1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 /* 12 * Ring initialization rules: 13 * 1. Each segment is initialized to zero, except for link TRBs. 14 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 15 * Consumer Cycle State (CCS), depending on ring function. 16 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 17 * 18 * Ring behavior rules: 19 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 20 * least one free TRB in the ring. This is useful if you want to turn that 21 * into a link TRB and expand the ring. 22 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 23 * link TRB, then load the pointer with the address in the link TRB. If the 24 * link TRB had its toggle bit set, you may need to update the ring cycle 25 * state (see cycle bit rules). You may have to do this multiple times 26 * until you reach a non-link TRB. 27 * 3. A ring is full if enqueue++ (for the definition of increment above) 28 * equals the dequeue pointer. 29 * 30 * Cycle bit rules: 31 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 32 * in a link TRB, it must toggle the ring cycle state. 33 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 34 * in a link TRB, it must toggle the ring cycle state. 35 * 36 * Producer rules: 37 * 1. Check if ring is full before you enqueue. 38 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 39 * Update enqueue pointer between each write (which may update the ring 40 * cycle state). 41 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 42 * and endpoint rings. If HC is the producer for the event ring, 43 * and it generates an interrupt according to interrupt modulation rules. 44 * 45 * Consumer rules: 46 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 47 * the TRB is owned by the consumer. 48 * 2. Update dequeue pointer (which may update the ring cycle state) and 49 * continue processing TRBs until you reach a TRB which is not owned by you. 50 * 3. Notify the producer. SW is the consumer for the event ring, and it 51 * updates event ring dequeue pointer. HC is the consumer for the command and 52 * endpoint rings; it generates events on the event ring for these. 53 */ 54 55 #include <linux/scatterlist.h> 56 #include <linux/slab.h> 57 #include <linux/dma-mapping.h> 58 #include "xhci.h" 59 #include "xhci-trace.h" 60 61 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 62 u32 field1, u32 field2, 63 u32 field3, u32 field4, bool command_must_succeed); 64 65 /* 66 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 67 * address of the TRB. 68 */ 69 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 70 union xhci_trb *trb) 71 { 72 unsigned long segment_offset; 73 74 if (!seg || !trb || trb < seg->trbs) 75 return 0; 76 /* offset in TRBs */ 77 segment_offset = trb - seg->trbs; 78 if (segment_offset >= TRBS_PER_SEGMENT) 79 return 0; 80 return seg->dma + (segment_offset * sizeof(*trb)); 81 } 82 83 static bool trb_is_noop(union xhci_trb *trb) 84 { 85 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); 86 } 87 88 static bool trb_is_link(union xhci_trb *trb) 89 { 90 return TRB_TYPE_LINK_LE32(trb->link.control); 91 } 92 93 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) 94 { 95 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; 96 } 97 98 static bool last_trb_on_ring(struct xhci_ring *ring, 99 struct xhci_segment *seg, union xhci_trb *trb) 100 { 101 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); 102 } 103 104 static bool link_trb_toggles_cycle(union xhci_trb *trb) 105 { 106 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 107 } 108 109 static bool last_td_in_urb(struct xhci_td *td) 110 { 111 struct urb_priv *urb_priv = td->urb->hcpriv; 112 113 return urb_priv->num_tds_done == urb_priv->num_tds; 114 } 115 116 static bool unhandled_event_trb(struct xhci_ring *ring) 117 { 118 return ((le32_to_cpu(ring->dequeue->event_cmd.flags) & TRB_CYCLE) == 119 ring->cycle_state); 120 } 121 122 static void inc_td_cnt(struct urb *urb) 123 { 124 struct urb_priv *urb_priv = urb->hcpriv; 125 126 urb_priv->num_tds_done++; 127 } 128 129 static void trb_to_noop(union xhci_trb *trb, u32 noop_type) 130 { 131 if (trb_is_link(trb)) { 132 /* unchain chained link TRBs */ 133 trb->link.control &= cpu_to_le32(~TRB_CHAIN); 134 } else { 135 trb->generic.field[0] = 0; 136 trb->generic.field[1] = 0; 137 trb->generic.field[2] = 0; 138 /* Preserve only the cycle bit of this TRB */ 139 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 140 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); 141 } 142 } 143 144 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 145 * TRB is in a new segment. This does not skip over link TRBs, and it does not 146 * effect the ring dequeue or enqueue pointers. 147 */ 148 static void next_trb(struct xhci_hcd *xhci, 149 struct xhci_ring *ring, 150 struct xhci_segment **seg, 151 union xhci_trb **trb) 152 { 153 if (trb_is_link(*trb) || last_trb_on_seg(*seg, *trb)) { 154 *seg = (*seg)->next; 155 *trb = ((*seg)->trbs); 156 } else { 157 (*trb)++; 158 } 159 } 160 161 /* 162 * See Cycle bit rules. SW is the consumer for the event ring only. 163 */ 164 void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 165 { 166 unsigned int link_trb_count = 0; 167 168 /* event ring doesn't have link trbs, check for last trb */ 169 if (ring->type == TYPE_EVENT) { 170 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 171 ring->dequeue++; 172 goto out; 173 } 174 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) 175 ring->cycle_state ^= 1; 176 ring->deq_seg = ring->deq_seg->next; 177 ring->dequeue = ring->deq_seg->trbs; 178 goto out; 179 } 180 181 /* All other rings have link trbs */ 182 if (!trb_is_link(ring->dequeue)) { 183 if (last_trb_on_seg(ring->deq_seg, ring->dequeue)) 184 xhci_warn(xhci, "Missing link TRB at end of segment\n"); 185 else 186 ring->dequeue++; 187 } 188 189 while (trb_is_link(ring->dequeue)) { 190 ring->deq_seg = ring->deq_seg->next; 191 ring->dequeue = ring->deq_seg->trbs; 192 193 if (link_trb_count++ > ring->num_segs) { 194 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 195 break; 196 } 197 } 198 out: 199 trace_xhci_inc_deq(ring); 200 201 return; 202 } 203 204 /* 205 * See Cycle bit rules. SW is the consumer for the event ring only. 206 * 207 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 208 * chain bit is set), then set the chain bit in all the following link TRBs. 209 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 210 * have their chain bit cleared (so that each Link TRB is a separate TD). 211 * 212 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 213 * set, but other sections talk about dealing with the chain bit set. This was 214 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 215 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 216 * 217 * @more_trbs_coming: Will you enqueue more TRBs before calling 218 * prepare_transfer()? 219 */ 220 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 221 bool more_trbs_coming) 222 { 223 u32 chain; 224 union xhci_trb *next; 225 unsigned int link_trb_count = 0; 226 227 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 228 229 if (last_trb_on_seg(ring->enq_seg, ring->enqueue)) { 230 xhci_err(xhci, "Tried to move enqueue past ring segment\n"); 231 return; 232 } 233 234 next = ++(ring->enqueue); 235 236 /* Update the dequeue pointer further if that was a link TRB */ 237 while (trb_is_link(next)) { 238 239 /* 240 * If the caller doesn't plan on enqueueing more TDs before 241 * ringing the doorbell, then we don't want to give the link TRB 242 * to the hardware just yet. We'll give the link TRB back in 243 * prepare_ring() just before we enqueue the TD at the top of 244 * the ring. 245 */ 246 if (!chain && !more_trbs_coming) 247 break; 248 249 /* If we're not dealing with 0.95 hardware or isoc rings on 250 * AMD 0.96 host, carry over the chain bit of the previous TRB 251 * (which may mean the chain bit is cleared). 252 */ 253 if (!(ring->type == TYPE_ISOC && 254 (xhci->quirks & XHCI_AMD_0x96_HOST)) && 255 !xhci_link_trb_quirk(xhci)) { 256 next->link.control &= cpu_to_le32(~TRB_CHAIN); 257 next->link.control |= cpu_to_le32(chain); 258 } 259 /* Give this link TRB to the hardware */ 260 wmb(); 261 next->link.control ^= cpu_to_le32(TRB_CYCLE); 262 263 /* Toggle the cycle bit after the last ring segment. */ 264 if (link_trb_toggles_cycle(next)) 265 ring->cycle_state ^= 1; 266 267 ring->enq_seg = ring->enq_seg->next; 268 ring->enqueue = ring->enq_seg->trbs; 269 next = ring->enqueue; 270 271 if (link_trb_count++ > ring->num_segs) { 272 xhci_warn(xhci, "%s: Ring link TRB loop\n", __func__); 273 break; 274 } 275 } 276 277 trace_xhci_inc_enq(ring); 278 } 279 280 /* 281 * Return number of free normal TRBs from enqueue to dequeue pointer on ring. 282 * Not counting an assumed link TRB at end of each TRBS_PER_SEGMENT sized segment. 283 * Only for transfer and command rings where driver is the producer, not for 284 * event rings. 285 */ 286 static unsigned int xhci_num_trbs_free(struct xhci_hcd *xhci, struct xhci_ring *ring) 287 { 288 struct xhci_segment *enq_seg = ring->enq_seg; 289 union xhci_trb *enq = ring->enqueue; 290 union xhci_trb *last_on_seg; 291 unsigned int free = 0; 292 int i = 0; 293 294 /* Ring might be empty even if enq != deq if enq is left on a link trb */ 295 if (trb_is_link(enq)) { 296 enq_seg = enq_seg->next; 297 enq = enq_seg->trbs; 298 } 299 300 /* Empty ring, common case, don't walk the segments */ 301 if (enq == ring->dequeue) 302 return ring->num_segs * (TRBS_PER_SEGMENT - 1); 303 304 do { 305 if (ring->deq_seg == enq_seg && ring->dequeue >= enq) 306 return free + (ring->dequeue - enq); 307 last_on_seg = &enq_seg->trbs[TRBS_PER_SEGMENT - 1]; 308 free += last_on_seg - enq; 309 enq_seg = enq_seg->next; 310 enq = enq_seg->trbs; 311 } while (i++ <= ring->num_segs); 312 313 return free; 314 } 315 316 /* 317 * Check to see if there's room to enqueue num_trbs on the ring and make sure 318 * enqueue pointer will not advance into dequeue segment. See rules above. 319 * return number of new segments needed to ensure this. 320 */ 321 322 static unsigned int xhci_ring_expansion_needed(struct xhci_hcd *xhci, struct xhci_ring *ring, 323 unsigned int num_trbs) 324 { 325 struct xhci_segment *seg; 326 int trbs_past_seg; 327 int enq_used; 328 int new_segs; 329 330 enq_used = ring->enqueue - ring->enq_seg->trbs; 331 332 /* how many trbs will be queued past the enqueue segment? */ 333 trbs_past_seg = enq_used + num_trbs - (TRBS_PER_SEGMENT - 1); 334 335 /* 336 * Consider expanding the ring already if num_trbs fills the current 337 * segment (i.e. trbs_past_seg == 0), not only when num_trbs goes into 338 * the next segment. Avoids confusing full ring with special empty ring 339 * case below 340 */ 341 if (trbs_past_seg < 0) 342 return 0; 343 344 /* Empty ring special case, enqueue stuck on link trb while dequeue advanced */ 345 if (trb_is_link(ring->enqueue) && ring->enq_seg->next->trbs == ring->dequeue) 346 return 0; 347 348 new_segs = 1 + (trbs_past_seg / (TRBS_PER_SEGMENT - 1)); 349 seg = ring->enq_seg; 350 351 while (new_segs > 0) { 352 seg = seg->next; 353 if (seg == ring->deq_seg) { 354 xhci_dbg(xhci, "Ring expansion by %d segments needed\n", 355 new_segs); 356 xhci_dbg(xhci, "Adding %d trbs moves enq %d trbs into deq seg\n", 357 num_trbs, trbs_past_seg % TRBS_PER_SEGMENT); 358 return new_segs; 359 } 360 new_segs--; 361 } 362 363 return 0; 364 } 365 366 /* Ring the host controller doorbell after placing a command on the ring */ 367 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 368 { 369 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 370 return; 371 372 xhci_dbg(xhci, "// Ding dong!\n"); 373 374 trace_xhci_ring_host_doorbell(0, DB_VALUE_HOST); 375 376 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 377 /* Flush PCI posted writes */ 378 readl(&xhci->dba->doorbell[0]); 379 } 380 381 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci) 382 { 383 return mod_delayed_work(system_wq, &xhci->cmd_timer, 384 msecs_to_jiffies(xhci->current_cmd->timeout_ms)); 385 } 386 387 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) 388 { 389 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, 390 cmd_list); 391 } 392 393 /* 394 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 395 * If there are other commands waiting then restart the ring and kick the timer. 396 * This must be called with command ring stopped and xhci->lock held. 397 */ 398 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 399 struct xhci_command *cur_cmd) 400 { 401 struct xhci_command *i_cmd; 402 403 /* Turn all aborted commands in list to no-ops, then restart */ 404 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { 405 406 if (i_cmd->status != COMP_COMMAND_ABORTED) 407 continue; 408 409 i_cmd->status = COMP_COMMAND_RING_STOPPED; 410 411 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 412 i_cmd->command_trb); 413 414 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); 415 416 /* 417 * caller waiting for completion is called when command 418 * completion event is received for these no-op commands 419 */ 420 } 421 422 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 423 424 /* ring command ring doorbell to restart the command ring */ 425 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 426 !(xhci->xhc_state & XHCI_STATE_DYING)) { 427 xhci->current_cmd = cur_cmd; 428 xhci_mod_cmd_timer(xhci); 429 xhci_ring_cmd_db(xhci); 430 } 431 } 432 433 /* Must be called with xhci->lock held, releases and aquires lock back */ 434 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) 435 { 436 struct xhci_segment *new_seg = xhci->cmd_ring->deq_seg; 437 union xhci_trb *new_deq = xhci->cmd_ring->dequeue; 438 u64 crcr; 439 int ret; 440 441 xhci_dbg(xhci, "Abort command ring\n"); 442 443 reinit_completion(&xhci->cmd_ring_stop_completion); 444 445 /* 446 * The control bits like command stop, abort are located in lower 447 * dword of the command ring control register. 448 * Some controllers require all 64 bits to be written to abort the ring. 449 * Make sure the upper dword is valid, pointing to the next command, 450 * avoiding corrupting the command ring pointer in case the command ring 451 * is stopped by the time the upper dword is written. 452 */ 453 next_trb(xhci, NULL, &new_seg, &new_deq); 454 if (trb_is_link(new_deq)) 455 next_trb(xhci, NULL, &new_seg, &new_deq); 456 457 crcr = xhci_trb_virt_to_dma(new_seg, new_deq); 458 xhci_write_64(xhci, crcr | CMD_RING_ABORT, &xhci->op_regs->cmd_ring); 459 460 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the 461 * completion of the Command Abort operation. If CRR is not negated in 5 462 * seconds then driver handles it as if host died (-ENODEV). 463 * In the future we should distinguish between -ENODEV and -ETIMEDOUT 464 * and try to recover a -ETIMEDOUT with a host controller reset. 465 */ 466 ret = xhci_handshake_check_state(xhci, &xhci->op_regs->cmd_ring, 467 CMD_RING_RUNNING, 0, 5 * 1000 * 1000, 468 XHCI_STATE_REMOVING); 469 if (ret < 0) { 470 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret); 471 xhci_halt(xhci); 472 xhci_hc_died(xhci); 473 return ret; 474 } 475 /* 476 * Writing the CMD_RING_ABORT bit should cause a cmd completion event, 477 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared 478 * but the completion event in never sent. Wait 2 secs (arbitrary 479 * number) to handle those cases after negation of CMD_RING_RUNNING. 480 */ 481 spin_unlock_irqrestore(&xhci->lock, flags); 482 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, 483 msecs_to_jiffies(2000)); 484 spin_lock_irqsave(&xhci->lock, flags); 485 if (!ret) { 486 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); 487 xhci_cleanup_command_queue(xhci); 488 } else { 489 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); 490 } 491 return 0; 492 } 493 494 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 495 unsigned int slot_id, 496 unsigned int ep_index, 497 unsigned int stream_id) 498 { 499 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 500 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 501 unsigned int ep_state = ep->ep_state; 502 503 /* Don't ring the doorbell for this endpoint if there are pending 504 * cancellations because we don't want to interrupt processing. 505 * We don't want to restart any stream rings if there's a set dequeue 506 * pointer command pending because the device can choose to start any 507 * stream once the endpoint is on the HW schedule. 508 */ 509 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || 510 (ep_state & EP_HALTED) || (ep_state & EP_CLEARING_TT)) 511 return; 512 513 trace_xhci_ring_ep_doorbell(slot_id, DB_VALUE(ep_index, stream_id)); 514 515 writel(DB_VALUE(ep_index, stream_id), db_addr); 516 /* flush the write */ 517 readl(db_addr); 518 } 519 520 /* Ring the doorbell for any rings with pending URBs */ 521 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 522 unsigned int slot_id, 523 unsigned int ep_index) 524 { 525 unsigned int stream_id; 526 struct xhci_virt_ep *ep; 527 528 ep = &xhci->devs[slot_id]->eps[ep_index]; 529 530 /* A ring has pending URBs if its TD list is not empty */ 531 if (!(ep->ep_state & EP_HAS_STREAMS)) { 532 if (ep->ring && !(list_empty(&ep->ring->td_list))) 533 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 534 return; 535 } 536 537 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 538 stream_id++) { 539 struct xhci_stream_info *stream_info = ep->stream_info; 540 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 541 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 542 stream_id); 543 } 544 } 545 546 void xhci_ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 547 unsigned int slot_id, 548 unsigned int ep_index) 549 { 550 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 551 } 552 553 static struct xhci_virt_ep *xhci_get_virt_ep(struct xhci_hcd *xhci, 554 unsigned int slot_id, 555 unsigned int ep_index) 556 { 557 if (slot_id == 0 || slot_id >= MAX_HC_SLOTS) { 558 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 559 return NULL; 560 } 561 if (ep_index >= EP_CTX_PER_DEV) { 562 xhci_warn(xhci, "Invalid endpoint index %u\n", ep_index); 563 return NULL; 564 } 565 if (!xhci->devs[slot_id]) { 566 xhci_warn(xhci, "No xhci virt device for slot_id %u\n", slot_id); 567 return NULL; 568 } 569 570 return &xhci->devs[slot_id]->eps[ep_index]; 571 } 572 573 static struct xhci_ring *xhci_virt_ep_to_ring(struct xhci_hcd *xhci, 574 struct xhci_virt_ep *ep, 575 unsigned int stream_id) 576 { 577 /* common case, no streams */ 578 if (!