1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 /* 12 * Ring initialization rules: 13 * 1. Each segment is initialized to zero, except for link TRBs. 14 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 15 * Consumer Cycle State (CCS), depending on ring function. 16 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 17 * 18 * Ring behavior rules: 19 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 20 * least one free TRB in the ring. This is useful if you want to turn that 21 * into a link TRB and expand the ring. 22 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 23 * link TRB, then load the pointer with the address in the link TRB. If the 24 * link TRB had its toggle bit set, you may need to update the ring cycle 25 * state (see cycle bit rules). You may have to do this multiple times 26 * until you reach a non-link TRB. 27 * 3. A ring is full if enqueue++ (for the definition of increment above) 28 * equals the dequeue pointer. 29 * 30 * Cycle bit rules: 31 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 32 * in a link TRB, it must toggle the ring cycle state. 33 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 34 * in a link TRB, it must toggle the ring cycle state. 35 * 36 * Producer rules: 37 * 1. Check if ring is full before you enqueue. 38 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 39 * Update enqueue pointer between each write (which may update the ring 40 * cycle state). 41 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 42 * and endpoint rings. If HC is the producer for the event ring, 43 * and it generates an interrupt according to interrupt modulation rules. 44 * 45 * Consumer rules: 46 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 47 * the TRB is owned by the consumer. 48 * 2. Update dequeue pointer (which may update the ring cycle state) and 49 * continue processing TRBs until you reach a TRB which is not owned by you. 50 * 3. Notify the producer. SW is the consumer for the event ring, and it 51 * updates event ring dequeue pointer. HC is the consumer for the command and 52 * endpoint rings; it generates events on the event ring for these. 53 */ 54 55 #include <linux/scatterlist.h> 56 #include <linux/slab.h> 57 #include <linux/dma-mapping.h> 58 #include "xhci.h" 59 #include "xhci-trace.h" 60 61 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 62 u32 field1, u32 field2, 63 u32 field3, u32 field4, bool command_must_succeed); 64 65 /* 66 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 67 * address of the TRB. 68 */ 69 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 70 union xhci_trb *trb) 71 { 72 unsigned long segment_offset; 73 74 if (!seg || !trb || trb < seg->trbs) 75 return 0; 76 /* offset in TRBs */ 77 segment_offset = trb - seg->trbs; 78 if (segment_offset >= TRBS_PER_SEGMENT) 79 return 0; 80 return seg->dma + (segment_offset * sizeof(*trb)); 81 } 82 83 static bool trb_is_noop(union xhci_trb *trb) 84 { 85 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); 86 } 87 88 static bool trb_is_link(union xhci_trb *trb) 89 { 90 return TRB_TYPE_LINK_LE32(trb->link.control); 91 } 92 93 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) 94 { 95 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; 96 } 97 98 static bool last_trb_on_ring(struct xhci_ring *ring, 99 struct xhci_segment *seg, union xhci_trb *trb) 100 { 101 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); 102 } 103 104 static bool link_trb_toggles_cycle(union xhci_trb *trb) 105 { 106 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 107 } 108 109 static bool last_td_in_urb(struct xhci_td *td) 110 { 111 struct urb_priv *urb_priv = td->urb->hcpriv; 112 113 return urb_priv->num_tds_done == urb_priv->num_tds; 114 } 115 116 static void inc_td_cnt(struct urb *urb) 117 { 118 struct urb_priv *urb_priv = urb->hcpriv; 119 120 urb_priv->num_tds_done++; 121 } 122 123 static void trb_to_noop(union xhci_trb *trb, u32 noop_type) 124 { 125 if (trb_is_link(trb)) { 126 /* unchain chained link TRBs */ 127 trb->link.control &= cpu_to_le32(~TRB_CHAIN); 128 } else { 129 trb->generic.field[0] = 0; 130 trb->generic.field[1] = 0; 131 trb->generic.field[2] = 0; 132 /* Preserve only the cycle bit of this TRB */ 133 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 134 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); 135 } 136 } 137 138 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 139 * TRB is in a new segment. This does not skip over link TRBs, and it does not 140 * effect the ring dequeue or enqueue pointers. 141 */ 142 static void next_trb(struct xhci_hcd *xhci, 143 struct xhci_ring *ring, 144 struct xhci_segment **seg, 145 union xhci_trb **trb) 146 { 147 if (trb_is_link(*trb) || last_trb_on_seg(*seg, *trb)) { 148 *seg = (*seg)->next; 149 *trb = ((*seg)->trbs); 150 } else { 151 (*trb)++; 152 } 153 } 154 155 /* 156 * See Cycle bit rules. SW is the consumer for the event ring only. 157 */ 158 void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 159 { 160 unsigned int link_trb_count = 0; 161 162 /* event ring doesn't have link trbs, check for last trb */ 163 if (ring->type == TYPE_EVENT) { 164 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 165 ring->dequeue++; 166 goto out; 167 } 168 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) 169 ring->cycle_state ^= 1; 170 ring->deq_seg = ring->deq_seg->next; 171 ring->dequeue = ring->deq_seg->trbs; 172 goto out; 173 } 174 175 /* All other rings have link trbs */ 176 if (!trb_is_link(ring->dequeue)) { 177 if (last_trb_on_seg(ring->deq_seg, ring->dequeue)) 178 xhci_warn(xhci, "Missing link TRB at end of segment\n"); 179 else 180 ring->dequeue++; 181 } 182 183 while (trb_is_link(ring->dequeue)) { 184 ring->deq_seg = ring->deq_seg->next; 185 ring->dequeue = ring->deq_seg->trbs; 186 187 if (link_trb_count++ > ring->num_segs) { 188 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 189 break; 190 } 191 } 192 out: 193 trace_xhci_inc_deq(ring); 194 195 return; 196 } 197 198 /* 199 * See Cycle bit rules. SW is the consumer for the event ring only. 200 * 201 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 202 * chain bit is set), then set the chain bit in all the following link TRBs. 203 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 204 * have their chain bit cleared (so that each Link TRB is a separate TD). 205 * 206 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 207 * set, but other sections talk about dealing with the chain bit set. This was 208 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 209 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 210 * 211 * @more_trbs_coming: Will you enqueue more TRBs before calling 212 * prepare_transfer()? 213 */ 214 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 215 bool more_trbs_coming) 216 { 217 u32 chain; 218 union xhci_trb *next; 219 unsigned int link_trb_count = 0; 220 221 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 222 223 if (last_trb_on_seg(ring->enq_seg, ring->enqueue)) { 224 xhci_err(xhci, "Tried to move enqueue past ring segment\n"); 225 return; 226 } 227 228 next = ++(ring->enqueue); 229 230 /* Update the dequeue pointer further if that was a link TRB */ 231 while (trb_is_link(next)) { 232 233 /* 234 * If the caller doesn't plan on enqueueing more TDs before 235 * ringing the doorbell, then we don't want to give the link TRB 236 * to the hardware just yet. We'll give the link TRB back in 237 * prepare_ring() just before we enqueue the TD at the top of 238 * the ring. 239 */ 240 if (!chain && !more_trbs_coming) 241 break; 242 243 /* If we're not dealing with 0.95 hardware or isoc rings on 244 * AMD 0.96 host, carry over the chain bit of the previous TRB 245 * (which may mean the chain bit is cleared). 246 */ 247 if (!(ring->type == TYPE_ISOC && 248 (xhci->quirks & XHCI_AMD_0x96_HOST)) && 249 !xhci_link_trb_quirk(xhci)) { 250 next->link.control &= cpu_to_le32(~TRB_CHAIN); 251 next->link.control |= cpu_to_le32(chain); 252 } 253 /* Give this link TRB to the hardware */ 254 wmb(); 255 next->link.control ^= cpu_to_le32(TRB_CYCLE); 256 257 /* Toggle the cycle bit after the last ring segment. */ 258 if (link_trb_toggles_cycle(next)) 259 ring->cycle_state ^= 1; 260 261 ring->enq_seg = ring->enq_seg->next; 262 ring->enqueue = ring->enq_seg->trbs; 263 next = ring->enqueue; 264 265 if (link_trb_count++ > ring->num_segs) { 266 xhci_warn(xhci, "%s: Ring link TRB loop\n", __func__); 267 break; 268 } 269 } 270 271 trace_xhci_inc_enq(ring); 272 } 273 274 /* 275 * Return number of free normal TRBs from enqueue to dequeue pointer on ring. 276 * Not counting an assumed link TRB at end of each TRBS_PER_SEGMENT sized segment. 277 * Only for transfer and command rings where driver is the producer, not for 278 * event rings. 279 */ 280 static unsigned int xhci_num_trbs_free(struct xhci_hcd *xhci, struct xhci_ring *ring) 281 { 282 struct xhci_segment *enq_seg = ring->enq_seg; 283 union xhci_trb *enq = ring->enqueue; 284 union xhci_trb *last_on_seg; 285 unsigned int free = 0; 286 int i = 0; 287 288 /* Ring might be empty even if enq != deq if enq is left on a link trb */ 289 if (trb_is_link(enq)) { 290 enq_seg = enq_seg->next; 291 enq = enq_seg->trbs; 292 } 293 294 /* Empty ring, common case, don't walk the segments */ 295 if (enq == ring->dequeue) 296 return ring->num_segs * (TRBS_PER_SEGMENT - 1); 297 298 do { 299 if (ring->deq_seg == enq_seg && ring->dequeue >= enq) 300 return free + (ring->dequeue - enq); 301 last_on_seg = &enq_seg->trbs[TRBS_PER_SEGMENT - 1]; 302 free += last_on_seg - enq; 303 enq_seg = enq_seg->next; 304 enq = enq_seg->trbs; 305 } while (i++ <= ring->num_segs); 306 307 return free; 308 } 309 310 /* 311 * Check to see if there's room to enqueue num_trbs on the ring and make sure 312 * enqueue pointer will not advance into dequeue segment. See rules above. 313 * return number of new segments needed to ensure this. 314 */ 315 316 static unsigned int xhci_ring_expansion_needed(struct xhci_hcd *xhci, struct xhci_ring *ring, 317 unsigned int num_trbs) 318 { 319 struct xhci_segment *seg; 320 int trbs_past_seg; 321 int enq_used; 322 int new_segs; 323 324 enq_used = ring->enqueue - ring->enq_seg->trbs; 325 326 /* how many trbs will be queued past the enqueue segment? */ 327 trbs_past_seg = enq_used + num_trbs - (TRBS_PER_SEGMENT - 1); 328 329 if (trbs_past_seg <= 0) 330 return 0; 331 332 /* Empty ring special case, enqueue stuck on link trb while dequeue advanced */ 333 if (trb_is_link(ring->enqueue) && ring->enq_seg->next->trbs == ring->dequeue) 334 return 0; 335 336 new_segs = 1 + (trbs_past_seg / (TRBS_PER_SEGMENT - 1)); 337 seg = ring->enq_seg; 338 339 while (new_segs > 0) { 340 seg = seg->next; 341 if (seg == ring->deq_seg) { 342 xhci_dbg(xhci, "Ring expansion by %d segments needed\n", 343 new_segs); 344 xhci_dbg(xhci, "Adding %d trbs moves enq %d trbs into deq seg\n", 345 num_trbs, trbs_past_seg % TRBS_PER_SEGMENT); 346 return new_segs; 347 } 348 new_segs--; 349 } 350 351 return 0; 352 } 353 354 /* Ring the host controller doorbell after placing a command on the ring */ 355 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 356 { 357 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 358 return; 359 360 xhci_dbg(xhci, "// Ding dong!\n"); 361 362 trace_xhci_ring_host_doorbell(0, DB_VALUE_HOST); 363 364 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 365 /* Flush PCI posted writes */ 366 readl(&xhci->dba->doorbell[0]); 367 } 368 369 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay) 370 { 371 return mod_delayed_work(system_wq, &xhci->cmd_timer, delay); 372 } 373 374 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) 375 { 376 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, 377 cmd_list); 378 } 379 380 /* 381 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 382 * If there are other commands waiting then restart the ring and kick the timer. 383 * This must be called with command ring stopped and xhci->lock held. 384 */ 385 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 386 struct xhci_command *cur_cmd) 387 { 388 struct xhci_command *i_cmd; 389 390 /* Turn all aborted commands in list to no-ops, then restart */ 391 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { 392 393 if (i_cmd->status != COMP_COMMAND_ABORTED) 394 continue; 395 396 i_cmd->status = COMP_COMMAND_RING_STOPPED; 397 398 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 399 i_cmd->command_trb); 400 401 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); 402 403 /* 404 * caller waiting for completion is called when command 405 * completion event is received for these no-op commands 406 */ 407 } 408 409 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 410 411 /* ring command ring doorbell to restart the command ring */ 412 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 413 !(xhci->xhc_state & XHCI_STATE_DYING)) { 414 xhci->current_cmd = cur_cmd; 415 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 416 xhci_ring_cmd_db(xhci); 417 } 418 } 419 420 /* Must be called with xhci->lock held, releases and aquires lock back */ 421 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) 422 { 423 struct xhci_segment *new_seg = xhci->cmd_ring->deq_seg; 424 union xhci_trb *new_deq = xhci->cmd_ring->dequeue; 425 u64 crcr; 426 int ret; 427 428 xhci_dbg(xhci, "Abort command ring\n"); 429 430 reinit_completion(&xhci->cmd_ring_stop_completion); 431 432 /* 433 * The control bits like command stop, abort are located in lower 434 * dword of the command ring control register. 435 * Some controllers require all 64 bits to be written to abort the ring. 436 * Make sure the upper dword is valid, pointing to the next command, 437 * avoiding corrupting the command ring pointer in case the command ring 438 * is stopped by the time the upper dword is written. 439 */ 440 next_trb(xhci, NULL, &new_seg, &new_deq); 441 if (trb_is_link(new_deq)) 442 next_trb(xhci, NULL, &new_seg, &new_deq); 443 444 crcr = xhci_trb_virt_to_dma(new_seg, new_deq); 445 xhci_write_64(xhci, crcr | CMD_RING_ABORT, &xhci->op_regs->cmd_ring); 446 447 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the 448 * completion of the Command Abort operation. If CRR is not negated in 5 449 * seconds then driver handles it as if host died (-ENODEV). 450 * In the future we should distinguish between -ENODEV and -ETIMEDOUT 451 * and try to recover a -ETIMEDOUT with a host controller reset. 452 */ 453 ret = xhci_handshake_check_state(xhci, &xhci->op_regs->cmd_ring, 454 CMD_RING_RUNNING, 0, 5 * 1000 * 1000, 455 XHCI_STATE_REMOVING); 456 if (ret < 0) { 457 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret); 458 xhci_halt(xhci); 459 xhci_hc_died(xhci); 460 return ret; 461 } 462 /* 463 * Writing the CMD_RING_ABORT bit should cause a cmd completion event, 464 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared 465 * but the completion event in never sent. Wait 2 secs (arbitrary 466 * number) to handle those cases after negation of CMD_RING_RUNNING. 467 */ 468 spin_unlock_irqrestore(&xhci->lock, flags); 469 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, 470 msecs_to_jiffies(2000)); 471 spin_lock_irqsave(&xhci->lock, flags); 472 if (!ret) { 473 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); 474 xhci_cleanup_command_queue(xhci); 475 } else { 476 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); 477 } 478 return 0; 479 } 480 481 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 482 unsigned int slot_id, 483 unsigned int ep_index, 484 unsigned int stream_id) 485 { 486 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 487 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 488 unsigned int ep_state = ep->ep_state; 489 490 /* Don't ring the doorbell for this endpoint if there are pending 491 * cancellations because we don't want to interrupt processing. 492 * We don't want to restart any stream rings if there's a set dequeue 493 * pointer command pending because the device can choose to start any 494 * stream once the endpoint is on the HW schedule. 495 */ 496 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || 497 (ep_state & EP_HALTED) || (ep_state & EP_CLEARING_TT)) 498 return; 499 500 trace_xhci_ring_ep_doorbell(slot_id, DB_VALUE(ep_index, stream_id)); 501 502 writel(DB_VALUE(ep_index, stream_id), db_addr); 503 /* flush the write */ 504 readl(db_addr); 505 } 506 507 /* Ring the doorbell for any rings with pending URBs */ 508 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 509 unsigned int slot_id, 510 unsigned int ep_index) 511 { 512 unsigned int stream_id; 513 struct xhci_virt_ep *ep; 514 515 ep = &xhci->devs[slot_id]->eps[ep_index]; 516 517 /* A ring has pending URBs if its TD list is not empty */ 518 if (!(ep->ep_state & EP_HAS_STREAMS)) { 519 if (ep->ring && !(list_empty(&ep->ring->td_list))) 520 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 521 return; 522 } 523 524 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 525 stream_id++) { 526 struct xhci_stream_info *stream_info = ep->stream_info; 527 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 528 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 529 stream_id); 530 } 531 } 532 533 void xhci_ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 534 unsigned int slot_id, 535 unsigned int ep_index) 536 { 537 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 538 } 539 540 static struct xhci_virt_ep *xhci_get_virt_ep(struct xhci_hcd *xhci, 541 unsigned int slot_id, 542 unsigned int ep_index) 543 { 544 if (slot_id == 0 || slot_id >= MAX_HC_SLOTS) { 545 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 546 return NULL; 547 } 548 if (ep_index >= EP_CTX_PER_DEV) { 549 xhci_warn(xhci, "Invalid endpoint index %u\n", ep_index); 550 return NULL; 551 } 552 if (!xhci->devs[slot_id]) { 553 xhci_warn(xhci, "No xhci virt device for slot_id %u\n", slot_id); 554 return NULL; 555 } 556 557 return &xhci->devs[slot_id]->eps[ep_index]; 558 } 559 560 static struct xhci_ring *xhci_virt_ep_to_ring(struct xhci_hcd *xhci, 561 struct xhci_virt_ep *ep, 562 unsigned int stream_id) 563 { 564 /* common case, no streams */ 565 if (!