1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 /* 12 * Ring initialization rules: 13 * 1. Each segment is initialized to zero, except for link TRBs. 14 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 15 * Consumer Cycle State (CCS), depending on ring function. 16 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 17 * 18 * Ring behavior rules: 19 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 20 * least one free TRB in the ring. This is useful if you want to turn that 21 * into a link TRB and expand the ring. 22 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 23 * link TRB, then load the pointer with the address in the link TRB. If the 24 * link TRB had its toggle bit set, you may need to update the ring cycle 25 * state (see cycle bit rules). You may have to do this multiple times 26 * until you reach a non-link TRB. 27 * 3. A ring is full if enqueue++ (for the definition of increment above) 28 * equals the dequeue pointer. 29 * 30 * Cycle bit rules: 31 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 32 * in a link TRB, it must toggle the ring cycle state. 33 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 34 * in a link TRB, it must toggle the ring cycle state. 35 * 36 * Producer rules: 37 * 1. Check if ring is full before you enqueue. 38 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 39 * Update enqueue pointer between each write (which may update the ring 40 * cycle state). 41 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 42 * and endpoint rings. If HC is the producer for the event ring, 43 * and it generates an interrupt according to interrupt modulation rules. 44 * 45 * Consumer rules: 46 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 47 * the TRB is owned by the consumer. 48 * 2. Update dequeue pointer (which may update the ring cycle state) and 49 * continue processing TRBs until you reach a TRB which is not owned by you. 50 * 3. Notify the producer. SW is the consumer for the event ring, and it 51 * updates event ring dequeue pointer. HC is the consumer for the command and 52 * endpoint rings; it generates events on the event ring for these. 53 */ 54 55 #include <linux/scatterlist.h> 56 #include <linux/slab.h> 57 #include <linux/dma-mapping.h> 58 #include "xhci.h" 59 #include "xhci-trace.h" 60 #include "xhci-mtk.h" 61 62 /* 63 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 64 * address of the TRB. 65 */ 66 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 67 union xhci_trb *trb) 68 { 69 unsigned long segment_offset; 70 71 if (!seg || !trb || trb < seg->trbs) 72 return 0; 73 /* offset in TRBs */ 74 segment_offset = trb - seg->trbs; 75 if (segment_offset >= TRBS_PER_SEGMENT) 76 return 0; 77 return seg->dma + (segment_offset * sizeof(*trb)); 78 } 79 80 static bool trb_is_noop(union xhci_trb *trb) 81 { 82 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); 83 } 84 85 static bool trb_is_link(union xhci_trb *trb) 86 { 87 return TRB_TYPE_LINK_LE32(trb->link.control); 88 } 89 90 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) 91 { 92 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; 93 } 94 95 static bool last_trb_on_ring(struct xhci_ring *ring, 96 struct xhci_segment *seg, union xhci_trb *trb) 97 { 98 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); 99 } 100 101 static bool link_trb_toggles_cycle(union xhci_trb *trb) 102 { 103 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 104 } 105 106 static bool last_td_in_urb(struct xhci_td *td) 107 { 108 struct urb_priv *urb_priv = td->urb->hcpriv; 109 110 return urb_priv->num_tds_done == urb_priv->num_tds; 111 } 112 113 static void inc_td_cnt(struct urb *urb) 114 { 115 struct urb_priv *urb_priv = urb->hcpriv; 116 117 urb_priv->num_tds_done++; 118 } 119 120 static void trb_to_noop(union xhci_trb *trb, u32 noop_type) 121 { 122 if (trb_is_link(trb)) { 123 /* unchain chained link TRBs */ 124 trb->link.control &= cpu_to_le32(~TRB_CHAIN); 125 } else { 126 trb->generic.field[0] = 0; 127 trb->generic.field[1] = 0; 128 trb->generic.field[2] = 0; 129 /* Preserve only the cycle bit of this TRB */ 130 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 131 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); 132 } 133 } 134 135 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 136 * TRB is in a new segment. This does not skip over link TRBs, and it does not 137 * effect the ring dequeue or enqueue pointers. 138 */ 139 static void next_trb(struct xhci_hcd *xhci, 140 struct xhci_ring *ring, 141 struct xhci_segment **seg, 142 union xhci_trb **trb) 143 { 144 if (trb_is_link(*trb)) { 145 *seg = (*seg)->next; 146 *trb = ((*seg)->trbs); 147 } else { 148 (*trb)++; 149 } 150 } 151 152 /* 153 * See Cycle bit rules. SW is the consumer for the event ring only. 154 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 155 */ 156 void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 157 { 158 /* event ring doesn't have link trbs, check for last trb */ 159 if (ring->type == TYPE_EVENT) { 160 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 161 ring->dequeue++; 162 goto out; 163 } 164 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) 165 ring->cycle_state ^= 1; 166 ring->deq_seg = ring->deq_seg->next; 167 ring->dequeue = ring->deq_seg->trbs; 168 goto out; 169 } 170 171 /* All other rings have link trbs */ 172 if (!trb_is_link(ring->dequeue)) { 173 ring->dequeue++; 174 ring->num_trbs_free++; 175 } 176 while (trb_is_link(ring->dequeue)) { 177 ring->deq_seg = ring->deq_seg->next; 178 ring->dequeue = ring->deq_seg->trbs; 179 } 180 181 out: 182 trace_xhci_inc_deq(ring); 183 184 return; 185 } 186 187 /* 188 * See Cycle bit rules. SW is the consumer for the event ring only. 189 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 190 * 191 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 192 * chain bit is set), then set the chain bit in all the following link TRBs. 193 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 194 * have their chain bit cleared (so that each Link TRB is a separate TD). 195 * 196 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 197 * set, but other sections talk about dealing with the chain bit set. This was 198 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 199 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 200 * 201 * @more_trbs_coming: Will you enqueue more TRBs before calling 202 * prepare_transfer()? 203 */ 204 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 205 bool more_trbs_coming) 206 { 207 u32 chain; 208 union xhci_trb *next; 209 210 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 211 /* If this is not event ring, there is one less usable TRB */ 212 if (!trb_is_link(ring->enqueue)) 213 ring->num_trbs_free--; 214 next = ++(ring->enqueue); 215 216 /* Update the dequeue pointer further if that was a link TRB */ 217 while (trb_is_link(next)) { 218 219 /* 220 * If the caller doesn't plan on enqueueing more TDs before 221 * ringing the doorbell, then we don't want to give the link TRB 222 * to the hardware just yet. We'll give the link TRB back in 223 * prepare_ring() just before we enqueue the TD at the top of 224 * the ring. 225 */ 226 if (!chain && !more_trbs_coming) 227 break; 228 229 /* If we're not dealing with 0.95 hardware or isoc rings on 230 * AMD 0.96 host, carry over the chain bit of the previous TRB 231 * (which may mean the chain bit is cleared). 232 */ 233 if (!(ring->type == TYPE_ISOC && 234 (xhci->quirks & XHCI_AMD_0x96_HOST)) && 235 !xhci_link_trb_quirk(xhci)) { 236 next->link.control &= cpu_to_le32(~TRB_CHAIN); 237 next->link.control |= cpu_to_le32(chain); 238 } 239 /* Give this link TRB to the hardware */ 240 wmb(); 241 next->link.control ^= cpu_to_le32(TRB_CYCLE); 242 243 /* Toggle the cycle bit after the last ring segment. */ 244 if (link_trb_toggles_cycle(next)) 245 ring->cycle_state ^= 1; 246 247 ring->enq_seg = ring->enq_seg->next; 248 ring->enqueue = ring->enq_seg->trbs; 249 next = ring->enqueue; 250 } 251 252 trace_xhci_inc_enq(ring); 253 } 254 255 /* 256 * Check to see if there's room to enqueue num_trbs on the ring and make sure 257 * enqueue pointer will not advance into dequeue segment. See rules above. 258 */ 259 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 260 unsigned int num_trbs) 261 { 262 int num_trbs_in_deq_seg; 263 264 if (ring->num_trbs_free < num_trbs) 265 return 0; 266 267 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { 268 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; 269 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) 270 return 0; 271 } 272 273 return 1; 274 } 275 276 /* Ring the host controller doorbell after placing a command on the ring */ 277 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 278 { 279 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 280 return; 281 282 xhci_dbg(xhci, "// Ding dong!\n"); 283 284 trace_xhci_ring_host_doorbell(0, DB_VALUE_HOST); 285 286 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 287 /* Flush PCI posted writes */ 288 readl(&xhci->dba->doorbell[0]); 289 } 290 291 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay) 292 { 293 return mod_delayed_work(system_wq, &xhci->cmd_timer, delay); 294 } 295 296 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) 297 { 298 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, 299 cmd_list); 300 } 301 302 /* 303 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 304 * If there are other commands waiting then restart the ring and kick the timer. 305 * This must be called with command ring stopped and xhci->lock held. 306 */ 307 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 308 struct xhci_command *cur_cmd) 309 { 310 struct xhci_command *i_cmd; 311 312 /* Turn all aborted commands in list to no-ops, then restart */ 313 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { 314 315 if (i_cmd->status != COMP_COMMAND_ABORTED) 316 continue; 317 318 i_cmd->status = COMP_COMMAND_RING_STOPPED; 319 320 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 321 i_cmd->command_trb); 322 323 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); 324 325 /* 326 * caller waiting for completion is called when command 327 * completion event is received for these no-op commands 328 */ 329 } 330 331 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 332 333 /* ring command ring doorbell to restart the command ring */ 334 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 335 !(xhci->xhc_state & XHCI_STATE_DYING)) { 336 xhci->current_cmd = cur_cmd; 337 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 338 xhci_ring_cmd_db(xhci); 339 } 340 } 341 342 /* Must be called with xhci->lock held, releases and aquires lock back */ 343 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) 344 { 345 u64 temp_64; 346 int ret; 347 348 xhci_dbg(xhci, "Abort command ring\n"); 349 350 reinit_completion(&xhci->cmd_ring_stop_completion); 351 352 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 353 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT, 354 &xhci->op_regs->cmd_ring); 355 356 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the 357 * completion of the Command Abort operation. If CRR is not negated in 5 358 * seconds then driver handles it as if host died (-ENODEV). 359 * In the future we should distinguish between -ENODEV and -ETIMEDOUT 360 * and try to recover a -ETIMEDOUT with a host controller reset. 361 */ 362 ret = xhci_handshake(&xhci->op_regs->cmd_ring, 363 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 364 if (ret < 0) { 365 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret); 366 xhci_halt(xhci); 367 xhci_hc_died(xhci); 368 return ret; 369 } 370 /* 371 * Writing the CMD_RING_ABORT bit should cause a cmd completion event, 372 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared 373 * but the completion event in never sent. Wait 2 secs (arbitrary 374 * number) to handle those cases after negation of CMD_RING_RUNNING. 375 */ 376 spin_unlock_irqrestore(&xhci->lock, flags); 377 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, 378 msecs_to_jiffies(2000)); 379 spin_lock_irqsave(&xhci->lock, flags); 380 if (!ret) { 381 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); 382 xhci_cleanup_command_queue(xhci); 383 } else { 384 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); 385 } 386 return 0; 387 } 388 389 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 390 unsigned int slot_id, 391 unsigned int ep_index, 392 unsigned int stream_id) 393 { 394 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 395 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 396 unsigned int ep_state = ep->ep_state; 397 398 /* Don't ring the doorbell for this endpoint if there are pending 399 * cancellations because we don't want to interrupt processing. 400 * We don't want to restart any stream rings if there's a set dequeue 401 * pointer command pending because the device can choose to start any 402 * stream once the endpoint is on the HW schedule. 403 */ 404 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || 405 (ep_state & EP_HALTED) || (ep_state & EP_CLEARING_TT)) 406 return; 407 408 trace_xhci_ring_ep_doorbell(slot_id, DB_VALUE(ep_index, stream_id)); 409 410 writel(DB_VALUE(ep_index, stream_id), db_addr); 411 /* The CPU has better things to do at this point than wait for a 412 * write-posting flush. It'll get there soon enough. 413 */ 414 } 415 416 /* Ring the doorbell for any rings with pending URBs */ 417 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 418 unsigned int slot_id, 419 unsigned int ep_index) 420 { 421 unsigned int stream_id; 422 struct xhci_virt_ep *ep; 423 424 ep = &xhci->devs[slot_id]->eps[ep_index]; 425 426 /* A ring has pending URBs if its TD list is not empty */ 427 if (!(ep->ep_state & EP_HAS_STREAMS)) { 428 if (ep->ring && !(list_empty(&ep->ring->td_list))) 429 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 430 return; 431 } 432 433 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 434 stream_id++) { 435 struct xhci_stream_info *stream_info = ep->stream_info; 436 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 437 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 438 stream_id); 439 } 440 } 441 442 void xhci_ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 443 unsigned int slot_id, 444 unsigned int ep_index) 445 { 446 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 447 } 448 449 /* Get the right ring for the given slot_id, ep_index and stream_id. 450 * If the endpoint supports streams, boundary check the URB's stream ID. 451 * If the endpoint doesn't support streams, return the singular endpoint ring. 452 */ 453 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 454 unsigned int slot_id, unsigned int ep_index, 455 unsigned int stream_id) 456 { 457 struct xhci_virt_ep *ep; 458 459 ep = &xhci->devs[slot_id]->eps[ep_index]; 460 /* Common case: no streams */ 461 if (!(ep->ep_state & EP_HAS_STREAMS)) 462 return ep->ring; 463 464 if (stream_id == 0) { 465 xhci_warn(xhci, 466 "WARN: Slot ID %u, ep index %u has streams, " 467 "but URB has no stream ID.\n", 468 slot_id, ep_index); 469 return NULL; 470 } 471 472 if (stream_id < ep->stream_info->num_streams) 473 return ep->stream_info->stream_rings[stream_id]; 474 475 xhci_warn(xhci, 476 "WARN: Slot ID %u, ep index %u has " 477 "stream IDs 1 to %u allocated, " 478 "but stream ID %u is requested.\n", 479 slot_id, ep_index, 480 ep->stream_info->num_streams - 1, 481 stream_id); 482 return NULL; 483 } 484 485 486 /* 487 * Get the hw dequeue pointer xHC stopped on, either directly from the 488 * endpoint context, or if streams are in use from the stream context. 489 * The returned hw_dequeue contains the lowest four bits with cycle state 490 * and possbile stream context type. 491 */ 492 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev, 493 unsigned int ep_index, unsigned int stream_id) 494 { 495 struct xhci_ep_ctx *ep_ctx; 496 struct xhci_stream_ctx *st_ctx; 497 struct xhci_virt_ep *ep; 498 499 ep = &vdev->eps[ep_index]; 500 501 if (ep->ep_state & EP_HAS_STREAMS) { 502 st_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 503 return le64_to_cpu(st_ctx->stream_ring); 504 } 505 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 506 return le64_to_cpu(ep_ctx->deq); 507 } 508 509 /* 510 * Move the xHC's endpoint ring dequeue pointer past cur_td. 511 * Record the new state of the xHC's endpoint ring dequeue segment, 512 * dequeue pointer, stream id, and new consumer cycle state in state. 513 * Update our internal representation of the ring's dequeue pointer. 514 * 515 * We do this in three jumps: 516 * - First we update our new ring state to be the same as when the xHC stopped. 517 * - Then we traverse the ring to find the segment that contains 518 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass 519 * any link TRBs with the toggle cycle bit set. 520 * - Finally we move the dequeue state one TRB further, toggling the cycle bit 521 * if we've moved it past a link TRB with the toggle cycle bit set. 522 * 523 * Some of the uses of xhci_generic_trb are grotty, but if they're done 524 * with correct __le32 accesses they should work fine. Only users of this are 525 * in here. 526 */ 527 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, 528 unsigned int slot_id, unsigned int ep_index, 529 unsigned int stream_id, struct xhci_td *cur_td, 530 struct xhci_dequeue_state *state) 531 { 532 struct xhci_virt_device *dev = xhci->devs[slot_id]; 533 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 534 struct xhci_ring *ep_ring; 535 struct xhci_segment *new_seg; 536 union xhci_trb *new_deq; 537 dma_addr_t addr; 538 u64 hw_dequeue; 539 bool cycle_found = false; 540 bool td_last_trb_found = false; 541 542 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 543 ep_index, stream_id); 544 if (!ep_ring) { 545 xhci_warn(xhci, "WARN can't find new dequeue state " 546 "for invalid stream ID %u.