries) can take several service intervals to 3085 * transmit. 3086 */ 3087 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3088 struct urb *urb, int slot_id, unsigned int ep_index) 3089 { 3090 struct xhci_ep_ctx *ep_ctx; 3091 3092 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); 3093 check_interval(xhci, urb, ep_ctx); 3094 3095 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3096 } 3097 3098 /* 3099 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3100 * packets remaining in the TD (*not* including this TRB). 3101 * 3102 * Total TD packet count = total_packet_count = 3103 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3104 * 3105 * Packets transferred up to and including this TRB = packets_transferred = 3106 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3107 * 3108 * TD size = total_packet_count - packets_transferred 3109 * 3110 * For xHCI 0.96 and older, TD size field should be the remaining bytes 3111 * including this TRB, right shifted by 10 3112 * 3113 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. 3114 * This is taken care of in the TRB_TD_SIZE() macro 3115 * 3116 * The last TRB in a TD must have the TD size set to zero. 3117 */ 3118 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, 3119 int trb_buff_len, unsigned int td_total_len, 3120 struct urb *urb, bool more_trbs_coming) 3121 { 3122 u32 maxp, total_packet_count; 3123 3124 /* MTK xHCI is mostly 0.97 but contains some features from 1.0 */ 3125 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) 3126 return ((td_total_len - transferred) >> 10); 3127 3128 /* One TRB with a zero-length data packet. */ 3129 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || 3130 trb_buff_len == td_total_len) 3131 return 0; 3132 3133 /* for MTK xHCI, TD size doesn't include this TRB */ 3134 if (xhci->quirks & XHCI_MTK_HOST) 3135 trb_buff_len = 0; 3136 3137 maxp = usb_endpoint_maxp(&urb->ep->desc); 3138 total_packet_count = DIV_ROUND_UP(td_total_len, maxp); 3139 3140 /* Queueing functions don't count the current TRB into transferred */ 3141 return (total_packet_count - ((transferred + trb_buff_len) / maxp)); 3142 } 3143 3144 3145 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, 3146 u32 *trb_buff_len, struct xhci_segment *seg) 3147 { 3148 struct device *dev = xhci_to_hcd(xhci)->self.controller; 3149 unsigned int unalign; 3150 unsigned int max_pkt; 3151 u32 new_buff_len; 3152 3153 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3154 unalign = (enqd_len + *trb_buff_len) % max_pkt; 3155 3156 /* we got lucky, last normal TRB data on segment is packet aligned */ 3157 if (unalign == 0) 3158 return 0; 3159 3160 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", 3161 unalign, *trb_buff_len); 3162 3163 /* is the last nornal TRB alignable by splitting it */ 3164 if (*trb_buff_len > unalign) { 3165 *trb_buff_len -= unalign; 3166 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); 3167 return 0; 3168 } 3169 3170 /* 3171 * We want enqd_len + trb_buff_len to sum up to a number aligned to 3172 * number which is divisible by the endpoint's wMaxPacketSize. IOW: 3173 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. 3174 */ 3175 new_buff_len = max_pkt - (enqd_len % max_pkt); 3176 3177 if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) 3178 new_buff_len = (urb->transfer_buffer_length - enqd_len); 3179 3180 /* create a max max_pkt sized bounce buffer pointed to by last trb */ 3181 if (usb_urb_dir_out(urb)) { 3182 sg_pcopy_to_buffer(urb->sg, urb->num_mapped_sgs, 3183 seg->bounce_buf, new_buff_len, enqd_len); 3184 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3185 max_pkt, DMA_TO_DEVICE); 3186 } else { 3187 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3188 max_pkt, DMA_FROM_DEVICE); 3189 } 3190 3191 if (dma_mapping_error(dev, seg->bounce_dma)) { 3192 /* try without aligning. Some host controllers survive */ 3193 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); 3194 return 0; 3195 } 3196 *trb_buff_len = new_buff_len; 3197 seg->bounce_len = new_buff_len; 3198 seg->bounce_offs = enqd_len; 3199 3200 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); 3201 3202 return 1; 3203 } 3204 3205 /* This is very similar to what ehci-q.c qtd_fill() does */ 3206 