xref: /linux/drivers/usb/host/xhci-ring.c (revision 5fd54ace4721fc5ce2bb5aef6318fcf17f421460)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
16  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
17  * for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software Foundation,
21  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22  */
23 
24 /*
25  * Ring initialization rules:
26  * 1. Each segment is initialized to zero, except for link TRBs.
27  * 2. Ring cycle state = 0.  This represents Producer Cycle State (PCS) or
28  *    Consumer Cycle State (CCS), depending on ring function.
29  * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
30  *
31  * Ring behavior rules:
32  * 1. A ring is empty if enqueue == dequeue.  This means there will always be at
33  *    least one free TRB in the ring.  This is useful if you want to turn that
34  *    into a link TRB and expand the ring.
35  * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
36  *    link TRB, then load the pointer with the address in the link TRB.  If the
37  *    link TRB had its toggle bit set, you may need to update the ring cycle
38  *    state (see cycle bit rules).  You may have to do this multiple times
39  *    until you reach a non-link TRB.
40  * 3. A ring is full if enqueue++ (for the definition of increment above)
41  *    equals the dequeue pointer.
42  *
43  * Cycle bit rules:
44  * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
45  *    in a link TRB, it must toggle the ring cycle state.
46  * 2. When a producer increments an enqueue pointer and encounters a toggle bit
47  *    in a link TRB, it must toggle the ring cycle state.
48  *
49  * Producer rules:
50  * 1. Check if ring is full before you enqueue.
51  * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
52  *    Update enqueue pointer between each write (which may update the ring
53  *    cycle state).
54  * 3. Notify consumer.  If SW is producer, it rings the doorbell for command
55  *    and endpoint rings.  If HC is the producer for the event ring,
56  *    and it generates an interrupt according to interrupt modulation rules.
57  *
58  * Consumer rules:
59  * 1. Check if TRB belongs to you.  If the cycle bit == your ring cycle state,
60  *    the TRB is owned by the consumer.
61  * 2. Update dequeue pointer (which may update the ring cycle state) and
62  *    continue processing TRBs until you reach a TRB which is not owned by you.
63  * 3. Notify the producer.  SW is the consumer for the event ring, and it
64  *   updates event ring dequeue pointer.  HC is the consumer for the command and
65  *   endpoint rings; it generates events on the event ring for these.
66  */
67 
68 #include <linux/scatterlist.h>
69 #include <linux/slab.h>
70 #include <linux/dma-mapping.h>
71 #include "xhci.h"
72 #include "xhci-trace.h"
73 #include "xhci-mtk.h"
74 
75 /*
76  * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
77  * address of the TRB.
78  */
79 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
80 		union xhci_trb *trb)
81 {
82 	unsigned long segment_offset;
83 
84 	if (!seg || !trb || trb < seg->trbs)
85 		return 0;
86 	/* offset in TRBs */
87 	segment_offset = trb - seg->trbs;
88 	if (segment_offset >= TRBS_PER_SEGMENT)
89 		return 0;
90 	return seg->dma + (segment_offset * sizeof(*trb));
91 }
92 
93 static bool trb_is_noop(union xhci_trb *trb)
94 {
95 	return TRB_TYPE_NOOP_LE32(trb->generic.field[3]);
96 }
97 
98 static bool trb_is_link(union xhci_trb *trb)
99 {
100 	return TRB_TYPE_LINK_LE32(trb->link.control);
101 }
102 
103 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb)
104 {
105 	return trb == &seg->trbs[TRBS_PER_SEGMENT - 1];
106 }
107 
108 static bool last_trb_on_ring(struct xhci_ring *ring,
109 			struct xhci_segment *seg, union xhci_trb *trb)
110 {
111 	return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg);
112 }
113 
114 static bool link_trb_toggles_cycle(union xhci_trb *trb)
115 {
116 	return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
117 }
118 
119 static bool last_td_in_urb(struct xhci_td *td)
120 {
121 	struct urb_priv *urb_priv = td->urb->hcpriv;
122 
123 	return urb_priv->num_tds_done == urb_priv->num_tds;
124 }
125 
126 static void inc_td_cnt(struct urb *urb)
127 {
128 	struct urb_priv *urb_priv = urb->hcpriv;
129 
130 	urb_priv->num_tds_done++;
131 }
132 
133 static void trb_to_noop(union xhci_trb *trb, u32 noop_type)
134 {
135 	if (trb_is_link(trb)) {
136 		/* unchain chained link TRBs */
137 		trb->link.control &= cpu_to_le32(~TRB_CHAIN);
138 	} else {
139 		trb->generic.field[0] = 0;
140 		trb->generic.field[1] = 0;
141 		trb->generic.field[2] = 0;
142 		/* Preserve only the cycle bit of this TRB */
143 		trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
144 		trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type));
145 	}
146 }
147 
148 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
149  * TRB is in a new segment.  This does not skip over link TRBs, and it does not
150  * effect the ring dequeue or enqueue pointers.
151  */
152 static void next_trb(struct xhci_hcd *xhci,
153 		struct xhci_ring *ring,
154 		struct xhci_segment **seg,
155 		union xhci_trb **trb)
156 {
157 	if (trb_is_link(*trb)) {
158 		*seg = (*seg)->next;
159 		*trb = ((*seg)->trbs);
160 	} else {
161 		(*trb)++;
162 	}
163 }
164 
165 /*
166  * See Cycle bit rules. SW is the consumer for the event ring only.
167  * Don't make a ring full of link TRBs.  That would be dumb and this would loop.
168  */
169 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
170 {
171 	/* event ring doesn't have link trbs, check for last trb */
172 	if (ring->type == TYPE_EVENT) {
173 		if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) {
174 			ring->dequeue++;
175 			goto out;
176 		}
177 		if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue))
178 			ring->cycle_state ^= 1;
179 		ring->deq_seg = ring->deq_seg->next;
180 		ring->dequeue = ring->deq_seg->trbs;
181 		goto out;
182 	}
183 
184 	/* All other rings have link trbs */
185 	if (!trb_is_link(ring->dequeue)) {
186 		ring->dequeue++;
187 		ring->num_trbs_free++;
188 	}
189 	while (trb_is_link(ring->dequeue)) {
190 		ring->deq_seg = ring->deq_seg->next;
191 		ring->dequeue = ring->deq_seg->trbs;
192 	}
193 
194 out:
195 	trace_xhci_inc_deq(ring);
196 
197 	return;
198 }
199 
200 /*
201  * See Cycle bit rules. SW is the consumer for the event ring only.
202  * Don't make a ring full of link TRBs.  That would be dumb and this would loop.
203  *
204  * If we've just enqueued a TRB that is in the middle of a TD (meaning the
205  * chain bit is set), then set the chain bit in all the following link TRBs.
206  * If we've enqueued the last TRB in a TD, make sure the following link TRBs
207  * have their chain bit cleared (so that each Link TRB is a separate TD).
208  *
209  * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
210  * set, but other sections talk about dealing with the chain bit set.  This was
211  * fixed in the 0.96 specification errata, but we have to assume that all 0.95
212  * xHCI hardware can't handle the chain bit being cleared on a link TRB.
213  *
214  * @more_trbs_coming:	Will you enqueue more TRBs before calling
215  *			prepare_transfer()?
216  */
217 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
218 			bool more_trbs_coming)
219 {
220 	u32 chain;
221 	union xhci_trb *next;
222 
223 	chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
224 	/* If this is not event ring, there is one less usable TRB */
225 	if (!trb_is_link(ring->enqueue))
226 		ring->num_trbs_free--;
227 	next = ++(ring->enqueue);
228 
229 	/* Update the dequeue pointer further if that was a link TRB */
230 	while (trb_is_link(next)) {
231 
232 		/*
233 		 * If the caller doesn't plan on enqueueing more TDs before
234 		 * ringing the doorbell, then we don't want to give the link TRB
235 		 * to the hardware just yet. We'll give the link TRB back in
236 		 * prepare_ring() just before we enqueue the TD at the top of
237 		 * the ring.
238 		 */
239 		if (!chain && !more_trbs_coming)
240 			break;
241 
242 		/* If we're not dealing with 0.95 hardware or isoc rings on
243 		 * AMD 0.96 host, carry over the chain bit of the previous TRB
244 		 * (which may mean the chain bit is cleared).
245 		 */
246 		if (!(ring->type == TYPE_ISOC &&
247 		      (xhci->quirks & XHCI_AMD_0x96_HOST)) &&
248 		    !xhci_link_trb_quirk(xhci)) {
249 			next->link.control &= cpu_to_le32(~TRB_CHAIN);
250 			next->link.control |= cpu_to_le32(chain);
251 		}
252 		/* Give this link TRB to the hardware */
253 		wmb();
254 		next->link.control ^= cpu_to_le32(TRB_CYCLE);
255 
256 		/* Toggle the cycle bit after the last ring segment. */
257 		if (link_trb_toggles_cycle(next))
258 			ring->cycle_state ^= 1;
259 
260 		ring->enq_seg = ring->enq_seg->next;
261 		ring->enqueue = ring->enq_seg->trbs;
262 		next = ring->enqueue;
263 	}
264 
265 	trace_xhci_inc_enq(ring);
266 }
267 
268 /*
269  * Check to see if there's room to enqueue num_trbs on the ring and make sure
270  * enqueue pointer will not advance into dequeue segment. See rules above.
271  */
272 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
273 		unsigned int num_trbs)
274 {
275 	int num_trbs_in_deq_seg;
276 
277 	if (ring->num_trbs_free < num_trbs)
278 		return 0;
279 
280 	if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
281 		num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
282 		if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
283 			return 0;
284 	}
285 
286 	return 1;
287 }
288 
289 /* Ring the host controller doorbell after placing a command on the ring */
290 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
291 {
292 	if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
293 		return;
294 
295 	xhci_dbg(xhci, "// Ding dong!\n");
296 	writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]);
297 	/* Flush PCI posted writes */
298 	readl(&xhci->dba->doorbell[0]);
299 }
300 
301 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay)
302 {
303 	return mod_delayed_work(system_wq, &xhci->cmd_timer, delay);
304 }
305 
306 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci)
307 {
308 	return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command,
309 					cmd_list);
310 }
311 
312 /*
313  * Turn all commands on command ring with status set to "aborted" to no-op trbs.
314  * If there are other commands waiting then restart the ring and kick the timer.
315  * This must be called with command ring stopped and xhci->lock held.
316  */
317 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci,
318 					 struct xhci_command *cur_cmd)
319 {
320 	struct xhci_command *i_cmd;
321 
322 	/* Turn all aborted commands in list to no-ops, then restart */
323 	list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) {
324 
325 		if (i_cmd->status != COMP_COMMAND_ABORTED)
326 			continue;
327 
328 		i_cmd->status = COMP_COMMAND_RING_STOPPED;
329 
330 		xhci_dbg(xhci, "Turn aborted command %p to no-op\n",
331 			 i_cmd->command_trb);
332 
333 		trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP);
334 
335 		/*
336 		 * caller waiting for completion is called when command
337 		 *  completion event is received for these no-op commands
338 		 */
339 	}
340 
341 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
342 
343 	/* ring command ring doorbell to restart the command ring */
344 	if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) &&
345 	    !(xhci->xhc_state & XHCI_STATE_DYING)) {
346 		xhci->current_cmd = cur_cmd;
347 		xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
348 		xhci_ring_cmd_db(xhci);
349 	}
350 }
351 
352 /* Must be called with xhci->lock held, releases and aquires lock back */
353 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags)
354 {
355 	u64 temp_64;
356 	int ret;
357 
358 	xhci_dbg(xhci, "Abort command ring\n");
359 
360 	reinit_completion(&xhci->cmd_ring_stop_completion);
361 
362 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
363 	xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
364 			&xhci->op_regs->cmd_ring);
365 
366 	/* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the
367 	 * completion of the Command Abort operation. If CRR is not negated in 5
368 	 * seconds then driver handles it as if host died (-ENODEV).
369 	 * In the future we should distinguish between -ENODEV and -ETIMEDOUT
370 	 * and try to recover a -ETIMEDOUT with a host controller reset.
371 	 */
372 	ret = xhci_handshake(&xhci->op_regs->cmd_ring,
373 			CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
374 	if (ret < 0) {
375 		xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret);
376 		xhci_halt(xhci);
377 		xhci_hc_died(xhci);
378 		return ret;
379 	}
380 	/*
381 	 * Writing the CMD_RING_ABORT bit should cause a cmd completion event,
382 	 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared
383 	 * but the completion event in never sent. Wait 2 secs (arbitrary
384 	 * number) to handle those cases after negation of CMD_RING_RUNNING.
385 	 */
386 	spin_unlock_irqrestore(&xhci->lock, flags);
387 	ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion,
388 					  msecs_to_jiffies(2000));
389 	spin_lock_irqsave(&xhci->lock, flags);
390 	if (!ret) {
391 		xhci_dbg(xhci, "No stop event for abort, ring start fail?\n");
392 		xhci_cleanup_command_queue(xhci);
393 	} else {
394 		xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci));
395 	}
396 	return 0;
397 }
398 
399 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
400 		unsigned int slot_id,
401 		unsigned int ep_index,
402 		unsigned int stream_id)
403 {
404 	__le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
405 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
406 	unsigned int ep_state = ep->ep_state;
407 
408 	/* Don't ring the doorbell for this endpoint if there are pending
409 	 * cancellations because we don't want to interrupt processing.
410 	 * We don't want to restart any stream rings if there's a set dequeue
411 	 * pointer command pending because the device can choose to start any
412 	 * stream once the endpoint is on the HW schedule.
413 	 */
414 	if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) ||
415 	    (ep_state & EP_HALTED))
416 		return;
417 	writel(DB_VALUE(ep_index, stream_id), db_addr);
418 	/* The CPU has better things to do at this point than wait for a
419 	 * write-posting flush.  It'll get there soon enough.
420 	 */
421 }
422 
423 /* Ring the doorbell for any rings with pending URBs */
424 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
425 		unsigned int slot_id,
426 		unsigned int ep_index)
427 {
428 	unsigned int stream_id;
429 	struct xhci_virt_ep *ep;
430 
431 	ep = &xhci->devs[slot_id]->eps[ep_index];
432 
433 	/* A ring has pending URBs if its TD list is not empty */
434 	if (!(ep->ep_state & EP_HAS_STREAMS)) {
435 		if (ep->ring && !(list_empty(&ep->ring->td_list)))
436 			xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
437 		return;
438 	}
439 
440 	for (stream_id = 1; stream_id < ep->stream_info->num_streams;
441 			stream_id++) {
442 		struct xhci_stream_info *stream_info = ep->stream_info;
443 		if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
444 			xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
445 						stream_id);
446 	}
447 }
448 
449 /* Get the right ring for the given slot_id, ep_index and stream_id.
450  * If the endpoint supports streams, boundary check the URB's stream ID.
451  * If the endpoint doesn't support streams, return the singular endpoint ring.
452  */
453 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
454 		unsigned int slot_id, unsigned int ep_index,
455 		unsigned int stream_id)
456 {
457 	struct xhci_virt_ep *ep;
458 
459 	ep = &xhci->devs[slot_id]->eps[ep_index];
460 	/* Common case: no streams */
461 	if (!(ep->ep_state & EP_HAS_STREAMS))
462 		return ep->ring;
463 
464 	if (stream_id == 0) {
465 		xhci_warn(xhci,
466 				"WARN: Slot ID %u, ep index %u has streams, "
467 				"but URB has no stream ID.\n",
468 				slot_id, ep_index);
469 		return NULL;
470 	}
471 
472 	if (stream_id < ep->stream_info->num_streams)
473 		return ep->stream_info->stream_rings[stream_id];
474 
475 	xhci_warn(xhci,
476 			"WARN: Slot ID %u, ep index %u has "
477 			"stream IDs 1 to %u allocated, "
478 			"but stream ID %u is requested.\n",
479 			slot_id, ep_index,
480 			ep->stream_info->num_streams - 1,
481 			stream_id);
482 	return NULL;
483 }
484 
485 
486 /*
487  * Get the hw dequeue pointer xHC stopped on, either directly from the
488  * endpoint context, or if streams are in use from the stream context.
489  * The returned hw_dequeue contains the lowest four bits with cycle state
490  * and possbile stream context type.
491  */
492 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev,
493 			   unsigned int ep_index, unsigned int stream_id)
494 {
495 	struct xhci_ep_ctx *ep_ctx;
496 	struct xhci_stream_ctx *st_ctx;
497 	struct xhci_virt_ep *ep;
498 
499 	ep = &vdev->eps[ep_index];
500 
501 	if (ep->ep_state & EP_HAS_STREAMS) {
502 		st_ctx = &ep->stream_info->stream_ctx_array[stream_id];
503 		return le64_to_cpu(st_ctx->stream_ring);
504 	}
505 	ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
506 	return le64_to_cpu(ep_ctx->deq);
507 }
508 
509 /*
510  * Move the xHC's endpoint ring dequeue pointer past cur_td.
511  * Record the new state of the xHC's endpoint ring dequeue segment,
512  * dequeue pointer, stream id, and new consumer cycle state in state.
513  * Update our internal representation of the ring's dequeue pointer.
514  *
515  * We do this in three jumps:
516  *  - First we update our new ring state to be the same as when the xHC stopped.
517  *  - Then we traverse the ring to find the segment that contains
518  *    the last TRB in the TD.  We toggle the xHC's new cycle state when we pass
519  *    any link TRBs with the toggle cycle bit set.
520  *  - Finally we move the dequeue state one TRB further, toggling the cycle bit
521  *    if we've moved it past a link TRB with the toggle cycle bit set.
522  *
523  * Some of the uses of xhci_generic_trb are grotty, but if they're done
524  * with correct __le32 accesses they should work fine.  Only users of this are
525  * in here.
526  */
527 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
528 		unsigned int slot_id, unsigned int ep_index,
529 		unsigned int stream_id, struct xhci_td *cur_td,
530 		struct xhci_dequeue_state *state)
531 {
532 	struct xhci_virt_device *dev = xhci->devs[slot_id];
533 	struct xhci_virt_ep *ep = &dev->eps[ep_index];
534 	struct xhci_ring *ep_ring;
535 	struct xhci_segment *new_seg;
536 	union xhci_trb *new_deq;
537 	dma_addr_t addr;
538 	u64 hw_dequeue;
539 	bool cycle_found = false;
540 	bool td_last_trb_found = false;
541 
542 	ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
543 			ep_index, stream_id);
544 	if (!ep_ring) {
545 		xhci_warn(xhci, "WARN can't find new dequeue state "
546 				"for invalid stream ID %u.\n",
547 				stream_id);
548 		return;
549 	}
550 	/* Dig out the cycle state saved by the xHC during the stop ep cmd */
551 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
552 			"Finding endpoint context");
553 
554 	hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id);
555 	new_seg = ep_ring->deq_seg;
556 	new_deq = ep_ring->dequeue;
557 	state->new_cycle_state = hw_dequeue & 0x1;
558 	state->stream_id = stream_id;
559 
560 	/*
561 	 * We want to find the pointer, segment and cycle state of the new trb
562 	 * (the one after current TD's last_trb). We know the cycle state at
563 	 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
564 	 * found.