\n", 547 stream_id); 548 return; 549 } 550 /* 551 * A cancelled TD can complete with a stall if HW cached the trb. 552 * In this case driver can't find cur_td, but if the ring is empty we 553 * can move the dequeue pointer to the current enqueue position. 554 */ 555 if (!cur_td) { 556 if (list_empty(&ep_ring->td_list)) { 557 state->new_deq_seg = ep_ring->enq_seg; 558 state->new_deq_ptr = ep_ring->enqueue; 559 state->new_cycle_state = ep_ring->cycle_state; 560 goto done; 561 } else { 562 xhci_warn(xhci, "Can't find new dequeue state, missing cur_td\n"); 563 return; 564 } 565 } 566 567 /* Dig out the cycle state saved by the xHC during the stop ep cmd */ 568 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 569 "Finding endpoint context"); 570 571 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id); 572 new_seg = ep_ring->deq_seg; 573 new_deq = ep_ring->dequeue; 574 state->new_cycle_state = hw_dequeue & 0x1; 575 state->stream_id = stream_id; 576 577 /* 578 * We want to find the pointer, segment and cycle state of the new trb 579 * (the one after current TD's last_trb). We know the cycle state at 580 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are 581 * found. 582 */ 583 do { 584 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) 585 == (dma_addr_t)(hw_dequeue & ~0xf)) { 586 cycle_found = true; 587 if (td_last_trb_found) 588 break; 589 } 590 if (new_deq == cur_td->last_trb) 591 td_last_trb_found = true; 592 593 if (cycle_found && trb_is_link(new_deq) && 594 link_trb_toggles_cycle(new_deq)) 595 state->new_cycle_state ^= 0x1; 596 597 next_trb(xhci, ep_ring, &new_seg, &new_deq); 598 599 /* Search wrapped around, bail out */ 600 if (new_deq == ep->ring->dequeue) { 601 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 602 state->new_deq_seg = NULL; 603 state->new_deq_ptr = NULL; 604 return; 605 } 606 607 } while (!cycle_found || !td_last_trb_found); 608 609 state->new_deq_seg = new_seg; 610 state->new_deq_ptr = new_deq; 611 612 done: 613 /* Don't update the ring cycle state for the producer (us). */ 614 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 615 "Cycle state = 0x%x", state->new_cycle_state); 616 617 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 618 "New dequeue segment = %p (virtual)", 619 state->new_deq_seg); 620 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); 621 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 622 "New dequeue pointer = 0x%llx (DMA)", 623 (unsigned long long) addr); 624 } 625 626 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 627 * (The last TRB actually points to the ring enqueue pointer, which is not part 628 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 629 */ 630 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 631 struct xhci_td *td, bool flip_cycle) 632 { 633 struct xhci_segment *seg = td->start_seg; 634 union xhci_trb *trb = td->first_trb; 635 636 while (1) { 637 trb_to_noop(trb, TRB_TR_NOOP); 638 639 /* flip cycle if asked to */ 640 if (flip_cycle && trb != td->first_trb && trb != td->last_trb) 641 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); 642 643 if (trb == td->last_trb) 644 break; 645 646 next_trb(xhci, ep_ring, &seg, &trb); 647 } 648 } 649 650 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, 651 struct xhci_virt_ep *ep) 652 { 653 ep->ep_state &= ~EP_STOP_CMD_PENDING; 654 /* Can't del_timer_sync in interrupt */ 655 del_timer(&ep->stop_cmd_timer); 656 } 657 658 /* 659 * Must be called with xhci->lock held in interrupt context, 660 * releases and re-acquires xhci->lock 661 */ 662 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 663 struct xhci_td *cur_td, int status) 664 { 665 struct urb *urb = cur_td->urb; 666 struct urb_priv *urb_priv = urb->hcpriv; 667 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 668 669 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 670 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 671 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 672 if (xhci->quirks & XHCI_AMD_PLL_FIX) 673 usb_amd_quirk_pll_enable(); 674 } 675 } 676 xhci_urb_free_priv(urb_priv); 677 usb_hcd_unlink_urb_from_ep(hcd, urb); 678 trace_xhci_urb_giveback(urb); 679 usb_hcd_giveback_urb(hcd, urb, status); 680 } 681 682 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, 683 struct xhci_ring *ring, struct xhci_td *td) 684 { 685 struct device *dev = xhci_to_hcd(xhci)->self.controller; 686 struct xhci_segment *seg = td->bounce_seg; 687 struct urb *urb = td->urb; 688 size_t len; 689 690 if (!ring || !seg || !urb) 691 return; 692 693 if (usb_urb_dir_out(urb)) { 694 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 695 DMA_TO_DEVICE); 696 return; 697 } 698 699 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 700 DMA_FROM_DEVICE); 701 /* for in tranfers we need to copy the data from bounce to sg */ 702 if (urb->num_sgs) { 703 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, seg->bounce_buf, 704 seg->bounce_len, seg->bounce_offs); 705 if (len != seg->bounce_len) 706 xhci_warn(xhci, "WARN Wrong bounce buffer read length: %zu != %d\n", 707 len, seg->bounce_len); 708 } else { 709 memcpy(urb->transfer_buffer + seg->bounce_offs, seg->bounce_buf, 710 seg->bounce_len); 711 } 712 seg->bounce_len = 0; 713 seg->bounce_offs = 0; 714 } 715 716 /* 717 * When we get a command completion for a Stop Endpoint Command, we need to 718 * unlink any cancelled TDs from the ring. There are two ways to do that: 719 * 720 * 1. If the HW was in the middle of processing the TD that needs to be 721 * cancelled, then we must move the ring's dequeue pointer past the last TRB 722 * in the TD with a Set Dequeue Pointer Command. 723 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 724 * bit cleared) so that the HW will skip over them. 725 */ 726 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 727 union xhci_trb *trb, struct xhci_event_cmd *event) 728 { 729 unsigned int ep_index; 730 struct xhci_ring *ep_ring; 731 struct xhci_virt_ep *ep; 732 struct xhci_td *cur_td = NULL; 733 struct xhci_td *last_unlinked_td; 734 struct xhci_ep_ctx *ep_ctx; 735 struct xhci_virt_device *vdev; 736 u64 hw_deq; 737 struct xhci_dequeue_state deq_state; 738 739 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 740 if (!xhci->devs[slot_id]) 741 xhci_warn(xhci, "Stop endpoint command " 742 "completion for disabled slot %u\n", 743 slot_id); 744 return; 745 } 746 747 memset(&deq_state, 0, sizeof(deq_state)); 748 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 749 750 vdev = xhci->devs[slot_id]; 751 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 752 trace_xhci_handle_cmd_stop_ep(ep_ctx); 753 754 ep = &xhci->devs[slot_id]->eps[ep_index]; 755 last_unlinked_td = list_last_entry(&ep->cancelled_td_list, 756 struct xhci_td, cancelled_td_list); 757 758 if (list_empty(&ep->cancelled_td_list)) { 759 xhci_stop_watchdog_timer_in_irq(xhci, ep); 760 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 761 return; 762 } 763 764 /* Fix up the ep ring first, so HW stops executing cancelled TDs. 765 * We have the xHCI lock, so nothing can modify this list until we drop 766 * it. We're also in the event handler, so we can't get re-interrupted 767 * if another Stop Endpoint command completes 768 */ 769 list_for_each_entry(cur_td, &ep->cancelled_td_list, cancelled_td_list) { 770 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 771 "Removing canceled TD starting at 0x%llx (dma).", 772 (unsigned long long)xhci_trb_virt_to_dma( 773 cur_td->start_seg, cur_td->first_trb)); 774 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 775 if (!ep_ring) { 776 /* This shouldn't happen unless a driver is mucking 777 * with the stream ID after submission. This will 778 * leave the TD on the hardware ring, and the hardware 779 * will try to execute it, and may access a buffer 780 * that has already been freed. In the best case, the 781 * hardware will execute it, and the event handler will 782 * ignore the completion event for that TD, since it was 783 * removed from the td_list for that endpoint. In 784 * short, don't muck with the stream ID after 785 * submission. 786 */ 787 xhci_warn(xhci, "WARN Cancelled URB %p " 788 "has invalid stream ID %u.\n", 789 cur_td->urb, 790 cur_td->urb->stream_id); 791 goto remove_finished_td; 792 } 793 /* 794 * If we stopped on the TD we need to cancel, then we have to 795 * move the xHC endpoint ring dequeue pointer past this TD. 796 */ 797 hw_deq = xhci_get_hw_deq(xhci, vdev, ep_index, 798 cur_td->urb->stream_id); 799 hw_deq &= ~0xf; 800 801 if (trb_in_td(xhci, cur_td->start_seg, cur_td->first_trb, 802 cur_td->last_trb, hw_deq, false)) { 803 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, 804 cur_td->urb->stream_id, 805 cur_td, &deq_state); 806 } else { 807 td_to_noop(xhci, ep_ring, cur_td, false); 808 } 809 810 remove_finished_td: 811 /* 812 * The event handler won't see a completion for this TD anymore, 813 * so remove it from the endpoint ring's TD list. Keep it in 814 * the cancelled TD list for URB completion later. 815 */ 816 list_del_init(&cur_td->td_list); 817 } 818 819 xhci_stop_watchdog_timer_in_irq(xhci, ep); 820 821 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ 822 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { 823 xhci_queue_new_dequeue_state(xhci, slot_id, ep_index, 824 &deq_state); 825 xhci_ring_cmd_db(xhci); 826 } else { 827 /* Otherwise ring the doorbell(s) to restart queued transfers */ 828 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 829 } 830 831 /* 832 * Drop the lock and complete the URBs in the cancelled TD list. 833 * New TDs to be cancelled might be added to the end of the list before 834 * we can complete all the URBs for the TDs we already unlinked. 835 * So stop when we've completed the URB for the last TD we unlinked. 836 */ 837 do { 838 cur_td = list_first_entry(&ep->cancelled_td_list, 839 struct xhci_td, cancelled_td_list); 840 list_del_init(&cur_td->cancelled_td_list); 841 842 /* Clean up the cancelled URB */ 843 /* Doesn't matter what we pass for status, since the core will 844 * just overwrite it (because the URB has been unlinked). 845 */ 846 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 847 xhci_unmap_td_bounce_buffer(xhci, ep_ring, cur_td); 848 inc_td_cnt(cur_td->urb); 849 if (last_td_in_urb(cur_td)) 850 xhci_giveback_urb_in_irq(xhci, cur_td, 0); 851 852 /* Stop processing the cancelled list if the watchdog timer is 853 * running. 854 */ 855 if (xhci->xhc_state & XHCI_STATE_DYING) 856 return; 857 } while (cur_td != last_unlinked_td); 858 859 /* Return to the event handler with xhci->lock re-acquired */ 860 } 861 862 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 863 { 864 struct xhci_td *cur_td; 865 struct xhci_td *tmp; 866 867 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { 868 list_del_init(&cur_td->td_list); 869 870 if (!list_empty(&cur_td->cancelled_td_list)) 871 list_del_init(&cur_td->cancelled_td_list); 872 873 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); 874 875 inc_td_cnt(cur_td->urb); 876 if (last_td_in_urb(cur_td)) 877 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 878 } 879 } 880 881 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 882 int slot_id, int ep_index) 883 { 884 struct xhci_td *cur_td; 885 struct xhci_td *tmp; 886 struct xhci_virt_ep *ep; 887 struct xhci_ring *ring; 888 889 ep = &xhci->devs[slot_id]->eps[ep_index]; 890 if ((ep->ep_state & EP_HAS_STREAMS) || 891 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 892 int stream_id; 893 894 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 895 stream_id++) { 896 ring = ep->stream_info->stream_rings[stream_id]; 897 if (!ring) 898 continue; 899 900 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 901 "Killing URBs for slot ID %u, ep index %u, stream %u", 902 slot_id, ep_index, stream_id); 903 xhci_kill_ring_urbs(xhci, ring); 904 } 905 } else { 906 ring = ep->ring; 907 if (!ring) 908 return; 909 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 910 "Killing URBs for slot ID %u, ep index %u", 911 slot_id, ep_index); 912 xhci_kill_ring_urbs(xhci, ring); 913 } 914 915 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, 916 cancelled_td_list) { 917 list_del_init(&cur_td->cancelled_td_list); 918 inc_td_cnt(cur_td->urb); 919 920 if (last_td_in_urb(cur_td)) 921 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 922 } 923 } 924 925 /* 926 * host controller died, register read returns 0xffffffff 927 * Complete pending commands, mark them ABORTED. 928 * URBs need to be given back as usb core might be waiting with device locks 929 * held for the URBs to finish during device disconnect, blocking host remove. 930 * 931 * Call with xhci->lock held. 932 * lock is relased and re-acquired while giving back urb. 933 */ 934 void xhci_hc_died(struct xhci_hcd *xhci) 935 { 936 int i, j; 937 938 if (xhci->xhc_state & XHCI_STATE_DYING) 939 return; 940 941 xhci_err(xhci, "xHCI host controller not responding, assume dead\n"); 942 xhci->xhc_state |= XHCI_STATE_DYING; 943 944 xhci_cleanup_command_queue(xhci); 945 946 /* return any pending urbs, remove may be waiting for them */ 947 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 948 if (!xhci->devs[i]) 949 continue; 950 for (j = 0; j < 31; j++) 951 xhci_kill_endpoint_urbs(xhci, i, j); 952 } 953 954 /* inform usb core hc died if PCI remove isn't already handling it */ 955 if (!(xhci->xhc_state & XHCI_STATE_REMOVING)) 956 usb_hc_died(xhci_to_hcd(xhci)); 957 } 958 959 /* Watchdog timer function for when a stop endpoint command fails to complete. 960 * In this case, we assume the host controller is broken or dying or dead. The 961 * host may still be completing some other events, so we have to be careful to 962 * let the event ring handler and the URB dequeueing/enqueueing functions know 963 * through xhci->state. 964 * 965 * The timer may also fire if the host takes a very long time to respond to the 966 * command, and the stop endpoint command completion handler cannot delete the 967 * timer before the timer function is called. Another endpoint cancellation may 968 * sneak in before the timer function can grab the lock, and that may queue 969 * another stop endpoint command and add the timer back. So we cannot use a 970 * simple flag to say whether there is a pending stop endpoint command for a 971 * particular endpoint. 972 * 973 * Instead we use a combination of that flag and checking if a new timer is 974 * pending. 975 */ 976 void xhci_stop_endpoint_command_watchdog(struct timer_list *t) 977 { 978 struct xhci_virt_ep *ep = from_timer(ep, t, stop_cmd_timer); 979 struct xhci_hcd *xhci = ep->xhci; 980 unsigned long flags; 981 u32 usbsts; 982 983 spin_lock_irqsave(&xhci->lock, flags); 984 985 /* bail out if cmd completed but raced with stop ep watchdog timer.*/ 986 if (!(ep->ep_state & EP_STOP_CMD_PENDING) || 987 timer_pending(&ep->stop_cmd_timer)) { 988 spin_unlock_irqrestore(&xhci->lock, flags); 989 xhci_dbg(xhci, "Stop EP timer raced with cmd completion, exit"); 990 return; 991 } 992 usbsts = readl(&xhci->op_regs->status); 993 994 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); 995 xhci_warn(xhci, "USBSTS:%s\n", xhci_decode_usbsts(usbsts)); 996 997 ep->ep_state &= ~EP_STOP_CMD_PENDING; 998 999 xhci_halt(xhci); 1000 1001 /* 1002 * handle a stop endpoint cmd timeout as if host died (-ENODEV). 1003 * In the future we could distinguish between -ENODEV and -ETIMEDOUT 1004 * and try to recover a -ETIMEDOUT with a host controller reset 1005 */ 1006 xhci_hc_died(xhci); 1007 1008 spin_unlock_irqrestore(&xhci->lock, flags); 1009 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1010 "xHCI host controller is dead."); 1011 } 1012 1013 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 1014 struct xhci_virt_device *dev, 1015 struct xhci_ring *ep_ring, 1016 unsigned int ep_index) 1017 { 1018 union xhci_trb *dequeue_temp; 1019 int num_trbs_free_temp; 1020 bool revert = false; 1021 1022 num_trbs_free_temp = ep_ring->num_trbs_free; 1023 dequeue_temp = ep_ring->dequeue; 1024 1025 /* If we get two back-to-back stalls, and the first stalled transfer 1026 * ends just before a link TRB, the dequeue pointer will be left on 1027 * the link TRB by the code in the while loop. So we have to update 1028 * the dequeue pointer one segment further, or we'll jump off 1029 * the segment into la-la-land. 1030 */ 1031 if (trb_is_link(ep_ring->dequeue)) { 1032 ep_ring->deq_seg = ep_ring->deq_seg->next; 1033 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1034 } 1035 1036 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 1037 /* We have more usable TRBs */ 1038 ep_ring->num_trbs_free++; 1039 ep_ring->dequeue++; 1040 if (trb_is_link(ep_ring->dequeue)) { 1041 if (ep_ring->dequeue == 1042 dev->eps[ep_index].queued_deq_ptr) 1043 break; 1044 ep_ring->deq_seg = ep_ring->deq_seg->next; 1045 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1046 } 1047 if (ep_ring->dequeue == dequeue_temp) { 1048 revert = true; 1049 break; 1050 } 1051 } 1052 1053 if (revert) { 1054 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 1055 ep_ring->num_trbs_free = num_trbs_free_temp; 1056 } 1057 } 1058 1059 /* 1060 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1061 * we need to clear the set deq pending flag in the endpoint ring state, so that 1062 * the TD queueing code can ring the doorbell again. We also need to ring the 1063 * endpoint doorbell to restart the ring, but only if there aren't more 1064 * cancellations pending. 