1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 /* 24 * Ring initialization rules: 25 * 1. Each segment is initialized to zero, except for link TRBs. 26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 27 * Consumer Cycle State (CCS), depending on ring function. 28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 29 * 30 * Ring behavior rules: 31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 32 * least one free TRB in the ring. This is useful if you want to turn that 33 * into a link TRB and expand the ring. 34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 35 * link TRB, then load the pointer with the address in the link TRB. If the 36 * link TRB had its toggle bit set, you may need to update the ring cycle 37 * state (see cycle bit rules). You may have to do this multiple times 38 * until you reach a non-link TRB. 39 * 3. A ring is full if enqueue++ (for the definition of increment above) 40 * equals the dequeue pointer. 41 * 42 * Cycle bit rules: 43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 44 * in a link TRB, it must toggle the ring cycle state. 45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 46 * in a link TRB, it must toggle the ring cycle state. 47 * 48 * Producer rules: 49 * 1. Check if ring is full before you enqueue. 50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 51 * Update enqueue pointer between each write (which may update the ring 52 * cycle state). 53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 54 * and endpoint rings. If HC is the producer for the event ring, 55 * and it generates an interrupt according to interrupt modulation rules. 56 * 57 * Consumer rules: 58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 59 * the TRB is owned by the consumer. 60 * 2. Update dequeue pointer (which may update the ring cycle state) and 61 * continue processing TRBs until you reach a TRB which is not owned by you. 62 * 3. Notify the producer. SW is the consumer for the event ring, and it 63 * updates event ring dequeue pointer. HC is the consumer for the command and 64 * endpoint rings; it generates events on the event ring for these. 65 */ 66 67 #include <linux/scatterlist.h> 68 #include <linux/slab.h> 69 #include "xhci.h" 70 #include "xhci-trace.h" 71 72 /* 73 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 74 * address of the TRB. 75 */ 76 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 77 union xhci_trb *trb) 78 { 79 unsigned long segment_offset; 80 81 if (!seg || !trb || trb < seg->trbs) 82 return 0; 83 /* offset in TRBs */ 84 segment_offset = trb - seg->trbs; 85 if (segment_offset > TRBS_PER_SEGMENT) 86 return 0; 87 return seg->dma + (segment_offset * sizeof(*trb)); 88 } 89 90 /* Does this link TRB point to the first segment in a ring, 91 * or was the previous TRB the last TRB on the last segment in the ERST? 92 */ 93 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring, 94 struct xhci_segment *seg, union xhci_trb *trb) 95 { 96 if (ring == xhci->event_ring) 97 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) && 98 (seg->next == xhci->event_ring->first_seg); 99 else 100 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 101 } 102 103 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring 104 * segment? I.e. would the updated event TRB pointer step off the end of the 105 * event seg? 106 */ 107 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 108 struct xhci_segment *seg, union xhci_trb *trb) 109 { 110 if (ring == xhci->event_ring) 111 return trb == &seg->trbs[TRBS_PER_SEGMENT]; 112 else 113 return TRB_TYPE_LINK_LE32(trb->link.control); 114 } 115 116 static int enqueue_is_link_trb(struct xhci_ring *ring) 117 { 118 struct xhci_link_trb *link = &ring->enqueue->link; 119 return TRB_TYPE_LINK_LE32(link->control); 120 } 121 122 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 123 * TRB is in a new segment. This does not skip over link TRBs, and it does not 124 * effect the ring dequeue or enqueue pointers. 125 */ 126 static void next_trb(struct xhci_hcd *xhci, 127 struct xhci_ring *ring, 128 struct xhci_segment **seg, 129 union xhci_trb **trb) 130 { 131 if (last_trb(xhci, ring, *seg, *trb)) { 132 *seg = (*seg)->next; 133 *trb = ((*seg)->trbs); 134 } else { 135 (*trb)++; 136 } 137 } 138 139 /* 140 * See Cycle bit rules. SW is the consumer for the event ring only. 141 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 142 */ 143 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 144 { 145 ring->deq_updates++; 146 147 /* 148 * If this is not event ring, and the dequeue pointer 149 * is not on a link TRB, there is one more usable TRB 150 */ 151 if (ring->type != TYPE_EVENT && 152 !last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) 153 ring->num_trbs_free++; 154 155 do { 156 /* 157 * Update the dequeue pointer further if that was a link TRB or 158 * we're at the end of an event ring segment (which doesn't have 159 * link TRBS) 160 */ 161 if (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) { 162 if (ring->type == TYPE_EVENT && 163 last_trb_on_last_seg(xhci, ring, 164 ring->deq_seg, ring->dequeue)) { 165 ring->cycle_state ^= 1; 166 } 167 ring->deq_seg = ring->deq_seg->next; 168 ring->dequeue = ring->deq_seg->trbs; 169 } else { 170 ring->dequeue++; 171 } 172 } while (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)); 173 } 174 175 /* 176 * See Cycle bit rules. SW is the consumer for the event ring only. 177 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 178 * 179 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 180 * chain bit is set), then set the chain bit in all the following link TRBs. 181 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 182 * have their chain bit cleared (so that each Link TRB is a separate TD). 183 * 184 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 185 * set, but other sections talk about dealing with the chain bit set. This was 186 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 187 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 188 * 189 * @more_trbs_coming: Will you enqueue more TRBs before calling 190 * prepare_transfer()? 191 */ 192 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 193 bool more_trbs_coming) 194 { 195 u32 chain; 196 union xhci_trb *next; 197 198 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 199 /* If this is not event ring, there is one less usable TRB */ 200 if (ring->type != TYPE_EVENT && 201 !last_trb(xhci, ring, ring->enq_seg, ring->enqueue)) 202 ring->num_trbs_free--; 203 next = ++(ring->enqueue); 204 205 ring->enq_updates++; 206 /* Update the dequeue pointer further if that was a link TRB or we're at 207 * the end of an event ring segment (which doesn't have link TRBS) 208 */ 209 while (last_trb(xhci, ring, ring->enq_seg, next)) { 210 if (ring->type != TYPE_EVENT) { 211 /* 212 * If the caller doesn't plan on enqueueing more 213 * TDs before ringing the doorbell, then we 214 * don't want to give the link TRB to the 215 * hardware just yet. We'll give the link TRB 216 * back in prepare_ring() just before we enqueue 217 * the TD at the top of the ring. 218 */ 219 if (!chain && !more_trbs_coming) 220 break; 221 222 /* If we're not dealing with 0.95 hardware or 223 * isoc rings on AMD 0.96 host, 224 * carry over the chain bit of the previous TRB 225 * (which may mean the chain bit is cleared). 226 */ 227 if (!(ring->type == TYPE_ISOC && 228 (xhci->quirks & XHCI_AMD_0x96_HOST)) 229 && !xhci_link_trb_quirk(xhci)) { 230 next->link.control &= 231 cpu_to_le32(~TRB_CHAIN); 232 next->link.control |= 233 cpu_to_le32(chain); 234 } 235 /* Give this link TRB to the hardware */ 236 wmb(); 237 next->link.control ^= cpu_to_le32(TRB_CYCLE); 238 239 /* Toggle the cycle bit after the last ring segment. */ 240 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 241 ring->cycle_state = (ring->cycle_state ? 0 : 1); 242 } 243 } 244 ring->enq_seg = ring->enq_seg->next; 245 ring->enqueue = ring->enq_seg->trbs; 246 next = ring->enqueue; 247 } 248 } 249 250 /* 251 * Check to see if there's room to enqueue num_trbs on the ring and make sure 252 * enqueue pointer will not advance into dequeue segment. See rules above. 253 */ 254 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 255 unsigned int num_trbs) 256 { 257 int num_trbs_in_deq_seg; 258 259 if (ring->num_trbs_free < num_trbs) 260 return 0; 261 262 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { 263 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; 264 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) 265 return 0; 266 } 267 268 return 1; 269 } 270 271 /* Ring the host controller doorbell after placing a command on the ring */ 272 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 273 { 274 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 275 return; 276 277 xhci_dbg(xhci, "// Ding dong!\n"); 278 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 279 /* Flush PCI posted writes */ 280 readl(&xhci->dba->doorbell[0]); 281 } 282 283 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci) 284 { 285 u64 temp_64; 286 int ret; 287 288 xhci_dbg(xhci, "Abort command ring\n"); 289 290 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 291 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 292 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT, 293 &xhci->op_regs->cmd_ring); 294 295 /* Section 4.6.1.2 of xHCI 1.0 spec says software should 296 * time the completion od all xHCI commands, including 297 * the Command Abort operation. If software doesn't see 298 * CRR negated in a timely manner (e.g. longer than 5 299 * seconds), then it should assume that the there are 300 * larger problems with the xHC and assert HCRST. 301 */ 302 ret = xhci_handshake(xhci, &xhci->op_regs->cmd_ring, 303 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 304 if (ret < 0) { 305 xhci_err(xhci, "Stopped the command ring failed, " 306 "maybe the host is dead\n"); 307 xhci->xhc_state |= XHCI_STATE_DYING; 308 xhci_quiesce(xhci); 309 xhci_halt(xhci); 310 return -ESHUTDOWN; 311 } 312 313 return 0; 314 } 315 316 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 317 unsigned int slot_id, 318 unsigned int ep_index, 319 unsigned int stream_id) 320 { 321 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 322 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 323 unsigned int ep_state = ep->ep_state; 324 325 /* Don't ring the doorbell for this endpoint if there are pending 326 * cancellations because we don't want to interrupt processing. 327 * We don't want to restart any stream rings if there's a set dequeue 328 * pointer command pending because the device can choose to start any 329 * stream once the endpoint is on the HW schedule. 330 * FIXME - check all the stream rings for pending cancellations. 331 */ 332 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) || 333 (ep_state & EP_HALTED)) 334 return; 335 writel(DB_VALUE(ep_index, stream_id), db_addr); 336 /* The CPU has better things to do at this point than wait for a 337 * write-posting flush. It'll get there soon enough. 338 */ 339 } 340 341 /* Ring the doorbell for any rings with pending URBs */ 342 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 343 unsigned int slot_id, 344 unsigned int ep_index) 345 { 346 unsigned int stream_id; 347 struct xhci_virt_ep *ep; 348 349 ep = &xhci->devs[slot_id]->eps[ep_index]; 350 351 /* A ring has pending URBs if its TD list is not empty */ 352 if (!(ep->ep_state & EP_HAS_STREAMS)) { 353 if (ep->ring && !(list_empty(&ep->ring->td_list))) 354 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 355 return; 356 } 357 358 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 359 stream_id++) { 360 struct xhci_stream_info *stream_info = ep->stream_info; 361 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 362 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 363 stream_id); 364 } 365 } 366 367 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 368 unsigned int slot_id, unsigned int ep_index, 369 unsigned int stream_id) 370 { 371 struct xhci_virt_ep *ep; 372 373 ep = &xhci->devs[slot_id]->eps[ep_index]; 374 /* Common case: no streams */ 375 if (!(ep->ep_state & EP_HAS_STREAMS)) 376 return ep->ring; 377 378 if (stream_id == 0) { 379 xhci_warn(xhci, 380 "WARN: Slot ID %u, ep index %u has streams, " 381 "but URB has no stream ID.\n", 382 slot_id, ep_index); 383 return NULL; 384 } 385 386 if (stream_id < ep->stream_info->num_streams) 387 return ep->stream_info->stream_rings[stream_id]; 388 389 xhci_warn(xhci, 390 "WARN: Slot ID %u, ep index %u has " 391 "stream IDs 1 to %u allocated, " 392 "but stream ID %u is requested.\n", 393 slot_id, ep_index, 394 ep->stream_info->num_streams - 1, 395 stream_id); 396 return NULL; 397 } 398 399 /* Get the right ring for the given URB. 400 * If the endpoint supports streams, boundary check the URB's stream ID. 401 * If the endpoint doesn't support streams, return the singular endpoint ring. 402 */ 403 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 404 struct urb *urb) 405 { 406 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id, 407 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id); 408 } 409 410 /* 411 * Move the xHC's endpoint ring dequeue pointer past cur_td. 412 * Record the new state of the xHC's endpoint ring dequeue segment, 413 * dequeue pointer, and new consumer cycle state in state. 414 * Update our internal representation of the ring's dequeue pointer. 415 * 416 * We do this in three jumps: 417 * - First we update our new ring state to be the same as when the xHC stopped. 418 * - Then we traverse the ring to find the segment that contains 419 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass 420 * any link TRBs with the toggle cycle bit set. 421 * - Finally we move the dequeue state one TRB further, toggling the cycle bit 422 * if we've moved it past a link TRB with the toggle cycle bit set. 423 * 424 * Some of the uses of xhci_generic_trb are grotty, but if they're done 425 * with correct __le32 accesses they should work fine. Only users of this are 426 * in here. 427 */ 428 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, 429 unsigned int slot_id, unsigned int ep_index, 430 unsigned int stream_id, struct xhci_td *cur_td, 431 struct xhci_dequeue_state *state) 432 { 433 struct xhci_virt_device *dev = xhci->devs[slot_id]; 434 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 435 struct xhci_ring *ep_ring; 436 struct xhci_segment *new_seg; 437 union xhci_trb *new_deq; 438 dma_addr_t addr; 439 u64 hw_dequeue; 440 bool cycle_found = false; 441 bool td_last_trb_found = false; 442 443 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 444 ep_index, stream_id); 445 if (!ep_ring) { 446 xhci_warn(xhci, "WARN can't find new dequeue state " 447 "for invalid stream ID %u.\n", 448 stream_id); 449 return; 450 } 451 452 /* Dig out the cycle state saved by the xHC during the stop ep cmd */ 453 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 454 "Finding endpoint context"); 455 /* 4.6.9 the css flag is written to the stream context for streams */ 456 if (ep->ep_state & EP_HAS_STREAMS) { 457 struct xhci_stream_ctx *ctx = 458 &ep->stream_info->stream_ctx_array[stream_id]; 459 hw_dequeue = le64_to_cpu(ctx->stream_ring); 460 } else { 461 struct xhci_ep_ctx *ep_ctx 462 = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 463 hw_dequeue = le64_to_cpu(ep_ctx->deq); 464 } 465 466 new_seg = ep_ring->deq_seg; 467 new_deq = ep_ring->dequeue; 468 state->new_cycle_state = hw_dequeue & 0x1; 469 470 /* 471 * We want to find the pointer, segment and cycle state of the new trb 472 * (the one after current TD's last_trb). We know the cycle state at 473 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are 474 * found. 