(ep->ep_state & EP_HAS_STREAMS)) 566 return ep->ring; 567 568 if (!ep->stream_info) 569 return NULL; 570 571 if (stream_id == 0 || stream_id >= ep->stream_info->num_streams) { 572 xhci_warn(xhci, "Invalid stream_id %u request for slot_id %u ep_index %u\n", 573 stream_id, ep->vdev->slot_id, ep->ep_index); 574 return NULL; 575 } 576 577 return ep->stream_info->stream_rings[stream_id]; 578 } 579 580 /* Get the right ring for the given slot_id, ep_index and stream_id. 581 * If the endpoint supports streams, boundary check the URB's stream ID. 582 * If the endpoint doesn't support streams, return the singular endpoint ring. 583 */ 584 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 585 unsigned int slot_id, unsigned int ep_index, 586 unsigned int stream_id) 587 { 588 struct xhci_virt_ep *ep; 589 590 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 591 if (!ep) 592 return NULL; 593 594 return xhci_virt_ep_to_ring(xhci, ep, stream_id); 595 } 596 597 598 /* 599 * Get the hw dequeue pointer xHC stopped on, either directly from the 600 * endpoint context, or if streams are in use from the stream context. 601 * The returned hw_dequeue contains the lowest four bits with cycle state 602 * and possbile stream context type. 603 */ 604 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev, 605 unsigned int ep_index, unsigned int stream_id) 606 { 607 struct xhci_ep_ctx *ep_ctx; 608 struct xhci_stream_ctx *st_ctx; 609 struct xhci_virt_ep *ep; 610 611 ep = &vdev->eps[ep_index]; 612 613 if (ep->ep_state & EP_HAS_STREAMS) { 614 st_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 615 return le64_to_cpu(st_ctx->stream_ring); 616 } 617 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 618 return le64_to_cpu(ep_ctx->deq); 619 } 620 621 static int xhci_move_dequeue_past_td(struct xhci_hcd *xhci, 622 unsigned int slot_id, unsigned int ep_index, 623 unsigned int stream_id, struct xhci_td *td) 624 { 625 struct xhci_virt_device *dev = xhci->devs[slot_id]; 626 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 627 struct xhci_ring *ep_ring; 628 struct xhci_command *cmd; 629 struct xhci_segment *new_seg; 630 union xhci_trb *new_deq; 631 int new_cycle; 632 dma_addr_t addr; 633 u64 hw_dequeue; 634 bool cycle_found = false; 635 bool td_last_trb_found = false; 636 u32 trb_sct = 0; 637 int ret; 638 639 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 640 ep_index, stream_id); 641 if (!ep_ring) { 642 xhci_warn(xhci, "WARN can't find new dequeue, invalid stream ID %u\n", 643 stream_id); 644 return -ENODEV; 645 } 646 /* 647 * A cancelled TD can complete with a stall if HW cached the trb. 648 * In this case driver can't find td, but if the ring is empty we 649 * can move the dequeue pointer to the current enqueue position. 650 * We shouldn't hit this anymore as cached cancelled TRBs are given back 651 * after clearing the cache, but be on the safe side and keep it anyway 652 */ 653 if (!td) { 654 if (list_empty(&ep_ring->td_list)) { 655 new_seg = ep_ring->enq_seg; 656 new_deq = ep_ring->enqueue; 657 new_cycle = ep_ring->cycle_state; 658 xhci_dbg(xhci, "ep ring empty, Set new dequeue = enqueue"); 659 goto deq_found; 660 } else { 661 xhci_warn(xhci, "Can't find new dequeue state, missing td\n"); 662 return -EINVAL; 663 } 664 } 665 666 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id); 667 new_seg = ep_ring->deq_seg; 668 new_deq = ep_ring->dequeue; 669 new_cycle = hw_dequeue & 0x1; 670 671 /* 672 * We want to find the pointer, segment and cycle state of the new trb 673 * (the one after current TD's last_trb). We know the cycle state at 674 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are 675 * found. 676 */ 677 do { 678 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) 679 == (dma_addr_t)(hw_dequeue & ~0xf)) { 680 cycle_found = true; 681 if (td_last_trb_found) 682 break; 683 } 684 if (new_deq == td->last_trb) 685 td_last_trb_found = true; 686 687 if (cycle_found && trb_is_link(new_deq) && 688 link_trb_toggles_cycle(new_deq)) 689 new_cycle ^= 0x1; 690 691 next_trb(xhci, ep_ring, &new_seg, &new_deq); 692 693 /* Search wrapped around, bail out */ 694 if (new_deq == ep->ring->dequeue) { 695 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 696 return -EINVAL; 697 } 698 699 } while (!cycle_found || !td_last_trb_found); 700 701 deq_found: 702 703 /* Don't update the ring cycle state for the producer (us). */ 704 addr = xhci_trb_virt_to_dma(new_seg, new_deq); 705 if (addr == 0) { 706 xhci_warn(xhci, "Can't find dma of new dequeue ptr\n"); 707 xhci_warn(xhci, "deq seg = %p, deq ptr = %p\n", new_seg, new_deq); 708 return -EINVAL; 709 } 710 711 if ((ep->ep_state & SET_DEQ_PENDING)) { 712 xhci_warn(xhci, "Set TR Deq already pending, don't submit for 0x%pad\n", 713 &addr); 714 return -EBUSY; 715 } 716 717 /* This function gets called from contexts where it cannot sleep */ 718 cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC); 719 if (!cmd) { 720 xhci_warn(xhci, "Can't alloc Set TR Deq cmd 0x%pad\n", &addr); 721 return -ENOMEM; 722 } 723 724 if (stream_id) 725 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 726 ret = queue_command(xhci, cmd, 727 lower_32_bits(addr) | trb_sct | new_cycle, 728 upper_32_bits(addr), 729 STREAM_ID_FOR_TRB(stream_id), SLOT_ID_FOR_TRB(slot_id) | 730 EP_ID_FOR_TRB(ep_index) | TRB_TYPE(TRB_SET_DEQ), false); 731 if (ret < 0) { 732 xhci_free_command(xhci, cmd); 733 return ret; 734 } 735 ep->queued_deq_seg = new_seg; 736 ep->queued_deq_ptr = new_deq; 737 738 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 739 "Set TR Deq ptr 0x%llx, cycle %u\n", addr, new_cycle); 740 741 /* Stop the TD queueing code from ringing the doorbell until 742 * this command completes. The HC won't set the dequeue pointer 743 * if the ring is running, and ringing the doorbell starts the 744 * ring running. 745 */ 746 ep->ep_state |= SET_DEQ_PENDING; 747 xhci_ring_cmd_db(xhci); 748 return 0; 749 } 750 751 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 752 * (The last TRB actually points to the ring enqueue pointer, which is not part 753 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 754 */ 755 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 756 struct xhci_td *td, bool flip_cycle) 757 { 758 struct xhci_segment *seg = td->start_seg; 759 union xhci_trb *trb = td->first_trb; 760 761 while (1) { 762 trb_to_noop(trb, TRB_TR_NOOP); 763 764 /* flip cycle if asked to */ 765 if (flip_cycle && trb != td->first_trb && trb != td->last_trb) 766 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); 767 768 if (trb == td->last_trb) 769 break; 770 771 next_trb(xhci, ep_ring, &seg, &trb); 772 } 773 } 774 775 /* 776 * Must be called with xhci->lock held in interrupt context, 777 * releases and re-acquires xhci->lock 778 */ 779 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 780 struct xhci_td *cur_td, int status) 781 { 782 struct urb *urb = cur_td->urb; 783 struct urb_priv *urb_priv = urb->hcpriv; 784 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 785 786 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 787 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 788 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 789 if (xhci->quirks & XHCI_AMD_PLL_FIX) 790 usb_amd_quirk_pll_enable(); 791 } 792 } 793 xhci_urb_free_priv(urb_priv); 794 usb_hcd_unlink_urb_from_ep(hcd, urb); 795 trace_xhci_urb_giveback(urb); 796 usb_hcd_giveback_urb(hcd, urb, status); 797 } 798 799 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, 800 struct xhci_ring *ring, struct xhci_td *td) 801 { 802 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 803 struct xhci_segment *seg = td->bounce_seg; 804 struct urb *urb = td->urb; 805 size_t len; 806 807 if (!ring || !seg || !urb) 808 return; 809 810 if (usb_urb_dir_out(urb)) { 811 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 812 DMA_TO_DEVICE); 813 return; 814 } 815 816 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 817 DMA_FROM_DEVICE); 818 /* for in tranfers we need to copy the data from bounce to sg */ 819 if (urb->num_sgs) { 820 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, seg->bounce_buf, 821 seg->bounce_len, seg->bounce_offs); 822 if (len != seg->bounce_len) 823 xhci_warn(xhci, "WARN Wrong bounce buffer read length: %zu != %d\n", 824 len, seg->bounce_len); 825 } else { 826 memcpy(urb->transfer_buffer + seg->bounce_offs, seg->bounce_buf, 827 seg->bounce_len); 828 } 829 seg->bounce_len = 0; 830 seg->bounce_offs = 0; 831 } 832 833 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, 834 struct xhci_ring *ep_ring, int status) 835 { 836 struct urb *urb = NULL; 837 838 /* Clean up the endpoint's TD list */ 839 urb = td->urb; 840 841 /* if a bounce buffer was used to align this td then unmap it */ 842 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); 843 844 /* Do one last check of the actual transfer length. 845 * If the host controller said we transferred more data than the buffer 846 * length, urb->actual_length will be a very big number (since it's 847 * unsigned). Play it safe and say we didn't transfer anything. 848 */ 849 if (urb->actual_length > urb->transfer_buffer_length) { 850 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", 851 urb->transfer_buffer_length, urb->actual_length); 852 urb->actual_length = 0; 853 status = 0; 854 } 855 /* TD might be removed from td_list if we are giving back a cancelled URB */ 856 if (!list_empty(&td->td_list)) 857 list_del_init(&td->td_list); 858 /* Giving back a cancelled URB, or if a slated TD completed anyway */ 859 if (!list_empty(&td->cancelled_td_list)) 860 list_del_init(&td->cancelled_td_list); 861 862 inc_td_cnt(urb); 863 /* Giveback the urb when all the tds are completed */ 864 if (last_td_in_urb(td)) { 865 if ((urb->actual_length != urb->transfer_buffer_length && 866 (urb->transfer_flags & URB_SHORT_NOT_OK)) || 867 (status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) 868 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", 869 urb, urb->actual_length, 870 urb->transfer_buffer_length, status); 871 872 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ 873 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 874 status = 0; 875 xhci_giveback_urb_in_irq(xhci, td, status); 876 } 877 878 return 0; 879 } 880 881 882 /* Complete the cancelled URBs we unlinked from td_list. */ 883 static void xhci_giveback_invalidated_tds(struct xhci_virt_ep *ep) 884 { 885 struct xhci_ring *ring; 886 struct xhci_td *td, *tmp_td; 887 888 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 889 cancelled_td_list) { 890 891 ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 892 893 if (td->cancel_status == TD_CLEARED) { 894 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 895 __func__, td->urb); 896 xhci_td_cleanup(ep->xhci, td, ring, td->status); 897 } else { 898 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 899 __func__, td->urb, td->cancel_status); 900 } 901 if (ep->xhci->xhc_state & XHCI_STATE_DYING) 902 return; 903 } 904 } 905 906 static int xhci_reset_halted_ep(struct xhci_hcd *xhci, unsigned int slot_id, 907 unsigned int ep_index, enum xhci_ep_reset_type reset_type) 908 { 909 struct xhci_command *command; 910 int ret = 0; 911 912 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 913 if (!command) { 914 ret = -ENOMEM; 915 goto done; 916 } 917 918 xhci_dbg(xhci, "%s-reset ep %u, slot %u\n", 919 (reset_type == EP_HARD_RESET) ? "Hard" : "Soft", 920 ep_index, slot_id); 921 922 ret = xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type); 923 done: 924 if (ret) 925 xhci_err(xhci, "ERROR queuing reset endpoint for slot %d ep_index %d, %d\n", 926 slot_id, ep_index, ret); 927 return ret; 928 } 929 930 static int xhci_handle_halted_endpoint(struct xhci_hcd *xhci, 931 struct xhci_virt_ep *ep, 932 struct xhci_td *td, 933 enum xhci_ep_reset_type reset_type) 934 { 935 unsigned int slot_id = ep->vdev->slot_id; 936 int err; 937 938 /* 939 * Avoid resetting endpoint if link is inactive. Can cause host hang. 940 * Device will be reset soon to recover the link so don't do anything 941 */ 942 if (ep->vdev->flags & VDEV_PORT_ERROR) 943 return -ENODEV; 944 945 /* add td to cancelled list and let reset ep handler take care of it */ 946 if (reset_type == EP_HARD_RESET) { 947 ep->ep_state |= EP_HARD_CLEAR_TOGGLE; 948 if (td && list_empty(&td->cancelled_td_list)) { 949 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 950 td->cancel_status = TD_HALTED; 951 } 952 } 953 954 if (ep->ep_state & EP_HALTED) { 955 xhci_dbg(xhci, "Reset ep command for ep_index %d already pending\n", 956 ep->ep_index); 957 return 0; 958 } 959 960 err = xhci_reset_halted_ep(xhci, slot_id, ep->ep_index, reset_type); 961 if (err) 962 return err; 963 964 ep->ep_state |= EP_HALTED; 965 966 xhci_ring_cmd_db(xhci); 967 968 return 0; 969 } 970 971 /* 972 * Fix up the ep ring first, so HW stops executing cancelled TDs. 973 * We have the xHCI lock, so nothing can modify this list until we drop it. 974 * We're also in the event handler, so we can't get re-interrupted if another 975 * Stop Endpoint command completes. 976 * 977 * only call this when ring is not in a running state 978 */ 979 980 static int xhci_invalidate_cancelled_tds(struct xhci_virt_ep *ep) 981 { 982 struct xhci_hcd *xhci; 983 struct xhci_td *td = NULL; 984 struct xhci_td *tmp_td = NULL; 985 struct xhci_td *cached_td = NULL; 986 struct xhci_ring *ring; 987 u64 hw_deq; 988 unsigned int slot_id = ep->vdev->slot_id; 989 int err; 990 991 xhci = ep->xhci; 992 993 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 994 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 995 "Removing canceled TD starting at 0x%llx (dma) in stream %u URB %p", 996 (unsigned long long)xhci_trb_virt_to_dma( 997 td->start_seg, td->first_trb), 998 td->urb->stream_id, td->urb); 999 list_del_init(&td->td_list); 1000 ring = xhci_urb_to_transfer_ring(xhci, td->urb); 1001 if (!ring) { 1002 xhci_warn(xhci, "WARN Cancelled URB %p has invalid stream ID %u.\n", 1003 td->urb, td->urb->stream_id); 1004 continue; 1005 } 1006 /* 1007 * If a ring stopped on the TD we need to cancel then we have to 1008 * move the xHC endpoint ring dequeue pointer past this TD. 1009 * Rings halted due to STALL may show hw_deq is past the stalled 1010 * TD, but still require a set TR Deq command to flush xHC cache. 1011 */ 1012 hw_deq = xhci_get_hw_deq(xhci, ep->vdev, ep->ep_index, 1013 td->urb->stream_id); 1014 hw_deq &= ~0xf; 1015 1016 if (td->cancel_status == TD_HALTED || 1017 trb_in_td(xhci, td->start_seg, td->first_trb, td->last_trb, hw_deq, false)) { 1018 switch (td->cancel_status) { 1019 case TD_CLEARED: /* TD is already no-op */ 1020 case TD_CLEARING_CACHE: /* set TR deq command already queued */ 1021 break; 1022 case TD_DIRTY: /* TD is cached, clear it */ 1023 case TD_HALTED: 1024 td->cancel_status = TD_CLEARING_CACHE; 1025 if (cached_td) 1026 /* FIXME stream case, several stopped rings */ 1027 xhci_dbg(xhci, 1028 "Move dq past stream %u URB %p instead of stream %u URB %p\n", 1029 td->urb->stream_id, td->urb, 1030 cached_td->urb->stream_id, cached_td->urb); 1031 cached_td = td; 1032 break; 1033 } 1034 } else { 1035 td_to_noop(xhci, ring, td, false); 1036 td->cancel_status = TD_CLEARED; 1037 } 1038 } 1039 1040 /* If there's no need to move the dequeue pointer then we're done */ 1041 if (!cached_td) 1042 return 0; 1043 1044 err = xhci_move_dequeue_past_td(xhci, slot_id, ep->ep_index, 1045 cached_td->urb->stream_id, 1046 cached_td); 1047 if (err) { 1048 /* Failed to move past cached td, just set cached TDs to no-op */ 1049 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 1050 if (td->cancel_status != TD_CLEARING_CACHE) 1051 continue; 1052 xhci_dbg(xhci, "Failed to clear cancelled cached URB %p, mark clear anyway\n", 1053 td->urb); 1054 td_to_noop(xhci, ring, td, false); 1055 td->cancel_status = TD_CLEARED; 1056 } 1057 } 1058 return 0; 1059 } 1060 1061 /* 1062 * Returns the TD the endpoint ring halted on. 1063 * Only call for non-running rings without streams. 1064 */ 1065 static struct xhci_td *find_halted_td(struct xhci_virt_ep *ep) 1066 { 1067 struct xhci_td *td; 1068 u64 hw_deq; 1069 1070 if (!list_empty(&ep->ring->td_list)) { /* Not streams compatible */ 1071 hw_deq = xhci_get_hw_deq(ep->xhci, ep->vdev, ep->ep_index, 0); 1072 hw_deq &= ~0xf; 1073 td = list_first_entry(&ep->ring->td_list, struct xhci_td, td_list); 1074 if (trb_in_td(ep->xhci, td->start_seg, td->first_trb, 1075 td->last_trb, hw_deq, false)) 1076 return td; 1077 } 1078 return NULL; 1079 } 1080 1081 /* 1082 * When we get a command completion for a Stop Endpoint Command, we need to 1083 * unlink any cancelled TDs from the ring. There are two ways to do that: 1084 * 1085 * 1. If the HW was in the middle of processing the TD that needs to be 1086 * cancelled, then we must move the ring's dequeue pointer past the last TRB 1087 * in the TD with a Set Dequeue Pointer Command. 1088 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 1089 * bit cleared) so that the HW will skip over them. 1090 */ 1091 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 1092 union xhci_trb *trb, u32 comp_code) 1093 { 1094 unsigned int ep_index; 1095 struct xhci_virt_ep *ep; 1096 struct xhci_ep_ctx *ep_ctx; 1097 struct xhci_td *td = NULL; 1098 enum xhci_ep_reset_type reset_type; 1099 struct xhci_command *command; 1100 int err; 1101 1102 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 1103 if (!xhci->devs[slot_id]) 1104 xhci_warn(xhci, "Stop endpoint command completion for disabled slot %u\n", 1105 slot_id); 1106 return; 1107 } 1108 1109 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1110 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1111 if (!ep) 1112 return; 1113 1114 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1115 1116 trace_xhci_handle_cmd_stop_ep(ep_ctx); 1117 1118 if (comp_code == COMP_CONTEXT_STATE_ERROR) { 1119 /* 1120 * If stop endpoint command raced with a halting endpoint we need to 1121 * reset the host side endpoint first. 