1065 */ 1066 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1067 union xhci_trb *trb, u32 cmd_comp_code) 1068 { 1069 unsigned int ep_index; 1070 unsigned int stream_id; 1071 struct xhci_ring *ep_ring; 1072 struct xhci_virt_device *dev; 1073 struct xhci_virt_ep *ep; 1074 struct xhci_ep_ctx *ep_ctx; 1075 struct xhci_slot_ctx *slot_ctx; 1076 1077 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1078 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1079 dev = xhci->devs[slot_id]; 1080 ep = &dev->eps[ep_index]; 1081 1082 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); 1083 if (!ep_ring) { 1084 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 1085 stream_id); 1086 /* XXX: Harmless??? */ 1087 goto cleanup; 1088 } 1089 1090 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 1091 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); 1092 trace_xhci_handle_cmd_set_deq(slot_ctx); 1093 trace_xhci_handle_cmd_set_deq_ep(ep_ctx); 1094 1095 if (cmd_comp_code != COMP_SUCCESS) { 1096 unsigned int ep_state; 1097 unsigned int slot_state; 1098 1099 switch (cmd_comp_code) { 1100 case COMP_TRB_ERROR: 1101 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 1102 break; 1103 case COMP_CONTEXT_STATE_ERROR: 1104 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1105 ep_state = GET_EP_CTX_STATE(ep_ctx); 1106 slot_state = le32_to_cpu(slot_ctx->dev_state); 1107 slot_state = GET_SLOT_STATE(slot_state); 1108 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1109 "Slot state = %u, EP state = %u", 1110 slot_state, ep_state); 1111 break; 1112 case COMP_SLOT_NOT_ENABLED_ERROR: 1113 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1114 slot_id); 1115 break; 1116 default: 1117 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1118 cmd_comp_code); 1119 break; 1120 } 1121 /* OK what do we do now? The endpoint state is hosed, and we 1122 * should never get to this point if the synchronization between 1123 * queueing, and endpoint state are correct. This might happen 1124 * if the device gets disconnected after we've finished 1125 * cancelling URBs, which might not be an error... 1126 */ 1127 } else { 1128 u64 deq; 1129 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1130 if (ep->ep_state & EP_HAS_STREAMS) { 1131 struct xhci_stream_ctx *ctx = 1132 &ep->stream_info->stream_ctx_array[stream_id]; 1133 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; 1134 } else { 1135 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1136 } 1137 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1138 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1139 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1140 ep->queued_deq_ptr) == deq) { 1141 /* Update the ring's dequeue segment and dequeue pointer 1142 * to reflect the new position. 1143 */ 1144 update_ring_for_set_deq_completion(xhci, dev, 1145 ep_ring, ep_index); 1146 } else { 1147 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1148 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1149 ep->queued_deq_seg, ep->queued_deq_ptr); 1150 } 1151 } 1152 1153 cleanup: 1154 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 1155 dev->eps[ep_index].queued_deq_seg = NULL; 1156 dev->eps[ep_index].queued_deq_ptr = NULL; 1157 /* Restart any rings with pending URBs */ 1158 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1159 } 1160 1161 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1162 union xhci_trb *trb, u32 cmd_comp_code) 1163 { 1164 struct xhci_virt_device *vdev; 1165 struct xhci_ep_ctx *ep_ctx; 1166 unsigned int ep_index; 1167 1168 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1169 vdev = xhci->devs[slot_id]; 1170 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 1171 trace_xhci_handle_cmd_reset_ep(ep_ctx); 1172 1173 /* This command will only fail if the endpoint wasn't halted, 1174 * but we don't care. 1175 */ 1176 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1177 "Ignoring reset ep completion code of %u", cmd_comp_code); 1178 1179 /* HW with the reset endpoint quirk needs to have a configure endpoint 1180 * command complete before the endpoint can be used. Queue that here 1181 * because the HW can't handle two commands being queued in a row. 1182 */ 1183 if (xhci->quirks & XHCI_RESET_EP_QUIRK) { 1184 struct xhci_command *command; 1185 1186 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1187 if (!command) 1188 return; 1189 1190 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1191 "Queueing configure endpoint command"); 1192 xhci_queue_configure_endpoint(xhci, command, 1193 xhci->devs[slot_id]->in_ctx->dma, slot_id, 1194 false); 1195 xhci_ring_cmd_db(xhci); 1196 } else { 1197 /* Clear our internal halted state */ 1198 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; 1199 } 1200 1201 /* if this was a soft reset, then restart */ 1202 if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP) 1203 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1204 } 1205 1206 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, 1207 struct xhci_command *command, u32 cmd_comp_code) 1208 { 1209 if (cmd_comp_code == COMP_SUCCESS) 1210 command->slot_id = slot_id; 1211 else 1212 command->slot_id = 0; 1213 } 1214 1215 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1216 { 1217 struct xhci_virt_device *virt_dev; 1218 struct xhci_slot_ctx *slot_ctx; 1219 1220 virt_dev = xhci->devs[slot_id]; 1221 if (!virt_dev) 1222 return; 1223 1224 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 1225 trace_xhci_handle_cmd_disable_slot(slot_ctx); 1226 1227 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1228 /* Delete default control endpoint resources */ 1229 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1230 xhci_free_virt_device(xhci, slot_id); 1231 } 1232 1233 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, 1234 struct xhci_event_cmd *event, u32 cmd_comp_code) 1235 { 1236 struct xhci_virt_device *virt_dev; 1237 struct xhci_input_control_ctx *ctrl_ctx; 1238 struct xhci_ep_ctx *ep_ctx; 1239 unsigned int ep_index; 1240 unsigned int ep_state; 1241 u32 add_flags, drop_flags; 1242 1243 /* 1244 * Configure endpoint commands can come from the USB core 1245 * configuration or alt setting changes, or because the HW 1246 * needed an extra configure endpoint command after a reset 1247 * endpoint command or streams were being configured. 1248 * If the command was for a halted endpoint, the xHCI driver 1249 * is not waiting on the configure endpoint command. 1250 */ 1251 virt_dev = xhci->devs[slot_id]; 1252 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1253 if (!ctrl_ctx) { 1254 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1255 return; 1256 } 1257 1258 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1259 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1260 /* Input ctx add_flags are the endpoint index plus one */ 1261 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1262 1263 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index); 1264 trace_xhci_handle_cmd_config_ep(ep_ctx); 1265 1266 /* A usb_set_interface() call directly after clearing a halted 1267 * condition may race on this quirky hardware. Not worth 1268 * worrying about, since this is prototype hardware. Not sure 1269 * if this will work for streams, but streams support was 1270 * untested on this prototype. 1271 */ 1272 if (xhci->quirks & XHCI_RESET_EP_QUIRK && 1273 ep_index != (unsigned int) -1 && 1274 add_flags - SLOT_FLAG == drop_flags) { 1275 ep_state = virt_dev->eps[ep_index].ep_state; 1276 if (!(ep_state & EP_HALTED)) 1277 return; 1278 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1279 "Completed config ep cmd - " 1280 "last ep index = %d, state = %d", 1281 ep_index, ep_state); 1282 /* Clear internal halted state and restart ring(s) */ 1283 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED; 1284 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1285 return; 1286 } 1287 return; 1288 } 1289 1290 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id) 1291 { 1292 struct xhci_virt_device *vdev; 1293 struct xhci_slot_ctx *slot_ctx; 1294 1295 vdev = xhci->devs[slot_id]; 1296 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1297 trace_xhci_handle_cmd_addr_dev(slot_ctx); 1298 } 1299 1300 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id, 1301 struct xhci_event_cmd *event) 1302 { 1303 struct xhci_virt_device *vdev; 1304 struct xhci_slot_ctx *slot_ctx; 1305 1306 vdev = xhci->devs[slot_id]; 1307 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1308 trace_xhci_handle_cmd_reset_dev(slot_ctx); 1309 1310 xhci_dbg(xhci, "Completed reset device command.\n"); 1311 if (!xhci->devs[slot_id]) 1312 xhci_warn(xhci, "Reset device command completion " 1313 "for disabled slot %u\n", slot_id); 1314 } 1315 1316 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1317 struct xhci_event_cmd *event) 1318 { 1319 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1320 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); 1321 return; 1322 } 1323 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1324 "NEC firmware version %2x.%02x", 1325 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1326 NEC_FW_MINOR(le32_to_cpu(event->status))); 1327 } 1328 1329 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) 1330 { 1331 list_del(&cmd->cmd_list); 1332 1333 if (cmd->completion) { 1334 cmd->status = status; 1335 complete(cmd->completion); 1336 } else { 1337 kfree(cmd); 1338 } 1339 } 1340 1341 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1342 { 1343 struct xhci_command *cur_cmd, *tmp_cmd; 1344 xhci->current_cmd = NULL; 1345 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1346 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED); 1347 } 1348 1349 void xhci_handle_command_timeout(struct work_struct *work) 1350 { 1351 struct xhci_hcd *xhci; 1352 unsigned long flags; 1353 u64 hw_ring_state; 1354 1355 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); 1356 1357 spin_lock_irqsave(&xhci->lock, flags); 1358 1359 /* 1360 * If timeout work is pending, or current_cmd is NULL, it means we 1361 * raced with command completion. Command is handled so just return. 1362 */ 1363 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { 1364 spin_unlock_irqrestore(&xhci->lock, flags); 1365 return; 1366 } 1367 /* mark this command to be cancelled */ 1368 xhci->current_cmd->status = COMP_COMMAND_ABORTED; 1369 1370 /* Make sure command ring is running before aborting it */ 1371 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1372 if (hw_ring_state == ~(u64)0) { 1373 xhci_hc_died(xhci); 1374 goto time_out_completed; 1375 } 1376 1377 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1378 (hw_ring_state & CMD_RING_RUNNING)) { 1379 /* Prevent new doorbell, and start command abort */ 1380 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 1381 xhci_dbg(xhci, "Command timeout\n"); 1382 xhci_abort_cmd_ring(xhci, flags); 1383 goto time_out_completed; 1384 } 1385 1386 /* host removed. Bail out */ 1387 if (xhci->xhc_state & XHCI_STATE_REMOVING) { 1388 xhci_dbg(xhci, "host removed, ring start fail?\n"); 1389 xhci_cleanup_command_queue(xhci); 1390 1391 goto time_out_completed; 1392 } 1393 1394 /* command timeout on stopped ring, ring can't be aborted */ 1395 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1396 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1397 1398 time_out_completed: 1399 spin_unlock_irqrestore(&xhci->lock, flags); 1400 return; 1401 } 1402 1403 static void handle_cmd_completion(struct xhci_hcd *xhci, 1404 struct xhci_event_cmd *event) 1405 { 1406 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1407 u64 cmd_dma; 1408 dma_addr_t cmd_dequeue_dma; 1409 u32 cmd_comp_code; 1410 union xhci_trb *cmd_trb; 1411 struct xhci_command *cmd; 1412 u32 cmd_type; 1413 1414 cmd_dma = le64_to_cpu(event->cmd_trb); 1415 cmd_trb = xhci->cmd_ring->dequeue; 1416 1417 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic); 1418 1419 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1420 cmd_trb); 1421 /* 1422 * Check whether the completion event is for our internal kept 1423 * command. 1424 */ 1425 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { 1426 xhci_warn(xhci, 1427 "ERROR mismatched command completion event\n"); 1428 return; 1429 } 1430 1431 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); 1432 1433 cancel_delayed_work(&xhci->cmd_timer); 1434 1435 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1436 1437 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1438 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) { 1439 complete_all(&xhci->cmd_ring_stop_completion); 1440 return; 1441 } 1442 1443 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1444 xhci_err(xhci, 1445 "Command completion event does not match command\n"); 1446 return; 1447 } 1448 1449 /* 1450 * Host aborted the command ring, check if the current command was 1451 * supposed to be aborted, otherwise continue normally. 1452 * The command ring is stopped now, but the xHC will issue a Command 1453 * Ring Stopped event which will cause us to restart it. 1454 */ 1455 if (cmd_comp_code == COMP_COMMAND_ABORTED) { 1456 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1457 if (cmd->status == COMP_COMMAND_ABORTED) { 1458 if (xhci->current_cmd == cmd) 1459 xhci->current_cmd = NULL; 1460 goto event_handled; 1461 } 1462 } 1463 1464 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1465 switch (cmd_type) { 1466 case TRB_ENABLE_SLOT: 1467 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code); 1468 break; 1469 case TRB_DISABLE_SLOT: 1470 xhci_handle_cmd_disable_slot(xhci, slot_id); 1471 break; 1472 case TRB_CONFIG_EP: 1473 if (!cmd->completion) 1474 xhci_handle_cmd_config_ep(xhci, slot_id, event, 1475 cmd_comp_code); 1476 break; 1477 case TRB_EVAL_CONTEXT: 1478 break; 1479 case TRB_ADDR_DEV: 1480 xhci_handle_cmd_addr_dev(xhci, slot_id); 1481 break; 1482 case TRB_STOP_RING: 1483 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1484 le32_to_cpu(cmd_trb->generic.field[3]))); 1485 if (!cmd->completion) 1486 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event); 1487 break; 1488 case TRB_SET_DEQ: 1489 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1490 le32_to_cpu(cmd_trb->generic.field[3]))); 1491 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1492 break; 1493 case TRB_CMD_NOOP: 1494 /* Is this an aborted command turned to NO-OP? */ 1495 if (cmd->status == COMP_COMMAND_RING_STOPPED) 1496 cmd_comp_code = COMP_COMMAND_RING_STOPPED; 1497 break; 1498 case TRB_RESET_EP: 1499 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1500 le32_to_cpu(cmd_trb->generic.field[3]))); 1501 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1502 break; 1503 case TRB_RESET_DEV: 1504 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1505 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1506 */ 1507 slot_id = TRB_TO_SLOT_ID( 1508 le32_to_cpu(cmd_trb->generic.field[3])); 1509 xhci_handle_cmd_reset_dev(xhci, slot_id, event); 1510 break; 1511 case TRB_NEC_GET_FW: 1512 xhci_handle_cmd_nec_get_fw(xhci, event); 1513 break; 1514 default: 1515 /* Skip over unknown commands on the event ring */ 1516 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); 1517 break; 1518 } 1519 1520 /* restart timer if this wasn't the last command */ 1521 if (!list_is_singular(&xhci->cmd_list)) { 1522 xhci->current_cmd = list_first_entry(&cmd->cmd_list, 1523 struct xhci_command, cmd_list); 1524 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 1525 } else if (xhci->current_cmd == cmd) { 1526 xhci->current_cmd = NULL; 1527 } 1528 1529 event_handled: 1530 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); 1531 1532 inc_deq(xhci, xhci->cmd_ring); 1533 } 1534 1535 static void handle_vendor_event(struct xhci_hcd *xhci, 1536 union xhci_trb *event) 1537 { 1538 u32 trb_type; 1539 1540 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3])); 1541 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1542 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1543 handle_cmd_completion(xhci, &event->event_cmd); 1544 } 1545 1546 static void handle_device_notification(struct xhci_hcd *xhci, 1547 union xhci_trb *event) 1548 { 1549 u32 slot_id; 1550 struct usb_device *udev; 1551 1552 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1553 if (!xhci->devs[slot_id]) { 1554 xhci_warn(xhci, "Device Notification event for " 1555 "unused slot %u\n", slot_id); 1556 return; 1557 } 1558 1559 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1560 slot_id); 1561 udev = xhci->devs[slot_id]->udev; 1562 if (udev && udev->parent) 1563 usb_wakeup_notification(udev->parent, udev->portnum); 1564 } 1565 1566 /* 1567 * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI 1568 * Controller. 1569 * As per ThunderX2errata-129 USB 2 device may come up as USB 1 1570 * If a connection to a USB 1 device is followed by another connection 1571 * to a USB 2 device. 1572 * 1573 * Reset the PHY after the USB device is disconnected if device speed 1574 * is less than HCD_USB3. 