(ep->ep_state & EP_HAS_STREAMS)) 579 return ep->ring; 580 581 if (!ep->stream_info) 582 return NULL; 583 584 if (stream_id == 0 || stream_id >= ep->stream_info->num_streams) { 585 xhci_warn(xhci, "Invalid stream_id %u request for slot_id %u ep_index %u\n", 586 stream_id, ep->vdev->slot_id, ep->ep_index); 587 return NULL; 588 } 589 590 return ep->stream_info->stream_rings[stream_id]; 591 } 592 593 /* Get the right ring for the given slot_id, ep_index and stream_id. 594 * If the endpoint supports streams, boundary check the URB's stream ID. 595 * If the endpoint doesn't support streams, return the singular endpoint ring. 596 */ 597 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 598 unsigned int slot_id, unsigned int ep_index, 599 unsigned int stream_id) 600 { 601 struct xhci_virt_ep *ep; 602 603 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 604 if (!ep) 605 return NULL; 606 607 return xhci_virt_ep_to_ring(xhci, ep, stream_id); 608 } 609 610 611 /* 612 * Get the hw dequeue pointer xHC stopped on, either directly from the 613 * endpoint context, or if streams are in use from the stream context. 614 * The returned hw_dequeue contains the lowest four bits with cycle state 615 * and possbile stream context type. 616 */ 617 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev, 618 unsigned int ep_index, unsigned int stream_id) 619 { 620 struct xhci_ep_ctx *ep_ctx; 621 struct xhci_stream_ctx *st_ctx; 622 struct xhci_virt_ep *ep; 623 624 ep = &vdev->eps[ep_index]; 625 626 if (ep->ep_state & EP_HAS_STREAMS) { 627 st_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 628 return le64_to_cpu(st_ctx->stream_ring); 629 } 630 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 631 return le64_to_cpu(ep_ctx->deq); 632 } 633 634 static int xhci_move_dequeue_past_td(struct xhci_hcd *xhci, 635 unsigned int slot_id, unsigned int ep_index, 636 unsigned int stream_id, struct xhci_td *td) 637 { 638 struct xhci_virt_device *dev = xhci->devs[slot_id]; 639 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 640 struct xhci_ring *ep_ring; 641 struct xhci_command *cmd; 642 struct xhci_segment *new_seg; 643 union xhci_trb *new_deq; 644 int new_cycle; 645 dma_addr_t addr; 646 u64 hw_dequeue; 647 bool cycle_found = false; 648 bool td_last_trb_found = false; 649 u32 trb_sct = 0; 650 int ret; 651 652 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 653 ep_index, stream_id); 654 if (!ep_ring) { 655 xhci_warn(xhci, "WARN can't find new dequeue, invalid stream ID %u\n", 656 stream_id); 657 return -ENODEV; 658 } 659 /* 660 * A cancelled TD can complete with a stall if HW cached the trb. 661 * In this case driver can't find td, but if the ring is empty we 662 * can move the dequeue pointer to the current enqueue position. 663 * We shouldn't hit this anymore as cached cancelled TRBs are given back 664 * after clearing the cache, but be on the safe side and keep it anyway 665 */ 666 if (!td) { 667 if (list_empty(&ep_ring->td_list)) { 668 new_seg = ep_ring->enq_seg; 669 new_deq = ep_ring->enqueue; 670 new_cycle = ep_ring->cycle_state; 671 xhci_dbg(xhci, "ep ring empty, Set new dequeue = enqueue"); 672 goto deq_found; 673 } else { 674 xhci_warn(xhci, "Can't find new dequeue state, missing td\n"); 675 return -EINVAL; 676 } 677 } 678 679 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id); 680 new_seg = ep_ring->deq_seg; 681 new_deq = ep_ring->dequeue; 682 new_cycle = hw_dequeue & 0x1; 683 684 /* 685 * We want to find the pointer, segment and cycle state of the new trb 686 * (the one after current TD's last_trb). We know the cycle state at 687 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are 688 * found. 689 */ 690 do { 691 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) 692 == (dma_addr_t)(hw_dequeue & ~0xf)) { 693 cycle_found = true; 694 if (td_last_trb_found) 695 break; 696 } 697 if (new_deq == td->last_trb) 698 td_last_trb_found = true; 699 700 if (cycle_found && trb_is_link(new_deq) && 701 link_trb_toggles_cycle(new_deq)) 702 new_cycle ^= 0x1; 703 704 next_trb(xhci, ep_ring, &new_seg, &new_deq); 705 706 /* Search wrapped around, bail out */ 707 if (new_deq == ep->ring->dequeue) { 708 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 709 return -EINVAL; 710 } 711 712 } while (!cycle_found || !td_last_trb_found); 713 714 deq_found: 715 716 /* Don't update the ring cycle state for the producer (us). */ 717 addr = xhci_trb_virt_to_dma(new_seg, new_deq); 718 if (addr == 0) { 719 xhci_warn(xhci, "Can't find dma of new dequeue ptr\n"); 720 xhci_warn(xhci, "deq seg = %p, deq ptr = %p\n", new_seg, new_deq); 721 return -EINVAL; 722 } 723 724 if ((ep->ep_state & SET_DEQ_PENDING)) { 725 xhci_warn(xhci, "Set TR Deq already pending, don't submit for 0x%pad\n", 726 &addr); 727 return -EBUSY; 728 } 729 730 /* This function gets called from contexts where it cannot sleep */ 731 cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC); 732 if (!cmd) { 733 xhci_warn(xhci, "Can't alloc Set TR Deq cmd 0x%pad\n", &addr); 734 return -ENOMEM; 735 } 736 737 if (stream_id) 738 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 739 ret = queue_command(xhci, cmd, 740 lower_32_bits(addr) | trb_sct | new_cycle, 741 upper_32_bits(addr), 742 STREAM_ID_FOR_TRB(stream_id), SLOT_ID_FOR_TRB(slot_id) | 743 EP_ID_FOR_TRB(ep_index) | TRB_TYPE(TRB_SET_DEQ), false); 744 if (ret < 0) { 745 xhci_free_command(xhci, cmd); 746 return ret; 747 } 748 ep->queued_deq_seg = new_seg; 749 ep->queued_deq_ptr = new_deq; 750 751 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 752 "Set TR Deq ptr 0x%llx, cycle %u\n", addr, new_cycle); 753 754 /* Stop the TD queueing code from ringing the doorbell until 755 * this command completes. The HC won't set the dequeue pointer 756 * if the ring is running, and ringing the doorbell starts the 757 * ring running. 758 */ 759 ep->ep_state |= SET_DEQ_PENDING; 760 xhci_ring_cmd_db(xhci); 761 return 0; 762 } 763 764 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 765 * (The last TRB actually points to the ring enqueue pointer, which is not part 766 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 767 */ 768 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 769 struct xhci_td *td, bool flip_cycle) 770 { 771 struct xhci_segment *seg = td->start_seg; 772 union xhci_trb *trb = td->first_trb; 773 774 while (1) { 775 trb_to_noop(trb, TRB_TR_NOOP); 776 777 /* flip cycle if asked to */ 778 if (flip_cycle && trb != td->first_trb && trb != td->last_trb) 779 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); 780 781 if (trb == td->last_trb) 782 break; 783 784 next_trb(xhci, ep_ring, &seg, &trb); 785 } 786 } 787 788 /* 789 * Must be called with xhci->lock held in interrupt context, 790 * releases and re-acquires xhci->lock 791 */ 792 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 793 struct xhci_td *cur_td, int status) 794 { 795 struct urb *urb = cur_td->urb; 796 struct urb_priv *urb_priv = urb->hcpriv; 797 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 798 799 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 800 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 801 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 802 if (xhci->quirks & XHCI_AMD_PLL_FIX) 803 usb_amd_quirk_pll_enable(); 804 } 805 } 806 xhci_urb_free_priv(urb_priv); 807 usb_hcd_unlink_urb_from_ep(hcd, urb); 808 trace_xhci_urb_giveback(urb); 809 usb_hcd_giveback_urb(hcd, urb, status); 810 } 811 812 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, 813 struct xhci_ring *ring, struct xhci_td *td) 814 { 815 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 816 struct xhci_segment *seg = td->bounce_seg; 817 struct urb *urb = td->urb; 818 size_t len; 819 820 if (!ring || !seg || !urb) 821 return; 822 823 if (usb_urb_dir_out(urb)) { 824 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 825 DMA_TO_DEVICE); 826 return; 827 } 828 829 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 830 DMA_FROM_DEVICE); 831 /* for in tranfers we need to copy the data from bounce to sg */ 832 if (urb->num_sgs) { 833 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, seg->bounce_buf, 834 seg->bounce_len, seg->bounce_offs); 835 if (len != seg->bounce_len) 836 xhci_warn(xhci, "WARN Wrong bounce buffer read length: %zu != %d\n", 837 len, seg->bounce_len); 838 } else { 839 memcpy(urb->transfer_buffer + seg->bounce_offs, seg->bounce_buf, 840 seg->bounce_len); 841 } 842 seg->bounce_len = 0; 843 seg->bounce_offs = 0; 844 } 845 846 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, 847 struct xhci_ring *ep_ring, int status) 848 { 849 struct urb *urb = NULL; 850 851 /* Clean up the endpoint's TD list */ 852 urb = td->urb; 853 854 /* if a bounce buffer was used to align this td then unmap it */ 855 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); 856 857 /* Do one last check of the actual transfer length. 858 * If the host controller said we transferred more data than the buffer 859 * length, urb->actual_length will be a very big number (since it's 860 * unsigned). Play it safe and say we didn't transfer anything. 861 */ 862 if (urb->actual_length > urb->transfer_buffer_length) { 863 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", 864 urb->transfer_buffer_length, urb->actual_length); 865 urb->actual_length = 0; 866 status = 0; 867 } 868 /* TD might be removed from td_list if we are giving back a cancelled URB */ 869 if (!list_empty(&td->td_list)) 870 list_del_init(&td->td_list); 871 /* Giving back a cancelled URB, or if a slated TD completed anyway */ 872 if (!list_empty(&td->cancelled_td_list)) 873 list_del_init(&td->cancelled_td_list); 874 875 inc_td_cnt(urb); 876 /* Giveback the urb when all the tds are completed */ 877 if (last_td_in_urb(td)) { 878 if ((urb->actual_length != urb->transfer_buffer_length && 879 (urb->transfer_flags & URB_SHORT_NOT_OK)) || 880 (status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) 881 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", 882 urb, urb->actual_length, 883 urb->transfer_buffer_length, status); 884 885 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ 886 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 887 status = 0; 888 xhci_giveback_urb_in_irq(xhci, td, status); 889 } 890 891 return 0; 892 } 893 894 895 /* Complete the cancelled URBs we unlinked from td_list. */ 896 static void xhci_giveback_invalidated_tds(struct xhci_virt_ep *ep) 897 { 898 struct xhci_ring *ring; 899 struct xhci_td *td, *tmp_td; 900 901 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 902 cancelled_td_list) { 903 904 ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 905 906 if (td->cancel_status == TD_CLEARED) { 907 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 908 __func__, td->urb); 909 xhci_td_cleanup(ep->xhci, td, ring, td->status); 910 } else { 911 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 912 __func__, td->urb, td->cancel_status); 913 } 914 if (ep->xhci->xhc_state & XHCI_STATE_DYING) 915 return; 916 } 917 } 918 919 static int xhci_reset_halted_ep(struct xhci_hcd *xhci, unsigned int slot_id, 920 unsigned int ep_index, enum xhci_ep_reset_type reset_type) 921 { 922 struct xhci_command *command; 923 int ret = 0; 924 925 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 926 if (!command) { 927 ret = -ENOMEM; 928 goto done; 929 } 930 931 xhci_dbg(xhci, "%s-reset ep %u, slot %u\n", 932 (reset_type == EP_HARD_RESET) ? "Hard" : "Soft", 933 ep_index, slot_id); 934 935 ret = xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type); 936 done: 937 if (ret) 938 xhci_err(xhci, "ERROR queuing reset endpoint for slot %d ep_index %d, %d\n", 939 slot_id, ep_index, ret); 940 return ret; 941 } 942 943 static int xhci_handle_halted_endpoint(struct xhci_hcd *xhci, 944 struct xhci_virt_ep *ep, 945 struct xhci_td *td, 946 enum xhci_ep_reset_type reset_type) 947 { 948 unsigned int slot_id = ep->vdev->slot_id; 949 int err; 950 951 /* 952 * Avoid resetting endpoint if link is inactive. Can cause host hang. 953 * Device will be reset soon to recover the link so don't do anything 954 */ 955 if (ep->vdev->flags & VDEV_PORT_ERROR) 956 return -ENODEV; 957 958 /* add td to cancelled list and let reset ep handler take care of it */ 959 if (reset_type == EP_HARD_RESET) { 960 ep->ep_state |= EP_HARD_CLEAR_TOGGLE; 961 if (td && list_empty(&td->cancelled_td_list)) { 962 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 963 td->cancel_status = TD_HALTED; 964 } 965 } 966 967 if (ep->ep_state & EP_HALTED) { 968 xhci_dbg(xhci, "Reset ep command for ep_index %d already pending\n", 969 ep->ep_index); 970 return 0; 971 } 972 973 err = xhci_reset_halted_ep(xhci, slot_id, ep->ep_index, reset_type); 974 if (err) 975 return err; 976 977 ep->ep_state |= EP_HALTED; 978 979 xhci_ring_cmd_db(xhci); 980 981 return 0; 982 } 983 984 /* 985 * Fix up the ep ring first, so HW stops executing cancelled TDs. 986 * We have the xHCI lock, so nothing can modify this list until we drop it. 987 * We're also in the event handler, so we can't get re-interrupted if another 988 * Stop Endpoint command completes. 989 * 990 * only call this when ring is not in a running state 991 */ 992 993 static int xhci_invalidate_cancelled_tds(struct xhci_virt_ep *ep) 994 { 995 struct xhci_hcd *xhci; 996 struct xhci_td *td = NULL; 997 struct xhci_td *tmp_td = NULL; 998 struct xhci_td *cached_td = NULL; 999 struct xhci_ring *ring; 1000 u64 hw_deq; 1001 unsigned int slot_id = ep->vdev->slot_id; 1002 int err; 1003 1004 xhci = ep->xhci; 1005 1006 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 1007 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1008 "Removing canceled TD starting at 0x%llx (dma) in stream %u URB %p", 1009 (unsigned long long)xhci_trb_virt_to_dma( 1010 td->start_seg, td->first_trb), 1011 td->urb->stream_id, td->urb); 1012 list_del_init(&td->td_list); 1013 ring = xhci_urb_to_transfer_ring(xhci, td->urb); 1014 if (!ring) { 1015 xhci_warn(xhci, "WARN Cancelled URB %p has invalid stream ID %u.\n", 1016 td->urb, td->urb->stream_id); 1017 continue; 1018 } 1019 /* 1020 * If a ring stopped on the TD we need to cancel then we have to 1021 * move the xHC endpoint ring dequeue pointer past this TD. 1022 * Rings halted due to STALL may show hw_deq is past the stalled 1023 * TD, but still require a set TR Deq command to flush xHC cache. 1024 */ 1025 hw_deq = xhci_get_hw_deq(xhci, ep->vdev, ep->ep_index, 1026 td->urb->stream_id); 1027 hw_deq &= ~0xf; 1028 1029 if (td->cancel_status == TD_HALTED || 1030 trb_in_td(xhci, td->start_seg, td->first_trb, td->last_trb, hw_deq, false)) { 1031 switch (td->cancel_status) { 1032 case TD_CLEARED: /* TD is already no-op */ 1033 case TD_CLEARING_CACHE: /* set TR deq command already queued */ 1034 break; 1035 case TD_DIRTY: /* TD is cached, clear it */ 1036 case TD_HALTED: 1037 td->cancel_status = TD_CLEARING_CACHE; 1038 if (cached_td) 1039 /* FIXME stream case, several stopped rings */ 1040 xhci_dbg(xhci, 1041 "Move dq past stream %u URB %p instead of stream %u URB %p\n", 1042 td->urb->stream_id, td->urb, 1043 cached_td->urb->stream_id, cached_td->urb); 1044 cached_td = td; 1045 break; 1046 } 1047 } else { 1048 td_to_noop(xhci, ring, td, false); 1049 td->cancel_status = TD_CLEARED; 1050 } 1051 } 1052 1053 /* If there's no need to move the dequeue pointer then we're done */ 1054 if (!cached_td) 1055 return 0; 1056 1057 err = xhci_move_dequeue_past_td(xhci, slot_id, ep->ep_index, 1058 cached_td->urb->stream_id, 1059 cached_td); 1060 if (err) { 1061 /* Failed to move past cached td, just set cached TDs to no-op */ 1062 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 1063 if (td->cancel_status != TD_CLEARING_CACHE) 1064 continue; 1065 xhci_dbg(xhci, "Failed to clear cancelled cached URB %p, mark clear anyway\n", 1066 td->urb); 1067 td_to_noop(xhci, ring, td, false); 1068 td->cancel_status = TD_CLEARED; 1069 } 1070 } 1071 return 0; 1072 } 1073 1074 /* 1075 * Returns the TD the endpoint ring halted on. 1076 * Only call for non-running rings without streams. 1077 */ 1078 static struct xhci_td *find_halted_td(struct xhci_virt_ep *ep) 1079 { 1080 struct xhci_td *td; 1081 u64 hw_deq; 1082 1083 if (!list_empty(&ep->ring->td_list)) { /* Not streams compatible */ 1084 hw_deq = xhci_get_hw_deq(ep->xhci, ep->vdev, ep->ep_index, 0); 1085 hw_deq &= ~0xf; 1086 td = list_first_entry(&ep->ring->td_list, struct xhci_td, td_list); 1087 if (trb_in_td(ep->xhci, td->start_seg, td->first_trb, 1088 td->last_trb, hw_deq, false)) 1089 return td; 1090 } 1091 return NULL; 1092 } 1093 1094 /* 1095 * When we get a command completion for a Stop Endpoint Command, we need to 1096 * unlink any cancelled TDs from the ring. There are two ways to do that: 1097 * 1098 * 1. If the HW was in the middle of processing the TD that needs to be 1099 * cancelled, then we must move the ring's dequeue pointer past the last TRB 1100 * in the TD with a Set Dequeue Pointer Command. 1101 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 1102 * bit cleared) so that the HW will skip over them. 1103 */ 1104 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 1105 union xhci_trb *trb, u32 comp_code) 1106 { 1107 unsigned int ep_index; 1108 struct xhci_virt_ep *ep; 1109 struct xhci_ep_ctx *ep_ctx; 1110 struct xhci_td *td = NULL; 1111 enum xhci_ep_reset_type reset_type; 1112 struct xhci_command *command; 1113 int err; 1114 1115 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 1116 if (!xhci->devs[slot_id]) 1117 xhci_warn(xhci, "Stop endpoint command completion for disabled slot %u\n", 1118 slot_id); 1119 return; 1120 } 1121 1122 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1123 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1124 if (!ep) 1125 return; 1126 1127 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1128 1129 trace_xhci_handle_cmd_stop_ep(ep_ctx); 1130 1131 if (comp_code == COMP_CONTEXT_STATE_ERROR) { 1132 /* 1133 * If stop endpoint command raced with a halting endpoint we need to 1134 * reset the host side endpoint first. 