1122 * If the TD we halted on isn't cancelled the TD should be given back 1123 * with a proper error code, and the ring dequeue moved past the TD. 1124 * If streams case we can't find hw_deq, or the TD we halted on so do a 1125 * soft reset. 1126 * 1127 * Proper error code is unknown here, it would be -EPIPE if device side 1128 * of enadpoit halted (aka STALL), and -EPROTO if not (transaction error) 1129 * We use -EPROTO, if device is stalled it should return a stall error on 1130 * next transfer, which then will return -EPIPE, and device side stall is 1131 * noted and cleared by class driver. 1132 */ 1133 switch (GET_EP_CTX_STATE(ep_ctx)) { 1134 case EP_STATE_HALTED: 1135 xhci_dbg(xhci, "Stop ep completion raced with stall, reset ep\n"); 1136 if (ep->ep_state & EP_HAS_STREAMS) { 1137 reset_type = EP_SOFT_RESET; 1138 } else { 1139 reset_type = EP_HARD_RESET; 1140 td = find_halted_td(ep); 1141 if (td) 1142 td->status = -EPROTO; 1143 } 1144 /* reset ep, reset handler cleans up cancelled tds */ 1145 err = xhci_handle_halted_endpoint(xhci, ep, td, reset_type); 1146 if (err) 1147 break; 1148 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1149 return; 1150 case EP_STATE_RUNNING: 1151 /* Race, HW handled stop ep cmd before ep was running */ 1152 xhci_dbg(xhci, "Stop ep completion ctx error, ep is running\n"); 1153 1154 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1155 if (!command) { 1156 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1157 return; 1158 } 1159 xhci_queue_stop_endpoint(xhci, command, slot_id, ep_index, 0); 1160 xhci_ring_cmd_db(xhci); 1161 1162 return; 1163 default: 1164 break; 1165 } 1166 } 1167 1168 /* will queue a set TR deq if stopped on a cancelled, uncleared TD */ 1169 xhci_invalidate_cancelled_tds(ep); 1170 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1171 1172 /* Otherwise ring the doorbell(s) to restart queued transfers */ 1173 xhci_giveback_invalidated_tds(ep); 1174 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1175 } 1176 1177 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 1178 { 1179 struct xhci_td *cur_td; 1180 struct xhci_td *tmp; 1181 1182 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { 1183 list_del_init(&cur_td->td_list); 1184 1185 if (!list_empty(&cur_td->cancelled_td_list)) 1186 list_del_init(&cur_td->cancelled_td_list); 1187 1188 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); 1189 1190 inc_td_cnt(cur_td->urb); 1191 if (last_td_in_urb(cur_td)) 1192 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1193 } 1194 } 1195 1196 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 1197 int slot_id, int ep_index) 1198 { 1199 struct xhci_td *cur_td; 1200 struct xhci_td *tmp; 1201 struct xhci_virt_ep *ep; 1202 struct xhci_ring *ring; 1203 1204 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1205 if (!ep) 1206 return; 1207 1208 if ((ep->ep_state & EP_HAS_STREAMS) || 1209 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 1210 int stream_id; 1211 1212 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 1213 stream_id++) { 1214 ring = ep->stream_info->stream_rings[stream_id]; 1215 if (!ring) 1216 continue; 1217 1218 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1219 "Killing URBs for slot ID %u, ep index %u, stream %u", 1220 slot_id, ep_index, stream_id); 1221 xhci_kill_ring_urbs(xhci, ring); 1222 } 1223 } else { 1224 ring = ep->ring; 1225 if (!ring) 1226 return; 1227 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1228 "Killing URBs for slot ID %u, ep index %u", 1229 slot_id, ep_index); 1230 xhci_kill_ring_urbs(xhci, ring); 1231 } 1232 1233 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, 1234 cancelled_td_list) { 1235 list_del_init(&cur_td->cancelled_td_list); 1236 inc_td_cnt(cur_td->urb); 1237 1238 if (last_td_in_urb(cur_td)) 1239 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1240 } 1241 } 1242 1243 /* 1244 * host controller died, register read returns 0xffffffff 1245 * Complete pending commands, mark them ABORTED. 1246 * URBs need to be given back as usb core might be waiting with device locks 1247 * held for the URBs to finish during device disconnect, blocking host remove. 1248 * 1249 * Call with xhci->lock held. 1250 * lock is relased and re-acquired while giving back urb. 1251 */ 1252 void xhci_hc_died(struct xhci_hcd *xhci) 1253 { 1254 int i, j; 1255 1256 if (xhci->xhc_state & XHCI_STATE_DYING) 1257 return; 1258 1259 xhci_err(xhci, "xHCI host controller not responding, assume dead\n"); 1260 xhci->xhc_state |= XHCI_STATE_DYING; 1261 1262 xhci_cleanup_command_queue(xhci); 1263 1264 /* return any pending urbs, remove may be waiting for them */ 1265 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 1266 if (!xhci->devs[i]) 1267 continue; 1268 for (j = 0; j < 31; j++) 1269 xhci_kill_endpoint_urbs(xhci, i, j); 1270 } 1271 1272 /* inform usb core hc died if PCI remove isn't already handling it */ 1273 if (!(xhci->xhc_state & XHCI_STATE_REMOVING)) 1274 usb_hc_died(xhci_to_hcd(xhci)); 1275 } 1276 1277 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 1278 struct xhci_virt_device *dev, 1279 struct xhci_ring *ep_ring, 1280 unsigned int ep_index) 1281 { 1282 union xhci_trb *dequeue_temp; 1283 1284 dequeue_temp = ep_ring->dequeue; 1285 1286 /* If we get two back-to-back stalls, and the first stalled transfer 1287 * ends just before a link TRB, the dequeue pointer will be left on 1288 * the link TRB by the code in the while loop. So we have to update 1289 * the dequeue pointer one segment further, or we'll jump off 1290 * the segment into la-la-land. 1291 */ 1292 if (trb_is_link(ep_ring->dequeue)) { 1293 ep_ring->deq_seg = ep_ring->deq_seg->next; 1294 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1295 } 1296 1297 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 1298 /* We have more usable TRBs */ 1299 ep_ring->dequeue++; 1300 if (trb_is_link(ep_ring->dequeue)) { 1301 if (ep_ring->dequeue == 1302 dev->eps[ep_index].queued_deq_ptr) 1303 break; 1304 ep_ring->deq_seg = ep_ring->deq_seg->next; 1305 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1306 } 1307 if (ep_ring->dequeue == dequeue_temp) { 1308 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 1309 break; 1310 } 1311 } 1312 } 1313 1314 /* 1315 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1316 * we need to clear the set deq pending flag in the endpoint ring state, so that 1317 * the TD queueing code can ring the doorbell again. We also need to ring the 1318 * endpoint doorbell to restart the ring, but only if there aren't more 1319 * cancellations pending. 1320 */ 1321 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1322 union xhci_trb *trb, u32 cmd_comp_code) 1323 { 1324 unsigned int ep_index; 1325 unsigned int stream_id; 1326 struct xhci_ring *ep_ring; 1327 struct xhci_virt_ep *ep; 1328 struct xhci_ep_ctx *ep_ctx; 1329 struct xhci_slot_ctx *slot_ctx; 1330 struct xhci_td *td, *tmp_td; 1331 1332 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1333 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1334 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1335 if (!ep) 1336 return; 1337 1338 ep_ring = xhci_virt_ep_to_ring(xhci, ep, stream_id); 1339 if (!ep_ring) { 1340 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 1341 stream_id); 1342 /* XXX: Harmless??? */ 1343 goto cleanup; 1344 } 1345 1346 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1347 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 1348 trace_xhci_handle_cmd_set_deq(slot_ctx); 1349 trace_xhci_handle_cmd_set_deq_ep(ep_ctx); 1350 1351 if (cmd_comp_code != COMP_SUCCESS) { 1352 unsigned int ep_state; 1353 unsigned int slot_state; 1354 1355 switch (cmd_comp_code) { 1356 case COMP_TRB_ERROR: 1357 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 1358 break; 1359 case COMP_CONTEXT_STATE_ERROR: 1360 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1361 ep_state = GET_EP_CTX_STATE(ep_ctx); 1362 slot_state = le32_to_cpu(slot_ctx->dev_state); 1363 slot_state = GET_SLOT_STATE(slot_state); 1364 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1365 "Slot state = %u, EP state = %u", 1366 slot_state, ep_state); 1367 break; 1368 case COMP_SLOT_NOT_ENABLED_ERROR: 1369 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1370 slot_id); 1371 break; 1372 default: 1373 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1374 cmd_comp_code); 1375 break; 1376 } 1377 /* OK what do we do now? The endpoint state is hosed, and we 1378 * should never get to this point if the synchronization between 1379 * queueing, and endpoint state are correct. This might happen 1380 * if the device gets disconnected after we've finished 1381 * cancelling URBs, which might not be an error... 1382 */ 1383 } else { 1384 u64 deq; 1385 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1386 if (ep->ep_state & EP_HAS_STREAMS) { 1387 struct xhci_stream_ctx *ctx = 1388 &ep->stream_info->stream_ctx_array[stream_id]; 1389 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; 1390 } else { 1391 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1392 } 1393 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1394 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1395 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1396 ep->queued_deq_ptr) == deq) { 1397 /* Update the ring's dequeue segment and dequeue pointer 1398 * to reflect the new position. 1399 */ 1400 update_ring_for_set_deq_completion(xhci, ep->vdev, 1401 ep_ring, ep_index); 1402 } else { 1403 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1404 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1405 ep->queued_deq_seg, ep->queued_deq_ptr); 1406 } 1407 } 1408 /* HW cached TDs cleared from cache, give them back */ 1409 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 1410 cancelled_td_list) { 1411 ep_ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 1412 if (td->cancel_status == TD_CLEARING_CACHE) { 1413 td->cancel_status = TD_CLEARED; 1414 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 1415 __func__, td->urb); 1416 xhci_td_cleanup(ep->xhci, td, ep_ring, td->status); 1417 } else { 1418 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 1419 __func__, td->urb, td->cancel_status); 1420 } 1421 } 1422 cleanup: 1423 ep->ep_state &= ~SET_DEQ_PENDING; 1424 ep->queued_deq_seg = NULL; 1425 ep->queued_deq_ptr = NULL; 1426 /* Restart any rings with pending URBs */ 1427 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1428 } 1429 1430 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1431 union xhci_trb *trb, u32 cmd_comp_code) 1432 { 1433 struct xhci_virt_ep *ep; 1434 struct xhci_ep_ctx *ep_ctx; 1435 unsigned int ep_index; 1436 1437 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1438 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1439 if (!ep) 1440 return; 1441 1442 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1443 trace_xhci_handle_cmd_reset_ep(ep_ctx); 1444 1445 /* This command will only fail if the endpoint wasn't halted, 1446 * but we don't care. 1447 */ 1448 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1449 "Ignoring reset ep completion code of %u", cmd_comp_code); 1450 1451 /* Cleanup cancelled TDs as ep is stopped. May queue a Set TR Deq cmd */ 1452 xhci_invalidate_cancelled_tds(ep); 1453 1454 /* Clear our internal halted state */ 1455 ep->ep_state &= ~EP_HALTED; 1456 1457 xhci_giveback_invalidated_tds(ep); 1458 1459 /* if this was a soft reset, then restart */ 1460 if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP) 1461 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1462 } 1463 1464 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, 1465 struct xhci_command *command, u32 cmd_comp_code) 1466 { 1467 if (cmd_comp_code == COMP_SUCCESS) 1468 command->slot_id = slot_id; 1469 else 1470 command->slot_id = 0; 1471 } 1472 1473 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1474 { 1475 struct xhci_virt_device *virt_dev; 1476 struct xhci_slot_ctx *slot_ctx; 1477 1478 virt_dev = xhci->devs[slot_id]; 1479 if (!virt_dev) 1480 return; 1481 1482 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 1483 trace_xhci_handle_cmd_disable_slot(slot_ctx); 1484 1485 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1486 /* Delete default control endpoint resources */ 1487 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1488 } 1489 1490 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, 1491 u32 cmd_comp_code) 1492 { 1493 struct xhci_virt_device *virt_dev; 1494 struct xhci_input_control_ctx *ctrl_ctx; 1495 struct xhci_ep_ctx *ep_ctx; 1496 unsigned int ep_index; 1497 u32 add_flags; 1498 1499 /* 1500 * Configure endpoint commands can come from the USB core configuration 1501 * or alt setting changes, or when streams were being configured. 1502 */ 1503 1504 virt_dev = xhci->devs[slot_id]; 1505 if (!virt_dev) 1506 return; 1507 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1508 if (!ctrl_ctx) { 1509 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1510 return; 1511 } 1512 1513 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1514 1515 /* Input ctx add_flags are the endpoint index plus one */ 1516 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1517 1518 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index); 1519 trace_xhci_handle_cmd_config_ep(ep_ctx); 1520 1521 return; 1522 } 1523 1524 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id) 1525 { 1526 struct xhci_virt_device *vdev; 1527 struct xhci_slot_ctx *slot_ctx; 1528 1529 vdev = xhci->devs[slot_id]; 1530 if (!vdev) 1531 return; 1532 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1533 trace_xhci_handle_cmd_addr_dev(slot_ctx); 1534 } 1535 1536 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id) 1537 { 1538 struct xhci_virt_device *vdev; 1539 struct xhci_slot_ctx *slot_ctx; 1540 1541 vdev = xhci->devs[slot_id]; 1542 if (!vdev) { 1543 xhci_warn(xhci, "Reset device command completion for disabled slot %u\n", 1544 slot_id); 1545 return; 1546 } 1547 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1548 trace_xhci_handle_cmd_reset_dev(slot_ctx); 1549 1550 xhci_dbg(xhci, "Completed reset device command.\n"); 1551 } 1552 1553 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1554 struct xhci_event_cmd *event) 1555 { 1556 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1557 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); 1558 return; 1559 } 1560 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1561 "NEC firmware version %2x.%02x", 1562 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1563 NEC_FW_MINOR(le32_to_cpu(event->status))); 1564 } 1565 1566 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) 1567 { 1568 list_del(&cmd->cmd_list); 1569 1570 if (cmd->completion) { 1571 cmd->status = status; 1572 complete(cmd->completion); 1573 } else { 1574 kfree(cmd); 1575 } 1576 } 1577 1578 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1579 { 1580 struct xhci_command *cur_cmd, *tmp_cmd; 1581 xhci->current_cmd = NULL; 1582 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1583 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED); 1584 } 1585 1586 void xhci_handle_command_timeout(struct work_struct *work) 1587 { 1588 struct xhci_hcd *xhci; 1589 unsigned long flags; 1590 char str[XHCI_MSG_MAX]; 1591 u64 hw_ring_state; 1592 u32 cmd_field3; 1593 u32 usbsts; 1594 1595 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); 1596 1597 spin_lock_irqsave(&xhci->lock, flags); 1598 1599 /* 1600 * If timeout work is pending, or current_cmd is NULL, it means we 1601 * raced with command completion. Command is handled so just return. 1602 */ 1603 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { 1604 spin_unlock_irqrestore(&xhci->lock, flags); 1605 return; 1606 } 1607 1608 cmd_field3 = le32_to_cpu(xhci->current_cmd->command_trb->generic.field[3]); 1609 usbsts = readl(&xhci->op_regs->status); 1610 xhci_dbg(xhci, "Command timeout, USBSTS:%s\n", xhci_decode_usbsts(str, usbsts)); 1611 1612 /* Bail out and tear down xhci if a stop endpoint command failed */ 1613 if (TRB_FIELD_TO_TYPE(cmd_field3) == TRB_STOP_RING) { 1614 struct xhci_virt_ep *ep; 1615 1616 xhci_warn(xhci, "xHCI host not responding to stop endpoint command\n"); 1617 1618 ep = xhci_get_virt_ep(xhci, TRB_TO_SLOT_ID(cmd_field3), 1619 TRB_TO_EP_INDEX(cmd_field3)); 1620 if (ep) 1621 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1622 1623 xhci_halt(xhci); 1624 xhci_hc_died(xhci); 1625 goto time_out_completed; 1626 } 1627 1628 /* mark this command to be cancelled */ 1629 xhci->current_cmd->status = COMP_COMMAND_ABORTED; 1630 1631 /* Make sure command ring is running before aborting it */ 1632 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1633 if (hw_ring_state == ~(u64)0) { 1634 xhci_hc_died(xhci); 1635 goto time_out_completed; 1636 } 1637 1638 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1639 (hw_ring_state & CMD_RING_RUNNING)) { 1640 /* Prevent new doorbell, and start command abort */ 1641 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 1642 xhci_dbg(xhci, "Command timeout\n"); 1643 xhci_abort_cmd_ring(xhci, flags); 1644 goto time_out_completed; 1645 } 1646 1647 /* host removed. Bail out */ 1648 if (xhci->xhc_state & XHCI_STATE_REMOVING) { 1649 xhci_dbg(xhci, "host removed, ring start fail?