565 	 */
566 	do {
567 		if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq)
568 		    == (dma_addr_t)(hw_dequeue & ~0xf)) {
569 			cycle_found = true;
570 			if (td_last_trb_found)
571 				break;
572 		}
573 		if (new_deq == cur_td->last_trb)
574 			td_last_trb_found = true;
575 
576 		if (cycle_found && trb_is_link(new_deq) &&
577 		    link_trb_toggles_cycle(new_deq))
578 			state->new_cycle_state ^= 0x1;
579 
580 		next_trb(xhci, ep_ring, &new_seg, &new_deq);
581 
582 		/* Search wrapped around, bail out */
583 		if (new_deq == ep->ring->dequeue) {
584 			xhci_err(xhci, "Error: Failed finding new dequeue state\n");
585 			state->new_deq_seg = NULL;
586 			state->new_deq_ptr = NULL;
587 			return;
588 		}
589 
590 	} while (!cycle_found || !td_last_trb_found);
591 
592 	state->new_deq_seg = new_seg;
593 	state->new_deq_ptr = new_deq;
594 
595 	/* Don't update the ring cycle state for the producer (us). */
596 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
597 			"Cycle state = 0x%x", state->new_cycle_state);
598 
599 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
600 			"New dequeue segment = %p (virtual)",
601 			state->new_deq_seg);
602 	addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
603 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
604 			"New dequeue pointer = 0x%llx (DMA)",
605 			(unsigned long long) addr);
606 }
607 
608 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
609  * (The last TRB actually points to the ring enqueue pointer, which is not part
610  * of this TD.)  This is used to remove partially enqueued isoc TDs from a ring.
611  */
612 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
613 		       struct xhci_td *td, bool flip_cycle)
614 {
615 	struct xhci_segment *seg	= td->start_seg;
616 	union xhci_trb *trb		= td->first_trb;
617 
618 	while (1) {
619 		trb_to_noop(trb, TRB_TR_NOOP);
620 
621 		/* flip cycle if asked to */
622 		if (flip_cycle && trb != td->first_trb && trb != td->last_trb)
623 			trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE);
624 
625 		if (trb == td->last_trb)
626 			break;
627 
628 		next_trb(xhci, ep_ring, &seg, &trb);
629 	}
630 }
631 
632 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
633 		struct xhci_virt_ep *ep)
634 {
635 	ep->ep_state &= ~EP_STOP_CMD_PENDING;
636 	/* Can't del_timer_sync in interrupt */
637 	del_timer(&ep->stop_cmd_timer);
638 }
639 
640 /*
641  * Must be called with xhci->lock held in interrupt context,
642  * releases and re-acquires xhci->lock
643  */
644 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
645 				     struct xhci_td *cur_td, int status)
646 {
647 	struct urb	*urb		= cur_td->urb;
648 	struct urb_priv	*urb_priv	= urb->hcpriv;
649 	struct usb_hcd	*hcd		= bus_to_hcd(urb->dev->bus);
650 
651 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
652 		xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
653 		if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs	== 0) {
654 			if (xhci->quirks & XHCI_AMD_PLL_FIX)
655 				usb_amd_quirk_pll_enable();
656 		}
657 	}
658 	xhci_urb_free_priv(urb_priv);
659 	usb_hcd_unlink_urb_from_ep(hcd, urb);
660 	spin_unlock(&xhci->lock);
661 	trace_xhci_urb_giveback(urb);
662 	usb_hcd_giveback_urb(hcd, urb, status);
663 	spin_lock(&xhci->lock);
664 }
665 
666 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci,
667 		struct xhci_ring *ring, struct xhci_td *td)
668 {
669 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
670 	struct xhci_segment *seg = td->bounce_seg;
671 	struct urb *urb = td->urb;
672 
673 	if (!ring || !seg || !urb)
674 		return;
675 
676 	if (usb_urb_dir_out(urb)) {
677 		dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
678 				 DMA_TO_DEVICE);
679 		return;
680 	}
681 
682 	/* for in tranfers we need to copy the data from bounce to sg */
683 	sg_pcopy_from_buffer(urb->sg, urb->num_mapped_sgs, seg->bounce_buf,
684 			     seg->bounce_len, seg->bounce_offs);
685 	dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
686 			 DMA_FROM_DEVICE);
687 	seg->bounce_len = 0;
688 	seg->bounce_offs = 0;
689 }
690 
691 /*
692  * When we get a command completion for a Stop Endpoint Command, we need to
693  * unlink any cancelled TDs from the ring.  There are two ways to do that:
694  *
695  *  1. If the HW was in the middle of processing the TD that needs to be
696  *     cancelled, then we must move the ring's dequeue pointer past the last TRB
697  *     in the TD with a Set Dequeue Pointer Command.
698  *  2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
699  *     bit cleared) so that the HW will skip over them.
700  */
701 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id,
702 		union xhci_trb *trb, struct xhci_event_cmd *event)
703 {
704 	unsigned int ep_index;
705 	struct xhci_ring *ep_ring;
706 	struct xhci_virt_ep *ep;
707 	struct xhci_td *cur_td = NULL;
708 	struct xhci_td *last_unlinked_td;
709 	struct xhci_ep_ctx *ep_ctx;
710 	struct xhci_virt_device *vdev;
711 	u64 hw_deq;
712 	struct xhci_dequeue_state deq_state;
713 
714 	if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) {
715 		if (!xhci->devs[slot_id])
716 			xhci_warn(xhci, "Stop endpoint command "
717 				"completion for disabled slot %u\n",
718 				slot_id);
719 		return;
720 	}
721 
722 	memset(&deq_state, 0, sizeof(deq_state));
723 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
724 
725 	vdev = xhci->devs[slot_id];
726 	ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
727 	trace_xhci_handle_cmd_stop_ep(ep_ctx);
728 
729 	ep = &xhci->devs[slot_id]->eps[ep_index];
730 	last_unlinked_td = list_last_entry(&ep->cancelled_td_list,
731 			struct xhci_td, cancelled_td_list);
732 
733 	if (list_empty(&ep->cancelled_td_list)) {
734 		xhci_stop_watchdog_timer_in_irq(xhci, ep);
735 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
736 		return;
737 	}
738 
739 	/* Fix up the ep ring first, so HW stops executing cancelled TDs.
740 	 * We have the xHCI lock, so nothing can modify this list until we drop
741 	 * it.  We're also in the event handler, so we can't get re-interrupted
742 	 * if another Stop Endpoint command completes
743 	 */
744 	list_for_each_entry(cur_td, &ep->cancelled_td_list, cancelled_td_list) {
745 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
746 				"Removing canceled TD starting at 0x%llx (dma).",
747 				(unsigned long long)xhci_trb_virt_to_dma(
748 					cur_td->start_seg, cur_td->first_trb));
749 		ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
750 		if (!ep_ring) {
751 			/* This shouldn't happen unless a driver is mucking
752 			 * with the stream ID after submission.  This will
753 			 * leave the TD on the hardware ring, and the hardware
754 			 * will try to execute it, and may access a buffer
755 			 * that has already been freed.  In the best case, the
756 			 * hardware will execute it, and the event handler will
757 			 * ignore the completion event for that TD, since it was
758 			 * removed from the td_list for that endpoint.  In
759 			 * short, don't muck with the stream ID after
760 			 * submission.
761 			 */
762 			xhci_warn(xhci, "WARN Cancelled URB %p "
763 					"has invalid stream ID %u.\n",
764 					cur_td->urb,
765 					cur_td->urb->stream_id);
766 			goto remove_finished_td;
767 		}
768 		/*
769 		 * If we stopped on the TD we need to cancel, then we have to
770 		 * move the xHC endpoint ring dequeue pointer past this TD.
771 		 */
772 		hw_deq = xhci_get_hw_deq(xhci, vdev, ep_index,
773 					 cur_td->urb->stream_id);
774 		hw_deq &= ~0xf;
775 
776 		if (trb_in_td(xhci, cur_td->start_seg, cur_td->first_trb,
777 			      cur_td->last_trb, hw_deq, false)) {
778 			xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
779 						    cur_td->urb->stream_id,
780 						    cur_td, &deq_state);
781 		} else {
782 			td_to_noop(xhci, ep_ring, cur_td, false);
783 		}
784 
785 remove_finished_td:
786 		/*
787 		 * The event handler won't see a completion for this TD anymore,
788 		 * so remove it from the endpoint ring's TD list.  Keep it in
789 		 * the cancelled TD list for URB completion later.
790 		 */
791 		list_del_init(&cur_td->td_list);
792 	}
793 
794 	xhci_stop_watchdog_timer_in_irq(xhci, ep);
795 
796 	/* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
797 	if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
798 		xhci_queue_new_dequeue_state(xhci, slot_id, ep_index,
799 					     &deq_state);
800 		xhci_ring_cmd_db(xhci);
801 	} else {
802 		/* Otherwise ring the doorbell(s) to restart queued transfers */
803 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
804 	}
805 
806 	/*
807 	 * Drop the lock and complete the URBs in the cancelled TD list.
808 	 * New TDs to be cancelled might be added to the end of the list before
809 	 * we can complete all the URBs for the TDs we already unlinked.
810 	 * So stop when we've completed the URB for the last TD we unlinked.
811 	 */
812 	do {
813 		cur_td = list_first_entry(&ep->cancelled_td_list,
814 				struct xhci_td, cancelled_td_list);
815 		list_del_init(&cur_td->cancelled_td_list);
816 
817 		/* Clean up the cancelled URB */
818 		/* Doesn't matter what we pass for status, since the core will
819 		 * just overwrite it (because the URB has been unlinked).
820 		 */
821 		ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
822 		xhci_unmap_td_bounce_buffer(xhci, ep_ring, cur_td);
823 		inc_td_cnt(cur_td->urb);
824 		if (last_td_in_urb(cur_td))
825 			xhci_giveback_urb_in_irq(xhci, cur_td, 0);
826 
827 		/* Stop processing the cancelled list if the watchdog timer is
828 		 * running.
829 		 */
830 		if (xhci->xhc_state & XHCI_STATE_DYING)
831 			return;
832 	} while (cur_td != last_unlinked_td);
833 
834 	/* Return to the event handler with xhci->lock re-acquired */
835 }
836 
837 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring)
838 {
839 	struct xhci_td *cur_td;
840 	struct xhci_td *tmp;
841 
842 	list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) {
843 		list_del_init(&cur_td->td_list);
844 
845 		if (!list_empty(&cur_td->cancelled_td_list))
846 			list_del_init(&cur_td->cancelled_td_list);
847 
848 		xhci_unmap_td_bounce_buffer(xhci, ring, cur_td);
849 
850 		inc_td_cnt(cur_td->urb);
851 		if (last_td_in_urb(cur_td))
852 			xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
853 	}
854 }
855 
856 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci,
857 		int slot_id, int ep_index)
858 {
859 	struct xhci_td *cur_td;
860 	struct xhci_td *tmp;
861 	struct xhci_virt_ep *ep;
862 	struct xhci_ring *ring;
863 
864 	ep = &xhci->devs[slot_id]->eps[ep_index];
865 	if ((ep->ep_state & EP_HAS_STREAMS) ||
866 			(ep->ep_state & EP_GETTING_NO_STREAMS)) {
867 		int stream_id;
868 
869 		for (stream_id = 1; stream_id < ep->stream_info->num_streams;
870 				stream_id++) {
871 			ring = ep->stream_info->stream_rings[stream_id];
872 			if (!ring)
873 				continue;
874 
875 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
876 					"Killing URBs for slot ID %u, ep index %u, stream %u",
877 					slot_id, ep_index, stream_id);
878 			xhci_kill_ring_urbs(xhci, ring);
879 		}
880 	} else {
881 		ring = ep->ring;
882 		if (!ring)
883 			return;
884 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
885 				"Killing URBs for slot ID %u, ep index %u",
886 				slot_id, ep_index);
887 		xhci_kill_ring_urbs(xhci, ring);
888 	}
889 
890 	list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list,
891 			cancelled_td_list) {
892 		list_del_init(&cur_td->cancelled_td_list);
893 		inc_td_cnt(cur_td->urb);
894 
895 		if (last_td_in_urb(cur_td))
896 			xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
897 	}
898 }
899 
900 /*
901  * host controller died, register read returns 0xffffffff
902  * Complete pending commands, mark them ABORTED.
903  * URBs need to be given back as usb core might be waiting with device locks
904  * held for the URBs to finish during device disconnect, blocking host remove.
905  *
906  * Call with xhci->lock held.
907  * lock is relased and re-acquired while giving back urb.
908  */
909 void xhci_hc_died(struct xhci_hcd *xhci)
910 {
911 	int i, j;
912 
913 	if (xhci->xhc_state & XHCI_STATE_DYING)
914 		return;
915 
916 	xhci_err(xhci, "xHCI host controller not responding, assume dead\n");
917 	xhci->xhc_state |= XHCI_STATE_DYING;
918 
919 	xhci_cleanup_command_queue(xhci);
920 
921 	/* return any pending urbs, remove may be waiting for them */
922 	for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
923 		if (!xhci->devs[i])
924 			continue;
925 		for (j = 0; j < 31; j++)
926 			xhci_kill_endpoint_urbs(xhci, i, j);
927 	}
928 
929 	/* inform usb core hc died if PCI remove isn't already handling it */
930 	if (!(xhci->xhc_state & XHCI_STATE_REMOVING))
931 		usb_hc_died(xhci_to_hcd(xhci));
932 }
933 
934 /* Watchdog timer function for when a stop endpoint command fails to complete.
935  * In this case, we assume the host controller is broken or dying or dead.  The
936  * host may still be completing some other events, so we have to be careful to
937  * let the event ring handler and the URB dequeueing/enqueueing functions know
938  * through xhci->state.
939  *
940  * The timer may also fire if the host takes a very long time to respond to the
941  * command, and the stop endpoint command completion handler cannot delete the
942  * timer before the timer function is called.  Another endpoint cancellation may
943  * sneak in before the timer function can grab the lock, and that may queue
944  * another stop endpoint command and add the timer back.  So we cannot use a
945  * simple flag to say whether there is a pending stop endpoint command for a
946  * particular endpoint.
947  *
948  * Instead we use a combination of that flag and checking if a new timer is
949  * pending.
950  */
951 void xhci_stop_endpoint_command_watchdog(struct timer_list *t)
952 {
953 	struct xhci_virt_ep *ep = from_timer(ep, t, stop_cmd_timer);
954 	struct xhci_hcd *xhci = ep->xhci;
955 	unsigned long flags;
956 
957 	spin_lock_irqsave(&xhci->lock, flags);
958 
959 	/* bail out if cmd completed but raced with stop ep watchdog timer.*/
960 	if (!(ep->ep_state & EP_STOP_CMD_PENDING) ||
961 	    timer_pending(&ep->stop_cmd_timer)) {
962 		spin_unlock_irqrestore(&xhci->lock, flags);
963 		xhci_dbg(xhci, "Stop EP timer raced with cmd completion, exit");
964 		return;
965 	}
966 
967 	xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
968 	ep->ep_state &= ~EP_STOP_CMD_PENDING;
969 
970 	xhci_halt(xhci);
971 
972 	/*
973 	 * handle a stop endpoint cmd timeout as if host died (-ENODEV).
974 	 * In the future we could distinguish between -ENODEV and -ETIMEDOUT
975 	 * and try to recover a -ETIMEDOUT with a host controller reset
976 	 */
977 	xhci_hc_died(xhci);
978 
979 	spin_unlock_irqrestore(&xhci->lock, flags);
980 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
981 			"xHCI host controller is dead.");
982 }
983 
984 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
985 		struct xhci_virt_device *dev,
986 		struct xhci_ring *ep_ring,
987 		unsigned int ep_index)
988 {
989 	union xhci_trb *dequeue_temp;
990 	int num_trbs_free_temp;
991 	bool revert = false;
992 
993 	num_trbs_free_temp = ep_ring->num_trbs_free;
994 	dequeue_temp = ep_ring->dequeue;
995 
996 	/* If we get two back-to-back stalls, and the first stalled transfer
997 	 * ends just before a link TRB, the dequeue pointer will be left on
998 	 * the link TRB by the code in the while loop.  So we have to update
999 	 * the dequeue pointer one segment further, or we'll jump off
1000 	 * the segment into la-la-land.
1001 	 */
1002 	if (trb_is_link(ep_ring->dequeue)) {
1003 		ep_ring->deq_seg = ep_ring->deq_seg->next;
1004 		ep_ring->dequeue = ep_ring->deq_seg->trbs;
1005 	}
1006 
1007 	while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
1008 		/* We have more usable TRBs */
1009 		ep_ring->num_trbs_free++;
1010 		ep_ring->dequeue++;
1011 		if (trb_is_link(ep_ring->dequeue)) {
1012 			if (ep_ring->dequeue ==
1013 					dev->eps[ep_index].queued_deq_ptr)
1014 				break;
1015 			ep_ring->deq_seg = ep_ring->deq_seg->next;
1016 			ep_ring->dequeue = ep_ring->deq_seg->trbs;
1017 		}
1018 		if (ep_ring->dequeue == dequeue_temp) {
1019 			revert = true;
1020 			break;
1021 		}
1022 	}
1023 
1024 	if (revert) {
1025 		xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
1026 		ep_ring->num_trbs_free = num_trbs_free_temp;
1027 	}
1028 }
1029 
1030 /*
1031  * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
1032  * we need to clear the set deq pending flag in the endpoint ring state, so that
1033  * the TD queueing code can ring the doorbell again.  We also need to ring the
1034  * endpoint doorbell to restart the ring, but only if there aren't more
1035  * cancellations pending.