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3207 struct urb *urb, int slot_id, unsigned int ep_index) 3208 { 3209 struct xhci_ring *ring; 3210 struct urb_priv *urb_priv; 3211 struct xhci_td *td; 3212 struct xhci_generic_trb *start_trb; 3213 struct scatterlist *sg = NULL; 3214 bool more_trbs_coming = true; 3215 bool need_zero_pkt = false; 3216 bool first_trb = true; 3217 unsigned int num_trbs; 3218 unsigned int start_cycle, num_sgs = 0; 3219 unsigned int enqd_len, block_len, trb_buff_len, full_len; 3220 int sent_len, ret; 3221 u32 field, length_field, remainder; 3222 u64 addr, send_addr; 3223 3224 ring = xhci_urb_to_transfer_ring(xhci, urb); 3225 if (!ring) 3226 return -EINVAL; 3227 3228 full_len = urb->transfer_buffer_length; 3229 /* If we have scatter/gather list, we use it. */ 3230 if (urb->num_sgs) { 3231 num_sgs = urb->num_mapped_sgs; 3232 sg = urb->sg; 3233 addr = (u64) sg_dma_address(sg); 3234 block_len = sg_dma_len(sg); 3235 num_trbs = count_sg_trbs_needed(urb); 3236 } else { 3237 num_trbs = count_trbs_needed(urb); 3238 addr = (u64) urb->transfer_dma; 3239 block_len = full_len; 3240 } 3241 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3242 ep_index, urb->stream_id, 3243 num_trbs, urb, 0, mem_flags); 3244 if (unlikely(ret < 0)) 3245 return ret; 3246 3247 urb_priv = urb->hcpriv; 3248 3249 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3250 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) 3251 need_zero_pkt = true; 3252 3253 td = &urb_priv->td[0]; 3254 3255 /* 3256 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3257 * until we've finished creating all the other TRBs. The ring's cycle 3258 * state may change as we enqueue the other TRBs, so save it too. 3259 */ 3260 start_trb = &ring->enqueue->generic; 3261 start_cycle = ring->cycle_state; 3262 send_addr = addr; 3263 3264 /* Queue the TRBs, even if they are zero-length */ 3265 for (enqd_len = 0; first_trb || enqd_len < full_len; 3266 enqd_len += trb_buff_len) { 3267 field = TRB_TYPE(TRB_NORMAL); 3268 3269 /* TRB buffer should not cross 64KB boundaries */ 3270 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3271 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); 3272 3273 if (enqd_len + trb_buff_len > full_len) 3274 trb_buff_len = full_len - enqd_len; 3275 3276 /* Don't change the cycle bit of the first TRB until later */ 3277 if (first_trb) { 3278 first_trb = false; 3279 if (start_cycle == 0) 3280 field |= TRB_CYCLE; 3281 } else 3282 field |= ring->cycle_state; 3283 3284 /* Chain all the TRBs together; clear the chain bit in the last 3285 * TRB to indicate it's the last TRB in the chain. 3286 */ 3287 if (enqd_len + trb_buff_len < full_len) { 3288 field |= TRB_CHAIN; 3289 if (trb_is_link(ring->enqueue + 1)) { 3290 if (xhci_align_td(xhci, urb, enqd_len, 3291 &trb_buff_len, 3292 ring->enq_seg)) { 3293 send_addr = ring->enq_seg->bounce_dma; 3294 /* assuming TD won't span 2 segs */ 3295 td->bounce_seg = ring->enq_seg; 3296 } 3297 } 3298 } 3299 if (enqd_len + trb_buff_len >= full_len) { 3300 field &= ~TRB_CHAIN; 3301 field |= TRB_IOC; 3302 more_trbs_coming = false; 3303 td->last_trb = ring->enqueue; 3304 } 3305 3306 /* Only set interrupt on short packet for IN endpoints */ 3307 if (usb_urb_dir_in(urb)) 3308 field |= TRB_ISP; 3309 3310 /* Set the TRB length, TD size, and interrupter fields. */ 3311 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, 3312 full_len, urb, more_trbs_coming); 3313 3314 length_field = TRB_LEN(trb_buff_len) | 3315 TRB_TD_SIZE(remainder) | 3316 TRB_INTR_TARGET(0); 3317 3318 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, 3319 lower_32_bits(send_addr), 3320 upper_32_bits(send_addr), 3321 length_field, 3322 field); 3323 3324 addr += trb_buff_len; 3325 sent_len = trb_buff_len; 3326 3327 while (sg && sent_len >= block_len) { 3328 /* New sg entry */ 3329 --num_sgs; 3330 sent_len -= block_len; 3331 if (num_sgs != 0) { 3332 sg = sg_next(sg); 3333 block_len = sg_dma_len(sg); 3334 addr = (u64) sg_dma_address(sg); 3335 addr += sent_len; 3336 } 3337 } 3338 block_len -= sent_len; 3339 send_addr = addr; 3340 } 3341 3342 if (need_zero_pkt) { 3343 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3344 ep_index, urb->stream_id, 3345 1, urb, 1, mem_flags); 3346 urb_priv->td[1].last_trb = ring->enqueue; 3347 