475 */ 476 do { 477 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) 478 == (dma_addr_t)(hw_dequeue & ~0xf)) { 479 cycle_found = true; 480 if (td_last_trb_found) 481 break; 482 } 483 if (new_deq == cur_td->last_trb) 484 td_last_trb_found = true; 485 486 if (cycle_found && 487 TRB_TYPE_LINK_LE32(new_deq->generic.field[3]) && 488 new_deq->generic.field[3] & cpu_to_le32(LINK_TOGGLE)) 489 state->new_cycle_state ^= 0x1; 490 491 next_trb(xhci, ep_ring, &new_seg, &new_deq); 492 493 /* Search wrapped around, bail out */ 494 if (new_deq == ep->ring->dequeue) { 495 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 496 state->new_deq_seg = NULL; 497 state->new_deq_ptr = NULL; 498 return; 499 } 500 501 } while (!cycle_found || !td_last_trb_found); 502 503 state->new_deq_seg = new_seg; 504 state->new_deq_ptr = new_deq; 505 506 /* Don't update the ring cycle state for the producer (us). */ 507 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 508 "Cycle state = 0x%x", state->new_cycle_state); 509 510 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 511 "New dequeue segment = %p (virtual)", 512 state->new_deq_seg); 513 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); 514 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 515 "New dequeue pointer = 0x%llx (DMA)", 516 (unsigned long long) addr); 517 } 518 519 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 520 * (The last TRB actually points to the ring enqueue pointer, which is not part 521 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 522 */ 523 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 524 struct xhci_td *cur_td, bool flip_cycle) 525 { 526 struct xhci_segment *cur_seg; 527 union xhci_trb *cur_trb; 528 529 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb; 530 true; 531 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 532 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) { 533 /* Unchain any chained Link TRBs, but 534 * leave the pointers intact. 535 */ 536 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN); 537 /* Flip the cycle bit (link TRBs can't be the first 538 * or last TRB). 539 */ 540 if (flip_cycle) 541 cur_trb->generic.field[3] ^= 542 cpu_to_le32(TRB_CYCLE); 543 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 544 "Cancel (unchain) link TRB"); 545 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 546 "Address = %p (0x%llx dma); " 547 "in seg %p (0x%llx dma)", 548 cur_trb, 549 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb), 550 cur_seg, 551 (unsigned long long)cur_seg->dma); 552 } else { 553 cur_trb->generic.field[0] = 0; 554 cur_trb->generic.field[1] = 0; 555 cur_trb->generic.field[2] = 0; 556 /* Preserve only the cycle bit of this TRB */ 557 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 558 /* Flip the cycle bit except on the first or last TRB */ 559 if (flip_cycle && cur_trb != cur_td->first_trb && 560 cur_trb != cur_td->last_trb) 561 cur_trb->generic.field[3] ^= 562 cpu_to_le32(TRB_CYCLE); 563 cur_trb->generic.field[3] |= cpu_to_le32( 564 TRB_TYPE(TRB_TR_NOOP)); 565 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 566 "TRB to noop at offset 0x%llx", 567 (unsigned long long) 568 xhci_trb_virt_to_dma(cur_seg, cur_trb)); 569 } 570 if (cur_trb == cur_td->last_trb) 571 break; 572 } 573 } 574 575 static int queue_set_tr_deq(struct xhci_hcd *xhci, 576 struct xhci_command *cmd, int slot_id, 577 unsigned int ep_index, unsigned int stream_id, 578 struct xhci_segment *deq_seg, 579 union xhci_trb *deq_ptr, u32 cycle_state); 580 581 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, 582 struct xhci_command *cmd, 583 unsigned int slot_id, unsigned int ep_index, 584 unsigned int stream_id, 585 struct xhci_dequeue_state *deq_state) 586 { 587 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 588 589 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 590 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), " 591 "new deq ptr = %p (0x%llx dma), new cycle = %u", 592 deq_state->new_deq_seg, 593 (unsigned long long)deq_state->new_deq_seg->dma, 594 deq_state->new_deq_ptr, 595 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr), 596 deq_state->new_cycle_state); 597 queue_set_tr_deq(xhci, cmd, slot_id, ep_index, stream_id, 598 deq_state->new_deq_seg, 599 deq_state->new_deq_ptr, 600 (u32) deq_state->new_cycle_state); 601 /* Stop the TD queueing code from ringing the doorbell until 602 * this command completes. The HC won't set the dequeue pointer 603 * if the ring is running, and ringing the doorbell starts the 604 * ring running. 605 */ 606 ep->ep_state |= SET_DEQ_PENDING; 607 } 608 609 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, 610 struct xhci_virt_ep *ep) 611 { 612 ep->ep_state &= ~EP_HALT_PENDING; 613 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the 614 * timer is running on another CPU, we don't decrement stop_cmds_pending 615 * (since we didn't successfully stop the watchdog timer). 616 */ 617 if (del_timer(&ep->stop_cmd_timer)) 618 ep->stop_cmds_pending--; 619 } 620 621 /* Must be called with xhci->lock held in interrupt context */ 622 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 623 struct xhci_td *cur_td, int status) 624 { 625 struct usb_hcd *hcd; 626 struct urb *urb; 627 struct urb_priv *urb_priv; 628 629 urb = cur_td->urb; 630 urb_priv = urb->hcpriv; 631 urb_priv->td_cnt++; 632 hcd = bus_to_hcd(urb->dev->bus); 633 634 /* Only giveback urb when this is the last td in urb */ 635 if (urb_priv->td_cnt == urb_priv->length) { 636 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 637 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 638 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 639 if (xhci->quirks & XHCI_AMD_PLL_FIX) 640 usb_amd_quirk_pll_enable(); 641 } 642 } 643 usb_hcd_unlink_urb_from_ep(hcd, urb); 644 645 spin_unlock(&xhci->lock); 646 usb_hcd_giveback_urb(hcd, urb, status); 647 xhci_urb_free_priv(xhci, urb_priv); 648 spin_lock(&xhci->lock); 649 } 650 } 651 652 /* 653 * When we get a command completion for a Stop Endpoint Command, we need to 654 * unlink any cancelled TDs from the ring. There are two ways to do that: 655 * 656 * 1. If the HW was in the middle of processing the TD that needs to be 657 * cancelled, then we must move the ring's dequeue pointer past the last TRB 658 * in the TD with a Set Dequeue Pointer Command. 659 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 660 * bit cleared) so that the HW will skip over them. 661 */ 662 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 663 union xhci_trb *trb, struct xhci_event_cmd *event) 664 { 665 unsigned int ep_index; 666 struct xhci_ring *ep_ring; 667 struct xhci_virt_ep *ep; 668 struct list_head *entry; 669 struct xhci_td *cur_td = NULL; 670 struct xhci_td *last_unlinked_td; 671 672 struct xhci_dequeue_state deq_state; 673 674 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 675 if (!xhci->devs[slot_id]) 676 xhci_warn(xhci, "Stop endpoint command " 677 "completion for disabled slot %u\n", 678 slot_id); 679 return; 680 } 681 682 memset(&deq_state, 0, sizeof(deq_state)); 683 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 684 ep = &xhci->devs[slot_id]->eps[ep_index]; 685 686 if (list_empty(&ep->cancelled_td_list)) { 687 xhci_stop_watchdog_timer_in_irq(xhci, ep); 688 ep->stopped_td = NULL; 689 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 690 return; 691 } 692 693 /* Fix up the ep ring first, so HW stops executing cancelled TDs. 694 * We have the xHCI lock, so nothing can modify this list until we drop 695 * it. We're also in the event handler, so we can't get re-interrupted 696 * if another Stop Endpoint command completes 697 */ 698 list_for_each(entry, &ep->cancelled_td_list) { 699 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list); 700 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 701 "Removing canceled TD starting at 0x%llx (dma).", 702 (unsigned long long)xhci_trb_virt_to_dma( 703 cur_td->start_seg, cur_td->first_trb)); 704 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 705 if (!ep_ring) { 706 /* This shouldn't happen unless a driver is mucking 707 * with the stream ID after submission. This will 708 * leave the TD on the hardware ring, and the hardware 709 * will try to execute it, and may access a buffer 710 * that has already been freed. In the best case, the 711 * hardware will execute it, and the event handler will 712 * ignore the completion event for that TD, since it was 713 * removed from the td_list for that endpoint. In 714 * short, don't muck with the stream ID after 715 * submission. 716 */ 717 xhci_warn(xhci, "WARN Cancelled URB %p " 718 "has invalid stream ID %u.\n", 719 cur_td->urb, 720 cur_td->urb->stream_id); 721 goto remove_finished_td; 722 } 723 /* 724 * If we stopped on the TD we need to cancel, then we have to 725 * move the xHC endpoint ring dequeue pointer past this TD. 726 */ 727 if (cur_td == ep->stopped_td) 728 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, 729 cur_td->urb->stream_id, 730 cur_td, &deq_state); 731 else 732 td_to_noop(xhci, ep_ring, cur_td, false); 733 remove_finished_td: 734 /* 735 * The event handler won't see a completion for this TD anymore, 736 * so remove it from the endpoint ring's TD list. Keep it in 737 * the cancelled TD list for URB completion later. 738 */ 739 list_del_init(&cur_td->td_list); 740 } 741 last_unlinked_td = cur_td; 742 xhci_stop_watchdog_timer_in_irq(xhci, ep); 743 744 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ 745 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { 746 struct xhci_command *command; 747 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 748 xhci_queue_new_dequeue_state(xhci, command, 749 slot_id, ep_index, 750 ep->stopped_td->urb->stream_id, 751 &deq_state); 752 xhci_ring_cmd_db(xhci); 753 } else { 754 /* Otherwise ring the doorbell(s) to restart queued transfers */ 755 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 756 } 757 758 /* Clear stopped_td if endpoint is not halted */ 759 if (!(ep->ep_state & EP_HALTED)) 760 ep->stopped_td = NULL; 761 762 /* 763 * Drop the lock and complete the URBs in the cancelled TD list. 764 * New TDs to be cancelled might be added to the end of the list before 765 * we can complete all the URBs for the TDs we already unlinked. 766 * So stop when we've completed the URB for the last TD we unlinked. 767 */ 768 do { 769 cur_td = list_entry(ep->cancelled_td_list.next, 770 struct xhci_td, cancelled_td_list); 771 list_del_init(&cur_td->cancelled_td_list); 772 773 /* Clean up the cancelled URB */ 774 /* Doesn't matter what we pass for status, since the core will 775 * just overwrite it (because the URB has been unlinked). 776 */ 777 xhci_giveback_urb_in_irq(xhci, cur_td, 0); 778 779 /* Stop processing the cancelled list if the watchdog timer is 780 * running. 781 */ 782 if (xhci->xhc_state & XHCI_STATE_DYING) 783 return; 784 } while (cur_td != last_unlinked_td); 785 786 /* Return to the event handler with xhci->lock re-acquired */ 787 } 788 789 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 790 { 791 struct xhci_td *cur_td; 792 793 while (!list_empty(&ring->td_list)) { 794 cur_td = list_first_entry(&ring->td_list, 795 struct xhci_td, td_list); 796 list_del_init(&cur_td->td_list); 797 if (!list_empty(&cur_td->cancelled_td_list)) 798 list_del_init(&cur_td->cancelled_td_list); 799 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 800 } 801 } 802 803 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 804 int slot_id, int ep_index) 805 { 806 struct xhci_td *cur_td; 807 struct xhci_virt_ep *ep; 808 struct xhci_ring *ring; 809 810 ep = &xhci->devs[slot_id]->eps[ep_index]; 811 if ((ep->ep_state & EP_HAS_STREAMS) || 812 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 813 int stream_id; 814 815 for (stream_id = 0; stream_id < ep->stream_info->num_streams; 816 stream_id++) { 817 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 818 "Killing URBs for slot ID %u, ep index %u, stream %u", 819 slot_id, ep_index, stream_id + 1); 820 xhci_kill_ring_urbs(xhci, 821 ep->stream_info->stream_rings[stream_id]); 822 } 823 } else { 824 ring = ep->ring; 825 if (!ring) 826 return; 827 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 828 "Killing URBs for slot ID %u, ep index %u", 829 slot_id, ep_index); 830 xhci_kill_ring_urbs(xhci, ring); 831 } 832 while (!list_empty(&ep->cancelled_td_list)) { 833 cur_td = list_first_entry(&ep->cancelled_td_list, 834 struct xhci_td, cancelled_td_list); 835 list_del_init(&cur_td->cancelled_td_list); 836 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 837 } 838 } 839 840 /* Watchdog timer function for when a stop endpoint command fails to complete. 841 * In this case, we assume the host controller is broken or dying or dead. The 842 * host may still be completing some other events, so we have to be careful to 843 * let the event ring handler and the URB dequeueing/enqueueing functions know 844 * through xhci->state. 845 * 846 * The timer may also fire if the host takes a very long time to respond to the 847 * command, and the stop endpoint command completion handler cannot delete the 848 * timer before the timer function is called. Another endpoint cancellation may 849 * sneak in before the timer function can grab the lock, and that may queue 850 * another stop endpoint command and add the timer back. So we cannot use a 851 * simple flag to say whether there is a pending stop endpoint command for a 852 * particular endpoint. 853 * 854 * Instead we use a combination of that flag and a counter for the number of 855 * pending stop endpoint commands. If the timer is the tail end of the last 856 * stop endpoint command, and the endpoint's command is still pending, we assume 857 * the host is dying. 858 */ 859 void xhci_stop_endpoint_command_watchdog(unsigned long arg) 860 { 861 struct xhci_hcd *xhci; 862 struct xhci_virt_ep *ep; 863 int ret, i, j; 864 unsigned long flags; 865 866 ep = (struct xhci_virt_ep *) arg; 867 xhci = ep->xhci; 868 869 spin_lock_irqsave(&xhci->lock, flags); 870 871 ep->stop_cmds_pending--; 872 if (xhci->xhc_state & XHCI_STATE_DYING) { 873 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 874 "Stop EP timer ran, but another timer marked " 875 "xHCI as DYING, exiting."); 876 spin_unlock_irqrestore(&xhci->lock, flags); 877 return; 878 } 879 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) { 880 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 881 "Stop EP timer ran, but no command pending, " 882 "exiting."); 883 spin_unlock_irqrestore(&xhci->lock, flags); 884 return; 885 } 886 887 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); 888 xhci_warn(xhci, "Assuming host is dying, halting host.\n"); 889 /* Oops, HC is dead or dying or at least not responding to the stop 890 * endpoint command. 891 */ 892 xhci->xhc_state |= XHCI_STATE_DYING; 893 /* Disable interrupts from the host controller and start halting it */ 894 xhci_quiesce(xhci); 895 spin_unlock_irqrestore(&xhci->lock, flags); 896 897 ret = xhci_halt(xhci); 898 899 spin_lock_irqsave(&xhci->lock, flags); 900 if (ret < 0) { 901 /* This is bad; the host is not responding to commands and it's 902 * not allowing itself to be halted. At least interrupts are 903 * disabled. If we call usb_hc_died(), it will attempt to 904 * disconnect all device drivers under this host. Those 905 * disconnect() methods will wait for all URBs to be unlinked, 906 * so we must complete them. 907 */ 908 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n"); 909 xhci_warn(xhci, "Completing active URBs anyway.\n"); 910 /* We could turn all TDs on the rings to no-ops. This won't 911 * help if the host has cached part of the ring, and is slow if 912 * we want to preserve the cycle bit. Skip it and hope the host 913 * doesn't touch the memory. 914 */ 915 } 916 for (i = 0; i < MAX_HC_SLOTS; i++) { 917 if (!xhci->devs[i]) 918 continue; 919 for (j = 0; j < 31; j++) 920 xhci_kill_endpoint_urbs(xhci, i, j); 921 } 922 spin_unlock_irqrestore(&xhci->lock, flags); 923 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 924 "Calling usb_hc_died()"); 925 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); 926 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 927 "xHCI host controller is dead."); 928 } 929 930 931 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 932 struct xhci_virt_device *dev, 933 struct xhci_ring *ep_ring, 934 unsigned int ep_index) 935 { 936 union xhci_trb *dequeue_temp; 937 int num_trbs_free_temp; 938 bool revert = false; 939 940 num_trbs_free_temp = ep_ring->num_trbs_free; 941 dequeue_temp = ep_ring->dequeue; 942 943 /* If we get two back-to-back stalls, and the first stalled transfer 944 * ends just before a link TRB, the dequeue pointer will be left on 945 * the link TRB by the code in the while loop. So we have to update 946 * the dequeue pointer one segment further, or we'll jump off 947 * the segment into la-la-land. 948 */ 949 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) { 950 ep_ring->deq_seg = ep_ring->deq_seg->next; 951 ep_ring->dequeue = ep_ring->deq_seg->trbs; 952 } 953 954 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 955 /* We have more usable TRBs */ 956 ep_ring->num_trbs_free++; 957 ep_ring->dequeue++; 958 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, 959 ep_ring->dequeue)) { 960 if (ep_ring->dequeue == 961 dev->eps[ep_index].queued_deq_ptr) 962 break; 963 ep_ring->deq_seg = ep_ring->deq_seg->next; 964 ep_ring->dequeue = ep_ring->deq_seg->trbs; 965 } 966 if (ep_ring->dequeue == dequeue_temp) { 967 revert = true; 968 break; 969 } 970 } 971 972 if (revert) { 973 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 974 ep_ring->num_trbs_free = num_trbs_free_temp; 975 } 976 } 977 978 /* 979 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 980 * we need to clear the set deq pending flag in the endpoint ring state, so that 981 * the TD queueing code can ring the doorbell again. We also need to ring the 982 * endpoint doorbell to restart the ring, but only if there aren't more 983 * cancellations pending. 