1036  */
1037 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id,
1038 		union xhci_trb *trb, u32 cmd_comp_code)
1039 {
1040 	unsigned int ep_index;
1041 	unsigned int stream_id;
1042 	struct xhci_ring *ep_ring;
1043 	struct xhci_virt_device *dev;
1044 	struct xhci_virt_ep *ep;
1045 	struct xhci_ep_ctx *ep_ctx;
1046 	struct xhci_slot_ctx *slot_ctx;
1047 
1048 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1049 	stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
1050 	dev = xhci->devs[slot_id];
1051 	ep = &dev->eps[ep_index];
1052 
1053 	ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
1054 	if (!ep_ring) {
1055 		xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n",
1056 				stream_id);
1057 		/* XXX: Harmless??? */
1058 		goto cleanup;
1059 	}
1060 
1061 	ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
1062 	slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
1063 	trace_xhci_handle_cmd_set_deq(slot_ctx);
1064 	trace_xhci_handle_cmd_set_deq_ep(ep_ctx);
1065 
1066 	if (cmd_comp_code != COMP_SUCCESS) {
1067 		unsigned int ep_state;
1068 		unsigned int slot_state;
1069 
1070 		switch (cmd_comp_code) {
1071 		case COMP_TRB_ERROR:
1072 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n");
1073 			break;
1074 		case COMP_CONTEXT_STATE_ERROR:
1075 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n");
1076 			ep_state = GET_EP_CTX_STATE(ep_ctx);
1077 			slot_state = le32_to_cpu(slot_ctx->dev_state);
1078 			slot_state = GET_SLOT_STATE(slot_state);
1079 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1080 					"Slot state = %u, EP state = %u",
1081 					slot_state, ep_state);
1082 			break;
1083 		case COMP_SLOT_NOT_ENABLED_ERROR:
1084 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n",
1085 					slot_id);
1086 			break;
1087 		default:
1088 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n",
1089 					cmd_comp_code);
1090 			break;
1091 		}
1092 		/* OK what do we do now?  The endpoint state is hosed, and we
1093 		 * should never get to this point if the synchronization between
1094 		 * queueing, and endpoint state are correct.  This might happen
1095 		 * if the device gets disconnected after we've finished
1096 		 * cancelling URBs, which might not be an error...
1097 		 */
1098 	} else {
1099 		u64 deq;
1100 		/* 4.6.10 deq ptr is written to the stream ctx for streams */
1101 		if (ep->ep_state & EP_HAS_STREAMS) {
1102 			struct xhci_stream_ctx *ctx =
1103 				&ep->stream_info->stream_ctx_array[stream_id];
1104 			deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK;
1105 		} else {
1106 			deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK;
1107 		}
1108 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1109 			"Successful Set TR Deq Ptr cmd, deq = @%08llx", deq);
1110 		if (xhci_trb_virt_to_dma(ep->queued_deq_seg,
1111 					 ep->queued_deq_ptr) == deq) {
1112 			/* Update the ring's dequeue segment and dequeue pointer
1113 			 * to reflect the new position.
1114 			 */
1115 			update_ring_for_set_deq_completion(xhci, dev,
1116 				ep_ring, ep_index);
1117 		} else {
1118 			xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n");
1119 			xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1120 				  ep->queued_deq_seg, ep->queued_deq_ptr);
1121 		}
1122 	}
1123 
1124 cleanup:
1125 	dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1126 	dev->eps[ep_index].queued_deq_seg = NULL;
1127 	dev->eps[ep_index].queued_deq_ptr = NULL;
1128 	/* Restart any rings with pending URBs */
1129 	ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1130 }
1131 
1132 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id,
1133 		union xhci_trb *trb, u32 cmd_comp_code)
1134 {
1135 	struct xhci_virt_device *vdev;
1136 	struct xhci_ep_ctx *ep_ctx;
1137 	unsigned int ep_index;
1138 
1139 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1140 	vdev = xhci->devs[slot_id];
1141 	ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
1142 	trace_xhci_handle_cmd_reset_ep(ep_ctx);
1143 
1144 	/* This command will only fail if the endpoint wasn't halted,
1145 	 * but we don't care.
1146 	 */
1147 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
1148 		"Ignoring reset ep completion code of %u", cmd_comp_code);
1149 
1150 	/* HW with the reset endpoint quirk needs to have a configure endpoint
1151 	 * command complete before the endpoint can be used.  Queue that here
1152 	 * because the HW can't handle two commands being queued in a row.
1153 	 */
1154 	if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1155 		struct xhci_command *command;
1156 
1157 		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1158 		if (!command)
1159 			return;
1160 
1161 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1162 				"Queueing configure endpoint command");
1163 		xhci_queue_configure_endpoint(xhci, command,
1164 				xhci->devs[slot_id]->in_ctx->dma, slot_id,
1165 				false);
1166 		xhci_ring_cmd_db(xhci);
1167 	} else {
1168 		/* Clear our internal halted state */
1169 		xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1170 	}
1171 }
1172 
1173 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id,
1174 		struct xhci_command *command, u32 cmd_comp_code)
1175 {
1176 	if (cmd_comp_code == COMP_SUCCESS)
1177 		command->slot_id = slot_id;
1178 	else
1179 		command->slot_id = 0;
1180 }
1181 
1182 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id)
1183 {
1184 	struct xhci_virt_device *virt_dev;
1185 	struct xhci_slot_ctx *slot_ctx;
1186 
1187 	virt_dev = xhci->devs[slot_id];
1188 	if (!virt_dev)
1189 		return;
1190 
1191 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
1192 	trace_xhci_handle_cmd_disable_slot(slot_ctx);
1193 
1194 	if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1195 		/* Delete default control endpoint resources */
1196 		xhci_free_device_endpoint_resources(xhci, virt_dev, true);
1197 	xhci_free_virt_device(xhci, slot_id);
1198 }
1199 
1200 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id,
1201 		struct xhci_event_cmd *event, u32 cmd_comp_code)
1202 {
1203 	struct xhci_virt_device *virt_dev;
1204 	struct xhci_input_control_ctx *ctrl_ctx;
1205 	struct xhci_ep_ctx *ep_ctx;
1206 	unsigned int ep_index;
1207 	unsigned int ep_state;
1208 	u32 add_flags, drop_flags;
1209 
1210 	/*
1211 	 * Configure endpoint commands can come from the USB core
1212 	 * configuration or alt setting changes, or because the HW
1213 	 * needed an extra configure endpoint command after a reset
1214 	 * endpoint command or streams were being configured.
1215 	 * If the command was for a halted endpoint, the xHCI driver
1216 	 * is not waiting on the configure endpoint command.
1217 	 */
1218 	virt_dev = xhci->devs[slot_id];
1219 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1220 	if (!ctrl_ctx) {
1221 		xhci_warn(xhci, "Could not get input context, bad type.\n");
1222 		return;
1223 	}
1224 
1225 	add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1226 	drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1227 	/* Input ctx add_flags are the endpoint index plus one */
1228 	ep_index = xhci_last_valid_endpoint(add_flags) - 1;
1229 
1230 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index);
1231 	trace_xhci_handle_cmd_config_ep(ep_ctx);
1232 
1233 	/* A usb_set_interface() call directly after clearing a halted
1234 	 * condition may race on this quirky hardware.  Not worth
1235 	 * worrying about, since this is prototype hardware.  Not sure
1236 	 * if this will work for streams, but streams support was
1237 	 * untested on this prototype.
1238 	 */
1239 	if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1240 			ep_index != (unsigned int) -1 &&
1241 			add_flags - SLOT_FLAG == drop_flags) {
1242 		ep_state = virt_dev->eps[ep_index].ep_state;
1243 		if (!(ep_state & EP_HALTED))
1244 			return;
1245 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1246 				"Completed config ep cmd - "
1247 				"last ep index = %d, state = %d",
1248 				ep_index, ep_state);
1249 		/* Clear internal halted state and restart ring(s) */
1250 		virt_dev->eps[ep_index].ep_state &= ~EP_HALTED;
1251 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1252 		return;
1253 	}
1254 	return;
1255 }
1256 
1257 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id)
1258 {
1259 	struct xhci_virt_device *vdev;
1260 	struct xhci_slot_ctx *slot_ctx;
1261 
1262 	vdev = xhci->devs[slot_id];
1263 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
1264 	trace_xhci_handle_cmd_addr_dev(slot_ctx);
1265 }
1266 
1267 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id,
1268 		struct xhci_event_cmd *event)
1269 {
1270 	struct xhci_virt_device *vdev;
1271 	struct xhci_slot_ctx *slot_ctx;
1272 
1273 	vdev = xhci->devs[slot_id];
1274 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
1275 	trace_xhci_handle_cmd_reset_dev(slot_ctx);
1276 
1277 	xhci_dbg(xhci, "Completed reset device command.\n");
1278 	if (!xhci->devs[slot_id])
1279 		xhci_warn(xhci, "Reset device command completion "
1280 				"for disabled slot %u\n", slot_id);
1281 }
1282 
1283 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci,
1284 		struct xhci_event_cmd *event)
1285 {
1286 	if (!(xhci->quirks & XHCI_NEC_HOST)) {
1287 		xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n");
1288 		return;
1289 	}
1290 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1291 			"NEC firmware version %2x.%02x",
1292 			NEC_FW_MAJOR(le32_to_cpu(event->status)),
1293 			NEC_FW_MINOR(le32_to_cpu(event->status)));
1294 }
1295 
1296 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status)
1297 {
1298 	list_del(&cmd->cmd_list);
1299 
1300 	if (cmd->completion) {
1301 		cmd->status = status;
1302 		complete(cmd->completion);
1303 	} else {
1304 		kfree(cmd);
1305 	}
1306 }
1307 
1308 void xhci_cleanup_command_queue(struct xhci_hcd *xhci)
1309 {
1310 	struct xhci_command *cur_cmd, *tmp_cmd;
1311 	xhci->current_cmd = NULL;
1312 	list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list)
1313 		xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED);
1314 }
1315 
1316 void xhci_handle_command_timeout(struct work_struct *work)
1317 {
1318 	struct xhci_hcd *xhci;
1319 	unsigned long flags;
1320 	u64 hw_ring_state;
1321 
1322 	xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer);
1323 
1324 	spin_lock_irqsave(&xhci->lock, flags);
1325 
1326 	/*
1327 	 * If timeout work is pending, or current_cmd is NULL, it means we
1328 	 * raced with command completion. Command is handled so just return.
1329 	 */
1330 	if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) {
1331 		spin_unlock_irqrestore(&xhci->lock, flags);
1332 		return;
1333 	}
1334 	/* mark this command to be cancelled */
1335 	xhci->current_cmd->status = COMP_COMMAND_ABORTED;
1336 
1337 	/* Make sure command ring is running before aborting it */
1338 	hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1339 	if (hw_ring_state == ~(u64)0) {
1340 		xhci_hc_died(xhci);
1341 		goto time_out_completed;
1342 	}
1343 
1344 	if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) &&
1345 	    (hw_ring_state & CMD_RING_RUNNING))  {
1346 		/* Prevent new doorbell, and start command abort */
1347 		xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
1348 		xhci_dbg(xhci, "Command timeout\n");
1349 		xhci_abort_cmd_ring(xhci, flags);
1350 		goto time_out_completed;
1351 	}
1352 
1353 	/* host removed. Bail out */
1354 	if (xhci->xhc_state & XHCI_STATE_REMOVING) {
1355 		xhci_dbg(xhci, "host removed, ring start fail?\n");
1356 		xhci_cleanup_command_queue(xhci);
1357 
1358 		goto time_out_completed;
1359 	}
1360 
1361 	/* command timeout on stopped ring, ring can't be aborted */
1362 	xhci_dbg(xhci, "Command timeout on stopped ring\n");
1363 	xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd);
1364 
1365 time_out_completed:
1366 	spin_unlock_irqrestore(&xhci->lock, flags);
1367 	return;
1368 }
1369 
1370 static void handle_cmd_completion(struct xhci_hcd *xhci,
1371 		struct xhci_event_cmd *event)
1372 {
1373 	int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1374 	u64 cmd_dma;
1375 	dma_addr_t cmd_dequeue_dma;
1376 	u32 cmd_comp_code;
1377 	union xhci_trb *cmd_trb;
1378 	struct xhci_command *cmd;
1379 	u32 cmd_type;
1380 
1381 	cmd_dma = le64_to_cpu(event->cmd_trb);
1382 	cmd_trb = xhci->cmd_ring->dequeue;
1383 
1384 	trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic);
1385 
1386 	cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1387 			cmd_trb);
1388 	/*
1389 	 * Check whether the completion event is for our internal kept
1390 	 * command.
1391 	 */
1392 	if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) {
1393 		xhci_warn(xhci,
1394 			  "ERROR mismatched command completion event\n");
1395 		return;
1396 	}
1397 
1398 	cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list);
1399 
1400 	cancel_delayed_work(&xhci->cmd_timer);
1401 
1402 	cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status));
1403 
1404 	/* If CMD ring stopped we own the trbs between enqueue and dequeue */
1405 	if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) {
1406 		complete_all(&xhci->cmd_ring_stop_completion);
1407 		return;
1408 	}
1409 
1410 	if (cmd->command_trb != xhci->cmd_ring->dequeue) {
1411 		xhci_err(xhci,
1412 			 "Command completion event does not match command\n");
1413 		return;
1414 	}
1415 
1416 	/*
1417 	 * Host aborted the command ring, check if the current command was
1418 	 * supposed to be aborted, otherwise continue normally.
1419 	 * The command ring is stopped now, but the xHC will issue a Command
1420 	 * Ring Stopped event which will cause us to restart it.
1421 	 */
1422 	if (cmd_comp_code == COMP_COMMAND_ABORTED) {
1423 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
1424 		if (cmd->status == COMP_COMMAND_ABORTED) {
1425 			if (xhci->current_cmd == cmd)
1426 				xhci->current_cmd = NULL;
1427 			goto event_handled;
1428 		}
1429 	}
1430 
1431 	cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3]));
1432 	switch (cmd_type) {
1433 	case TRB_ENABLE_SLOT:
1434 		xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code);
1435 		break;
1436 	case TRB_DISABLE_SLOT:
1437 		xhci_handle_cmd_disable_slot(xhci, slot_id);
1438 		break;
1439 	case TRB_CONFIG_EP:
1440 		if (!cmd->completion)
1441 			xhci_handle_cmd_config_ep(xhci, slot_id, event,
1442 						  cmd_comp_code);
1443 		break;
1444 	case TRB_EVAL_CONTEXT:
1445 		break;
1446 	case TRB_ADDR_DEV:
1447 		xhci_handle_cmd_addr_dev(xhci, slot_id);
1448 		break;
1449 	case TRB_STOP_RING:
1450 		WARN_ON(slot_id != TRB_TO_SLOT_ID(
1451 				le32_to_cpu(cmd_trb->generic.field[3])));
1452 		xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event);
1453 		break;
1454 	case TRB_SET_DEQ:
1455 		WARN_ON(slot_id != TRB_TO_SLOT_ID(
1456 				le32_to_cpu(cmd_trb->generic.field[3])));
1457 		xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code);
1458 		break;
1459 	case TRB_CMD_NOOP:
1460 		/* Is this an aborted command turned to NO-OP? */
1461 		if (cmd->status == COMP_COMMAND_RING_STOPPED)
1462 			cmd_comp_code = COMP_COMMAND_RING_STOPPED;
1463 		break;
1464 	case TRB_RESET_EP:
1465 		WARN_ON(slot_id != TRB_TO_SLOT_ID(
1466 				le32_to_cpu(cmd_trb->generic.field[3])));
1467 		xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code);
1468 		break;
1469 	case TRB_RESET_DEV:
1470 		/* SLOT_ID field in reset device cmd completion event TRB is 0.
1471 		 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11)
1472 		 */
1473 		slot_id = TRB_TO_SLOT_ID(
1474 				le32_to_cpu(cmd_trb->generic.field[3]));
1475 		xhci_handle_cmd_reset_dev(xhci, slot_id, event);
1476 		break;
1477 	case TRB_NEC_GET_FW:
1478 		xhci_handle_cmd_nec_get_fw(xhci, event);
1479 		break;
1480 	default:
1481 		/* Skip over unknown commands on the event ring */
1482 		xhci_info(xhci, "INFO unknown command type %d\n", cmd_type);
1483 		break;
1484 	}
1485 
1486 	/* restart timer if this wasn't the last command */
1487 	if (!list_is_singular(&xhci->cmd_list)) {
1488 		xhci->current_cmd = list_first_entry(&cmd->cmd_list,
1489 						struct xhci_command, cmd_list);
1490 		xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
1491 	} else if (xhci->current_cmd == cmd) {
1492 		xhci->current_cmd = NULL;
1493 	}
1494 
1495 event_handled:
1496 	xhci_complete_del_and_free_cmd(cmd, cmd_comp_code);
1497 
1498 	inc_deq(xhci, xhci->cmd_ring);
1499 }
1500 
1501 static void handle_vendor_event(struct xhci_hcd *xhci,
1502 		union xhci_trb *event)
1503 {
1504 	u32 trb_type;
1505 
1506 	trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1507 	xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1508 	if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1509 		handle_cmd_completion(xhci, &event->event_cmd);
1510 }
1511 
1512 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1513  * port registers -- USB 3.0 and USB 2.0).
1514  *
1515  * Returns a zero-based port number, which is suitable for indexing into each of
1516  * the split roothubs' port arrays and bus state arrays.
1517  * Add one to it in order to call xhci_find_slot_id_by_port.
1518  */
1519 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1520 		struct xhci_hcd *xhci, u32 port_id)
1521 {
1522 	unsigned int i;
1523 	unsigned int num_similar_speed_ports = 0;
1524 
1525 	/* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1526 	 * and usb2_ports are 0-based indexes.  Count the number of similar
1527 	 * speed ports, up to 1 port before this port.
1528 	 */
1529 	for (i = 0; i < (port_id - 1); i++) {
1530 		u8 port_speed = xhci->port_array[i];
1531 
1532 		/*
1533 		 * Skip ports that don't have known speeds, or have duplicate
1534 		 * Extended Capabilities port speed entries.
1535 		 */
1536 		if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1537 			continue;
1538 
1539 		/*
1540 		 * USB 3.0 ports are always under a USB 3.0 hub.  USB 2.0 and
1541 		 * 1.1 ports are under the USB 2.0 hub.  If the port speed
1542 		 * matches the device speed, it's a similar speed port.