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; 3348 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); 3349 } 3350 3351 check_trb_math(urb, enqd_len); 3352 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3353 start_cycle, start_trb); 3354 return 0; 3355 } 3356 3357 /* Caller must have locked xhci->lock */ 3358 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3359 struct urb *urb, int slot_id, unsigned int ep_index) 3360 { 3361 struct xhci_ring *ep_ring; 3362 int num_trbs; 3363 int ret; 3364 struct usb_ctrlrequest *setup; 3365 struct xhci_generic_trb *start_trb; 3366 int start_cycle; 3367 u32 field; 3368 struct urb_priv *urb_priv; 3369 struct xhci_td *td; 3370 3371 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3372 if (!ep_ring) 3373 return -EINVAL; 3374 3375 /* 3376 * Need to copy setup packet into setup TRB, so we can't use the setup 3377 * DMA address. 3378 */ 3379 if (!urb->setup_packet) 3380 return -EINVAL; 3381 3382 /* 1 TRB for setup, 1 for status */ 3383 num_trbs = 2; 3384 /* 3385 * Don't need to check if we need additional event data and normal TRBs, 3386 * since data in control transfers will never get bigger than 16MB 3387 * XXX: can we get a buffer that crosses 64KB boundaries? 3388 */ 3389 if (urb->transfer_buffer_length > 0) 3390 num_trbs++; 3391 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3392 ep_index, urb->stream_id, 3393 num_trbs, urb, 0, mem_flags); 3394 if (ret < 0) 3395 return ret; 3396 3397 urb_priv = urb->hcpriv; 3398 td = &urb_priv->td[0]; 3399 3400 /* 3401 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3402 * until we've finished creating all the other TRBs. The ring's cycle 3403 * state may change as we enqueue the other TRBs, so save it too. 3404 */ 3405 start_trb = &ep_ring->enqueue->generic; 3406 start_cycle = ep_ring->cycle_state; 3407 3408 /* Queue setup TRB - see section 6.4.1.2.1 */ 3409 /* FIXME better way to translate setup_packet into two u32 fields? */ 3410 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3411 field = 0; 3412 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3413 if (start_cycle == 0) 3414 field |= 0x1; 3415 3416 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ 3417 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { 3418 if (urb->transfer_buffer_length > 0) { 3419 if (setup->bRequestType & USB_DIR_IN) 3420 field |= TRB_TX_TYPE(TRB_DATA_IN); 3421 else 3422 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3423 } 3424 } 3425 3426 queue_trb(xhci, ep_ring, true, 3427 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3428 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3429 TRB_LEN(8) | TRB_INTR_TARGET(0), 3430 /* Immediate data in pointer */ 3431 field); 3432 3433 /* If there's data, queue data TRBs */ 3434 /* Only set interrupt on short packet for IN endpoints */ 3435 if (usb_urb_dir_in(urb)) 3436 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3437 else 3438 field = TRB_TYPE(TRB_DATA); 3439 3440 if (urb->transfer_buffer_length > 0) { 3441 u32 length_field, remainder; 3442 3443 remainder = xhci_td_remainder(xhci, 0, 3444 urb->transfer_buffer_length, 3445 urb->transfer_buffer_length, 3446 urb, 1); 3447 length_field = TRB_LEN(urb->transfer_buffer_length) | 3448 TRB_TD_SIZE(remainder) | 3449 TRB_INTR_TARGET(0); 3450 if (setup->bRequestType & USB_DIR_IN) 3451 field |= TRB_DIR_IN; 3452 queue_trb(xhci, ep_ring, true, 3453 lower_32_bits(urb->transfer_dma), 3454 upper_32_bits(urb->transfer_dma), 3455 length_field, 3456 field | ep_ring->cycle_state); 3457 } 3458 3459 /* Save the DMA address of the last TRB in the TD */ 3460 td->last_trb = ep_ring->enqueue; 3461 3462 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3463 /* If the device sent data, the status stage is an OUT transfer */ 3464 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3465 field = 0; 3466 else 3467 field = TRB_DIR_IN; 3468 queue_trb(xhci, ep_ring, false, 3469 0, 3470 0, 3471 TRB_INTR_TARGET(0), 3472 /* Event on completion */ 3473 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3474 3475 giveback_first_trb(xhci, slot_id, ep_index, 0, 3476 start_cycle, start_trb); 3477 return 0; 3478 } 3479 3480 /* 3481 * The transfer burst count field of the isochronous TRB defines the number of 3482 * bursts that are required to move all packets in this TD. Only SuperSpeed 3483 * devices can burst up to bMaxBurst number of packets per service interval. 