984 */ 985 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 986 union xhci_trb *trb, u32 cmd_comp_code) 987 { 988 unsigned int ep_index; 989 unsigned int stream_id; 990 struct xhci_ring *ep_ring; 991 struct xhci_virt_device *dev; 992 struct xhci_virt_ep *ep; 993 struct xhci_ep_ctx *ep_ctx; 994 struct xhci_slot_ctx *slot_ctx; 995 996 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 997 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 998 dev = xhci->devs[slot_id]; 999 ep = &dev->eps[ep_index]; 1000 1001 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); 1002 if (!ep_ring) { 1003 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 1004 stream_id); 1005 /* XXX: Harmless??? */ 1006 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 1007 return; 1008 } 1009 1010 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 1011 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); 1012 1013 if (cmd_comp_code != COMP_SUCCESS) { 1014 unsigned int ep_state; 1015 unsigned int slot_state; 1016 1017 switch (cmd_comp_code) { 1018 case COMP_TRB_ERR: 1019 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 1020 break; 1021 case COMP_CTX_STATE: 1022 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1023 ep_state = le32_to_cpu(ep_ctx->ep_info); 1024 ep_state &= EP_STATE_MASK; 1025 slot_state = le32_to_cpu(slot_ctx->dev_state); 1026 slot_state = GET_SLOT_STATE(slot_state); 1027 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1028 "Slot state = %u, EP state = %u", 1029 slot_state, ep_state); 1030 break; 1031 case COMP_EBADSLT: 1032 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1033 slot_id); 1034 break; 1035 default: 1036 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1037 cmd_comp_code); 1038 break; 1039 } 1040 /* OK what do we do now? The endpoint state is hosed, and we 1041 * should never get to this point if the synchronization between 1042 * queueing, and endpoint state are correct. This might happen 1043 * if the device gets disconnected after we've finished 1044 * cancelling URBs, which might not be an error... 1045 */ 1046 } else { 1047 u64 deq; 1048 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1049 if (ep->ep_state & EP_HAS_STREAMS) { 1050 struct xhci_stream_ctx *ctx = 1051 &ep->stream_info->stream_ctx_array[stream_id]; 1052 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; 1053 } else { 1054 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1055 } 1056 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1057 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1058 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1059 ep->queued_deq_ptr) == deq) { 1060 /* Update the ring's dequeue segment and dequeue pointer 1061 * to reflect the new position. 1062 */ 1063 update_ring_for_set_deq_completion(xhci, dev, 1064 ep_ring, ep_index); 1065 } else { 1066 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1067 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1068 ep->queued_deq_seg, ep->queued_deq_ptr); 1069 } 1070 } 1071 1072 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 1073 dev->eps[ep_index].queued_deq_seg = NULL; 1074 dev->eps[ep_index].queued_deq_ptr = NULL; 1075 /* Restart any rings with pending URBs */ 1076 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1077 } 1078 1079 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1080 union xhci_trb *trb, u32 cmd_comp_code) 1081 { 1082 unsigned int ep_index; 1083 1084 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1085 /* This command will only fail if the endpoint wasn't halted, 1086 * but we don't care. 1087 */ 1088 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1089 "Ignoring reset ep completion code of %u", cmd_comp_code); 1090 1091 /* HW with the reset endpoint quirk needs to have a configure endpoint 1092 * command complete before the endpoint can be used. Queue that here 1093 * because the HW can't handle two commands being queued in a row. 1094 */ 1095 if (xhci->quirks & XHCI_RESET_EP_QUIRK) { 1096 struct xhci_command *command; 1097 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1098 if (!command) { 1099 xhci_warn(xhci, "WARN Cannot submit cfg ep: ENOMEM\n"); 1100 return; 1101 } 1102 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1103 "Queueing configure endpoint command"); 1104 xhci_queue_configure_endpoint(xhci, command, 1105 xhci->devs[slot_id]->in_ctx->dma, slot_id, 1106 false); 1107 xhci_ring_cmd_db(xhci); 1108 } else { 1109 /* Clear our internal halted state and restart the ring(s) */ 1110 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; 1111 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1112 } 1113 } 1114 1115 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, 1116 u32 cmd_comp_code) 1117 { 1118 if (cmd_comp_code == COMP_SUCCESS) 1119 xhci->slot_id = slot_id; 1120 else 1121 xhci->slot_id = 0; 1122 } 1123 1124 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1125 { 1126 struct xhci_virt_device *virt_dev; 1127 1128 virt_dev = xhci->devs[slot_id]; 1129 if (!virt_dev) 1130 return; 1131 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1132 /* Delete default control endpoint resources */ 1133 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1134 xhci_free_virt_device(xhci, slot_id); 1135 } 1136 1137 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, 1138 struct xhci_event_cmd *event, u32 cmd_comp_code) 1139 { 1140 struct xhci_virt_device *virt_dev; 1141 struct xhci_input_control_ctx *ctrl_ctx; 1142 unsigned int ep_index; 1143 unsigned int ep_state; 1144 u32 add_flags, drop_flags; 1145 1146 /* 1147 * Configure endpoint commands can come from the USB core 1148 * configuration or alt setting changes, or because the HW 1149 * needed an extra configure endpoint command after a reset 1150 * endpoint command or streams were being configured. 1151 * If the command was for a halted endpoint, the xHCI driver 1152 * is not waiting on the configure endpoint command. 1153 */ 1154 virt_dev = xhci->devs[slot_id]; 1155 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 1156 if (!ctrl_ctx) { 1157 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1158 return; 1159 } 1160 1161 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1162 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1163 /* Input ctx add_flags are the endpoint index plus one */ 1164 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1165 1166 /* A usb_set_interface() call directly after clearing a halted 1167 * condition may race on this quirky hardware. Not worth 1168 * worrying about, since this is prototype hardware. Not sure 1169 * if this will work for streams, but streams support was 1170 * untested on this prototype. 1171 */ 1172 if (xhci->quirks & XHCI_RESET_EP_QUIRK && 1173 ep_index != (unsigned int) -1 && 1174 add_flags - SLOT_FLAG == drop_flags) { 1175 ep_state = virt_dev->eps[ep_index].ep_state; 1176 if (!(ep_state & EP_HALTED)) 1177 return; 1178 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1179 "Completed config ep cmd - " 1180 "last ep index = %d, state = %d", 1181 ep_index, ep_state); 1182 /* Clear internal halted state and restart ring(s) */ 1183 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED; 1184 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1185 return; 1186 } 1187 return; 1188 } 1189 1190 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id, 1191 struct xhci_event_cmd *event) 1192 { 1193 xhci_dbg(xhci, "Completed reset device command.\n"); 1194 if (!xhci->devs[slot_id]) 1195 xhci_warn(xhci, "Reset device command completion " 1196 "for disabled slot %u\n", slot_id); 1197 } 1198 1199 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1200 struct xhci_event_cmd *event) 1201 { 1202 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1203 xhci->error_bitmask |= 1 << 6; 1204 return; 1205 } 1206 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1207 "NEC firmware version %2x.%02x", 1208 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1209 NEC_FW_MINOR(le32_to_cpu(event->status))); 1210 } 1211 1212 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) 1213 { 1214 list_del(&cmd->cmd_list); 1215 1216 if (cmd->completion) { 1217 cmd->status = status; 1218 complete(cmd->completion); 1219 } else { 1220 kfree(cmd); 1221 } 1222 } 1223 1224 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1225 { 1226 struct xhci_command *cur_cmd, *tmp_cmd; 1227 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1228 xhci_complete_del_and_free_cmd(cur_cmd, COMP_CMD_ABORT); 1229 } 1230 1231 /* 1232 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 1233 * If there are other commands waiting then restart the ring and kick the timer. 1234 * This must be called with command ring stopped and xhci->lock held. 1235 */ 1236 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 1237 struct xhci_command *cur_cmd) 1238 { 1239 struct xhci_command *i_cmd, *tmp_cmd; 1240 u32 cycle_state; 1241 1242 /* Turn all aborted commands in list to no-ops, then restart */ 1243 list_for_each_entry_safe(i_cmd, tmp_cmd, &xhci->cmd_list, 1244 cmd_list) { 1245 1246 if (i_cmd->status != COMP_CMD_ABORT) 1247 continue; 1248 1249 i_cmd->status = COMP_CMD_STOP; 1250 1251 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 1252 i_cmd->command_trb); 1253 /* get cycle state from the original cmd trb */ 1254 cycle_state = le32_to_cpu( 1255 i_cmd->command_trb->generic.field[3]) & TRB_CYCLE; 1256 /* modify the command trb to no-op command */ 1257 i_cmd->command_trb->generic.field[0] = 0; 1258 i_cmd->command_trb->generic.field[1] = 0; 1259 i_cmd->command_trb->generic.field[2] = 0; 1260 i_cmd->command_trb->generic.field[3] = cpu_to_le32( 1261 TRB_TYPE(TRB_CMD_NOOP) | cycle_state); 1262 1263 /* 1264 * caller waiting for completion is called when command 1265 * completion event is received for these no-op commands 1266 */ 1267 } 1268 1269 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 1270 1271 /* ring command ring doorbell to restart the command ring */ 1272 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 1273 !(xhci->xhc_state & XHCI_STATE_DYING)) { 1274 xhci->current_cmd = cur_cmd; 1275 mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT); 1276 xhci_ring_cmd_db(xhci); 1277 } 1278 return; 1279 } 1280 1281 1282 void xhci_handle_command_timeout(unsigned long data) 1283 { 1284 struct xhci_hcd *xhci; 1285 int ret; 1286 unsigned long flags; 1287 u64 hw_ring_state; 1288 struct xhci_command *cur_cmd = NULL; 1289 xhci = (struct xhci_hcd *) data; 1290 1291 /* mark this command to be cancelled */ 1292 spin_lock_irqsave(&xhci->lock, flags); 1293 if (xhci->current_cmd) { 1294 cur_cmd = xhci->current_cmd; 1295 cur_cmd->status = COMP_CMD_ABORT; 1296 } 1297 1298 1299 /* Make sure command ring is running before aborting it */ 1300 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1301 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1302 (hw_ring_state & CMD_RING_RUNNING)) { 1303 1304 spin_unlock_irqrestore(&xhci->lock, flags); 1305 xhci_dbg(xhci, "Command timeout\n"); 1306 ret = xhci_abort_cmd_ring(xhci); 1307 if (unlikely(ret == -ESHUTDOWN)) { 1308 xhci_err(xhci, "Abort command ring failed\n"); 1309 xhci_cleanup_command_queue(xhci); 1310 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); 1311 xhci_dbg(xhci, "xHCI host controller is dead.\n"); 1312 } 1313 return; 1314 } 1315 /* command timeout on stopped ring, ring can't be aborted */ 1316 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1317 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1318 spin_unlock_irqrestore(&xhci->lock, flags); 1319 return; 1320 } 1321 1322 static void handle_cmd_completion(struct xhci_hcd *xhci, 1323 struct xhci_event_cmd *event) 1324 { 1325 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1326 u64 cmd_dma; 1327 dma_addr_t cmd_dequeue_dma; 1328 u32 cmd_comp_code; 1329 union xhci_trb *cmd_trb; 1330 struct xhci_command *cmd; 1331 u32 cmd_type; 1332 1333 cmd_dma = le64_to_cpu(event->cmd_trb); 1334 cmd_trb = xhci->cmd_ring->dequeue; 1335 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1336 cmd_trb); 1337 /* Is the command ring deq ptr out of sync with the deq seg ptr? */ 1338 if (cmd_dequeue_dma == 0) { 1339 xhci->error_bitmask |= 1 << 4; 1340 return; 1341 } 1342 /* Does the DMA address match our internal dequeue pointer address? */ 1343 if (cmd_dma != (u64) cmd_dequeue_dma) { 1344 xhci->error_bitmask |= 1 << 5; 1345 return; 1346 } 1347 1348 cmd = list_entry(xhci->cmd_list.next, struct xhci_command, cmd_list); 1349 1350 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1351 xhci_err(xhci, 1352 "Command completion event does not match command\n"); 1353 return; 1354 } 1355 1356 del_timer(&xhci->cmd_timer); 1357 1358 trace_xhci_cmd_completion(cmd_trb, (struct xhci_generic_trb *) event); 1359 1360 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1361 1362 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1363 if (cmd_comp_code == COMP_CMD_STOP) { 1364 xhci_handle_stopped_cmd_ring(xhci, cmd); 1365 return; 1366 } 1367 /* 1368 * Host aborted the command ring, check if the current command was 1369 * supposed to be aborted, otherwise continue normally. 1370 * The command ring is stopped now, but the xHC will issue a Command 1371 * Ring Stopped event which will cause us to restart it. 1372 */ 1373 if (cmd_comp_code == COMP_CMD_ABORT) { 1374 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1375 if (cmd->status == COMP_CMD_ABORT) 1376 goto event_handled; 1377 } 1378 1379 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1380 switch (cmd_type) { 1381 case TRB_ENABLE_SLOT: 1382 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd_comp_code); 1383 break; 1384 case TRB_DISABLE_SLOT: 1385 xhci_handle_cmd_disable_slot(xhci, slot_id); 1386 break; 1387 case TRB_CONFIG_EP: 1388 if (!cmd->completion) 1389 xhci_handle_cmd_config_ep(xhci, slot_id, event, 1390 cmd_comp_code); 1391 break; 1392 case TRB_EVAL_CONTEXT: 1393 break; 1394 case TRB_ADDR_DEV: 1395 break; 1396 case TRB_STOP_RING: 1397 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1398 le32_to_cpu(cmd_trb->generic.field[3]))); 1399 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event); 1400 break; 1401 case TRB_SET_DEQ: 1402 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1403 le32_to_cpu(cmd_trb->generic.field[3]))); 1404 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1405 break; 1406 case TRB_CMD_NOOP: 1407 /* Is this an aborted command turned to NO-OP? */ 1408 if (cmd->status == COMP_CMD_STOP) 1409 cmd_comp_code = COMP_CMD_STOP; 1410 break; 1411 case TRB_RESET_EP: 1412 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1413 le32_to_cpu(cmd_trb->generic.field[3]))); 1414 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1415 break; 1416 case TRB_RESET_DEV: 1417 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1418 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1419 */ 1420 slot_id = TRB_TO_SLOT_ID( 1421 le32_to_cpu(cmd_trb->generic.field[3])); 1422 xhci_handle_cmd_reset_dev(xhci, slot_id, event); 1423 break; 1424 case TRB_NEC_GET_FW: 1425 xhci_handle_cmd_nec_get_fw(xhci, event); 1426 break; 1427 default: 1428 /* Skip over unknown commands on the event ring */ 1429 xhci->error_bitmask |= 1 << 6; 1430 break; 1431 } 1432 1433 /* restart timer if this wasn't the last command */ 1434 if (cmd->cmd_list.next != &xhci->cmd_list) { 1435 xhci->current_cmd = list_entry(cmd->cmd_list.next, 1436 struct xhci_command, cmd_list); 1437 mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT); 1438 } 1439 1440 event_handled: 1441 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); 1442 1443 inc_deq(xhci, xhci->cmd_ring); 1444 } 1445 1446 static void handle_vendor_event(struct xhci_hcd *xhci, 1447 union xhci_trb *event) 1448 { 1449 u32 trb_type; 1450 1451 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3])); 1452 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1453 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1454 handle_cmd_completion(xhci, &event->event_cmd); 1455 } 1456 1457 /* @port_id: the one-based port ID from the hardware (indexed from array of all 1458 * port registers -- USB 3.0 and USB 2.0). 