1135 * If the TD we halted on isn't cancelled the TD should be given back 1136 * with a proper error code, and the ring dequeue moved past the TD. 1137 * If streams case we can't find hw_deq, or the TD we halted on so do a 1138 * soft reset. 1139 * 1140 * Proper error code is unknown here, it would be -EPIPE if device side 1141 * of enadpoit halted (aka STALL), and -EPROTO if not (transaction error) 1142 * We use -EPROTO, if device is stalled it should return a stall error on 1143 * next transfer, which then will return -EPIPE, and device side stall is 1144 * noted and cleared by class driver. 1145 */ 1146 switch (GET_EP_CTX_STATE(ep_ctx)) { 1147 case EP_STATE_HALTED: 1148 xhci_dbg(xhci, "Stop ep completion raced with stall, reset ep\n"); 1149 if (ep->ep_state & EP_HAS_STREAMS) { 1150 reset_type = EP_SOFT_RESET; 1151 } else { 1152 reset_type = EP_HARD_RESET; 1153 td = find_halted_td(ep); 1154 if (td) 1155 td->status = -EPROTO; 1156 } 1157 /* reset ep, reset handler cleans up cancelled tds */ 1158 err = xhci_handle_halted_endpoint(xhci, ep, td, reset_type); 1159 if (err) 1160 break; 1161 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1162 return; 1163 case EP_STATE_STOPPED: 1164 /* 1165 * NEC uPD720200 sometimes sets this state and fails with 1166 * Context Error while continuing to process TRBs. 1167 * Be conservative and trust EP_CTX_STATE on other chips. 1168 */ 1169 if (!(xhci->quirks & XHCI_NEC_HOST)) 1170 break; 1171 fallthrough; 1172 case EP_STATE_RUNNING: 1173 /* Race, HW handled stop ep cmd before ep was running */ 1174 xhci_dbg(xhci, "Stop ep completion ctx error, ep is running\n"); 1175 1176 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1177 if (!command) { 1178 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1179 return; 1180 } 1181 xhci_queue_stop_endpoint(xhci, command, slot_id, ep_index, 0); 1182 xhci_ring_cmd_db(xhci); 1183 1184 return; 1185 default: 1186 break; 1187 } 1188 } 1189 1190 /* will queue a set TR deq if stopped on a cancelled, uncleared TD */ 1191 xhci_invalidate_cancelled_tds(ep); 1192 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1193 1194 /* Otherwise ring the doorbell(s) to restart queued transfers */ 1195 xhci_giveback_invalidated_tds(ep); 1196 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1197 } 1198 1199 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 1200 { 1201 struct xhci_td *cur_td; 1202 struct xhci_td *tmp; 1203 1204 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { 1205 list_del_init(&cur_td->td_list); 1206 1207 if (!list_empty(&cur_td->cancelled_td_list)) 1208 list_del_init(&cur_td->cancelled_td_list); 1209 1210 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); 1211 1212 inc_td_cnt(cur_td->urb); 1213 if (last_td_in_urb(cur_td)) 1214 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1215 } 1216 } 1217 1218 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 1219 int slot_id, int ep_index) 1220 { 1221 struct xhci_td *cur_td; 1222 struct xhci_td *tmp; 1223 struct xhci_virt_ep *ep; 1224 struct xhci_ring *ring; 1225 1226 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1227 if (!ep) 1228 return; 1229 1230 if ((ep->ep_state & EP_HAS_STREAMS) || 1231 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 1232 int stream_id; 1233 1234 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 1235 stream_id++) { 1236 ring = ep->stream_info->stream_rings[stream_id]; 1237 if (!ring) 1238 continue; 1239 1240 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1241 "Killing URBs for slot ID %u, ep index %u, stream %u", 1242 slot_id, ep_index, stream_id); 1243 xhci_kill_ring_urbs(xhci, ring); 1244 } 1245 } else { 1246 ring = ep->ring; 1247 if (!ring) 1248 return; 1249 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1250 "Killing URBs for slot ID %u, ep index %u", 1251 slot_id, ep_index); 1252 xhci_kill_ring_urbs(xhci, ring); 1253 } 1254 1255 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, 1256 cancelled_td_list) { 1257 list_del_init(&cur_td->cancelled_td_list); 1258 inc_td_cnt(cur_td->urb); 1259 1260 if (last_td_in_urb(cur_td)) 1261 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1262 } 1263 } 1264 1265 /* 1266 * host controller died, register read returns 0xffffffff 1267 * Complete pending commands, mark them ABORTED. 1268 * URBs need to be given back as usb core might be waiting with device locks 1269 * held for the URBs to finish during device disconnect, blocking host remove. 1270 * 1271 * Call with xhci->lock held. 1272 * lock is relased and re-acquired while giving back urb. 1273 */ 1274 void xhci_hc_died(struct xhci_hcd *xhci) 1275 { 1276 int i, j; 1277 1278 if (xhci->xhc_state & XHCI_STATE_DYING) 1279 return; 1280 1281 xhci_err(xhci, "xHCI host controller not responding, assume dead\n"); 1282 xhci->xhc_state |= XHCI_STATE_DYING; 1283 1284 xhci_cleanup_command_queue(xhci); 1285 1286 /* return any pending urbs, remove may be waiting for them */ 1287 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 1288 if (!xhci->devs[i]) 1289 continue; 1290 for (j = 0; j < 31; j++) 1291 xhci_kill_endpoint_urbs(xhci, i, j); 1292 } 1293 1294 /* inform usb core hc died if PCI remove isn't already handling it */ 1295 if (!(xhci->xhc_state & XHCI_STATE_REMOVING)) 1296 usb_hc_died(xhci_to_hcd(xhci)); 1297 } 1298 1299 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 1300 struct xhci_virt_device *dev, 1301 struct xhci_ring *ep_ring, 1302 unsigned int ep_index) 1303 { 1304 union xhci_trb *dequeue_temp; 1305 1306 dequeue_temp = ep_ring->dequeue; 1307 1308 /* If we get two back-to-back stalls, and the first stalled transfer 1309 * ends just before a link TRB, the dequeue pointer will be left on 1310 * the link TRB by the code in the while loop. So we have to update 1311 * the dequeue pointer one segment further, or we'll jump off 1312 * the segment into la-la-land. 1313 */ 1314 if (trb_is_link(ep_ring->dequeue)) { 1315 ep_ring->deq_seg = ep_ring->deq_seg->next; 1316 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1317 } 1318 1319 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 1320 /* We have more usable TRBs */ 1321 ep_ring->dequeue++; 1322 if (trb_is_link(ep_ring->dequeue)) { 1323 if (ep_ring->dequeue == 1324 dev->eps[ep_index].queued_deq_ptr) 1325 break; 1326 ep_ring->deq_seg = ep_ring->deq_seg->next; 1327 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1328 } 1329 if (ep_ring->dequeue == dequeue_temp) { 1330 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 1331 break; 1332 } 1333 } 1334 } 1335 1336 /* 1337 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1338 * we need to clear the set deq pending flag in the endpoint ring state, so that 1339 * the TD queueing code can ring the doorbell again. We also need to ring the 1340 * endpoint doorbell to restart the ring, but only if there aren't more 1341 * cancellations pending. 1342 */ 1343 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1344 union xhci_trb *trb, u32 cmd_comp_code) 1345 { 1346 unsigned int ep_index; 1347 unsigned int stream_id; 1348 struct xhci_ring *ep_ring; 1349 struct xhci_virt_ep *ep; 1350 struct xhci_ep_ctx *ep_ctx; 1351 struct xhci_slot_ctx *slot_ctx; 1352 struct xhci_td *td, *tmp_td; 1353 1354 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1355 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1356 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1357 if (!ep) 1358 return; 1359 1360 ep_ring = xhci_virt_ep_to_ring(xhci, ep, stream_id); 1361 if (!ep_ring) { 1362 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 1363 stream_id); 1364 /* XXX: Harmless??? */ 1365 goto cleanup; 1366 } 1367 1368 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1369 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 1370 trace_xhci_handle_cmd_set_deq(slot_ctx); 1371 trace_xhci_handle_cmd_set_deq_ep(ep_ctx); 1372 1373 if (cmd_comp_code != COMP_SUCCESS) { 1374 unsigned int ep_state; 1375 unsigned int slot_state; 1376 1377 switch (cmd_comp_code) { 1378 case COMP_TRB_ERROR: 1379 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 1380 break; 1381 case COMP_CONTEXT_STATE_ERROR: 1382 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1383 ep_state = GET_EP_CTX_STATE(ep_ctx); 1384 slot_state = le32_to_cpu(slot_ctx->dev_state); 1385 slot_state = GET_SLOT_STATE(slot_state); 1386 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1387 "Slot state = %u, EP state = %u", 1388 slot_state, ep_state); 1389 break; 1390 case COMP_SLOT_NOT_ENABLED_ERROR: 1391 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1392 slot_id); 1393 break; 1394 default: 1395 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1396 cmd_comp_code); 1397 break; 1398 } 1399 /* OK what do we do now? The endpoint state is hosed, and we 1400 * should never get to this point if the synchronization between 1401 * queueing, and endpoint state are correct. This might happen 1402 * if the device gets disconnected after we've finished 1403 * cancelling URBs, which might not be an error... 1404 */ 1405 } else { 1406 u64 deq; 1407 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1408 if (ep->ep_state & EP_HAS_STREAMS) { 1409 struct xhci_stream_ctx *ctx = 1410 &ep->stream_info->stream_ctx_array[stream_id]; 1411 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; 1412 } else { 1413 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1414 } 1415 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1416 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1417 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1418 ep->queued_deq_ptr) == deq) { 1419 /* Update the ring's dequeue segment and dequeue pointer 1420 * to reflect the new position. 1421 */ 1422 update_ring_for_set_deq_completion(xhci, ep->vdev, 1423 ep_ring, ep_index); 1424 } else { 1425 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1426 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1427 ep->queued_deq_seg, ep->queued_deq_ptr); 1428 } 1429 } 1430 /* HW cached TDs cleared from cache, give them back */ 1431 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 1432 cancelled_td_list) { 1433 ep_ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 1434 if (td->cancel_status == TD_CLEARING_CACHE) { 1435 td->cancel_status = TD_CLEARED; 1436 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 1437 __func__, td->urb); 1438 xhci_td_cleanup(ep->xhci, td, ep_ring, td->status); 1439 } else { 1440 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 1441 __func__, td->urb, td->cancel_status); 1442 } 1443 } 1444 cleanup: 1445 ep->ep_state &= ~SET_DEQ_PENDING; 1446 ep->queued_deq_seg = NULL; 1447 ep->queued_deq_ptr = NULL; 1448 /* Restart any rings with pending URBs */ 1449 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1450 } 1451 1452 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1453 union xhci_trb *trb, u32 cmd_comp_code) 1454 { 1455 struct xhci_virt_ep *ep; 1456 struct xhci_ep_ctx *ep_ctx; 1457 unsigned int ep_index; 1458 1459 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1460 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1461 if (!ep) 1462 return; 1463 1464 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1465 trace_xhci_handle_cmd_reset_ep(ep_ctx); 1466 1467 /* This command will only fail if the endpoint wasn't halted, 1468 * but we don't care. 1469 */ 1470 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1471 "Ignoring reset ep completion code of %u", cmd_comp_code); 1472 1473 /* Cleanup cancelled TDs as ep is stopped. May queue a Set TR Deq cmd */ 1474 xhci_invalidate_cancelled_tds(ep); 1475 1476 /* Clear our internal halted state */ 1477 ep->ep_state &= ~EP_HALTED; 1478 1479 xhci_giveback_invalidated_tds(ep); 1480 1481 /* if this was a soft reset, then restart */ 1482 if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP) 1483 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1484 } 1485 1486 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, 1487 struct xhci_command *command, u32 cmd_comp_code) 1488 { 1489 if (cmd_comp_code == COMP_SUCCESS) 1490 command->slot_id = slot_id; 1491 else 1492 command->slot_id = 0; 1493 } 1494 1495 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1496 { 1497 struct xhci_virt_device *virt_dev; 1498 struct xhci_slot_ctx *slot_ctx; 1499 1500 virt_dev = xhci->devs[slot_id]; 1501 if (!virt_dev) 1502 return; 1503 1504 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 1505 trace_xhci_handle_cmd_disable_slot(slot_ctx); 1506 1507 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1508 /* Delete default control endpoint resources */ 1509 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1510 } 1511 1512 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, 1513 u32 cmd_comp_code) 1514 { 1515 struct xhci_virt_device *virt_dev; 1516 struct xhci_input_control_ctx *ctrl_ctx; 1517 struct xhci_ep_ctx *ep_ctx; 1518 unsigned int ep_index; 1519 u32 add_flags; 1520 1521 /* 1522 * Configure endpoint commands can come from the USB core configuration 1523 * or alt setting changes, or when streams were being configured. 1524 */ 1525 1526 virt_dev = xhci->devs[slot_id]; 1527 if (!virt_dev) 1528 return; 1529 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1530 if (!ctrl_ctx) { 1531 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1532 return; 1533 } 1534 1535 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1536 1537 /* Input ctx add_flags are the endpoint index plus one */ 1538 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1539 1540 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index); 1541 trace_xhci_handle_cmd_config_ep(ep_ctx); 1542 1543 return; 1544 } 1545 1546 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id) 1547 { 1548 struct xhci_virt_device *vdev; 1549 struct xhci_slot_ctx *slot_ctx; 1550 1551 vdev = xhci->devs[slot_id]; 1552 if (!vdev) 1553 return; 1554 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1555 trace_xhci_handle_cmd_addr_dev(slot_ctx); 1556 } 1557 1558 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id) 1559 { 1560 struct xhci_virt_device *vdev; 1561 struct xhci_slot_ctx *slot_ctx; 1562 1563 vdev = xhci->devs[slot_id]; 1564 if (!vdev) { 1565 xhci_warn(xhci, "Reset device command completion for disabled slot %u\n", 1566 slot_id); 1567 return; 1568 } 1569 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1570 trace_xhci_handle_cmd_reset_dev(slot_ctx); 1571 1572 xhci_dbg(xhci, "Completed reset device command.\n"); 1573 } 1574 1575 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1576 struct xhci_event_cmd *event) 1577 { 1578 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1579 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); 1580 return; 1581 } 1582 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1583 "NEC firmware version %2x.%02x", 1584 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1585 NEC_FW_MINOR(le32_to_cpu(event->status))); 1586 } 1587 1588 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) 1589 { 1590 list_del(&cmd->cmd_list); 1591 1592 if (cmd->completion) { 1593 cmd->status = status; 1594 complete(cmd->completion); 1595 } else { 1596 kfree(cmd); 1597 } 1598 } 1599 1600 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1601 { 1602 struct xhci_command *cur_cmd, *tmp_cmd; 1603 xhci->current_cmd = NULL; 1604 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1605 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED); 1606 } 1607 1608 void xhci_handle_command_timeout(struct work_struct *work) 1609 { 1610 struct xhci_hcd *xhci; 1611 unsigned long flags; 1612 char str[XHCI_MSG_MAX]; 1613 u64 hw_ring_state; 1614 u32 cmd_field3; 1615 u32 usbsts; 1616 1617 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); 1618 1619 spin_lock_irqsave(&xhci->lock, flags); 1620 1621 /* 1622 * If timeout work is pending, or current_cmd is NULL, it means we 1623 * raced with command completion. Command is handled so just return. 1624 */ 1625 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { 1626 spin_unlock_irqrestore(&xhci->lock, flags); 1627 return; 1628 } 1629 1630 cmd_field3 = le32_to_cpu(xhci->current_cmd->command_trb->generic.field[3]); 1631 usbsts = readl(&xhci->op_regs->status); 1632 xhci_dbg(xhci, "Command timeout, USBSTS:%s\n", xhci_decode_usbsts(str, usbsts)); 1633 1634 /* Bail out and tear down xhci if a stop endpoint command failed */ 1635 if (TRB_FIELD_TO_TYPE(cmd_field3) == TRB_STOP_RING) { 1636 struct xhci_virt_ep *ep; 1637 1638 xhci_warn(xhci, "xHCI host not responding to stop endpoint command\n"); 1639 1640 ep = xhci_get_virt_ep(xhci, TRB_TO_SLOT_ID(cmd_field3), 1641 TRB_TO_EP_INDEX(cmd_field3)); 1642 if (ep) 1643 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1644 1645 xhci_halt(xhci); 1646 xhci_hc_died(xhci); 1647 goto time_out_completed; 1648 } 1649 1650 /* mark this command to be cancelled */ 1651 xhci->current_cmd->status = COMP_COMMAND_ABORTED; 1652 1653 /* Make sure command ring is running before aborting it */ 1654 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1655 if (hw_ring_state == ~(u64)0) { 1656 xhci_hc_died(xhci); 1657 goto time_out_completed; 1658 } 1659 1660 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1661 (hw_ring_state & CMD_RING_RUNNING)) { 1662 /* Prevent new doorbell, and start command abort */ 1663 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 1664 xhci_dbg(xhci, "Command timeout\n"); 1665 xhci_abort_cmd_ring(xhci, flags); 1666 goto time_out_completed; 1667 } 1668 1669 /* host removed. Bail out */ 1670 if (xhci->xhc_state & XHCI_STATE_REMOVING) { 1671 xhci_dbg(xhci, "host removed, ring start fail?