3484 * This field is zero based, meaning a value of zero in the field means one 3485 * burst. Basically, for everything but SuperSpeed devices, this field will be 3486 * zero. Only xHCI 1.0 host controllers support this field. 3487 */ 3488 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3489 struct urb *urb, unsigned int total_packet_count) 3490 { 3491 unsigned int max_burst; 3492 3493 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) 3494 return 0; 3495 3496 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3497 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3498 } 3499 3500 /* 3501 * Returns the number of packets in the last "burst" of packets. This field is 3502 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3503 * the last burst packet count is equal to the total number of packets in the 3504 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3505 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3506 * contain 1 to (bMaxBurst + 1) packets. 3507 */ 3508 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3509 struct urb *urb, unsigned int total_packet_count) 3510 { 3511 unsigned int max_burst; 3512 unsigned int residue; 3513 3514 if (xhci->hci_version < 0x100) 3515 return 0; 3516 3517 if (urb->dev->speed >= USB_SPEED_SUPER) { 3518 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3519 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3520 residue = total_packet_count % (max_burst + 1); 3521 /* If residue is zero, the last burst contains (max_burst + 1) 3522 * number of packets, but the TLBPC field is zero-based. 3523 */ 3524 if (residue == 0) 3525 return max_burst; 3526 return residue - 1; 3527 } 3528 if (total_packet_count == 0) 3529 return 0; 3530 return total_packet_count - 1; 3531 } 3532 3533 /* 3534 * Calculates Frame ID field of the isochronous TRB identifies the 3535 * target frame that the Interval associated with this Isochronous 3536 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. 3537 * 3538 * Returns actual frame id on success, negative value on error. 3539 */ 3540 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, 3541 struct urb *urb, int index) 3542 { 3543 int start_frame, ist, ret = 0; 3544 int start_frame_id, end_frame_id, current_frame_id; 3545 3546 if (urb->dev->speed == USB_SPEED_LOW || 3547 urb->dev->speed == USB_SPEED_FULL) 3548 start_frame = urb->start_frame + index * urb->interval; 3549 else 3550 start_frame = (urb->start_frame + index * urb->interval) >> 3; 3551 3552 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): 3553 * 3554 * If bit [3] of IST is cleared to '0', software can add a TRB no 3555 * later than IST[2:0] Microframes before that TRB is scheduled to 3556 * be executed. 3557 * If bit [3] of IST is set to '1', software can add a TRB no later 3558 * than IST[2:0] Frames before that TRB is scheduled to be executed. 3559 */ 3560 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3561 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3562 ist <<= 3; 3563 3564 /* Software shall not schedule an Isoch TD with a Frame ID value that 3565 * is less than the Start Frame ID or greater than the End Frame ID, 3566 * where: 3567 * 3568 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 3569 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 3570 * 3571 * Both the End Frame ID and Start Frame ID values are calculated 3572 * in microframes. When software determines the valid Frame ID value; 3573 * The End Frame ID value should be rounded down to the nearest Frame 3574 * boundary, and the Start Frame ID value should be rounded up to the 3575 * nearest Frame boundary. 