1459 * 1460 * Returns a zero-based port number, which is suitable for indexing into each of 1461 * the split roothubs' port arrays and bus state arrays. 1462 * Add one to it in order to call xhci_find_slot_id_by_port. 1463 */ 1464 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd, 1465 struct xhci_hcd *xhci, u32 port_id) 1466 { 1467 unsigned int i; 1468 unsigned int num_similar_speed_ports = 0; 1469 1470 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[], 1471 * and usb2_ports are 0-based indexes. Count the number of similar 1472 * speed ports, up to 1 port before this port. 1473 */ 1474 for (i = 0; i < (port_id - 1); i++) { 1475 u8 port_speed = xhci->port_array[i]; 1476 1477 /* 1478 * Skip ports that don't have known speeds, or have duplicate 1479 * Extended Capabilities port speed entries. 1480 */ 1481 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY) 1482 continue; 1483 1484 /* 1485 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and 1486 * 1.1 ports are under the USB 2.0 hub. If the port speed 1487 * matches the device speed, it's a similar speed port. 1488 */ 1489 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3)) 1490 num_similar_speed_ports++; 1491 } 1492 return num_similar_speed_ports; 1493 } 1494 1495 static void handle_device_notification(struct xhci_hcd *xhci, 1496 union xhci_trb *event) 1497 { 1498 u32 slot_id; 1499 struct usb_device *udev; 1500 1501 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1502 if (!xhci->devs[slot_id]) { 1503 xhci_warn(xhci, "Device Notification event for " 1504 "unused slot %u\n", slot_id); 1505 return; 1506 } 1507 1508 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1509 slot_id); 1510 udev = xhci->devs[slot_id]->udev; 1511 if (udev && udev->parent) 1512 usb_wakeup_notification(udev->parent, udev->portnum); 1513 } 1514 1515 static void handle_port_status(struct xhci_hcd *xhci, 1516 union xhci_trb *event) 1517 { 1518 struct usb_hcd *hcd; 1519 u32 port_id; 1520 u32 temp, temp1; 1521 int max_ports; 1522 int slot_id; 1523 unsigned int faked_port_index; 1524 u8 major_revision; 1525 struct xhci_bus_state *bus_state; 1526 __le32 __iomem **port_array; 1527 bool bogus_port_status = false; 1528 1529 /* Port status change events always have a successful completion code */ 1530 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) { 1531 xhci_warn(xhci, "WARN: xHC returned failed port status event\n"); 1532 xhci->error_bitmask |= 1 << 8; 1533 } 1534 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1535 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id); 1536 1537 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1538 if ((port_id <= 0) || (port_id > max_ports)) { 1539 xhci_warn(xhci, "Invalid port id %d\n", port_id); 1540 inc_deq(xhci, xhci->event_ring); 1541 return; 1542 } 1543 1544 /* Figure out which usb_hcd this port is attached to: 1545 * is it a USB 3.0 port or a USB 2.0/1.1 port? 1546 */ 1547 major_revision = xhci->port_array[port_id - 1]; 1548 1549 /* Find the right roothub. */ 1550 hcd = xhci_to_hcd(xhci); 1551 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3)) 1552 hcd = xhci->shared_hcd; 1553 1554 if (major_revision == 0) { 1555 xhci_warn(xhci, "Event for port %u not in " 1556 "Extended Capabilities, ignoring.\n", 1557 port_id); 1558 bogus_port_status = true; 1559 goto cleanup; 1560 } 1561 if (major_revision == DUPLICATE_ENTRY) { 1562 xhci_warn(xhci, "Event for port %u duplicated in" 1563 "Extended Capabilities, ignoring.\n", 1564 port_id); 1565 bogus_port_status = true; 1566 goto cleanup; 1567 } 1568 1569 /* 1570 * Hardware port IDs reported by a Port Status Change Event include USB 1571 * 3.0 and USB 2.0 ports. We want to check if the port has reported a 1572 * resume event, but we first need to translate the hardware port ID 1573 * into the index into the ports on the correct split roothub, and the 1574 * correct bus_state structure. 1575 */ 1576 bus_state = &xhci->bus_state[hcd_index(hcd)]; 1577 if (hcd->speed == HCD_USB3) 1578 port_array = xhci->usb3_ports; 1579 else 1580 port_array = xhci->usb2_ports; 1581 /* Find the faked port hub number */ 1582 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci, 1583 port_id); 1584 1585 temp = readl(port_array[faked_port_index]); 1586 if (hcd->state == HC_STATE_SUSPENDED) { 1587 xhci_dbg(xhci, "resume root hub\n"); 1588 usb_hcd_resume_root_hub(hcd); 1589 } 1590 1591 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) { 1592 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1593 1594 temp1 = readl(&xhci->op_regs->command); 1595 if (!(temp1 & CMD_RUN)) { 1596 xhci_warn(xhci, "xHC is not running.\n"); 1597 goto cleanup; 1598 } 1599 1600 if (DEV_SUPERSPEED(temp)) { 1601 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1602 /* Set a flag to say the port signaled remote wakeup, 1603 * so we can tell the difference between the end of 1604 * device and host initiated resume. 1605 */ 1606 bus_state->port_remote_wakeup |= 1 << faked_port_index; 1607 xhci_test_and_clear_bit(xhci, port_array, 1608 faked_port_index, PORT_PLC); 1609 xhci_set_link_state(xhci, port_array, faked_port_index, 1610 XDEV_U0); 1611 /* Need to wait until the next link state change 1612 * indicates the device is actually in U0. 1613 */ 1614 bogus_port_status = true; 1615 goto cleanup; 1616 } else { 1617 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1618 bus_state->resume_done[faked_port_index] = jiffies + 1619 msecs_to_jiffies(20); 1620 set_bit(faked_port_index, &bus_state->resuming_ports); 1621 mod_timer(&hcd->rh_timer, 1622 bus_state->resume_done[faked_port_index]); 1623 /* Do the rest in GetPortStatus */ 1624 } 1625 } 1626 1627 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 && 1628 DEV_SUPERSPEED(temp)) { 1629 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1630 /* We've just brought the device into U0 through either the 1631 * Resume state after a device remote wakeup, or through the 1632 * U3Exit state after a host-initiated resume. If it's a device 1633 * initiated remote wake, don't pass up the link state change, 1634 * so the roothub behavior is consistent with external 1635 * USB 3.0 hub behavior. 1636 */ 1637 slot_id = xhci_find_slot_id_by_port(hcd, xhci, 1638 faked_port_index + 1); 1639 if (slot_id && xhci->devs[slot_id]) 1640 xhci_ring_device(xhci, slot_id); 1641 if (bus_state->port_remote_wakeup & (1 << faked_port_index)) { 1642 bus_state->port_remote_wakeup &= 1643 ~(1 << faked_port_index); 1644 xhci_test_and_clear_bit(xhci, port_array, 1645 faked_port_index, PORT_PLC); 1646 usb_wakeup_notification(hcd->self.root_hub, 1647 faked_port_index + 1); 1648 bogus_port_status = true; 1649 goto cleanup; 1650 } 1651 } 1652 1653 /* 1654 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 1655 * RExit to a disconnect state). If so, let the the driver know it's 1656 * out of the RExit state. 1657 */ 1658 if (!DEV_SUPERSPEED(temp) && 1659 test_and_clear_bit(faked_port_index, 1660 &bus_state->rexit_ports)) { 1661 complete(&bus_state->rexit_done[faked_port_index]); 1662 bogus_port_status = true; 1663 goto cleanup; 1664 } 1665 1666 if (hcd->speed != HCD_USB3) 1667 xhci_test_and_clear_bit(xhci, port_array, faked_port_index, 1668 PORT_PLC); 1669 1670 cleanup: 1671 /* Update event ring dequeue pointer before dropping the lock */ 1672 inc_deq(xhci, xhci->event_ring); 1673 1674 /* Don't make the USB core poll the roothub if we got a bad port status 1675 * change event. Besides, at that point we can't tell which roothub 1676 * (USB 2.0 or USB 3.0) to kick. 1677 */ 1678 if (bogus_port_status) 1679 return; 1680 1681 /* 1682 * xHCI port-status-change events occur when the "or" of all the 1683 * status-change bits in the portsc register changes from 0 to 1. 1684 * New status changes won't cause an event if any other change 1685 * bits are still set. When an event occurs, switch over to 1686 * polling to avoid losing status changes. 1687 */ 1688 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1689 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1690 spin_unlock(&xhci->lock); 1691 /* Pass this up to the core */ 1692 usb_hcd_poll_rh_status(hcd); 1693 spin_lock(&xhci->lock); 1694 } 1695 1696 /* 1697 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 1698 * at end_trb, which may be in another segment. If the suspect DMA address is a 1699 * TRB in this TD, this function returns that TRB's segment. Otherwise it 1700 * returns 0. 1701 */ 1702 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg, 1703 union xhci_trb *start_trb, 1704 union xhci_trb *end_trb, 1705 dma_addr_t suspect_dma) 1706 { 1707 dma_addr_t start_dma; 1708 dma_addr_t end_seg_dma; 1709 dma_addr_t end_trb_dma; 1710 struct xhci_segment *cur_seg; 1711 1712 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 1713 cur_seg = start_seg; 1714 1715 do { 1716 if (start_dma == 0) 1717 return NULL; 1718 /* We may get an event for a Link TRB in the middle of a TD */ 1719 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 1720 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 1721 /* If the end TRB isn't in this segment, this is set to 0 */ 1722 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 1723 1724 if (end_trb_dma > 0) { 1725 /* The end TRB is in this segment, so suspect should be here */ 1726 if (start_dma <= end_trb_dma) { 1727 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 1728 return cur_seg; 1729 } else { 1730 /* Case for one segment with 1731 * a TD wrapped around to the top 1732 */ 1733 if ((suspect_dma >= start_dma && 1734 suspect_dma <= end_seg_dma) || 1735 (suspect_dma >= cur_seg->dma && 1736 suspect_dma <= end_trb_dma)) 1737 return cur_seg; 1738 } 1739 return NULL; 1740 } else { 1741 /* Might still be somewhere in this segment */ 1742 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 1743 return cur_seg; 1744 } 1745 cur_seg = cur_seg->next; 1746 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 1747 } while (cur_seg != start_seg); 1748 1749 return NULL; 1750 } 1751 1752 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, 1753 unsigned int slot_id, unsigned int ep_index, 1754 unsigned int stream_id, 1755 struct xhci_td *td, union xhci_trb *event_trb) 1756 { 1757 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 1758 struct xhci_command *command; 1759 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1760 if (!command) 1761 return; 1762 1763 ep->ep_state |= EP_HALTED; 1764 ep->stopped_td = td; 1765 ep->stopped_stream = stream_id; 1766 1767 xhci_queue_reset_ep(xhci, command, slot_id, ep_index); 1768 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index); 1769 1770 ep->stopped_td = NULL; 1771 ep->stopped_stream = 0; 1772 1773 xhci_ring_cmd_db(xhci); 1774 } 1775 1776 /* Check if an error has halted the endpoint ring. The class driver will 1777 * cleanup the halt for a non-default control endpoint if we indicate a stall. 1778 * However, a babble and other errors also halt the endpoint ring, and the class 1779 * driver won't clear the halt in that case, so we need to issue a Set Transfer 1780 * Ring Dequeue Pointer command manually. 1781 */ 1782 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 1783 struct xhci_ep_ctx *ep_ctx, 1784 unsigned int trb_comp_code) 1785 { 1786 /* TRB completion codes that may require a manual halt cleanup */ 1787 if (trb_comp_code == COMP_TX_ERR || 1788 trb_comp_code == COMP_BABBLE || 1789 trb_comp_code == COMP_SPLIT_ERR) 1790 /* The 0.96 spec says a babbling control endpoint 1791 * is not halted. The 0.96 spec says it is. Some HW 1792 * claims to be 0.95 compliant, but it halts the control 1793 * endpoint anyway. Check if a babble halted the 1794 * endpoint. 1795 */ 1796 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1797 cpu_to_le32(EP_STATE_HALTED)) 1798 return 1; 1799 1800 return 0; 1801 } 1802 1803 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 1804 { 1805 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 1806 /* Vendor defined "informational" completion code, 1807 * treat as not-an-error. 1808 */ 1809 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 1810 trb_comp_code); 1811 xhci_dbg(xhci, "Treating code as success.\n"); 1812 return 1; 1813 } 1814 return 0; 1815 } 1816 1817 /* 1818 * Finish the td processing, remove the td from td list; 1819 * Return 1 if the urb can be given back. 1820 */ 1821 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, 1822 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1823 struct xhci_virt_ep *ep, int *status, bool skip) 1824 { 1825 struct xhci_virt_device *xdev; 1826 struct xhci_ring *ep_ring; 1827 unsigned int slot_id; 1828 int ep_index; 1829 struct urb *urb = NULL; 1830 struct xhci_ep_ctx *ep_ctx; 1831 int ret = 0; 1832 struct urb_priv *urb_priv; 1833 u32 trb_comp_code; 1834 1835 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1836 xdev = xhci->devs[slot_id]; 1837 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1838 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1839 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1840 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1841 1842 if (skip) 1843 goto td_cleanup; 1844 1845 if (trb_comp_code == COMP_STOP_INVAL || 1846 trb_comp_code == COMP_STOP) { 1847 /* The Endpoint Stop Command completion will take care of any 1848 * stopped TDs. A stopped TD may be restarted, so don't update 1849 * the ring dequeue pointer or take this TD off any lists yet. 1850 */ 1851 ep->stopped_td = td; 1852 return 0; 1853 } else { 1854 if (trb_comp_code == COMP_STALL) { 1855 /* The transfer is completed from the driver's 1856 * perspective, but we need to issue a set dequeue 1857 * command for this stalled endpoint to move the dequeue 1858 * pointer past the TD. We can't do that here because 1859 * the halt condition must be cleared first. Let the 1860 * USB class driver clear the stall later. 1861 */ 1862 ep->stopped_td = td; 1863 ep->stopped_stream = ep_ring->stream_id; 1864 } else if (xhci_requires_manual_halt_cleanup(xhci, 1865 ep_ctx, trb_comp_code)) { 1866 /* Other types of errors halt the endpoint, but the 1867 * class driver doesn't call usb_reset_endpoint() unless 1868 * the error is -EPIPE. Clear the halted status in the 1869 * xHCI hardware manually. 1870 */ 1871 xhci_cleanup_halted_endpoint(xhci, 1872 slot_id, ep_index, ep_ring->stream_id, 1873 td, event_trb); 1874 } else { 1875 /* Update ring dequeue pointer */ 1876 while (ep_ring->dequeue != td->last_trb) 1877 inc_deq(xhci, ep_ring); 1878 inc_deq(xhci, ep_ring); 1879 } 1880 1881 td_cleanup: 1882 /* Clean up the endpoint's TD list */ 1883 urb = td->urb; 1884 urb_priv = urb->hcpriv; 1885 1886 /* Do one last check of the actual transfer length. 1887 * If the host controller said we transferred more data than 1888 * the buffer length, urb->actual_length will be a very big 1889 * number (since it's unsigned). Play it safe and say we didn't 1890 * transfer anything. 1891 */ 1892 if (urb->actual_length > urb->transfer_buffer_length) { 1893 xhci_warn(xhci, "URB transfer length is wrong, " 1894 "xHC issue? req. len = %u, " 1895 "act. len = %u\n", 1896 urb->transfer_buffer_length, 1897 urb->actual_length); 1898 urb->actual_length = 0; 1899 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1900 *status = -EREMOTEIO; 1901 else 1902 *status = 0; 1903 } 1904 list_del_init(&td->td_list); 1905 /* Was this TD slated to be cancelled but completed anyway? */ 1906 if (!list_empty(&td->cancelled_td_list)) 1907 list_del_init(&td->cancelled_td_list); 1908 1909 urb_priv->td_cnt++; 1910 /* Giveback the urb when all the tds are completed */ 1911 if (urb_priv->td_cnt == urb_priv->length) { 1912 ret = 1; 1913 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 1914 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 1915 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs 1916 == 0) { 1917 if (xhci->quirks & XHCI_AMD_PLL_FIX) 1918 usb_amd_quirk_pll_enable(); 1919 } 1920 } 1921 } 1922 } 1923 1924 return ret; 1925 } 1926 1927 /* 1928 * Process control tds, update urb status and actual_length. 