\n"); 1650 xhci_cleanup_command_queue(xhci); 1651 1652 goto time_out_completed; 1653 } 1654 1655 /* command timeout on stopped ring, ring can't be aborted */ 1656 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1657 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1658 1659 time_out_completed: 1660 spin_unlock_irqrestore(&xhci->lock, flags); 1661 return; 1662 } 1663 1664 static void handle_cmd_completion(struct xhci_hcd *xhci, 1665 struct xhci_event_cmd *event) 1666 { 1667 unsigned int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1668 u64 cmd_dma; 1669 dma_addr_t cmd_dequeue_dma; 1670 u32 cmd_comp_code; 1671 union xhci_trb *cmd_trb; 1672 struct xhci_command *cmd; 1673 u32 cmd_type; 1674 1675 if (slot_id >= MAX_HC_SLOTS) { 1676 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 1677 return; 1678 } 1679 1680 cmd_dma = le64_to_cpu(event->cmd_trb); 1681 cmd_trb = xhci->cmd_ring->dequeue; 1682 1683 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic); 1684 1685 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1686 cmd_trb); 1687 /* 1688 * Check whether the completion event is for our internal kept 1689 * command. 1690 */ 1691 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { 1692 xhci_warn(xhci, 1693 "ERROR mismatched command completion event\n"); 1694 return; 1695 } 1696 1697 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); 1698 1699 cancel_delayed_work(&xhci->cmd_timer); 1700 1701 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1702 1703 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1704 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) { 1705 complete_all(&xhci->cmd_ring_stop_completion); 1706 return; 1707 } 1708 1709 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1710 xhci_err(xhci, 1711 "Command completion event does not match command\n"); 1712 return; 1713 } 1714 1715 /* 1716 * Host aborted the command ring, check if the current command was 1717 * supposed to be aborted, otherwise continue normally. 1718 * The command ring is stopped now, but the xHC will issue a Command 1719 * Ring Stopped event which will cause us to restart it. 1720 */ 1721 if (cmd_comp_code == COMP_COMMAND_ABORTED) { 1722 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1723 if (cmd->status == COMP_COMMAND_ABORTED) { 1724 if (xhci->current_cmd == cmd) 1725 xhci->current_cmd = NULL; 1726 goto event_handled; 1727 } 1728 } 1729 1730 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1731 switch (cmd_type) { 1732 case TRB_ENABLE_SLOT: 1733 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code); 1734 break; 1735 case TRB_DISABLE_SLOT: 1736 xhci_handle_cmd_disable_slot(xhci, slot_id); 1737 break; 1738 case TRB_CONFIG_EP: 1739 if (!cmd->completion) 1740 xhci_handle_cmd_config_ep(xhci, slot_id, cmd_comp_code); 1741 break; 1742 case TRB_EVAL_CONTEXT: 1743 break; 1744 case TRB_ADDR_DEV: 1745 xhci_handle_cmd_addr_dev(xhci, slot_id); 1746 break; 1747 case TRB_STOP_RING: 1748 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1749 le32_to_cpu(cmd_trb->generic.field[3]))); 1750 if (!cmd->completion) 1751 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, 1752 cmd_comp_code); 1753 break; 1754 case TRB_SET_DEQ: 1755 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1756 le32_to_cpu(cmd_trb->generic.field[3]))); 1757 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1758 break; 1759 case TRB_CMD_NOOP: 1760 /* Is this an aborted command turned to NO-OP? */ 1761 if (cmd->status == COMP_COMMAND_RING_STOPPED) 1762 cmd_comp_code = COMP_COMMAND_RING_STOPPED; 1763 break; 1764 case TRB_RESET_EP: 1765 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1766 le32_to_cpu(cmd_trb->generic.field[3]))); 1767 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1768 break; 1769 case TRB_RESET_DEV: 1770 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1771 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1772 */ 1773 slot_id = TRB_TO_SLOT_ID( 1774 le32_to_cpu(cmd_trb->generic.field[3])); 1775 xhci_handle_cmd_reset_dev(xhci, slot_id); 1776 break; 1777 case TRB_NEC_GET_FW: 1778 xhci_handle_cmd_nec_get_fw(xhci, event); 1779 break; 1780 default: 1781 /* Skip over unknown commands on the event ring */ 1782 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); 1783 break; 1784 } 1785 1786 /* restart timer if this wasn't the last command */ 1787 if (!list_is_singular(&xhci->cmd_list)) { 1788 xhci->current_cmd = list_first_entry(&cmd->cmd_list, 1789 struct xhci_command, cmd_list); 1790 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 1791 } else if (xhci->current_cmd == cmd) { 1792 xhci->current_cmd = NULL; 1793 } 1794 1795 event_handled: 1796 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); 1797 1798 inc_deq(xhci, xhci->cmd_ring); 1799 } 1800 1801 static void handle_vendor_event(struct xhci_hcd *xhci, 1802 union xhci_trb *event, u32 trb_type) 1803 { 1804 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1805 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1806 handle_cmd_completion(xhci, &event->event_cmd); 1807 } 1808 1809 static void handle_device_notification(struct xhci_hcd *xhci, 1810 union xhci_trb *event) 1811 { 1812 u32 slot_id; 1813 struct usb_device *udev; 1814 1815 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1816 if (!xhci->devs[slot_id]) { 1817 xhci_warn(xhci, "Device Notification event for " 1818 "unused slot %u\n", slot_id); 1819 return; 1820 } 1821 1822 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1823 slot_id); 1824 udev = xhci->devs[slot_id]->udev; 1825 if (udev && udev->parent) 1826 usb_wakeup_notification(udev->parent, udev->portnum); 1827 } 1828 1829 /* 1830 * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI 1831 * Controller. 1832 * As per ThunderX2errata-129 USB 2 device may come up as USB 1 1833 * If a connection to a USB 1 device is followed by another connection 1834 * to a USB 2 device. 1835 * 1836 * Reset the PHY after the USB device is disconnected if device speed 1837 * is less than HCD_USB3. 1838 * Retry the reset sequence max of 4 times checking the PLL lock status. 1839 * 1840 */ 1841 static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci) 1842 { 1843 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1844 u32 pll_lock_check; 1845 u32 retry_count = 4; 1846 1847 do { 1848 /* Assert PHY reset */ 1849 writel(0x6F, hcd->regs + 0x1048); 1850 udelay(10); 1851 /* De-assert the PHY reset */ 1852 writel(0x7F, hcd->regs + 0x1048); 1853 udelay(200); 1854 pll_lock_check = readl(hcd->regs + 0x1070); 1855 } while (!(pll_lock_check & 0x1) && --retry_count); 1856 } 1857 1858 static void handle_port_status(struct xhci_hcd *xhci, 1859 struct xhci_interrupter *ir, 1860 union xhci_trb *event) 1861 { 1862 struct usb_hcd *hcd; 1863 u32 port_id; 1864 u32 portsc, cmd_reg; 1865 int max_ports; 1866 int slot_id; 1867 unsigned int hcd_portnum; 1868 struct xhci_bus_state *bus_state; 1869 bool bogus_port_status = false; 1870 struct xhci_port *port; 1871 1872 /* Port status change events always have a successful completion code */ 1873 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) 1874 xhci_warn(xhci, 1875 "WARN: xHC returned failed port status event\n"); 1876 1877 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1878 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1879 1880 if ((port_id <= 0) || (port_id > max_ports)) { 1881 xhci_warn(xhci, "Port change event with invalid port ID %d\n", 1882 port_id); 1883 return; 1884 } 1885 1886 port = &xhci->hw_ports[port_id - 1]; 1887 if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) { 1888 xhci_warn(xhci, "Port change event, no port for port ID %u\n", 1889 port_id); 1890 bogus_port_status = true; 1891 goto cleanup; 1892 } 1893 1894 /* We might get interrupts after shared_hcd is removed */ 1895 if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) { 1896 xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n"); 1897 bogus_port_status = true; 1898 goto cleanup; 1899 } 1900 1901 hcd = port->rhub->hcd; 1902 bus_state = &port->rhub->bus_state; 1903 hcd_portnum = port->hcd_portnum; 1904 portsc = readl(port->addr); 1905 1906 xhci_dbg(xhci, "Port change event, %d-%d, id %d, portsc: 0x%x\n", 1907 hcd->self.busnum, hcd_portnum + 1, port_id, portsc); 1908 1909 trace_xhci_handle_port_status(port, portsc); 1910 1911 if (hcd->state == HC_STATE_SUSPENDED) { 1912 xhci_dbg(xhci, "resume root hub\n"); 1913 usb_hcd_resume_root_hub(hcd); 1914 } 1915 1916 if (hcd->speed >= HCD_USB3 && 1917 (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) { 1918 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1); 1919 if (slot_id && xhci->devs[slot_id]) 1920 xhci->devs[slot_id]->flags |= VDEV_PORT_ERROR; 1921 } 1922 1923 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) { 1924 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1925 1926 cmd_reg = readl(&xhci->op_regs->command); 1927 if (!(cmd_reg & CMD_RUN)) { 1928 xhci_warn(xhci, "xHC is not running.\n"); 1929 goto cleanup; 1930 } 1931 1932 if (DEV_SUPERSPEED_ANY(portsc)) { 1933 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1934 /* Set a flag to say the port signaled remote wakeup, 1935 * so we can tell the difference between the end of 1936 * device and host initiated resume. 1937 */ 1938 bus_state->port_remote_wakeup |= 1 << hcd_portnum; 1939 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1940 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 1941 xhci_set_link_state(xhci, port, XDEV_U0); 1942 /* Need to wait until the next link state change 1943 * indicates the device is actually in U0. 1944 */ 1945 bogus_port_status = true; 1946 goto cleanup; 1947 } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) { 1948 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1949 port->resume_timestamp = jiffies + 1950 msecs_to_jiffies(USB_RESUME_TIMEOUT); 1951 set_bit(hcd_portnum, &bus_state->resuming_ports); 1952 /* Do the rest in GetPortStatus after resume time delay. 1953 * Avoid polling roothub status before that so that a 1954 * usb device auto-resume latency around ~40ms. 1955 */ 1956 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1957 mod_timer(&hcd->rh_timer, 1958 port->resume_timestamp); 1959 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 1960 bogus_port_status = true; 1961 } 1962 } 1963 1964 if ((portsc & PORT_PLC) && 1965 DEV_SUPERSPEED_ANY(portsc) && 1966 ((portsc & PORT_PLS_MASK) == XDEV_U0 || 1967 (portsc & PORT_PLS_MASK) == XDEV_U1 || 1968 (portsc & PORT_PLS_MASK) == XDEV_U2)) { 1969 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1970 complete(&port->u3exit_done); 1971 /* We've just brought the device into U0/1/2 through either the 1972 * Resume state after a device remote wakeup, or through the 1973 * U3Exit state after a host-initiated resume. If it's a device 1974 * initiated remote wake, don't pass up the link state change, 1975 * so the roothub behavior is consistent with external 1976 * USB 3.0 hub behavior. 1977 */ 1978 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1); 1979 if (slot_id && xhci->devs[slot_id]) 1980 xhci_ring_device(xhci, slot_id); 1981 if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) { 1982 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1983 usb_wakeup_notification(hcd->self.root_hub, 1984 hcd_portnum + 1); 1985 bogus_port_status = true; 1986 goto cleanup; 1987 } 1988 } 1989 1990 /* 1991 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 1992 * RExit to a disconnect state). If so, let the driver know it's 1993 * out of the RExit state. 1994 */ 1995 if (hcd->speed < HCD_USB3 && port->rexit_active) { 1996 complete(&port->rexit_done); 1997 port->rexit_active = false; 1998 bogus_port_status = true; 1999 goto cleanup; 2000 } 2001 2002 if (hcd->speed < HCD_USB3) { 2003 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2004 if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) && 2005 (portsc & PORT_CSC) && !(portsc & PORT_CONNECT)) 2006 xhci_cavium_reset_phy_quirk(xhci); 2007 } 2008 2009 cleanup: 2010 2011 /* Don't make the USB core poll the roothub if we got a bad port status 2012 * change event. Besides, at that point we can't tell which roothub 2013 * (USB 2.0 or USB 3.0) to kick. 2014 */ 2015 if (bogus_port_status) 2016 return; 2017 2018 /* 2019 * xHCI port-status-change events occur when the "or" of all the 2020 * status-change bits in the portsc register changes from 0 to 1. 2021 * New status changes won't cause an event if any other change 2022 * bits are still set. When an event occurs, switch over to 2023 * polling to avoid losing status changes. 2024 */ 2025 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 2026 __func__, hcd->self.busnum); 2027 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2028 spin_unlock(&xhci->lock); 2029 /* Pass this up to the core */ 2030 usb_hcd_poll_rh_status(hcd); 2031 spin_lock(&xhci->lock); 2032 } 2033 2034 /* 2035 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 2036 * at end_trb, which may be in another segment. If the suspect DMA address is a 2037 * TRB in this TD, this function returns that TRB's segment. Otherwise it 2038 * returns 0. 2039 */ 2040 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, 2041 struct xhci_segment *start_seg, 2042 union xhci_trb *start_trb, 2043 union xhci_trb *end_trb, 2044 dma_addr_t suspect_dma, 2045 bool debug) 2046 { 2047 dma_addr_t start_dma; 2048 dma_addr_t end_seg_dma; 2049 dma_addr_t end_trb_dma; 2050 struct xhci_segment *cur_seg; 2051 2052 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 2053 cur_seg = start_seg; 2054 2055 do { 2056 if (start_dma == 0) 2057 return NULL; 2058 /* We may get an event for a Link TRB in the middle of a TD */ 2059 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 2060 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 2061 /* If the end TRB isn't in this segment, this is set to 0 */ 2062 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 2063 2064 if (debug) 2065 xhci_warn(xhci, 2066 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", 2067 (unsigned long long)suspect_dma, 2068 (unsigned long long)start_dma, 2069 (unsigned long long)end_trb_dma, 2070 (unsigned long long)cur_seg->dma, 2071 (unsigned long long)end_seg_dma); 2072 2073 if (end_trb_dma > 0) { 2074 /* The end TRB is in this segment, so suspect should be here */ 2075 if (start_dma <= end_trb_dma) { 2076 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 2077 return cur_seg; 2078 } else { 2079 /* Case for one segment with 2080 * a TD wrapped around to the top 2081 */ 2082 if ((suspect_dma >= start_dma && 2083 suspect_dma <= end_seg_dma) || 2084 (suspect_dma >= cur_seg->dma && 2085 suspect_dma <= end_trb_dma)) 2086 return cur_seg; 2087 } 2088 return NULL; 2089 } else { 2090 /* Might still be somewhere in this segment */ 2091 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 2092 return cur_seg; 2093 } 2094 cur_seg = cur_seg->next; 2095 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 2096 } while (cur_seg != start_seg); 2097 2098 return NULL; 2099 } 2100 2101 static void xhci_clear_hub_tt_buffer(struct xhci_hcd *xhci, struct xhci_td *td, 2102 struct xhci_virt_ep *ep) 2103 { 2104 /* 2105 * As part of low/full-speed endpoint-halt processing 2106 * we must clear the TT buffer (USB 2.0 specification 11.17.5). 2107 */ 2108 if (td->urb->dev->tt && !usb_pipeint(td->urb->pipe) && 2109 (td->urb->dev->tt->hub != xhci_to_hcd(xhci)->self.root_hub) && 2110 !(ep->ep_state & EP_CLEARING_TT)) { 2111 ep->ep_state |= EP_CLEARING_TT; 2112 td->urb->ep->hcpriv = td->urb->dev; 2113 if (usb_hub_clear_tt_buffer(td->urb)) 2114 ep->ep_state &= ~EP_CLEARING_TT; 2115 } 2116 } 2117 2118 /* Check if an error has halted the endpoint ring. The class driver will 2119 * cleanup the halt for a non-default control endpoint if we indicate a stall. 2120 * However, a babble and other errors also halt the endpoint ring, and the class 2121 * driver won't clear the halt in that case, so we need to issue a Set Transfer 2122 * Ring Dequeue Pointer command manually. 2123 */ 2124 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 2125 struct xhci_ep_ctx *ep_ctx, 2126 unsigned int trb_comp_code) 2127 { 2128 /* TRB completion codes that may require a manual halt cleanup */ 2129 if (trb_comp_code == COMP_USB_TRANSACTION_ERROR || 2130 trb_comp_code == COMP_BABBLE_DETECTED_ERROR || 2131 trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR) 2132 /* The 0.95 spec says a babbling control endpoint 2133 * is not halted. The 0.96 spec says it is. Some HW 2134 * claims to be 0.95 compliant, but it halts the control 2135 * endpoint anyway. Check if a babble halted the 2136 * endpoint. 2137 */ 2138 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) 2139 return 1; 2140 2141 return 0; 2142 } 2143 2144 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 2145 { 2146 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 2147 /* Vendor defined "informational" completion code, 2148 * treat as not-an-error. 2149 */ 2150 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 2151 trb_comp_code); 2152 xhci_dbg(xhci, "Treating code as success.\n"); 2153 return 1; 2154 } 2155 return 0; 2156 } 2157 2158 static int finish_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2159 struct xhci_ring *ep_ring, struct xhci_td *td, 2160 u32 trb_comp_code) 2161 { 2162 struct xhci_ep_ctx *ep_ctx; 2163 2164 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2165 2166 switch (trb_comp_code) { 2167 case COMP_STOPPED_LENGTH_INVALID: 2168 case COMP_STOPPED_SHORT_PACKET: 2169 case COMP_STOPPED: 2170 /* 2171 * The "Stop Endpoint" completion will take care of any 2172 * stopped TDs. A stopped TD may be restarted, so don't update 2173 * the ring dequeue pointer or take this TD off any lists yet. 2174 */ 2175 return 0; 2176 case COMP_USB_TRANSACTION_ERROR: 2177 case COMP_BABBLE_DETECTED_ERROR: 2178 case COMP_SPLIT_TRANSACTION_ERROR: 2179 /* 2180 * If endpoint context state is not halted we might be 2181 * racing with a reset endpoint command issued by a unsuccessful 2182 * stop endpoint completion (context error). In that case the 2183 * td should be on the cancelled list, and EP_HALTED flag set. 2184 * 2185 * Or then it's not halted due to the 0.95 spec stating that a 2186 * babbling control endpoint should not halt. The 0.96 spec 2187 * again says it should. Some HW claims to be 0.95 compliant, 2188 * but it halts the control endpoint anyway. 