1543 		 */
1544 		if ((port_speed == 0x03) == (hcd->speed >= HCD_USB3))
1545 			num_similar_speed_ports++;
1546 	}
1547 	return num_similar_speed_ports;
1548 }
1549 
1550 static void handle_device_notification(struct xhci_hcd *xhci,
1551 		union xhci_trb *event)
1552 {
1553 	u32 slot_id;
1554 	struct usb_device *udev;
1555 
1556 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3]));
1557 	if (!xhci->devs[slot_id]) {
1558 		xhci_warn(xhci, "Device Notification event for "
1559 				"unused slot %u\n", slot_id);
1560 		return;
1561 	}
1562 
1563 	xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1564 			slot_id);
1565 	udev = xhci->devs[slot_id]->udev;
1566 	if (udev && udev->parent)
1567 		usb_wakeup_notification(udev->parent, udev->portnum);
1568 }
1569 
1570 static void handle_port_status(struct xhci_hcd *xhci,
1571 		union xhci_trb *event)
1572 {
1573 	struct usb_hcd *hcd;
1574 	u32 port_id;
1575 	u32 portsc, cmd_reg;
1576 	int max_ports;
1577 	int slot_id;
1578 	unsigned int faked_port_index;
1579 	u8 major_revision;
1580 	struct xhci_bus_state *bus_state;
1581 	__le32 __iomem **port_array;
1582 	bool bogus_port_status = false;
1583 
1584 	/* Port status change events always have a successful completion code */
1585 	if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS)
1586 		xhci_warn(xhci,
1587 			  "WARN: xHC returned failed port status event\n");
1588 
1589 	port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1590 	xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1591 
1592 	max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1593 	if ((port_id <= 0) || (port_id > max_ports)) {
1594 		xhci_warn(xhci, "Invalid port id %d\n", port_id);
1595 		inc_deq(xhci, xhci->event_ring);
1596 		return;
1597 	}
1598 
1599 	/* Figure out which usb_hcd this port is attached to:
1600 	 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1601 	 */
1602 	major_revision = xhci->port_array[port_id - 1];
1603 
1604 	/* Find the right roothub. */
1605 	hcd = xhci_to_hcd(xhci);
1606 	if ((major_revision == 0x03) != (hcd->speed >= HCD_USB3))
1607 		hcd = xhci->shared_hcd;
1608 
1609 	if (major_revision == 0) {
1610 		xhci_warn(xhci, "Event for port %u not in "
1611 				"Extended Capabilities, ignoring.\n",
1612 				port_id);
1613 		bogus_port_status = true;
1614 		goto cleanup;
1615 	}
1616 	if (major_revision == DUPLICATE_ENTRY) {
1617 		xhci_warn(xhci, "Event for port %u duplicated in"
1618 				"Extended Capabilities, ignoring.\n",
1619 				port_id);
1620 		bogus_port_status = true;
1621 		goto cleanup;
1622 	}
1623 
1624 	/*
1625 	 * Hardware port IDs reported by a Port Status Change Event include USB
1626 	 * 3.0 and USB 2.0 ports.  We want to check if the port has reported a
1627 	 * resume event, but we first need to translate the hardware port ID
1628 	 * into the index into the ports on the correct split roothub, and the
1629 	 * correct bus_state structure.
1630 	 */
1631 	bus_state = &xhci->bus_state[hcd_index(hcd)];
1632 	if (hcd->speed >= HCD_USB3)
1633 		port_array = xhci->usb3_ports;
1634 	else
1635 		port_array = xhci->usb2_ports;
1636 	/* Find the faked port hub number */
1637 	faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1638 			port_id);
1639 	portsc = readl(port_array[faked_port_index]);
1640 
1641 	trace_xhci_handle_port_status(faked_port_index, portsc);
1642 
1643 	if (hcd->state == HC_STATE_SUSPENDED) {
1644 		xhci_dbg(xhci, "resume root hub\n");
1645 		usb_hcd_resume_root_hub(hcd);
1646 	}
1647 
1648 	if (hcd->speed >= HCD_USB3 && (portsc & PORT_PLS_MASK) == XDEV_INACTIVE)
1649 		bus_state->port_remote_wakeup &= ~(1 << faked_port_index);
1650 
1651 	if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) {
1652 		xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1653 
1654 		cmd_reg = readl(&xhci->op_regs->command);
1655 		if (!(cmd_reg & CMD_RUN)) {
1656 			xhci_warn(xhci, "xHC is not running.\n");
1657 			goto cleanup;
1658 		}
1659 
1660 		if (DEV_SUPERSPEED_ANY(portsc)) {
1661 			xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1662 			/* Set a flag to say the port signaled remote wakeup,
1663 			 * so we can tell the difference between the end of
1664 			 * device and host initiated resume.
1665 			 */
1666 			bus_state->port_remote_wakeup |= 1 << faked_port_index;
1667 			xhci_test_and_clear_bit(xhci, port_array,
1668 					faked_port_index, PORT_PLC);
1669 			xhci_set_link_state(xhci, port_array, faked_port_index,
1670 						XDEV_U0);
1671 			/* Need to wait until the next link state change
1672 			 * indicates the device is actually in U0.
1673 			 */
1674 			bogus_port_status = true;
1675 			goto cleanup;
1676 		} else if (!test_bit(faked_port_index,
1677 				     &bus_state->resuming_ports)) {
1678 			xhci_dbg(xhci, "resume HS port %d\n", port_id);
1679 			bus_state->resume_done[faked_port_index] = jiffies +
1680 				msecs_to_jiffies(USB_RESUME_TIMEOUT);
1681 			set_bit(faked_port_index, &bus_state->resuming_ports);
1682 			/* Do the rest in GetPortStatus after resume time delay.
1683 			 * Avoid polling roothub status before that so that a
1684 			 * usb device auto-resume latency around ~40ms.
1685 			 */
1686 			set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1687 			mod_timer(&hcd->rh_timer,
1688 				  bus_state->resume_done[faked_port_index]);
1689 			bogus_port_status = true;
1690 		}
1691 	}
1692 
1693 	if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_U0 &&
1694 			DEV_SUPERSPEED_ANY(portsc)) {
1695 		xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1696 		/* We've just brought the device into U0 through either the
1697 		 * Resume state after a device remote wakeup, or through the
1698 		 * U3Exit state after a host-initiated resume.  If it's a device
1699 		 * initiated remote wake, don't pass up the link state change,
1700 		 * so the roothub behavior is consistent with external
1701 		 * USB 3.0 hub behavior.
1702 		 */
1703 		slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1704 				faked_port_index + 1);
1705 		if (slot_id && xhci->devs[slot_id])
1706 			xhci_ring_device(xhci, slot_id);
1707 		if (bus_state->port_remote_wakeup & (1 << faked_port_index)) {
1708 			bus_state->port_remote_wakeup &=
1709 				~(1 << faked_port_index);
1710 			xhci_test_and_clear_bit(xhci, port_array,
1711 					faked_port_index, PORT_PLC);
1712 			usb_wakeup_notification(hcd->self.root_hub,
1713 					faked_port_index + 1);
1714 			bogus_port_status = true;
1715 			goto cleanup;
1716 		}
1717 	}
1718 
1719 	/*
1720 	 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
1721 	 * RExit to a disconnect state).  If so, let the the driver know it's
1722 	 * out of the RExit state.
1723 	 */
1724 	if (!DEV_SUPERSPEED_ANY(portsc) &&
1725 			test_and_clear_bit(faked_port_index,
1726 				&bus_state->rexit_ports)) {
1727 		complete(&bus_state->rexit_done[faked_port_index]);
1728 		bogus_port_status = true;
1729 		goto cleanup;
1730 	}
1731 
1732 	if (hcd->speed < HCD_USB3)
1733 		xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
1734 					PORT_PLC);
1735 
1736 cleanup:
1737 	/* Update event ring dequeue pointer before dropping the lock */
1738 	inc_deq(xhci, xhci->event_ring);
1739 
1740 	/* Don't make the USB core poll the roothub if we got a bad port status
1741 	 * change event.  Besides, at that point we can't tell which roothub
1742 	 * (USB 2.0 or USB 3.0) to kick.
1743 	 */
1744 	if (bogus_port_status)
1745 		return;
1746 
1747 	/*
1748 	 * xHCI port-status-change events occur when the "or" of all the
1749 	 * status-change bits in the portsc register changes from 0 to 1.
1750 	 * New status changes won't cause an event if any other change
1751 	 * bits are still set.  When an event occurs, switch over to
1752 	 * polling to avoid losing status changes.
1753 	 */
1754 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1755 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1756 	spin_unlock(&xhci->lock);
1757 	/* Pass this up to the core */
1758 	usb_hcd_poll_rh_status(hcd);
1759 	spin_lock(&xhci->lock);
1760 }
1761 
1762 /*
1763  * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1764  * at end_trb, which may be in another segment.  If the suspect DMA address is a
1765  * TRB in this TD, this function returns that TRB's segment.  Otherwise it
1766  * returns 0.
1767  */
1768 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci,
1769 		struct xhci_segment *start_seg,
1770 		union xhci_trb	*start_trb,
1771 		union xhci_trb	*end_trb,
1772 		dma_addr_t	suspect_dma,
1773 		bool		debug)
1774 {
1775 	dma_addr_t start_dma;
1776 	dma_addr_t end_seg_dma;
1777 	dma_addr_t end_trb_dma;
1778 	struct xhci_segment *cur_seg;
1779 
1780 	start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1781 	cur_seg = start_seg;
1782 
1783 	do {
1784 		if (start_dma == 0)
1785 			return NULL;
1786 		/* We may get an event for a Link TRB in the middle of a TD */
1787 		end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1788 				&cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1789 		/* If the end TRB isn't in this segment, this is set to 0 */
1790 		end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1791 
1792 		if (debug)
1793 			xhci_warn(xhci,
1794 				"Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n",
1795 				(unsigned long long)suspect_dma,
1796 				(unsigned long long)start_dma,
1797 				(unsigned long long)end_trb_dma,
1798 				(unsigned long long)cur_seg->dma,
1799 				(unsigned long long)end_seg_dma);
1800 
1801 		if (end_trb_dma > 0) {
1802 			/* The end TRB is in this segment, so suspect should be here */
1803 			if (start_dma <= end_trb_dma) {
1804 				if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1805 					return cur_seg;
1806 			} else {
1807 				/* Case for one segment with
1808 				 * a TD wrapped around to the top
1809 				 */
1810 				if ((suspect_dma >= start_dma &&
1811 							suspect_dma <= end_seg_dma) ||
1812 						(suspect_dma >= cur_seg->dma &&
1813 						 suspect_dma <= end_trb_dma))
1814 					return cur_seg;
1815 			}
1816 			return NULL;
1817 		} else {
1818 			/* Might still be somewhere in this segment */
1819 			if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1820 				return cur_seg;
1821 		}
1822 		cur_seg = cur_seg->next;
1823 		start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1824 	} while (cur_seg != start_seg);
1825 
1826 	return NULL;
1827 }
1828 
1829 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1830 		unsigned int slot_id, unsigned int ep_index,
1831 		unsigned int stream_id,
1832 		struct xhci_td *td, union xhci_trb *ep_trb,
1833 		enum xhci_ep_reset_type reset_type)
1834 {
1835 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1836 	struct xhci_command *command;
1837 	command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1838 	if (!command)
1839 		return;
1840 
1841 	ep->ep_state |= EP_HALTED;
1842 
1843 	xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type);
1844 
1845 	if (reset_type == EP_HARD_RESET)
1846 		xhci_cleanup_stalled_ring(xhci, ep_index, stream_id, td);
1847 
1848 	xhci_ring_cmd_db(xhci);
1849 }
1850 
1851 /* Check if an error has halted the endpoint ring.  The class driver will
1852  * cleanup the halt for a non-default control endpoint if we indicate a stall.
1853  * However, a babble and other errors also halt the endpoint ring, and the class
1854  * driver won't clear the halt in that case, so we need to issue a Set Transfer
1855  * Ring Dequeue Pointer command manually.
1856  */
1857 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1858 		struct xhci_ep_ctx *ep_ctx,
1859 		unsigned int trb_comp_code)
1860 {
1861 	/* TRB completion codes that may require a manual halt cleanup */
1862 	if (trb_comp_code == COMP_USB_TRANSACTION_ERROR ||
1863 			trb_comp_code == COMP_BABBLE_DETECTED_ERROR ||
1864 			trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR)
1865 		/* The 0.95 spec says a babbling control endpoint
1866 		 * is not halted. The 0.96 spec says it is.  Some HW
1867 		 * claims to be 0.95 compliant, but it halts the control
1868 		 * endpoint anyway.  Check if a babble halted the
1869 		 * endpoint.
1870 		 */
1871 		if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED)
1872 			return 1;
1873 
1874 	return 0;
1875 }
1876 
1877 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1878 {
1879 	if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1880 		/* Vendor defined "informational" completion code,
1881 		 * treat as not-an-error.
1882 		 */
1883 		xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1884 				trb_comp_code);
1885 		xhci_dbg(xhci, "Treating code as success.\n");
1886 		return 1;
1887 	}
1888 	return 0;
1889 }
1890 
1891 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td,
1892 		struct xhci_ring *ep_ring, int *status)
1893 {
1894 	struct urb_priv	*urb_priv;
1895 	struct urb *urb = NULL;
1896 
1897 	/* Clean up the endpoint's TD list */
1898 	urb = td->urb;
1899 	urb_priv = urb->hcpriv;
1900 
1901 	/* if a bounce buffer was used to align this td then unmap it */
1902 	xhci_unmap_td_bounce_buffer(xhci, ep_ring, td);
1903 
1904 	/* Do one last check of the actual transfer length.
1905 	 * If the host controller said we transferred more data than the buffer
1906 	 * length, urb->actual_length will be a very big number (since it's
1907 	 * unsigned).  Play it safe and say we didn't transfer anything.
1908 	 */
1909 	if (urb->actual_length > urb->transfer_buffer_length) {
1910 		xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n",
1911 			  urb->transfer_buffer_length, urb->actual_length);
1912 		urb->actual_length = 0;
1913 		*status = 0;
1914 	}
1915 	list_del_init(&td->td_list);
1916 	/* Was this TD slated to be cancelled but completed anyway? */
1917 	if (!list_empty(&td->cancelled_td_list))
1918 		list_del_init(&td->cancelled_td_list);
1919 
1920 	inc_td_cnt(urb);
1921 	/* Giveback the urb when all the tds are completed */
1922 	if (last_td_in_urb(td)) {
1923 		if ((urb->actual_length != urb->transfer_buffer_length &&
1924 		     (urb->transfer_flags & URB_SHORT_NOT_OK)) ||
1925 		    (*status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc)))
1926 			xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n",
1927 				 urb, urb->actual_length,
1928 				 urb->transfer_buffer_length, *status);
1929 
1930 		/* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */
1931 		if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
1932 			*status = 0;
1933 		xhci_giveback_urb_in_irq(xhci, td, *status);
1934 	}
1935 
1936 	return 0;
1937 }
1938 
1939 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1940 	union xhci_trb *ep_trb, struct xhci_transfer_event *event,
1941 	struct xhci_virt_ep *ep, int *status)
1942 {
1943 	struct xhci_virt_device *xdev;
1944 	struct xhci_ep_ctx *ep_ctx;
1945 	struct xhci_ring *ep_ring;
1946 	unsigned int slot_id;
1947 	u32 trb_comp_code;
1948 	int ep_index;
1949 
1950 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1951 	xdev = xhci->devs[slot_id];
1952 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1953 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1954 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1955 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1956 
1957 	if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
1958 			trb_comp_code == COMP_STOPPED ||
1959 			trb_comp_code == COMP_STOPPED_SHORT_PACKET) {
1960 		/* The Endpoint Stop Command completion will take care of any
1961 		 * stopped TDs.  A stopped TD may be restarted, so don't update
1962 		 * the ring dequeue pointer or take this TD off any lists yet.
1963 		 */
1964 		return 0;
1965 	}
1966 	if (trb_comp_code == COMP_STALL_ERROR ||
1967 		xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
1968 						trb_comp_code)) {
1969 		/* Issue a reset endpoint command to clear the host side
1970 		 * halt, followed by a set dequeue command to move the
1971 		 * dequeue pointer past the TD.
1972 		 * The class driver clears the device side halt later.
1973 		 */
1974 		xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index,
1975 					ep_ring->stream_id, td, ep_trb,
1976 					EP_HARD_RESET);
1977 	} else {
1978 		/* Update ring dequeue pointer */
1979 		while (ep_ring->dequeue != td->last_trb)
1980 			inc_deq(xhci, ep_ring);
1981 		inc_deq(xhci, ep_ring);
1982 	}
1983 
1984 	return xhci_td_cleanup(xhci, td, ep_ring, status);
1985 }
1986 
1987 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */
1988 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring,
1989 			   union xhci_trb *stop_trb)
1990 {
1991 	u32 sum;
1992 	union xhci_trb *trb = ring->dequeue;
1993 	struct xhci_segment *seg = ring->deq_seg;
1994 
1995 	for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) {
1996 		if (!trb_is_noop(trb) && !trb_is_link(trb))
1997 			sum += TRB_LEN(le32_to_cpu(trb->generic.field[2]));
1998 	}
1999 	return sum;
2000 }
2001 
2002 /*
2003  * Process control tds, update urb status and actual_length.
2004  */
2005 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
2006 	union xhci_trb *ep_trb, struct xhci_transfer_event *event,
2007 	struct xhci_virt_ep *ep, int *status)
2008 {
2009 	struct xhci_virt_device *xdev;
2010 	struct xhci_ring *ep_ring;
2011 	unsigned int slot_id;
2012 	int ep_index;
2013 	struct xhci_ep_ctx *ep_ctx;
2014 	u32 trb_comp_code;
2015 	u32 remaining, requested;
2016 	u32 trb_type;
2017 
2018 	trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3]));
2019 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2020 	xdev = xhci->devs[slot_id];
2021 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2022 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2023 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2024 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2025 	requested = td->urb->transfer_buffer_length;
2026 	remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2027 
2028 	switch (trb_comp_code) {
2029 	case COMP_SUCCESS:
2030 		if (trb_type != TRB_STATUS) {
2031 			xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n",
2032 				  (trb_type == TRB_DATA) ? "data" : "setup");
2033 			*status = -ESHUTDOWN;
2034 			break;
2035 		}
2036 		*status = 0;
2037 		break;
2038 	case COMP_SHORT_PACKET:
2039 		*status = 0;
2040 		break;
2041 	case COMP_STOPPED_SHORT_PACKET:
2042 		if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
2043 			td->urb->actual_length = remaining;
2044 		else
2045 			xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n");
2046 		goto finish_td;
2047 	case COMP_STOPPED:
2048 		switch (trb_type) {
2049 		case TRB_SETUP:
2050 			td->urb->actual_length = 0;
2051 			goto finish_td;
2052 		case TRB_DATA:
2053 		case TRB_NORMAL:
2054 			td->urb->actual_length = requested - remaining;
2055 			goto finish_td;
2056 		case TRB_STATUS:
2057 			td->urb->actual_length = requested;
2058 			goto finish_td;
2059 		default:
2060 			xhci_warn(xhci, "WARN: unexpected TRB Type %d\n",
2061 				  trb_type);
2062 			goto finish_td;
2063 		}
2064 	case COMP_STOPPED_LENGTH_INVALID:
2065 		goto finish_td;
2066 	default:
2067 		if (!xhci_requires_manual_halt_cleanup(xhci,
2068 						       ep_ctx, trb_comp_code))
2069 			break;
2070 		xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n",
2071 			 trb_comp_code, ep_index);
2072 		/* else fall through */
2073 	case COMP_STALL_ERROR:
2074 		/* Did we transfer part of the data (middle) phase? */
2075 		if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
2076 			td->urb->actual_length = requested - remaining;
2077 		else if (!td->urb_length_set)
2078 			td->urb->actual_length = 0;
2079 		goto finish_td;
2080 	}
2081 
2082 	/* stopped at setup stage, no data transferred */
2083 	if (trb_type == TRB_SETUP)
2084 		goto finish_td;
2085 
2086 	/*
2087 	 * if on data stage then update the actual_length of the URB and flag it
2088 	 * as set, so it won't be overwritten in the event for the last TRB.