1929 */ 1930 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, 1931 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1932 struct xhci_virt_ep *ep, int *status) 1933 { 1934 struct xhci_virt_device *xdev; 1935 struct xhci_ring *ep_ring; 1936 unsigned int slot_id; 1937 int ep_index; 1938 struct xhci_ep_ctx *ep_ctx; 1939 u32 trb_comp_code; 1940 1941 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1942 xdev = xhci->devs[slot_id]; 1943 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1944 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1945 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1946 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1947 1948 switch (trb_comp_code) { 1949 case COMP_SUCCESS: 1950 if (event_trb == ep_ring->dequeue) { 1951 xhci_warn(xhci, "WARN: Success on ctrl setup TRB " 1952 "without IOC set??\n"); 1953 *status = -ESHUTDOWN; 1954 } else if (event_trb != td->last_trb) { 1955 xhci_warn(xhci, "WARN: Success on ctrl data TRB " 1956 "without IOC set??\n"); 1957 *status = -ESHUTDOWN; 1958 } else { 1959 *status = 0; 1960 } 1961 break; 1962 case COMP_SHORT_TX: 1963 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1964 *status = -EREMOTEIO; 1965 else 1966 *status = 0; 1967 break; 1968 case COMP_STOP_INVAL: 1969 case COMP_STOP: 1970 return finish_td(xhci, td, event_trb, event, ep, status, false); 1971 default: 1972 if (!xhci_requires_manual_halt_cleanup(xhci, 1973 ep_ctx, trb_comp_code)) 1974 break; 1975 xhci_dbg(xhci, "TRB error code %u, " 1976 "halted endpoint index = %u\n", 1977 trb_comp_code, ep_index); 1978 /* else fall through */ 1979 case COMP_STALL: 1980 /* Did we transfer part of the data (middle) phase? */ 1981 if (event_trb != ep_ring->dequeue && 1982 event_trb != td->last_trb) 1983 td->urb->actual_length = 1984 td->urb->transfer_buffer_length - 1985 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 1986 else 1987 td->urb->actual_length = 0; 1988 1989 xhci_cleanup_halted_endpoint(xhci, 1990 slot_id, ep_index, 0, td, event_trb); 1991 return finish_td(xhci, td, event_trb, event, ep, status, true); 1992 } 1993 /* 1994 * Did we transfer any data, despite the errors that might have 1995 * happened? I.e. did we get past the setup stage? 1996 */ 1997 if (event_trb != ep_ring->dequeue) { 1998 /* The event was for the status stage */ 1999 if (event_trb == td->last_trb) { 2000 if (td->urb->actual_length != 0) { 2001 /* Don't overwrite a previously set error code 2002 */ 2003 if ((*status == -EINPROGRESS || *status == 0) && 2004 (td->urb->transfer_flags 2005 & URB_SHORT_NOT_OK)) 2006 /* Did we already see a short data 2007 * stage? */ 2008 *status = -EREMOTEIO; 2009 } else { 2010 td->urb->actual_length = 2011 td->urb->transfer_buffer_length; 2012 } 2013 } else { 2014 /* Maybe the event was for the data stage? */ 2015 td->urb->actual_length = 2016 td->urb->transfer_buffer_length - 2017 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2018 xhci_dbg(xhci, "Waiting for status " 2019 "stage event\n"); 2020 return 0; 2021 } 2022 } 2023 2024 return finish_td(xhci, td, event_trb, event, ep, status, false); 2025 } 2026 2027 /* 2028 * Process isochronous tds, update urb packet status and actual_length. 2029 */ 2030 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2031 union xhci_trb *event_trb, struct xhci_transfer_event *event, 2032 struct xhci_virt_ep *ep, int *status) 2033 { 2034 struct xhci_ring *ep_ring; 2035 struct urb_priv *urb_priv; 2036 int idx; 2037 int len = 0; 2038 union xhci_trb *cur_trb; 2039 struct xhci_segment *cur_seg; 2040 struct usb_iso_packet_descriptor *frame; 2041 u32 trb_comp_code; 2042 bool skip_td = false; 2043 2044 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2045 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2046 urb_priv = td->urb->hcpriv; 2047 idx = urb_priv->td_cnt; 2048 frame = &td->urb->iso_frame_desc[idx]; 2049 2050 /* handle completion code */ 2051 switch (trb_comp_code) { 2052 case COMP_SUCCESS: 2053 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) { 2054 frame->status = 0; 2055 break; 2056 } 2057 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH)) 2058 trb_comp_code = COMP_SHORT_TX; 2059 case COMP_SHORT_TX: 2060 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2061 -EREMOTEIO : 0; 2062 break; 2063 case COMP_BW_OVER: 2064 frame->status = -ECOMM; 2065 skip_td = true; 2066 break; 2067 case COMP_BUFF_OVER: 2068 case COMP_BABBLE: 2069 frame->status = -EOVERFLOW; 2070 skip_td = true; 2071 break; 2072 case COMP_DEV_ERR: 2073 case COMP_STALL: 2074 case COMP_TX_ERR: 2075 frame->status = -EPROTO; 2076 skip_td = true; 2077 break; 2078 case COMP_STOP: 2079 case COMP_STOP_INVAL: 2080 break; 2081 default: 2082 frame->status = -1; 2083 break; 2084 } 2085 2086 if (trb_comp_code == COMP_SUCCESS || skip_td) { 2087 frame->actual_length = frame->length; 2088 td->urb->actual_length += frame->length; 2089 } else { 2090 for (cur_trb = ep_ring->dequeue, 2091 cur_seg = ep_ring->deq_seg; cur_trb != event_trb; 2092 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 2093 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 2094 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 2095 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 2096 } 2097 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 2098 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2099 2100 if (trb_comp_code != COMP_STOP_INVAL) { 2101 frame->actual_length = len; 2102 td->urb->actual_length += len; 2103 } 2104 } 2105 2106 return finish_td(xhci, td, event_trb, event, ep, status, false); 2107 } 2108 2109 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2110 struct xhci_transfer_event *event, 2111 struct xhci_virt_ep *ep, int *status) 2112 { 2113 struct xhci_ring *ep_ring; 2114 struct urb_priv *urb_priv; 2115 struct usb_iso_packet_descriptor *frame; 2116 int idx; 2117 2118 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2119 urb_priv = td->urb->hcpriv; 2120 idx = urb_priv->td_cnt; 2121 frame = &td->urb->iso_frame_desc[idx]; 2122 2123 /* The transfer is partly done. */ 2124 frame->status = -EXDEV; 2125 2126 /* calc actual length */ 2127 frame->actual_length = 0; 2128 2129 /* Update ring dequeue pointer */ 2130 while (ep_ring->dequeue != td->last_trb) 2131 inc_deq(xhci, ep_ring); 2132 inc_deq(xhci, ep_ring); 2133 2134 return finish_td(xhci, td, NULL, event, ep, status, true); 2135 } 2136 2137 /* 2138 * Process bulk and interrupt tds, update urb status and actual_length. 2139 */ 2140 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, 2141 union xhci_trb *event_trb, struct xhci_transfer_event *event, 2142 struct xhci_virt_ep *ep, int *status) 2143 { 2144 struct xhci_ring *ep_ring; 2145 union xhci_trb *cur_trb; 2146 struct xhci_segment *cur_seg; 2147 u32 trb_comp_code; 2148 2149 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2150 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2151 2152 switch (trb_comp_code) { 2153 case COMP_SUCCESS: 2154 /* Double check that the HW transferred everything. */ 2155 if (event_trb != td->last_trb || 2156 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2157 xhci_warn(xhci, "WARN Successful completion " 2158 "on short TX\n"); 2159 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2160 *status = -EREMOTEIO; 2161 else 2162 *status = 0; 2163 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH)) 2164 trb_comp_code = COMP_SHORT_TX; 2165 } else { 2166 *status = 0; 2167 } 2168 break; 2169 case COMP_SHORT_TX: 2170 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2171 *status = -EREMOTEIO; 2172 else 2173 *status = 0; 2174 break; 2175 default: 2176 /* Others already handled above */ 2177 break; 2178 } 2179 if (trb_comp_code == COMP_SHORT_TX) 2180 xhci_dbg(xhci, "ep %#x - asked for %d bytes, " 2181 "%d bytes untransferred\n", 2182 td->urb->ep->desc.bEndpointAddress, 2183 td->urb->transfer_buffer_length, 2184 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len))); 2185 /* Fast path - was this the last TRB in the TD for this URB? */ 2186 if (event_trb == td->last_trb) { 2187 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2188 td->urb->actual_length = 2189 td->urb->transfer_buffer_length - 2190 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2191 if (td->urb->transfer_buffer_length < 2192 td->urb->actual_length) { 2193 xhci_warn(xhci, "HC gave bad length " 2194 "of %d bytes left\n", 2195 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len))); 2196 td->urb->actual_length = 0; 2197 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2198 *status = -EREMOTEIO; 2199 else 2200 *status = 0; 2201 } 2202 /* Don't overwrite a previously set error code */ 2203 if (*status == -EINPROGRESS) { 2204 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2205 *status = -EREMOTEIO; 2206 else 2207 *status = 0; 2208 } 2209 } else { 2210 td->urb->actual_length = 2211 td->urb->transfer_buffer_length; 2212 /* Ignore a short packet completion if the 2213 * untransferred length was zero. 2214 */ 2215 if (*status == -EREMOTEIO) 2216 *status = 0; 2217 } 2218 } else { 2219 /* Slow path - walk the list, starting from the dequeue 2220 * pointer, to get the actual length transferred. 2221 */ 2222 td->urb->actual_length = 0; 2223 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg; 2224 cur_trb != event_trb; 2225 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 2226 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 2227 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 2228 td->urb->actual_length += 2229 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 2230 } 2231 /* If the ring didn't stop on a Link or No-op TRB, add 2232 * in the actual bytes transferred from the Normal TRB 2233 */ 2234 if (trb_comp_code != COMP_STOP_INVAL) 2235 td->urb->actual_length += 2236 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 2237 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2238 } 2239 2240 return finish_td(xhci, td, event_trb, event, ep, status, false); 2241 } 2242 2243 /* 2244 * If this function returns an error condition, it means it got a Transfer 2245 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2246 * At this point, the host controller is probably hosed and should be reset. 2247 */ 2248 static int handle_tx_event(struct xhci_hcd *xhci, 2249 struct xhci_transfer_event *event) 2250 __releases(&xhci->lock) 2251 __acquires(&xhci->lock) 2252 { 2253 struct xhci_virt_device *xdev; 2254 struct xhci_virt_ep *ep; 2255 struct xhci_ring *ep_ring; 2256 unsigned int slot_id; 2257 int ep_index; 2258 struct xhci_td *td = NULL; 2259 dma_addr_t event_dma; 2260 struct xhci_segment *event_seg; 2261 union xhci_trb *event_trb; 2262 struct urb *urb = NULL; 2263 int status = -EINPROGRESS; 2264 struct urb_priv *urb_priv; 2265 struct xhci_ep_ctx *ep_ctx; 2266 struct list_head *tmp; 2267 u32 trb_comp_code; 2268 int ret = 0; 2269 int td_num = 0; 2270 2271 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2272 xdev = xhci->devs[slot_id]; 2273 if (!xdev) { 2274 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n"); 2275 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2276 (unsigned long long) xhci_trb_virt_to_dma( 2277 xhci->event_ring->deq_seg, 2278 xhci->event_ring->dequeue), 2279 lower_32_bits(le64_to_cpu(event->buffer)), 2280 upper_32_bits(le64_to_cpu(event->buffer)), 2281 le32_to_cpu(event->transfer_len), 2282 le32_to_cpu(event->flags)); 2283 xhci_dbg(xhci, "Event ring:\n"); 2284 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 2285 return -ENODEV; 2286 } 2287 2288 /* Endpoint ID is 1 based, our index is zero based */ 2289 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2290 ep = &xdev->eps[ep_index]; 2291 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2292 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2293 if (!ep_ring || 2294 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) == 2295 EP_STATE_DISABLED) { 2296 xhci_err(xhci, "ERROR Transfer event for disabled endpoint " 2297 "or incorrect stream ring\n"); 2298 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2299 (unsigned long long) xhci_trb_virt_to_dma( 2300 xhci->event_ring->deq_seg, 2301 xhci->event_ring->dequeue), 2302 lower_32_bits(le64_to_cpu(event->buffer)), 2303 upper_32_bits(le64_to_cpu(event->buffer)), 2304 le32_to_cpu(event->transfer_len), 2305 le32_to_cpu(event->flags)); 2306 xhci_dbg(xhci, "Event ring:\n"); 2307 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 2308 return -ENODEV; 2309 } 2310 2311 /* Count current td numbers if ep->skip is set */ 2312 if (ep->skip) { 2313 list_for_each(tmp, &ep_ring->td_list) 2314 td_num++; 2315 } 2316 2317 event_dma = le64_to_cpu(event->buffer); 2318 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2319 /* Look for common error cases */ 2320 switch (trb_comp_code) { 2321 /* Skip codes that require special handling depending on 2322 * transfer type 2323 */ 2324 case COMP_SUCCESS: 2325 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2326 break; 2327 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2328 trb_comp_code = COMP_SHORT_TX; 2329 else 2330 xhci_warn_ratelimited(xhci, 2331 "WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n"); 2332 case COMP_SHORT_TX: 2333 break; 2334 case COMP_STOP: 2335 xhci_dbg(xhci, "Stopped on Transfer TRB\n"); 2336 break; 2337 case COMP_STOP_INVAL: 2338 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n"); 2339 break; 2340 case COMP_STALL: 2341 xhci_dbg(xhci, "Stalled endpoint\n"); 2342 ep->ep_state |= EP_HALTED; 2343 status = -EPIPE; 2344 break; 2345 case COMP_TRB_ERR: 2346 xhci_warn(xhci, "WARN: TRB error on endpoint\n"); 2347 status = -EILSEQ; 2348 break; 2349 case COMP_SPLIT_ERR: 2350 case COMP_TX_ERR: 2351 xhci_dbg(xhci, "Transfer error on endpoint\n"); 2352 status = -EPROTO; 2353 break; 2354 case COMP_BABBLE: 2355 xhci_dbg(xhci, "Babble error on endpoint\n"); 2356 status = -EOVERFLOW; 2357 break; 2358 case COMP_DB_ERR: 2359 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n"); 2360 status = -ENOSR; 2361 break; 2362 case COMP_BW_OVER: 2363 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n"); 2364 break; 2365 case COMP_BUFF_OVER: 2366 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n"); 2367 break; 2368 case COMP_UNDERRUN: 2369 /* 2370 * When the Isoch ring is empty, the xHC will generate 2371 * a Ring Overrun Event for IN Isoch endpoint or Ring 2372 * Underrun Event for OUT Isoch endpoint. 2373 */ 2374 xhci_dbg(xhci, "underrun event on endpoint\n"); 2375 if (!list_empty(&ep_ring->td_list)) 2376 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2377 "still with TDs queued?\n", 2378 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2379 ep_index); 2380 goto cleanup; 2381 case COMP_OVERRUN: 2382 xhci_dbg(xhci, "overrun event on endpoint\n"); 2383 if (!list_empty(&ep_ring->td_list)) 2384 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2385 "still with TDs queued?\n", 2386 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2387 ep_index); 2388 goto cleanup; 2389 case COMP_DEV_ERR: 2390 xhci_warn(xhci, "WARN: detect an incompatible device"); 2391 status = -EPROTO; 2392 break; 2393 case COMP_MISSED_INT: 2394 /* 2395 * When encounter missed service error, one or more isoc tds 2396 * may be missed by xHC. 2397 * Set skip flag of the ep_ring; Complete the missed tds as 2398 * short transfer when process the ep_ring next time. 2399 */ 2400 ep->skip = true; 2401 xhci_dbg(xhci, "Miss service interval error, set skip flag\n"); 2402 goto cleanup; 2403 default: 2404 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2405 status = 0; 2406 break; 2407 } 2408 xhci_warn(xhci, "ERROR Unknown event condition, HC probably " 2409 "busted\n"); 2410 goto cleanup; 2411 } 2412 2413 do { 2414 /* This TRB should be in the TD at the head of this ring's 2415 * TD list. 2416 */ 2417 if (list_empty(&ep_ring->td_list)) { 2418 /* 2419 * A stopped endpoint may generate an extra completion 2420 * event if the device was suspended. Don't print 2421 * warnings. 2422 */ 2423 if (!(trb_comp_code == COMP_STOP || 2424 trb_comp_code == COMP_STOP_INVAL)) { 2425 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2426 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2427 ep_index); 2428 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n", 2429 (le32_to_cpu(event->flags) & 2430 TRB_TYPE_BITMASK)>>10); 2431 xhci_print_trb_offsets(xhci, (union xhci_trb *) event); 2432 } 2433 if (ep->skip) { 2434 ep->skip = false; 2435 xhci_dbg(xhci, "td_list is empty while skip " 2436 "flag set. Clear skip flag.