2189 */ 2190 if (GET_EP_CTX_STATE(ep_ctx) != EP_STATE_HALTED) { 2191 /* 2192 * If EP_HALTED is set and TD is on the cancelled list 2193 * the TD and dequeue pointer will be handled by reset 2194 * ep command completion 2195 */ 2196 if ((ep->ep_state & EP_HALTED) && 2197 !list_empty(&td->cancelled_td_list)) { 2198 xhci_dbg(xhci, "Already resolving halted ep for 0x%llx\n", 2199 (unsigned long long)xhci_trb_virt_to_dma( 2200 td->start_seg, td->first_trb)); 2201 return 0; 2202 } 2203 /* endpoint not halted, don't reset it */ 2204 break; 2205 } 2206 /* Almost same procedure as for STALL_ERROR below */ 2207 xhci_clear_hub_tt_buffer(xhci, td, ep); 2208 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2209 return 0; 2210 case COMP_STALL_ERROR: 2211 /* 2212 * xhci internal endpoint state will go to a "halt" state for 2213 * any stall, including default control pipe protocol stall. 2214 * To clear the host side halt we need to issue a reset endpoint 2215 * command, followed by a set dequeue command to move past the 2216 * TD. 2217 * Class drivers clear the device side halt from a functional 2218 * stall later. Hub TT buffer should only be cleared for FS/LS 2219 * devices behind HS hubs for functional stalls. 2220 */ 2221 if (ep->ep_index != 0) 2222 xhci_clear_hub_tt_buffer(xhci, td, ep); 2223 2224 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2225 2226 return 0; /* xhci_handle_halted_endpoint marked td cancelled */ 2227 default: 2228 break; 2229 } 2230 2231 /* Update ring dequeue pointer */ 2232 ep_ring->dequeue = td->last_trb; 2233 ep_ring->deq_seg = td->last_trb_seg; 2234 inc_deq(xhci, ep_ring); 2235 2236 return xhci_td_cleanup(xhci, td, ep_ring, td->status); 2237 } 2238 2239 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */ 2240 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring, 2241 union xhci_trb *stop_trb) 2242 { 2243 u32 sum; 2244 union xhci_trb *trb = ring->dequeue; 2245 struct xhci_segment *seg = ring->deq_seg; 2246 2247 for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) { 2248 if (!trb_is_noop(trb) && !trb_is_link(trb)) 2249 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); 2250 } 2251 return sum; 2252 } 2253 2254 /* 2255 * Process control tds, update urb status and actual_length. 2256 */ 2257 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2258 struct xhci_ring *ep_ring, struct xhci_td *td, 2259 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2260 { 2261 struct xhci_ep_ctx *ep_ctx; 2262 u32 trb_comp_code; 2263 u32 remaining, requested; 2264 u32 trb_type; 2265 2266 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); 2267 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2268 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2269 requested = td->urb->transfer_buffer_length; 2270 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2271 2272 switch (trb_comp_code) { 2273 case COMP_SUCCESS: 2274 if (trb_type != TRB_STATUS) { 2275 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n", 2276 (trb_type == TRB_DATA) ? "data" : "setup"); 2277 td->status = -ESHUTDOWN; 2278 break; 2279 } 2280 td->status = 0; 2281 break; 2282 case COMP_SHORT_PACKET: 2283 td->status = 0; 2284 break; 2285 case COMP_STOPPED_SHORT_PACKET: 2286 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2287 td->urb->actual_length = remaining; 2288 else 2289 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); 2290 goto finish_td; 2291 case COMP_STOPPED: 2292 switch (trb_type) { 2293 case TRB_SETUP: 2294 td->urb->actual_length = 0; 2295 goto finish_td; 2296 case TRB_DATA: 2297 case TRB_NORMAL: 2298 td->urb->actual_length = requested - remaining; 2299 goto finish_td; 2300 case TRB_STATUS: 2301 td->urb->actual_length = requested; 2302 goto finish_td; 2303 default: 2304 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", 2305 trb_type); 2306 goto finish_td; 2307 } 2308 case COMP_STOPPED_LENGTH_INVALID: 2309 goto finish_td; 2310 default: 2311 if (!xhci_requires_manual_halt_cleanup(xhci, 2312 ep_ctx, trb_comp_code)) 2313 break; 2314 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", 2315 trb_comp_code, ep->ep_index); 2316 fallthrough; 2317 case COMP_STALL_ERROR: 2318 /* Did we transfer part of the data (middle) phase? */ 2319 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2320 td->urb->actual_length = requested - remaining; 2321 else if (!td->urb_length_set) 2322 td->urb->actual_length = 0; 2323 goto finish_td; 2324 } 2325 2326 /* stopped at setup stage, no data transferred */ 2327 if (trb_type == TRB_SETUP) 2328 goto finish_td; 2329 2330 /* 2331 * if on data stage then update the actual_length of the URB and flag it 2332 * as set, so it won't be overwritten in the event for the last TRB. 2333 */ 2334 if (trb_type == TRB_DATA || 2335 trb_type == TRB_NORMAL) { 2336 td->urb_length_set = true; 2337 td->urb->actual_length = requested - remaining; 2338 xhci_dbg(xhci, "Waiting for status stage event\n"); 2339 return 0; 2340 } 2341 2342 /* at status stage */ 2343 if (!td->urb_length_set) 2344 td->urb->actual_length = requested; 2345 2346 finish_td: 2347 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2348 } 2349 2350 /* 2351 * Process isochronous tds, update urb packet status and actual_length. 2352 */ 2353 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2354 struct xhci_ring *ep_ring, struct xhci_td *td, 2355 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2356 { 2357 struct urb_priv *urb_priv; 2358 int idx; 2359 struct usb_iso_packet_descriptor *frame; 2360 u32 trb_comp_code; 2361 bool sum_trbs_for_length = false; 2362 u32 remaining, requested, ep_trb_len; 2363 int short_framestatus; 2364 2365 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2366 urb_priv = td->urb->hcpriv; 2367 idx = urb_priv->num_tds_done; 2368 frame = &td->urb->iso_frame_desc[idx]; 2369 requested = frame->length; 2370 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2371 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2372 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2373 -EREMOTEIO : 0; 2374 2375 /* handle completion code */ 2376 switch (trb_comp_code) { 2377 case COMP_SUCCESS: 2378 if (remaining) { 2379 frame->status = short_framestatus; 2380 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2381 sum_trbs_for_length = true; 2382 break; 2383 } 2384 frame->status = 0; 2385 break; 2386 case COMP_SHORT_PACKET: 2387 frame->status = short_framestatus; 2388 sum_trbs_for_length = true; 2389 break; 2390 case COMP_BANDWIDTH_OVERRUN_ERROR: 2391 frame->status = -ECOMM; 2392 break; 2393 case COMP_ISOCH_BUFFER_OVERRUN: 2394 case COMP_BABBLE_DETECTED_ERROR: 2395 frame->status = -EOVERFLOW; 2396 break; 2397 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2398 case COMP_STALL_ERROR: 2399 frame->status = -EPROTO; 2400 break; 2401 case COMP_USB_TRANSACTION_ERROR: 2402 frame->status = -EPROTO; 2403 if (ep_trb != td->last_trb) 2404 return 0; 2405 break; 2406 case COMP_STOPPED: 2407 sum_trbs_for_length = true; 2408 break; 2409 case COMP_STOPPED_SHORT_PACKET: 2410 /* field normally containing residue now contains tranferred */ 2411 frame->status = short_framestatus; 2412 requested = remaining; 2413 break; 2414 case COMP_STOPPED_LENGTH_INVALID: 2415 requested = 0; 2416 remaining = 0; 2417 break; 2418 default: 2419 sum_trbs_for_length = true; 2420 frame->status = -1; 2421 break; 2422 } 2423 2424 if (sum_trbs_for_length) 2425 frame->actual_length = sum_trb_lengths(xhci, ep->ring, ep_trb) + 2426 ep_trb_len - remaining; 2427 else 2428 frame->actual_length = requested; 2429 2430 td->urb->actual_length += frame->actual_length; 2431 2432 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2433 } 2434 2435 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2436 struct xhci_virt_ep *ep, int status) 2437 { 2438 struct urb_priv *urb_priv; 2439 struct usb_iso_packet_descriptor *frame; 2440 int idx; 2441 2442 urb_priv = td->urb->hcpriv; 2443 idx = urb_priv->num_tds_done; 2444 frame = &td->urb->iso_frame_desc[idx]; 2445 2446 /* The transfer is partly done. */ 2447 frame->status = -EXDEV; 2448 2449 /* calc actual length */ 2450 frame->actual_length = 0; 2451 2452 /* Update ring dequeue pointer */ 2453 ep->ring->dequeue = td->last_trb; 2454 ep->ring->deq_seg = td->last_trb_seg; 2455 inc_deq(xhci, ep->ring); 2456 2457 return xhci_td_cleanup(xhci, td, ep->ring, status); 2458 } 2459 2460 /* 2461 * Process bulk and interrupt tds, update urb status and actual_length. 2462 */ 2463 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2464 struct xhci_ring *ep_ring, struct xhci_td *td, 2465 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2466 { 2467 struct xhci_slot_ctx *slot_ctx; 2468 u32 trb_comp_code; 2469 u32 remaining, requested, ep_trb_len; 2470 2471 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 2472 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2473 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2474 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2475 requested = td->urb->transfer_buffer_length; 2476 2477 switch (trb_comp_code) { 2478 case COMP_SUCCESS: 2479 ep->err_count = 0; 2480 /* handle success with untransferred data as short packet */ 2481 if (ep_trb != td->last_trb || remaining) { 2482 xhci_warn(xhci, "WARN Successful completion on short TX\n"); 2483 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2484 td->urb->ep->desc.bEndpointAddress, 2485 requested, remaining); 2486 } 2487 td->status = 0; 2488 break; 2489 case COMP_SHORT_PACKET: 2490 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2491 td->urb->ep->desc.bEndpointAddress, 2492 requested, remaining); 2493 td->status = 0; 2494 break; 2495 case COMP_STOPPED_SHORT_PACKET: 2496 td->urb->actual_length = remaining; 2497 goto finish_td; 2498 case COMP_STOPPED_LENGTH_INVALID: 2499 /* stopped on ep trb with invalid length, exclude it */ 2500 ep_trb_len = 0; 2501 remaining = 0; 2502 break; 2503 case COMP_USB_TRANSACTION_ERROR: 2504 if (xhci->quirks & XHCI_NO_SOFT_RETRY || 2505 (ep->err_count++ > MAX_SOFT_RETRY) || 2506 le32_to_cpu(slot_ctx->tt_info) & TT_SLOT) 2507 break; 2508 2509 td->status = 0; 2510 2511 xhci_handle_halted_endpoint(xhci, ep, td, EP_SOFT_RESET); 2512 return 0; 2513 default: 2514 /* do nothing */ 2515 break; 2516 } 2517 2518 if (ep_trb == td->last_trb) 2519 td->urb->actual_length = requested - remaining; 2520 else 2521 td->urb->actual_length = 2522 sum_trb_lengths(xhci, ep_ring, ep_trb) + 2523 ep_trb_len - remaining; 2524 finish_td: 2525 if (remaining > requested) { 2526 xhci_warn(xhci, "bad transfer trb length %d in event trb\n", 2527 remaining); 2528 td->urb->actual_length = 0; 2529 } 2530 2531 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2532 } 2533 2534 /* 2535 * If this function returns an error condition, it means it got a Transfer 2536 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2537 * At this point, the host controller is probably hosed and should be reset. 2538 */ 2539 static int handle_tx_event(struct xhci_hcd *xhci, 2540 struct xhci_interrupter *ir, 2541 struct xhci_transfer_event *event) 2542 { 2543 struct xhci_virt_ep *ep; 2544 struct xhci_ring *ep_ring; 2545 unsigned int slot_id; 2546 int ep_index; 2547 struct xhci_td *td = NULL; 2548 dma_addr_t ep_trb_dma; 2549 struct xhci_segment *ep_seg; 2550 union xhci_trb *ep_trb; 2551 int status = -EINPROGRESS; 2552 struct xhci_ep_ctx *ep_ctx; 2553 u32 trb_comp_code; 2554 int td_num = 0; 2555 bool handling_skipped_tds = false; 2556 2557 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2558 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2559 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2560 ep_trb_dma = le64_to_cpu(event->buffer); 2561 2562 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 2563 if (!ep) { 2564 xhci_err(xhci, "ERROR Invalid Transfer event\n"); 2565 goto err_out; 2566 } 2567 2568 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma); 2569 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 2570 2571 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { 2572 xhci_err(xhci, 2573 "ERROR Transfer event for disabled endpoint slot %u ep %u\n", 2574 slot_id, ep_index); 2575 goto err_out; 2576 } 2577 2578 /* Some transfer events don't always point to a trb, see xhci 4.17.4 */ 2579 if (!ep_ring) { 2580 switch (trb_comp_code) { 2581 case COMP_STALL_ERROR: 2582 case COMP_USB_TRANSACTION_ERROR: 2583 case COMP_INVALID_STREAM_TYPE_ERROR: 2584 case COMP_INVALID_STREAM_ID_ERROR: 2585 xhci_dbg(xhci, "Stream transaction error ep %u no id\n", 2586 ep_index); 2587 if (ep->err_count++ > MAX_SOFT_RETRY) 2588 xhci_handle_halted_endpoint(xhci, ep, NULL, 2589 EP_HARD_RESET); 2590 else 2591 xhci_handle_halted_endpoint(xhci, ep, NULL, 2592 EP_SOFT_RESET); 2593 goto cleanup; 2594 case COMP_RING_UNDERRUN: 2595 case COMP_RING_OVERRUN: 2596 case COMP_STOPPED_LENGTH_INVALID: 2597 goto cleanup; 2598 default: 2599 xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n", 2600 slot_id, ep_index); 2601 goto err_out; 2602 } 2603 } 2604 2605 /* Count current td numbers if ep->skip is set */ 2606 if (ep->skip) 2607 td_num += list_count_nodes(&ep_ring->td_list); 2608 2609 /* Look for common error cases */ 2610 switch (trb_comp_code) { 2611 /* Skip codes that require special handling depending on 2612 * transfer type 2613 */ 2614 case COMP_SUCCESS: 2615 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2616 break; 2617 if (xhci->quirks & XHCI_TRUST_TX_LENGTH || 2618 ep_ring->last_td_was_short) 2619 trb_comp_code = COMP_SHORT_PACKET; 2620 else 2621 xhci_warn_ratelimited(xhci, 2622 "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n", 2623 slot_id, ep_index); 2624 break; 2625 case COMP_SHORT_PACKET: 2626 break; 2627 /* Completion codes for endpoint stopped state */ 2628 case COMP_STOPPED: 2629 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n", 2630 slot_id, ep_index); 2631 break; 2632 case COMP_STOPPED_LENGTH_INVALID: 2633 xhci_dbg(xhci, 2634 "Stopped on No-op or Link TRB for slot %u ep %u\n", 2635 slot_id, ep_index); 2636 break; 2637 case COMP_STOPPED_SHORT_PACKET: 2638 xhci_dbg(xhci, 2639 "Stopped with short packet transfer detected for slot %u ep %u\n", 2640 slot_id, ep_index); 2641 break; 2642 /* Completion codes for endpoint halted state */ 2643 case COMP_STALL_ERROR: 2644 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id, 2645 ep_index); 2646 status = -EPIPE; 2647 break; 2648 case COMP_SPLIT_TRANSACTION_ERROR: 2649 xhci_dbg(xhci, "Split transaction error for slot %u ep %u\n", 2650 slot_id, ep_index); 2651 status = -EPROTO; 2652 break; 2653 case COMP_USB_TRANSACTION_ERROR: 2654 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n", 2655 slot_id, ep_index); 2656 status = -EPROTO; 2657 break; 2658 case COMP_BABBLE_DETECTED_ERROR: 2659 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n", 2660 slot_id, ep_index); 2661 status = -EOVERFLOW; 2662 break; 2663 /* Completion codes for endpoint error state */ 2664 case COMP_TRB_ERROR: 2665 xhci_warn(xhci, 2666 "WARN: TRB error for slot %u ep %u on endpoint\n", 2667 slot_id, ep_index); 2668 status = -EILSEQ; 2669 break; 2670 /* completion codes not indicating endpoint state change */ 2671 case COMP_DATA_BUFFER_ERROR: 2672 xhci_warn(xhci, 2673 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n", 2674 slot_id, ep_index); 2675 status = -ENOSR; 2676 break; 2677 case COMP_BANDWIDTH_OVERRUN_ERROR: 2678 xhci_warn(xhci, 2679 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n", 2680 slot_id, ep_index); 2681 break; 2682 case COMP_ISOCH_BUFFER_OVERRUN: 2683 xhci_warn(xhci, 2684 "WARN: buffer overrun event for slot %u ep %u on endpoint", 2685 slot_id, ep_index); 2686 break; 2687 case COMP_RING_UNDERRUN: 2688 /* 2689 * When the Isoch ring is empty, the xHC will generate 2690 * a Ring Overrun Event for IN Isoch endpoint or Ring 2691 * Underrun Event for OUT Isoch endpoint. 2692 */ 2693 xhci_dbg(xhci, "underrun event on endpoint\n"); 2694 if (!list_empty(&ep_ring->td_list)) 2695 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2696 "still with TDs queued?\n", 2697 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2698 ep_index); 2699 goto cleanup; 2700 case COMP_RING_OVERRUN: 2701 xhci_dbg(xhci, "overrun event on endpoint\n"); 2702 if (!list_empty(&ep_ring->td_list)) 2703 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2704 "still with TDs queued?\n", 2705 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2706 ep_index); 2707 goto cleanup; 2708 case COMP_MISSED_SERVICE_ERROR: 2709 /* 2710 * When encounter missed service error, one or more isoc tds 2711 * may be missed by xHC. 2712 * Set skip flag of the ep_ring; Complete the missed tds as 2713 * short transfer when process the ep_ring next time. 2714 */ 2715 ep->skip = true; 2716 xhci_dbg(xhci, 2717 "Miss service interval error for slot %u ep %u, set skip flag\n", 2718 slot_id, ep_index); 2719 goto cleanup; 2720 case COMP_NO_PING_RESPONSE_ERROR: 2721 ep->skip = true; 2722 xhci_dbg(xhci, 2723 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n", 2724 slot_id, ep_index); 2725 goto cleanup; 2726 2727 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2728 /* needs disable slot command to recover */ 2729 xhci_warn(xhci, 2730 "WARN: detect an incompatible device for slot %u ep %u", 2731 slot_id, ep_index); 2732 status = -EPROTO; 2733 break; 2734 default: 2735 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2736 status = 0; 2737 break; 2738 } 2739 xhci_warn(xhci, 2740 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n", 2741 trb_comp_code, slot_id, ep_index); 2742 goto cleanup; 2743 } 2744 2745 do { 2746 /* This TRB should be in the TD at the head of this ring's 2747 * TD list. 2748 */ 2749 if (list_empty(&ep_ring->td_list)) { 2750 /* 2751 * Don't print wanings if it's due to a stopped endpoint 2752 * generating an extra completion event if the device 2753 * was suspended. Or, a event for the last TRB of a 2754 * short TD we already got a short event for. 2755 * The short TD is already removed from the TD list. 2756 */ 2757 2758 if (!