1575 * Retry the reset sequence max of 4 times checking the PLL lock status. 1576 * 1577 */ 1578 static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci) 1579 { 1580 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1581 u32 pll_lock_check; 1582 u32 retry_count = 4; 1583 1584 do { 1585 /* Assert PHY reset */ 1586 writel(0x6F, hcd->regs + 0x1048); 1587 udelay(10); 1588 /* De-assert the PHY reset */ 1589 writel(0x7F, hcd->regs + 0x1048); 1590 udelay(200); 1591 pll_lock_check = readl(hcd->regs + 0x1070); 1592 } while (!(pll_lock_check & 0x1) && --retry_count); 1593 } 1594 1595 static void handle_port_status(struct xhci_hcd *xhci, 1596 union xhci_trb *event) 1597 { 1598 struct usb_hcd *hcd; 1599 u32 port_id; 1600 u32 portsc, cmd_reg; 1601 int max_ports; 1602 int slot_id; 1603 unsigned int hcd_portnum; 1604 struct xhci_bus_state *bus_state; 1605 bool bogus_port_status = false; 1606 struct xhci_port *port; 1607 1608 /* Port status change events always have a successful completion code */ 1609 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) 1610 xhci_warn(xhci, 1611 "WARN: xHC returned failed port status event\n"); 1612 1613 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1614 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1615 1616 if ((port_id <= 0) || (port_id > max_ports)) { 1617 xhci_warn(xhci, "Port change event with invalid port ID %d\n", 1618 port_id); 1619 inc_deq(xhci, xhci->event_ring); 1620 return; 1621 } 1622 1623 port = &xhci->hw_ports[port_id - 1]; 1624 if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) { 1625 xhci_warn(xhci, "Port change event, no port for port ID %u\n", 1626 port_id); 1627 bogus_port_status = true; 1628 goto cleanup; 1629 } 1630 1631 /* We might get interrupts after shared_hcd is removed */ 1632 if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) { 1633 xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n"); 1634 bogus_port_status = true; 1635 goto cleanup; 1636 } 1637 1638 hcd = port->rhub->hcd; 1639 bus_state = &port->rhub->bus_state; 1640 hcd_portnum = port->hcd_portnum; 1641 portsc = readl(port->addr); 1642 1643 xhci_dbg(xhci, "Port change event, %d-%d, id %d, portsc: 0x%x\n", 1644 hcd->self.busnum, hcd_portnum + 1, port_id, portsc); 1645 1646 trace_xhci_handle_port_status(hcd_portnum, portsc); 1647 1648 if (hcd->state == HC_STATE_SUSPENDED) { 1649 xhci_dbg(xhci, "resume root hub\n"); 1650 usb_hcd_resume_root_hub(hcd); 1651 } 1652 1653 if (hcd->speed >= HCD_USB3 && 1654 (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) { 1655 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1); 1656 if (slot_id && xhci->devs[slot_id]) 1657 xhci->devs[slot_id]->flags |= VDEV_PORT_ERROR; 1658 } 1659 1660 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) { 1661 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1662 1663 cmd_reg = readl(&xhci->op_regs->command); 1664 if (!(cmd_reg & CMD_RUN)) { 1665 xhci_warn(xhci, "xHC is not running.\n"); 1666 goto cleanup; 1667 } 1668 1669 if (DEV_SUPERSPEED_ANY(portsc)) { 1670 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1671 /* Set a flag to say the port signaled remote wakeup, 1672 * so we can tell the difference between the end of 1673 * device and host initiated resume. 1674 */ 1675 bus_state->port_remote_wakeup |= 1 << hcd_portnum; 1676 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1677 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 1678 xhci_set_link_state(xhci, port, XDEV_U0); 1679 /* Need to wait until the next link state change 1680 * indicates the device is actually in U0. 1681 */ 1682 bogus_port_status = true; 1683 goto cleanup; 1684 } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) { 1685 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1686 bus_state->resume_done[hcd_portnum] = jiffies + 1687 msecs_to_jiffies(USB_RESUME_TIMEOUT); 1688 set_bit(hcd_portnum, &bus_state->resuming_ports); 1689 /* Do the rest in GetPortStatus after resume time delay. 1690 * Avoid polling roothub status before that so that a 1691 * usb device auto-resume latency around ~40ms. 1692 */ 1693 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1694 mod_timer(&hcd->rh_timer, 1695 bus_state->resume_done[hcd_portnum]); 1696 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 1697 bogus_port_status = true; 1698 } 1699 } 1700 1701 if ((portsc & PORT_PLC) && 1702 DEV_SUPERSPEED_ANY(portsc) && 1703 ((portsc & PORT_PLS_MASK) == XDEV_U0 || 1704 (portsc & PORT_PLS_MASK) == XDEV_U1 || 1705 (portsc & PORT_PLS_MASK) == XDEV_U2)) { 1706 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1707 complete(&bus_state->u3exit_done[hcd_portnum]); 1708 /* We've just brought the device into U0/1/2 through either the 1709 * Resume state after a device remote wakeup, or through the 1710 * U3Exit state after a host-initiated resume. If it's a device 1711 * initiated remote wake, don't pass up the link state change, 1712 * so the roothub behavior is consistent with external 1713 * USB 3.0 hub behavior. 1714 */ 1715 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1); 1716 if (slot_id && xhci->devs[slot_id]) 1717 xhci_ring_device(xhci, slot_id); 1718 if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) { 1719 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1720 usb_wakeup_notification(hcd->self.root_hub, 1721 hcd_portnum + 1); 1722 bogus_port_status = true; 1723 goto cleanup; 1724 } 1725 } 1726 1727 /* 1728 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 1729 * RExit to a disconnect state). If so, let the the driver know it's 1730 * out of the RExit state. 1731 */ 1732 if (!DEV_SUPERSPEED_ANY(portsc) && hcd->speed < HCD_USB3 && 1733 test_and_clear_bit(hcd_portnum, 1734 &bus_state->rexit_ports)) { 1735 complete(&bus_state->rexit_done[hcd_portnum]); 1736 bogus_port_status = true; 1737 goto cleanup; 1738 } 1739 1740 if (hcd->speed < HCD_USB3) { 1741 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1742 if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) && 1743 (portsc & PORT_CSC) && !(portsc & PORT_CONNECT)) 1744 xhci_cavium_reset_phy_quirk(xhci); 1745 } 1746 1747 cleanup: 1748 /* Update event ring dequeue pointer before dropping the lock */ 1749 inc_deq(xhci, xhci->event_ring); 1750 1751 /* Don't make the USB core poll the roothub if we got a bad port status 1752 * change event. Besides, at that point we can't tell which roothub 1753 * (USB 2.0 or USB 3.0) to kick. 1754 */ 1755 if (bogus_port_status) 1756 return; 1757 1758 /* 1759 * xHCI port-status-change events occur when the "or" of all the 1760 * status-change bits in the portsc register changes from 0 to 1. 1761 * New status changes won't cause an event if any other change 1762 * bits are still set. When an event occurs, switch over to 1763 * polling to avoid losing status changes. 1764 */ 1765 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1766 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1767 spin_unlock(&xhci->lock); 1768 /* Pass this up to the core */ 1769 usb_hcd_poll_rh_status(hcd); 1770 spin_lock(&xhci->lock); 1771 } 1772 1773 /* 1774 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 1775 * at end_trb, which may be in another segment. If the suspect DMA address is a 1776 * TRB in this TD, this function returns that TRB's segment. Otherwise it 1777 * returns 0. 1778 */ 1779 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, 1780 struct xhci_segment *start_seg, 1781 union xhci_trb *start_trb, 1782 union xhci_trb *end_trb, 1783 dma_addr_t suspect_dma, 1784 bool debug) 1785 { 1786 dma_addr_t start_dma; 1787 dma_addr_t end_seg_dma; 1788 dma_addr_t end_trb_dma; 1789 struct xhci_segment *cur_seg; 1790 1791 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 1792 cur_seg = start_seg; 1793 1794 do { 1795 if (start_dma == 0) 1796 return NULL; 1797 /* We may get an event for a Link TRB in the middle of a TD */ 1798 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 1799 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 1800 /* If the end TRB isn't in this segment, this is set to 0 */ 1801 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 1802 1803 if (debug) 1804 xhci_warn(xhci, 1805 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", 1806 (unsigned long long)suspect_dma, 1807 (unsigned long long)start_dma, 1808 (unsigned long long)end_trb_dma, 1809 (unsigned long long)cur_seg->dma, 1810 (unsigned long long)end_seg_dma); 1811 1812 if (end_trb_dma > 0) { 1813 /* The end TRB is in this segment, so suspect should be here */ 1814 if (start_dma <= end_trb_dma) { 1815 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 1816 return cur_seg; 1817 } else { 1818 /* Case for one segment with 1819 * a TD wrapped around to the top 1820 */ 1821 if ((suspect_dma >= start_dma && 1822 suspect_dma <= end_seg_dma) || 1823 (suspect_dma >= cur_seg->dma && 1824 suspect_dma <= end_trb_dma)) 1825 return cur_seg; 1826 } 1827 return NULL; 1828 } else { 1829 /* Might still be somewhere in this segment */ 1830 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 1831 return cur_seg; 1832 } 1833 cur_seg = cur_seg->next; 1834 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 1835 } while (cur_seg != start_seg); 1836 1837 return NULL; 1838 } 1839 1840 static void xhci_clear_hub_tt_buffer(struct xhci_hcd *xhci, struct xhci_td *td, 1841 struct xhci_virt_ep *ep) 1842 { 1843 /* 1844 * As part of low/full-speed endpoint-halt processing 1845 * we must clear the TT buffer (USB 2.0 specification 11.17.5). 1846 */ 1847 if (td->urb->dev->tt && !usb_pipeint(td->urb->pipe) && 1848 (td->urb->dev->tt->hub != xhci_to_hcd(xhci)->self.root_hub) && 1849 !(ep->ep_state & EP_CLEARING_TT)) { 1850 ep->ep_state |= EP_CLEARING_TT; 1851 td->urb->ep->hcpriv = td->urb->dev; 1852 if (usb_hub_clear_tt_buffer(td->urb)) 1853 ep->ep_state &= ~EP_CLEARING_TT; 1854 } 1855 } 1856 1857 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, 1858 unsigned int slot_id, unsigned int ep_index, 1859 unsigned int stream_id, struct xhci_td *td, 1860 enum xhci_ep_reset_type reset_type) 1861 { 1862 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 1863 struct xhci_command *command; 1864 1865 /* 1866 * Avoid resetting endpoint if link is inactive. Can cause host hang. 1867 * Device will be reset soon to recover the link so don't do anything 1868 */ 1869 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) 1870 return; 1871 1872 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1873 if (!command) 1874 return; 1875 1876 ep->ep_state |= EP_HALTED; 1877 1878 xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type); 1879 1880 if (reset_type == EP_HARD_RESET) { 1881 ep->ep_state |= EP_HARD_CLEAR_TOGGLE; 1882 xhci_cleanup_stalled_ring(xhci, slot_id, ep_index, stream_id, 1883 td); 1884 } 1885 xhci_ring_cmd_db(xhci); 1886 } 1887 1888 /* Check if an error has halted the endpoint ring. The class driver will 1889 * cleanup the halt for a non-default control endpoint if we indicate a stall. 1890 * However, a babble and other errors also halt the endpoint ring, and the class 1891 * driver won't clear the halt in that case, so we need to issue a Set Transfer 1892 * Ring Dequeue Pointer command manually. 1893 */ 1894 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 1895 struct xhci_ep_ctx *ep_ctx, 1896 unsigned int trb_comp_code) 1897 { 1898 /* TRB completion codes that may require a manual halt cleanup */ 1899 if (trb_comp_code == COMP_USB_TRANSACTION_ERROR || 1900 trb_comp_code == COMP_BABBLE_DETECTED_ERROR || 1901 trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR) 1902 /* The 0.95 spec says a babbling control endpoint 1903 * is not halted. The 0.96 spec says it is. Some HW 1904 * claims to be 0.95 compliant, but it halts the control 1905 * endpoint anyway. Check if a babble halted the 1906 * endpoint. 1907 */ 1908 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) 1909 return 1; 1910 1911 return 0; 1912 } 1913 1914 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 1915 { 1916 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 1917 /* Vendor defined "informational" completion code, 1918 * treat as not-an-error. 1919 */ 1920 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 1921 trb_comp_code); 1922 xhci_dbg(xhci, "Treating code as success.\n"); 1923 return 1; 1924 } 1925 return 0; 1926 } 1927 1928 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, 1929 struct xhci_ring *ep_ring, int *status) 1930 { 1931 struct urb *urb = NULL; 1932 1933 /* Clean up the endpoint's TD list */ 1934 urb = td->urb; 1935 1936 /* if a bounce buffer was used to align this td then unmap it */ 1937 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); 1938 1939 /* Do one last check of the actual transfer length. 1940 * If the host controller said we transferred more data than the buffer 1941 * length, urb->actual_length will be a very big number (since it's 1942 * unsigned). Play it safe and say we didn't transfer anything. 1943 */ 1944 if (urb->actual_length > urb->transfer_buffer_length) { 1945 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", 1946 urb->transfer_buffer_length, urb->actual_length); 1947 urb->actual_length = 0; 1948 *status = 0; 1949 } 1950 list_del_init(&td->td_list); 1951 /* Was this TD slated to be cancelled but completed anyway? */ 1952 if (!list_empty(&td->cancelled_td_list)) 1953 list_del_init(&td->cancelled_td_list); 1954 1955 inc_td_cnt(urb); 1956 /* Giveback the urb when all the tds are completed */ 1957 if (last_td_in_urb(td)) { 1958 if ((urb->actual_length != urb->transfer_buffer_length && 1959 (urb->transfer_flags & URB_SHORT_NOT_OK)) || 1960 (*status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) 1961 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", 1962 urb, urb->actual_length, 1963 urb->transfer_buffer_length, *status); 1964 1965 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ 1966 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 1967 *status = 0; 1968 xhci_giveback_urb_in_irq(xhci, td, *status); 1969 } 1970 1971 return 0; 1972 } 1973 1974 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, 1975 struct xhci_transfer_event *event, 1976 struct xhci_virt_ep *ep, int *status) 1977 { 1978 struct xhci_virt_device *xdev; 1979 struct xhci_ep_ctx *ep_ctx; 1980 struct xhci_ring *ep_ring; 1981 unsigned int slot_id; 1982 u32 trb_comp_code; 1983 int ep_index; 1984 1985 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1986 xdev = xhci->devs[slot_id]; 1987 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1988 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1989 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1990 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1991 1992 if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID || 1993 trb_comp_code == COMP_STOPPED || 1994 trb_comp_code == COMP_STOPPED_SHORT_PACKET) { 1995 /* The Endpoint Stop Command completion will take care of any 1996 * stopped TDs. A stopped TD may be restarted, so don't update 1997 * the ring dequeue pointer or take this TD off any lists yet. 1998 */ 1999 return 0; 2000 } 2001 if (trb_comp_code == COMP_STALL_ERROR || 2002 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2003 trb_comp_code)) { 2004 /* 2005 * xhci internal endpoint state will go to a "halt" state for 2006 * any stall, including default control pipe protocol stall. 2007 * To clear the host side halt we need to issue a reset endpoint 2008 * command, followed by a set dequeue command to move past the 2009 * TD. 2010 * Class drivers clear the device side halt from a functional 2011 * stall later. Hub TT buffer should only be cleared for FS/LS 2012 * devices behind HS hubs for functional stalls. 2013 */ 2014 if ((ep_index != 0) || (trb_comp_code != COMP_STALL_ERROR)) 2015 xhci_clear_hub_tt_buffer(xhci, td, ep); 2016 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 2017 ep_ring->stream_id, td, EP_HARD_RESET); 2018 } else { 2019 /* Update ring dequeue pointer */ 2020 while (ep_ring->dequeue != td->last_trb) 2021 inc_deq(xhci, ep_ring); 2022 inc_deq(xhci, ep_ring); 2023 } 2024 2025 return xhci_td_cleanup(xhci, td, ep_ring, status); 2026 } 2027 2028 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */ 2029 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring, 2030 union xhci_trb *stop_trb) 2031 { 2032 u32 sum; 2033 union xhci_trb *trb = ring->dequeue; 2034 struct xhci_segment *seg = ring->deq_seg; 2035 2036 for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) { 2037 if (!trb_is_noop(trb) && !trb_is_link(trb)) 2038 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); 2039 } 2040 return sum; 2041 } 2042 2043 /* 2044 * Process control tds, update urb status and actual_length. 