2089 	 */
2090 	if (trb_type == TRB_DATA ||
2091 		trb_type == TRB_NORMAL) {
2092 		td->urb_length_set = true;
2093 		td->urb->actual_length = requested - remaining;
2094 		xhci_dbg(xhci, "Waiting for status stage event\n");
2095 		return 0;
2096 	}
2097 
2098 	/* at status stage */
2099 	if (!td->urb_length_set)
2100 		td->urb->actual_length = requested;
2101 
2102 finish_td:
2103 	return finish_td(xhci, td, ep_trb, event, ep, status);
2104 }
2105 
2106 /*
2107  * Process isochronous tds, update urb packet status and actual_length.
2108  */
2109 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2110 	union xhci_trb *ep_trb, struct xhci_transfer_event *event,
2111 	struct xhci_virt_ep *ep, int *status)
2112 {
2113 	struct xhci_ring *ep_ring;
2114 	struct urb_priv *urb_priv;
2115 	int idx;
2116 	struct usb_iso_packet_descriptor *frame;
2117 	u32 trb_comp_code;
2118 	bool sum_trbs_for_length = false;
2119 	u32 remaining, requested, ep_trb_len;
2120 	int short_framestatus;
2121 
2122 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2123 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2124 	urb_priv = td->urb->hcpriv;
2125 	idx = urb_priv->num_tds_done;
2126 	frame = &td->urb->iso_frame_desc[idx];
2127 	requested = frame->length;
2128 	remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2129 	ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
2130 	short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
2131 		-EREMOTEIO : 0;
2132 
2133 	/* handle completion code */
2134 	switch (trb_comp_code) {
2135 	case COMP_SUCCESS:
2136 		if (remaining) {
2137 			frame->status = short_framestatus;
2138 			if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2139 				sum_trbs_for_length = true;
2140 			break;
2141 		}
2142 		frame->status = 0;
2143 		break;
2144 	case COMP_SHORT_PACKET:
2145 		frame->status = short_framestatus;
2146 		sum_trbs_for_length = true;
2147 		break;
2148 	case COMP_BANDWIDTH_OVERRUN_ERROR:
2149 		frame->status = -ECOMM;
2150 		break;
2151 	case COMP_ISOCH_BUFFER_OVERRUN:
2152 	case COMP_BABBLE_DETECTED_ERROR:
2153 		frame->status = -EOVERFLOW;
2154 		break;
2155 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2156 	case COMP_STALL_ERROR:
2157 		frame->status = -EPROTO;
2158 		break;
2159 	case COMP_USB_TRANSACTION_ERROR:
2160 		frame->status = -EPROTO;
2161 		if (ep_trb != td->last_trb)
2162 			return 0;
2163 		break;
2164 	case COMP_STOPPED:
2165 		sum_trbs_for_length = true;
2166 		break;
2167 	case COMP_STOPPED_SHORT_PACKET:
2168 		/* field normally containing residue now contains tranferred */
2169 		frame->status = short_framestatus;
2170 		requested = remaining;
2171 		break;
2172 	case COMP_STOPPED_LENGTH_INVALID:
2173 		requested = 0;
2174 		remaining = 0;
2175 		break;
2176 	default:
2177 		sum_trbs_for_length = true;
2178 		frame->status = -1;
2179 		break;
2180 	}
2181 
2182 	if (sum_trbs_for_length)
2183 		frame->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb) +
2184 			ep_trb_len - remaining;
2185 	else
2186 		frame->actual_length = requested;
2187 
2188 	td->urb->actual_length += frame->actual_length;
2189 
2190 	return finish_td(xhci, td, ep_trb, event, ep, status);
2191 }
2192 
2193 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2194 			struct xhci_transfer_event *event,
2195 			struct xhci_virt_ep *ep, int *status)
2196 {
2197 	struct xhci_ring *ep_ring;
2198 	struct urb_priv *urb_priv;
2199 	struct usb_iso_packet_descriptor *frame;
2200 	int idx;
2201 
2202 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2203 	urb_priv = td->urb->hcpriv;
2204 	idx = urb_priv->num_tds_done;
2205 	frame = &td->urb->iso_frame_desc[idx];
2206 
2207 	/* The transfer is partly done. */
2208 	frame->status = -EXDEV;
2209 
2210 	/* calc actual length */
2211 	frame->actual_length = 0;
2212 
2213 	/* Update ring dequeue pointer */
2214 	while (ep_ring->dequeue != td->last_trb)
2215 		inc_deq(xhci, ep_ring);
2216 	inc_deq(xhci, ep_ring);
2217 
2218 	return xhci_td_cleanup(xhci, td, ep_ring, status);
2219 }
2220 
2221 /*
2222  * Process bulk and interrupt tds, update urb status and actual_length.
2223  */
2224 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
2225 	union xhci_trb *ep_trb, struct xhci_transfer_event *event,
2226 	struct xhci_virt_ep *ep, int *status)
2227 {
2228 	struct xhci_ring *ep_ring;
2229 	u32 trb_comp_code;
2230 	u32 remaining, requested, ep_trb_len;
2231 
2232 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2233 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2234 	remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2235 	ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
2236 	requested = td->urb->transfer_buffer_length;
2237 
2238 	switch (trb_comp_code) {
2239 	case COMP_SUCCESS:
2240 		/* handle success with untransferred data as short packet */
2241 		if (ep_trb != td->last_trb || remaining) {
2242 			xhci_warn(xhci, "WARN Successful completion on short TX\n");
2243 			xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
2244 				 td->urb->ep->desc.bEndpointAddress,
2245 				 requested, remaining);
2246 		}
2247 		*status = 0;
2248 		break;
2249 	case COMP_SHORT_PACKET:
2250 		xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
2251 			 td->urb->ep->desc.bEndpointAddress,
2252 			 requested, remaining);
2253 		*status = 0;
2254 		break;
2255 	case COMP_STOPPED_SHORT_PACKET:
2256 		td->urb->actual_length = remaining;
2257 		goto finish_td;
2258 	case COMP_STOPPED_LENGTH_INVALID:
2259 		/* stopped on ep trb with invalid length, exclude it */
2260 		ep_trb_len	= 0;
2261 		remaining	= 0;
2262 		break;
2263 	default:
2264 		/* do nothing */
2265 		break;
2266 	}
2267 
2268 	if (ep_trb == td->last_trb)
2269 		td->urb->actual_length = requested - remaining;
2270 	else
2271 		td->urb->actual_length =
2272 			sum_trb_lengths(xhci, ep_ring, ep_trb) +
2273 			ep_trb_len - remaining;
2274 finish_td:
2275 	if (remaining > requested) {
2276 		xhci_warn(xhci, "bad transfer trb length %d in event trb\n",
2277 			  remaining);
2278 		td->urb->actual_length = 0;
2279 	}
2280 	return finish_td(xhci, td, ep_trb, event, ep, status);
2281 }
2282 
2283 /*
2284  * If this function returns an error condition, it means it got a Transfer
2285  * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2286  * At this point, the host controller is probably hosed and should be reset.
2287  */
2288 static int handle_tx_event(struct xhci_hcd *xhci,
2289 		struct xhci_transfer_event *event)
2290 {
2291 	struct xhci_virt_device *xdev;
2292 	struct xhci_virt_ep *ep;
2293 	struct xhci_ring *ep_ring;
2294 	unsigned int slot_id;
2295 	int ep_index;
2296 	struct xhci_td *td = NULL;
2297 	dma_addr_t ep_trb_dma;
2298 	struct xhci_segment *ep_seg;
2299 	union xhci_trb *ep_trb;
2300 	int status = -EINPROGRESS;
2301 	struct xhci_ep_ctx *ep_ctx;
2302 	struct list_head *tmp;
2303 	u32 trb_comp_code;
2304 	int td_num = 0;
2305 	bool handling_skipped_tds = false;
2306 
2307 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2308 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2309 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2310 	ep_trb_dma = le64_to_cpu(event->buffer);
2311 
2312 	xdev = xhci->devs[slot_id];
2313 	if (!xdev) {
2314 		xhci_err(xhci, "ERROR Transfer event pointed to bad slot %u\n",
2315 			 slot_id);
2316 		goto err_out;
2317 	}
2318 
2319 	ep = &xdev->eps[ep_index];
2320 	ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma);
2321 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2322 
2323 	if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) {
2324 		xhci_err(xhci,
2325 			 "ERROR Transfer event for disabled endpoint slot %u ep %u\n",
2326 			  slot_id, ep_index);
2327 		goto err_out;
2328 	}
2329 
2330 	/* Some transfer events don't always point to a trb, see xhci 4.17.4 */
2331 	if (!ep_ring) {
2332 		switch (trb_comp_code) {
2333 		case COMP_STALL_ERROR:
2334 		case COMP_USB_TRANSACTION_ERROR:
2335 		case COMP_INVALID_STREAM_TYPE_ERROR:
2336 		case COMP_INVALID_STREAM_ID_ERROR:
2337 			xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 0,
2338 						     NULL, NULL, EP_SOFT_RESET);
2339 			goto cleanup;
2340 		case COMP_RING_UNDERRUN:
2341 		case COMP_RING_OVERRUN:
2342 			goto cleanup;
2343 		default:
2344 			xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n",
2345 				 slot_id, ep_index);
2346 			goto err_out;
2347 		}
2348 	}
2349 
2350 	/* Count current td numbers if ep->skip is set */
2351 	if (ep->skip) {
2352 		list_for_each(tmp, &ep_ring->td_list)
2353 			td_num++;
2354 	}
2355 
2356 	/* Look for common error cases */
2357 	switch (trb_comp_code) {
2358 	/* Skip codes that require special handling depending on
2359 	 * transfer type
2360 	 */
2361 	case COMP_SUCCESS:
2362 		if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2363 			break;
2364 		if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2365 			trb_comp_code = COMP_SHORT_PACKET;
2366 		else
2367 			xhci_warn_ratelimited(xhci,
2368 					      "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n",
2369 					      slot_id, ep_index);
2370 	case COMP_SHORT_PACKET:
2371 		break;
2372 	/* Completion codes for endpoint stopped state */
2373 	case COMP_STOPPED:
2374 		xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n",
2375 			 slot_id, ep_index);
2376 		break;
2377 	case COMP_STOPPED_LENGTH_INVALID:
2378 		xhci_dbg(xhci,
2379 			 "Stopped on No-op or Link TRB for slot %u ep %u\n",
2380 			 slot_id, ep_index);
2381 		break;
2382 	case COMP_STOPPED_SHORT_PACKET:
2383 		xhci_dbg(xhci,
2384 			 "Stopped with short packet transfer detected for slot %u ep %u\n",
2385 			 slot_id, ep_index);
2386 		break;
2387 	/* Completion codes for endpoint halted state */
2388 	case COMP_STALL_ERROR:
2389 		xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id,
2390 			 ep_index);
2391 		ep->ep_state |= EP_HALTED;
2392 		status = -EPIPE;
2393 		break;
2394 	case COMP_SPLIT_TRANSACTION_ERROR:
2395 	case COMP_USB_TRANSACTION_ERROR:
2396 		xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n",
2397 			 slot_id, ep_index);
2398 		status = -EPROTO;
2399 		break;
2400 	case COMP_BABBLE_DETECTED_ERROR:
2401 		xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n",
2402 			 slot_id, ep_index);
2403 		status = -EOVERFLOW;
2404 		break;
2405 	/* Completion codes for endpoint error state */
2406 	case COMP_TRB_ERROR:
2407 		xhci_warn(xhci,
2408 			  "WARN: TRB error for slot %u ep %u on endpoint\n",
2409 			  slot_id, ep_index);
2410 		status = -EILSEQ;
2411 		break;
2412 	/* completion codes not indicating endpoint state change */
2413 	case COMP_DATA_BUFFER_ERROR:
2414 		xhci_warn(xhci,
2415 			  "WARN: HC couldn't access mem fast enough for slot %u ep %u\n",
2416 			  slot_id, ep_index);
2417 		status = -ENOSR;
2418 		break;
2419 	case COMP_BANDWIDTH_OVERRUN_ERROR:
2420 		xhci_warn(xhci,
2421 			  "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n",
2422 			  slot_id, ep_index);
2423 		break;
2424 	case COMP_ISOCH_BUFFER_OVERRUN:
2425 		xhci_warn(xhci,
2426 			  "WARN: buffer overrun event for slot %u ep %u on endpoint",
2427 			  slot_id, ep_index);
2428 		break;
2429 	case COMP_RING_UNDERRUN:
2430 		/*
2431 		 * When the Isoch ring is empty, the xHC will generate
2432 		 * a Ring Overrun Event for IN Isoch endpoint or Ring
2433 		 * Underrun Event for OUT Isoch endpoint.
2434 		 */
2435 		xhci_dbg(xhci, "underrun event on endpoint\n");
2436 		if (!list_empty(&ep_ring->td_list))
2437 			xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2438 					"still with TDs queued?\n",
2439 				 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2440 				 ep_index);
2441 		goto cleanup;
2442 	case COMP_RING_OVERRUN:
2443 		xhci_dbg(xhci, "overrun event on endpoint\n");
2444 		if (!list_empty(&ep_ring->td_list))
2445 			xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2446 					"still with TDs queued?\n",
2447 				 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2448 				 ep_index);
2449 		goto cleanup;
2450 	case COMP_MISSED_SERVICE_ERROR:
2451 		/*
2452 		 * When encounter missed service error, one or more isoc tds
2453 		 * may be missed by xHC.
2454 		 * Set skip flag of the ep_ring; Complete the missed tds as
2455 		 * short transfer when process the ep_ring next time.
2456 		 */
2457 		ep->skip = true;
2458 		xhci_dbg(xhci,
2459 			 "Miss service interval error for slot %u ep %u, set skip flag\n",
2460 			 slot_id, ep_index);
2461 		goto cleanup;
2462 	case COMP_NO_PING_RESPONSE_ERROR:
2463 		ep->skip = true;
2464 		xhci_dbg(xhci,
2465 			 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n",
2466 			 slot_id, ep_index);
2467 		goto cleanup;
2468 
2469 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2470 		/* needs disable slot command to recover */
2471 		xhci_warn(xhci,
2472 			  "WARN: detect an incompatible device for slot %u ep %u",
2473 			  slot_id, ep_index);
2474 		status = -EPROTO;
2475 		break;
2476 	default:
2477 		if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2478 			status = 0;
2479 			break;
2480 		}
2481 		xhci_warn(xhci,
2482 			  "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n",
2483 			  trb_comp_code, slot_id, ep_index);
2484 		goto cleanup;
2485 	}
2486 
2487 	do {
2488 		/* This TRB should be in the TD at the head of this ring's
2489 		 * TD list.
2490 		 */
2491 		if (list_empty(&ep_ring->td_list)) {
2492 			/*
2493 			 * A stopped endpoint may generate an extra completion
2494 			 * event if the device was suspended.  Don't print
2495 			 * warnings.
2496 			 */
2497 			if (!(trb_comp_code == COMP_STOPPED ||
2498 				trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) {
2499 				xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
2500 						TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2501 						ep_index);
2502 			}
2503 			if (ep->skip) {
2504 				ep->skip = false;
2505 				xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n",
2506 					 slot_id, ep_index);
2507 			}
2508 			goto cleanup;
2509 		}
2510 
2511 		/* We've skipped all the TDs on the ep ring when ep->skip set */
2512 		if (ep->skip && td_num == 0) {
2513 			ep->skip = false;
2514 			xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n",
2515 				 slot_id, ep_index);
2516 			goto cleanup;
2517 		}
2518 
2519 		td = list_first_entry(&ep_ring->td_list, struct xhci_td,
2520 				      td_list);
2521 		if (ep->skip)
2522 			td_num--;
2523 
2524 		/* Is this a TRB in the currently executing TD? */
2525 		ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue,
2526 				td->last_trb, ep_trb_dma, false);
2527 
2528 		/*
2529 		 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2530 		 * is not in the current TD pointed by ep_ring->dequeue because
2531 		 * that the hardware dequeue pointer still at the previous TRB
2532 		 * of the current TD. The previous TRB maybe a Link TD or the
2533 		 * last TRB of the previous TD. The command completion handle
2534 		 * will take care the rest.
2535 		 */
2536 		if (!ep_seg && (trb_comp_code == COMP_STOPPED ||
2537 			   trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) {
2538 			goto cleanup;
2539 		}
2540 
2541 		if (!ep_seg) {
2542 			if (!ep->skip ||
2543 			    !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2544 				/* Some host controllers give a spurious
2545 				 * successful event after a short transfer.
2546 				 * Ignore it.
2547 				 */
2548 				if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2549 						ep_ring->last_td_was_short) {
2550 					ep_ring->last_td_was_short = false;
2551 					goto cleanup;
2552 				}
2553 				/* HC is busted, give up! */
2554 				xhci_err(xhci,
2555 					"ERROR Transfer event TRB DMA ptr not "
2556 					"part of current TD ep_index %d "
2557 					"comp_code %u\n", ep_index,
2558 					trb_comp_code);
2559 				trb_in_td(xhci, ep_ring->deq_seg,
2560 					  ep_ring->dequeue, td->last_trb,
2561 					  ep_trb_dma, true);
2562 				return -ESHUTDOWN;
2563 			}
2564 
2565 			skip_isoc_td(xhci, td, event, ep, &status);
2566 			goto cleanup;
2567 		}
2568 		if (trb_comp_code == COMP_SHORT_PACKET)
2569 			ep_ring->last_td_was_short = true;
2570 		else
2571 			ep_ring->last_td_was_short = false;
2572 
2573 		if (ep->skip) {
2574 			xhci_dbg(xhci,
2575 				 "Found td. Clear skip flag for slot %u ep %u.\n",
2576 				 slot_id, ep_index);
2577 			ep->skip = false;
2578 		}
2579 
2580 		ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) /
2581 						sizeof(*ep_trb)];
2582 
2583 		trace_xhci_handle_transfer(ep_ring,
2584 				(struct xhci_generic_trb *) ep_trb);
2585 
2586 		/*
2587 		 * No-op TRB could trigger interrupts in a case where
2588 		 * a URB was killed and a STALL_ERROR happens right
2589 		 * after the endpoint ring stopped. Reset the halted
2590 		 * endpoint. Otherwise, the endpoint remains stalled
2591 		 * indefinitely.