(trb_comp_code == COMP_STOPPED || 2759 trb_comp_code == COMP_STOPPED_LENGTH_INVALID || 2760 ep_ring->last_td_was_short)) { 2761 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2762 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2763 ep_index); 2764 } 2765 if (ep->skip) { 2766 ep->skip = false; 2767 xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n", 2768 slot_id, ep_index); 2769 } 2770 if (trb_comp_code == COMP_STALL_ERROR || 2771 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2772 trb_comp_code)) { 2773 xhci_handle_halted_endpoint(xhci, ep, NULL, 2774 EP_HARD_RESET); 2775 } 2776 goto cleanup; 2777 } 2778 2779 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2780 if (ep->skip && td_num == 0) { 2781 ep->skip = false; 2782 xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n", 2783 slot_id, ep_index); 2784 goto cleanup; 2785 } 2786 2787 td = list_first_entry(&ep_ring->td_list, struct xhci_td, 2788 td_list); 2789 if (ep->skip) 2790 td_num--; 2791 2792 /* Is this a TRB in the currently executing TD? */ 2793 ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue, 2794 td->last_trb, ep_trb_dma, false); 2795 2796 /* 2797 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2798 * is not in the current TD pointed by ep_ring->dequeue because 2799 * that the hardware dequeue pointer still at the previous TRB 2800 * of the current TD. The previous TRB maybe a Link TD or the 2801 * last TRB of the previous TD. The command completion handle 2802 * will take care the rest. 2803 */ 2804 if (!ep_seg && (trb_comp_code == COMP_STOPPED || 2805 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) { 2806 goto cleanup; 2807 } 2808 2809 if (!ep_seg) { 2810 if (!ep->skip || 2811 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2812 /* Some host controllers give a spurious 2813 * successful event after a short transfer. 2814 * Ignore it. 2815 */ 2816 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2817 ep_ring->last_td_was_short) { 2818 ep_ring->last_td_was_short = false; 2819 goto cleanup; 2820 } 2821 /* HC is busted, give up! */ 2822 xhci_err(xhci, 2823 "ERROR Transfer event TRB DMA ptr not " 2824 "part of current TD ep_index %d " 2825 "comp_code %u\n", ep_index, 2826 trb_comp_code); 2827 trb_in_td(xhci, ep_ring->deq_seg, 2828 ep_ring->dequeue, td->last_trb, 2829 ep_trb_dma, true); 2830 return -ESHUTDOWN; 2831 } 2832 2833 skip_isoc_td(xhci, td, ep, status); 2834 goto cleanup; 2835 } 2836 if (trb_comp_code == COMP_SHORT_PACKET) 2837 ep_ring->last_td_was_short = true; 2838 else 2839 ep_ring->last_td_was_short = false; 2840 2841 if (ep->skip) { 2842 xhci_dbg(xhci, 2843 "Found td. Clear skip flag for slot %u ep %u.\n", 2844 slot_id, ep_index); 2845 ep->skip = false; 2846 } 2847 2848 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / 2849 sizeof(*ep_trb)]; 2850 2851 trace_xhci_handle_transfer(ep_ring, 2852 (struct xhci_generic_trb *) ep_trb); 2853 2854 /* 2855 * No-op TRB could trigger interrupts in a case where 2856 * a URB was killed and a STALL_ERROR happens right 2857 * after the endpoint ring stopped. Reset the halted 2858 * endpoint. Otherwise, the endpoint remains stalled 2859 * indefinitely. 2860 */ 2861 2862 if (trb_is_noop(ep_trb)) { 2863 if (trb_comp_code == COMP_STALL_ERROR || 2864 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2865 trb_comp_code)) 2866 xhci_handle_halted_endpoint(xhci, ep, td, 2867 EP_HARD_RESET); 2868 goto cleanup; 2869 } 2870 2871 td->status = status; 2872 2873 /* update the urb's actual_length and give back to the core */ 2874 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2875 process_ctrl_td(xhci, ep, ep_ring, td, ep_trb, event); 2876 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2877 process_isoc_td(xhci, ep, ep_ring, td, ep_trb, event); 2878 else 2879 process_bulk_intr_td(xhci, ep, ep_ring, td, ep_trb, event); 2880 cleanup: 2881 handling_skipped_tds = ep->skip && 2882 trb_comp_code != COMP_MISSED_SERVICE_ERROR && 2883 trb_comp_code != COMP_NO_PING_RESPONSE_ERROR; 2884 2885 /* 2886 * If ep->skip is set, it means there are missed tds on the 2887 * endpoint ring need to take care of. 2888 * Process them as short transfer until reach the td pointed by 2889 * the event. 2890 */ 2891 } while (handling_skipped_tds); 2892 2893 return 0; 2894 2895 err_out: 2896 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2897 (unsigned long long) xhci_trb_virt_to_dma( 2898 ir->event_ring->deq_seg, 2899 ir->event_ring->dequeue), 2900 lower_32_bits(le64_to_cpu(event->buffer)), 2901 upper_32_bits(le64_to_cpu(event->buffer)), 2902 le32_to_cpu(event->transfer_len), 2903 le32_to_cpu(event->flags)); 2904 return -ENODEV; 2905 } 2906 2907 /* 2908 * This function handles all OS-owned events on the event ring. It may drop 2909 * xhci->lock between event processing (e.g. to pass up port status changes). 2910 * Returns >0 for "possibly more events to process" (caller should call again), 2911 * otherwise 0 if done. In future, <0 returns should indicate error code. 2912 */ 2913 static int xhci_handle_event(struct xhci_hcd *xhci, struct xhci_interrupter *ir) 2914 { 2915 union xhci_trb *event; 2916 u32 trb_type; 2917 2918 /* Event ring hasn't been allocated yet. */ 2919 if (!ir || !ir->event_ring || !ir->event_ring->dequeue) { 2920 xhci_err(xhci, "ERROR interrupter not ready\n"); 2921 return -ENOMEM; 2922 } 2923 2924 event = ir->event_ring->dequeue; 2925 /* Does the HC or OS own the TRB? */ 2926 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2927 ir->event_ring->cycle_state) 2928 return 0; 2929 2930 trace_xhci_handle_event(ir->event_ring, &event->generic); 2931 2932 /* 2933 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2934 * speculative reads of the event's flags/data below. 2935 */ 2936 rmb(); 2937 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->event_cmd.flags)); 2938 /* FIXME: Handle more event types. */ 2939 2940 switch (trb_type) { 2941 case TRB_COMPLETION: 2942 handle_cmd_completion(xhci, &event->event_cmd); 2943 break; 2944 case TRB_PORT_STATUS: 2945 handle_port_status(xhci, ir, event); 2946 break; 2947 case TRB_TRANSFER: 2948 handle_tx_event(xhci, ir, &event->trans_event); 2949 break; 2950 case TRB_DEV_NOTE: 2951 handle_device_notification(xhci, event); 2952 break; 2953 default: 2954 if (trb_type >= TRB_VENDOR_DEFINED_LOW) 2955 handle_vendor_event(xhci, event, trb_type); 2956 else 2957 xhci_warn(xhci, "ERROR unknown event type %d\n", trb_type); 2958 } 2959 /* Any of the above functions may drop and re-acquire the lock, so check 2960 * to make sure a watchdog timer didn't mark the host as non-responsive. 2961 */ 2962 if (xhci->xhc_state & XHCI_STATE_DYING) { 2963 xhci_dbg(xhci, "xHCI host dying, returning from " 2964 "event handler.\n"); 2965 return 0; 2966 } 2967 2968 /* Update SW event ring dequeue pointer */ 2969 inc_deq(xhci, ir->event_ring); 2970 2971 /* Are there more items on the event ring? Caller will call us again to 2972 * check. 2973 */ 2974 return 1; 2975 } 2976 2977 /* 2978 * Update Event Ring Dequeue Pointer: 2979 * - When all events have finished 2980 * - To avoid "Event Ring Full Error" condition 2981 */ 2982 static void xhci_update_erst_dequeue(struct xhci_hcd *xhci, 2983 struct xhci_interrupter *ir, 2984 union xhci_trb *event_ring_deq, 2985 bool clear_ehb) 2986 { 2987 u64 temp_64; 2988 dma_addr_t deq; 2989 2990 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 2991 /* If necessary, update the HW's version of the event ring deq ptr. */ 2992 if (event_ring_deq != ir->event_ring->dequeue) { 2993 deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg, 2994 ir->event_ring->dequeue); 2995 if (deq == 0) 2996 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr\n"); 2997 /* 2998 * Per 4.9.4, Software writes to the ERDP register shall 2999 * always advance the Event Ring Dequeue Pointer value. 3000 */ 3001 if ((temp_64 & ERST_PTR_MASK) == (deq & ERST_PTR_MASK)) 3002 return; 3003 3004 /* Update HC event ring dequeue pointer */ 3005 temp_64 = ir->event_ring->deq_seg->num & ERST_DESI_MASK; 3006 temp_64 |= deq & ERST_PTR_MASK; 3007 } 3008 3009 /* Clear the event handler busy flag (RW1C) */ 3010 if (clear_ehb) 3011 temp_64 |= ERST_EHB; 3012 xhci_write_64(xhci, temp_64, &ir->ir_set->erst_dequeue); 3013 } 3014 3015 /* 3016 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 3017 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 3018 * indicators of an event TRB error, but we check the status *first* to be safe. 3019 */ 3020 irqreturn_t xhci_irq(struct usb_hcd *hcd) 3021 { 3022 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3023 union xhci_trb *event_ring_deq; 3024 struct xhci_interrupter *ir; 3025 irqreturn_t ret = IRQ_NONE; 3026 u64 temp_64; 3027 u32 status; 3028 int event_loop = 0; 3029 3030 spin_lock(&xhci->lock); 3031 /* Check if the xHC generated the interrupt, or the irq is shared */ 3032 status = readl(&xhci->op_regs->status); 3033 if (status == ~(u32)0) { 3034 xhci_hc_died(xhci); 3035 ret = IRQ_HANDLED; 3036 goto out; 3037 } 3038 3039 if (!(status & STS_EINT)) 3040 goto out; 3041 3042 if (status & STS_HCE) { 3043 xhci_warn(xhci, "WARNING: Host Controller Error\n"); 3044 goto out; 3045 } 3046 3047 if (status & STS_FATAL) { 3048 xhci_warn(xhci, "WARNING: Host System Error\n"); 3049 xhci_halt(xhci); 3050 ret = IRQ_HANDLED; 3051 goto out; 3052 } 3053 3054 /* 3055 * Clear the op reg interrupt status first, 3056 * so we can receive interrupts from other MSI-X interrupters. 3057 * Write 1 to clear the interrupt status. 3058 */ 3059 status |= STS_EINT; 3060 writel(status, &xhci->op_regs->status); 3061 3062 /* This is the handler of the primary interrupter */ 3063 ir = xhci->interrupter; 3064 if (!hcd->msi_enabled) { 3065 u32 irq_pending; 3066 irq_pending = readl(&ir->ir_set->irq_pending); 3067 irq_pending |= IMAN_IP; 3068 writel(irq_pending, &ir->ir_set->irq_pending); 3069 } 3070 3071 if (xhci->xhc_state & XHCI_STATE_DYING || 3072 xhci->xhc_state & XHCI_STATE_HALTED) { 3073 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 3074 "Shouldn't IRQs be disabled?\n"); 3075 /* Clear the event handler busy flag (RW1C); 3076 * the event ring should be empty. 3077 */ 3078 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 3079 xhci_write_64(xhci, temp_64 | ERST_EHB, 3080 &ir->ir_set->erst_dequeue); 3081 ret = IRQ_HANDLED; 3082 goto out; 3083 } 3084 3085 event_ring_deq = ir->event_ring->dequeue; 3086 /* FIXME this should be a delayed service routine 3087 * that clears the EHB. 3088 */ 3089 while (xhci_handle_event(xhci, ir) > 0) { 3090 if (event_loop++ < TRBS_PER_SEGMENT / 2) 3091 continue; 3092 xhci_update_erst_dequeue(xhci, ir, event_ring_deq, false); 3093 event_ring_deq = ir->event_ring->dequeue; 3094 3095 /* ring is half-full, force isoc trbs to interrupt more often */ 3096 if (xhci->isoc_bei_interval > AVOID_BEI_INTERVAL_MIN) 3097 xhci->isoc_bei_interval = xhci->isoc_bei_interval / 2; 3098 3099 event_loop = 0; 3100 } 3101 3102 xhci_update_erst_dequeue(xhci, ir, event_ring_deq, true); 3103 ret = IRQ_HANDLED; 3104 3105 out: 3106 spin_unlock(&xhci->lock); 3107 3108 return ret; 3109 } 3110 3111 irqreturn_t xhci_msi_irq(int irq, void *hcd) 3112 { 3113 return xhci_irq(hcd); 3114 } 3115 EXPORT_SYMBOL_GPL(xhci_msi_irq); 3116 3117 /**** Endpoint Ring Operations ****/ 3118 3119 /* 3120 * Generic function for queueing a TRB on a ring. 3121 * The caller must have checked to make sure there's room on the ring. 3122 * 3123 * @more_trbs_coming: Will you enqueue more TRBs before calling 3124 * prepare_transfer()? 3125 */ 3126 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 3127 bool more_trbs_coming, 3128 u32 field1, u32 field2, u32 field3, u32 field4) 3129 { 3130 struct xhci_generic_trb *trb; 3131 3132 trb = &ring->enqueue->generic; 3133 trb->field[0] = cpu_to_le32(field1); 3134 trb->field[1] = cpu_to_le32(field2); 3135 trb->field[2] = cpu_to_le32(field3); 3136 /* make sure TRB is fully written before giving it to the controller */ 3137 wmb(); 3138 trb->field[3] = cpu_to_le32(field4); 3139 3140 trace_xhci_queue_trb(ring, trb); 3141 3142 inc_enq(xhci, ring, more_trbs_coming); 3143 } 3144 3145 /* 3146 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 3147 * expand ring if it start to be full. 3148 */ 3149 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 3150 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 3151 { 3152 unsigned int link_trb_count = 0; 3153 unsigned int new_segs = 0; 3154 3155 /* Make sure the endpoint has been added to xHC schedule */ 3156 switch (ep_state) { 3157 case EP_STATE_DISABLED: 3158 /* 3159 * USB core changed config/interfaces without notifying us, 3160 * or hardware is reporting the wrong state. 3161 */ 3162 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 3163 return -ENOENT; 3164 case EP_STATE_ERROR: 3165 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 3166 /* FIXME event handling code for error needs to clear it */ 3167 /* XXX not sure if this should be -ENOENT or not */ 3168 return -EINVAL; 3169 case EP_STATE_HALTED: 3170 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 3171 break; 3172 case EP_STATE_STOPPED: 3173 case EP_STATE_RUNNING: 3174 break; 3175 default: 3176 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 3177 /* 3178 * FIXME issue Configure Endpoint command to try to get the HC 3179 * back into a known state. 3180 */ 3181 return -EINVAL; 3182 } 3183 3184 if (ep_ring != xhci->cmd_ring) { 3185 new_segs = xhci_ring_expansion_needed(xhci, ep_ring, num_trbs); 3186 } else if (xhci_num_trbs_free(xhci, ep_ring) <= num_trbs) { 3187 xhci_err(xhci, "Do not support expand command ring\n"); 3188 return -ENOMEM; 3189 } 3190 3191 if (new_segs) { 3192 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 3193 "ERROR no room on ep ring, try ring expansion"); 3194 if (xhci_ring_expansion(xhci, ep_ring, new_segs, mem_flags)) { 3195 xhci_err(xhci, "Ring expansion failed\n"); 3196 return -ENOMEM; 3197 } 3198 } 3199 3200 while (trb_is_link(ep_ring->enqueue)) { 3201 /* If we're not dealing with 0.95 hardware or isoc rings 3202 * on AMD 0.96 host, clear the chain bit. 3203 */ 3204 if (!xhci_link_trb_quirk(xhci) && 3205 !(ep_ring->type == TYPE_ISOC && 3206 (xhci->quirks & XHCI_AMD_0x96_HOST))) 3207 ep_ring->enqueue->link.control &= 3208 cpu_to_le32(~TRB_CHAIN); 3209 else 3210 ep_ring->enqueue->link.control |= 3211 cpu_to_le32(TRB_CHAIN); 3212 3213 wmb(); 3214 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); 3215 3216 /* Toggle the cycle bit after the last ring segment. */ 3217 if (link_trb_toggles_cycle(ep_ring->enqueue)) 3218 ep_ring->cycle_state ^= 1; 3219 3220 ep_ring->enq_seg = ep_ring->enq_seg->next; 3221 ep_ring->enqueue = ep_ring->enq_seg->trbs; 3222 3223 /* prevent infinite loop if all first trbs are link trbs */ 3224 if (link_trb_count++ > ep_ring->num_segs) { 3225 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 3226 return -EINVAL; 3227 } 3228 } 3229 3230 if (last_trb_on_seg(ep_ring->enq_seg, ep_ring->enqueue)) { 3231 xhci_warn(xhci, "Missing link TRB at end of ring segment\n"); 3232 return -EINVAL; 3233 } 3234 3235 return 0; 3236 } 3237 3238 static int prepare_transfer(struct xhci_hcd *xhci, 3239 struct xhci_virt_device *xdev, 3240 unsigned int ep_index, 3241 unsigned int stream_id, 3242 unsigned int num_trbs, 3243 struct urb *urb, 3244 unsigned int td_index, 3245 gfp_t mem_flags) 3246 { 3247 int ret; 3248 struct urb_priv *urb_priv; 3249 struct xhci_td *td; 3250 struct xhci_ring *ep_ring; 3251 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3252 3253 ep_ring = xhci_triad_to_transfer_ring(xhci, xdev->slot_id, ep_index, 3254 stream_id); 3255 if (!ep_ring) { 3256 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 3257 stream_id); 3258 return -EINVAL; 3259 } 3260 3261 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 3262 num_trbs, mem_flags); 3263 if (ret) 3264 return ret; 3265 3266 urb_priv = urb->hcpriv; 3267 td = &urb_priv->td[td_index]; 3268 3269 INIT_LIST_HEAD(&td->td_list); 3270 INIT_LIST_HEAD(&td->cancelled_td_list); 3271 3272 if (td_index == 0) { 3273 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 3274 if (unlikely(ret)) 3275 return ret; 3276 } 3277 3278 td->urb = urb; 3279 /* Add this TD to the tail of the endpoint ring's TD list */ 3280 list_add_tail(&td->td_list, &ep_ring->td_list); 3281 td->start_seg = ep_ring->enq_seg; 3282 td->first_trb = ep_ring->enqueue; 3283 3284 return 0; 3285 } 3286 3287 unsigned int count_trbs(u64 addr, u64 len) 3288 { 3289 unsigned int num_trbs; 3290 3291 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3292 TRB_MAX_BUFF_SIZE); 3293 if (num_trbs == 0) 3294 num_trbs++; 3295 3296 return num_trbs; 3297 } 3298 3299 static inline unsigned int count_trbs_needed(struct urb *urb) 3300 { 3301 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); 3302 } 3303 3304 static unsigned int count_sg_trbs_needed(struct urb *urb) 3305 { 3306 struct scatterlist *sg; 3307 unsigned int i, len, full_len, num_trbs = 0; 3308 3309 full_len = urb->transfer_buffer_length; 3310 3311 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { 3312 len = sg_dma_len(sg); 3313 num_trbs += count_trbs(sg_dma_address(sg), len); 3314 len = min_t(unsigned int, len, full_len); 3315 full_len -= len; 3316 if (full_len == 0) 3317 break; 3318 } 3319 3320 return num_trbs; 3321 } 3322 3323 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) 3324 { 3325 u64 addr, len; 3326 3327 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3328 len = urb->iso_frame_desc[i].length; 3329 3330 return count_trbs(addr, len); 3331 } 3332 3333 static void check_trb_math(struct urb *urb, int running_total) 3334 { 3335 if (unlikely(running_total != urb->transfer_buffer_length)) 3336 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3337 "queued %#x (%d), asked for %#x (%d)\n", 3338 __func__, 3339 urb->ep->desc.bEndpointAddress, 3340 running_total, running_total, 3341 urb->transfer_buffer_length, 3342 urb->transfer_buffer_length); 3343 } 3344 3345 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3346 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3347 struct xhci_generic_trb *start_trb) 3348 { 3349 /* 3350 * Pass all the TRBs to the hardware at once and make sure this write 3351 * isn't reordered. 