2045 */ 2046 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, 2047 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 2048 struct xhci_virt_ep *ep, int *status) 2049 { 2050 struct xhci_virt_device *xdev; 2051 unsigned int slot_id; 2052 int ep_index; 2053 struct xhci_ep_ctx *ep_ctx; 2054 u32 trb_comp_code; 2055 u32 remaining, requested; 2056 u32 trb_type; 2057 2058 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); 2059 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2060 xdev = xhci->devs[slot_id]; 2061 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2062 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2063 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2064 requested = td->urb->transfer_buffer_length; 2065 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2066 2067 switch (trb_comp_code) { 2068 case COMP_SUCCESS: 2069 if (trb_type != TRB_STATUS) { 2070 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n", 2071 (trb_type == TRB_DATA) ? "data" : "setup"); 2072 *status = -ESHUTDOWN; 2073 break; 2074 } 2075 *status = 0; 2076 break; 2077 case COMP_SHORT_PACKET: 2078 *status = 0; 2079 break; 2080 case COMP_STOPPED_SHORT_PACKET: 2081 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2082 td->urb->actual_length = remaining; 2083 else 2084 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); 2085 goto finish_td; 2086 case COMP_STOPPED: 2087 switch (trb_type) { 2088 case TRB_SETUP: 2089 td->urb->actual_length = 0; 2090 goto finish_td; 2091 case TRB_DATA: 2092 case TRB_NORMAL: 2093 td->urb->actual_length = requested - remaining; 2094 goto finish_td; 2095 case TRB_STATUS: 2096 td->urb->actual_length = requested; 2097 goto finish_td; 2098 default: 2099 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", 2100 trb_type); 2101 goto finish_td; 2102 } 2103 case COMP_STOPPED_LENGTH_INVALID: 2104 goto finish_td; 2105 default: 2106 if (!xhci_requires_manual_halt_cleanup(xhci, 2107 ep_ctx, trb_comp_code)) 2108 break; 2109 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", 2110 trb_comp_code, ep_index); 2111 fallthrough; 2112 case COMP_STALL_ERROR: 2113 /* Did we transfer part of the data (middle) phase? */ 2114 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2115 td->urb->actual_length = requested - remaining; 2116 else if (!td->urb_length_set) 2117 td->urb->actual_length = 0; 2118 goto finish_td; 2119 } 2120 2121 /* stopped at setup stage, no data transferred */ 2122 if (trb_type == TRB_SETUP) 2123 goto finish_td; 2124 2125 /* 2126 * if on data stage then update the actual_length of the URB and flag it 2127 * as set, so it won't be overwritten in the event for the last TRB. 2128 */ 2129 if (trb_type == TRB_DATA || 2130 trb_type == TRB_NORMAL) { 2131 td->urb_length_set = true; 2132 td->urb->actual_length = requested - remaining; 2133 xhci_dbg(xhci, "Waiting for status stage event\n"); 2134 return 0; 2135 } 2136 2137 /* at status stage */ 2138 if (!td->urb_length_set) 2139 td->urb->actual_length = requested; 2140 2141 finish_td: 2142 return finish_td(xhci, td, event, ep, status); 2143 } 2144 2145 /* 2146 * Process isochronous tds, update urb packet status and actual_length. 2147 */ 2148 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2149 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 2150 struct xhci_virt_ep *ep, int *status) 2151 { 2152 struct xhci_ring *ep_ring; 2153 struct urb_priv *urb_priv; 2154 int idx; 2155 struct usb_iso_packet_descriptor *frame; 2156 u32 trb_comp_code; 2157 bool sum_trbs_for_length = false; 2158 u32 remaining, requested, ep_trb_len; 2159 int short_framestatus; 2160 2161 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2162 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2163 urb_priv = td->urb->hcpriv; 2164 idx = urb_priv->num_tds_done; 2165 frame = &td->urb->iso_frame_desc[idx]; 2166 requested = frame->length; 2167 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2168 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2169 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2170 -EREMOTEIO : 0; 2171 2172 /* handle completion code */ 2173 switch (trb_comp_code) { 2174 case COMP_SUCCESS: 2175 if (remaining) { 2176 frame->status = short_framestatus; 2177 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2178 sum_trbs_for_length = true; 2179 break; 2180 } 2181 frame->status = 0; 2182 break; 2183 case COMP_SHORT_PACKET: 2184 frame->status = short_framestatus; 2185 sum_trbs_for_length = true; 2186 break; 2187 case COMP_BANDWIDTH_OVERRUN_ERROR: 2188 frame->status = -ECOMM; 2189 break; 2190 case COMP_ISOCH_BUFFER_OVERRUN: 2191 case COMP_BABBLE_DETECTED_ERROR: 2192 frame->status = -EOVERFLOW; 2193 break; 2194 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2195 case COMP_STALL_ERROR: 2196 frame->status = -EPROTO; 2197 break; 2198 case COMP_USB_TRANSACTION_ERROR: 2199 frame->status = -EPROTO; 2200 if (ep_trb != td->last_trb) 2201 return 0; 2202 break; 2203 case COMP_STOPPED: 2204 sum_trbs_for_length = true; 2205 break; 2206 case COMP_STOPPED_SHORT_PACKET: 2207 /* field normally containing residue now contains tranferred */ 2208 frame->status = short_framestatus; 2209 requested = remaining; 2210 break; 2211 case COMP_STOPPED_LENGTH_INVALID: 2212 requested = 0; 2213 remaining = 0; 2214 break; 2215 default: 2216 sum_trbs_for_length = true; 2217 frame->status = -1; 2218 break; 2219 } 2220 2221 if (sum_trbs_for_length) 2222 frame->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb) + 2223 ep_trb_len - remaining; 2224 else 2225 frame->actual_length = requested; 2226 2227 td->urb->actual_length += frame->actual_length; 2228 2229 return finish_td(xhci, td, event, ep, status); 2230 } 2231 2232 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2233 struct xhci_transfer_event *event, 2234 struct xhci_virt_ep *ep, int *status) 2235 { 2236 struct xhci_ring *ep_ring; 2237 struct urb_priv *urb_priv; 2238 struct usb_iso_packet_descriptor *frame; 2239 int idx; 2240 2241 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2242 urb_priv = td->urb->hcpriv; 2243 idx = urb_priv->num_tds_done; 2244 frame = &td->urb->iso_frame_desc[idx]; 2245 2246 /* The transfer is partly done. */ 2247 frame->status = -EXDEV; 2248 2249 /* calc actual length */ 2250 frame->actual_length = 0; 2251 2252 /* Update ring dequeue pointer */ 2253 while (ep_ring->dequeue != td->last_trb) 2254 inc_deq(xhci, ep_ring); 2255 inc_deq(xhci, ep_ring); 2256 2257 return xhci_td_cleanup(xhci, td, ep_ring, status); 2258 } 2259 2260 /* 2261 * Process bulk and interrupt tds, update urb status and actual_length. 2262 */ 2263 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, 2264 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 2265 struct xhci_virt_ep *ep, int *status) 2266 { 2267 struct xhci_slot_ctx *slot_ctx; 2268 struct xhci_ring *ep_ring; 2269 u32 trb_comp_code; 2270 u32 remaining, requested, ep_trb_len; 2271 unsigned int slot_id; 2272 int ep_index; 2273 2274 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2275 slot_ctx = xhci_get_slot_ctx(xhci, xhci->devs[slot_id]->out_ctx); 2276 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2277 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2278 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2279 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2280 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2281 requested = td->urb->transfer_buffer_length; 2282 2283 switch (trb_comp_code) { 2284 case COMP_SUCCESS: 2285 ep_ring->err_count = 0; 2286 /* handle success with untransferred data as short packet */ 2287 if (ep_trb != td->last_trb || remaining) { 2288 xhci_warn(xhci, "WARN Successful completion on short TX\n"); 2289 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2290 td->urb->ep->desc.bEndpointAddress, 2291 requested, remaining); 2292 } 2293 *status = 0; 2294 break; 2295 case COMP_SHORT_PACKET: 2296 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2297 td->urb->ep->desc.bEndpointAddress, 2298 requested, remaining); 2299 *status = 0; 2300 break; 2301 case COMP_STOPPED_SHORT_PACKET: 2302 td->urb->actual_length = remaining; 2303 goto finish_td; 2304 case COMP_STOPPED_LENGTH_INVALID: 2305 /* stopped on ep trb with invalid length, exclude it */ 2306 ep_trb_len = 0; 2307 remaining = 0; 2308 break; 2309 case COMP_USB_TRANSACTION_ERROR: 2310 if ((ep_ring->err_count++ > MAX_SOFT_RETRY) || 2311 le32_to_cpu(slot_ctx->tt_info) & TT_SLOT) 2312 break; 2313 *status = 0; 2314 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 2315 ep_ring->stream_id, td, EP_SOFT_RESET); 2316 return 0; 2317 default: 2318 /* do nothing */ 2319 break; 2320 } 2321 2322 if (ep_trb == td->last_trb) 2323 td->urb->actual_length = requested - remaining; 2324 else 2325 td->urb->actual_length = 2326 sum_trb_lengths(xhci, ep_ring, ep_trb) + 2327 ep_trb_len - remaining; 2328 finish_td: 2329 if (remaining > requested) { 2330 xhci_warn(xhci, "bad transfer trb length %d in event trb\n", 2331 remaining); 2332 td->urb->actual_length = 0; 2333 } 2334 return finish_td(xhci, td, event, ep, status); 2335 } 2336 2337 /* 2338 * If this function returns an error condition, it means it got a Transfer 2339 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2340 * At this point, the host controller is probably hosed and should be reset. 2341 */ 2342 static int handle_tx_event(struct xhci_hcd *xhci, 2343 struct xhci_transfer_event *event) 2344 { 2345 struct xhci_virt_device *xdev; 2346 struct xhci_virt_ep *ep; 2347 struct xhci_ring *ep_ring; 2348 unsigned int slot_id; 2349 int ep_index; 2350 struct xhci_td *td = NULL; 2351 dma_addr_t ep_trb_dma; 2352 struct xhci_segment *ep_seg; 2353 union xhci_trb *ep_trb; 2354 int status = -EINPROGRESS; 2355 struct xhci_ep_ctx *ep_ctx; 2356 struct list_head *tmp; 2357 u32 trb_comp_code; 2358 int td_num = 0; 2359 bool handling_skipped_tds = false; 2360 2361 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2362 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2363 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2364 ep_trb_dma = le64_to_cpu(event->buffer); 2365 2366 xdev = xhci->devs[slot_id]; 2367 if (!xdev) { 2368 xhci_err(xhci, "ERROR Transfer event pointed to bad slot %u\n", 2369 slot_id); 2370 goto err_out; 2371 } 2372 2373 ep = &xdev->eps[ep_index]; 2374 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma); 2375 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2376 2377 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { 2378 xhci_err(xhci, 2379 "ERROR Transfer event for disabled endpoint slot %u ep %u\n", 2380 slot_id, ep_index); 2381 goto err_out; 2382 } 2383 2384 /* Some transfer events don't always point to a trb, see xhci 4.17.4 */ 2385 if (!ep_ring) { 2386 switch (trb_comp_code) { 2387 case COMP_STALL_ERROR: 2388 case COMP_USB_TRANSACTION_ERROR: 2389 case COMP_INVALID_STREAM_TYPE_ERROR: 2390 case COMP_INVALID_STREAM_ID_ERROR: 2391 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 0, 2392 NULL, EP_SOFT_RESET); 2393 goto cleanup; 2394 case COMP_RING_UNDERRUN: 2395 case COMP_RING_OVERRUN: 2396 case COMP_STOPPED_LENGTH_INVALID: 2397 goto cleanup; 2398 default: 2399 xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n", 2400 slot_id, ep_index); 2401 goto err_out; 2402 } 2403 } 2404 2405 /* Count current td numbers if ep->skip is set */ 2406 if (ep->skip) { 2407 list_for_each(tmp, &ep_ring->td_list) 2408 td_num++; 2409 } 2410 2411 /* Look for common error cases */ 2412 switch (trb_comp_code) { 2413 /* Skip codes that require special handling depending on 2414 * transfer type 2415 */ 2416 case COMP_SUCCESS: 2417 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2418 break; 2419 if (xhci->quirks & XHCI_TRUST_TX_LENGTH || 2420 ep_ring->last_td_was_short) 2421 trb_comp_code = COMP_SHORT_PACKET; 2422 else 2423 xhci_warn_ratelimited(xhci, 2424 "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n", 2425 slot_id, ep_index); 2426 break; 2427 case COMP_SHORT_PACKET: 2428 break; 2429 /* Completion codes for endpoint stopped state */ 2430 case COMP_STOPPED: 2431 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n", 2432 slot_id, ep_index); 2433 break; 2434 case COMP_STOPPED_LENGTH_INVALID: 2435 xhci_dbg(xhci, 2436 "Stopped on No-op or Link TRB for slot %u ep %u\n", 2437 slot_id, ep_index); 2438 break; 2439 case COMP_STOPPED_SHORT_PACKET: 2440 xhci_dbg(xhci, 2441 "Stopped with short packet transfer detected for slot %u ep %u\n", 2442 slot_id, ep_index); 2443 break; 2444 /* Completion codes for endpoint halted state */ 2445 case COMP_STALL_ERROR: 2446 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id, 2447 ep_index); 2448 ep->ep_state |= EP_HALTED; 2449 status = -EPIPE; 2450 break; 2451 case COMP_SPLIT_TRANSACTION_ERROR: 2452 xhci_dbg(xhci, "Split transaction error for slot %u ep %u\n", 2453 slot_id, ep_index); 2454 status = -EPROTO; 2455 break; 2456 case COMP_USB_TRANSACTION_ERROR: 2457 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n", 2458 slot_id, ep_index); 2459 status = -EPROTO; 2460 break; 2461 case COMP_BABBLE_DETECTED_ERROR: 2462 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n", 2463 slot_id, ep_index); 2464 status = -EOVERFLOW; 2465 break; 2466 /* Completion codes for endpoint error state */ 2467 case COMP_TRB_ERROR: 2468 xhci_warn(xhci, 2469 "WARN: TRB error for slot %u ep %u on endpoint\n", 2470 slot_id, ep_index); 2471 status = -EILSEQ; 2472 break; 2473 /* completion codes not indicating endpoint state change */ 2474 case COMP_DATA_BUFFER_ERROR: 2475 xhci_warn(xhci, 2476 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n", 2477 slot_id, ep_index); 2478 status = -ENOSR; 2479 break; 2480 case COMP_BANDWIDTH_OVERRUN_ERROR: 2481 xhci_warn(xhci, 2482 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n", 2483 slot_id, ep_index); 2484 break; 2485 case COMP_ISOCH_BUFFER_OVERRUN: 2486 xhci_warn(xhci, 2487 "WARN: buffer overrun event for slot %u ep %u on endpoint", 2488 slot_id, ep_index); 2489 break; 2490 case COMP_RING_UNDERRUN: 2491 /* 2492 * When the Isoch ring is empty, the xHC will generate 2493 * a Ring Overrun Event for IN Isoch endpoint or Ring 2494 * Underrun Event for OUT Isoch endpoint. 2495 */ 2496 xhci_dbg(xhci, "underrun event on endpoint\n"); 2497 if (!list_empty(&ep_ring->td_list)) 2498 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2499 "still with TDs queued?\n", 2500 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2501 ep_index); 2502 goto cleanup; 2503 case COMP_RING_OVERRUN: 2504 xhci_dbg(xhci, "overrun event on endpoint\n"); 2505 if (!list_empty(&ep_ring->td_list)) 2506 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2507 "still with TDs queued?\n", 2508 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2509 ep_index); 2510 goto cleanup; 2511 case COMP_MISSED_SERVICE_ERROR: 2512 /* 2513 * When encounter missed service error, one or more isoc tds 2514 * may be missed by xHC. 2515 * Set skip flag of the ep_ring; Complete the missed tds as 2516 * short transfer when process the ep_ring next time. 2517 */ 2518 ep->skip = true; 2519 xhci_dbg(xhci, 2520 "Miss service interval error for slot %u ep %u, set skip flag\n", 2521 slot_id, ep_index); 2522 goto cleanup; 2523 case COMP_NO_PING_RESPONSE_ERROR: 2524 ep->skip = true; 2525 xhci_dbg(xhci, 2526 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n", 2527 slot_id, ep_index); 2528 goto cleanup; 2529 2530 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2531 /* needs disable slot command to recover */ 2532 xhci_warn(xhci, 2533 "WARN: detect an incompatible device for slot %u ep %u", 2534 slot_id, ep_index); 2535 status = -EPROTO; 2536 break; 2537 default: 2538 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2539 status = 0; 2540 break; 2541 } 2542 xhci_warn(xhci, 2543 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n", 2544 trb_comp_code, slot_id, ep_index); 2545 goto cleanup; 2546 } 2547 2548 do { 2549 /* This TRB should be in the TD at the head of this ring's 2550 * TD list. 2551 */ 2552 if (list_empty(&ep_ring->td_list)) { 2553 /* 2554 * Don't print wanings if it's due to a stopped endpoint 2555 * generating an extra completion event if the device 2556 * was suspended. Or, a event for the last TRB of a 2557 * short TD we already got a short event for. 2558 * The short TD is already removed from the TD list. 2559 */ 2560 2561 if (!(trb_comp_code == COMP_STOPPED || 2562 trb_comp_code == COMP_STOPPED_LENGTH_INVALID || 2563 ep_ring->last_td_was_short)) { 2564 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2565 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2566 ep_index); 2567 } 2568 if (ep->skip) { 2569 ep->skip = false; 2570 xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n", 2571 slot_id, ep_index); 2572 } 2573 if (trb_comp_code == COMP_STALL_ERROR || 2574 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2575 trb_comp_code)) { 2576 xhci_cleanup_halted_endpoint(xhci, slot_id, 2577 ep_index, 2578 ep_ring->stream_id, 2579 NULL, 2580 EP_HARD_RESET); 2581 } 2582 goto cleanup; 2583 } 2584 2585 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2586 if (ep->skip && td_num == 0) { 2587 ep->skip = false; 2588 xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n", 2589 slot_id, ep_index); 2590 goto cleanup; 2591 } 2592 2593 td = list_first_entry(&ep_ring->td_list, struct xhci_td, 2594 td_list); 2595 if (ep->skip) 2596 td_num--; 2597 2598 /* Is this a TRB in the currently executing TD? */ 2599 ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue, 2600 td->last_trb, ep_trb_dma, false); 2601 2602 /* 2603 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2604 * is not in the current TD pointed by ep_ring->dequeue because 2605 * that the hardware dequeue pointer still at the previous TRB 2606 * of the current TD. The previous TRB maybe a Link TD or the 2607 * last TRB of the previous TD. The command completion handle 2608 * will take care the rest. 2609 */ 2610 if (!ep_seg && (trb_comp_code == COMP_STOPPED || 2611 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) { 2612 goto cleanup; 2613 } 2614 2615 if (!ep_seg) { 2616 if (!ep->skip || 2617 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2618 /* Some host controllers give a spurious 2619 * successful event after a short transfer. 