3576 */ 3577 current_frame_id = readl(&xhci->run_regs->microframe_index); 3578 start_frame_id = roundup(current_frame_id + ist + 1, 8); 3579 end_frame_id = rounddown(current_frame_id + 895 * 8, 8); 3580 3581 start_frame &= 0x7ff; 3582 start_frame_id = (start_frame_id >> 3) & 0x7ff; 3583 end_frame_id = (end_frame_id >> 3) & 0x7ff; 3584 3585 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n", 3586 __func__, index, readl(&xhci->run_regs->microframe_index), 3587 start_frame_id, end_frame_id, start_frame); 3588 3589 if (start_frame_id < end_frame_id) { 3590 if (start_frame > end_frame_id || 3591 start_frame < start_frame_id) 3592 ret = -EINVAL; 3593 } else if (start_frame_id > end_frame_id) { 3594 if ((start_frame > end_frame_id && 3595 start_frame < start_frame_id)) 3596 ret = -EINVAL; 3597 } else { 3598 ret = -EINVAL; 3599 } 3600 3601 if (index == 0) { 3602 if (ret == -EINVAL || start_frame == start_frame_id) { 3603 start_frame = start_frame_id + 1; 3604 if (urb->dev->speed == USB_SPEED_LOW || 3605 urb->dev->speed == USB_SPEED_FULL) 3606 urb->start_frame = start_frame; 3607 else 3608 urb->start_frame = start_frame << 3; 3609 ret = 0; 3610 } 3611 } 3612 3613 if (ret) { 3614 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", 3615 start_frame, current_frame_id, index, 3616 start_frame_id, end_frame_id); 3617 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); 3618 return ret; 3619 } 3620 3621 return start_frame; 3622 } 3623 3624 /* This is for isoc transfer */ 3625 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3626 struct urb *urb, int slot_id, unsigned int ep_index) 3627 { 3628 struct xhci_ring *ep_ring; 3629 struct urb_priv *urb_priv; 3630 struct xhci_td *td; 3631 int num_tds, trbs_per_td; 3632 struct xhci_generic_trb *start_trb; 3633 bool first_trb; 3634 int start_cycle; 3635 u32 field, length_field; 3636 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3637 u64 start_addr, addr; 3638 int i, j; 3639 bool more_trbs_coming; 3640 struct xhci_virt_ep *xep; 3641 int frame_id; 3642 3643 xep = &xhci->devs[slot_id]->eps[ep_index]; 3644 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 3645 3646 num_tds = urb->number_of_packets; 3647 if (num_tds < 1) { 3648 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 3649 return -EINVAL; 3650 } 3651 start_addr = (u64) urb->transfer_dma; 3652 start_trb = &ep_ring->enqueue->generic; 3653 start_cycle = ep_ring->cycle_state; 3654 3655 urb_priv = urb->hcpriv; 3656 /* Queue the TRBs for each TD, even if they are zero-length */ 3657 for (i = 0; i < num_tds; i++) { 3658 unsigned int total_pkt_count, max_pkt; 3659 unsigned int burst_count, last_burst_pkt_count; 3660 u32 sia_frame_id; 3661 3662 first_trb = true; 3663 running_total = 0; 3664 addr = start_addr + urb->iso_frame_desc[i].offset; 3665 td_len = urb->iso_frame_desc[i].length; 3666 td_remain_len = td_len; 3667 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3668 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); 3669 3670 /* A zero-length transfer still involves at least one packet. */ 3671 if (total_pkt_count == 0) 3672 total_pkt_count++; 3673 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); 3674 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, 3675 urb, total_pkt_count); 3676 3677 trbs_per_td = count_isoc_trbs_needed(urb, i); 3678 3679 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 3680 urb->stream_id, trbs_per_td, urb, i, mem_flags); 3681 if (ret < 0) { 3682 if (i == 0) 3683 return ret; 3684 goto cleanup; 3685 } 3686 td = &urb_priv->td[i]; 3687 3688 /* use SIA as default, if frame id is used overwrite it */ 3689 sia_frame_id = TRB_SIA; 3690 if (!(urb->transfer_flags & URB_ISO_ASAP) && 3691 HCC_CFC(xhci->hcc_params)) { 3692 frame_id = xhci_get_isoc_frame_id(xhci, urb, i); 3693 if (frame_id >= 0) 3694 sia_frame_id = TRB_FRAME_ID(frame_id); 3695 } 3696 /* 3697 * Set isoc specific data for the first TRB in a TD. 3698 * Prevent HW from getting the TRBs by keeping the cycle state 3699 * inverted in the first TDs isoc TRB. 3700 */ 3701 field = TRB_TYPE(TRB_ISOC) | 3702 TRB_TLBPC(last_burst_pkt_count) | 3703 sia_frame_id | 3704 (i ? ep_ring->cycle_state : !start_cycle); 3705 3706 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ 3707 if (!xep->use_extended_tbc) 3708 field |= TRB_TBC(burst_count); 3709 3710 /* fill the rest of the TRB fields, and remaining normal TRBs */ 3711 for (j = 0; j < trbs_per_td; j++) { 3712 u32 remainder = 0; 3713 3714 /* only first TRB is isoc, overwrite otherwise */ 3715 if (!first_trb) 3716 field = TRB_TYPE(TRB_NORMAL) | 3717 ep_ring->cycle_state; 3718 3719 /* Only set interrupt on short packet for IN EPs */ 3720 if (usb_urb_dir_in(urb)) 3721 field |= TRB_ISP; 3722 3723 /* Set the chain bit for all except the last TRB */ 3724 if (j < trbs_per_td - 1) { 3725 more_trbs_coming = true; 3726 field |= TRB_CHAIN; 3727 } else { 3728 more_trbs_coming = false; 3729 td->last_trb = ep_ring->enqueue; 3730 field |= TRB_IOC; 3731 /* set BEI, except for the last TD */ 3732 if (xhci->hci_version >= 0x100 && 3733 !