3352 */ 3353 wmb(); 3354 if (start_cycle) 3355 start_trb->field[3] |= cpu_to_le32(start_cycle); 3356 else 3357 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3358 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3359 } 3360 3361 static void check_interval(struct xhci_hcd *xhci, struct urb *urb, 3362 struct xhci_ep_ctx *ep_ctx) 3363 { 3364 int xhci_interval; 3365 int ep_interval; 3366 3367 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3368 ep_interval = urb->interval; 3369 3370 /* Convert to microframes */ 3371 if (urb->dev->speed == USB_SPEED_LOW || 3372 urb->dev->speed == USB_SPEED_FULL) 3373 ep_interval *= 8; 3374 3375 /* FIXME change this to a warning and a suggestion to use the new API 3376 * to set the polling interval (once the API is added). 3377 */ 3378 if (xhci_interval != ep_interval) { 3379 dev_dbg_ratelimited(&urb->dev->dev, 3380 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3381 ep_interval, ep_interval == 1 ? "" : "s", 3382 xhci_interval, xhci_interval == 1 ? "" : "s"); 3383 urb->interval = xhci_interval; 3384 /* Convert back to frames for LS/FS devices */ 3385 if (urb->dev->speed == USB_SPEED_LOW || 3386 urb->dev->speed == USB_SPEED_FULL) 3387 urb->interval /= 8; 3388 } 3389 } 3390 3391 /* 3392 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3393 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3394 * (comprised of sg list entries) can take several service intervals to 3395 * transmit. 3396 */ 3397 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3398 struct urb *urb, int slot_id, unsigned int ep_index) 3399 { 3400 struct xhci_ep_ctx *ep_ctx; 3401 3402 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); 3403 check_interval(xhci, urb, ep_ctx); 3404 3405 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3406 } 3407 3408 /* 3409 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3410 * packets remaining in the TD (*not* including this TRB). 3411 * 3412 * Total TD packet count = total_packet_count = 3413 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3414 * 3415 * Packets transferred up to and including this TRB = packets_transferred = 3416 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3417 * 3418 * TD size = total_packet_count - packets_transferred 3419 * 3420 * For xHCI 0.96 and older, TD size field should be the remaining bytes 3421 * including this TRB, right shifted by 10 3422 * 3423 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. 3424 * This is taken care of in the TRB_TD_SIZE() macro 3425 * 3426 * The last TRB in a TD must have the TD size set to zero. 3427 */ 3428 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, 3429 int trb_buff_len, unsigned int td_total_len, 3430 struct urb *urb, bool more_trbs_coming) 3431 { 3432 u32 maxp, total_packet_count; 3433 3434 /* MTK xHCI 0.96 contains some features from 1.0 */ 3435 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) 3436 return ((td_total_len - transferred) >> 10); 3437 3438 /* One TRB with a zero-length data packet. */ 3439 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || 3440 trb_buff_len == td_total_len) 3441 return 0; 3442 3443 /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */ 3444 if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100)) 3445 trb_buff_len = 0; 3446 3447 maxp = usb_endpoint_maxp(&urb->ep->desc); 3448 total_packet_count = DIV_ROUND_UP(td_total_len, maxp); 3449 3450 /* Queueing functions don't count the current TRB into transferred */ 3451 return (total_packet_count - ((transferred + trb_buff_len) / maxp)); 3452 } 3453 3454 3455 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, 3456 u32 *trb_buff_len, struct xhci_segment *seg) 3457 { 3458 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 3459 unsigned int unalign; 3460 unsigned int max_pkt; 3461 u32 new_buff_len; 3462 size_t len; 3463 3464 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3465 unalign = (enqd_len + *trb_buff_len) % max_pkt; 3466 3467 /* we got lucky, last normal TRB data on segment is packet aligned */ 3468 if (unalign == 0) 3469 return 0; 3470 3471 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", 3472 unalign, *trb_buff_len); 3473 3474 /* is the last nornal TRB alignable by splitting it */ 3475 if (*trb_buff_len > unalign) { 3476 *trb_buff_len -= unalign; 3477 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); 3478 return 0; 3479 } 3480 3481 /* 3482 * We want enqd_len + trb_buff_len to sum up to a number aligned to 3483 * number which is divisible by the endpoint's wMaxPacketSize. IOW: 3484 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. 3485 */ 3486 new_buff_len = max_pkt - (enqd_len % max_pkt); 3487 3488 if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) 3489 new_buff_len = (urb->transfer_buffer_length - enqd_len); 3490 3491 /* create a max max_pkt sized bounce buffer pointed to by last trb */ 3492 if (usb_urb_dir_out(urb)) { 3493 if (urb->num_sgs) { 3494 len = sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 3495 seg->bounce_buf, new_buff_len, enqd_len); 3496 if (len != new_buff_len) 3497 xhci_warn(xhci, "WARN Wrong bounce buffer write length: %zu != %d\n", 3498 len, new_buff_len); 3499 } else { 3500 memcpy(seg->bounce_buf, urb->transfer_buffer + enqd_len, new_buff_len); 3501 } 3502 3503 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3504 max_pkt, DMA_TO_DEVICE); 3505 } else { 3506 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3507 max_pkt, DMA_FROM_DEVICE); 3508 } 3509 3510 if (dma_mapping_error(dev, seg->bounce_dma)) { 3511 /* try without aligning. Some host controllers survive */ 3512 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); 3513 return 0; 3514 } 3515 *trb_buff_len = new_buff_len; 3516 seg->bounce_len = new_buff_len; 3517 seg->bounce_offs = enqd_len; 3518 3519 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); 3520 3521 return 1; 3522 } 3523 3524 /* This is very similar to what ehci-q.c qtd_fill() does */ 3525 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3526 struct urb *urb, int slot_id, unsigned int ep_index) 3527 { 3528 struct xhci_ring *ring; 3529 struct urb_priv *urb_priv; 3530 struct xhci_td *td; 3531 struct xhci_generic_trb *start_trb; 3532 struct scatterlist *sg = NULL; 3533 bool more_trbs_coming = true; 3534 bool need_zero_pkt = false; 3535 bool first_trb = true; 3536 unsigned int num_trbs; 3537 unsigned int start_cycle, num_sgs = 0; 3538 unsigned int enqd_len, block_len, trb_buff_len, full_len; 3539 int sent_len, ret; 3540 u32 field, length_field, remainder; 3541 u64 addr, send_addr; 3542 3543 ring = xhci_urb_to_transfer_ring(xhci, urb); 3544 if (!ring) 3545 return -EINVAL; 3546 3547 full_len = urb->transfer_buffer_length; 3548 /* If we have scatter/gather list, we use it. */ 3549 if (urb->num_sgs && !(urb->transfer_flags & URB_DMA_MAP_SINGLE)) { 3550 num_sgs = urb->num_mapped_sgs; 3551 sg = urb->sg; 3552 addr = (u64) sg_dma_address(sg); 3553 block_len = sg_dma_len(sg); 3554 num_trbs = count_sg_trbs_needed(urb); 3555 } else { 3556 num_trbs = count_trbs_needed(urb); 3557 addr = (u64) urb->transfer_dma; 3558 block_len = full_len; 3559 } 3560 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3561 ep_index, urb->stream_id, 3562 num_trbs, urb, 0, mem_flags); 3563 if (unlikely(ret < 0)) 3564 return ret; 3565 3566 urb_priv = urb->hcpriv; 3567 3568 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3569 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) 3570 need_zero_pkt = true; 3571 3572 td = &urb_priv->td[0]; 3573 3574 /* 3575 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3576 * until we've finished creating all the other TRBs. The ring's cycle 3577 * state may change as we enqueue the other TRBs, so save it too. 3578 */ 3579 start_trb = &ring->enqueue->generic; 3580 start_cycle = ring->cycle_state; 3581 send_addr = addr; 3582 3583 /* Queue the TRBs, even if they are zero-length */ 3584 for (enqd_len = 0; first_trb || enqd_len < full_len; 3585 enqd_len += trb_buff_len) { 3586 field = TRB_TYPE(TRB_NORMAL); 3587 3588 /* TRB buffer should not cross 64KB boundaries */ 3589 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3590 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); 3591 3592 if (enqd_len + trb_buff_len > full_len) 3593 trb_buff_len = full_len - enqd_len; 3594 3595 /* Don't change the cycle bit of the first TRB until later */ 3596 if (first_trb) { 3597 first_trb = false; 3598 if (start_cycle == 0) 3599 field |= TRB_CYCLE; 3600 } else 3601 field |= ring->cycle_state; 3602 3603 /* Chain all the TRBs together; clear the chain bit in the last 3604 * TRB to indicate it's the last TRB in the chain. 3605 */ 3606 if (enqd_len + trb_buff_len < full_len) { 3607 field |= TRB_CHAIN; 3608 if (trb_is_link(ring->enqueue + 1)) { 3609 if (xhci_align_td(xhci, urb, enqd_len, 3610 &trb_buff_len, 3611 ring->enq_seg)) { 3612 send_addr = ring->enq_seg->bounce_dma; 3613 /* assuming TD won't span 2 segs */ 3614 td->bounce_seg = ring->enq_seg; 3615 } 3616 } 3617 } 3618 if (enqd_len + trb_buff_len >= full_len) { 3619 field &= ~TRB_CHAIN; 3620 field |= TRB_IOC; 3621 more_trbs_coming = false; 3622 td->last_trb = ring->enqueue; 3623 td->last_trb_seg = ring->enq_seg; 3624 if (xhci_urb_suitable_for_idt(urb)) { 3625 memcpy(&send_addr, urb->transfer_buffer, 3626 trb_buff_len); 3627 le64_to_cpus(&send_addr); 3628 field |= TRB_IDT; 3629 } 3630 } 3631 3632 /* Only set interrupt on short packet for IN endpoints */ 3633 if (usb_urb_dir_in(urb)) 3634 field |= TRB_ISP; 3635 3636 /* Set the TRB length, TD size, and interrupter fields. */ 3637 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, 3638 full_len, urb, more_trbs_coming); 3639 3640 length_field = TRB_LEN(trb_buff_len) | 3641 TRB_TD_SIZE(remainder) | 3642 TRB_INTR_TARGET(0); 3643 3644 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, 3645 lower_32_bits(send_addr), 3646 upper_32_bits(send_addr), 3647 length_field, 3648 field); 3649 td->num_trbs++; 3650 addr += trb_buff_len; 3651 sent_len = trb_buff_len; 3652 3653 while (sg && sent_len >= block_len) { 3654 /* New sg entry */ 3655 --num_sgs; 3656 sent_len -= block_len; 3657 sg = sg_next(sg); 3658 if (num_sgs != 0 && sg) { 3659 block_len = sg_dma_len(sg); 3660 addr = (u64) sg_dma_address(sg); 3661 addr += sent_len; 3662 } 3663 } 3664 block_len -= sent_len; 3665 send_addr = addr; 3666 } 3667 3668 if (need_zero_pkt) { 3669 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3670 ep_index, urb->stream_id, 3671 1, urb, 1, mem_flags); 3672 urb_priv->td[1].last_trb = ring->enqueue; 3673 urb_priv->td[1].last_trb_seg = ring->enq_seg; 3674 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; 3675 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); 3676 urb_priv->td[1].num_trbs++; 3677 } 3678 3679 check_trb_math(urb, enqd_len); 3680 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3681 start_cycle, start_trb); 3682 return 0; 3683 } 3684 3685 /* Caller must have locked xhci->lock */ 3686 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3687 struct urb *urb, int slot_id, unsigned int ep_index) 3688 { 3689 struct xhci_ring *ep_ring; 3690 int num_trbs; 3691 int ret; 3692 struct usb_ctrlrequest *setup; 3693 struct xhci_generic_trb *start_trb; 3694 int start_cycle; 3695 u32 field; 3696 struct urb_priv *urb_priv; 3697 struct xhci_td *td; 3698 3699 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3700 if (!ep_ring) 3701 return -EINVAL; 3702 3703 /* 3704 * Need to copy setup packet into setup TRB, so we can't use the setup 3705 * DMA address. 3706 */ 3707 if (!urb->setup_packet) 3708 return -EINVAL; 3709 3710 /* 1 TRB for setup, 1 for status */ 3711 num_trbs = 2; 3712 /* 3713 * Don't need to check if we need additional event data and normal TRBs, 3714 * since data in control transfers will never get bigger than 16MB 3715 * XXX: can we get a buffer that crosses 64KB boundaries? 3716 */ 3717 if (urb->transfer_buffer_length > 0) 3718 num_trbs++; 3719 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3720 ep_index, urb->stream_id, 3721 num_trbs, urb, 0, mem_flags); 3722 if (ret < 0) 3723 return ret; 3724 3725 urb_priv = urb->hcpriv; 3726 td = &urb_priv->td[0]; 3727 td->num_trbs = num_trbs; 3728 3729 /* 3730 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3731 * until we've finished creating all the other TRBs. The ring's cycle 3732 * state may change as we enqueue the other TRBs, so save it too. 3733 */ 3734 start_trb = &ep_ring->enqueue->generic; 3735 start_cycle = ep_ring->cycle_state; 3736 3737 /* Queue setup TRB - see section 6.4.1.2.1 */ 3738 /* FIXME better way to translate setup_packet into two u32 fields? */ 3739 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3740 field = 0; 3741 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3742 if (start_cycle == 0) 3743 field |= 0x1; 3744 3745 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ 3746 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { 3747 if (urb->transfer_buffer_length > 0) { 3748 if (setup->bRequestType & USB_DIR_IN) 3749 field |= TRB_TX_TYPE(TRB_DATA_IN); 3750 else 3751 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3752 } 3753 } 3754 3755 queue_trb(xhci, ep_ring, true, 3756 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3757 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3758 TRB_LEN(8) | TRB_INTR_TARGET(0), 3759 /* Immediate data in pointer */ 3760 field); 3761 3762 /* If there's data, queue data TRBs */ 3763 /* Only set interrupt on short packet for IN endpoints */ 3764 if (usb_urb_dir_in(urb)) 3765 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3766 else 3767 field = TRB_TYPE(TRB_DATA); 3768 3769 if (urb->transfer_buffer_length > 0) { 3770 u32 length_field, remainder; 3771 u64 addr; 3772 3773 if (xhci_urb_suitable_for_idt(urb)) { 3774 memcpy(&addr, urb->transfer_buffer, 3775 urb->transfer_buffer_length); 3776 le64_to_cpus(&addr); 3777 field |= TRB_IDT; 3778 } else { 3779 addr = (u64) urb->transfer_dma; 3780 } 3781 3782 remainder = xhci_td_remainder(xhci, 0, 3783 urb->transfer_buffer_length, 3784 urb->transfer_buffer_length, 3785 urb, 1); 3786 length_field = TRB_LEN(urb->transfer_buffer_length) | 3787 TRB_TD_SIZE(remainder) | 3788 TRB_INTR_TARGET(0); 3789 if (setup->bRequestType & USB_DIR_IN) 3790 field |= TRB_DIR_IN; 3791 queue_trb(xhci, ep_ring, true, 3792 lower_32_bits(addr), 3793 upper_32_bits(addr), 3794 length_field, 3795 field | ep_ring->cycle_state); 3796 } 3797 3798 /* Save the DMA address of the last TRB in the TD */ 3799 td->last_trb = ep_ring->enqueue; 3800 td->last_trb_seg = ep_ring->enq_seg; 3801 3802 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3803 /* If the device sent data, the status stage is an OUT transfer */ 3804 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3805 field = 0; 3806 else 3807 field = TRB_DIR_IN; 3808 queue_trb(xhci, ep_ring, false, 3809 0, 3810 0, 3811 TRB_INTR_TARGET(0), 3812 /* Event on completion */ 3813 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3814 3815 giveback_first_trb(xhci, slot_id, ep_index, 0, 3816 start_cycle, start_trb); 3817 return 0; 3818 } 3819 3820 /* 3821 * The transfer burst count field of the isochronous TRB defines the number of 3822 * bursts that are required to move all packets in this TD. Only SuperSpeed 3823 * devices can burst up to bMaxBurst number of packets per service interval. 3824 * This field is zero based, meaning a value of zero in the field means one 3825 * burst. Basically, for everything but SuperSpeed devices, this field will be 3826 * zero. Only xHCI 1.0 host controllers support this field. 3827 */ 3828 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3829 struct urb *urb, unsigned int total_packet_count) 3830 { 3831 unsigned int max_burst; 3832 3833 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) 3834 return 0; 3835 3836 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3837 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3838 } 3839 3840 /* 3841 * Returns the number of packets in the last "burst" of packets. This field is 3842 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3843 * the last burst packet count is equal to the total number of packets in the 3844 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3845 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3846 * contain 1 to (bMaxBurst + 1) packets. 3847 */ 3848 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3849 struct urb *urb, unsigned int total_packet_count) 3850 { 3851 unsigned int max_burst; 3852 unsigned int residue; 3853 3854 if (xhci->hci_version < 0x100) 3855 return 0; 3856 3857 if (urb->dev->speed >= USB_SPEED_SUPER) { 3858 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3859 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3860 residue = total_packet_count % (max_burst + 1); 3861 /* If residue is zero, the last burst contains (max_burst + 1) 3862 * number of packets, but the TLBPC field is zero-based. 