\n"); 1672 xhci_cleanup_command_queue(xhci); 1673 1674 goto time_out_completed; 1675 } 1676 1677 /* command timeout on stopped ring, ring can't be aborted */ 1678 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1679 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1680 1681 time_out_completed: 1682 spin_unlock_irqrestore(&xhci->lock, flags); 1683 return; 1684 } 1685 1686 static void handle_cmd_completion(struct xhci_hcd *xhci, 1687 struct xhci_event_cmd *event) 1688 { 1689 unsigned int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1690 u64 cmd_dma; 1691 dma_addr_t cmd_dequeue_dma; 1692 u32 cmd_comp_code; 1693 union xhci_trb *cmd_trb; 1694 struct xhci_command *cmd; 1695 u32 cmd_type; 1696 1697 if (slot_id >= MAX_HC_SLOTS) { 1698 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 1699 return; 1700 } 1701 1702 cmd_dma = le64_to_cpu(event->cmd_trb); 1703 cmd_trb = xhci->cmd_ring->dequeue; 1704 1705 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic); 1706 1707 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1708 cmd_trb); 1709 /* 1710 * Check whether the completion event is for our internal kept 1711 * command. 1712 */ 1713 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { 1714 xhci_warn(xhci, 1715 "ERROR mismatched command completion event\n"); 1716 return; 1717 } 1718 1719 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); 1720 1721 cancel_delayed_work(&xhci->cmd_timer); 1722 1723 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1724 1725 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1726 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) { 1727 complete_all(&xhci->cmd_ring_stop_completion); 1728 return; 1729 } 1730 1731 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1732 xhci_err(xhci, 1733 "Command completion event does not match command\n"); 1734 return; 1735 } 1736 1737 /* 1738 * Host aborted the command ring, check if the current command was 1739 * supposed to be aborted, otherwise continue normally. 1740 * The command ring is stopped now, but the xHC will issue a Command 1741 * Ring Stopped event which will cause us to restart it. 1742 */ 1743 if (cmd_comp_code == COMP_COMMAND_ABORTED) { 1744 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1745 if (cmd->status == COMP_COMMAND_ABORTED) { 1746 if (xhci->current_cmd == cmd) 1747 xhci->current_cmd = NULL; 1748 goto event_handled; 1749 } 1750 } 1751 1752 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1753 switch (cmd_type) { 1754 case TRB_ENABLE_SLOT: 1755 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code); 1756 break; 1757 case TRB_DISABLE_SLOT: 1758 xhci_handle_cmd_disable_slot(xhci, slot_id); 1759 break; 1760 case TRB_CONFIG_EP: 1761 if (!cmd->completion) 1762 xhci_handle_cmd_config_ep(xhci, slot_id, cmd_comp_code); 1763 break; 1764 case TRB_EVAL_CONTEXT: 1765 break; 1766 case TRB_ADDR_DEV: 1767 xhci_handle_cmd_addr_dev(xhci, slot_id); 1768 break; 1769 case TRB_STOP_RING: 1770 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1771 le32_to_cpu(cmd_trb->generic.field[3]))); 1772 if (!cmd->completion) 1773 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, 1774 cmd_comp_code); 1775 break; 1776 case TRB_SET_DEQ: 1777 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1778 le32_to_cpu(cmd_trb->generic.field[3]))); 1779 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1780 break; 1781 case TRB_CMD_NOOP: 1782 /* Is this an aborted command turned to NO-OP? */ 1783 if (cmd->status == COMP_COMMAND_RING_STOPPED) 1784 cmd_comp_code = COMP_COMMAND_RING_STOPPED; 1785 break; 1786 case TRB_RESET_EP: 1787 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1788 le32_to_cpu(cmd_trb->generic.field[3]))); 1789 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1790 break; 1791 case TRB_RESET_DEV: 1792 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1793 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1794 */ 1795 slot_id = TRB_TO_SLOT_ID( 1796 le32_to_cpu(cmd_trb->generic.field[3])); 1797 xhci_handle_cmd_reset_dev(xhci, slot_id); 1798 break; 1799 case TRB_NEC_GET_FW: 1800 xhci_handle_cmd_nec_get_fw(xhci, event); 1801 break; 1802 default: 1803 /* Skip over unknown commands on the event ring */ 1804 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); 1805 break; 1806 } 1807 1808 /* restart timer if this wasn't the last command */ 1809 if (!list_is_singular(&xhci->cmd_list)) { 1810 xhci->current_cmd = list_first_entry(&cmd->cmd_list, 1811 struct xhci_command, cmd_list); 1812 xhci_mod_cmd_timer(xhci); 1813 } else if (xhci->current_cmd == cmd) { 1814 xhci->current_cmd = NULL; 1815 } 1816 1817 event_handled: 1818 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); 1819 1820 inc_deq(xhci, xhci->cmd_ring); 1821 } 1822 1823 static void handle_vendor_event(struct xhci_hcd *xhci, 1824 union xhci_trb *event, u32 trb_type) 1825 { 1826 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1827 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1828 handle_cmd_completion(xhci, &event->event_cmd); 1829 } 1830 1831 static void handle_device_notification(struct xhci_hcd *xhci, 1832 union xhci_trb *event) 1833 { 1834 u32 slot_id; 1835 struct usb_device *udev; 1836 1837 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1838 if (!xhci->devs[slot_id]) { 1839 xhci_warn(xhci, "Device Notification event for " 1840 "unused slot %u\n", slot_id); 1841 return; 1842 } 1843 1844 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1845 slot_id); 1846 udev = xhci->devs[slot_id]->udev; 1847 if (udev && udev->parent) 1848 usb_wakeup_notification(udev->parent, udev->portnum); 1849 } 1850 1851 /* 1852 * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI 1853 * Controller. 1854 * As per ThunderX2errata-129 USB 2 device may come up as USB 1 1855 * If a connection to a USB 1 device is followed by another connection 1856 * to a USB 2 device. 1857 * 1858 * Reset the PHY after the USB device is disconnected if device speed 1859 * is less than HCD_USB3. 1860 * Retry the reset sequence max of 4 times checking the PLL lock status. 1861 * 1862 */ 1863 static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci) 1864 { 1865 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1866 u32 pll_lock_check; 1867 u32 retry_count = 4; 1868 1869 do { 1870 /* Assert PHY reset */ 1871 writel(0x6F, hcd->regs + 0x1048); 1872 udelay(10); 1873 /* De-assert the PHY reset */ 1874 writel(0x7F, hcd->regs + 0x1048); 1875 udelay(200); 1876 pll_lock_check = readl(hcd->regs + 0x1070); 1877 } while (!(pll_lock_check & 0x1) && --retry_count); 1878 } 1879 1880 static void handle_port_status(struct xhci_hcd *xhci, 1881 struct xhci_interrupter *ir, 1882 union xhci_trb *event) 1883 { 1884 struct usb_hcd *hcd; 1885 u32 port_id; 1886 u32 portsc, cmd_reg; 1887 int max_ports; 1888 unsigned int hcd_portnum; 1889 struct xhci_bus_state *bus_state; 1890 bool bogus_port_status = false; 1891 struct xhci_port *port; 1892 1893 /* Port status change events always have a successful completion code */ 1894 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) 1895 xhci_warn(xhci, 1896 "WARN: xHC returned failed port status event\n"); 1897 1898 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1899 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1900 1901 if ((port_id <= 0) || (port_id > max_ports)) { 1902 xhci_warn(xhci, "Port change event with invalid port ID %d\n", 1903 port_id); 1904 return; 1905 } 1906 1907 port = &xhci->hw_ports[port_id - 1]; 1908 if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) { 1909 xhci_warn(xhci, "Port change event, no port for port ID %u\n", 1910 port_id); 1911 bogus_port_status = true; 1912 goto cleanup; 1913 } 1914 1915 /* We might get interrupts after shared_hcd is removed */ 1916 if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) { 1917 xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n"); 1918 bogus_port_status = true; 1919 goto cleanup; 1920 } 1921 1922 hcd = port->rhub->hcd; 1923 bus_state = &port->rhub->bus_state; 1924 hcd_portnum = port->hcd_portnum; 1925 portsc = readl(port->addr); 1926 1927 xhci_dbg(xhci, "Port change event, %d-%d, id %d, portsc: 0x%x\n", 1928 hcd->self.busnum, hcd_portnum + 1, port_id, portsc); 1929 1930 trace_xhci_handle_port_status(port, portsc); 1931 1932 if (hcd->state == HC_STATE_SUSPENDED) { 1933 xhci_dbg(xhci, "resume root hub\n"); 1934 usb_hcd_resume_root_hub(hcd); 1935 } 1936 1937 if (hcd->speed >= HCD_USB3 && 1938 (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) { 1939 if (port->slot_id && xhci->devs[port->slot_id]) 1940 xhci->devs[port->slot_id]->flags |= VDEV_PORT_ERROR; 1941 } 1942 1943 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) { 1944 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1945 1946 cmd_reg = readl(&xhci->op_regs->command); 1947 if (!(cmd_reg & CMD_RUN)) { 1948 xhci_warn(xhci, "xHC is not running.\n"); 1949 goto cleanup; 1950 } 1951 1952 if (DEV_SUPERSPEED_ANY(portsc)) { 1953 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1954 /* Set a flag to say the port signaled remote wakeup, 1955 * so we can tell the difference between the end of 1956 * device and host initiated resume. 1957 */ 1958 bus_state->port_remote_wakeup |= 1 << hcd_portnum; 1959 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1960 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 1961 xhci_set_link_state(xhci, port, XDEV_U0); 1962 /* Need to wait until the next link state change 1963 * indicates the device is actually in U0. 1964 */ 1965 bogus_port_status = true; 1966 goto cleanup; 1967 } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) { 1968 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1969 port->resume_timestamp = jiffies + 1970 msecs_to_jiffies(USB_RESUME_TIMEOUT); 1971 set_bit(hcd_portnum, &bus_state->resuming_ports); 1972 /* Do the rest in GetPortStatus after resume time delay. 1973 * Avoid polling roothub status before that so that a 1974 * usb device auto-resume latency around ~40ms. 1975 */ 1976 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1977 mod_timer(&hcd->rh_timer, 1978 port->resume_timestamp); 1979 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 1980 bogus_port_status = true; 1981 } 1982 } 1983 1984 if ((portsc & PORT_PLC) && 1985 DEV_SUPERSPEED_ANY(portsc) && 1986 ((portsc & PORT_PLS_MASK) == XDEV_U0 || 1987 (portsc & PORT_PLS_MASK) == XDEV_U1 || 1988 (portsc & PORT_PLS_MASK) == XDEV_U2)) { 1989 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1990 complete(&port->u3exit_done); 1991 /* We've just brought the device into U0/1/2 through either the 1992 * Resume state after a device remote wakeup, or through the 1993 * U3Exit state after a host-initiated resume. If it's a device 1994 * initiated remote wake, don't pass up the link state change, 1995 * so the roothub behavior is consistent with external 1996 * USB 3.0 hub behavior. 1997 */ 1998 if (port->slot_id && xhci->devs[port->slot_id]) 1999 xhci_ring_device(xhci, port->slot_id); 2000 if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) { 2001 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2002 usb_wakeup_notification(hcd->self.root_hub, 2003 hcd_portnum + 1); 2004 bogus_port_status = true; 2005 goto cleanup; 2006 } 2007 } 2008 2009 /* 2010 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 2011 * RExit to a disconnect state). If so, let the driver know it's 2012 * out of the RExit state. 2013 */ 2014 if (hcd->speed < HCD_USB3 && port->rexit_active) { 2015 complete(&port->rexit_done); 2016 port->rexit_active = false; 2017 bogus_port_status = true; 2018 goto cleanup; 2019 } 2020 2021 if (hcd->speed < HCD_USB3) { 2022 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2023 if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) && 2024 (portsc & PORT_CSC) && !(portsc & PORT_CONNECT)) 2025 xhci_cavium_reset_phy_quirk(xhci); 2026 } 2027 2028 cleanup: 2029 2030 /* Don't make the USB core poll the roothub if we got a bad port status 2031 * change event. Besides, at that point we can't tell which roothub 2032 * (USB 2.0 or USB 3.0) to kick. 2033 */ 2034 if (bogus_port_status) 2035 return; 2036 2037 /* 2038 * xHCI port-status-change events occur when the "or" of all the 2039 * status-change bits in the portsc register changes from 0 to 1. 2040 * New status changes won't cause an event if any other change 2041 * bits are still set. When an event occurs, switch over to 2042 * polling to avoid losing status changes. 2043 */ 2044 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 2045 __func__, hcd->self.busnum); 2046 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2047 spin_unlock(&xhci->lock); 2048 /* Pass this up to the core */ 2049 usb_hcd_poll_rh_status(hcd); 2050 spin_lock(&xhci->lock); 2051 } 2052 2053 /* 2054 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 2055 * at end_trb, which may be in another segment. If the suspect DMA address is a 2056 * TRB in this TD, this function returns that TRB's segment. Otherwise it 2057 * returns 0. 2058 */ 2059 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, 2060 struct xhci_segment *start_seg, 2061 union xhci_trb *start_trb, 2062 union xhci_trb *end_trb, 2063 dma_addr_t suspect_dma, 2064 bool debug) 2065 { 2066 dma_addr_t start_dma; 2067 dma_addr_t end_seg_dma; 2068 dma_addr_t end_trb_dma; 2069 struct xhci_segment *cur_seg; 2070 2071 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 2072 cur_seg = start_seg; 2073 2074 do { 2075 if (start_dma == 0) 2076 return NULL; 2077 /* We may get an event for a Link TRB in the middle of a TD */ 2078 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 2079 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 2080 /* If the end TRB isn't in this segment, this is set to 0 */ 2081 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 2082 2083 if (debug) 2084 xhci_warn(xhci, 2085 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", 2086 (unsigned long long)suspect_dma, 2087 (unsigned long long)start_dma, 2088 (unsigned long long)end_trb_dma, 2089 (unsigned long long)cur_seg->dma, 2090 (unsigned long long)end_seg_dma); 2091 2092 if (end_trb_dma > 0) { 2093 /* The end TRB is in this segment, so suspect should be here */ 2094 if (start_dma <= end_trb_dma) { 2095 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 2096 return cur_seg; 2097 } else { 2098 /* Case for one segment with 2099 * a TD wrapped around to the top 2100 */ 2101 if ((suspect_dma >= start_dma && 2102 suspect_dma <= end_seg_dma) || 2103 (suspect_dma >= cur_seg->dma && 2104 suspect_dma <= end_trb_dma)) 2105 return cur_seg; 2106 } 2107 return NULL; 2108 } else { 2109 /* Might still be somewhere in this segment */ 2110 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 2111 return cur_seg; 2112 } 2113 cur_seg = cur_seg->next; 2114 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 2115 } while (cur_seg != start_seg); 2116 2117 return NULL; 2118 } 2119 2120 static void xhci_clear_hub_tt_buffer(struct xhci_hcd *xhci, struct xhci_td *td, 2121 struct xhci_virt_ep *ep) 2122 { 2123 /* 2124 * As part of low/full-speed endpoint-halt processing 2125 * we must clear the TT buffer (USB 2.0 specification 11.17.5). 2126 */ 2127 if (td->urb->dev->tt && !usb_pipeint(td->urb->pipe) && 2128 (td->urb->dev->tt->hub != xhci_to_hcd(xhci)->self.root_hub) && 2129 !(ep->ep_state & EP_CLEARING_TT)) { 2130 ep->ep_state |= EP_CLEARING_TT; 2131 td->urb->ep->hcpriv = td->urb->dev; 2132 if (usb_hub_clear_tt_buffer(td->urb)) 2133 ep->ep_state &= ~EP_CLEARING_TT; 2134 } 2135 } 2136 2137 /* Check if an error has halted the endpoint ring. The class driver will 2138 * cleanup the halt for a non-default control endpoint if we indicate a stall. 2139 * However, a babble and other errors also halt the endpoint ring, and the class 2140 * driver won't clear the halt in that case, so we need to issue a Set Transfer 2141 * Ring Dequeue Pointer command manually. 2142 */ 2143 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 2144 struct xhci_ep_ctx *ep_ctx, 2145 unsigned int trb_comp_code) 2146 { 2147 /* TRB completion codes that may require a manual halt cleanup */ 2148 if (trb_comp_code == COMP_USB_TRANSACTION_ERROR || 2149 trb_comp_code == COMP_BABBLE_DETECTED_ERROR || 2150 trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR) 2151 /* The 0.95 spec says a babbling control endpoint 2152 * is not halted. The 0.96 spec says it is. Some HW 2153 * claims to be 0.95 compliant, but it halts the control 2154 * endpoint anyway. Check if a babble halted the 2155 * endpoint. 2156 */ 2157 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) 2158 return 1; 2159 2160 return 0; 2161 } 2162 2163 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 2164 { 2165 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 2166 /* Vendor defined "informational" completion code, 2167 * treat as not-an-error. 2168 */ 2169 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 2170 trb_comp_code); 2171 xhci_dbg(xhci, "Treating code as success.\n"); 2172 return 1; 2173 } 2174 return 0; 2175 } 2176 2177 static int finish_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2178 struct xhci_ring *ep_ring, struct xhci_td *td, 2179 u32 trb_comp_code) 2180 { 2181 struct xhci_ep_ctx *ep_ctx; 2182 2183 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2184 2185 switch (trb_comp_code) { 2186 case COMP_STOPPED_LENGTH_INVALID: 2187 case COMP_STOPPED_SHORT_PACKET: 2188 case COMP_STOPPED: 2189 /* 2190 * The "Stop Endpoint" completion will take care of any 2191 * stopped TDs. A stopped TD may be restarted, so don't update 2192 * the ring dequeue pointer or take this TD off any lists yet. 2193 */ 2194 return 0; 2195 case COMP_USB_TRANSACTION_ERROR: 2196 case COMP_BABBLE_DETECTED_ERROR: 2197 case COMP_SPLIT_TRANSACTION_ERROR: 2198 /* 2199 * If endpoint context state is not halted we might be 2200 * racing with a reset endpoint command issued by a unsuccessful 2201 * stop endpoint completion (context error). In that case the 2202 * td should be on the cancelled list, and EP_HALTED flag set. 2203 * 2204 * Or then it's not halted due to the 0.95 spec stating that a 2205 * babbling control endpoint should not halt. The 0.96 spec 2206 * again says it should. Some HW claims to be 0.95 compliant, 2207 * but it halts the control endpoint anyway. 