2592 		 */
2593 		if (trb_is_noop(ep_trb)) {
2594 			if (trb_comp_code == COMP_STALL_ERROR ||
2595 			    xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
2596 							      trb_comp_code))
2597 				xhci_cleanup_halted_endpoint(xhci, slot_id,
2598 							     ep_index,
2599 							     ep_ring->stream_id,
2600 							     td, ep_trb,
2601 							     EP_HARD_RESET);
2602 			goto cleanup;
2603 		}
2604 
2605 		/* update the urb's actual_length and give back to the core */
2606 		if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2607 			process_ctrl_td(xhci, td, ep_trb, event, ep, &status);
2608 		else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2609 			process_isoc_td(xhci, td, ep_trb, event, ep, &status);
2610 		else
2611 			process_bulk_intr_td(xhci, td, ep_trb, event, ep,
2612 					     &status);
2613 cleanup:
2614 		handling_skipped_tds = ep->skip &&
2615 			trb_comp_code != COMP_MISSED_SERVICE_ERROR &&
2616 			trb_comp_code != COMP_NO_PING_RESPONSE_ERROR;
2617 
2618 		/*
2619 		 * Do not update event ring dequeue pointer if we're in a loop
2620 		 * processing missed tds.
2621 		 */
2622 		if (!handling_skipped_tds)
2623 			inc_deq(xhci, xhci->event_ring);
2624 
2625 	/*
2626 	 * If ep->skip is set, it means there are missed tds on the
2627 	 * endpoint ring need to take care of.
2628 	 * Process them as short transfer until reach the td pointed by
2629 	 * the event.
2630 	 */
2631 	} while (handling_skipped_tds);
2632 
2633 	return 0;
2634 
2635 err_out:
2636 	xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2637 		 (unsigned long long) xhci_trb_virt_to_dma(
2638 			 xhci->event_ring->deq_seg,
2639 			 xhci->event_ring->dequeue),
2640 		 lower_32_bits(le64_to_cpu(event->buffer)),
2641 		 upper_32_bits(le64_to_cpu(event->buffer)),
2642 		 le32_to_cpu(event->transfer_len),
2643 		 le32_to_cpu(event->flags));
2644 	return -ENODEV;
2645 }
2646 
2647 /*
2648  * This function handles all OS-owned events on the event ring.  It may drop
2649  * xhci->lock between event processing (e.g. to pass up port status changes).
2650  * Returns >0 for "possibly more events to process" (caller should call again),
2651  * otherwise 0 if done.  In future, <0 returns should indicate error code.
2652  */
2653 static int xhci_handle_event(struct xhci_hcd *xhci)
2654 {
2655 	union xhci_trb *event;
2656 	int update_ptrs = 1;
2657 	int ret;
2658 
2659 	/* Event ring hasn't been allocated yet. */
2660 	if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2661 		xhci_err(xhci, "ERROR event ring not ready\n");
2662 		return -ENOMEM;
2663 	}
2664 
2665 	event = xhci->event_ring->dequeue;
2666 	/* Does the HC or OS own the TRB? */
2667 	if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2668 	    xhci->event_ring->cycle_state)
2669 		return 0;
2670 
2671 	trace_xhci_handle_event(xhci->event_ring, &event->generic);
2672 
2673 	/*
2674 	 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2675 	 * speculative reads of the event's flags/data below.
2676 	 */
2677 	rmb();
2678 	/* FIXME: Handle more event types. */
2679 	switch (le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) {
2680 	case TRB_TYPE(TRB_COMPLETION):
2681 		handle_cmd_completion(xhci, &event->event_cmd);
2682 		break;
2683 	case TRB_TYPE(TRB_PORT_STATUS):
2684 		handle_port_status(xhci, event);
2685 		update_ptrs = 0;
2686 		break;
2687 	case TRB_TYPE(TRB_TRANSFER):
2688 		ret = handle_tx_event(xhci, &event->trans_event);
2689 		if (ret >= 0)
2690 			update_ptrs = 0;
2691 		break;
2692 	case TRB_TYPE(TRB_DEV_NOTE):
2693 		handle_device_notification(xhci, event);
2694 		break;
2695 	default:
2696 		if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2697 		    TRB_TYPE(48))
2698 			handle_vendor_event(xhci, event);
2699 		else
2700 			xhci_warn(xhci, "ERROR unknown event type %d\n",
2701 				  TRB_FIELD_TO_TYPE(
2702 				  le32_to_cpu(event->event_cmd.flags)));
2703 	}
2704 	/* Any of the above functions may drop and re-acquire the lock, so check
2705 	 * to make sure a watchdog timer didn't mark the host as non-responsive.
2706 	 */
2707 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2708 		xhci_dbg(xhci, "xHCI host dying, returning from "
2709 				"event handler.\n");
2710 		return 0;
2711 	}
2712 
2713 	if (update_ptrs)
2714 		/* Update SW event ring dequeue pointer */
2715 		inc_deq(xhci, xhci->event_ring);
2716 
2717 	/* Are there more items on the event ring?  Caller will call us again to
2718 	 * check.
2719 	 */
2720 	return 1;
2721 }
2722 
2723 /*
2724  * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2725  * we might get bad data out of the event ring.  Section 4.10.2.7 has a list of
2726  * indicators of an event TRB error, but we check the status *first* to be safe.
2727  */
2728 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2729 {
2730 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2731 	union xhci_trb *event_ring_deq;
2732 	irqreturn_t ret = IRQ_NONE;
2733 	unsigned long flags;
2734 	dma_addr_t deq;
2735 	u64 temp_64;
2736 	u32 status;
2737 
2738 	spin_lock_irqsave(&xhci->lock, flags);
2739 	/* Check if the xHC generated the interrupt, or the irq is shared */
2740 	status = readl(&xhci->op_regs->status);
2741 	if (status == ~(u32)0) {
2742 		xhci_hc_died(xhci);
2743 		ret = IRQ_HANDLED;
2744 		goto out;
2745 	}
2746 
2747 	if (!(status & STS_EINT))
2748 		goto out;
2749 
2750 	if (status & STS_FATAL) {
2751 		xhci_warn(xhci, "WARNING: Host System Error\n");
2752 		xhci_halt(xhci);
2753 		ret = IRQ_HANDLED;
2754 		goto out;
2755 	}
2756 
2757 	/*
2758 	 * Clear the op reg interrupt status first,
2759 	 * so we can receive interrupts from other MSI-X interrupters.
2760 	 * Write 1 to clear the interrupt status.
2761 	 */
2762 	status |= STS_EINT;
2763 	writel(status, &xhci->op_regs->status);
2764 
2765 	if (!hcd->msi_enabled) {
2766 		u32 irq_pending;
2767 		irq_pending = readl(&xhci->ir_set->irq_pending);
2768 		irq_pending |= IMAN_IP;
2769 		writel(irq_pending, &xhci->ir_set->irq_pending);
2770 	}
2771 
2772 	if (xhci->xhc_state & XHCI_STATE_DYING ||
2773 	    xhci->xhc_state & XHCI_STATE_HALTED) {
2774 		xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2775 				"Shouldn't IRQs be disabled?\n");
2776 		/* Clear the event handler busy flag (RW1C);
2777 		 * the event ring should be empty.
2778 		 */
2779 		temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2780 		xhci_write_64(xhci, temp_64 | ERST_EHB,
2781 				&xhci->ir_set->erst_dequeue);
2782 		ret = IRQ_HANDLED;
2783 		goto out;
2784 	}
2785 
2786 	event_ring_deq = xhci->event_ring->dequeue;
2787 	/* FIXME this should be a delayed service routine
2788 	 * that clears the EHB.
2789 	 */
2790 	while (xhci_handle_event(xhci) > 0) {}
2791 
2792 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2793 	/* If necessary, update the HW's version of the event ring deq ptr. */
2794 	if (event_ring_deq != xhci->event_ring->dequeue) {
2795 		deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2796 				xhci->event_ring->dequeue);
2797 		if (deq == 0)
2798 			xhci_warn(xhci, "WARN something wrong with SW event "
2799 					"ring dequeue ptr.\n");
2800 		/* Update HC event ring dequeue pointer */
2801 		temp_64 &= ERST_PTR_MASK;
2802 		temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2803 	}
2804 
2805 	/* Clear the event handler busy flag (RW1C); event ring is empty. */
2806 	temp_64 |= ERST_EHB;
2807 	xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2808 	ret = IRQ_HANDLED;
2809 
2810 out:
2811 	spin_unlock_irqrestore(&xhci->lock, flags);
2812 
2813 	return ret;
2814 }
2815 
2816 irqreturn_t xhci_msi_irq(int irq, void *hcd)
2817 {
2818 	return xhci_irq(hcd);
2819 }
2820 
2821 /****		Endpoint Ring Operations	****/
2822 
2823 /*
2824  * Generic function for queueing a TRB on a ring.
2825  * The caller must have checked to make sure there's room on the ring.
2826  *
2827  * @more_trbs_coming:	Will you enqueue more TRBs before calling
2828  *			prepare_transfer()?
2829  */
2830 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2831 		bool more_trbs_coming,
2832 		u32 field1, u32 field2, u32 field3, u32 field4)
2833 {
2834 	struct xhci_generic_trb *trb;
2835 
2836 	trb = &ring->enqueue->generic;
2837 	trb->field[0] = cpu_to_le32(field1);
2838 	trb->field[1] = cpu_to_le32(field2);
2839 	trb->field[2] = cpu_to_le32(field3);
2840 	trb->field[3] = cpu_to_le32(field4);
2841 
2842 	trace_xhci_queue_trb(ring, trb);
2843 
2844 	inc_enq(xhci, ring, more_trbs_coming);
2845 }
2846 
2847 /*
2848  * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2849  * FIXME allocate segments if the ring is full.
2850  */
2851 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2852 		u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2853 {
2854 	unsigned int num_trbs_needed;
2855 
2856 	/* Make sure the endpoint has been added to xHC schedule */
2857 	switch (ep_state) {
2858 	case EP_STATE_DISABLED:
2859 		/*
2860 		 * USB core changed config/interfaces without notifying us,
2861 		 * or hardware is reporting the wrong state.
2862 		 */
2863 		xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2864 		return -ENOENT;
2865 	case EP_STATE_ERROR:
2866 		xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2867 		/* FIXME event handling code for error needs to clear it */
2868 		/* XXX not sure if this should be -ENOENT or not */
2869 		return -EINVAL;
2870 	case EP_STATE_HALTED:
2871 		xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2872 	case EP_STATE_STOPPED:
2873 	case EP_STATE_RUNNING:
2874 		break;
2875 	default:
2876 		xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2877 		/*
2878 		 * FIXME issue Configure Endpoint command to try to get the HC
2879 		 * back into a known state.
2880 		 */
2881 		return -EINVAL;
2882 	}
2883 
2884 	while (1) {
2885 		if (room_on_ring(xhci, ep_ring, num_trbs))
2886 			break;
2887 
2888 		if (ep_ring == xhci->cmd_ring) {
2889 			xhci_err(xhci, "Do not support expand command ring\n");
2890 			return -ENOMEM;
2891 		}
2892 
2893 		xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
2894 				"ERROR no room on ep ring, try ring expansion");
2895 		num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
2896 		if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
2897 					mem_flags)) {
2898 			xhci_err(xhci, "Ring expansion failed\n");
2899 			return -ENOMEM;
2900 		}
2901 	}
2902 
2903 	while (trb_is_link(ep_ring->enqueue)) {
2904 		/* If we're not dealing with 0.95 hardware or isoc rings
2905 		 * on AMD 0.96 host, clear the chain bit.
2906 		 */
2907 		if (!xhci_link_trb_quirk(xhci) &&
2908 		    !(ep_ring->type == TYPE_ISOC &&
2909 		      (xhci->quirks & XHCI_AMD_0x96_HOST)))
2910 			ep_ring->enqueue->link.control &=
2911 				cpu_to_le32(~TRB_CHAIN);
2912 		else
2913 			ep_ring->enqueue->link.control |=
2914 				cpu_to_le32(TRB_CHAIN);
2915 
2916 		wmb();
2917 		ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE);
2918 
2919 		/* Toggle the cycle bit after the last ring segment. */
2920 		if (link_trb_toggles_cycle(ep_ring->enqueue))
2921 			ep_ring->cycle_state ^= 1;
2922 
2923 		ep_ring->enq_seg = ep_ring->enq_seg->next;
2924 		ep_ring->enqueue = ep_ring->enq_seg->trbs;
2925 	}
2926 	return 0;
2927 }
2928 
2929 static int prepare_transfer(struct xhci_hcd *xhci,
2930 		struct xhci_virt_device *xdev,
2931 		unsigned int ep_index,
2932 		unsigned int stream_id,
2933 		unsigned int num_trbs,
2934 		struct urb *urb,
2935 		unsigned int td_index,
2936 		gfp_t mem_flags)
2937 {
2938 	int ret;
2939 	struct urb_priv *urb_priv;
2940 	struct xhci_td	*td;
2941 	struct xhci_ring *ep_ring;
2942 	struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2943 
2944 	ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2945 	if (!ep_ring) {
2946 		xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2947 				stream_id);
2948 		return -EINVAL;
2949 	}
2950 
2951 	ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
2952 			   num_trbs, mem_flags);
2953 	if (ret)
2954 		return ret;
2955 
2956 	urb_priv = urb->hcpriv;
2957 	td = &urb_priv->td[td_index];
2958 
2959 	INIT_LIST_HEAD(&td->td_list);
2960 	INIT_LIST_HEAD(&td->cancelled_td_list);
2961 
2962 	if (td_index == 0) {
2963 		ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2964 		if (unlikely(ret))
2965 			return ret;
2966 	}
2967 
2968 	td->urb = urb;
2969 	/* Add this TD to the tail of the endpoint ring's TD list */
2970 	list_add_tail(&td->td_list, &ep_ring->td_list);
2971 	td->start_seg = ep_ring->enq_seg;
2972 	td->first_trb = ep_ring->enqueue;
2973 
2974 	return 0;
2975 }
2976 
2977 static unsigned int count_trbs(u64 addr, u64 len)
2978 {
2979 	unsigned int num_trbs;
2980 
2981 	num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
2982 			TRB_MAX_BUFF_SIZE);
2983 	if (num_trbs == 0)
2984 		num_trbs++;
2985 
2986 	return num_trbs;
2987 }
2988 
2989 static inline unsigned int count_trbs_needed(struct urb *urb)
2990 {
2991 	return count_trbs(urb->transfer_dma, urb->transfer_buffer_length);
2992 }
2993 
2994 static unsigned int count_sg_trbs_needed(struct urb *urb)
2995 {
2996 	struct scatterlist *sg;
2997 	unsigned int i, len, full_len, num_trbs = 0;
2998 
2999 	full_len = urb->transfer_buffer_length;
3000 
3001 	for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) {
3002 		len = sg_dma_len(sg);
3003 		num_trbs += count_trbs(sg_dma_address(sg), len);
3004 		len = min_t(unsigned int, len, full_len);
3005 		full_len -= len;
3006 		if (full_len == 0)
3007 			break;
3008 	}
3009 
3010 	return num_trbs;
3011 }
3012 
3013 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i)
3014 {
3015 	u64 addr, len;
3016 
3017 	addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3018 	len = urb->iso_frame_desc[i].length;
3019 
3020 	return count_trbs(addr, len);
3021 }
3022 
3023 static void check_trb_math(struct urb *urb, int running_total)
3024 {
3025 	if (unlikely(running_total != urb->transfer_buffer_length))
3026 		dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
3027 				"queued %#x (%d), asked for %#x (%d)\n",
3028 				__func__,
3029 				urb->ep->desc.bEndpointAddress,
3030 				running_total, running_total,
3031 				urb->transfer_buffer_length,
3032 				urb->transfer_buffer_length);
3033 }
3034 
3035 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
3036 		unsigned int ep_index, unsigned int stream_id, int start_cycle,
3037 		struct xhci_generic_trb *start_trb)
3038 {
3039 	/*
3040 	 * Pass all the TRBs to the hardware at once and make sure this write
3041 	 * isn't reordered.
3042 	 */
3043 	wmb();
3044 	if (start_cycle)
3045 		start_trb->field[3] |= cpu_to_le32(start_cycle);
3046 	else
3047 		start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
3048 	xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
3049 }
3050 
3051 static void check_interval(struct xhci_hcd *xhci, struct urb *urb,
3052 						struct xhci_ep_ctx *ep_ctx)
3053 {
3054 	int xhci_interval;
3055 	int ep_interval;
3056 
3057 	xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3058 	ep_interval = urb->interval;
3059 
3060 	/* Convert to microframes */
3061 	if (urb->dev->speed == USB_SPEED_LOW ||
3062 			urb->dev->speed == USB_SPEED_FULL)
3063 		ep_interval *= 8;
3064 
3065 	/* FIXME change this to a warning and a suggestion to use the new API
3066 	 * to set the polling interval (once the API is added).
3067 	 */
3068 	if (xhci_interval != ep_interval) {
3069 		dev_dbg_ratelimited(&urb->dev->dev,
3070 				"Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3071 				ep_interval, ep_interval == 1 ? "" : "s",
3072 				xhci_interval, xhci_interval == 1 ? "" : "s");
3073 		urb->interval = xhci_interval;
3074 		/* Convert back to frames for LS/FS devices */
3075 		if (urb->dev->speed == USB_SPEED_LOW ||
3076 				urb->dev->speed == USB_SPEED_FULL)
3077 			urb->interval /= 8;
3078 	}
3079 }
3080 
3081 /*
3082  * xHCI uses normal TRBs for both bulk and interrupt.  When the interrupt
3083  * endpoint is to be serviced, the xHC will consume (at most) one TD.  A TD
3084  * (comprised of sg list entries) can take several service intervals to
3085  * transmit.
3086  */
3087 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3088 		struct urb *urb, int slot_id, unsigned int ep_index)
3089 {
3090 	struct xhci_ep_ctx *ep_ctx;
3091 
3092 	ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index);
3093 	check_interval(xhci, urb, ep_ctx);
3094 
3095 	return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
3096 }
3097 
3098 /*
3099  * For xHCI 1.0 host controllers, TD size is the number of max packet sized
3100  * packets remaining in the TD (*not* including this TRB).