(xhci->quirks & XHCI_AVOID_BEI) && 3734 i < num_tds - 1) 3735 field |= TRB_BEI; 3736 } 3737 /* Calculate TRB length */ 3738 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3739 if (trb_buff_len > td_remain_len) 3740 trb_buff_len = td_remain_len; 3741 3742 /* Set the TRB length, TD size, & interrupter fields. */ 3743 remainder = xhci_td_remainder(xhci, running_total, 3744 trb_buff_len, td_len, 3745 urb, more_trbs_coming); 3746 3747 length_field = TRB_LEN(trb_buff_len) | 3748 TRB_INTR_TARGET(0); 3749 3750 /* xhci 1.1 with ETE uses TD Size field for TBC */ 3751 if (first_trb && xep->use_extended_tbc) 3752 length_field |= TRB_TD_SIZE_TBC(burst_count); 3753 else 3754 length_field |= TRB_TD_SIZE(remainder); 3755 first_trb = false; 3756 3757 queue_trb(xhci, ep_ring, more_trbs_coming, 3758 lower_32_bits(addr), 3759 upper_32_bits(addr), 3760 length_field, 3761 field); 3762 running_total += trb_buff_len; 3763 3764 addr += trb_buff_len; 3765 td_remain_len -= trb_buff_len; 3766 } 3767 3768 /* Check TD length */ 3769 if (running_total != td_len) { 3770 xhci_err(xhci, "ISOC TD length unmatch\n"); 3771 ret = -EINVAL; 3772 goto cleanup; 3773 } 3774 } 3775 3776 /* store the next frame id */ 3777 if (HCC_CFC(xhci->hcc_params)) 3778 xep->next_frame_id = urb->start_frame + num_tds * urb->interval; 3779 3780 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 3781 if (xhci->quirks & XHCI_AMD_PLL_FIX) 3782 usb_amd_quirk_pll_disable(); 3783 } 3784 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 3785 3786 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3787 start_cycle, start_trb); 3788 return 0; 3789 cleanup: 3790 /* Clean up a partially enqueued isoc transfer. */ 3791 3792 for (i--; i >= 0; i--) 3793 list_del_init(&urb_priv->td[i].td_list); 3794 3795 /* Use the first TD as a temporary variable to turn the TDs we've queued 3796 * into No-ops with a software-owned cycle bit. That way the hardware 3797 * won't accidentally start executing bogus TDs when we partially 3798 * overwrite them. td->first_trb and td->start_seg are already set. 3799 */ 3800 urb_priv->td[0].last_trb = ep_ring->enqueue; 3801 /* Every TRB except the first & last will have its cycle bit flipped. */ 3802 td_to_noop(xhci, ep_ring, &urb_priv->td[0], true); 3803 3804 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 3805 ep_ring->enqueue = urb_priv->td[0].first_trb; 3806 ep_ring->enq_seg = urb_priv->td[0].start_seg; 3807 ep_ring->cycle_state = start_cycle; 3808 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp; 3809 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 3810 return ret; 3811 } 3812 3813 /* 3814 * Check transfer ring to guarantee there is enough room for the urb. 3815 * Update ISO URB start_frame and interval. 3816 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to 3817 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or 3818 * Contiguous Frame ID is not supported by HC. 3819 */ 3820 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 3821 struct urb *urb, int slot_id, unsigned int ep_index) 3822 { 3823 struct xhci_virt_device *xdev; 3824 struct xhci_ring *ep_ring; 3825 struct xhci_ep_ctx *ep_ctx; 3826 int start_frame; 3827 int num_tds, num_trbs, i; 3828 int ret; 3829 struct xhci_virt_ep *xep; 3830 int ist; 3831 3832 xdev = xhci->devs[slot_id]; 3833 xep = &xhci->devs[slot_id]->eps[ep_index]; 3834 ep_ring = xdev->eps[ep_index].ring; 3835 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3836 3837 num_trbs = 0; 3838 num_tds = urb->number_of_packets; 3839 for (i = 0; i < num_tds; i++) 3840 num_trbs += count_isoc_trbs_needed(urb, i); 3841 3842 /* Check the ring to guarantee there is enough room for the whole urb. 3843 * Do not insert any td of the urb to the ring if the check failed. 3844 */ 3845 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 3846 num_trbs, mem_flags); 3847 if (ret) 3848 return ret; 3849 3850 /* 3851 * Check interval value. This should be done before we start to 3852 * calculate the start frame value. 