3863 */ 3864 if (residue == 0) 3865 return max_burst; 3866 return residue - 1; 3867 } 3868 if (total_packet_count == 0) 3869 return 0; 3870 return total_packet_count - 1; 3871 } 3872 3873 /* 3874 * Calculates Frame ID field of the isochronous TRB identifies the 3875 * target frame that the Interval associated with this Isochronous 3876 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. 3877 * 3878 * Returns actual frame id on success, negative value on error. 3879 */ 3880 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, 3881 struct urb *urb, int index) 3882 { 3883 int start_frame, ist, ret = 0; 3884 int start_frame_id, end_frame_id, current_frame_id; 3885 3886 if (urb->dev->speed == USB_SPEED_LOW || 3887 urb->dev->speed == USB_SPEED_FULL) 3888 start_frame = urb->start_frame + index * urb->interval; 3889 else 3890 start_frame = (urb->start_frame + index * urb->interval) >> 3; 3891 3892 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): 3893 * 3894 * If bit [3] of IST is cleared to '0', software can add a TRB no 3895 * later than IST[2:0] Microframes before that TRB is scheduled to 3896 * be executed. 3897 * If bit [3] of IST is set to '1', software can add a TRB no later 3898 * than IST[2:0] Frames before that TRB is scheduled to be executed. 3899 */ 3900 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3901 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3902 ist <<= 3; 3903 3904 /* Software shall not schedule an Isoch TD with a Frame ID value that 3905 * is less than the Start Frame ID or greater than the End Frame ID, 3906 * where: 3907 * 3908 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 3909 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 3910 * 3911 * Both the End Frame ID and Start Frame ID values are calculated 3912 * in microframes. When software determines the valid Frame ID value; 3913 * The End Frame ID value should be rounded down to the nearest Frame 3914 * boundary, and the Start Frame ID value should be rounded up to the 3915 * nearest Frame boundary. 3916 */ 3917 current_frame_id = readl(&xhci->run_regs->microframe_index); 3918 start_frame_id = roundup(current_frame_id + ist + 1, 8); 3919 end_frame_id = rounddown(current_frame_id + 895 * 8, 8); 3920 3921 start_frame &= 0x7ff; 3922 start_frame_id = (start_frame_id >> 3) & 0x7ff; 3923 end_frame_id = (end_frame_id >> 3) & 0x7ff; 3924 3925 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n", 3926 __func__, index, readl(&xhci->run_regs->microframe_index), 3927 start_frame_id, end_frame_id, start_frame); 3928 3929 if (start_frame_id < end_frame_id) { 3930 if (start_frame > end_frame_id || 3931 start_frame < start_frame_id) 3932 ret = -EINVAL; 3933 } else if (start_frame_id > end_frame_id) { 3934 if ((start_frame > end_frame_id && 3935 start_frame < start_frame_id)) 3936 ret = -EINVAL; 3937 } else { 3938 ret = -EINVAL; 3939 } 3940 3941 if (index == 0) { 3942 if (ret == -EINVAL || start_frame == start_frame_id) { 3943 start_frame = start_frame_id + 1; 3944 if (urb->dev->speed == USB_SPEED_LOW || 3945 urb->dev->speed == USB_SPEED_FULL) 3946 urb->start_frame = start_frame; 3947 else 3948 urb->start_frame = start_frame << 3; 3949 ret = 0; 3950 } 3951 } 3952 3953 if (ret) { 3954 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", 3955 start_frame, current_frame_id, index, 3956 start_frame_id, end_frame_id); 3957 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); 3958 return ret; 3959 } 3960 3961 return start_frame; 3962 } 3963 3964 /* Check if we should generate event interrupt for a TD in an isoc URB */ 3965 static bool trb_block_event_intr(struct xhci_hcd *xhci, int num_tds, int i) 3966 { 3967 if (xhci->hci_version < 0x100) 3968 return false; 3969 /* always generate an event interrupt for the last TD */ 3970 if (i == num_tds - 1) 3971 return false; 3972 /* 3973 * If AVOID_BEI is set the host handles full event rings poorly, 3974 * generate an event at least every 8th TD to clear the event ring 3975 */ 3976 if (i && xhci->quirks & XHCI_AVOID_BEI) 3977 return !!(i % xhci->isoc_bei_interval); 3978 3979 return true; 3980 } 3981 3982 /* This is for isoc transfer */ 3983 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3984 struct urb *urb, int slot_id, unsigned int ep_index) 3985 { 3986 struct xhci_ring *ep_ring; 3987 struct urb_priv *urb_priv; 3988 struct xhci_td *td; 3989 int num_tds, trbs_per_td; 3990 struct xhci_generic_trb *start_trb; 3991 bool first_trb; 3992 int start_cycle; 3993 u32 field, length_field; 3994 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3995 u64 start_addr, addr; 3996 int i, j; 3997 bool more_trbs_coming; 3998 struct xhci_virt_ep *xep; 3999 int frame_id; 4000 4001 xep = &xhci->devs[slot_id]->eps[ep_index]; 4002 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 4003 4004 num_tds = urb->number_of_packets; 4005 if (num_tds < 1) { 4006 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 4007 return -EINVAL; 4008 } 4009 start_addr = (u64) urb->transfer_dma; 4010 start_trb = &ep_ring->enqueue->generic; 4011 start_cycle = ep_ring->cycle_state; 4012 4013 urb_priv = urb->hcpriv; 4014 /* Queue the TRBs for each TD, even if they are zero-length */ 4015 for (i = 0; i < num_tds; i++) { 4016 unsigned int total_pkt_count, max_pkt; 4017 unsigned int burst_count, last_burst_pkt_count; 4018 u32 sia_frame_id; 4019 4020 first_trb = true; 4021 running_total = 0; 4022 addr = start_addr + urb->iso_frame_desc[i].offset; 4023 td_len = urb->iso_frame_desc[i].length; 4024 td_remain_len = td_len; 4025 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 4026 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); 4027 4028 /* A zero-length transfer still involves at least one packet. */ 4029 if (total_pkt_count == 0) 4030 total_pkt_count++; 4031 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); 4032 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, 4033 urb, total_pkt_count); 4034 4035 trbs_per_td = count_isoc_trbs_needed(urb, i); 4036 4037 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 4038 urb->stream_id, trbs_per_td, urb, i, mem_flags); 4039 if (ret < 0) { 4040 if (i == 0) 4041 return ret; 4042 goto cleanup; 4043 } 4044 td = &urb_priv->td[i]; 4045 td->num_trbs = trbs_per_td; 4046 /* use SIA as default, if frame id is used overwrite it */ 4047 sia_frame_id = TRB_SIA; 4048 if (!(urb->transfer_flags & URB_ISO_ASAP) && 4049 HCC_CFC(xhci->hcc_params)) { 4050 frame_id = xhci_get_isoc_frame_id(xhci, urb, i); 4051 if (frame_id >= 0) 4052 sia_frame_id = TRB_FRAME_ID(frame_id); 4053 } 4054 /* 4055 * Set isoc specific data for the first TRB in a TD. 4056 * Prevent HW from getting the TRBs by keeping the cycle state 4057 * inverted in the first TDs isoc TRB. 4058 */ 4059 field = TRB_TYPE(TRB_ISOC) | 4060 TRB_TLBPC(last_burst_pkt_count) | 4061 sia_frame_id | 4062 (i ? ep_ring->cycle_state : !start_cycle); 4063 4064 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ 4065 if (!xep->use_extended_tbc) 4066 field |= TRB_TBC(burst_count); 4067 4068 /* fill the rest of the TRB fields, and remaining normal TRBs */ 4069 for (j = 0; j < trbs_per_td; j++) { 4070 u32 remainder = 0; 4071 4072 /* only first TRB is isoc, overwrite otherwise */ 4073 if (!first_trb) 4074 field = TRB_TYPE(TRB_NORMAL) | 4075 ep_ring->cycle_state; 4076 4077 /* Only set interrupt on short packet for IN EPs */ 4078 if (usb_urb_dir_in(urb)) 4079 field |= TRB_ISP; 4080 4081 /* Set the chain bit for all except the last TRB */ 4082 if (j < trbs_per_td - 1) { 4083 more_trbs_coming = true; 4084 field |= TRB_CHAIN; 4085 } else { 4086 more_trbs_coming = false; 4087 td->last_trb = ep_ring->enqueue; 4088 td->last_trb_seg = ep_ring->enq_seg; 4089 field |= TRB_IOC; 4090 if (trb_block_event_intr(xhci, num_tds, i)) 4091 field |= TRB_BEI; 4092 } 4093 /* Calculate TRB length */ 4094 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 4095 if (trb_buff_len > td_remain_len) 4096 trb_buff_len = td_remain_len; 4097 4098 /* Set the TRB length, TD size, & interrupter fields. */ 4099 remainder = xhci_td_remainder(xhci, running_total, 4100 trb_buff_len, td_len, 4101 urb, more_trbs_coming); 4102 4103 length_field = TRB_LEN(trb_buff_len) | 4104 TRB_INTR_TARGET(0); 4105 4106 /* xhci 1.1 with ETE uses TD Size field for TBC */ 4107 if (first_trb && xep->use_extended_tbc) 4108 length_field |= TRB_TD_SIZE_TBC(burst_count); 4109 else 4110 length_field |= TRB_TD_SIZE(remainder); 4111 first_trb = false; 4112 4113 queue_trb(xhci, ep_ring, more_trbs_coming, 4114 lower_32_bits(addr), 4115 upper_32_bits(addr), 4116 length_field, 4117 field); 4118 running_total += trb_buff_len; 4119 4120 addr += trb_buff_len; 4121 td_remain_len -= trb_buff_len; 4122 } 4123 4124 /* Check TD length */ 4125 if (running_total != td_len) { 4126 xhci_err(xhci, "ISOC TD length unmatch\n"); 4127 ret = -EINVAL; 4128 goto cleanup; 4129 } 4130 } 4131 4132 /* store the next frame id */ 4133 if (HCC_CFC(xhci->hcc_params)) 4134 xep->next_frame_id = urb->start_frame + num_tds * urb->interval; 4135 4136 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 4137 if (xhci->quirks & XHCI_AMD_PLL_FIX) 4138 usb_amd_quirk_pll_disable(); 4139 } 4140 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 4141 4142 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 4143 start_cycle, start_trb); 4144 return 0; 4145 cleanup: 4146 /* Clean up a partially enqueued isoc transfer. */ 4147 4148 for (i--; i >= 0; i--) 4149 list_del_init(&urb_priv->td[i].td_list); 4150 4151 /* Use the first TD as a temporary variable to turn the TDs we've queued 4152 * into No-ops with a software-owned cycle bit. That way the hardware 4153 * won't accidentally start executing bogus TDs when we partially 4154 * overwrite them. td->first_trb and td->start_seg are already set. 4155 */ 4156 urb_priv->td[0].last_trb = ep_ring->enqueue; 4157 /* Every TRB except the first & last will have its cycle bit flipped. */ 4158 td_to_noop(xhci, ep_ring, &urb_priv->td[0], true); 4159 4160 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 4161 ep_ring->enqueue = urb_priv->td[0].first_trb; 4162 ep_ring->enq_seg = urb_priv->td[0].start_seg; 4163 ep_ring->cycle_state = start_cycle; 4164 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 4165 return ret; 4166 } 4167 4168 /* 4169 * Check transfer ring to guarantee there is enough room for the urb. 4170 * Update ISO URB start_frame and interval. 4171 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to 4172 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or 4173 * Contiguous Frame ID is not supported by HC. 4174 */ 4175 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 4176 struct urb *urb, int slot_id, unsigned int ep_index) 4177 { 4178 struct xhci_virt_device *xdev; 4179 struct xhci_ring *ep_ring; 4180 struct xhci_ep_ctx *ep_ctx; 4181 int start_frame; 4182 int num_tds, num_trbs, i; 4183 int ret; 4184 struct xhci_virt_ep *xep; 4185 int ist; 4186 4187 xdev = xhci->devs[slot_id]; 4188 xep = &xhci->devs[slot_id]->eps[ep_index]; 4189 ep_ring = xdev->eps[ep_index].ring; 4190 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 4191 4192 num_trbs = 0; 4193 num_tds = urb->number_of_packets; 4194 for (i = 0; i < num_tds; i++) 4195 num_trbs += count_isoc_trbs_needed(urb, i); 4196 4197 /* Check the ring to guarantee there is enough room for the whole urb. 4198 * Do not insert any td of the urb to the ring if the check failed. 4199 */ 4200 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 4201 num_trbs, mem_flags); 4202 if (ret) 4203 return ret; 4204 4205 /* 4206 * Check interval value. This should be done before we start to 4207 * calculate the start frame value. 4208 */ 4209 check_interval(xhci, urb, ep_ctx); 4210 4211 /* Calculate the start frame and put it in urb->start_frame. */ 4212 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { 4213 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) { 4214 urb->start_frame = xep->next_frame_id; 4215 goto skip_start_over; 4216 } 4217 } 4218 4219 start_frame = readl(&xhci->run_regs->microframe_index); 4220 start_frame &= 0x3fff; 4221 /* 4222 * Round up to the next frame and consider the time before trb really 4223 * gets scheduled by hardare. 4224 */ 4225 ist = HCS_IST(xhci->hcs_params2) & 0x7; 4226 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 4227 ist <<= 3; 4228 start_frame += ist + XHCI_CFC_DELAY; 4229 start_frame = roundup(start_frame, 8); 4230 4231 /* 4232 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT 4233 * is greate than 8 microframes. 4234 */ 4235 if (urb->dev->speed == USB_SPEED_LOW || 4236 urb->dev->speed == USB_SPEED_FULL) { 4237 start_frame = roundup(start_frame, urb->interval << 3); 4238 urb->start_frame = start_frame >> 3; 4239 } else { 4240 start_frame = roundup(start_frame, urb->interval); 4241 urb->start_frame = start_frame; 4242 } 4243 4244 skip_start_over: 4245 4246 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 4247 } 4248 4249 /**** Command Ring Operations ****/ 4250 4251 /* Generic function for queueing a command TRB on the command ring. 4252 * Check to make sure there's room on the command ring for one command TRB. 4253 * Also check that there's room reserved for commands that must not fail. 4254 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 4255 * then only check for the number of reserved spots. 4256 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 4257 * because the command event handler may want to resubmit a failed command. 4258 */ 4259 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4260 u32 field1, u32 field2, 4261 u32 field3, u32 field4, bool command_must_succeed) 4262 { 4263 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 4264 int ret; 4265 4266 if ((xhci->xhc_state & XHCI_STATE_DYING) || 4267 (xhci->xhc_state & XHCI_STATE_HALTED)) { 4268 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); 4269 return -ESHUTDOWN; 4270 } 4271 4272 if (!command_must_succeed) 4273 reserved_trbs++; 4274 4275 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 4276 reserved_trbs, GFP_ATOMIC); 4277 if (ret < 0) { 4278 xhci_err(xhci, "ERR: No room for command on command ring\n"); 4279 if (command_must_succeed) 4280 xhci_err(xhci, "ERR: Reserved TRB counting for " 4281 "unfailable commands failed.\n"); 4282 return ret; 4283 } 4284 4285 cmd->command_trb = xhci->cmd_ring->enqueue; 4286 4287 /* if there are no other commands queued we start the timeout timer */ 4288 if (list_empty(&xhci->cmd_list)) { 4289 xhci->current_cmd = cmd; 4290 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 4291 } 4292 4293 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 4294 4295 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 4296 field4 | xhci->cmd_ring->cycle_state); 4297 return 0; 4298 } 4299 4300 /* Queue a slot enable or disable request on the command ring */ 4301 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 4302 u32 trb_type, u32 slot_id) 4303 { 4304 return queue_command(xhci, cmd, 0, 0, 0, 4305 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 4306 } 4307 4308 /* Queue an address device command TRB */ 4309 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4310 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 4311 { 4312 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4313 upper_32_bits(in_ctx_ptr), 0, 4314 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 4315 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 4316 } 4317 4318 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4319 u32 field1, u32 field2, u32 field3, u32 field4) 4320 { 4321 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 4322 } 4323 4324 /* Queue a reset device command TRB */ 4325 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4326 u32 slot_id) 4327 { 4328 return queue_command(xhci, cmd, 0, 0, 0, 4329 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 4330 false); 4331 } 4332 4333 /* Queue a configure endpoint command TRB */ 4334 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 4335 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 4336 u32 slot_id, bool command_must_succeed) 4337 { 4338 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4339 upper_32_bits(in_ctx_ptr), 0, 4340 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 4341 command_must_succeed); 4342 } 4343 4344 /* Queue an evaluate context command TRB */ 4345 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 4346 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 4347 { 4348 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4349 upper_32_bits(in_ctx_ptr), 0, 4350 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 4351 command_must_succeed); 4352 } 4353 4354 /* 4355 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 4356 * activity on an endpoint that is about to be suspended. 4357 */ 4358 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 4359 int slot_id, unsigned int ep_index, int suspend) 4360 { 4361 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4362 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4363 u32 type = TRB_TYPE(TRB_STOP_RING); 4364 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 4365 4366 return queue_command(xhci, cmd, 0, 0, 0, 4367 trb_slot_id | trb_ep_index | type | trb_suspend, false); 4368 } 4369 4370 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 4371 int slot_id, unsigned int ep_index, 4372 enum xhci_ep_reset_type reset_type) 4373 { 4374 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4375 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4376 u32 type = TRB_TYPE(TRB_RESET_EP); 4377 4378 if (reset_type == EP_SOFT_RESET) 4379 type |= TRB_TSP; 4380 4381 return queue_command(xhci, cmd, 0, 0, 0, 4382 trb_slot_id | trb_ep_index | type, false); 4383 } 4384