3101  *
3102  * Total TD packet count = total_packet_count =
3103  *     DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
3104  *
3105  * Packets transferred up to and including this TRB = packets_transferred =
3106  *     rounddown(total bytes transferred including this TRB / wMaxPacketSize)
3107  *
3108  * TD size = total_packet_count - packets_transferred
3109  *
3110  * For xHCI 0.96 and older, TD size field should be the remaining bytes
3111  * including this TRB, right shifted by 10
3112  *
3113  * For all hosts it must fit in bits 21:17, so it can't be bigger than 31.
3114  * This is taken care of in the TRB_TD_SIZE() macro
3115  *
3116  * The last TRB in a TD must have the TD size set to zero.
3117  */
3118 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred,
3119 			      int trb_buff_len, unsigned int td_total_len,
3120 			      struct urb *urb, bool more_trbs_coming)
3121 {
3122 	u32 maxp, total_packet_count;
3123 
3124 	/* MTK xHCI is mostly 0.97 but contains some features from 1.0 */
3125 	if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST))
3126 		return ((td_total_len - transferred) >> 10);
3127 
3128 	/* One TRB with a zero-length data packet. */
3129 	if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) ||
3130 	    trb_buff_len == td_total_len)
3131 		return 0;
3132 
3133 	/* for MTK xHCI, TD size doesn't include this TRB */
3134 	if (xhci->quirks & XHCI_MTK_HOST)
3135 		trb_buff_len = 0;
3136 
3137 	maxp = usb_endpoint_maxp(&urb->ep->desc);
3138 	total_packet_count = DIV_ROUND_UP(td_total_len, maxp);
3139 
3140 	/* Queueing functions don't count the current TRB into transferred */
3141 	return (total_packet_count - ((transferred + trb_buff_len) / maxp));
3142 }
3143 
3144 
3145 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len,
3146 			 u32 *trb_buff_len, struct xhci_segment *seg)
3147 {
3148 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
3149 	unsigned int unalign;
3150 	unsigned int max_pkt;
3151 	u32 new_buff_len;
3152 
3153 	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
3154 	unalign = (enqd_len + *trb_buff_len) % max_pkt;
3155 
3156 	/* we got lucky, last normal TRB data on segment is packet aligned */
3157 	if (unalign == 0)
3158 		return 0;
3159 
3160 	xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n",
3161 		 unalign, *trb_buff_len);
3162 
3163 	/* is the last nornal TRB alignable by splitting it */
3164 	if (*trb_buff_len > unalign) {
3165 		*trb_buff_len -= unalign;
3166 		xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len);
3167 		return 0;
3168 	}
3169 
3170 	/*
3171 	 * We want enqd_len + trb_buff_len to sum up to a number aligned to
3172 	 * number which is divisible by the endpoint's wMaxPacketSize. IOW:
3173 	 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0.
3174 	 */
3175 	new_buff_len = max_pkt - (enqd_len % max_pkt);
3176 
3177 	if (new_buff_len > (urb->transfer_buffer_length - enqd_len))
3178 		new_buff_len = (urb->transfer_buffer_length - enqd_len);
3179 
3180 	/* create a max max_pkt sized bounce buffer pointed to by last trb */
3181 	if (usb_urb_dir_out(urb)) {
3182 		sg_pcopy_to_buffer(urb->sg, urb->num_mapped_sgs,
3183 				   seg->bounce_buf, new_buff_len, enqd_len);
3184 		seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
3185 						 max_pkt, DMA_TO_DEVICE);
3186 	} else {
3187 		seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
3188 						 max_pkt, DMA_FROM_DEVICE);
3189 	}
3190 
3191 	if (dma_mapping_error(dev, seg->bounce_dma)) {
3192 		/* try without aligning. Some host controllers survive */
3193 		xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n");
3194 		return 0;
3195 	}
3196 	*trb_buff_len = new_buff_len;
3197 	seg->bounce_len = new_buff_len;
3198 	seg->bounce_offs = enqd_len;
3199 
3200 	xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len);
3201 
3202 	return 1;
3203 }
3204 
3205 /* This is very similar to what ehci-q.c qtd_fill() does */
3206 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3207 		struct urb *urb, int slot_id, unsigned int ep_index)
3208 {
3209 	struct xhci_ring *ring;
3210 	struct urb_priv *urb_priv;
3211 	struct xhci_td *td;
3212 	struct xhci_generic_trb *start_trb;
3213 	struct scatterlist *sg = NULL;
3214 	bool more_trbs_coming = true;
3215 	bool need_zero_pkt = false;
3216 	bool first_trb = true;
3217 	unsigned int num_trbs;
3218 	unsigned int start_cycle, num_sgs = 0;
3219 	unsigned int enqd_len, block_len, trb_buff_len, full_len;
3220 	int sent_len, ret;
3221 	u32 field, length_field, remainder;
3222 	u64 addr, send_addr;
3223 
3224 	ring = xhci_urb_to_transfer_ring(xhci, urb);
3225 	if (!ring)
3226 		return -EINVAL;
3227 
3228 	full_len = urb->transfer_buffer_length;
3229 	/* If we have scatter/gather list, we use it. */
3230 	if (urb->num_sgs) {
3231 		num_sgs = urb->num_mapped_sgs;
3232 		sg = urb->sg;
3233 		addr = (u64) sg_dma_address(sg);
3234 		block_len = sg_dma_len(sg);
3235 		num_trbs = count_sg_trbs_needed(urb);
3236 	} else {
3237 		num_trbs = count_trbs_needed(urb);
3238 		addr = (u64) urb->transfer_dma;
3239 		block_len = full_len;
3240 	}
3241 	ret = prepare_transfer(xhci, xhci->devs[slot_id],
3242 			ep_index, urb->stream_id,
3243 			num_trbs, urb, 0, mem_flags);
3244 	if (unlikely(ret < 0))
3245 		return ret;
3246 
3247 	urb_priv = urb->hcpriv;
3248 
3249 	/* Deal with URB_ZERO_PACKET - need one more td/trb */
3250 	if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1)
3251 		need_zero_pkt = true;
3252 
3253 	td = &urb_priv->td[0];
3254 
3255 	/*
3256 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3257 	 * until we've finished creating all the other TRBs.  The ring's cycle
3258 	 * state may change as we enqueue the other TRBs, so save it too.
3259 	 */
3260 	start_trb = &ring->enqueue->generic;
3261 	start_cycle = ring->cycle_state;
3262 	send_addr = addr;
3263 
3264 	/* Queue the TRBs, even if they are zero-length */
3265 	for (enqd_len = 0; first_trb || enqd_len < full_len;
3266 			enqd_len += trb_buff_len) {
3267 		field = TRB_TYPE(TRB_NORMAL);
3268 
3269 		/* TRB buffer should not cross 64KB boundaries */
3270 		trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3271 		trb_buff_len = min_t(unsigned int, trb_buff_len, block_len);
3272 
3273 		if (enqd_len + trb_buff_len > full_len)
3274 			trb_buff_len = full_len - enqd_len;
3275 
3276 		/* Don't change the cycle bit of the first TRB until later */
3277 		if (first_trb) {
3278 			first_trb = false;
3279 			if (start_cycle == 0)
3280 				field |= TRB_CYCLE;
3281 		} else
3282 			field |= ring->cycle_state;
3283 
3284 		/* Chain all the TRBs together; clear the chain bit in the last
3285 		 * TRB to indicate it's the last TRB in the chain.
3286 		 */
3287 		if (enqd_len + trb_buff_len < full_len) {
3288 			field |= TRB_CHAIN;
3289 			if (trb_is_link(ring->enqueue + 1)) {
3290 				if (xhci_align_td(xhci, urb, enqd_len,
3291 						  &trb_buff_len,
3292 						  ring->enq_seg)) {
3293 					send_addr = ring->enq_seg->bounce_dma;
3294 					/* assuming TD won't span 2 segs */
3295 					td->bounce_seg = ring->enq_seg;
3296 				}
3297 			}
3298 		}
3299 		if (enqd_len + trb_buff_len >= full_len) {
3300 			field &= ~TRB_CHAIN;
3301 			field |= TRB_IOC;
3302 			more_trbs_coming = false;
3303 			td->last_trb = ring->enqueue;
3304 		}
3305 
3306 		/* Only set interrupt on short packet for IN endpoints */
3307 		if (usb_urb_dir_in(urb))
3308 			field |= TRB_ISP;
3309 
3310 		/* Set the TRB length, TD size, and interrupter fields. */
3311 		remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len,
3312 					      full_len, urb, more_trbs_coming);
3313 
3314 		length_field = TRB_LEN(trb_buff_len) |
3315 			TRB_TD_SIZE(remainder) |
3316 			TRB_INTR_TARGET(0);
3317 
3318 		queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt,
3319 				lower_32_bits(send_addr),
3320 				upper_32_bits(send_addr),
3321 				length_field,
3322 				field);
3323 
3324 		addr += trb_buff_len;
3325 		sent_len = trb_buff_len;
3326 
3327 		while (sg && sent_len >= block_len) {
3328 			/* New sg entry */
3329 			--num_sgs;
3330 			sent_len -= block_len;
3331 			if (num_sgs != 0) {
3332 				sg = sg_next(sg);
3333 				block_len = sg_dma_len(sg);
3334 				addr = (u64) sg_dma_address(sg);
3335 				addr += sent_len;
3336 			}
3337 		}
3338 		block_len -= sent_len;
3339 		send_addr = addr;
3340 	}
3341 
3342 	if (need_zero_pkt) {
3343 		ret = prepare_transfer(xhci, xhci->devs[slot_id],
3344 				       ep_index, urb->stream_id,
3345 				       1, urb, 1, mem_flags);
3346 		urb_priv->td[1].last_trb = ring->enqueue;
3347 		field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC;
3348 		queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field);
3349 	}
3350 
3351 	check_trb_math(urb, enqd_len);
3352 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3353 			start_cycle, start_trb);
3354 	return 0;
3355 }
3356 
3357 /* Caller must have locked xhci->lock */
3358 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3359 		struct urb *urb, int slot_id, unsigned int ep_index)
3360 {
3361 	struct xhci_ring *ep_ring;
3362 	int num_trbs;
3363 	int ret;
3364 	struct usb_ctrlrequest *setup;
3365 	struct xhci_generic_trb *start_trb;
3366 	int start_cycle;
3367 	u32 field;
3368 	struct urb_priv *urb_priv;
3369 	struct xhci_td *td;
3370 
3371 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3372 	if (!ep_ring)
3373 		return -EINVAL;
3374 
3375 	/*
3376 	 * Need to copy setup packet into setup TRB, so we can't use the setup
3377 	 * DMA address.
3378 	 */
3379 	if (!urb->setup_packet)
3380 		return -EINVAL;
3381 
3382 	/* 1 TRB for setup, 1 for status */
3383 	num_trbs = 2;
3384 	/*
3385 	 * Don't need to check if we need additional event data and normal TRBs,
3386 	 * since data in control transfers will never get bigger than 16MB
3387 	 * XXX: can we get a buffer that crosses 64KB boundaries?
3388 	 */
3389 	if (urb->transfer_buffer_length > 0)
3390 		num_trbs++;
3391 	ret = prepare_transfer(xhci, xhci->devs[slot_id],
3392 			ep_index, urb->stream_id,
3393 			num_trbs, urb, 0, mem_flags);
3394 	if (ret < 0)
3395 		return ret;
3396 
3397 	urb_priv = urb->hcpriv;
3398 	td = &urb_priv->td[0];
3399 
3400 	/*
3401 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3402 	 * until we've finished creating all the other TRBs.  The ring's cycle
3403 	 * state may change as we enqueue the other TRBs, so save it too.
3404 	 */
3405 	start_trb = &ep_ring->enqueue->generic;
3406 	start_cycle = ep_ring->cycle_state;
3407 
3408 	/* Queue setup TRB - see section 6.4.1.2.1 */
3409 	/* FIXME better way to translate setup_packet into two u32 fields? */
3410 	setup = (struct usb_ctrlrequest *) urb->setup_packet;
3411 	field = 0;
3412 	field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3413 	if (start_cycle == 0)
3414 		field |= 0x1;
3415 
3416 	/* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */
3417 	if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) {
3418 		if (urb->transfer_buffer_length > 0) {
3419 			if (setup->bRequestType & USB_DIR_IN)
3420 				field |= TRB_TX_TYPE(TRB_DATA_IN);
3421 			else
3422 				field |= TRB_TX_TYPE(TRB_DATA_OUT);
3423 		}
3424 	}
3425 
3426 	queue_trb(xhci, ep_ring, true,
3427 		  setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3428 		  le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3429 		  TRB_LEN(8) | TRB_INTR_TARGET(0),
3430 		  /* Immediate data in pointer */
3431 		  field);
3432 
3433 	/* If there's data, queue data TRBs */
3434 	/* Only set interrupt on short packet for IN endpoints */
3435 	if (usb_urb_dir_in(urb))
3436 		field = TRB_ISP | TRB_TYPE(TRB_DATA);
3437 	else
3438 		field = TRB_TYPE(TRB_DATA);
3439 
3440 	if (urb->transfer_buffer_length > 0) {
3441 		u32 length_field, remainder;
3442 
3443 		remainder = xhci_td_remainder(xhci, 0,
3444 				urb->transfer_buffer_length,
3445 				urb->transfer_buffer_length,
3446 				urb, 1);
3447 		length_field = TRB_LEN(urb->transfer_buffer_length) |
3448 				TRB_TD_SIZE(remainder) |
3449 				TRB_INTR_TARGET(0);
3450 		if (setup->bRequestType & USB_DIR_IN)
3451 			field |= TRB_DIR_IN;
3452 		queue_trb(xhci, ep_ring, true,
3453 				lower_32_bits(urb->transfer_dma),
3454 				upper_32_bits(urb->transfer_dma),
3455 				length_field,
3456 				field | ep_ring->cycle_state);
3457 	}
3458 
3459 	/* Save the DMA address of the last TRB in the TD */
3460 	td->last_trb = ep_ring->enqueue;
3461 
3462 	/* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3463 	/* If the device sent data, the status stage is an OUT transfer */
3464 	if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3465 		field = 0;
3466 	else
3467 		field = TRB_DIR_IN;
3468 	queue_trb(xhci, ep_ring, false,
3469 			0,
3470 			0,
3471 			TRB_INTR_TARGET(0),
3472 			/* Event on completion */
3473 			field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3474 
3475 	giveback_first_trb(xhci, slot_id, ep_index, 0,
3476 			start_cycle, start_trb);
3477 	return 0;
3478 }
3479 
3480 /*
3481  * The transfer burst count field of the isochronous TRB defines the number of
3482  * bursts that are required to move all packets in this TD.  Only SuperSpeed
3483  * devices can burst up to bMaxBurst number of packets per service interval.
3484  * This field is zero based, meaning a value of zero in the field means one
3485  * burst.  Basically, for everything but SuperSpeed devices, this field will be
3486  * zero.  Only xHCI 1.0 host controllers support this field.
3487  */
3488 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3489 		struct urb *urb, unsigned int total_packet_count)
3490 {
3491 	unsigned int max_burst;
3492 
3493 	if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER)
3494 		return 0;
3495 
3496 	max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3497 	return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
3498 }
3499 
3500 /*
3501  * Returns the number of packets in the last "burst" of packets.  This field is
3502  * valid for all speeds of devices.  USB 2.0 devices can only do one "burst", so
3503  * the last burst packet count is equal to the total number of packets in the
3504  * TD.  SuperSpeed endpoints can have up to 3 bursts.  All but the last burst
3505  * must contain (bMaxBurst + 1) number of packets, but the last burst can
3506  * contain 1 to (bMaxBurst + 1) packets.
3507  */
3508 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3509 		struct urb *urb, unsigned int total_packet_count)
3510 {
3511 	unsigned int max_burst;
3512 	unsigned int residue;
3513 
3514 	if (xhci->hci_version < 0x100)
3515 		return 0;
3516 
3517 	if (urb->dev->speed >= USB_SPEED_SUPER) {
3518 		/* bMaxBurst is zero based: 0 means 1 packet per burst */
3519 		max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3520 		residue = total_packet_count % (max_burst + 1);
3521 		/* If residue is zero, the last burst contains (max_burst + 1)
3522 		 * number of packets, but the TLBPC field is zero-based.
3523 		 */
3524 		if (residue == 0)
3525 			return max_burst;
3526 		return residue - 1;
3527 	}
3528 	if (total_packet_count == 0)
3529 		return 0;
3530 	return total_packet_count - 1;
3531 }
3532 
3533 /*
3534  * Calculates Frame ID field of the isochronous TRB identifies the
3535  * target frame that the Interval associated with this Isochronous
3536  * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec.
3537  *
3538  * Returns actual frame id on success, negative value on error.
3539  */
3540 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci,
3541 		struct urb *urb, int index)
3542 {
3543 	int start_frame, ist, ret = 0;
3544 	int start_frame_id, end_frame_id, current_frame_id;
3545 
3546 	if (urb->dev->speed == USB_SPEED_LOW ||
3547 			urb->dev->speed == USB_SPEED_FULL)
3548 		start_frame = urb->start_frame + index * urb->interval;
3549 	else
3550 		start_frame = (urb->start_frame + index * urb->interval) >> 3;
3551 
3552 	/* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2):
3553 	 *
3554 	 * If bit [3] of IST is cleared to '0', software can add a TRB no
3555 	 * later than IST[2:0] Microframes before that TRB is scheduled to
3556 	 * be executed.
3557 	 * If bit [3] of IST is set to '1', software can add a TRB no later
3558 	 * than IST[2:0] Frames before that TRB is scheduled to be executed.
3559 	 */
3560 	ist = HCS_IST(xhci->hcs_params2) & 0x7;
3561 	if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3562 		ist <<= 3;
3563 
3564 	/* Software shall not schedule an Isoch TD with a Frame ID value that
3565 	 * is less than the Start Frame ID or greater than the End Frame ID,
3566 	 * where:
3567 	 *
3568 	 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048
3569 	 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048
3570 	 *
3571 	 * Both the End Frame ID and Start Frame ID values are calculated
3572 	 * in microframes. When software determines the valid Frame ID value;
3573 	 * The End Frame ID value should be rounded down to the nearest Frame
3574 	 * boundary, and the Start Frame ID value should be rounded up to the
3575 	 * nearest Frame boundary.