2208 */ 2209 if (GET_EP_CTX_STATE(ep_ctx) != EP_STATE_HALTED) { 2210 /* 2211 * If EP_HALTED is set and TD is on the cancelled list 2212 * the TD and dequeue pointer will be handled by reset 2213 * ep command completion 2214 */ 2215 if ((ep->ep_state & EP_HALTED) && 2216 !list_empty(&td->cancelled_td_list)) { 2217 xhci_dbg(xhci, "Already resolving halted ep for 0x%llx\n", 2218 (unsigned long long)xhci_trb_virt_to_dma( 2219 td->start_seg, td->first_trb)); 2220 return 0; 2221 } 2222 /* endpoint not halted, don't reset it */ 2223 break; 2224 } 2225 /* Almost same procedure as for STALL_ERROR below */ 2226 xhci_clear_hub_tt_buffer(xhci, td, ep); 2227 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2228 return 0; 2229 case COMP_STALL_ERROR: 2230 /* 2231 * xhci internal endpoint state will go to a "halt" state for 2232 * any stall, including default control pipe protocol stall. 2233 * To clear the host side halt we need to issue a reset endpoint 2234 * command, followed by a set dequeue command to move past the 2235 * TD. 2236 * Class drivers clear the device side halt from a functional 2237 * stall later. Hub TT buffer should only be cleared for FS/LS 2238 * devices behind HS hubs for functional stalls. 2239 */ 2240 if (ep->ep_index != 0) 2241 xhci_clear_hub_tt_buffer(xhci, td, ep); 2242 2243 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2244 2245 return 0; /* xhci_handle_halted_endpoint marked td cancelled */ 2246 default: 2247 break; 2248 } 2249 2250 /* Update ring dequeue pointer */ 2251 ep_ring->dequeue = td->last_trb; 2252 ep_ring->deq_seg = td->last_trb_seg; 2253 inc_deq(xhci, ep_ring); 2254 2255 return xhci_td_cleanup(xhci, td, ep_ring, td->status); 2256 } 2257 2258 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */ 2259 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring, 2260 union xhci_trb *stop_trb) 2261 { 2262 u32 sum; 2263 union xhci_trb *trb = ring->dequeue; 2264 struct xhci_segment *seg = ring->deq_seg; 2265 2266 for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) { 2267 if (!trb_is_noop(trb) && !trb_is_link(trb)) 2268 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); 2269 } 2270 return sum; 2271 } 2272 2273 /* 2274 * Process control tds, update urb status and actual_length. 2275 */ 2276 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2277 struct xhci_ring *ep_ring, struct xhci_td *td, 2278 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2279 { 2280 struct xhci_ep_ctx *ep_ctx; 2281 u32 trb_comp_code; 2282 u32 remaining, requested; 2283 u32 trb_type; 2284 2285 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); 2286 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2287 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2288 requested = td->urb->transfer_buffer_length; 2289 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2290 2291 switch (trb_comp_code) { 2292 case COMP_SUCCESS: 2293 if (trb_type != TRB_STATUS) { 2294 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n", 2295 (trb_type == TRB_DATA) ? "data" : "setup"); 2296 td->status = -ESHUTDOWN; 2297 break; 2298 } 2299 td->status = 0; 2300 break; 2301 case COMP_SHORT_PACKET: 2302 td->status = 0; 2303 break; 2304 case COMP_STOPPED_SHORT_PACKET: 2305 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2306 td->urb->actual_length = remaining; 2307 else 2308 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); 2309 goto finish_td; 2310 case COMP_STOPPED: 2311 switch (trb_type) { 2312 case TRB_SETUP: 2313 td->urb->actual_length = 0; 2314 goto finish_td; 2315 case TRB_DATA: 2316 case TRB_NORMAL: 2317 td->urb->actual_length = requested - remaining; 2318 goto finish_td; 2319 case TRB_STATUS: 2320 td->urb->actual_length = requested; 2321 goto finish_td; 2322 default: 2323 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", 2324 trb_type); 2325 goto finish_td; 2326 } 2327 case COMP_STOPPED_LENGTH_INVALID: 2328 goto finish_td; 2329 default: 2330 if (!xhci_requires_manual_halt_cleanup(xhci, 2331 ep_ctx, trb_comp_code)) 2332 break; 2333 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", 2334 trb_comp_code, ep->ep_index); 2335 fallthrough; 2336 case COMP_STALL_ERROR: 2337 /* Did we transfer part of the data (middle) phase? */ 2338 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2339 td->urb->actual_length = requested - remaining; 2340 else if (!td->urb_length_set) 2341 td->urb->actual_length = 0; 2342 goto finish_td; 2343 } 2344 2345 /* stopped at setup stage, no data transferred */ 2346 if (trb_type == TRB_SETUP) 2347 goto finish_td; 2348 2349 /* 2350 * if on data stage then update the actual_length of the URB and flag it 2351 * as set, so it won't be overwritten in the event for the last TRB. 2352 */ 2353 if (trb_type == TRB_DATA || 2354 trb_type == TRB_NORMAL) { 2355 td->urb_length_set = true; 2356 td->urb->actual_length = requested - remaining; 2357 xhci_dbg(xhci, "Waiting for status stage event\n"); 2358 return 0; 2359 } 2360 2361 /* at status stage */ 2362 if (!td->urb_length_set) 2363 td->urb->actual_length = requested; 2364 2365 finish_td: 2366 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2367 } 2368 2369 /* 2370 * Process isochronous tds, update urb packet status and actual_length. 2371 */ 2372 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2373 struct xhci_ring *ep_ring, struct xhci_td *td, 2374 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2375 { 2376 struct urb_priv *urb_priv; 2377 int idx; 2378 struct usb_iso_packet_descriptor *frame; 2379 u32 trb_comp_code; 2380 bool sum_trbs_for_length = false; 2381 u32 remaining, requested, ep_trb_len; 2382 int short_framestatus; 2383 2384 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2385 urb_priv = td->urb->hcpriv; 2386 idx = urb_priv->num_tds_done; 2387 frame = &td->urb->iso_frame_desc[idx]; 2388 requested = frame->length; 2389 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2390 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2391 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2392 -EREMOTEIO : 0; 2393 2394 /* handle completion code */ 2395 switch (trb_comp_code) { 2396 case COMP_SUCCESS: 2397 /* Don't overwrite status if TD had an error, see xHCI 4.9.1 */ 2398 if (td->error_mid_td) 2399 break; 2400 if (remaining) { 2401 frame->status = short_framestatus; 2402 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2403 sum_trbs_for_length = true; 2404 break; 2405 } 2406 frame->status = 0; 2407 break; 2408 case COMP_SHORT_PACKET: 2409 frame->status = short_framestatus; 2410 sum_trbs_for_length = true; 2411 break; 2412 case COMP_BANDWIDTH_OVERRUN_ERROR: 2413 frame->status = -ECOMM; 2414 break; 2415 case COMP_BABBLE_DETECTED_ERROR: 2416 sum_trbs_for_length = true; 2417 fallthrough; 2418 case COMP_ISOCH_BUFFER_OVERRUN: 2419 frame->status = -EOVERFLOW; 2420 if (ep_trb != td->last_trb) 2421 td->error_mid_td = true; 2422 break; 2423 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2424 case COMP_STALL_ERROR: 2425 frame->status = -EPROTO; 2426 break; 2427 case COMP_USB_TRANSACTION_ERROR: 2428 frame->status = -EPROTO; 2429 sum_trbs_for_length = true; 2430 if (ep_trb != td->last_trb) 2431 td->error_mid_td = true; 2432 break; 2433 case COMP_STOPPED: 2434 sum_trbs_for_length = true; 2435 break; 2436 case COMP_STOPPED_SHORT_PACKET: 2437 /* field normally containing residue now contains tranferred */ 2438 frame->status = short_framestatus; 2439 requested = remaining; 2440 break; 2441 case COMP_STOPPED_LENGTH_INVALID: 2442 requested = 0; 2443 remaining = 0; 2444 break; 2445 default: 2446 sum_trbs_for_length = true; 2447 frame->status = -1; 2448 break; 2449 } 2450 2451 if (td->urb_length_set) 2452 goto finish_td; 2453 2454 if (sum_trbs_for_length) 2455 frame->actual_length = sum_trb_lengths(xhci, ep->ring, ep_trb) + 2456 ep_trb_len - remaining; 2457 else 2458 frame->actual_length = requested; 2459 2460 td->urb->actual_length += frame->actual_length; 2461 2462 finish_td: 2463 /* Don't give back TD yet if we encountered an error mid TD */ 2464 if (td->error_mid_td && ep_trb != td->last_trb) { 2465 xhci_dbg(xhci, "Error mid isoc TD, wait for final completion event\n"); 2466 td->urb_length_set = true; 2467 return 0; 2468 } 2469 2470 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2471 } 2472 2473 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2474 struct xhci_virt_ep *ep, int status) 2475 { 2476 struct urb_priv *urb_priv; 2477 struct usb_iso_packet_descriptor *frame; 2478 int idx; 2479 2480 urb_priv = td->urb->hcpriv; 2481 idx = urb_priv->num_tds_done; 2482 frame = &td->urb->iso_frame_desc[idx]; 2483 2484 /* The transfer is partly done. */ 2485 frame->status = -EXDEV; 2486 2487 /* calc actual length */ 2488 frame->actual_length = 0; 2489 2490 /* Update ring dequeue pointer */ 2491 ep->ring->dequeue = td->last_trb; 2492 ep->ring->deq_seg = td->last_trb_seg; 2493 inc_deq(xhci, ep->ring); 2494 2495 return xhci_td_cleanup(xhci, td, ep->ring, status); 2496 } 2497 2498 /* 2499 * Process bulk and interrupt tds, update urb status and actual_length. 2500 */ 2501 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2502 struct xhci_ring *ep_ring, struct xhci_td *td, 2503 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2504 { 2505 struct xhci_slot_ctx *slot_ctx; 2506 u32 trb_comp_code; 2507 u32 remaining, requested, ep_trb_len; 2508 2509 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 2510 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2511 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2512 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2513 requested = td->urb->transfer_buffer_length; 2514 2515 switch (trb_comp_code) { 2516 case COMP_SUCCESS: 2517 ep->err_count = 0; 2518 /* handle success with untransferred data as short packet */ 2519 if (ep_trb != td->last_trb || remaining) { 2520 xhci_warn(xhci, "WARN Successful completion on short TX\n"); 2521 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2522 td->urb->ep->desc.bEndpointAddress, 2523 requested, remaining); 2524 } 2525 td->status = 0; 2526 break; 2527 case COMP_SHORT_PACKET: 2528 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2529 td->urb->ep->desc.bEndpointAddress, 2530 requested, remaining); 2531 td->status = 0; 2532 break; 2533 case COMP_STOPPED_SHORT_PACKET: 2534 td->urb->actual_length = remaining; 2535 goto finish_td; 2536 case COMP_STOPPED_LENGTH_INVALID: 2537 /* stopped on ep trb with invalid length, exclude it */ 2538 ep_trb_len = 0; 2539 remaining = 0; 2540 break; 2541 case COMP_USB_TRANSACTION_ERROR: 2542 if (xhci->quirks & XHCI_NO_SOFT_RETRY || 2543 (ep->err_count++ > MAX_SOFT_RETRY) || 2544 le32_to_cpu(slot_ctx->tt_info) & TT_SLOT) 2545 break; 2546 2547 td->status = 0; 2548 2549 xhci_handle_halted_endpoint(xhci, ep, td, EP_SOFT_RESET); 2550 return 0; 2551 default: 2552 /* do nothing */ 2553 break; 2554 } 2555 2556 if (ep_trb == td->last_trb) 2557 td->urb->actual_length = requested - remaining; 2558 else 2559 td->urb->actual_length = 2560 sum_trb_lengths(xhci, ep_ring, ep_trb) + 2561 ep_trb_len - remaining; 2562 finish_td: 2563 if (remaining > requested) { 2564 xhci_warn(xhci, "bad transfer trb length %d in event trb\n", 2565 remaining); 2566 td->urb->actual_length = 0; 2567 } 2568 2569 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2570 } 2571 2572 /* 2573 * If this function returns an error condition, it means it got a Transfer 2574 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2575 * At this point, the host controller is probably hosed and should be reset. 2576 */ 2577 static int handle_tx_event(struct xhci_hcd *xhci, 2578 struct xhci_interrupter *ir, 2579 struct xhci_transfer_event *event) 2580 { 2581 struct xhci_virt_ep *ep; 2582 struct xhci_ring *ep_ring; 2583 unsigned int slot_id; 2584 int ep_index; 2585 struct xhci_td *td = NULL; 2586 dma_addr_t ep_trb_dma; 2587 struct xhci_segment *ep_seg; 2588 union xhci_trb *ep_trb; 2589 int status = -EINPROGRESS; 2590 struct xhci_ep_ctx *ep_ctx; 2591 u32 trb_comp_code; 2592 int td_num = 0; 2593 bool handling_skipped_tds = false; 2594 2595 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2596 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2597 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2598 ep_trb_dma = le64_to_cpu(event->buffer); 2599 2600 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 2601 if (!ep) { 2602 xhci_err(xhci, "ERROR Invalid Transfer event\n"); 2603 goto err_out; 2604 } 2605 2606 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma); 2607 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 2608 2609 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { 2610 xhci_err(xhci, 2611 "ERROR Transfer event for disabled endpoint slot %u ep %u\n", 2612 slot_id, ep_index); 2613 goto err_out; 2614 } 2615 2616 /* Some transfer events don't always point to a trb, see xhci 4.17.4 */ 2617 if (!ep_ring) { 2618 switch (trb_comp_code) { 2619 case COMP_STALL_ERROR: 2620 case COMP_USB_TRANSACTION_ERROR: 2621 case COMP_INVALID_STREAM_TYPE_ERROR: 2622 case COMP_INVALID_STREAM_ID_ERROR: 2623 xhci_dbg(xhci, "Stream transaction error ep %u no id\n", 2624 ep_index); 2625 if (ep->err_count++ > MAX_SOFT_RETRY) 2626 xhci_handle_halted_endpoint(xhci, ep, NULL, 2627 EP_HARD_RESET); 2628 else 2629 xhci_handle_halted_endpoint(xhci, ep, NULL, 2630 EP_SOFT_RESET); 2631 goto cleanup; 2632 case COMP_RING_UNDERRUN: 2633 case COMP_RING_OVERRUN: 2634 case COMP_STOPPED_LENGTH_INVALID: 2635 goto cleanup; 2636 default: 2637 xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n", 2638 slot_id, ep_index); 2639 goto err_out; 2640 } 2641 } 2642 2643 /* Count current td numbers if ep->skip is set */ 2644 if (ep->skip) 2645 td_num += list_count_nodes(&ep_ring->td_list); 2646 2647 /* Look for common error cases */ 2648 switch (trb_comp_code) { 2649 /* Skip codes that require special handling depending on 2650 * transfer type 2651 */ 2652 case COMP_SUCCESS: 2653 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2654 break; 2655 if (xhci->quirks & XHCI_TRUST_TX_LENGTH || 2656 ep_ring->last_td_was_short) 2657 trb_comp_code = COMP_SHORT_PACKET; 2658 else 2659 xhci_warn_ratelimited(xhci, 2660 "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n", 2661 slot_id, ep_index); 2662 break; 2663 case COMP_SHORT_PACKET: 2664 break; 2665 /* Completion codes for endpoint stopped state */ 2666 case COMP_STOPPED: 2667 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n", 2668 slot_id, ep_index); 2669 break; 2670 case COMP_STOPPED_LENGTH_INVALID: 2671 xhci_dbg(xhci, 2672 "Stopped on No-op or Link TRB for slot %u ep %u\n", 2673 slot_id, ep_index); 2674 break; 2675 case COMP_STOPPED_SHORT_PACKET: 2676 xhci_dbg(xhci, 2677 "Stopped with short packet transfer detected for slot %u ep %u\n", 2678 slot_id, ep_index); 2679 break; 2680 /* Completion codes for endpoint halted state */ 2681 case COMP_STALL_ERROR: 2682 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id, 2683 ep_index); 2684 status = -EPIPE; 2685 break; 2686 case COMP_SPLIT_TRANSACTION_ERROR: 2687 xhci_dbg(xhci, "Split transaction error for slot %u ep %u\n", 2688 slot_id, ep_index); 2689 status = -EPROTO; 2690 break; 2691 case COMP_USB_TRANSACTION_ERROR: 2692 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n", 2693 slot_id, ep_index); 2694 status = -EPROTO; 2695 break; 2696 case COMP_BABBLE_DETECTED_ERROR: 2697 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n", 2698 slot_id, ep_index); 2699 status = -EOVERFLOW; 2700 break; 2701 /* Completion codes for endpoint error state */ 2702 case COMP_TRB_ERROR: 2703 xhci_warn(xhci, 2704 "WARN: TRB error for slot %u ep %u on endpoint\n", 2705 slot_id, ep_index); 2706 status = -EILSEQ; 2707 break; 2708 /* completion codes not indicating endpoint state change */ 2709 case COMP_DATA_BUFFER_ERROR: 2710 xhci_warn(xhci, 2711 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n", 2712 slot_id, ep_index); 2713 status = -ENOSR; 2714 break; 2715 case COMP_BANDWIDTH_OVERRUN_ERROR: 2716 xhci_warn(xhci, 2717 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n", 2718 slot_id, ep_index); 2719 break; 2720 case COMP_ISOCH_BUFFER_OVERRUN: 2721 xhci_warn(xhci, 2722 "WARN: buffer overrun event for slot %u ep %u on endpoint", 2723 slot_id, ep_index); 2724 break; 2725 case COMP_RING_UNDERRUN: 2726 /* 2727 * When the Isoch ring is empty, the xHC will generate 2728 * a Ring Overrun Event for IN Isoch endpoint or Ring 2729 * Underrun Event for OUT Isoch endpoint. 2730 */ 2731 xhci_dbg(xhci, "underrun event on endpoint\n"); 2732 if (!list_empty(&ep_ring->td_list)) 2733 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2734 "still with TDs queued?\n", 2735 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2736 ep_index); 2737 goto cleanup; 2738 case COMP_RING_OVERRUN: 2739 xhci_dbg(xhci, "overrun event on endpoint\n"); 2740 if (!list_empty(&ep_ring->td_list)) 2741 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2742 "still with TDs queued?\n", 2743 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2744 ep_index); 2745 goto cleanup; 2746 case COMP_MISSED_SERVICE_ERROR: 2747 /* 2748 * When encounter missed service error, one or more isoc tds 2749 * may be missed by xHC. 2750 * Set skip flag of the ep_ring; Complete the missed tds as 2751 * short transfer when process the ep_ring next time. 2752 */ 2753 ep->skip = true; 2754 xhci_dbg(xhci, 2755 "Miss service interval error for slot %u ep %u, set skip flag\n", 2756 slot_id, ep_index); 2757 goto cleanup; 2758 case COMP_NO_PING_RESPONSE_ERROR: 2759 ep->skip = true; 2760 xhci_dbg(xhci, 2761 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n", 2762 slot_id, ep_index); 2763 goto cleanup; 2764 2765 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2766 /* needs disable slot command to recover */ 2767 xhci_warn(xhci, 2768 "WARN: detect an incompatible device for slot %u ep %u", 2769 slot_id, ep_index); 2770 status = -EPROTO; 2771 break; 2772 default: 2773 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2774 status = 0; 2775 break; 2776 } 2777 xhci_warn(xhci, 2778 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n", 2779 trb_comp_code, slot_id, ep_index); 2780 goto cleanup; 2781 } 2782 2783 do { 2784 /* This TRB should be in the TD at the head of this ring's 2785 * TD list. 2786 */ 2787 if (list_empty(&ep_ring->td_list)) { 2788 /* 2789 * Don't print wanings if it's due to a stopped endpoint 2790 * generating an extra completion event if the device 2791 * was suspended. Or, a event for the last TRB of a 2792 * short TD we already got a short event for. 2793 * The short TD is already removed from the TD list. 2794 */ 2795 2796 if (!