\n"); 2437 } 2438 ret = 0; 2439 goto cleanup; 2440 } 2441 2442 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2443 if (ep->skip && td_num == 0) { 2444 ep->skip = false; 2445 xhci_dbg(xhci, "All tds on the ep_ring skipped. " 2446 "Clear skip flag.\n"); 2447 ret = 0; 2448 goto cleanup; 2449 } 2450 2451 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list); 2452 if (ep->skip) 2453 td_num--; 2454 2455 /* Is this a TRB in the currently executing TD? */ 2456 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue, 2457 td->last_trb, event_dma); 2458 2459 /* 2460 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2461 * is not in the current TD pointed by ep_ring->dequeue because 2462 * that the hardware dequeue pointer still at the previous TRB 2463 * of the current TD. The previous TRB maybe a Link TD or the 2464 * last TRB of the previous TD. The command completion handle 2465 * will take care the rest. 2466 */ 2467 if (!event_seg && (trb_comp_code == COMP_STOP || 2468 trb_comp_code == COMP_STOP_INVAL)) { 2469 ret = 0; 2470 goto cleanup; 2471 } 2472 2473 if (!event_seg) { 2474 if (!ep->skip || 2475 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2476 /* Some host controllers give a spurious 2477 * successful event after a short transfer. 2478 * Ignore it. 2479 */ 2480 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2481 ep_ring->last_td_was_short) { 2482 ep_ring->last_td_was_short = false; 2483 ret = 0; 2484 goto cleanup; 2485 } 2486 /* HC is busted, give up! */ 2487 xhci_err(xhci, 2488 "ERROR Transfer event TRB DMA ptr not " 2489 "part of current TD\n"); 2490 return -ESHUTDOWN; 2491 } 2492 2493 ret = skip_isoc_td(xhci, td, event, ep, &status); 2494 goto cleanup; 2495 } 2496 if (trb_comp_code == COMP_SHORT_TX) 2497 ep_ring->last_td_was_short = true; 2498 else 2499 ep_ring->last_td_was_short = false; 2500 2501 if (ep->skip) { 2502 xhci_dbg(xhci, "Found td. Clear skip flag.\n"); 2503 ep->skip = false; 2504 } 2505 2506 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) / 2507 sizeof(*event_trb)]; 2508 /* 2509 * No-op TRB should not trigger interrupts. 2510 * If event_trb is a no-op TRB, it means the 2511 * corresponding TD has been cancelled. Just ignore 2512 * the TD. 2513 */ 2514 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) { 2515 xhci_dbg(xhci, 2516 "event_trb is a no-op TRB. Skip it\n"); 2517 goto cleanup; 2518 } 2519 2520 /* Now update the urb's actual_length and give back to 2521 * the core 2522 */ 2523 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2524 ret = process_ctrl_td(xhci, td, event_trb, event, ep, 2525 &status); 2526 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2527 ret = process_isoc_td(xhci, td, event_trb, event, ep, 2528 &status); 2529 else 2530 ret = process_bulk_intr_td(xhci, td, event_trb, event, 2531 ep, &status); 2532 2533 cleanup: 2534 /* 2535 * Do not update event ring dequeue pointer if ep->skip is set. 2536 * Will roll back to continue process missed tds. 2537 */ 2538 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) { 2539 inc_deq(xhci, xhci->event_ring); 2540 } 2541 2542 if (ret) { 2543 urb = td->urb; 2544 urb_priv = urb->hcpriv; 2545 /* Leave the TD around for the reset endpoint function 2546 * to use(but only if it's not a control endpoint, 2547 * since we already queued the Set TR dequeue pointer 2548 * command for stalled control endpoints). 2549 */ 2550 if (usb_endpoint_xfer_control(&urb->ep->desc) || 2551 (trb_comp_code != COMP_STALL && 2552 trb_comp_code != COMP_BABBLE)) 2553 xhci_urb_free_priv(xhci, urb_priv); 2554 else 2555 kfree(urb_priv); 2556 2557 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 2558 if ((urb->actual_length != urb->transfer_buffer_length && 2559 (urb->transfer_flags & 2560 URB_SHORT_NOT_OK)) || 2561 (status != 0 && 2562 !usb_endpoint_xfer_isoc(&urb->ep->desc))) 2563 xhci_dbg(xhci, "Giveback URB %p, len = %d, " 2564 "expected = %d, status = %d\n", 2565 urb, urb->actual_length, 2566 urb->transfer_buffer_length, 2567 status); 2568 spin_unlock(&xhci->lock); 2569 /* EHCI, UHCI, and OHCI always unconditionally set the 2570 * urb->status of an isochronous endpoint to 0. 2571 */ 2572 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 2573 status = 0; 2574 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status); 2575 spin_lock(&xhci->lock); 2576 } 2577 2578 /* 2579 * If ep->skip is set, it means there are missed tds on the 2580 * endpoint ring need to take care of. 2581 * Process them as short transfer until reach the td pointed by 2582 * the event. 2583 */ 2584 } while (ep->skip && trb_comp_code != COMP_MISSED_INT); 2585 2586 return 0; 2587 } 2588 2589 /* 2590 * This function handles all OS-owned events on the event ring. It may drop 2591 * xhci->lock between event processing (e.g. to pass up port status changes). 2592 * Returns >0 for "possibly more events to process" (caller should call again), 2593 * otherwise 0 if done. In future, <0 returns should indicate error code. 2594 */ 2595 static int xhci_handle_event(struct xhci_hcd *xhci) 2596 { 2597 union xhci_trb *event; 2598 int update_ptrs = 1; 2599 int ret; 2600 2601 if (!xhci->event_ring || !xhci->event_ring->dequeue) { 2602 xhci->error_bitmask |= 1 << 1; 2603 return 0; 2604 } 2605 2606 event = xhci->event_ring->dequeue; 2607 /* Does the HC or OS own the TRB? */ 2608 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2609 xhci->event_ring->cycle_state) { 2610 xhci->error_bitmask |= 1 << 2; 2611 return 0; 2612 } 2613 2614 /* 2615 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2616 * speculative reads of the event's flags/data below. 2617 */ 2618 rmb(); 2619 /* FIXME: Handle more event types. */ 2620 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) { 2621 case TRB_TYPE(TRB_COMPLETION): 2622 handle_cmd_completion(xhci, &event->event_cmd); 2623 break; 2624 case TRB_TYPE(TRB_PORT_STATUS): 2625 handle_port_status(xhci, event); 2626 update_ptrs = 0; 2627 break; 2628 case TRB_TYPE(TRB_TRANSFER): 2629 ret = handle_tx_event(xhci, &event->trans_event); 2630 if (ret < 0) 2631 xhci->error_bitmask |= 1 << 9; 2632 else 2633 update_ptrs = 0; 2634 break; 2635 case TRB_TYPE(TRB_DEV_NOTE): 2636 handle_device_notification(xhci, event); 2637 break; 2638 default: 2639 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >= 2640 TRB_TYPE(48)) 2641 handle_vendor_event(xhci, event); 2642 else 2643 xhci->error_bitmask |= 1 << 3; 2644 } 2645 /* Any of the above functions may drop and re-acquire the lock, so check 2646 * to make sure a watchdog timer didn't mark the host as non-responsive. 2647 */ 2648 if (xhci->xhc_state & XHCI_STATE_DYING) { 2649 xhci_dbg(xhci, "xHCI host dying, returning from " 2650 "event handler.\n"); 2651 return 0; 2652 } 2653 2654 if (update_ptrs) 2655 /* Update SW event ring dequeue pointer */ 2656 inc_deq(xhci, xhci->event_ring); 2657 2658 /* Are there more items on the event ring? Caller will call us again to 2659 * check. 2660 */ 2661 return 1; 2662 } 2663 2664 /* 2665 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 2666 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 2667 * indicators of an event TRB error, but we check the status *first* to be safe. 2668 */ 2669 irqreturn_t xhci_irq(struct usb_hcd *hcd) 2670 { 2671 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2672 u32 status; 2673 u64 temp_64; 2674 union xhci_trb *event_ring_deq; 2675 dma_addr_t deq; 2676 2677 spin_lock(&xhci->lock); 2678 /* Check if the xHC generated the interrupt, or the irq is shared */ 2679 status = readl(&xhci->op_regs->status); 2680 if (status == 0xffffffff) 2681 goto hw_died; 2682 2683 if (!(status & STS_EINT)) { 2684 spin_unlock(&xhci->lock); 2685 return IRQ_NONE; 2686 } 2687 if (status & STS_FATAL) { 2688 xhci_warn(xhci, "WARNING: Host System Error\n"); 2689 xhci_halt(xhci); 2690 hw_died: 2691 spin_unlock(&xhci->lock); 2692 return -ESHUTDOWN; 2693 } 2694 2695 /* 2696 * Clear the op reg interrupt status first, 2697 * so we can receive interrupts from other MSI-X interrupters. 2698 * Write 1 to clear the interrupt status. 2699 */ 2700 status |= STS_EINT; 2701 writel(status, &xhci->op_regs->status); 2702 /* FIXME when MSI-X is supported and there are multiple vectors */ 2703 /* Clear the MSI-X event interrupt status */ 2704 2705 if (hcd->irq) { 2706 u32 irq_pending; 2707 /* Acknowledge the PCI interrupt */ 2708 irq_pending = readl(&xhci->ir_set->irq_pending); 2709 irq_pending |= IMAN_IP; 2710 writel(irq_pending, &xhci->ir_set->irq_pending); 2711 } 2712 2713 if (xhci->xhc_state & XHCI_STATE_DYING) { 2714 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 2715 "Shouldn't IRQs be disabled?\n"); 2716 /* Clear the event handler busy flag (RW1C); 2717 * the event ring should be empty. 2718 */ 2719 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2720 xhci_write_64(xhci, temp_64 | ERST_EHB, 2721 &xhci->ir_set->erst_dequeue); 2722 spin_unlock(&xhci->lock); 2723 2724 return IRQ_HANDLED; 2725 } 2726 2727 event_ring_deq = xhci->event_ring->dequeue; 2728 /* FIXME this should be a delayed service routine 2729 * that clears the EHB. 2730 */ 2731 while (xhci_handle_event(xhci) > 0) {} 2732 2733 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2734 /* If necessary, update the HW's version of the event ring deq ptr. */ 2735 if (event_ring_deq != xhci->event_ring->dequeue) { 2736 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2737 xhci->event_ring->dequeue); 2738 if (deq == 0) 2739 xhci_warn(xhci, "WARN something wrong with SW event " 2740 "ring dequeue ptr.\n"); 2741 /* Update HC event ring dequeue pointer */ 2742 temp_64 &= ERST_PTR_MASK; 2743 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 2744 } 2745 2746 /* Clear the event handler busy flag (RW1C); event ring is empty. */ 2747 temp_64 |= ERST_EHB; 2748 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); 2749 2750 spin_unlock(&xhci->lock); 2751 2752 return IRQ_HANDLED; 2753 } 2754 2755 irqreturn_t xhci_msi_irq(int irq, void *hcd) 2756 { 2757 return xhci_irq(hcd); 2758 } 2759 2760 /**** Endpoint Ring Operations ****/ 2761 2762 /* 2763 * Generic function for queueing a TRB on a ring. 2764 * The caller must have checked to make sure there's room on the ring. 2765 * 2766 * @more_trbs_coming: Will you enqueue more TRBs before calling 2767 * prepare_transfer()? 2768 */ 2769 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 2770 bool more_trbs_coming, 2771 u32 field1, u32 field2, u32 field3, u32 field4) 2772 { 2773 struct xhci_generic_trb *trb; 2774 2775 trb = &ring->enqueue->generic; 2776 trb->field[0] = cpu_to_le32(field1); 2777 trb->field[1] = cpu_to_le32(field2); 2778 trb->field[2] = cpu_to_le32(field3); 2779 trb->field[3] = cpu_to_le32(field4); 2780 inc_enq(xhci, ring, more_trbs_coming); 2781 } 2782 2783 /* 2784 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 2785 * FIXME allocate segments if the ring is full. 2786 */ 2787 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 2788 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 2789 { 2790 unsigned int num_trbs_needed; 2791 2792 /* Make sure the endpoint has been added to xHC schedule */ 2793 switch (ep_state) { 2794 case EP_STATE_DISABLED: 2795 /* 2796 * USB core changed config/interfaces without notifying us, 2797 * or hardware is reporting the wrong state. 2798 */ 2799 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 2800 return -ENOENT; 2801 case EP_STATE_ERROR: 2802 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 2803 /* FIXME event handling code for error needs to clear it */ 2804 /* XXX not sure if this should be -ENOENT or not */ 2805 return -EINVAL; 2806 case EP_STATE_HALTED: 2807 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 2808 case EP_STATE_STOPPED: 2809 case EP_STATE_RUNNING: 2810 break; 2811 default: 2812 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 2813 /* 2814 * FIXME issue Configure Endpoint command to try to get the HC 2815 * back into a known state. 2816 */ 2817 return -EINVAL; 2818 } 2819 2820 while (1) { 2821 if (room_on_ring(xhci, ep_ring, num_trbs)) 2822 break; 2823 2824 if (ep_ring == xhci->cmd_ring) { 2825 xhci_err(xhci, "Do not support expand command ring\n"); 2826 return -ENOMEM; 2827 } 2828 2829 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 2830 "ERROR no room on ep ring, try ring expansion"); 2831 num_trbs_needed = num_trbs - ep_ring->num_trbs_free; 2832 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed, 2833 mem_flags)) { 2834 xhci_err(xhci, "Ring expansion failed\n"); 2835 return -ENOMEM; 2836 } 2837 } 2838 2839 if (enqueue_is_link_trb(ep_ring)) { 2840 struct xhci_ring *ring = ep_ring; 2841 union xhci_trb *next; 2842 2843 next = ring->enqueue; 2844 2845 while (last_trb(xhci, ring, ring->enq_seg, next)) { 2846 /* If we're not dealing with 0.95 hardware or isoc rings 2847 * on AMD 0.96 host, clear the chain bit. 2848 */ 2849 if (!xhci_link_trb_quirk(xhci) && 2850 !(ring->type == TYPE_ISOC && 2851 (xhci->quirks & XHCI_AMD_0x96_HOST))) 2852 next->link.control &= cpu_to_le32(~TRB_CHAIN); 2853 else 2854 next->link.control |= cpu_to_le32(TRB_CHAIN); 2855 2856 wmb(); 2857 next->link.control ^= cpu_to_le32(TRB_CYCLE); 2858 2859 /* Toggle the cycle bit after the last ring segment. */ 2860 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 2861 ring->cycle_state = (ring->cycle_state ? 0 : 1); 2862 } 2863 ring->enq_seg = ring->enq_seg->next; 2864 ring->enqueue = ring->enq_seg->trbs; 2865 next = ring->enqueue; 2866 } 2867 } 2868 2869 return 0; 2870 } 2871 2872 static int prepare_transfer(struct xhci_hcd *xhci, 2873 struct xhci_virt_device *xdev, 2874 unsigned int ep_index, 2875 unsigned int stream_id, 2876 unsigned int num_trbs, 2877 struct urb *urb, 2878 unsigned int td_index, 2879 gfp_t mem_flags) 2880 { 2881 int ret; 2882 struct urb_priv *urb_priv; 2883 struct xhci_td *td; 2884 struct xhci_ring *ep_ring; 2885 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2886 2887 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); 2888 if (!ep_ring) { 2889 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 2890 stream_id); 2891 return -EINVAL; 2892 } 2893 2894 ret = prepare_ring(xhci, ep_ring, 2895 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 2896 num_trbs, mem_flags); 2897 if (ret) 2898 return ret; 2899 2900 urb_priv = urb->hcpriv; 2901 td = urb_priv->td[td_index]; 2902 2903 INIT_LIST_HEAD(&td->td_list); 2904 INIT_LIST_HEAD(&td->cancelled_td_list); 2905 2906 if (td_index == 0) { 2907 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 2908 if (unlikely(ret)) 2909 return ret; 2910 } 2911 2912 td->urb = urb; 2913 /* Add this TD to the tail of the endpoint ring's TD list */ 2914 list_add_tail(&td->td_list, &ep_ring->td_list); 2915 td->start_seg = ep_ring->enq_seg; 2916 td->first_trb = ep_ring->enqueue; 2917 2918 urb_priv->td[td_index] = td; 2919 2920 return 0; 2921 } 2922 2923 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb) 2924 { 2925 int num_sgs, num_trbs, running_total, temp, i; 2926 struct scatterlist *sg; 2927 2928 sg = NULL; 2929 num_sgs = urb->num_mapped_sgs; 2930 temp = urb->transfer_buffer_length; 2931 2932 num_trbs = 0; 2933 for_each_sg(urb->sg, sg, num_sgs, i) { 2934 unsigned int len = sg_dma_len(sg); 2935 2936 /* Scatter gather list entries may cross 64KB boundaries */ 2937 running_total = TRB_MAX_BUFF_SIZE - 2938 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1)); 2939 running_total &= TRB_MAX_BUFF_SIZE - 1; 2940 if (running_total != 0) 2941 num_trbs++; 2942 2943 /* How many more 64KB chunks to transfer, how many more TRBs? */ 2944 while (running_total < sg_dma_len(sg) && running_total < temp) { 2945 num_trbs++; 2946 running_total += TRB_MAX_BUFF_SIZE; 2947 } 2948 len = min_t(int, len, temp); 2949 temp -= len; 2950 if (temp == 0) 2951 break; 2952 } 2953 return num_trbs; 2954 } 2955 2956 static void check_trb_math(struct urb *urb, int num_trbs, int running_total) 2957 { 2958 if (num_trbs != 0) 2959 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of " 2960 "TRBs, %d left\n", __func__, 2961 urb->ep->desc.bEndpointAddress, num_trbs); 2962 if (running_total != urb->transfer_buffer_length) 2963 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 2964 "queued %#x (%d), asked for %#x (%d)\n", 2965 __func__, 2966 urb->ep->desc.bEndpointAddress, 2967 running_total, running_total, 2968 urb->transfer_buffer_length, 2969 urb->transfer_buffer_length); 2970 } 2971 2972 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 2973 unsigned int ep_index, unsigned int stream_id, int start_cycle, 2974 struct xhci_generic_trb *start_trb) 2975 { 2976 /* 2977 * Pass all the TRBs to the hardware at once and make sure this write 2978 * isn't reordered. 