2620 * Ignore it. 2621 */ 2622 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2623 ep_ring->last_td_was_short) { 2624 ep_ring->last_td_was_short = false; 2625 goto cleanup; 2626 } 2627 /* HC is busted, give up! */ 2628 xhci_err(xhci, 2629 "ERROR Transfer event TRB DMA ptr not " 2630 "part of current TD ep_index %d " 2631 "comp_code %u\n", ep_index, 2632 trb_comp_code); 2633 trb_in_td(xhci, ep_ring->deq_seg, 2634 ep_ring->dequeue, td->last_trb, 2635 ep_trb_dma, true); 2636 return -ESHUTDOWN; 2637 } 2638 2639 skip_isoc_td(xhci, td, event, ep, &status); 2640 goto cleanup; 2641 } 2642 if (trb_comp_code == COMP_SHORT_PACKET) 2643 ep_ring->last_td_was_short = true; 2644 else 2645 ep_ring->last_td_was_short = false; 2646 2647 if (ep->skip) { 2648 xhci_dbg(xhci, 2649 "Found td. Clear skip flag for slot %u ep %u.\n", 2650 slot_id, ep_index); 2651 ep->skip = false; 2652 } 2653 2654 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / 2655 sizeof(*ep_trb)]; 2656 2657 trace_xhci_handle_transfer(ep_ring, 2658 (struct xhci_generic_trb *) ep_trb); 2659 2660 /* 2661 * No-op TRB could trigger interrupts in a case where 2662 * a URB was killed and a STALL_ERROR happens right 2663 * after the endpoint ring stopped. Reset the halted 2664 * endpoint. Otherwise, the endpoint remains stalled 2665 * indefinitely. 2666 */ 2667 if (trb_is_noop(ep_trb)) { 2668 if (trb_comp_code == COMP_STALL_ERROR || 2669 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2670 trb_comp_code)) 2671 xhci_cleanup_halted_endpoint(xhci, slot_id, 2672 ep_index, 2673 ep_ring->stream_id, 2674 td, EP_HARD_RESET); 2675 goto cleanup; 2676 } 2677 2678 /* update the urb's actual_length and give back to the core */ 2679 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2680 process_ctrl_td(xhci, td, ep_trb, event, ep, &status); 2681 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2682 process_isoc_td(xhci, td, ep_trb, event, ep, &status); 2683 else 2684 process_bulk_intr_td(xhci, td, ep_trb, event, ep, 2685 &status); 2686 cleanup: 2687 handling_skipped_tds = ep->skip && 2688 trb_comp_code != COMP_MISSED_SERVICE_ERROR && 2689 trb_comp_code != COMP_NO_PING_RESPONSE_ERROR; 2690 2691 /* 2692 * Do not update event ring dequeue pointer if we're in a loop 2693 * processing missed tds. 2694 */ 2695 if (!handling_skipped_tds) 2696 inc_deq(xhci, xhci->event_ring); 2697 2698 /* 2699 * If ep->skip is set, it means there are missed tds on the 2700 * endpoint ring need to take care of. 2701 * Process them as short transfer until reach the td pointed by 2702 * the event. 2703 */ 2704 } while (handling_skipped_tds); 2705 2706 return 0; 2707 2708 err_out: 2709 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2710 (unsigned long long) xhci_trb_virt_to_dma( 2711 xhci->event_ring->deq_seg, 2712 xhci->event_ring->dequeue), 2713 lower_32_bits(le64_to_cpu(event->buffer)), 2714 upper_32_bits(le64_to_cpu(event->buffer)), 2715 le32_to_cpu(event->transfer_len), 2716 le32_to_cpu(event->flags)); 2717 return -ENODEV; 2718 } 2719 2720 /* 2721 * This function handles all OS-owned events on the event ring. It may drop 2722 * xhci->lock between event processing (e.g. to pass up port status changes). 2723 * Returns >0 for "possibly more events to process" (caller should call again), 2724 * otherwise 0 if done. In future, <0 returns should indicate error code. 2725 */ 2726 static int xhci_handle_event(struct xhci_hcd *xhci) 2727 { 2728 union xhci_trb *event; 2729 int update_ptrs = 1; 2730 int ret; 2731 2732 /* Event ring hasn't been allocated yet. */ 2733 if (!xhci->event_ring || !xhci->event_ring->dequeue) { 2734 xhci_err(xhci, "ERROR event ring not ready\n"); 2735 return -ENOMEM; 2736 } 2737 2738 event = xhci->event_ring->dequeue; 2739 /* Does the HC or OS own the TRB? */ 2740 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2741 xhci->event_ring->cycle_state) 2742 return 0; 2743 2744 trace_xhci_handle_event(xhci->event_ring, &event->generic); 2745 2746 /* 2747 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2748 * speculative reads of the event's flags/data below. 2749 */ 2750 rmb(); 2751 /* FIXME: Handle more event types. */ 2752 switch (le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) { 2753 case TRB_TYPE(TRB_COMPLETION): 2754 handle_cmd_completion(xhci, &event->event_cmd); 2755 break; 2756 case TRB_TYPE(TRB_PORT_STATUS): 2757 handle_port_status(xhci, event); 2758 update_ptrs = 0; 2759 break; 2760 case TRB_TYPE(TRB_TRANSFER): 2761 ret = handle_tx_event(xhci, &event->trans_event); 2762 if (ret >= 0) 2763 update_ptrs = 0; 2764 break; 2765 case TRB_TYPE(TRB_DEV_NOTE): 2766 handle_device_notification(xhci, event); 2767 break; 2768 default: 2769 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >= 2770 TRB_TYPE(48)) 2771 handle_vendor_event(xhci, event); 2772 else 2773 xhci_warn(xhci, "ERROR unknown event type %d\n", 2774 TRB_FIELD_TO_TYPE( 2775 le32_to_cpu(event->event_cmd.flags))); 2776 } 2777 /* Any of the above functions may drop and re-acquire the lock, so check 2778 * to make sure a watchdog timer didn't mark the host as non-responsive. 2779 */ 2780 if (xhci->xhc_state & XHCI_STATE_DYING) { 2781 xhci_dbg(xhci, "xHCI host dying, returning from " 2782 "event handler.\n"); 2783 return 0; 2784 } 2785 2786 if (update_ptrs) 2787 /* Update SW event ring dequeue pointer */ 2788 inc_deq(xhci, xhci->event_ring); 2789 2790 /* Are there more items on the event ring? Caller will call us again to 2791 * check. 2792 */ 2793 return 1; 2794 } 2795 2796 /* 2797 * Update Event Ring Dequeue Pointer: 2798 * - When all events have finished 2799 * - To avoid "Event Ring Full Error" condition 2800 */ 2801 static void xhci_update_erst_dequeue(struct xhci_hcd *xhci, 2802 union xhci_trb *event_ring_deq) 2803 { 2804 u64 temp_64; 2805 dma_addr_t deq; 2806 2807 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2808 /* If necessary, update the HW's version of the event ring deq ptr. */ 2809 if (event_ring_deq != xhci->event_ring->dequeue) { 2810 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2811 xhci->event_ring->dequeue); 2812 if (deq == 0) 2813 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr\n"); 2814 /* 2815 * Per 4.9.4, Software writes to the ERDP register shall 2816 * always advance the Event Ring Dequeue Pointer value. 2817 */ 2818 if ((temp_64 & (u64) ~ERST_PTR_MASK) == 2819 ((u64) deq & (u64) ~ERST_PTR_MASK)) 2820 return; 2821 2822 /* Update HC event ring dequeue pointer */ 2823 temp_64 &= ERST_PTR_MASK; 2824 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 2825 } 2826 2827 /* Clear the event handler busy flag (RW1C) */ 2828 temp_64 |= ERST_EHB; 2829 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); 2830 } 2831 2832 /* 2833 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 2834 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 2835 * indicators of an event TRB error, but we check the status *first* to be safe. 2836 */ 2837 irqreturn_t xhci_irq(struct usb_hcd *hcd) 2838 { 2839 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2840 union xhci_trb *event_ring_deq; 2841 irqreturn_t ret = IRQ_NONE; 2842 unsigned long flags; 2843 u64 temp_64; 2844 u32 status; 2845 int event_loop = 0; 2846 2847 spin_lock_irqsave(&xhci->lock, flags); 2848 /* Check if the xHC generated the interrupt, or the irq is shared */ 2849 status = readl(&xhci->op_regs->status); 2850 if (status == ~(u32)0) { 2851 xhci_hc_died(xhci); 2852 ret = IRQ_HANDLED; 2853 goto out; 2854 } 2855 2856 if (!(status & STS_EINT)) 2857 goto out; 2858 2859 if (status & STS_FATAL) { 2860 xhci_warn(xhci, "WARNING: Host System Error\n"); 2861 xhci_halt(xhci); 2862 ret = IRQ_HANDLED; 2863 goto out; 2864 } 2865 2866 /* 2867 * Clear the op reg interrupt status first, 2868 * so we can receive interrupts from other MSI-X interrupters. 2869 * Write 1 to clear the interrupt status. 2870 */ 2871 status |= STS_EINT; 2872 writel(status, &xhci->op_regs->status); 2873 2874 if (!hcd->msi_enabled) { 2875 u32 irq_pending; 2876 irq_pending = readl(&xhci->ir_set->irq_pending); 2877 irq_pending |= IMAN_IP; 2878 writel(irq_pending, &xhci->ir_set->irq_pending); 2879 } 2880 2881 if (xhci->xhc_state & XHCI_STATE_DYING || 2882 xhci->xhc_state & XHCI_STATE_HALTED) { 2883 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 2884 "Shouldn't IRQs be disabled?\n"); 2885 /* Clear the event handler busy flag (RW1C); 2886 * the event ring should be empty. 2887 */ 2888 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2889 xhci_write_64(xhci, temp_64 | ERST_EHB, 2890 &xhci->ir_set->erst_dequeue); 2891 ret = IRQ_HANDLED; 2892 goto out; 2893 } 2894 2895 event_ring_deq = xhci->event_ring->dequeue; 2896 /* FIXME this should be a delayed service routine 2897 * that clears the EHB. 2898 */ 2899 while (xhci_handle_event(xhci) > 0) { 2900 if (event_loop++ < TRBS_PER_SEGMENT / 2) 2901 continue; 2902 xhci_update_erst_dequeue(xhci, event_ring_deq); 2903 event_loop = 0; 2904 } 2905 2906 xhci_update_erst_dequeue(xhci, event_ring_deq); 2907 ret = IRQ_HANDLED; 2908 2909 out: 2910 spin_unlock_irqrestore(&xhci->lock, flags); 2911 2912 return ret; 2913 } 2914 2915 irqreturn_t xhci_msi_irq(int irq, void *hcd) 2916 { 2917 return xhci_irq(hcd); 2918 } 2919 2920 /**** Endpoint Ring Operations ****/ 2921 2922 /* 2923 * Generic function for queueing a TRB on a ring. 2924 * The caller must have checked to make sure there's room on the ring. 2925 * 2926 * @more_trbs_coming: Will you enqueue more TRBs before calling 2927 * prepare_transfer()? 2928 */ 2929 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 2930 bool more_trbs_coming, 2931 u32 field1, u32 field2, u32 field3, u32 field4) 2932 { 2933 struct xhci_generic_trb *trb; 2934 2935 trb = &ring->enqueue->generic; 2936 trb->field[0] = cpu_to_le32(field1); 2937 trb->field[1] = cpu_to_le32(field2); 2938 trb->field[2] = cpu_to_le32(field3); 2939 /* make sure TRB is fully written before giving it to the controller */ 2940 wmb(); 2941 trb->field[3] = cpu_to_le32(field4); 2942 2943 trace_xhci_queue_trb(ring, trb); 2944 2945 inc_enq(xhci, ring, more_trbs_coming); 2946 } 2947 2948 /* 2949 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 2950 * FIXME allocate segments if the ring is full. 2951 */ 2952 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 2953 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 2954 { 2955 unsigned int num_trbs_needed; 2956 2957 /* Make sure the endpoint has been added to xHC schedule */ 2958 switch (ep_state) { 2959 case EP_STATE_DISABLED: 2960 /* 2961 * USB core changed config/interfaces without notifying us, 2962 * or hardware is reporting the wrong state. 2963 */ 2964 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 2965 return -ENOENT; 2966 case EP_STATE_ERROR: 2967 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 2968 /* FIXME event handling code for error needs to clear it */ 2969 /* XXX not sure if this should be -ENOENT or not */ 2970 return -EINVAL; 2971 case EP_STATE_HALTED: 2972 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 2973 break; 2974 case EP_STATE_STOPPED: 2975 case EP_STATE_RUNNING: 2976 break; 2977 default: 2978 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 2979 /* 2980 * FIXME issue Configure Endpoint command to try to get the HC 2981 * back into a known state. 2982 */ 2983 return -EINVAL; 2984 } 2985 2986 while (1) { 2987 if (room_on_ring(xhci, ep_ring, num_trbs)) 2988 break; 2989 2990 if (ep_ring == xhci->cmd_ring) { 2991 xhci_err(xhci, "Do not support expand command ring\n"); 2992 return -ENOMEM; 2993 } 2994 2995 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 2996 "ERROR no room on ep ring, try ring expansion"); 2997 num_trbs_needed = num_trbs - ep_ring->num_trbs_free; 2998 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed, 2999 mem_flags)) { 3000 xhci_err(xhci, "Ring expansion failed\n"); 3001 return -ENOMEM; 3002 } 3003 } 3004 3005 while (trb_is_link(ep_ring->enqueue)) { 3006 /* If we're not dealing with 0.95 hardware or isoc rings 3007 * on AMD 0.96 host, clear the chain bit. 3008 */ 3009 if (!xhci_link_trb_quirk(xhci) && 3010 !(ep_ring->type == TYPE_ISOC && 3011 (xhci->quirks & XHCI_AMD_0x96_HOST))) 3012 ep_ring->enqueue->link.control &= 3013 cpu_to_le32(~TRB_CHAIN); 3014 else 3015 ep_ring->enqueue->link.control |= 3016 cpu_to_le32(TRB_CHAIN); 3017 3018 wmb(); 3019 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); 3020 3021 /* Toggle the cycle bit after the last ring segment. */ 3022 if (link_trb_toggles_cycle(ep_ring->enqueue)) 3023 ep_ring->cycle_state ^= 1; 3024 3025 ep_ring->enq_seg = ep_ring->enq_seg->next; 3026 ep_ring->enqueue = ep_ring->enq_seg->trbs; 3027 } 3028 return 0; 3029 } 3030 3031 static int prepare_transfer(struct xhci_hcd *xhci, 3032 struct xhci_virt_device *xdev, 3033 unsigned int ep_index, 3034 unsigned int stream_id, 3035 unsigned int num_trbs, 3036 struct urb *urb, 3037 unsigned int td_index, 3038 gfp_t mem_flags) 3039 { 3040 int ret; 3041 struct urb_priv *urb_priv; 3042 struct xhci_td *td; 3043 struct xhci_ring *ep_ring; 3044 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3045 3046 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); 3047 if (!ep_ring) { 3048 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 3049 stream_id); 3050 return -EINVAL; 3051 } 3052 3053 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 3054 num_trbs, mem_flags); 3055 if (ret) 3056 return ret; 3057 3058 urb_priv = urb->hcpriv; 3059 td = &urb_priv->td[td_index]; 3060 3061 INIT_LIST_HEAD(&td->td_list); 3062 INIT_LIST_HEAD(&td->cancelled_td_list); 3063 3064 if (td_index == 0) { 3065 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 3066 if (unlikely(ret)) 3067 return ret; 3068 } 3069 3070 td->urb = urb; 3071 /* Add this TD to the tail of the endpoint ring's TD list */ 3072 list_add_tail(&td->td_list, &ep_ring->td_list); 3073 td->start_seg = ep_ring->enq_seg; 3074 td->first_trb = ep_ring->enqueue; 3075 3076 return 0; 3077 } 3078 3079 unsigned int count_trbs(u64 addr, u64 len) 3080 { 3081 unsigned int num_trbs; 3082 3083 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3084 TRB_MAX_BUFF_SIZE); 3085 if (num_trbs == 0) 3086 num_trbs++; 3087 3088 return num_trbs; 3089 } 3090 3091 static inline unsigned int count_trbs_needed(struct urb *urb) 3092 { 3093 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); 3094 } 3095 3096 static unsigned int count_sg_trbs_needed(struct urb *urb) 3097 { 3098 struct scatterlist *sg; 3099 unsigned int i, len, full_len, num_trbs = 0; 3100 3101 full_len = urb->transfer_buffer_length; 3102 3103 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { 3104 len = sg_dma_len(sg); 3105 num_trbs += count_trbs(sg_dma_address(sg), len); 3106 len = min_t(unsigned int, len, full_len); 3107 full_len -= len; 3108 if (full_len == 0) 3109 break; 3110 } 3111 3112 return num_trbs; 3113 } 3114 3115 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) 3116 { 3117 u64 addr, len; 3118 3119 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3120 len = urb->iso_frame_desc[i].length; 3121 3122 return count_trbs(addr, len); 3123 } 3124 3125 static void check_trb_math(struct urb *urb, int running_total) 3126 { 3127 if (unlikely(running_total != urb->transfer_buffer_length)) 3128 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3129 "queued %#x (%d), asked for %#x (%d)\n", 3130 __func__, 3131 urb->ep->desc.bEndpointAddress, 3132 running_total, running_total, 3133 urb->transfer_buffer_length, 3134 urb->transfer_buffer_length); 3135 } 3136 3137 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3138 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3139 struct xhci_generic_trb *start_trb) 3140 { 3141 /* 3142 * Pass all the TRBs to the hardware at once and make sure this write 3143 * isn't reordered. 3144 */ 3145 wmb(); 3146 if (start_cycle) 3147 start_trb->field[3] |= cpu_to_le32(start_cycle); 3148 else 3149 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3150 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3151 } 3152 3153 static void check_interval(struct xhci_hcd *xhci, struct urb *urb, 3154 struct xhci_ep_ctx *ep_ctx) 3155 { 3156 int xhci_interval; 3157 int ep_interval; 3158 3159 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3160 ep_interval = urb->interval; 3161 3162 /* Convert to microframes */ 3163 if (urb->dev->speed == USB_SPEED_LOW || 3164 urb->dev->speed == USB_SPEED_FULL) 3165 ep_interval *= 8; 3166 3167 /* FIXME change this to a warning and a suggestion to use the new API 3168 * to set the polling interval (once the API is added). 3169 */ 3170 if (xhci_interval != ep_interval) { 3171 dev_dbg_ratelimited(&urb->dev->dev, 3172 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3173 ep_interval, ep_interval == 1 ? "" : "s", 3174 xhci_interval, xhci_interval == 1 ? "" : "s"); 3175 urb->interval = xhci_interval; 3176 /* Convert back to frames for LS/FS devices */ 3177 if (urb->dev->speed == USB_SPEED_LOW || 3178 urb->dev->speed == USB_SPEED_FULL) 3179 urb->interval /= 8; 3180 } 3181 } 3182 3183 /* 3184 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3185 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3186 * (comprised of sg list entries) can take several service intervals to 3187 * transmit. 3188 */ 3189 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3190 struct urb *urb, int slot_id, unsigned int ep_index) 3191 { 3192 struct xhci_ep_ctx *ep_ctx; 3193 3194 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); 3195 check_interval(xhci, urb, ep_ctx); 3196 3197 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3198 } 3199 3200 /* 3201 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3202 * packets remaining in the TD (*not* including this TRB). 