(trb_comp_code == COMP_STOPPED || 2797 trb_comp_code == COMP_STOPPED_LENGTH_INVALID || 2798 ep_ring->last_td_was_short)) { 2799 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2800 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2801 ep_index); 2802 } 2803 if (ep->skip) { 2804 ep->skip = false; 2805 xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n", 2806 slot_id, ep_index); 2807 } 2808 if (trb_comp_code == COMP_STALL_ERROR || 2809 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2810 trb_comp_code)) { 2811 xhci_handle_halted_endpoint(xhci, ep, NULL, 2812 EP_HARD_RESET); 2813 } 2814 goto cleanup; 2815 } 2816 2817 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2818 if (ep->skip && td_num == 0) { 2819 ep->skip = false; 2820 xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n", 2821 slot_id, ep_index); 2822 goto cleanup; 2823 } 2824 2825 td = list_first_entry(&ep_ring->td_list, struct xhci_td, 2826 td_list); 2827 if (ep->skip) 2828 td_num--; 2829 2830 /* Is this a TRB in the currently executing TD? */ 2831 ep_seg = trb_in_td(xhci, td->start_seg, td->first_trb, 2832 td->last_trb, ep_trb_dma, false); 2833 2834 /* 2835 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2836 * is not in the current TD pointed by ep_ring->dequeue because 2837 * that the hardware dequeue pointer still at the previous TRB 2838 * of the current TD. The previous TRB maybe a Link TD or the 2839 * last TRB of the previous TD. The command completion handle 2840 * will take care the rest. 2841 */ 2842 if (!ep_seg && (trb_comp_code == COMP_STOPPED || 2843 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) { 2844 goto cleanup; 2845 } 2846 2847 if (!ep_seg) { 2848 2849 if (ep->skip && usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2850 skip_isoc_td(xhci, td, ep, status); 2851 goto cleanup; 2852 } 2853 2854 /* 2855 * Some hosts give a spurious success event after a short 2856 * transfer. Ignore it. 2857 */ 2858 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2859 ep_ring->last_td_was_short) { 2860 ep_ring->last_td_was_short = false; 2861 goto cleanup; 2862 } 2863 2864 /* 2865 * xhci 4.10.2 states isoc endpoints should continue 2866 * processing the next TD if there was an error mid TD. 2867 * So host like NEC don't generate an event for the last 2868 * isoc TRB even if the IOC flag is set. 2869 * xhci 4.9.1 states that if there are errors in mult-TRB 2870 * TDs xHC should generate an error for that TRB, and if xHC 2871 * proceeds to the next TD it should genete an event for 2872 * any TRB with IOC flag on the way. Other host follow this. 2873 * So this event might be for the next TD. 2874 */ 2875 if (td->error_mid_td && 2876 !list_is_last(&td->td_list, &ep_ring->td_list)) { 2877 struct xhci_td *td_next = list_next_entry(td, td_list); 2878 2879 ep_seg = trb_in_td(xhci, td_next->start_seg, td_next->first_trb, 2880 td_next->last_trb, ep_trb_dma, false); 2881 if (ep_seg) { 2882 /* give back previous TD, start handling new */ 2883 xhci_dbg(xhci, "Missing TD completion event after mid TD error\n"); 2884 ep_ring->dequeue = td->last_trb; 2885 ep_ring->deq_seg = td->last_trb_seg; 2886 inc_deq(xhci, ep_ring); 2887 xhci_td_cleanup(xhci, td, ep_ring, td->status); 2888 td = td_next; 2889 } 2890 } 2891 2892 if (!ep_seg) { 2893 /* HC is busted, give up! */ 2894 xhci_err(xhci, 2895 "ERROR Transfer event TRB DMA ptr not " 2896 "part of current TD ep_index %d " 2897 "comp_code %u\n", ep_index, 2898 trb_comp_code); 2899 trb_in_td(xhci, td->start_seg, td->first_trb, 2900 td->last_trb, ep_trb_dma, true); 2901 return -ESHUTDOWN; 2902 } 2903 } 2904 if (trb_comp_code == COMP_SHORT_PACKET) 2905 ep_ring->last_td_was_short = true; 2906 else 2907 ep_ring->last_td_was_short = false; 2908 2909 if (ep->skip) { 2910 xhci_dbg(xhci, 2911 "Found td. Clear skip flag for slot %u ep %u.\n", 2912 slot_id, ep_index); 2913 ep->skip = false; 2914 } 2915 2916 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / 2917 sizeof(*ep_trb)]; 2918 2919 trace_xhci_handle_transfer(ep_ring, 2920 (struct xhci_generic_trb *) ep_trb); 2921 2922 /* 2923 * No-op TRB could trigger interrupts in a case where 2924 * a URB was killed and a STALL_ERROR happens right 2925 * after the endpoint ring stopped. Reset the halted 2926 * endpoint. Otherwise, the endpoint remains stalled 2927 * indefinitely. 2928 */ 2929 2930 if (trb_is_noop(ep_trb)) { 2931 if (trb_comp_code == COMP_STALL_ERROR || 2932 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2933 trb_comp_code)) 2934 xhci_handle_halted_endpoint(xhci, ep, td, 2935 EP_HARD_RESET); 2936 goto cleanup; 2937 } 2938 2939 td->status = status; 2940 2941 /* update the urb's actual_length and give back to the core */ 2942 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2943 process_ctrl_td(xhci, ep, ep_ring, td, ep_trb, event); 2944 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2945 process_isoc_td(xhci, ep, ep_ring, td, ep_trb, event); 2946 else 2947 process_bulk_intr_td(xhci, ep, ep_ring, td, ep_trb, event); 2948 cleanup: 2949 handling_skipped_tds = ep->skip && 2950 trb_comp_code != COMP_MISSED_SERVICE_ERROR && 2951 trb_comp_code != COMP_NO_PING_RESPONSE_ERROR; 2952 2953 /* 2954 * If ep->skip is set, it means there are missed tds on the 2955 * endpoint ring need to take care of. 2956 * Process them as short transfer until reach the td pointed by 2957 * the event. 2958 */ 2959 } while (handling_skipped_tds); 2960 2961 return 0; 2962 2963 err_out: 2964 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2965 (unsigned long long) xhci_trb_virt_to_dma( 2966 ir->event_ring->deq_seg, 2967 ir->event_ring->dequeue), 2968 lower_32_bits(le64_to_cpu(event->buffer)), 2969 upper_32_bits(le64_to_cpu(event->buffer)), 2970 le32_to_cpu(event->transfer_len), 2971 le32_to_cpu(event->flags)); 2972 return -ENODEV; 2973 } 2974 2975 /* 2976 * This function handles one OS-owned event on the event ring. It may drop 2977 * xhci->lock between event processing (e.g. to pass up port status changes). 2978 */ 2979 static int xhci_handle_event_trb(struct xhci_hcd *xhci, struct xhci_interrupter *ir, 2980 union xhci_trb *event) 2981 { 2982 u32 trb_type; 2983 2984 trace_xhci_handle_event(ir->event_ring, &event->generic); 2985 2986 /* 2987 * Barrier between reading the TRB_CYCLE (valid) flag before, and any 2988 * speculative reads of the event's flags/data below. 2989 */ 2990 rmb(); 2991 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->event_cmd.flags)); 2992 /* FIXME: Handle more event types. */ 2993 2994 switch (trb_type) { 2995 case TRB_COMPLETION: 2996 handle_cmd_completion(xhci, &event->event_cmd); 2997 break; 2998 case TRB_PORT_STATUS: 2999 handle_port_status(xhci, ir, event); 3000 break; 3001 case TRB_TRANSFER: 3002 handle_tx_event(xhci, ir, &event->trans_event); 3003 break; 3004 case TRB_DEV_NOTE: 3005 handle_device_notification(xhci, event); 3006 break; 3007 default: 3008 if (trb_type >= TRB_VENDOR_DEFINED_LOW) 3009 handle_vendor_event(xhci, event, trb_type); 3010 else 3011 xhci_warn(xhci, "ERROR unknown event type %d\n", trb_type); 3012 } 3013 /* Any of the above functions may drop and re-acquire the lock, so check 3014 * to make sure a watchdog timer didn't mark the host as non-responsive. 3015 */ 3016 if (xhci->xhc_state & XHCI_STATE_DYING) { 3017 xhci_dbg(xhci, "xHCI host dying, returning from event handler.\n"); 3018 return -ENODEV; 3019 } 3020 3021 return 0; 3022 } 3023 3024 /* 3025 * Update Event Ring Dequeue Pointer: 3026 * - When all events have finished 3027 * - To avoid "Event Ring Full Error" condition 3028 */ 3029 static void xhci_update_erst_dequeue(struct xhci_hcd *xhci, 3030 struct xhci_interrupter *ir, 3031 bool clear_ehb) 3032 { 3033 u64 temp_64; 3034 dma_addr_t deq; 3035 3036 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 3037 deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg, 3038 ir->event_ring->dequeue); 3039 if (deq == 0) 3040 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr\n"); 3041 /* 3042 * Per 4.9.4, Software writes to the ERDP register shall always advance 3043 * the Event Ring Dequeue Pointer value. 3044 */ 3045 if ((temp_64 & ERST_PTR_MASK) == (deq & ERST_PTR_MASK) && !clear_ehb) 3046 return; 3047 3048 /* Update HC event ring dequeue pointer */ 3049 temp_64 = ir->event_ring->deq_seg->num & ERST_DESI_MASK; 3050 temp_64 |= deq & ERST_PTR_MASK; 3051 3052 /* Clear the event handler busy flag (RW1C) */ 3053 if (clear_ehb) 3054 temp_64 |= ERST_EHB; 3055 xhci_write_64(xhci, temp_64, &ir->ir_set->erst_dequeue); 3056 } 3057 3058 /* Clear the interrupt pending bit for a specific interrupter. */ 3059 static void xhci_clear_interrupt_pending(struct xhci_hcd *xhci, 3060 struct xhci_interrupter *ir) 3061 { 3062 if (!ir->ip_autoclear) { 3063 u32 irq_pending; 3064 3065 irq_pending = readl(&ir->ir_set->irq_pending); 3066 irq_pending |= IMAN_IP; 3067 writel(irq_pending, &ir->ir_set->irq_pending); 3068 } 3069 } 3070 3071 /* 3072 * Handle all OS-owned events on an interrupter event ring. It may drop 3073 * and reaquire xhci->lock between event processing. 3074 */ 3075 static int xhci_handle_events(struct xhci_hcd *xhci, struct xhci_interrupter *ir) 3076 { 3077 int event_loop = 0; 3078 int err; 3079 u64 temp; 3080 3081 xhci_clear_interrupt_pending(xhci, ir); 3082 3083 /* Event ring hasn't been allocated yet. */ 3084 if (!ir->event_ring || !ir->event_ring->dequeue) { 3085 xhci_err(xhci, "ERROR interrupter event ring not ready\n"); 3086 return -ENOMEM; 3087 } 3088 3089 if (xhci->xhc_state & XHCI_STATE_DYING || 3090 xhci->xhc_state & XHCI_STATE_HALTED) { 3091 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. Shouldn't IRQs be disabled?\n"); 3092 3093 /* Clear the event handler busy flag (RW1C) */ 3094 temp = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 3095 xhci_write_64(xhci, temp | ERST_EHB, &ir->ir_set->erst_dequeue); 3096 return -ENODEV; 3097 } 3098 3099 /* Process all OS owned event TRBs on this event ring */ 3100 while (unhandled_event_trb(ir->event_ring)) { 3101 err = xhci_handle_event_trb(xhci, ir, ir->event_ring->dequeue); 3102 3103 /* 3104 * If half a segment of events have been handled in one go then 3105 * update ERDP, and force isoc trbs to interrupt more often 3106 */ 3107 if (event_loop++ > TRBS_PER_SEGMENT / 2) { 3108 xhci_update_erst_dequeue(xhci, ir, false); 3109 3110 if (ir->isoc_bei_interval > AVOID_BEI_INTERVAL_MIN) 3111 ir->isoc_bei_interval = ir->isoc_bei_interval / 2; 3112 3113 event_loop = 0; 3114 } 3115 3116 /* Update SW event ring dequeue pointer */ 3117 inc_deq(xhci, ir->event_ring); 3118 3119 if (err) 3120 break; 3121 } 3122 3123 xhci_update_erst_dequeue(xhci, ir, true); 3124 3125 return 0; 3126 } 3127 3128 /* 3129 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 3130 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 3131 * indicators of an event TRB error, but we check the status *first* to be safe. 3132 */ 3133 irqreturn_t xhci_irq(struct usb_hcd *hcd) 3134 { 3135 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3136 irqreturn_t ret = IRQ_HANDLED; 3137 u32 status; 3138 3139 spin_lock(&xhci->lock); 3140 /* Check if the xHC generated the interrupt, or the irq is shared */ 3141 status = readl(&xhci->op_regs->status); 3142 if (status == ~(u32)0) { 3143 xhci_hc_died(xhci); 3144 goto out; 3145 } 3146 3147 if (!(status & STS_EINT)) { 3148 ret = IRQ_NONE; 3149 goto out; 3150 } 3151 3152 if (status & STS_HCE) { 3153 xhci_warn(xhci, "WARNING: Host Controller Error\n"); 3154 goto out; 3155 } 3156 3157 if (status & STS_FATAL) { 3158 xhci_warn(xhci, "WARNING: Host System Error\n"); 3159 xhci_halt(xhci); 3160 goto out; 3161 } 3162 3163 /* 3164 * Clear the op reg interrupt status first, 3165 * so we can receive interrupts from other MSI-X interrupters. 3166 * Write 1 to clear the interrupt status. 3167 */ 3168 status |= STS_EINT; 3169 writel(status, &xhci->op_regs->status); 3170 3171 /* This is the handler of the primary interrupter */ 3172 xhci_handle_events(xhci, xhci->interrupters[0]); 3173 out: 3174 spin_unlock(&xhci->lock); 3175 3176 return ret; 3177 } 3178 3179 irqreturn_t xhci_msi_irq(int irq, void *hcd) 3180 { 3181 return xhci_irq(hcd); 3182 } 3183 EXPORT_SYMBOL_GPL(xhci_msi_irq); 3184 3185 /**** Endpoint Ring Operations ****/ 3186 3187 /* 3188 * Generic function for queueing a TRB on a ring. 3189 * The caller must have checked to make sure there's room on the ring. 3190 * 3191 * @more_trbs_coming: Will you enqueue more TRBs before calling 3192 * prepare_transfer()? 3193 */ 3194 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 3195 bool more_trbs_coming, 3196 u32 field1, u32 field2, u32 field3, u32 field4) 3197 { 3198 struct xhci_generic_trb *trb; 3199 3200 trb = &ring->enqueue->generic; 3201 trb->field[0] = cpu_to_le32(field1); 3202 trb->field[1] = cpu_to_le32(field2); 3203 trb->field[2] = cpu_to_le32(field3); 3204 /* make sure TRB is fully written before giving it to the controller */ 3205 wmb(); 3206 trb->field[3] = cpu_to_le32(field4); 3207 3208 trace_xhci_queue_trb(ring, trb); 3209 3210 inc_enq(xhci, ring, more_trbs_coming); 3211 } 3212 3213 /* 3214 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 3215 * expand ring if it start to be full. 3216 */ 3217 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 3218 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 3219 { 3220 unsigned int link_trb_count = 0; 3221 unsigned int new_segs = 0; 3222 3223 /* Make sure the endpoint has been added to xHC schedule */ 3224 switch (ep_state) { 3225 case EP_STATE_DISABLED: 3226 /* 3227 * USB core changed config/interfaces without notifying us, 3228 * or hardware is reporting the wrong state. 3229 */ 3230 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 3231 return -ENOENT; 3232 case EP_STATE_ERROR: 3233 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 3234 /* FIXME event handling code for error needs to clear it */ 3235 /* XXX not sure if this should be -ENOENT or not */ 3236 return -EINVAL; 3237 case EP_STATE_HALTED: 3238 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 3239 break; 3240 case EP_STATE_STOPPED: 3241 case EP_STATE_RUNNING: 3242 break; 3243 default: 3244 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 3245 /* 3246 * FIXME issue Configure Endpoint command to try to get the HC 3247 * back into a known state. 3248 */ 3249 return -EINVAL; 3250 } 3251 3252 if (ep_ring != xhci->cmd_ring) { 3253 new_segs = xhci_ring_expansion_needed(xhci, ep_ring, num_trbs); 3254 } else if (xhci_num_trbs_free(xhci, ep_ring) <= num_trbs) { 3255 xhci_err(xhci, "Do not support expand command ring\n"); 3256 return -ENOMEM; 3257 } 3258 3259 if (new_segs) { 3260 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 3261 "ERROR no room on ep ring, try ring expansion"); 3262 if (xhci_ring_expansion(xhci, ep_ring, new_segs, mem_flags)) { 3263 xhci_err(xhci, "Ring expansion failed\n"); 3264 return -ENOMEM; 3265 } 3266 } 3267 3268 while (trb_is_link(ep_ring->enqueue)) { 3269 /* If we're not dealing with 0.95 hardware or isoc rings 3270 * on AMD 0.96 host, clear the chain bit. 3271 */ 3272 if (!xhci_link_trb_quirk(xhci) && 3273 !(ep_ring->type == TYPE_ISOC && 3274 (xhci->quirks & XHCI_AMD_0x96_HOST))) 3275 ep_ring->enqueue->link.control &= 3276 cpu_to_le32(~TRB_CHAIN); 3277 else 3278 ep_ring->enqueue->link.control |= 3279 cpu_to_le32(TRB_CHAIN); 3280 3281 wmb(); 3282 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); 3283 3284 /* Toggle the cycle bit after the last ring segment. */ 3285 if (link_trb_toggles_cycle(ep_ring->enqueue)) 3286 ep_ring->cycle_state ^= 1; 3287 3288 ep_ring->enq_seg = ep_ring->enq_seg->next; 3289 ep_ring->enqueue = ep_ring->enq_seg->trbs; 3290 3291 /* prevent infinite loop if all first trbs are link trbs */ 3292 if (link_trb_count++ > ep_ring->num_segs) { 3293 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 3294 return -EINVAL; 3295 } 3296 } 3297 3298 if (last_trb_on_seg(ep_ring->enq_seg, ep_ring->enqueue)) { 3299 xhci_warn(xhci, "Missing link TRB at end of ring segment\n"); 3300 return -EINVAL; 3301 } 3302 3303 return 0; 3304 } 3305 3306 static int prepare_transfer(struct xhci_hcd *xhci, 3307 struct xhci_virt_device *xdev, 3308 unsigned int ep_index, 3309 unsigned int stream_id, 3310 unsigned int num_trbs, 3311 struct urb *urb, 3312 unsigned int td_index, 3313 gfp_t mem_flags) 3314 { 3315 int ret; 3316 struct urb_priv *urb_priv; 3317 struct xhci_td *td; 3318 struct xhci_ring *ep_ring; 3319 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3320 3321 ep_ring = xhci_triad_to_transfer_ring(xhci, xdev->slot_id, ep_index, 3322 stream_id); 3323 if (!ep_ring) { 3324 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 3325 stream_id); 3326 return -EINVAL; 3327 } 3328 3329 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 3330 num_trbs, mem_flags); 3331 if (ret) 3332 return ret; 3333 3334 urb_priv = urb->hcpriv; 3335 td = &urb_priv->td[td_index]; 3336 3337 INIT_LIST_HEAD(&td->td_list); 3338 INIT_LIST_HEAD(&td->cancelled_td_list); 3339 3340 if (td_index == 0) { 3341 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 3342 if (unlikely(ret)) 3343 return ret; 3344 } 3345 3346 td->urb = urb; 3347 /* Add this TD to the tail of the endpoint ring's TD list */ 3348 list_add_tail(&td->td_list, &ep_ring->td_list); 3349 td->start_seg = ep_ring->enq_seg; 3350 td->first_trb = ep_ring->enqueue; 3351 3352 return 0; 3353 } 3354 3355 unsigned int count_trbs(u64 addr, u64 len) 3356 { 3357 unsigned int num_trbs; 3358 3359 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3360 TRB_MAX_BUFF_SIZE); 3361 if (num_trbs == 0) 3362 num_trbs++; 3363 3364 return num_trbs; 3365 } 3366 3367 static inline unsigned int count_trbs_needed(struct urb *urb) 3368 { 3369 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); 3370 } 3371 3372 static unsigned int count_sg_trbs_needed(struct urb *urb) 3373 { 3374 struct scatterlist *sg; 3375 unsigned int i, len, full_len, num_trbs = 0; 3376 3377 full_len = urb->transfer_buffer_length; 3378 3379 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { 3380 len = sg_dma_len(sg); 3381 num_trbs += count_trbs(sg_dma_address(sg), len); 3382 len = min_t(unsigned int, len, full_len); 3383 full_len -= len; 3384 if (full_len == 0) 3385 break; 3386 } 3387 3388 return num_trbs; 3389 } 3390 3391 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) 3392 { 3393 u64 addr, len; 3394 3395 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3396 len = urb->iso_frame_desc[i].length; 3397 3398 return count_trbs(addr, len); 3399 } 3400 3401 static void check_trb_math(struct urb *urb, int running_total) 3402 { 3403 if (unlikely(running_total != urb->transfer_buffer_length)) 3404 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3405 "queued %#x (%d), asked for %#x (%d)\n", 3406 __func__, 3407 urb->ep->desc.bEndpointAddress, 3408 running_total, running_total, 3409 urb->transfer_buffer_length, 3410 urb->transfer_buffer_length); 3411 } 3412 3413 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3414 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3415 struct xhci_generic_trb *start_trb) 3416 { 3417 /* 3418 * Pass all the TRBs to the hardware at once and make sure this write 3419 * isn't reordered. 