2979 */ 2980 wmb(); 2981 if (start_cycle) 2982 start_trb->field[3] |= cpu_to_le32(start_cycle); 2983 else 2984 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 2985 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 2986 } 2987 2988 /* 2989 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 2990 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 2991 * (comprised of sg list entries) can take several service intervals to 2992 * transmit. 2993 */ 2994 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 2995 struct urb *urb, int slot_id, unsigned int ep_index) 2996 { 2997 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, 2998 xhci->devs[slot_id]->out_ctx, ep_index); 2999 int xhci_interval; 3000 int ep_interval; 3001 3002 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3003 ep_interval = urb->interval; 3004 /* Convert to microframes */ 3005 if (urb->dev->speed == USB_SPEED_LOW || 3006 urb->dev->speed == USB_SPEED_FULL) 3007 ep_interval *= 8; 3008 /* FIXME change this to a warning and a suggestion to use the new API 3009 * to set the polling interval (once the API is added). 3010 */ 3011 if (xhci_interval != ep_interval) { 3012 dev_dbg_ratelimited(&urb->dev->dev, 3013 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3014 ep_interval, ep_interval == 1 ? "" : "s", 3015 xhci_interval, xhci_interval == 1 ? "" : "s"); 3016 urb->interval = xhci_interval; 3017 /* Convert back to frames for LS/FS devices */ 3018 if (urb->dev->speed == USB_SPEED_LOW || 3019 urb->dev->speed == USB_SPEED_FULL) 3020 urb->interval /= 8; 3021 } 3022 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3023 } 3024 3025 /* 3026 * The TD size is the number of bytes remaining in the TD (including this TRB), 3027 * right shifted by 10. 3028 * It must fit in bits 21:17, so it can't be bigger than 31. 3029 */ 3030 static u32 xhci_td_remainder(unsigned int remainder) 3031 { 3032 u32 max = (1 << (21 - 17 + 1)) - 1; 3033 3034 if ((remainder >> 10) >= max) 3035 return max << 17; 3036 else 3037 return (remainder >> 10) << 17; 3038 } 3039 3040 /* 3041 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3042 * packets remaining in the TD (*not* including this TRB). 3043 * 3044 * Total TD packet count = total_packet_count = 3045 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3046 * 3047 * Packets transferred up to and including this TRB = packets_transferred = 3048 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3049 * 3050 * TD size = total_packet_count - packets_transferred 3051 * 3052 * It must fit in bits 21:17, so it can't be bigger than 31. 3053 * The last TRB in a TD must have the TD size set to zero. 3054 */ 3055 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len, 3056 unsigned int total_packet_count, struct urb *urb, 3057 unsigned int num_trbs_left) 3058 { 3059 int packets_transferred; 3060 3061 /* One TRB with a zero-length data packet. */ 3062 if (num_trbs_left == 0 || (running_total == 0 && trb_buff_len == 0)) 3063 return 0; 3064 3065 /* All the TRB queueing functions don't count the current TRB in 3066 * running_total. 3067 */ 3068 packets_transferred = (running_total + trb_buff_len) / 3069 GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc)); 3070 3071 if ((total_packet_count - packets_transferred) > 31) 3072 return 31 << 17; 3073 return (total_packet_count - packets_transferred) << 17; 3074 } 3075 3076 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3077 struct urb *urb, int slot_id, unsigned int ep_index) 3078 { 3079 struct xhci_ring *ep_ring; 3080 unsigned int num_trbs; 3081 struct urb_priv *urb_priv; 3082 struct xhci_td *td; 3083 struct scatterlist *sg; 3084 int num_sgs; 3085 int trb_buff_len, this_sg_len, running_total; 3086 unsigned int total_packet_count; 3087 bool first_trb; 3088 u64 addr; 3089 bool more_trbs_coming; 3090 3091 struct xhci_generic_trb *start_trb; 3092 int start_cycle; 3093 3094 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3095 if (!ep_ring) 3096 return -EINVAL; 3097 3098 num_trbs = count_sg_trbs_needed(xhci, urb); 3099 num_sgs = urb->num_mapped_sgs; 3100 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length, 3101 usb_endpoint_maxp(&urb->ep->desc)); 3102 3103 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id], 3104 ep_index, urb->stream_id, 3105 num_trbs, urb, 0, mem_flags); 3106 if (trb_buff_len < 0) 3107 return trb_buff_len; 3108 3109 urb_priv = urb->hcpriv; 3110 td = urb_priv->td[0]; 3111 3112 /* 3113 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3114 * until we've finished creating all the other TRBs. The ring's cycle 3115 * state may change as we enqueue the other TRBs, so save it too. 3116 */ 3117 start_trb = &ep_ring->enqueue->generic; 3118 start_cycle = ep_ring->cycle_state; 3119 3120 running_total = 0; 3121 /* 3122 * How much data is in the first TRB? 3123 * 3124 * There are three forces at work for TRB buffer pointers and lengths: 3125 * 1. We don't want to walk off the end of this sg-list entry buffer. 3126 * 2. The transfer length that the driver requested may be smaller than 3127 * the amount of memory allocated for this scatter-gather list. 3128 * 3. TRBs buffers can't cross 64KB boundaries. 3129 */ 3130 sg = urb->sg; 3131 addr = (u64) sg_dma_address(sg); 3132 this_sg_len = sg_dma_len(sg); 3133 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1)); 3134 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 3135 if (trb_buff_len > urb->transfer_buffer_length) 3136 trb_buff_len = urb->transfer_buffer_length; 3137 3138 first_trb = true; 3139 /* Queue the first TRB, even if it's zero-length */ 3140 do { 3141 u32 field = 0; 3142 u32 length_field = 0; 3143 u32 remainder = 0; 3144 3145 /* Don't change the cycle bit of the first TRB until later */ 3146 if (first_trb) { 3147 first_trb = false; 3148 if (start_cycle == 0) 3149 field |= 0x1; 3150 } else 3151 field |= ep_ring->cycle_state; 3152 3153 /* Chain all the TRBs together; clear the chain bit in the last 3154 * TRB to indicate it's the last TRB in the chain. 3155 */ 3156 if (num_trbs > 1) { 3157 field |= TRB_CHAIN; 3158 } else { 3159 /* FIXME - add check for ZERO_PACKET flag before this */ 3160 td->last_trb = ep_ring->enqueue; 3161 field |= TRB_IOC; 3162 } 3163 3164 /* Only set interrupt on short packet for IN endpoints */ 3165 if (usb_urb_dir_in(urb)) 3166 field |= TRB_ISP; 3167 3168 if (TRB_MAX_BUFF_SIZE - 3169 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) { 3170 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n"); 3171 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n", 3172 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1), 3173 (unsigned int) addr + trb_buff_len); 3174 } 3175 3176 /* Set the TRB length, TD size, and interrupter fields. */ 3177 if (xhci->hci_version < 0x100) { 3178 remainder = xhci_td_remainder( 3179 urb->transfer_buffer_length - 3180 running_total); 3181 } else { 3182 remainder = xhci_v1_0_td_remainder(running_total, 3183 trb_buff_len, total_packet_count, urb, 3184 num_trbs - 1); 3185 } 3186 length_field = TRB_LEN(trb_buff_len) | 3187 remainder | 3188 TRB_INTR_TARGET(0); 3189 3190 if (num_trbs > 1) 3191 more_trbs_coming = true; 3192 else 3193 more_trbs_coming = false; 3194 queue_trb(xhci, ep_ring, more_trbs_coming, 3195 lower_32_bits(addr), 3196 upper_32_bits(addr), 3197 length_field, 3198 field | TRB_TYPE(TRB_NORMAL)); 3199 --num_trbs; 3200 running_total += trb_buff_len; 3201 3202 /* Calculate length for next transfer -- 3203 * Are we done queueing all the TRBs for this sg entry? 3204 */ 3205 this_sg_len -= trb_buff_len; 3206 if (this_sg_len == 0) { 3207 --num_sgs; 3208 if (num_sgs == 0) 3209 break; 3210 sg = sg_next(sg); 3211 addr = (u64) sg_dma_address(sg); 3212 this_sg_len = sg_dma_len(sg); 3213 } else { 3214 addr += trb_buff_len; 3215 } 3216 3217 trb_buff_len = TRB_MAX_BUFF_SIZE - 3218 (addr & (TRB_MAX_BUFF_SIZE - 1)); 3219 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 3220 if (running_total + trb_buff_len > urb->transfer_buffer_length) 3221 trb_buff_len = 3222 urb->transfer_buffer_length - running_total; 3223 } while (running_total < urb->transfer_buffer_length); 3224 3225 check_trb_math(urb, num_trbs, running_total); 3226 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3227 start_cycle, start_trb); 3228 return 0; 3229 } 3230 3231 /* This is very similar to what ehci-q.c qtd_fill() does */ 3232 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3233 struct urb *urb, int slot_id, unsigned int ep_index) 3234 { 3235 struct xhci_ring *ep_ring; 3236 struct urb_priv *urb_priv; 3237 struct xhci_td *td; 3238 int num_trbs; 3239 struct xhci_generic_trb *start_trb; 3240 bool first_trb; 3241 bool more_trbs_coming; 3242 int start_cycle; 3243 u32 field, length_field; 3244 3245 int running_total, trb_buff_len, ret; 3246 unsigned int total_packet_count; 3247 u64 addr; 3248 3249 if (urb->num_sgs) 3250 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index); 3251 3252 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3253 if (!ep_ring) 3254 return -EINVAL; 3255 3256 num_trbs = 0; 3257 /* How much data is (potentially) left before the 64KB boundary? */ 3258 running_total = TRB_MAX_BUFF_SIZE - 3259 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 3260 running_total &= TRB_MAX_BUFF_SIZE - 1; 3261 3262 /* If there's some data on this 64KB chunk, or we have to send a 3263 * zero-length transfer, we need at least one TRB 3264 */ 3265 if (running_total != 0 || urb->transfer_buffer_length == 0) 3266 num_trbs++; 3267 /* How many more 64KB chunks to transfer, how many more TRBs? */ 3268 while (running_total < urb->transfer_buffer_length) { 3269 num_trbs++; 3270 running_total += TRB_MAX_BUFF_SIZE; 3271 } 3272 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */ 3273 3274 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3275 ep_index, urb->stream_id, 3276 num_trbs, urb, 0, mem_flags); 3277 if (ret < 0) 3278 return ret; 3279 3280 urb_priv = urb->hcpriv; 3281 td = urb_priv->td[0]; 3282 3283 /* 3284 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3285 * until we've finished creating all the other TRBs. The ring's cycle 3286 * state may change as we enqueue the other TRBs, so save it too. 3287 */ 3288 start_trb = &ep_ring->enqueue->generic; 3289 start_cycle = ep_ring->cycle_state; 3290 3291 running_total = 0; 3292 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length, 3293 usb_endpoint_maxp(&urb->ep->desc)); 3294 /* How much data is in the first TRB? */ 3295 addr = (u64) urb->transfer_dma; 3296 trb_buff_len = TRB_MAX_BUFF_SIZE - 3297 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 3298 if (trb_buff_len > urb->transfer_buffer_length) 3299 trb_buff_len = urb->transfer_buffer_length; 3300 3301 first_trb = true; 3302 3303 /* Queue the first TRB, even if it's zero-length */ 3304 do { 3305 u32 remainder = 0; 3306 field = 0; 3307 3308 /* Don't change the cycle bit of the first TRB until later */ 3309 if (first_trb) { 3310 first_trb = false; 3311 if (start_cycle == 0) 3312 field |= 0x1; 3313 } else 3314 field |= ep_ring->cycle_state; 3315 3316 /* Chain all the TRBs together; clear the chain bit in the last 3317 * TRB to indicate it's the last TRB in the chain. 3318 */ 3319 if (num_trbs > 1) { 3320 field |= TRB_CHAIN; 3321 } else { 3322 /* FIXME - add check for ZERO_PACKET flag before this */ 3323 td->last_trb = ep_ring->enqueue; 3324 field |= TRB_IOC; 3325 } 3326 3327 /* Only set interrupt on short packet for IN endpoints */ 3328 if (usb_urb_dir_in(urb)) 3329 field |= TRB_ISP; 3330 3331 /* Set the TRB length, TD size, and interrupter fields. */ 3332 if (xhci->hci_version < 0x100) { 3333 remainder = xhci_td_remainder( 3334 urb->transfer_buffer_length - 3335 running_total); 3336 } else { 3337 remainder = xhci_v1_0_td_remainder(running_total, 3338 trb_buff_len, total_packet_count, urb, 3339 num_trbs - 1); 3340 } 3341 length_field = TRB_LEN(trb_buff_len) | 3342 remainder | 3343 TRB_INTR_TARGET(0); 3344 3345 if (num_trbs > 1) 3346 more_trbs_coming = true; 3347 else 3348 more_trbs_coming = false; 3349 queue_trb(xhci, ep_ring, more_trbs_coming, 3350 lower_32_bits(addr), 3351 upper_32_bits(addr), 3352 length_field, 3353 field | TRB_TYPE(TRB_NORMAL)); 3354 --num_trbs; 3355 running_total += trb_buff_len; 3356 3357 /* Calculate length for next transfer */ 3358 addr += trb_buff_len; 3359 trb_buff_len = urb->transfer_buffer_length - running_total; 3360 if (trb_buff_len > TRB_MAX_BUFF_SIZE) 3361 trb_buff_len = TRB_MAX_BUFF_SIZE; 3362 } while (running_total < urb->transfer_buffer_length); 3363 3364 check_trb_math(urb, num_trbs, running_total); 3365 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3366 start_cycle, start_trb); 3367 return 0; 3368 } 3369 3370 /* Caller must have locked xhci->lock */ 3371 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3372 struct urb *urb, int slot_id, unsigned int ep_index) 3373 { 3374 struct xhci_ring *ep_ring; 3375 int num_trbs; 3376 int ret; 3377 struct usb_ctrlrequest *setup; 3378 struct xhci_generic_trb *start_trb; 3379 int start_cycle; 3380 u32 field, length_field; 3381 struct urb_priv *urb_priv; 3382 struct xhci_td *td; 3383 3384 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3385 if (!ep_ring) 3386 return -EINVAL; 3387 3388 /* 3389 * Need to copy setup packet into setup TRB, so we can't use the setup 3390 * DMA address. 3391 */ 3392 if (!urb->setup_packet) 3393 return -EINVAL; 3394 3395 /* 1 TRB for setup, 1 for status */ 3396 num_trbs = 2; 3397 /* 3398 * Don't need to check if we need additional event data and normal TRBs, 3399 * since data in control transfers will never get bigger than 16MB 3400 * XXX: can we get a buffer that crosses 64KB boundaries? 3401 */ 3402 if (urb->transfer_buffer_length > 0) 3403 num_trbs++; 3404 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3405 ep_index, urb->stream_id, 3406 num_trbs, urb, 0, mem_flags); 3407 if (ret < 0) 3408 return ret; 3409 3410 urb_priv = urb->hcpriv; 3411 td = urb_priv->td[0]; 3412 3413 /* 3414 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3415 * until we've finished creating all the other TRBs. The ring's cycle 3416 * state may change as we enqueue the other TRBs, so save it too. 3417 */ 3418 start_trb = &ep_ring->enqueue->generic; 3419 start_cycle = ep_ring->cycle_state; 3420 3421 /* Queue setup TRB - see section 6.4.1.2.1 */ 3422 /* FIXME better way to translate setup_packet into two u32 fields? */ 3423 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3424 field = 0; 3425 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3426 if (start_cycle == 0) 3427 field |= 0x1; 3428 3429 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */ 3430 if (xhci->hci_version == 0x100) { 3431 if (urb->transfer_buffer_length > 0) { 3432 if (setup->bRequestType & USB_DIR_IN) 3433 field |= TRB_TX_TYPE(TRB_DATA_IN); 3434 else 3435 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3436 } 3437 } 3438 3439 queue_trb(xhci, ep_ring, true, 3440 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3441 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3442 TRB_LEN(8) | TRB_INTR_TARGET(0), 3443 /* Immediate data in pointer */ 3444 field); 3445 3446 /* If there's data, queue data TRBs */ 3447 /* Only set interrupt on short packet for IN endpoints */ 3448 if (usb_urb_dir_in(urb)) 3449 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3450 else 3451 field = TRB_TYPE(TRB_DATA); 3452 3453 length_field = TRB_LEN(urb->transfer_buffer_length) | 3454 xhci_td_remainder(urb->transfer_buffer_length) | 3455 TRB_INTR_TARGET(0); 3456 if (urb->transfer_buffer_length > 0) { 3457 if (setup->bRequestType & USB_DIR_IN) 3458 field |= TRB_DIR_IN; 3459 queue_trb(xhci, ep_ring, true, 3460 lower_32_bits(urb->transfer_dma), 3461 upper_32_bits(urb->transfer_dma), 3462 length_field, 3463 field | ep_ring->cycle_state); 3464 } 3465 3466 /* Save the DMA address of the last TRB in the TD */ 3467 td->last_trb = ep_ring->enqueue; 3468 3469 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3470 /* If the device sent data, the status stage is an OUT transfer */ 3471 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3472 field = 0; 3473 else 3474 field = TRB_DIR_IN; 3475 queue_trb(xhci, ep_ring, false, 3476 0, 3477 0, 3478 TRB_INTR_TARGET(0), 3479 /* Event on completion */ 3480 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3481 3482 giveback_first_trb(xhci, slot_id, ep_index, 0, 3483 start_cycle, start_trb); 3484 return 0; 3485 } 3486 3487 static int count_isoc_trbs_needed(struct xhci_hcd *xhci, 3488 struct urb *urb, int i) 3489 { 3490 int num_trbs = 0; 3491 u64 addr, td_len; 3492 3493 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3494 td_len = urb->iso_frame_desc[i].length; 3495 3496 num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3497 TRB_MAX_BUFF_SIZE); 3498 if (num_trbs == 0) 3499 num_trbs++; 3500 3501 return num_trbs; 3502 } 3503 3504 /* 3505 * The transfer burst count field of the isochronous TRB defines the number of 3506 * bursts that are required to move all packets in this TD. Only SuperSpeed 3507 * devices can burst up to bMaxBurst number of packets per service interval. 