3853 */ 3854 check_interval(xhci, urb, ep_ctx); 3855 3856 /* Calculate the start frame and put it in urb->start_frame. */ 3857 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { 3858 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) { 3859 urb->start_frame = xep->next_frame_id; 3860 goto skip_start_over; 3861 } 3862 } 3863 3864 start_frame = readl(&xhci->run_regs->microframe_index); 3865 start_frame &= 0x3fff; 3866 /* 3867 * Round up to the next frame and consider the time before trb really 3868 * gets scheduled by hardare. 3869 */ 3870 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3871 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3872 ist <<= 3; 3873 start_frame += ist + XHCI_CFC_DELAY; 3874 start_frame = roundup(start_frame, 8); 3875 3876 /* 3877 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT 3878 * is greate than 8 microframes. 3879 */ 3880 if (urb->dev->speed == USB_SPEED_LOW || 3881 urb->dev->speed == USB_SPEED_FULL) { 3882 start_frame = roundup(start_frame, urb->interval << 3); 3883 urb->start_frame = start_frame >> 3; 3884 } else { 3885 start_frame = roundup(start_frame, urb->interval); 3886 urb->start_frame = start_frame; 3887 } 3888 3889 skip_start_over: 3890 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free; 3891 3892 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 3893 } 3894 3895 /**** Command Ring Operations ****/ 3896 3897 /* Generic function for queueing a command TRB on the command ring. 3898 * Check to make sure there's room on the command ring for one command TRB. 3899 * Also check that there's room reserved for commands that must not fail. 3900 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 3901 * then only check for the number of reserved spots. 3902 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 3903 * because the command event handler may want to resubmit a failed command. 3904 */ 3905 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 3906 u32 field1, u32 field2, 3907 u32 field3, u32 field4, bool command_must_succeed) 3908 { 3909 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 3910 int ret; 3911 3912 if ((xhci->xhc_state & XHCI_STATE_DYING) || 3913 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3914 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); 3915 return -ESHUTDOWN; 3916 } 3917 3918 if (!command_must_succeed) 3919 reserved_trbs++; 3920 3921 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 3922 reserved_trbs, GFP_ATOMIC); 3923 if (ret < 0) { 3924 xhci_err(xhci, "ERR: No room for command on command ring\n"); 3925 if (command_must_succeed) 3926 xhci_err(xhci, "ERR: Reserved TRB counting for " 3927 "unfailable commands failed.\n"); 3928 return ret; 3929 } 3930 3931 cmd->command_trb = xhci->cmd_ring->enqueue; 3932 3933 /* if there are no other commands queued we start the timeout timer */ 3934 if (list_empty(&xhci->cmd_list)) { 3935 xhci->current_cmd = cmd; 3936 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 3937 } 3938 3939 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 3940 3941 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 3942 field4 | xhci->cmd_ring->cycle_state); 3943 return 0; 3944 } 3945 3946 /* Queue a slot enable or disable request on the command ring */ 3947 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 3948 u32 trb_type, u32 slot_id) 3949 { 3950 return queue_command(xhci, cmd, 0, 0, 0, 3951 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 3952 } 3953 3954 /* Queue an address device command TRB */ 3955 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 3956 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 3957 { 3958 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3959 upper_32_bits(in_ctx_ptr), 0, 3960 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 3961 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 3962 } 3963 3964 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 3965 u32 field1, u32 field2, u32 field3, u32 field4) 3966 { 3967 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 3968 } 3969 3970 /* Queue a reset device command TRB */ 3971 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 3972 u32 slot_id) 3973 { 3974 return queue_command(xhci, cmd, 0, 0, 0, 3975 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 