3420 */ 3421 wmb(); 3422 if (start_cycle) 3423 start_trb->field[3] |= cpu_to_le32(start_cycle); 3424 else 3425 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3426 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3427 } 3428 3429 static void check_interval(struct xhci_hcd *xhci, struct urb *urb, 3430 struct xhci_ep_ctx *ep_ctx) 3431 { 3432 int xhci_interval; 3433 int ep_interval; 3434 3435 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3436 ep_interval = urb->interval; 3437 3438 /* Convert to microframes */ 3439 if (urb->dev->speed == USB_SPEED_LOW || 3440 urb->dev->speed == USB_SPEED_FULL) 3441 ep_interval *= 8; 3442 3443 /* FIXME change this to a warning and a suggestion to use the new API 3444 * to set the polling interval (once the API is added). 3445 */ 3446 if (xhci_interval != ep_interval) { 3447 dev_dbg_ratelimited(&urb->dev->dev, 3448 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3449 ep_interval, ep_interval == 1 ? "" : "s", 3450 xhci_interval, xhci_interval == 1 ? "" : "s"); 3451 urb->interval = xhci_interval; 3452 /* Convert back to frames for LS/FS devices */ 3453 if (urb->dev->speed == USB_SPEED_LOW || 3454 urb->dev->speed == USB_SPEED_FULL) 3455 urb->interval /= 8; 3456 } 3457 } 3458 3459 /* 3460 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3461 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3462 * (comprised of sg list entries) can take several service intervals to 3463 * transmit. 3464 */ 3465 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3466 struct urb *urb, int slot_id, unsigned int ep_index) 3467 { 3468 struct xhci_ep_ctx *ep_ctx; 3469 3470 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); 3471 check_interval(xhci, urb, ep_ctx); 3472 3473 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3474 } 3475 3476 /* 3477 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3478 * packets remaining in the TD (*not* including this TRB). 3479 * 3480 * Total TD packet count = total_packet_count = 3481 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3482 * 3483 * Packets transferred up to and including this TRB = packets_transferred = 3484 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3485 * 3486 * TD size = total_packet_count - packets_transferred 3487 * 3488 * For xHCI 0.96 and older, TD size field should be the remaining bytes 3489 * including this TRB, right shifted by 10 3490 * 3491 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. 3492 * This is taken care of in the TRB_TD_SIZE() macro 3493 * 3494 * The last TRB in a TD must have the TD size set to zero. 3495 */ 3496 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, 3497 int trb_buff_len, unsigned int td_total_len, 3498 struct urb *urb, bool more_trbs_coming) 3499 { 3500 u32 maxp, total_packet_count; 3501 3502 /* MTK xHCI 0.96 contains some features from 1.0 */ 3503 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) 3504 return ((td_total_len - transferred) >> 10); 3505 3506 /* One TRB with a zero-length data packet. */ 3507 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || 3508 trb_buff_len == td_total_len) 3509 return 0; 3510 3511 /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */ 3512 if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100)) 3513 trb_buff_len = 0; 3514 3515 maxp = usb_endpoint_maxp(&urb->ep->desc); 3516 total_packet_count = DIV_ROUND_UP(td_total_len, maxp); 3517 3518 /* Queueing functions don't count the current TRB into transferred */ 3519 return (total_packet_count - ((transferred + trb_buff_len) / maxp)); 3520 } 3521 3522 3523 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, 3524 u32 *trb_buff_len, struct xhci_segment *seg) 3525 { 3526 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 3527 unsigned int unalign; 3528 unsigned int max_pkt; 3529 u32 new_buff_len; 3530 size_t len; 3531 3532 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3533 unalign = (enqd_len + *trb_buff_len) % max_pkt; 3534 3535 /* we got lucky, last normal TRB data on segment is packet aligned */ 3536 if (unalign == 0) 3537 return 0; 3538 3539 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", 3540 unalign, *trb_buff_len); 3541 3542 /* is the last nornal TRB alignable by splitting it */ 3543 if (*trb_buff_len > unalign) { 3544 *trb_buff_len -= unalign; 3545 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); 3546 return 0; 3547 } 3548 3549 /* 3550 * We want enqd_len + trb_buff_len to sum up to a number aligned to 3551 * number which is divisible by the endpoint's wMaxPacketSize. IOW: 3552 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. 3553 */ 3554 new_buff_len = max_pkt - (enqd_len % max_pkt); 3555 3556 if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) 3557 new_buff_len = (urb->transfer_buffer_length - enqd_len); 3558 3559 /* create a max max_pkt sized bounce buffer pointed to by last trb */ 3560 if (usb_urb_dir_out(urb)) { 3561 if (urb->num_sgs) { 3562 len = sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 3563 seg->bounce_buf, new_buff_len, enqd_len); 3564 if (len != new_buff_len) 3565 xhci_warn(xhci, "WARN Wrong bounce buffer write length: %zu != %d\n", 3566 len, new_buff_len); 3567 } else { 3568 memcpy(seg->bounce_buf, urb->transfer_buffer + enqd_len, new_buff_len); 3569 } 3570 3571 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3572 max_pkt, DMA_TO_DEVICE); 3573 } else { 3574 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3575 max_pkt, DMA_FROM_DEVICE); 3576 } 3577 3578 if (dma_mapping_error(dev, seg->bounce_dma)) { 3579 /* try without aligning. Some host controllers survive */ 3580 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); 3581 return 0; 3582 } 3583 *trb_buff_len = new_buff_len; 3584 seg->bounce_len = new_buff_len; 3585 seg->bounce_offs = enqd_len; 3586 3587 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); 3588 3589 return 1; 3590 } 3591 3592 /* This is very similar to what ehci-q.c qtd_fill() does */ 3593 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3594 struct urb *urb, int slot_id, unsigned int ep_index) 3595 { 3596 struct xhci_ring *ring; 3597 struct urb_priv *urb_priv; 3598 struct xhci_td *td; 3599 struct xhci_generic_trb *start_trb; 3600 struct scatterlist *sg = NULL; 3601 bool more_trbs_coming = true; 3602 bool need_zero_pkt = false; 3603 bool first_trb = true; 3604 unsigned int num_trbs; 3605 unsigned int start_cycle, num_sgs = 0; 3606 unsigned int enqd_len, block_len, trb_buff_len, full_len; 3607 int sent_len, ret; 3608 u32 field, length_field, remainder; 3609 u64 addr, send_addr; 3610 3611 ring = xhci_urb_to_transfer_ring(xhci, urb); 3612 if (!ring) 3613 return -EINVAL; 3614 3615 full_len = urb->transfer_buffer_length; 3616 /* If we have scatter/gather list, we use it. */ 3617 if (urb->num_sgs && !(urb->transfer_flags & URB_DMA_MAP_SINGLE)) { 3618 num_sgs = urb->num_mapped_sgs; 3619 sg = urb->sg; 3620 addr = (u64) sg_dma_address(sg); 3621 block_len = sg_dma_len(sg); 3622 num_trbs = count_sg_trbs_needed(urb); 3623 } else { 3624 num_trbs = count_trbs_needed(urb); 3625 addr = (u64) urb->transfer_dma; 3626 block_len = full_len; 3627 } 3628 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3629 ep_index, urb->stream_id, 3630 num_trbs, urb, 0, mem_flags); 3631 if (unlikely(ret < 0)) 3632 return ret; 3633 3634 urb_priv = urb->hcpriv; 3635 3636 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3637 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) 3638 need_zero_pkt = true; 3639 3640 td = &urb_priv->td[0]; 3641 3642 /* 3643 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3644 * until we've finished creating all the other TRBs. The ring's cycle 3645 * state may change as we enqueue the other TRBs, so save it too. 3646 */ 3647 start_trb = &ring->enqueue->generic; 3648 start_cycle = ring->cycle_state; 3649 send_addr = addr; 3650 3651 /* Queue the TRBs, even if they are zero-length */ 3652 for (enqd_len = 0; first_trb || enqd_len < full_len; 3653 enqd_len += trb_buff_len) { 3654 field = TRB_TYPE(TRB_NORMAL); 3655 3656 /* TRB buffer should not cross 64KB boundaries */ 3657 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3658 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); 3659 3660 if (enqd_len + trb_buff_len > full_len) 3661 trb_buff_len = full_len - enqd_len; 3662 3663 /* Don't change the cycle bit of the first TRB until later */ 3664 if (first_trb) { 3665 first_trb = false; 3666 if (start_cycle == 0) 3667 field |= TRB_CYCLE; 3668 } else 3669 field |= ring->cycle_state; 3670 3671 /* Chain all the TRBs together; clear the chain bit in the last 3672 * TRB to indicate it's the last TRB in the chain. 3673 */ 3674 if (enqd_len + trb_buff_len < full_len) { 3675 field |= TRB_CHAIN; 3676 if (trb_is_link(ring->enqueue + 1)) { 3677 if (xhci_align_td(xhci, urb, enqd_len, 3678 &trb_buff_len, 3679 ring->enq_seg)) { 3680 send_addr = ring->enq_seg->bounce_dma; 3681 /* assuming TD won't span 2 segs */ 3682 td->bounce_seg = ring->enq_seg; 3683 } 3684 } 3685 } 3686 if (enqd_len + trb_buff_len >= full_len) { 3687 field &= ~TRB_CHAIN; 3688 field |= TRB_IOC; 3689 more_trbs_coming = false; 3690 td->last_trb = ring->enqueue; 3691 td->last_trb_seg = ring->enq_seg; 3692 if (xhci_urb_suitable_for_idt(urb)) { 3693 memcpy(&send_addr, urb->transfer_buffer, 3694 trb_buff_len); 3695 le64_to_cpus(&send_addr); 3696 field |= TRB_IDT; 3697 } 3698 } 3699 3700 /* Only set interrupt on short packet for IN endpoints */ 3701 if (usb_urb_dir_in(urb)) 3702 field |= TRB_ISP; 3703 3704 /* Set the TRB length, TD size, and interrupter fields. */ 3705 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, 3706 full_len, urb, more_trbs_coming); 3707 3708 length_field = TRB_LEN(trb_buff_len) | 3709 TRB_TD_SIZE(remainder) | 3710 TRB_INTR_TARGET(0); 3711 3712 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, 3713 lower_32_bits(send_addr), 3714 upper_32_bits(send_addr), 3715 length_field, 3716 field); 3717 td->num_trbs++; 3718 addr += trb_buff_len; 3719 sent_len = trb_buff_len; 3720 3721 while (sg && sent_len >= block_len) { 3722 /* New sg entry */ 3723 --num_sgs; 3724 sent_len -= block_len; 3725 sg = sg_next(sg); 3726 if (num_sgs != 0 && sg) { 3727 block_len = sg_dma_len(sg); 3728 addr = (u64) sg_dma_address(sg); 3729 addr += sent_len; 3730 } 3731 } 3732 block_len -= sent_len; 3733 send_addr = addr; 3734 } 3735 3736 if (need_zero_pkt) { 3737 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3738 ep_index, urb->stream_id, 3739 1, urb, 1, mem_flags); 3740 urb_priv->td[1].last_trb = ring->enqueue; 3741 urb_priv->td[1].last_trb_seg = ring->enq_seg; 3742 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; 3743 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); 3744 urb_priv->td[1].num_trbs++; 3745 } 3746 3747 check_trb_math(urb, enqd_len); 3748 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3749 start_cycle, start_trb); 3750 return 0; 3751 } 3752 3753 /* Caller must have locked xhci->lock */ 3754 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3755 struct urb *urb, int slot_id, unsigned int ep_index) 3756 { 3757 struct xhci_ring *ep_ring; 3758 int num_trbs; 3759 int ret; 3760 struct usb_ctrlrequest *setup; 3761 struct xhci_generic_trb *start_trb; 3762 int start_cycle; 3763 u32 field; 3764 struct urb_priv *urb_priv; 3765 struct xhci_td *td; 3766 3767 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3768 if (!ep_ring) 3769 return -EINVAL; 3770 3771 /* 3772 * Need to copy setup packet into setup TRB, so we can't use the setup 3773 * DMA address. 3774 */ 3775 if (!urb->setup_packet) 3776 return -EINVAL; 3777 3778 /* 1 TRB for setup, 1 for status */ 3779 num_trbs = 2; 3780 /* 3781 * Don't need to check if we need additional event data and normal TRBs, 3782 * since data in control transfers will never get bigger than 16MB 3783 * XXX: can we get a buffer that crosses 64KB boundaries? 3784 */ 3785 if (urb->transfer_buffer_length > 0) 3786 num_trbs++; 3787 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3788 ep_index, urb->stream_id, 3789 num_trbs, urb, 0, mem_flags); 3790 if (ret < 0) 3791 return ret; 3792 3793 urb_priv = urb->hcpriv; 3794 td = &urb_priv->td[0]; 3795 td->num_trbs = num_trbs; 3796 3797 /* 3798 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3799 * until we've finished creating all the other TRBs. The ring's cycle 3800 * state may change as we enqueue the other TRBs, so save it too. 3801 */ 3802 start_trb = &ep_ring->enqueue->generic; 3803 start_cycle = ep_ring->cycle_state; 3804 3805 /* Queue setup TRB - see section 6.4.1.2.1 */ 3806 /* FIXME better way to translate setup_packet into two u32 fields? */ 3807 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3808 field = 0; 3809 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3810 if (start_cycle == 0) 3811 field |= 0x1; 3812 3813 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ 3814 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { 3815 if (urb->transfer_buffer_length > 0) { 3816 if (setup->bRequestType & USB_DIR_IN) 3817 field |= TRB_TX_TYPE(TRB_DATA_IN); 3818 else 3819 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3820 } 3821 } 3822 3823 queue_trb(xhci, ep_ring, true, 3824 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3825 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3826 TRB_LEN(8) | TRB_INTR_TARGET(0), 3827 /* Immediate data in pointer */ 3828 field); 3829 3830 /* If there's data, queue data TRBs */ 3831 /* Only set interrupt on short packet for IN endpoints */ 3832 if (usb_urb_dir_in(urb)) 3833 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3834 else 3835 field = TRB_TYPE(TRB_DATA); 3836 3837 if (urb->transfer_buffer_length > 0) { 3838 u32 length_field, remainder; 3839 u64 addr; 3840 3841 if (xhci_urb_suitable_for_idt(urb)) { 3842 memcpy(&addr, urb->transfer_buffer, 3843 urb->transfer_buffer_length); 3844 le64_to_cpus(&addr); 3845 field |= TRB_IDT; 3846 } else { 3847 addr = (u64) urb->transfer_dma; 3848 } 3849 3850 remainder = xhci_td_remainder(xhci, 0, 3851 urb->transfer_buffer_length, 3852 urb->transfer_buffer_length, 3853 urb, 1); 3854 length_field = TRB_LEN(urb->transfer_buffer_length) | 3855 TRB_TD_SIZE(remainder) | 3856 TRB_INTR_TARGET(0); 3857 if (setup->bRequestType & USB_DIR_IN) 3858 field |= TRB_DIR_IN; 3859 queue_trb(xhci, ep_ring, true, 3860 lower_32_bits(addr), 3861 upper_32_bits(addr), 3862 length_field, 3863 field | ep_ring->cycle_state); 3864 } 3865 3866 /* Save the DMA address of the last TRB in the TD */ 3867 td->last_trb = ep_ring->enqueue; 3868 td->last_trb_seg = ep_ring->enq_seg; 3869 3870 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3871 /* If the device sent data, the status stage is an OUT transfer */ 3872 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3873 field = 0; 3874 else 3875 field = TRB_DIR_IN; 3876 queue_trb(xhci, ep_ring, false, 3877 0, 3878 0, 3879 TRB_INTR_TARGET(0), 3880 /* Event on completion */ 3881 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3882 3883 giveback_first_trb(xhci, slot_id, ep_index, 0, 3884 start_cycle, start_trb); 3885 return 0; 3886 } 3887 3888 /* 3889 * The transfer burst count field of the isochronous TRB defines the number of 3890 * bursts that are required to move all packets in this TD. Only SuperSpeed 3891 * devices can burst up to bMaxBurst number of packets per service interval. 3892 * This field is zero based, meaning a value of zero in the field means one 3893 * burst. Basically, for everything but SuperSpeed devices, this field will be 3894 * zero. Only xHCI 1.0 host controllers support this field. 3895 */ 3896 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3897 struct urb *urb, unsigned int total_packet_count) 3898 { 3899 unsigned int max_burst; 3900 3901 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) 3902 return 0; 3903 3904 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3905 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3906 } 3907 3908 /* 3909 * Returns the number of packets in the last "burst" of packets. This field is 3910 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3911 * the last burst packet count is equal to the total number of packets in the 3912 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3913 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3914 * contain 1 to (bMaxBurst + 1) packets. 