3508 * This field is zero based, meaning a value of zero in the field means one 3509 * burst. Basically, for everything but SuperSpeed devices, this field will be 3510 * zero. Only xHCI 1.0 host controllers support this field. 3511 */ 3512 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3513 struct usb_device *udev, 3514 struct urb *urb, unsigned int total_packet_count) 3515 { 3516 unsigned int max_burst; 3517 3518 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER) 3519 return 0; 3520 3521 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3522 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3523 } 3524 3525 /* 3526 * Returns the number of packets in the last "burst" of packets. This field is 3527 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3528 * the last burst packet count is equal to the total number of packets in the 3529 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3530 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3531 * contain 1 to (bMaxBurst + 1) packets. 3532 */ 3533 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3534 struct usb_device *udev, 3535 struct urb *urb, unsigned int total_packet_count) 3536 { 3537 unsigned int max_burst; 3538 unsigned int residue; 3539 3540 if (xhci->hci_version < 0x100) 3541 return 0; 3542 3543 switch (udev->speed) { 3544 case USB_SPEED_SUPER: 3545 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3546 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3547 residue = total_packet_count % (max_burst + 1); 3548 /* If residue is zero, the last burst contains (max_burst + 1) 3549 * number of packets, but the TLBPC field is zero-based. 3550 */ 3551 if (residue == 0) 3552 return max_burst; 3553 return residue - 1; 3554 default: 3555 if (total_packet_count == 0) 3556 return 0; 3557 return total_packet_count - 1; 3558 } 3559 } 3560 3561 /* This is for isoc transfer */ 3562 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3563 struct urb *urb, int slot_id, unsigned int ep_index) 3564 { 3565 struct xhci_ring *ep_ring; 3566 struct urb_priv *urb_priv; 3567 struct xhci_td *td; 3568 int num_tds, trbs_per_td; 3569 struct xhci_generic_trb *start_trb; 3570 bool first_trb; 3571 int start_cycle; 3572 u32 field, length_field; 3573 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3574 u64 start_addr, addr; 3575 int i, j; 3576 bool more_trbs_coming; 3577 3578 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 3579 3580 num_tds = urb->number_of_packets; 3581 if (num_tds < 1) { 3582 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 3583 return -EINVAL; 3584 } 3585 3586 start_addr = (u64) urb->transfer_dma; 3587 start_trb = &ep_ring->enqueue->generic; 3588 start_cycle = ep_ring->cycle_state; 3589 3590 urb_priv = urb->hcpriv; 3591 /* Queue the first TRB, even if it's zero-length */ 3592 for (i = 0; i < num_tds; i++) { 3593 unsigned int total_packet_count; 3594 unsigned int burst_count; 3595 unsigned int residue; 3596 3597 first_trb = true; 3598 running_total = 0; 3599 addr = start_addr + urb->iso_frame_desc[i].offset; 3600 td_len = urb->iso_frame_desc[i].length; 3601 td_remain_len = td_len; 3602 total_packet_count = DIV_ROUND_UP(td_len, 3603 GET_MAX_PACKET( 3604 usb_endpoint_maxp(&urb->ep->desc))); 3605 /* A zero-length transfer still involves at least one packet. */ 3606 if (total_packet_count == 0) 3607 total_packet_count++; 3608 burst_count = xhci_get_burst_count(xhci, urb->dev, urb, 3609 total_packet_count); 3610 residue = xhci_get_last_burst_packet_count(xhci, 3611 urb->dev, urb, total_packet_count); 3612 3613 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i); 3614 3615 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 3616 urb->stream_id, trbs_per_td, urb, i, mem_flags); 3617 if (ret < 0) { 3618 if (i == 0) 3619 return ret; 3620 goto cleanup; 3621 } 3622 3623 td = urb_priv->td[i]; 3624 for (j = 0; j < trbs_per_td; j++) { 3625 u32 remainder = 0; 3626 field = 0; 3627 3628 if (first_trb) { 3629 field = TRB_TBC(burst_count) | 3630 TRB_TLBPC(residue); 3631 /* Queue the isoc TRB */ 3632 field |= TRB_TYPE(TRB_ISOC); 3633 /* Assume URB_ISO_ASAP is set */ 3634 field |= TRB_SIA; 3635 if (i == 0) { 3636 if (start_cycle == 0) 3637 field |= 0x1; 3638 } else 3639 field |= ep_ring->cycle_state; 3640 first_trb = false; 3641 } else { 3642 /* Queue other normal TRBs */ 3643 field |= TRB_TYPE(TRB_NORMAL); 3644 field |= ep_ring->cycle_state; 3645 } 3646 3647 /* Only set interrupt on short packet for IN EPs */ 3648 if (usb_urb_dir_in(urb)) 3649 field |= TRB_ISP; 3650 3651 /* Chain all the TRBs together; clear the chain bit in 3652 * the last TRB to indicate it's the last TRB in the 3653 * chain. 3654 */ 3655 if (j < trbs_per_td - 1) { 3656 field |= TRB_CHAIN; 3657 more_trbs_coming = true; 3658 } else { 3659 td->last_trb = ep_ring->enqueue; 3660 field |= TRB_IOC; 3661 if (xhci->hci_version == 0x100 && 3662 !(xhci->quirks & 3663 XHCI_AVOID_BEI)) { 3664 /* Set BEI bit except for the last td */ 3665 if (i < num_tds - 1) 3666 field |= TRB_BEI; 3667 } 3668 more_trbs_coming = false; 3669 } 3670 3671 /* Calculate TRB length */ 3672 trb_buff_len = TRB_MAX_BUFF_SIZE - 3673 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1)); 3674 if (trb_buff_len > td_remain_len) 3675 trb_buff_len = td_remain_len; 3676 3677 /* Set the TRB length, TD size, & interrupter fields. */ 3678 if (xhci->hci_version < 0x100) { 3679 remainder = xhci_td_remainder( 3680 td_len - running_total); 3681 } else { 3682 remainder = xhci_v1_0_td_remainder( 3683 running_total, trb_buff_len, 3684 total_packet_count, urb, 3685 (trbs_per_td - j - 1)); 3686 } 3687 length_field = TRB_LEN(trb_buff_len) | 3688 remainder | 3689 TRB_INTR_TARGET(0); 3690 3691 queue_trb(xhci, ep_ring, more_trbs_coming, 3692 lower_32_bits(addr), 3693 upper_32_bits(addr), 3694 length_field, 3695 field); 3696 running_total += trb_buff_len; 3697 3698 addr += trb_buff_len; 3699 td_remain_len -= trb_buff_len; 3700 } 3701 3702 /* Check TD length */ 3703 if (running_total != td_len) { 3704 xhci_err(xhci, "ISOC TD length unmatch\n"); 3705 ret = -EINVAL; 3706 goto cleanup; 3707 } 3708 } 3709 3710 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 3711 if (xhci->quirks & XHCI_AMD_PLL_FIX) 3712 usb_amd_quirk_pll_disable(); 3713 } 3714 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 3715 3716 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3717 start_cycle, start_trb); 3718 return 0; 3719 cleanup: 3720 /* Clean up a partially enqueued isoc transfer. */ 3721 3722 for (i--; i >= 0; i--) 3723 list_del_init(&urb_priv->td[i]->td_list); 3724 3725 /* Use the first TD as a temporary variable to turn the TDs we've queued 3726 * into No-ops with a software-owned cycle bit. That way the hardware 3727 * won't accidentally start executing bogus TDs when we partially 3728 * overwrite them. td->first_trb and td->start_seg are already set. 3729 */ 3730 urb_priv->td[0]->last_trb = ep_ring->enqueue; 3731 /* Every TRB except the first & last will have its cycle bit flipped. */ 3732 td_to_noop(xhci, ep_ring, urb_priv->td[0], true); 3733 3734 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 3735 ep_ring->enqueue = urb_priv->td[0]->first_trb; 3736 ep_ring->enq_seg = urb_priv->td[0]->start_seg; 3737 ep_ring->cycle_state = start_cycle; 3738 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp; 3739 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 3740 return ret; 3741 } 3742 3743 /* 3744 * Check transfer ring to guarantee there is enough room for the urb. 3745 * Update ISO URB start_frame and interval. 3746 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to 3747 * update the urb->start_frame by now. 3748 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input. 3749 */ 3750 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 3751 struct urb *urb, int slot_id, unsigned int ep_index) 3752 { 3753 struct xhci_virt_device *xdev; 3754 struct xhci_ring *ep_ring; 3755 struct xhci_ep_ctx *ep_ctx; 3756 int start_frame; 3757 int xhci_interval; 3758 int ep_interval; 3759 int num_tds, num_trbs, i; 3760 int ret; 3761 3762 xdev = xhci->devs[slot_id]; 3763 ep_ring = xdev->eps[ep_index].ring; 3764 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3765 3766 num_trbs = 0; 3767 num_tds = urb->number_of_packets; 3768 for (i = 0; i < num_tds; i++) 3769 num_trbs += count_isoc_trbs_needed(xhci, urb, i); 3770 3771 /* Check the ring to guarantee there is enough room for the whole urb. 3772 * Do not insert any td of the urb to the ring if the check failed. 3773 */ 3774 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 3775 num_trbs, mem_flags); 3776 if (ret) 3777 return ret; 3778 3779 start_frame = readl(&xhci->run_regs->microframe_index); 3780 start_frame &= 0x3fff; 3781 3782 urb->start_frame = start_frame; 3783 if (urb->dev->speed == USB_SPEED_LOW || 3784 urb->dev->speed == USB_SPEED_FULL) 3785 urb->start_frame >>= 3; 3786 3787 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3788 ep_interval = urb->interval; 3789 /* Convert to microframes */ 3790 if (urb->dev->speed == USB_SPEED_LOW || 3791 urb->dev->speed == USB_SPEED_FULL) 3792 ep_interval *= 8; 3793 /* FIXME change this to a warning and a suggestion to use the new API 3794 * to set the polling interval (once the API is added). 3795 */ 3796 if (xhci_interval != ep_interval) { 3797 dev_dbg_ratelimited(&urb->dev->dev, 3798 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3799 ep_interval, ep_interval == 1 ? "" : "s", 3800 xhci_interval, xhci_interval == 1 ? "" : "s"); 3801 urb->interval = xhci_interval; 3802 /* Convert back to frames for LS/FS devices */ 3803 if (urb->dev->speed == USB_SPEED_LOW || 3804 urb->dev->speed == USB_SPEED_FULL) 3805 urb->interval /= 8; 3806 } 3807 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free; 3808 3809 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 3810 } 3811 3812 /**** Command Ring Operations ****/ 3813 3814 /* Generic function for queueing a command TRB on the command ring. 3815 * Check to make sure there's room on the command ring for one command TRB. 3816 * Also check that there's room reserved for commands that must not fail. 3817 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 3818 * then only check for the number of reserved spots. 3819 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 3820 * because the command event handler may want to resubmit a failed command. 3821 */ 3822 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 3823 u32 field1, u32 field2, 3824 u32 field3, u32 field4, bool command_must_succeed) 3825 { 3826 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 3827 int ret; 3828 if (xhci->xhc_state & XHCI_STATE_DYING) 3829 return -ESHUTDOWN; 3830 3831 if (!command_must_succeed) 3832 reserved_trbs++; 3833 3834 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 3835 reserved_trbs, GFP_ATOMIC); 3836 if (ret < 0) { 3837 xhci_err(xhci, "ERR: No room for command on command ring\n"); 3838 if (command_must_succeed) 3839 xhci_err(xhci, "ERR: Reserved TRB counting for " 3840 "unfailable commands failed.\n"); 3841 return ret; 3842 } 3843 3844 cmd->command_trb = xhci->cmd_ring->enqueue; 3845 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 3846 3847 /* if there are no other commands queued we start the timeout timer */ 3848 if (xhci->cmd_list.next == &cmd->cmd_list && 3849 !timer_pending(&xhci->cmd_timer)) { 3850 xhci->current_cmd = cmd; 3851 mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT); 3852 } 3853 3854 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 3855 field4 | xhci->cmd_ring->cycle_state); 3856 return 0; 3857 } 3858 3859 /* Queue a slot enable or disable request on the command ring */ 3860 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 3861 u32 trb_type, u32 slot_id) 3862 { 3863 return queue_command(xhci, cmd, 0, 0, 0, 3864 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 3865 } 3866 3867 /* Queue an address device command TRB */ 3868 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 3869 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 3870 { 3871 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3872 upper_32_bits(in_ctx_ptr), 0, 3873 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 3874 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 3875 } 3876 3877 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 3878 u32 field1, u32 field2, u32 field3, u32 field4) 3879 { 3880 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 3881 } 3882 3883 /* Queue a reset device command TRB */ 3884 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 3885 u32 slot_id) 3886 { 3887 return queue_command(xhci, cmd, 0, 0, 0, 3888 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 3889 false); 3890 } 3891 3892 /* Queue a configure endpoint command TRB */ 3893 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 3894 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 3895 u32 slot_id, bool command_must_succeed) 3896 { 3897 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3898 upper_32_bits(in_ctx_ptr), 0, 3899 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 3900 command_must_succeed); 3901 } 3902 3903 /* Queue an evaluate context command TRB */ 3904 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 3905 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 3906 { 3907 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3908 upper_32_bits(in_ctx_ptr), 0, 3909 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 3910 command_must_succeed); 3911 } 3912 3913 /* 3914 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 3915 * activity on an endpoint that is about to be suspended. 3916 */ 3917 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 3918 int slot_id, unsigned int ep_index, int suspend) 3919 { 3920 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3921 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3922 u32 type = TRB_TYPE(TRB_STOP_RING); 3923 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 3924 3925 return queue_command(xhci, cmd, 0, 0, 0, 3926 trb_slot_id | trb_ep_index | type | trb_suspend, false); 3927 } 3928 3929 /* Set Transfer Ring Dequeue Pointer command. 3930 * This should not be used for endpoints that have streams enabled. 3931 */ 3932 static int queue_set_tr_deq(struct xhci_hcd *xhci, struct xhci_command *cmd, 3933 int slot_id, 3934 unsigned int ep_index, unsigned int stream_id, 3935 struct xhci_segment *deq_seg, 3936 union xhci_trb *deq_ptr, u32 cycle_state) 3937 { 3938 dma_addr_t addr; 3939 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3940 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3941 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id); 3942 u32 trb_sct = 0; 3943 u32 type = TRB_TYPE(TRB_SET_DEQ); 3944 struct xhci_virt_ep *ep; 3945 3946 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr); 3947 if (addr == 0) { 3948 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 3949 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", 3950 deq_seg, deq_ptr); 3951 return 0; 3952 } 3953 ep = &xhci->devs[slot_id]->eps[ep_index]; 3954 if ((ep->ep_state & SET_DEQ_PENDING)) { 3955 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 3956 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n"); 3957 return 0; 3958 } 3959 ep->queued_deq_seg = deq_seg; 3960 ep->queued_deq_ptr = deq_ptr; 3961 if (stream_id) 3962 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 3963 return queue_command(xhci, cmd, 3964 lower_32_bits(addr) | trb_sct | cycle_state, 3965 upper_32_bits(addr), trb_stream_id, 3966 trb_slot_id | trb_ep_index | type, false); 3967 } 3968 3969 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 3970 int slot_id, unsigned int ep_index) 3971 { 3972 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3973 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3974 u32 type = TRB_TYPE(TRB_RESET_EP); 3975 3976 return queue_command(xhci, cmd, 0, 0, 0, 3977 trb_slot_id | trb_ep_index | type, false); 3978 } 3979