3203 * 3204 * Total TD packet count = total_packet_count = 3205 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3206 * 3207 * Packets transferred up to and including this TRB = packets_transferred = 3208 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3209 * 3210 * TD size = total_packet_count - packets_transferred 3211 * 3212 * For xHCI 0.96 and older, TD size field should be the remaining bytes 3213 * including this TRB, right shifted by 10 3214 * 3215 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. 3216 * This is taken care of in the TRB_TD_SIZE() macro 3217 * 3218 * The last TRB in a TD must have the TD size set to zero. 3219 */ 3220 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, 3221 int trb_buff_len, unsigned int td_total_len, 3222 struct urb *urb, bool more_trbs_coming) 3223 { 3224 u32 maxp, total_packet_count; 3225 3226 /* MTK xHCI 0.96 contains some features from 1.0 */ 3227 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) 3228 return ((td_total_len - transferred) >> 10); 3229 3230 /* One TRB with a zero-length data packet. */ 3231 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || 3232 trb_buff_len == td_total_len) 3233 return 0; 3234 3235 /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */ 3236 if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100)) 3237 trb_buff_len = 0; 3238 3239 maxp = usb_endpoint_maxp(&urb->ep->desc); 3240 total_packet_count = DIV_ROUND_UP(td_total_len, maxp); 3241 3242 /* Queueing functions don't count the current TRB into transferred */ 3243 return (total_packet_count - ((transferred + trb_buff_len) / maxp)); 3244 } 3245 3246 3247 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, 3248 u32 *trb_buff_len, struct xhci_segment *seg) 3249 { 3250 struct device *dev = xhci_to_hcd(xhci)->self.controller; 3251 unsigned int unalign; 3252 unsigned int max_pkt; 3253 u32 new_buff_len; 3254 size_t len; 3255 3256 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3257 unalign = (enqd_len + *trb_buff_len) % max_pkt; 3258 3259 /* we got lucky, last normal TRB data on segment is packet aligned */ 3260 if (unalign == 0) 3261 return 0; 3262 3263 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", 3264 unalign, *trb_buff_len); 3265 3266 /* is the last nornal TRB alignable by splitting it */ 3267 if (*trb_buff_len > unalign) { 3268 *trb_buff_len -= unalign; 3269 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); 3270 return 0; 3271 } 3272 3273 /* 3274 * We want enqd_len + trb_buff_len to sum up to a number aligned to 3275 * number which is divisible by the endpoint's wMaxPacketSize. IOW: 3276 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. 3277 */ 3278 new_buff_len = max_pkt - (enqd_len % max_pkt); 3279 3280 if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) 3281 new_buff_len = (urb->transfer_buffer_length - enqd_len); 3282 3283 /* create a max max_pkt sized bounce buffer pointed to by last trb */ 3284 if (usb_urb_dir_out(urb)) { 3285 if (urb->num_sgs) { 3286 len = sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 3287 seg->bounce_buf, new_buff_len, enqd_len); 3288 if (len != new_buff_len) 3289 xhci_warn(xhci, "WARN Wrong bounce buffer write length: %zu != %d\n", 3290 len, new_buff_len); 3291 } else { 3292 memcpy(seg->bounce_buf, urb->transfer_buffer + enqd_len, new_buff_len); 3293 } 3294 3295 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3296 max_pkt, DMA_TO_DEVICE); 3297 } else { 3298 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3299 max_pkt, DMA_FROM_DEVICE); 3300 } 3301 3302 if (dma_mapping_error(dev, seg->bounce_dma)) { 3303 /* try without aligning. Some host controllers survive */ 3304 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); 3305 return 0; 3306 } 3307 *trb_buff_len = new_buff_len; 3308 seg->bounce_len = new_buff_len; 3309 seg->bounce_offs = enqd_len; 3310 3311 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); 3312 3313 return 1; 3314 } 3315 3316 /* This is very similar to what ehci-q.c qtd_fill() does */ 3317 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3318 struct urb *urb, int slot_id, unsigned int ep_index) 3319 { 3320 struct xhci_ring *ring; 3321 struct urb_priv *urb_priv; 3322 struct xhci_td *td; 3323 struct xhci_generic_trb *start_trb; 3324 struct scatterlist *sg = NULL; 3325 bool more_trbs_coming = true; 3326 bool need_zero_pkt = false; 3327 bool first_trb = true; 3328 unsigned int num_trbs; 3329 unsigned int start_cycle, num_sgs = 0; 3330 unsigned int enqd_len, block_len, trb_buff_len, full_len; 3331 int sent_len, ret; 3332 u32 field, length_field, remainder; 3333 u64 addr, send_addr; 3334 3335 ring = xhci_urb_to_transfer_ring(xhci, urb); 3336 if (!ring) 3337 return -EINVAL; 3338 3339 full_len = urb->transfer_buffer_length; 3340 /* If we have scatter/gather list, we use it. */ 3341 if (urb->num_sgs && !(urb->transfer_flags & URB_DMA_MAP_SINGLE)) { 3342 num_sgs = urb->num_mapped_sgs; 3343 sg = urb->sg; 3344 addr = (u64) sg_dma_address(sg); 3345 block_len = sg_dma_len(sg); 3346 num_trbs = count_sg_trbs_needed(urb); 3347 } else { 3348 num_trbs = count_trbs_needed(urb); 3349 addr = (u64) urb->transfer_dma; 3350 block_len = full_len; 3351 } 3352 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3353 ep_index, urb->stream_id, 3354 num_trbs, urb, 0, mem_flags); 3355 if (unlikely(ret < 0)) 3356 return ret; 3357 3358 urb_priv = urb->hcpriv; 3359 3360 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3361 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) 3362 need_zero_pkt = true; 3363 3364 td = &urb_priv->td[0]; 3365 3366 /* 3367 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3368 * until we've finished creating all the other TRBs. The ring's cycle 3369 * state may change as we enqueue the other TRBs, so save it too. 3370 */ 3371 start_trb = &ring->enqueue->generic; 3372 start_cycle = ring->cycle_state; 3373 send_addr = addr; 3374 3375 /* Queue the TRBs, even if they are zero-length */ 3376 for (enqd_len = 0; first_trb || enqd_len < full_len; 3377 enqd_len += trb_buff_len) { 3378 field = TRB_TYPE(TRB_NORMAL); 3379 3380 /* TRB buffer should not cross 64KB boundaries */ 3381 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3382 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); 3383 3384 if (enqd_len + trb_buff_len > full_len) 3385 trb_buff_len = full_len - enqd_len; 3386 3387 /* Don't change the cycle bit of the first TRB until later */ 3388 if (first_trb) { 3389 first_trb = false; 3390 if (start_cycle == 0) 3391 field |= TRB_CYCLE; 3392 } else 3393 field |= ring->cycle_state; 3394 3395 /* Chain all the TRBs together; clear the chain bit in the last 3396 * TRB to indicate it's the last TRB in the chain. 3397 */ 3398 if (enqd_len + trb_buff_len < full_len) { 3399 field |= TRB_CHAIN; 3400 if (trb_is_link(ring->enqueue + 1)) { 3401 if (xhci_align_td(xhci, urb, enqd_len, 3402 &trb_buff_len, 3403 ring->enq_seg)) { 3404 send_addr = ring->enq_seg->bounce_dma; 3405 /* assuming TD won't span 2 segs */ 3406 td->bounce_seg = ring->enq_seg; 3407 } 3408 } 3409 } 3410 if (enqd_len + trb_buff_len >= full_len) { 3411 field &= ~TRB_CHAIN; 3412 field |= TRB_IOC; 3413 more_trbs_coming = false; 3414 td->last_trb = ring->enqueue; 3415 3416 if (xhci_urb_suitable_for_idt(urb)) { 3417 memcpy(&send_addr, urb->transfer_buffer, 3418 trb_buff_len); 3419 le64_to_cpus(&send_addr); 3420 field |= TRB_IDT; 3421 } 3422 } 3423 3424 /* Only set interrupt on short packet for IN endpoints */ 3425 if (usb_urb_dir_in(urb)) 3426 field |= TRB_ISP; 3427 3428 /* Set the TRB length, TD size, and interrupter fields. */ 3429 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, 3430 full_len, urb, more_trbs_coming); 3431 3432 length_field = TRB_LEN(trb_buff_len) | 3433 TRB_TD_SIZE(remainder) | 3434 TRB_INTR_TARGET(0); 3435 3436 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, 3437 lower_32_bits(send_addr), 3438 upper_32_bits(send_addr), 3439 length_field, 3440 field); 3441 3442 addr += trb_buff_len; 3443 sent_len = trb_buff_len; 3444 3445 while (sg && sent_len >= block_len) { 3446 /* New sg entry */ 3447 --num_sgs; 3448 sent_len -= block_len; 3449 sg = sg_next(sg); 3450 if (num_sgs != 0 && sg) { 3451 block_len = sg_dma_len(sg); 3452 addr = (u64) sg_dma_address(sg); 3453 addr += sent_len; 3454 } 3455 } 3456 block_len -= sent_len; 3457 send_addr = addr; 3458 } 3459 3460 if (need_zero_pkt) { 3461 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3462 ep_index, urb->stream_id, 3463 1, urb, 1, mem_flags); 3464 urb_priv->td[1].last_trb = ring->enqueue; 3465 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; 3466 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); 3467 } 3468 3469 check_trb_math(urb, enqd_len); 3470 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3471 start_cycle, start_trb); 3472 return 0; 3473 } 3474 3475 /* Caller must have locked xhci->lock */ 3476 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3477 struct urb *urb, int slot_id, unsigned int ep_index) 3478 { 3479 struct xhci_ring *ep_ring; 3480 int num_trbs; 3481 int ret; 3482 struct usb_ctrlrequest *setup; 3483 struct xhci_generic_trb *start_trb; 3484 int start_cycle; 3485 u32 field; 3486 struct urb_priv *urb_priv; 3487 struct xhci_td *td; 3488 3489 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3490 if (!ep_ring) 3491 return -EINVAL; 3492 3493 /* 3494 * Need to copy setup packet into setup TRB, so we can't use the setup 3495 * DMA address. 3496 */ 3497 if (!urb->setup_packet) 3498 return -EINVAL; 3499 3500 /* 1 TRB for setup, 1 for status */ 3501 num_trbs = 2; 3502 /* 3503 * Don't need to check if we need additional event data and normal TRBs, 3504 * since data in control transfers will never get bigger than 16MB 3505 * XXX: can we get a buffer that crosses 64KB boundaries? 3506 */ 3507 if (urb->transfer_buffer_length > 0) 3508 num_trbs++; 3509 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3510 ep_index, urb->stream_id, 3511 num_trbs, urb, 0, mem_flags); 3512 if (ret < 0) 3513 return ret; 3514 3515 urb_priv = urb->hcpriv; 3516 td = &urb_priv->td[0]; 3517 3518 /* 3519 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3520 * until we've finished creating all the other TRBs. The ring's cycle 3521 * state may change as we enqueue the other TRBs, so save it too. 3522 */ 3523 start_trb = &ep_ring->enqueue->generic; 3524 start_cycle = ep_ring->cycle_state; 3525 3526 /* Queue setup TRB - see section 6.4.1.2.1 */ 3527 /* FIXME better way to translate setup_packet into two u32 fields? */ 3528 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3529 field = 0; 3530 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3531 if (start_cycle == 0) 3532 field |= 0x1; 3533 3534 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ 3535 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { 3536 if (urb->transfer_buffer_length > 0) { 3537 if (setup->bRequestType & USB_DIR_IN) 3538 field |= TRB_TX_TYPE(TRB_DATA_IN); 3539 else 3540 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3541 } 3542 } 3543 3544 queue_trb(xhci, ep_ring, true, 3545 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3546 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3547 TRB_LEN(8) | TRB_INTR_TARGET(0), 3548 /* Immediate data in pointer */ 3549 field); 3550 3551 /* If there's data, queue data TRBs */ 3552 /* Only set interrupt on short packet for IN endpoints */ 3553 if (usb_urb_dir_in(urb)) 3554 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3555 else 3556 field = TRB_TYPE(TRB_DATA); 3557 3558 if (urb->transfer_buffer_length > 0) { 3559 u32 length_field, remainder; 3560 u64 addr; 3561 3562 if (xhci_urb_suitable_for_idt(urb)) { 3563 memcpy(&addr, urb->transfer_buffer, 3564 urb->transfer_buffer_length); 3565 le64_to_cpus(&addr); 3566 field |= TRB_IDT; 3567 } else { 3568 addr = (u64) urb->transfer_dma; 3569 } 3570 3571 remainder = xhci_td_remainder(xhci, 0, 3572 urb->transfer_buffer_length, 3573 urb->transfer_buffer_length, 3574 urb, 1); 3575 length_field = TRB_LEN(urb->transfer_buffer_length) | 3576 TRB_TD_SIZE(remainder) | 3577 TRB_INTR_TARGET(0); 3578 if (setup->bRequestType & USB_DIR_IN) 3579 field |= TRB_DIR_IN; 3580 queue_trb(xhci, ep_ring, true, 3581 lower_32_bits(addr), 3582 upper_32_bits(addr), 3583 length_field, 3584 field | ep_ring->cycle_state); 3585 } 3586 3587 /* Save the DMA address of the last TRB in the TD */ 3588 td->last_trb = ep_ring->enqueue; 3589 3590 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3591 /* If the device sent data, the status stage is an OUT transfer */ 3592 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3593 field = 0; 3594 else 3595 field = TRB_DIR_IN; 3596 queue_trb(xhci, ep_ring, false, 3597 0, 3598 0, 3599 TRB_INTR_TARGET(0), 3600 /* Event on completion */ 3601 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3602 3603 giveback_first_trb(xhci, slot_id, ep_index, 0, 3604 start_cycle, start_trb); 3605 return 0; 3606 } 3607 3608 /* 3609 * The transfer burst count field of the isochronous TRB defines the number of 3610 * bursts that are required to move all packets in this TD. Only SuperSpeed 3611 * devices can burst up to bMaxBurst number of packets per service interval. 3612 * This field is zero based, meaning a value of zero in the field means one 3613 * burst. Basically, for everything but SuperSpeed devices, this field will be 3614 * zero. Only xHCI 1.0 host controllers support this field. 3615 */ 3616 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3617 struct urb *urb, unsigned int total_packet_count) 3618 { 3619 unsigned int max_burst; 3620 3621 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) 3622 return 0; 3623 3624 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3625 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3626 } 3627 3628 /* 3629 * Returns the number of packets in the last "burst" of packets. This field is 3630 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3631 * the last burst packet count is equal to the total number of packets in the 3632 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3633 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3634 * contain 1 to (bMaxBurst + 1) packets. 3635 */ 3636 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3637 struct urb *urb, unsigned int total_packet_count) 3638 { 3639 unsigned int max_burst; 3640 unsigned int residue; 3641 3642 if (xhci->hci_version < 0x100) 3643 return 0; 3644 3645 if (urb->dev->speed >= USB_SPEED_SUPER) { 3646 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3647 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3648 residue = total_packet_count % (max_burst + 1); 3649 /* If residue is zero, the last burst contains (max_burst + 1) 3650 * number of packets, but the TLBPC field is zero-based. 3651 */ 3652 if (residue == 0) 3653 return max_burst; 3654 return residue - 1; 3655 } 3656 if (total_packet_count == 0) 3657 return 0; 3658 return total_packet_count - 1; 3659 } 3660 3661 /* 3662 * Calculates Frame ID field of the isochronous TRB identifies the 3663 * target frame that the Interval associated with this Isochronous 3664 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. 3665 * 3666 * Returns actual frame id on success, negative value on error. 3667 */ 3668 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, 3669 struct urb *urb, int index) 3670 { 3671 int start_frame, ist, ret = 0; 3672 int start_frame_id, end_frame_id, current_frame_id; 3673 3674 if (urb->dev->speed == USB_SPEED_LOW || 3675 urb->dev->speed == USB_SPEED_FULL) 3676 start_frame = urb->start_frame + index * urb->interval; 3677 else 3678 start_frame = (urb->start_frame + index * urb->interval) >> 3; 3679 3680 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): 3681 * 3682 * If bit [3] of IST is cleared to '0', software can add a TRB no 3683 * later than IST[2:0] Microframes before that TRB is scheduled to 3684 * be executed. 3685 * If bit [3] of IST is set to '1', software can add a TRB no later 3686 * than IST[2:0] Frames before that TRB is scheduled to be executed. 3687 */ 3688 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3689 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3690 ist <<= 3; 3691 3692 /* Software shall not schedule an Isoch TD with a Frame ID value that 3693 * is less than the Start Frame ID or greater than the End Frame ID, 3694 * where: 3695 * 3696 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 3697 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 3698 * 3699 * Both the End Frame ID and Start Frame ID values are calculated 3700 * in microframes. When software determines the valid Frame ID value; 3701 * The End Frame ID value should be rounded down to the nearest Frame 3702 * boundary, and the Start Frame ID value should be rounded up to the 3703 * nearest Frame boundary. 