3576 	 */
3577 	current_frame_id = readl(&xhci->run_regs->microframe_index);
3578 	start_frame_id = roundup(current_frame_id + ist + 1, 8);
3579 	end_frame_id = rounddown(current_frame_id + 895 * 8, 8);
3580 
3581 	start_frame &= 0x7ff;
3582 	start_frame_id = (start_frame_id >> 3) & 0x7ff;
3583 	end_frame_id = (end_frame_id >> 3) & 0x7ff;
3584 
3585 	xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n",
3586 		 __func__, index, readl(&xhci->run_regs->microframe_index),
3587 		 start_frame_id, end_frame_id, start_frame);
3588 
3589 	if (start_frame_id < end_frame_id) {
3590 		if (start_frame > end_frame_id ||
3591 				start_frame < start_frame_id)
3592 			ret = -EINVAL;
3593 	} else if (start_frame_id > end_frame_id) {
3594 		if ((start_frame > end_frame_id &&
3595 				start_frame < start_frame_id))
3596 			ret = -EINVAL;
3597 	} else {
3598 			ret = -EINVAL;
3599 	}
3600 
3601 	if (index == 0) {
3602 		if (ret == -EINVAL || start_frame == start_frame_id) {
3603 			start_frame = start_frame_id + 1;
3604 			if (urb->dev->speed == USB_SPEED_LOW ||
3605 					urb->dev->speed == USB_SPEED_FULL)
3606 				urb->start_frame = start_frame;
3607 			else
3608 				urb->start_frame = start_frame << 3;
3609 			ret = 0;
3610 		}
3611 	}
3612 
3613 	if (ret) {
3614 		xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n",
3615 				start_frame, current_frame_id, index,
3616 				start_frame_id, end_frame_id);
3617 		xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n");
3618 		return ret;
3619 	}
3620 
3621 	return start_frame;
3622 }
3623 
3624 /* This is for isoc transfer */
3625 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3626 		struct urb *urb, int slot_id, unsigned int ep_index)
3627 {
3628 	struct xhci_ring *ep_ring;
3629 	struct urb_priv *urb_priv;
3630 	struct xhci_td *td;
3631 	int num_tds, trbs_per_td;
3632 	struct xhci_generic_trb *start_trb;
3633 	bool first_trb;
3634 	int start_cycle;
3635 	u32 field, length_field;
3636 	int running_total, trb_buff_len, td_len, td_remain_len, ret;
3637 	u64 start_addr, addr;
3638 	int i, j;
3639 	bool more_trbs_coming;
3640 	struct xhci_virt_ep *xep;
3641 	int frame_id;
3642 
3643 	xep = &xhci->devs[slot_id]->eps[ep_index];
3644 	ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3645 
3646 	num_tds = urb->number_of_packets;
3647 	if (num_tds < 1) {
3648 		xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3649 		return -EINVAL;
3650 	}
3651 	start_addr = (u64) urb->transfer_dma;
3652 	start_trb = &ep_ring->enqueue->generic;
3653 	start_cycle = ep_ring->cycle_state;
3654 
3655 	urb_priv = urb->hcpriv;
3656 	/* Queue the TRBs for each TD, even if they are zero-length */
3657 	for (i = 0; i < num_tds; i++) {
3658 		unsigned int total_pkt_count, max_pkt;
3659 		unsigned int burst_count, last_burst_pkt_count;
3660 		u32 sia_frame_id;
3661 
3662 		first_trb = true;
3663 		running_total = 0;
3664 		addr = start_addr + urb->iso_frame_desc[i].offset;
3665 		td_len = urb->iso_frame_desc[i].length;
3666 		td_remain_len = td_len;
3667 		max_pkt = usb_endpoint_maxp(&urb->ep->desc);
3668 		total_pkt_count = DIV_ROUND_UP(td_len, max_pkt);
3669 
3670 		/* A zero-length transfer still involves at least one packet. */
3671 		if (total_pkt_count == 0)
3672 			total_pkt_count++;
3673 		burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count);
3674 		last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci,
3675 							urb, total_pkt_count);
3676 
3677 		trbs_per_td = count_isoc_trbs_needed(urb, i);
3678 
3679 		ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3680 				urb->stream_id, trbs_per_td, urb, i, mem_flags);
3681 		if (ret < 0) {
3682 			if (i == 0)
3683 				return ret;
3684 			goto cleanup;
3685 		}
3686 		td = &urb_priv->td[i];
3687 
3688 		/* use SIA as default, if frame id is used overwrite it */
3689 		sia_frame_id = TRB_SIA;
3690 		if (!(urb->transfer_flags & URB_ISO_ASAP) &&
3691 		    HCC_CFC(xhci->hcc_params)) {
3692 			frame_id = xhci_get_isoc_frame_id(xhci, urb, i);
3693 			if (frame_id >= 0)
3694 				sia_frame_id = TRB_FRAME_ID(frame_id);
3695 		}
3696 		/*
3697 		 * Set isoc specific data for the first TRB in a TD.
3698 		 * Prevent HW from getting the TRBs by keeping the cycle state
3699 		 * inverted in the first TDs isoc TRB.
3700 		 */
3701 		field = TRB_TYPE(TRB_ISOC) |
3702 			TRB_TLBPC(last_burst_pkt_count) |
3703 			sia_frame_id |
3704 			(i ? ep_ring->cycle_state : !start_cycle);
3705 
3706 		/* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */
3707 		if (!xep->use_extended_tbc)
3708 			field |= TRB_TBC(burst_count);
3709 
3710 		/* fill the rest of the TRB fields, and remaining normal TRBs */
3711 		for (j = 0; j < trbs_per_td; j++) {
3712 			u32 remainder = 0;
3713 
3714 			/* only first TRB is isoc, overwrite otherwise */
3715 			if (!first_trb)
3716 				field = TRB_TYPE(TRB_NORMAL) |
3717 					ep_ring->cycle_state;
3718 
3719 			/* Only set interrupt on short packet for IN EPs */
3720 			if (usb_urb_dir_in(urb))
3721 				field |= TRB_ISP;
3722 
3723 			/* Set the chain bit for all except the last TRB  */
3724 			if (j < trbs_per_td - 1) {
3725 				more_trbs_coming = true;
3726 				field |= TRB_CHAIN;
3727 			} else {
3728 				more_trbs_coming = false;
3729 				td->last_trb = ep_ring->enqueue;
3730 				field |= TRB_IOC;
3731 				/* set BEI, except for the last TD */
3732 				if (xhci->hci_version >= 0x100 &&
3733 				    !(xhci->quirks & XHCI_AVOID_BEI) &&
3734 				    i < num_tds - 1)
3735 					field |= TRB_BEI;
3736 			}
3737 			/* Calculate TRB length */
3738 			trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3739 			if (trb_buff_len > td_remain_len)
3740 				trb_buff_len = td_remain_len;
3741 
3742 			/* Set the TRB length, TD size, & interrupter fields. */
3743 			remainder = xhci_td_remainder(xhci, running_total,
3744 						   trb_buff_len, td_len,
3745 						   urb, more_trbs_coming);
3746 
3747 			length_field = TRB_LEN(trb_buff_len) |
3748 				TRB_INTR_TARGET(0);
3749 
3750 			/* xhci 1.1 with ETE uses TD Size field for TBC */
3751 			if (first_trb && xep->use_extended_tbc)
3752 				length_field |= TRB_TD_SIZE_TBC(burst_count);
3753 			else
3754 				length_field |= TRB_TD_SIZE(remainder);
3755 			first_trb = false;
3756 
3757 			queue_trb(xhci, ep_ring, more_trbs_coming,
3758 				lower_32_bits(addr),
3759 				upper_32_bits(addr),
3760 				length_field,
3761 				field);
3762 			running_total += trb_buff_len;
3763 
3764 			addr += trb_buff_len;
3765 			td_remain_len -= trb_buff_len;
3766 		}
3767 
3768 		/* Check TD length */
3769 		if (running_total != td_len) {
3770 			xhci_err(xhci, "ISOC TD length unmatch\n");
3771 			ret = -EINVAL;
3772 			goto cleanup;
3773 		}
3774 	}
3775 
3776 	/* store the next frame id */
3777 	if (HCC_CFC(xhci->hcc_params))
3778 		xep->next_frame_id = urb->start_frame + num_tds * urb->interval;
3779 
3780 	if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3781 		if (xhci->quirks & XHCI_AMD_PLL_FIX)
3782 			usb_amd_quirk_pll_disable();
3783 	}
3784 	xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3785 
3786 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3787 			start_cycle, start_trb);
3788 	return 0;
3789 cleanup:
3790 	/* Clean up a partially enqueued isoc transfer. */
3791 
3792 	for (i--; i >= 0; i--)
3793 		list_del_init(&urb_priv->td[i].td_list);
3794 
3795 	/* Use the first TD as a temporary variable to turn the TDs we've queued
3796 	 * into No-ops with a software-owned cycle bit. That way the hardware
3797 	 * won't accidentally start executing bogus TDs when we partially
3798 	 * overwrite them.  td->first_trb and td->start_seg are already set.
3799 	 */
3800 	urb_priv->td[0].last_trb = ep_ring->enqueue;
3801 	/* Every TRB except the first & last will have its cycle bit flipped. */
3802 	td_to_noop(xhci, ep_ring, &urb_priv->td[0], true);
3803 
3804 	/* Reset the ring enqueue back to the first TRB and its cycle bit. */
3805 	ep_ring->enqueue = urb_priv->td[0].first_trb;
3806 	ep_ring->enq_seg = urb_priv->td[0].start_seg;
3807 	ep_ring->cycle_state = start_cycle;
3808 	ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
3809 	usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3810 	return ret;
3811 }
3812 
3813 /*
3814  * Check transfer ring to guarantee there is enough room for the urb.
3815  * Update ISO URB start_frame and interval.
3816  * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to
3817  * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or
3818  * Contiguous Frame ID is not supported by HC.
3819  */
3820 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3821 		struct urb *urb, int slot_id, unsigned int ep_index)
3822 {
3823 	struct xhci_virt_device *xdev;
3824 	struct xhci_ring *ep_ring;
3825 	struct xhci_ep_ctx *ep_ctx;
3826 	int start_frame;
3827 	int num_tds, num_trbs, i;
3828 	int ret;
3829 	struct xhci_virt_ep *xep;
3830 	int ist;
3831 
3832 	xdev = xhci->devs[slot_id];
3833 	xep = &xhci->devs[slot_id]->eps[ep_index];
3834 	ep_ring = xdev->eps[ep_index].ring;
3835 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3836 
3837 	num_trbs = 0;
3838 	num_tds = urb->number_of_packets;
3839 	for (i = 0; i < num_tds; i++)
3840 		num_trbs += count_isoc_trbs_needed(urb, i);
3841 
3842 	/* Check the ring to guarantee there is enough room for the whole urb.
3843 	 * Do not insert any td of the urb to the ring if the check failed.
3844 	 */
3845 	ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
3846 			   num_trbs, mem_flags);
3847 	if (ret)
3848 		return ret;
3849 
3850 	/*
3851 	 * Check interval value. This should be done before we start to
3852 	 * calculate the start frame value.
3853 	 */
3854 	check_interval(xhci, urb, ep_ctx);
3855 
3856 	/* Calculate the start frame and put it in urb->start_frame. */
3857 	if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) {
3858 		if (GET_EP_CTX_STATE(ep_ctx) ==	EP_STATE_RUNNING) {
3859 			urb->start_frame = xep->next_frame_id;
3860 			goto skip_start_over;
3861 		}
3862 	}
3863 
3864 	start_frame = readl(&xhci->run_regs->microframe_index);
3865 	start_frame &= 0x3fff;
3866 	/*
3867 	 * Round up to the next frame and consider the time before trb really
3868 	 * gets scheduled by hardare.
3869 	 */
3870 	ist = HCS_IST(xhci->hcs_params2) & 0x7;
3871 	if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3872 		ist <<= 3;
3873 	start_frame += ist + XHCI_CFC_DELAY;
3874 	start_frame = roundup(start_frame, 8);
3875 
3876 	/*
3877 	 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT
3878 	 * is greate than 8 microframes.
3879 	 */
3880 	if (urb->dev->speed == USB_SPEED_LOW ||
3881 			urb->dev->speed == USB_SPEED_FULL) {
3882 		start_frame = roundup(start_frame, urb->interval << 3);
3883 		urb->start_frame = start_frame >> 3;
3884 	} else {
3885 		start_frame = roundup(start_frame, urb->interval);
3886 		urb->start_frame = start_frame;
3887 	}
3888 
3889 skip_start_over:
3890 	ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
3891 
3892 	return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
3893 }
3894 
3895 /****		Command Ring Operations		****/
3896 
3897 /* Generic function for queueing a command TRB on the command ring.
3898  * Check to make sure there's room on the command ring for one command TRB.
3899  * Also check that there's room reserved for commands that must not fail.
3900  * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3901  * then only check for the number of reserved spots.
3902  * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3903  * because the command event handler may want to resubmit a failed command.
3904  */
3905 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
3906 			 u32 field1, u32 field2,
3907 			 u32 field3, u32 field4, bool command_must_succeed)
3908 {
3909 	int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3910 	int ret;
3911 
3912 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3913 		(xhci->xhc_state & XHCI_STATE_HALTED)) {
3914 		xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n");
3915 		return -ESHUTDOWN;
3916 	}
3917 
3918 	if (!command_must_succeed)
3919 		reserved_trbs++;
3920 
3921 	ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3922 			reserved_trbs, GFP_ATOMIC);
3923 	if (ret < 0) {
3924 		xhci_err(xhci, "ERR: No room for command on command ring\n");
3925 		if (command_must_succeed)
3926 			xhci_err(xhci, "ERR: Reserved TRB counting for "
3927 					"unfailable commands failed.\n");
3928 		return ret;
3929 	}
3930 
3931 	cmd->command_trb = xhci->cmd_ring->enqueue;
3932 
3933 	/* if there are no other commands queued we start the timeout timer */
3934 	if (list_empty(&xhci->cmd_list)) {
3935 		xhci->current_cmd = cmd;
3936 		xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
3937 	}
3938 
3939 	list_add_tail(&cmd->cmd_list, &xhci->cmd_list);
3940 
3941 	queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
3942 			field4 | xhci->cmd_ring->cycle_state);
3943 	return 0;
3944 }
3945 
3946 /* Queue a slot enable or disable request on the command ring */
3947 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd,
3948 		u32 trb_type, u32 slot_id)
3949 {
3950 	return queue_command(xhci, cmd, 0, 0, 0,
3951 			TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3952 }
3953 
3954 /* Queue an address device command TRB */
3955 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
3956 		dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup)
3957 {
3958 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3959 			upper_32_bits(in_ctx_ptr), 0,
3960 			TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id)
3961 			| (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false);
3962 }
3963 
3964 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
3965 		u32 field1, u32 field2, u32 field3, u32 field4)
3966 {
3967 	return queue_command(xhci, cmd, field1, field2, field3, field4, false);
3968 }
3969 
3970 /* Queue a reset device command TRB */
3971 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
3972 		u32 slot_id)
3973 {
3974 	return queue_command(xhci, cmd, 0, 0, 0,
3975 			TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3976 			false);
3977 }
3978 
3979 /* Queue a configure endpoint command TRB */
3980 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci,
3981 		struct xhci_command *cmd, dma_addr_t in_ctx_ptr,
3982 		u32 slot_id, bool command_must_succeed)
3983 {
3984 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3985 			upper_32_bits(in_ctx_ptr), 0,
3986 			TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3987 			command_must_succeed);
3988 }
3989 
3990 /* Queue an evaluate context command TRB */
3991 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd,
3992 		dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed)
3993 {
3994 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3995 			upper_32_bits(in_ctx_ptr), 0,
3996 			TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3997 			command_must_succeed);
3998 }
3999 
4000 /*
4001  * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
4002  * activity on an endpoint that is about to be suspended.
4003  */
4004 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd,
4005 			     int slot_id, unsigned int ep_index, int suspend)
4006 {
4007 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4008 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4009 	u32 type = TRB_TYPE(TRB_STOP_RING);
4010 	u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
4011 
4012 	return queue_command(xhci, cmd, 0, 0, 0,
4013 			trb_slot_id | trb_ep_index | type | trb_suspend, false);
4014 }
4015 
4016 /* Set Transfer Ring Dequeue Pointer command */
4017 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
4018 		unsigned int slot_id, unsigned int ep_index,
4019 		struct xhci_dequeue_state *deq_state)
4020 {
4021 	dma_addr_t addr;
4022 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4023 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4024 	u32 trb_stream_id = STREAM_ID_FOR_TRB(deq_state->stream_id);
4025 	u32 trb_sct = 0;
4026 	u32 type = TRB_TYPE(TRB_SET_DEQ);
4027 	struct xhci_virt_ep *ep;
4028 	struct xhci_command *cmd;
4029 	int ret;
4030 
4031 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
4032 		"Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u",
4033 		deq_state->new_deq_seg,
4034 		(unsigned long long)deq_state->new_deq_seg->dma,
4035 		deq_state->new_deq_ptr,
4036 		(unsigned long long)xhci_trb_virt_to_dma(
4037 			deq_state->new_deq_seg, deq_state->new_deq_ptr),
4038 		deq_state->new_cycle_state);
4039 
4040 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
4041 				    deq_state->new_deq_ptr);
4042 	if (addr == 0) {
4043 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4044 		xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
4045 			  deq_state->new_deq_seg, deq_state->new_deq_ptr);
4046 		return;
4047 	}
4048 	ep = &xhci->devs[slot_id]->eps[ep_index];
4049 	if ((ep->ep_state & SET_DEQ_PENDING)) {
4050 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4051 		xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
4052 		return;
4053 	}
4054 
4055 	/* This function gets called from contexts where it cannot sleep */
4056 	cmd = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
4057 	if (!cmd)
4058 		return;
4059 
4060 	ep->queued_deq_seg = deq_state->new_deq_seg;
4061 	ep->queued_deq_ptr = deq_state->new_deq_ptr;
4062 	if (deq_state->stream_id)
4063 		trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
4064 	ret = queue_command(xhci, cmd,
4065 		lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state,
4066 		upper_32_bits(addr), trb_stream_id,
4067 		trb_slot_id | trb_ep_index | type, false);
4068 	if (ret < 0) {
4069 		xhci_free_command(xhci, cmd);
4070 		return;
4071 	}
4072 
4073 	/* Stop the TD queueing code from ringing the doorbell until
4074 	 * this command completes.  The HC won't set the dequeue pointer
4075 	 * if the ring is running, and ringing the doorbell starts the
4076 	 * ring running.
4077 	 */
4078 	ep->ep_state |= SET_DEQ_PENDING;
4079 }
4080 
4081 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd,
4082 			int slot_id, unsigned int ep_index,
4083 			enum xhci_ep_reset_type reset_type)
4084 {
4085 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4086 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4087 	u32 type = TRB_TYPE(TRB_RESET_EP);
4088 
4089 	if (reset_type == EP_SOFT_RESET)
4090 		type |= TRB_TSP;
4091 
4092 	return queue_command(xhci, cmd, 0, 0, 0,
4093 			trb_slot_id | trb_ep_index | type, false);
4094 }
4095