3976 false); 3977 } 3978 3979 /* Queue a configure endpoint command TRB */ 3980 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 3981 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 3982 u32 slot_id, bool command_must_succeed) 3983 { 3984 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3985 upper_32_bits(in_ctx_ptr), 0, 3986 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 3987 command_must_succeed); 3988 } 3989 3990 /* Queue an evaluate context command TRB */ 3991 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 3992 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 3993 { 3994 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3995 upper_32_bits(in_ctx_ptr), 0, 3996 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 3997 command_must_succeed); 3998 } 3999 4000 /* 4001 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 4002 * activity on an endpoint that is about to be suspended. 4003 */ 4004 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 4005 int slot_id, unsigned int ep_index, int suspend) 4006 { 4007 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4008 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4009 u32 type = TRB_TYPE(TRB_STOP_RING); 4010 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 4011 4012 return queue_command(xhci, cmd, 0, 0, 0, 4013 trb_slot_id | trb_ep_index | type | trb_suspend, false); 4014 } 4015 4016 /* Set Transfer Ring Dequeue Pointer command */ 4017 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, 4018 unsigned int slot_id, unsigned int ep_index, 4019 struct xhci_dequeue_state *deq_state) 4020 { 4021 dma_addr_t addr; 4022 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4023 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4024 u32 trb_stream_id = STREAM_ID_FOR_TRB(deq_state->stream_id); 4025 u32 trb_sct = 0; 4026 u32 type = TRB_TYPE(TRB_SET_DEQ); 4027 struct xhci_virt_ep *ep; 4028 struct xhci_command *cmd; 4029 int ret; 4030 4031 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 4032 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u", 4033 deq_state->new_deq_seg, 4034 (unsigned long long)deq_state->new_deq_seg->dma, 4035 deq_state->new_deq_ptr, 4036 (unsigned long long)xhci_trb_virt_to_dma( 4037 deq_state->new_deq_seg, deq_state->new_deq_ptr), 4038 deq_state->new_cycle_state); 4039 4040 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 4041 deq_state->new_deq_ptr); 4042 if (addr == 0) { 4043 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 4044 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", 4045 deq_state->new_deq_seg, deq_state->new_deq_ptr); 4046 return; 4047 } 4048 ep = &xhci->devs[slot_id]->eps[ep_index]; 4049 if ((ep->ep_state & SET_DEQ_PENDING)) { 4050 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 4051 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n"); 4052 return; 4053 } 4054 4055 /* This function gets called from contexts where it cannot sleep */ 4056 cmd = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 4057 if (!cmd) 4058 return; 4059 4060 ep->queued_deq_seg = deq_state->new_deq_seg; 4061 ep->queued_deq_ptr = deq_state->new_deq_ptr; 4062 if (deq_state->stream_id) 4063 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 4064 ret = queue_command(xhci, cmd, 4065 lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state, 4066 upper_32_bits(addr), trb_stream_id, 4067 trb_slot_id | trb_ep_index | type, false); 4068 if (ret < 0) { 4069 xhci_free_command(xhci, cmd); 4070 return; 4071 } 4072 4073 /* Stop the TD queueing code from ringing the doorbell until 4074 * this command completes. The HC won't set the dequeue pointer 4075 * if the ring is running, and ringing the doorbell starts the 4076 * ring running. 4077 */ 4078 ep->ep_state |= SET_DEQ_PENDING; 4079 } 4080 4081 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 4082 int slot_id, unsigned int ep_index, 4083 enum xhci_ep_reset_type reset_type) 4084 { 4085 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4086 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4087 u32 type = TRB_TYPE(TRB_RESET_EP); 4088 4089 if (reset_type == EP_SOFT_RESET) 4090 type |= TRB_TSP; 4091 4092 return queue_command(xhci, cmd, 0, 0, 0, 4093 trb_slot_id | trb_ep_index | type, false); 4094 } 4095