3915 */ 3916 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3917 struct urb *urb, unsigned int total_packet_count) 3918 { 3919 unsigned int max_burst; 3920 unsigned int residue; 3921 3922 if (xhci->hci_version < 0x100) 3923 return 0; 3924 3925 if (urb->dev->speed >= USB_SPEED_SUPER) { 3926 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3927 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3928 residue = total_packet_count % (max_burst + 1); 3929 /* If residue is zero, the last burst contains (max_burst + 1) 3930 * number of packets, but the TLBPC field is zero-based. 3931 */ 3932 if (residue == 0) 3933 return max_burst; 3934 return residue - 1; 3935 } 3936 if (total_packet_count == 0) 3937 return 0; 3938 return total_packet_count - 1; 3939 } 3940 3941 /* 3942 * Calculates Frame ID field of the isochronous TRB identifies the 3943 * target frame that the Interval associated with this Isochronous 3944 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. 3945 * 3946 * Returns actual frame id on success, negative value on error. 3947 */ 3948 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, 3949 struct urb *urb, int index) 3950 { 3951 int start_frame, ist, ret = 0; 3952 int start_frame_id, end_frame_id, current_frame_id; 3953 3954 if (urb->dev->speed == USB_SPEED_LOW || 3955 urb->dev->speed == USB_SPEED_FULL) 3956 start_frame = urb->start_frame + index * urb->interval; 3957 else 3958 start_frame = (urb->start_frame + index * urb->interval) >> 3; 3959 3960 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): 3961 * 3962 * If bit [3] of IST is cleared to '0', software can add a TRB no 3963 * later than IST[2:0] Microframes before that TRB is scheduled to 3964 * be executed. 3965 * If bit [3] of IST is set to '1', software can add a TRB no later 3966 * than IST[2:0] Frames before that TRB is scheduled to be executed. 3967 */ 3968 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3969 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3970 ist <<= 3; 3971 3972 /* Software shall not schedule an Isoch TD with a Frame ID value that 3973 * is less than the Start Frame ID or greater than the End Frame ID, 3974 * where: 3975 * 3976 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 3977 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 3978 * 3979 * Both the End Frame ID and Start Frame ID values are calculated 3980 * in microframes. When software determines the valid Frame ID value; 3981 * The End Frame ID value should be rounded down to the nearest Frame 3982 * boundary, and the Start Frame ID value should be rounded up to the 3983 * nearest Frame boundary. 3984 */ 3985 current_frame_id = readl(&xhci->run_regs->microframe_index); 3986 start_frame_id = roundup(current_frame_id + ist + 1, 8); 3987 end_frame_id = rounddown(current_frame_id + 895 * 8, 8); 3988 3989 start_frame &= 0x7ff; 3990 start_frame_id = (start_frame_id >> 3) & 0x7ff; 3991 end_frame_id = (end_frame_id >> 3) & 0x7ff; 3992 3993 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n", 3994 __func__, index, readl(&xhci->run_regs->microframe_index), 3995 start_frame_id, end_frame_id, start_frame); 3996 3997 if (start_frame_id < end_frame_id) { 3998 if (start_frame > end_frame_id || 3999 start_frame < start_frame_id) 4000 ret = -EINVAL; 4001 } else if (start_frame_id > end_frame_id) { 4002 if ((start_frame > end_frame_id && 4003 start_frame < start_frame_id)) 4004 ret = -EINVAL; 4005 } else { 4006 ret = -EINVAL; 4007 } 4008 4009 if (index == 0) { 4010 if (ret == -EINVAL || start_frame == start_frame_id) { 4011 start_frame = start_frame_id + 1; 4012 if (urb->dev->speed == USB_SPEED_LOW || 4013 urb->dev->speed == USB_SPEED_FULL) 4014 urb->start_frame = start_frame; 4015 else 4016 urb->start_frame = start_frame << 3; 4017 ret = 0; 4018 } 4019 } 4020 4021 if (ret) { 4022 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", 4023 start_frame, current_frame_id, index, 4024 start_frame_id, end_frame_id); 4025 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); 4026 return ret; 4027 } 4028 4029 return start_frame; 4030 } 4031 4032 /* Check if we should generate event interrupt for a TD in an isoc URB */ 4033 static bool trb_block_event_intr(struct xhci_hcd *xhci, int num_tds, int i, 4034 struct xhci_interrupter *ir) 4035 { 4036 if (xhci->hci_version < 0x100) 4037 return false; 4038 /* always generate an event interrupt for the last TD */ 4039 if (i == num_tds - 1) 4040 return false; 4041 /* 4042 * If AVOID_BEI is set the host handles full event rings poorly, 4043 * generate an event at least every 8th TD to clear the event ring 4044 */ 4045 if (i && ir->isoc_bei_interval && xhci->quirks & XHCI_AVOID_BEI) 4046 return !!(i % ir->isoc_bei_interval); 4047 4048 return true; 4049 } 4050 4051 /* This is for isoc transfer */ 4052 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 4053 struct urb *urb, int slot_id, unsigned int ep_index) 4054 { 4055 struct xhci_interrupter *ir; 4056 struct xhci_ring *ep_ring; 4057 struct urb_priv *urb_priv; 4058 struct xhci_td *td; 4059 int num_tds, trbs_per_td; 4060 struct xhci_generic_trb *start_trb; 4061 bool first_trb; 4062 int start_cycle; 4063 u32 field, length_field; 4064 int running_total, trb_buff_len, td_len, td_remain_len, ret; 4065 u64 start_addr, addr; 4066 int i, j; 4067 bool more_trbs_coming; 4068 struct xhci_virt_ep *xep; 4069 int frame_id; 4070 4071 xep = &xhci->devs[slot_id]->eps[ep_index]; 4072 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 4073 ir = xhci->interrupters[0]; 4074 4075 num_tds = urb->number_of_packets; 4076 if (num_tds < 1) { 4077 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 4078 return -EINVAL; 4079 } 4080 start_addr = (u64) urb->transfer_dma; 4081 start_trb = &ep_ring->enqueue->generic; 4082 start_cycle = ep_ring->cycle_state; 4083 4084 urb_priv = urb->hcpriv; 4085 /* Queue the TRBs for each TD, even if they are zero-length */ 4086 for (i = 0; i < num_tds; i++) { 4087 unsigned int total_pkt_count, max_pkt; 4088 unsigned int burst_count, last_burst_pkt_count; 4089 u32 sia_frame_id; 4090 4091 first_trb = true; 4092 running_total = 0; 4093 addr = start_addr + urb->iso_frame_desc[i].offset; 4094 td_len = urb->iso_frame_desc[i].length; 4095 td_remain_len = td_len; 4096 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 4097 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); 4098 4099 /* A zero-length transfer still involves at least one packet. */ 4100 if (total_pkt_count == 0) 4101 total_pkt_count++; 4102 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); 4103 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, 4104 urb, total_pkt_count); 4105 4106 trbs_per_td = count_isoc_trbs_needed(urb, i); 4107 4108 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 4109 urb->stream_id, trbs_per_td, urb, i, mem_flags); 4110 if (ret < 0) { 4111 if (i == 0) 4112 return ret; 4113 goto cleanup; 4114 } 4115 td = &urb_priv->td[i]; 4116 td->num_trbs = trbs_per_td; 4117 /* use SIA as default, if frame id is used overwrite it */ 4118 sia_frame_id = TRB_SIA; 4119 if (!(urb->transfer_flags & URB_ISO_ASAP) && 4120 HCC_CFC(xhci->hcc_params)) { 4121 frame_id = xhci_get_isoc_frame_id(xhci, urb, i); 4122 if (frame_id >= 0) 4123 sia_frame_id = TRB_FRAME_ID(frame_id); 4124 } 4125 /* 4126 * Set isoc specific data for the first TRB in a TD. 4127 * Prevent HW from getting the TRBs by keeping the cycle state 4128 * inverted in the first TDs isoc TRB. 4129 */ 4130 field = TRB_TYPE(TRB_ISOC) | 4131 TRB_TLBPC(last_burst_pkt_count) | 4132 sia_frame_id | 4133 (i ? ep_ring->cycle_state : !start_cycle); 4134 4135 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ 4136 if (!xep->use_extended_tbc) 4137 field |= TRB_TBC(burst_count); 4138 4139 /* fill the rest of the TRB fields, and remaining normal TRBs */ 4140 for (j = 0; j < trbs_per_td; j++) { 4141 u32 remainder = 0; 4142 4143 /* only first TRB is isoc, overwrite otherwise */ 4144 if (!first_trb) 4145 field = TRB_TYPE(TRB_NORMAL) | 4146 ep_ring->cycle_state; 4147 4148 /* Only set interrupt on short packet for IN EPs */ 4149 if (usb_urb_dir_in(urb)) 4150 field |= TRB_ISP; 4151 4152 /* Set the chain bit for all except the last TRB */ 4153 if (j < trbs_per_td - 1) { 4154 more_trbs_coming = true; 4155 field |= TRB_CHAIN; 4156 } else { 4157 more_trbs_coming = false; 4158 td->last_trb = ep_ring->enqueue; 4159 td->last_trb_seg = ep_ring->enq_seg; 4160 field |= TRB_IOC; 4161 if (trb_block_event_intr(xhci, num_tds, i, ir)) 4162 field |= TRB_BEI; 4163 } 4164 /* Calculate TRB length */ 4165 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 4166 if (trb_buff_len > td_remain_len) 4167 trb_buff_len = td_remain_len; 4168 4169 /* Set the TRB length, TD size, & interrupter fields. */ 4170 remainder = xhci_td_remainder(xhci, running_total, 4171 trb_buff_len, td_len, 4172 urb, more_trbs_coming); 4173 4174 length_field = TRB_LEN(trb_buff_len) | 4175 TRB_INTR_TARGET(0); 4176 4177 /* xhci 1.1 with ETE uses TD Size field for TBC */ 4178 if (first_trb && xep->use_extended_tbc) 4179 length_field |= TRB_TD_SIZE_TBC(burst_count); 4180 else 4181 length_field |= TRB_TD_SIZE(remainder); 4182 first_trb = false; 4183 4184 queue_trb(xhci, ep_ring, more_trbs_coming, 4185 lower_32_bits(addr), 4186 upper_32_bits(addr), 4187 length_field, 4188 field); 4189 running_total += trb_buff_len; 4190 4191 addr += trb_buff_len; 4192 td_remain_len -= trb_buff_len; 4193 } 4194 4195 /* Check TD length */ 4196 if (running_total != td_len) { 4197 xhci_err(xhci, "ISOC TD length unmatch\n"); 4198 ret = -EINVAL; 4199 goto cleanup; 4200 } 4201 } 4202 4203 /* store the next frame id */ 4204 if (HCC_CFC(xhci->hcc_params)) 4205 xep->next_frame_id = urb->start_frame + num_tds * urb->interval; 4206 4207 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 4208 if (xhci->quirks & XHCI_AMD_PLL_FIX) 4209 usb_amd_quirk_pll_disable(); 4210 } 4211 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 4212 4213 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 4214 start_cycle, start_trb); 4215 return 0; 4216 cleanup: 4217 /* Clean up a partially enqueued isoc transfer. */ 4218 4219 for (i--; i >= 0; i--) 4220 list_del_init(&urb_priv->td[i].td_list); 4221 4222 /* Use the first TD as a temporary variable to turn the TDs we've queued 4223 * into No-ops with a software-owned cycle bit. That way the hardware 4224 * won't accidentally start executing bogus TDs when we partially 4225 * overwrite them. td->first_trb and td->start_seg are already set. 4226 */ 4227 urb_priv->td[0].last_trb = ep_ring->enqueue; 4228 /* Every TRB except the first & last will have its cycle bit flipped. */ 4229 td_to_noop(xhci, ep_ring, &urb_priv->td[0], true); 4230 4231 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 4232 ep_ring->enqueue = urb_priv->td[0].first_trb; 4233 ep_ring->enq_seg = urb_priv->td[0].start_seg; 4234 ep_ring->cycle_state = start_cycle; 4235 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 4236 return ret; 4237 } 4238 4239 /* 4240 * Check transfer ring to guarantee there is enough room for the urb. 4241 * Update ISO URB start_frame and interval. 4242 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to 4243 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or 4244 * Contiguous Frame ID is not supported by HC. 4245 */ 4246 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 4247 struct urb *urb, int slot_id, unsigned int ep_index) 4248 { 4249 struct xhci_virt_device *xdev; 4250 struct xhci_ring *ep_ring; 4251 struct xhci_ep_ctx *ep_ctx; 4252 int start_frame; 4253 int num_tds, num_trbs, i; 4254 int ret; 4255 struct xhci_virt_ep *xep; 4256 int ist; 4257 4258 xdev = xhci->devs[slot_id]; 4259 xep = &xhci->devs[slot_id]->eps[ep_index]; 4260 ep_ring = xdev->eps[ep_index].ring; 4261 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 4262 4263 num_trbs = 0; 4264 num_tds = urb->number_of_packets; 4265 for (i = 0; i < num_tds; i++) 4266 num_trbs += count_isoc_trbs_needed(urb, i); 4267 4268 /* Check the ring to guarantee there is enough room for the whole urb. 4269 * Do not insert any td of the urb to the ring if the check failed. 4270 */ 4271 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 4272 num_trbs, mem_flags); 4273 if (ret) 4274 return ret; 4275 4276 /* 4277 * Check interval value. This should be done before we start to 4278 * calculate the start frame value. 4279 */ 4280 check_interval(xhci, urb, ep_ctx); 4281 4282 /* Calculate the start frame and put it in urb->start_frame. */ 4283 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { 4284 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) { 4285 urb->start_frame = xep->next_frame_id; 4286 goto skip_start_over; 4287 } 4288 } 4289 4290 start_frame = readl(&xhci->run_regs->microframe_index); 4291 start_frame &= 0x3fff; 4292 /* 4293 * Round up to the next frame and consider the time before trb really 4294 * gets scheduled by hardare. 4295 */ 4296 ist = HCS_IST(xhci->hcs_params2) & 0x7; 4297 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 4298 ist <<= 3; 4299 start_frame += ist + XHCI_CFC_DELAY; 4300 start_frame = roundup(start_frame, 8); 4301 4302 /* 4303 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT 4304 * is greate than 8 microframes. 4305 */ 4306 if (urb->dev->speed == USB_SPEED_LOW || 4307 urb->dev->speed == USB_SPEED_FULL) { 4308 start_frame = roundup(start_frame, urb->interval << 3); 4309 urb->start_frame = start_frame >> 3; 4310 } else { 4311 start_frame = roundup(start_frame, urb->interval); 4312 urb->start_frame = start_frame; 4313 } 4314 4315 skip_start_over: 4316 4317 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 4318 } 4319 4320 /**** Command Ring Operations ****/ 4321 4322 /* Generic function for queueing a command TRB on the command ring. 4323 * Check to make sure there's room on the command ring for one command TRB. 4324 * Also check that there's room reserved for commands that must not fail. 4325 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 4326 * then only check for the number of reserved spots. 4327 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 4328 * because the command event handler may want to resubmit a failed command. 4329 */ 4330 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4331 u32 field1, u32 field2, 4332 u32 field3, u32 field4, bool command_must_succeed) 4333 { 4334 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 4335 int ret; 4336 4337 if ((xhci->xhc_state & XHCI_STATE_DYING) || 4338 (xhci->xhc_state & XHCI_STATE_HALTED)) { 4339 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); 4340 return -ESHUTDOWN; 4341 } 4342 4343 if (!command_must_succeed) 4344 reserved_trbs++; 4345 4346 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 4347 reserved_trbs, GFP_ATOMIC); 4348 if (ret < 0) { 4349 xhci_err(xhci, "ERR: No room for command on command ring\n"); 4350 if (command_must_succeed) 4351 xhci_err(xhci, "ERR: Reserved TRB counting for " 4352 "unfailable commands failed.\n"); 4353 return ret; 4354 } 4355 4356 cmd->command_trb = xhci->cmd_ring->enqueue; 4357 4358 /* if there are no other commands queued we start the timeout timer */ 4359 if (list_empty(&xhci->cmd_list)) { 4360 xhci->current_cmd = cmd; 4361 xhci_mod_cmd_timer(xhci); 4362 } 4363 4364 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 4365 4366 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 4367 field4 | xhci->cmd_ring->cycle_state); 4368 return 0; 4369 } 4370 4371 /* Queue a slot enable or disable request on the command ring */ 4372 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 4373 u32 trb_type, u32 slot_id) 4374 { 4375 return queue_command(xhci, cmd, 0, 0, 0, 4376 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 4377 } 4378 4379 /* Queue an address device command TRB */ 4380 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4381 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 4382 { 4383 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4384 upper_32_bits(in_ctx_ptr), 0, 4385 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 4386 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 4387 } 4388 4389 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4390 u32 field1, u32 field2, u32 field3, u32 field4) 4391 { 4392 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 4393 } 4394 4395 /* Queue a reset device command TRB */ 4396 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4397 u32 slot_id) 4398 { 4399 return queue_command(xhci, cmd, 0, 0, 0, 4400 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 4401 false); 4402 } 4403 4404 /* Queue a configure endpoint command TRB */ 4405 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 4406 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 4407 u32 slot_id, bool command_must_succeed) 4408 { 4409 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4410 upper_32_bits(in_ctx_ptr), 0, 4411 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 4412 command_must_succeed); 4413 } 4414 4415 /* Queue an evaluate context command TRB */ 4416 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 4417 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 4418 { 4419 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4420 upper_32_bits(in_ctx_ptr), 0, 4421 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 4422 command_must_succeed); 4423 } 4424 4425 /* 4426 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 4427 * activity on an endpoint that is about to be suspended. 4428 */ 4429 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 4430 int slot_id, unsigned int ep_index, int suspend) 4431 { 4432 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4433 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4434 u32 type = TRB_TYPE(TRB_STOP_RING); 4435 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 4436 4437 return queue_command(xhci, cmd, 0, 0, 0, 4438 trb_slot_id | trb_ep_index | type | trb_suspend, false); 4439 } 4440 4441 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 4442 int slot_id, unsigned int ep_index, 4443 enum xhci_ep_reset_type reset_type) 4444 { 4445 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4446 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4447 u32 type = TRB_TYPE(TRB_RESET_EP); 4448 4449 if (reset_type == EP_SOFT_RESET) 4450 type |= TRB_TSP; 4451 4452 return queue_command(xhci, cmd, 0, 0, 0, 4453 trb_slot_id | trb_ep_index | type, false); 4454 } 4455