3704 */ 3705 current_frame_id = readl(&xhci->run_regs->microframe_index); 3706 start_frame_id = roundup(current_frame_id + ist + 1, 8); 3707 end_frame_id = rounddown(current_frame_id + 895 * 8, 8); 3708 3709 start_frame &= 0x7ff; 3710 start_frame_id = (start_frame_id >> 3) & 0x7ff; 3711 end_frame_id = (end_frame_id >> 3) & 0x7ff; 3712 3713 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n", 3714 __func__, index, readl(&xhci->run_regs->microframe_index), 3715 start_frame_id, end_frame_id, start_frame); 3716 3717 if (start_frame_id < end_frame_id) { 3718 if (start_frame > end_frame_id || 3719 start_frame < start_frame_id) 3720 ret = -EINVAL; 3721 } else if (start_frame_id > end_frame_id) { 3722 if ((start_frame > end_frame_id && 3723 start_frame < start_frame_id)) 3724 ret = -EINVAL; 3725 } else { 3726 ret = -EINVAL; 3727 } 3728 3729 if (index == 0) { 3730 if (ret == -EINVAL || start_frame == start_frame_id) { 3731 start_frame = start_frame_id + 1; 3732 if (urb->dev->speed == USB_SPEED_LOW || 3733 urb->dev->speed == USB_SPEED_FULL) 3734 urb->start_frame = start_frame; 3735 else 3736 urb->start_frame = start_frame << 3; 3737 ret = 0; 3738 } 3739 } 3740 3741 if (ret) { 3742 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", 3743 start_frame, current_frame_id, index, 3744 start_frame_id, end_frame_id); 3745 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); 3746 return ret; 3747 } 3748 3749 return start_frame; 3750 } 3751 3752 /* Check if we should generate event interrupt for a TD in an isoc URB */ 3753 static bool trb_block_event_intr(struct xhci_hcd *xhci, int num_tds, int i) 3754 { 3755 if (xhci->hci_version < 0x100) 3756 return false; 3757 /* always generate an event interrupt for the last TD */ 3758 if (i == num_tds - 1) 3759 return false; 3760 /* 3761 * If AVOID_BEI is set the host handles full event rings poorly, 3762 * generate an event at least every 8th TD to clear the event ring 3763 */ 3764 if (i && xhci->quirks & XHCI_AVOID_BEI) 3765 return !!(i % 8); 3766 3767 return true; 3768 } 3769 3770 /* This is for isoc transfer */ 3771 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3772 struct urb *urb, int slot_id, unsigned int ep_index) 3773 { 3774 struct xhci_ring *ep_ring; 3775 struct urb_priv *urb_priv; 3776 struct xhci_td *td; 3777 int num_tds, trbs_per_td; 3778 struct xhci_generic_trb *start_trb; 3779 bool first_trb; 3780 int start_cycle; 3781 u32 field, length_field; 3782 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3783 u64 start_addr, addr; 3784 int i, j; 3785 bool more_trbs_coming; 3786 struct xhci_virt_ep *xep; 3787 int frame_id; 3788 3789 xep = &xhci->devs[slot_id]->eps[ep_index]; 3790 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 3791 3792 num_tds = urb->number_of_packets; 3793 if (num_tds < 1) { 3794 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 3795 return -EINVAL; 3796 } 3797 start_addr = (u64) urb->transfer_dma; 3798 start_trb = &ep_ring->enqueue->generic; 3799 start_cycle = ep_ring->cycle_state; 3800 3801 urb_priv = urb->hcpriv; 3802 /* Queue the TRBs for each TD, even if they are zero-length */ 3803 for (i = 0; i < num_tds; i++) { 3804 unsigned int total_pkt_count, max_pkt; 3805 unsigned int burst_count, last_burst_pkt_count; 3806 u32 sia_frame_id; 3807 3808 first_trb = true; 3809 running_total = 0; 3810 addr = start_addr + urb->iso_frame_desc[i].offset; 3811 td_len = urb->iso_frame_desc[i].length; 3812 td_remain_len = td_len; 3813 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3814 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); 3815 3816 /* A zero-length transfer still involves at least one packet. */ 3817 if (total_pkt_count == 0) 3818 total_pkt_count++; 3819 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); 3820 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, 3821 urb, total_pkt_count); 3822 3823 trbs_per_td = count_isoc_trbs_needed(urb, i); 3824 3825 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 3826 urb->stream_id, trbs_per_td, urb, i, mem_flags); 3827 if (ret < 0) { 3828 if (i == 0) 3829 return ret; 3830 goto cleanup; 3831 } 3832 td = &urb_priv->td[i]; 3833 3834 /* use SIA as default, if frame id is used overwrite it */ 3835 sia_frame_id = TRB_SIA; 3836 if (!(urb->transfer_flags & URB_ISO_ASAP) && 3837 HCC_CFC(xhci->hcc_params)) { 3838 frame_id = xhci_get_isoc_frame_id(xhci, urb, i); 3839 if (frame_id >= 0) 3840 sia_frame_id = TRB_FRAME_ID(frame_id); 3841 } 3842 /* 3843 * Set isoc specific data for the first TRB in a TD. 3844 * Prevent HW from getting the TRBs by keeping the cycle state 3845 * inverted in the first TDs isoc TRB. 3846 */ 3847 field = TRB_TYPE(TRB_ISOC) | 3848 TRB_TLBPC(last_burst_pkt_count) | 3849 sia_frame_id | 3850 (i ? ep_ring->cycle_state : !start_cycle); 3851 3852 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ 3853 if (!xep->use_extended_tbc) 3854 field |= TRB_TBC(burst_count); 3855 3856 /* fill the rest of the TRB fields, and remaining normal TRBs */ 3857 for (j = 0; j < trbs_per_td; j++) { 3858 u32 remainder = 0; 3859 3860 /* only first TRB is isoc, overwrite otherwise */ 3861 if (!first_trb) 3862 field = TRB_TYPE(TRB_NORMAL) | 3863 ep_ring->cycle_state; 3864 3865 /* Only set interrupt on short packet for IN EPs */ 3866 if (usb_urb_dir_in(urb)) 3867 field |= TRB_ISP; 3868 3869 /* Set the chain bit for all except the last TRB */ 3870 if (j < trbs_per_td - 1) { 3871 more_trbs_coming = true; 3872 field |= TRB_CHAIN; 3873 } else { 3874 more_trbs_coming = false; 3875 td->last_trb = ep_ring->enqueue; 3876 field |= TRB_IOC; 3877 if (trb_block_event_intr(xhci, num_tds, i)) 3878 field |= TRB_BEI; 3879 } 3880 /* Calculate TRB length */ 3881 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3882 if (trb_buff_len > td_remain_len) 3883 trb_buff_len = td_remain_len; 3884 3885 /* Set the TRB length, TD size, & interrupter fields. */ 3886 remainder = xhci_td_remainder(xhci, running_total, 3887 trb_buff_len, td_len, 3888 urb, more_trbs_coming); 3889 3890 length_field = TRB_LEN(trb_buff_len) | 3891 TRB_INTR_TARGET(0); 3892 3893 /* xhci 1.1 with ETE uses TD Size field for TBC */ 3894 if (first_trb && xep->use_extended_tbc) 3895 length_field |= TRB_TD_SIZE_TBC(burst_count); 3896 else 3897 length_field |= TRB_TD_SIZE(remainder); 3898 first_trb = false; 3899 3900 queue_trb(xhci, ep_ring, more_trbs_coming, 3901 lower_32_bits(addr), 3902 upper_32_bits(addr), 3903 length_field, 3904 field); 3905 running_total += trb_buff_len; 3906 3907 addr += trb_buff_len; 3908 td_remain_len -= trb_buff_len; 3909 } 3910 3911 /* Check TD length */ 3912 if (running_total != td_len) { 3913 xhci_err(xhci, "ISOC TD length unmatch\n"); 3914 ret = -EINVAL; 3915 goto cleanup; 3916 } 3917 } 3918 3919 /* store the next frame id */ 3920 if (HCC_CFC(xhci->hcc_params)) 3921 xep->next_frame_id = urb->start_frame + num_tds * urb->interval; 3922 3923 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 3924 if (xhci->quirks & XHCI_AMD_PLL_FIX) 3925 usb_amd_quirk_pll_disable(); 3926 } 3927 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 3928 3929 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3930 start_cycle, start_trb); 3931 return 0; 3932 cleanup: 3933 /* Clean up a partially enqueued isoc transfer. */ 3934 3935 for (i--; i >= 0; i--) 3936 list_del_init(&urb_priv->td[i].td_list); 3937 3938 /* Use the first TD as a temporary variable to turn the TDs we've queued 3939 * into No-ops with a software-owned cycle bit. That way the hardware 3940 * won't accidentally start executing bogus TDs when we partially 3941 * overwrite them. td->first_trb and td->start_seg are already set. 3942 */ 3943 urb_priv->td[0].last_trb = ep_ring->enqueue; 3944 /* Every TRB except the first & last will have its cycle bit flipped. */ 3945 td_to_noop(xhci, ep_ring, &urb_priv->td[0], true); 3946 3947 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 3948 ep_ring->enqueue = urb_priv->td[0].first_trb; 3949 ep_ring->enq_seg = urb_priv->td[0].start_seg; 3950 ep_ring->cycle_state = start_cycle; 3951 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp; 3952 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 3953 return ret; 3954 } 3955 3956 /* 3957 * Check transfer ring to guarantee there is enough room for the urb. 3958 * Update ISO URB start_frame and interval. 3959 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to 3960 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or 3961 * Contiguous Frame ID is not supported by HC. 3962 */ 3963 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 3964 struct urb *urb, int slot_id, unsigned int ep_index) 3965 { 3966 struct xhci_virt_device *xdev; 3967 struct xhci_ring *ep_ring; 3968 struct xhci_ep_ctx *ep_ctx; 3969 int start_frame; 3970 int num_tds, num_trbs, i; 3971 int ret; 3972 struct xhci_virt_ep *xep; 3973 int ist; 3974 3975 xdev = xhci->devs[slot_id]; 3976 xep = &xhci->devs[slot_id]->eps[ep_index]; 3977 ep_ring = xdev->eps[ep_index].ring; 3978 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3979 3980 num_trbs = 0; 3981 num_tds = urb->number_of_packets; 3982 for (i = 0; i < num_tds; i++) 3983 num_trbs += count_isoc_trbs_needed(urb, i); 3984 3985 /* Check the ring to guarantee there is enough room for the whole urb. 3986 * Do not insert any td of the urb to the ring if the check failed. 3987 */ 3988 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 3989 num_trbs, mem_flags); 3990 if (ret) 3991 return ret; 3992 3993 /* 3994 * Check interval value. This should be done before we start to 3995 * calculate the start frame value. 3996 */ 3997 check_interval(xhci, urb, ep_ctx); 3998 3999 /* Calculate the start frame and put it in urb->start_frame. */ 4000 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { 4001 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) { 4002 urb->start_frame = xep->next_frame_id; 4003 goto skip_start_over; 4004 } 4005 } 4006 4007 start_frame = readl(&xhci->run_regs->microframe_index); 4008 start_frame &= 0x3fff; 4009 /* 4010 * Round up to the next frame and consider the time before trb really 4011 * gets scheduled by hardare. 4012 */ 4013 ist = HCS_IST(xhci->hcs_params2) & 0x7; 4014 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 4015 ist <<= 3; 4016 start_frame += ist + XHCI_CFC_DELAY; 4017 start_frame = roundup(start_frame, 8); 4018 4019 /* 4020 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT 4021 * is greate than 8 microframes. 4022 */ 4023 if (urb->dev->speed == USB_SPEED_LOW || 4024 urb->dev->speed == USB_SPEED_FULL) { 4025 start_frame = roundup(start_frame, urb->interval << 3); 4026 urb->start_frame = start_frame >> 3; 4027 } else { 4028 start_frame = roundup(start_frame, urb->interval); 4029 urb->start_frame = start_frame; 4030 } 4031 4032 skip_start_over: 4033 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free; 4034 4035 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 4036 } 4037 4038 /**** Command Ring Operations ****/ 4039 4040 /* Generic function for queueing a command TRB on the command ring. 4041 * Check to make sure there's room on the command ring for one command TRB. 4042 * Also check that there's room reserved for commands that must not fail. 4043 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 4044 * then only check for the number of reserved spots. 4045 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 4046 * because the command event handler may want to resubmit a failed command. 4047 */ 4048 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4049 u32 field1, u32 field2, 4050 u32 field3, u32 field4, bool command_must_succeed) 4051 { 4052 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 4053 int ret; 4054 4055 if ((xhci->xhc_state & XHCI_STATE_DYING) || 4056 (xhci->xhc_state & XHCI_STATE_HALTED)) { 4057 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); 4058 return -ESHUTDOWN; 4059 } 4060 4061 if (!command_must_succeed) 4062 reserved_trbs++; 4063 4064 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 4065 reserved_trbs, GFP_ATOMIC); 4066 if (ret < 0) { 4067 xhci_err(xhci, "ERR: No room for command on command ring\n"); 4068 if (command_must_succeed) 4069 xhci_err(xhci, "ERR: Reserved TRB counting for " 4070 "unfailable commands failed.\n"); 4071 return ret; 4072 } 4073 4074 cmd->command_trb = xhci->cmd_ring->enqueue; 4075 4076 /* if there are no other commands queued we start the timeout timer */ 4077 if (list_empty(&xhci->cmd_list)) { 4078 xhci->current_cmd = cmd; 4079 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 4080 } 4081 4082 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 4083 4084 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 4085 field4 | xhci->cmd_ring->cycle_state); 4086 return 0; 4087 } 4088 4089 /* Queue a slot enable or disable request on the command ring */ 4090 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 4091 u32 trb_type, u32 slot_id) 4092 { 4093 return queue_command(xhci, cmd, 0, 0, 0, 4094 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 4095 } 4096 4097 /* Queue an address device command TRB */ 4098 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4099 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 4100 { 4101 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4102 upper_32_bits(in_ctx_ptr), 0, 4103 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 4104 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 4105 } 4106 4107 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4108 u32 field1, u32 field2, u32 field3, u32 field4) 4109 { 4110 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 4111 } 4112 4113 /* Queue a reset device command TRB */ 4114 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4115 u32 slot_id) 4116 { 4117 return queue_command(xhci, cmd, 0, 0, 0, 4118 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 4119 false); 4120 } 4121 4122 /* Queue a configure endpoint command TRB */ 4123 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 4124 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 4125 u32 slot_id, bool command_must_succeed) 4126 { 4127 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4128 upper_32_bits(in_ctx_ptr), 0, 4129 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 4130 command_must_succeed); 4131 } 4132 4133 /* Queue an evaluate context command TRB */ 4134 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 4135 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 4136 { 4137 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4138 upper_32_bits(in_ctx_ptr), 0, 4139 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 4140 command_must_succeed); 4141 } 4142 4143 /* 4144 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 4145 * activity on an endpoint that is about to be suspended. 4146 */ 4147 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 4148 int slot_id, unsigned int ep_index, int suspend) 4149 { 4150 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4151 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4152 u32 type = TRB_TYPE(TRB_STOP_RING); 4153 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 4154 4155 return queue_command(xhci, cmd, 0, 0, 0, 4156 trb_slot_id | trb_ep_index | type | trb_suspend, false); 4157 } 4158 4159 /* Set Transfer Ring Dequeue Pointer command */ 4160 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, 4161 unsigned int slot_id, unsigned int ep_index, 4162 struct xhci_dequeue_state *deq_state) 4163 { 4164 dma_addr_t addr; 4165 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4166 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4167 u32 trb_stream_id = STREAM_ID_FOR_TRB(deq_state->stream_id); 4168 u32 trb_sct = 0; 4169 u32 type = TRB_TYPE(TRB_SET_DEQ); 4170 struct xhci_virt_ep *ep; 4171 struct xhci_command *cmd; 4172 int ret; 4173 4174 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 4175 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u", 4176 deq_state->new_deq_seg, 4177 (unsigned long long)deq_state->new_deq_seg->dma, 4178 deq_state->new_deq_ptr, 4179 (unsigned long long)xhci_trb_virt_to_dma( 4180 deq_state->new_deq_seg, deq_state->new_deq_ptr), 4181 deq_state->new_cycle_state); 4182 4183 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 4184 deq_state->new_deq_ptr); 4185 if (addr == 0) { 4186 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 4187 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", 4188 deq_state->new_deq_seg, deq_state->new_deq_ptr); 4189 return; 4190 } 4191 ep = &xhci->devs[slot_id]->eps[ep_index]; 4192 if ((ep->ep_state & SET_DEQ_PENDING)) { 4193 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 4194 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n"); 4195 return; 4196 } 4197 4198 /* This function gets called from contexts where it cannot sleep */ 4199 cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC); 4200 if (!cmd) 4201 return; 4202 4203 ep->queued_deq_seg = deq_state->new_deq_seg; 4204 ep->queued_deq_ptr = deq_state->new_deq_ptr; 4205 if (deq_state->stream_id) 4206 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 4207 ret = queue_command(xhci, cmd, 4208 lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state, 4209 upper_32_bits(addr), trb_stream_id, 4210 trb_slot_id | trb_ep_index | type, false); 4211 if (ret < 0) { 4212 xhci_free_command(xhci, cmd); 4213 return; 4214 } 4215 4216 /* Stop the TD queueing code from ringing the doorbell until 4217 * this command completes. The HC won't set the dequeue pointer 4218 * if the ring is running, and ringing the doorbell starts the 4219 * ring running. 4220 */ 4221 ep->ep_state |= SET_DEQ_PENDING; 4222 } 4223 4224 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 4225 int slot_id, unsigned int ep_index, 4226 enum xhci_ep_reset_type reset_type) 4227 { 4228 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4229 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4230 u32 type = TRB_TYPE(TRB_RESET_EP); 4231 4232 if (reset_type == EP_SOFT_RESET) 4233 type |= TRB_TSP; 4234 4235 return queue_command(xhci, cmd, 0, 0, 0, 4236 trb_slot_id | trb_ep_index | type, false); 4237 } 4238