1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 /* 24 * Ring initialization rules: 25 * 1. Each segment is initialized to zero, except for link TRBs. 26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 27 * Consumer Cycle State (CCS), depending on ring function. 28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 29 * 30 * Ring behavior rules: 31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 32 * least one free TRB in the ring. This is useful if you want to turn that 33 * into a link TRB and expand the ring. 34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 35 * link TRB, then load the pointer with the address in the link TRB. If the 36 * link TRB had its toggle bit set, you may need to update the ring cycle 37 * state (see cycle bit rules). You may have to do this multiple times 38 * until you reach a non-link TRB. 39 * 3. A ring is full if enqueue++ (for the definition of increment above) 40 * equals the dequeue pointer. 41 * 42 * Cycle bit rules: 43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 44 * in a link TRB, it must toggle the ring cycle state. 45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 46 * in a link TRB, it must toggle the ring cycle state. 47 * 48 * Producer rules: 49 * 1. Check if ring is full before you enqueue. 50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 51 * Update enqueue pointer between each write (which may update the ring 52 * cycle state). 53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 54 * and endpoint rings. If HC is the producer for the event ring, 55 * and it generates an interrupt according to interrupt modulation rules. 56 * 57 * Consumer rules: 58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 59 * the TRB is owned by the consumer. 60 * 2. Update dequeue pointer (which may update the ring cycle state) and 61 * continue processing TRBs until you reach a TRB which is not owned by you. 62 * 3. Notify the producer. SW is the consumer for the event ring, and it 63 * updates event ring dequeue pointer. HC is the consumer for the command and 64 * endpoint rings; it generates events on the event ring for these. 65 */ 66 67 #include <linux/scatterlist.h> 68 #include <linux/slab.h> 69 #include "xhci.h" 70 71 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, 72 struct xhci_virt_device *virt_dev, 73 struct xhci_event_cmd *event); 74 75 /* 76 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 77 * address of the TRB. 78 */ 79 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 80 union xhci_trb *trb) 81 { 82 unsigned long segment_offset; 83 84 if (!seg || !trb || trb < seg->trbs) 85 return 0; 86 /* offset in TRBs */ 87 segment_offset = trb - seg->trbs; 88 if (segment_offset > TRBS_PER_SEGMENT) 89 return 0; 90 return seg->dma + (segment_offset * sizeof(*trb)); 91 } 92 93 /* Does this link TRB point to the first segment in a ring, 94 * or was the previous TRB the last TRB on the last segment in the ERST? 95 */ 96 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring, 97 struct xhci_segment *seg, union xhci_trb *trb) 98 { 99 if (ring == xhci->event_ring) 100 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) && 101 (seg->next == xhci->event_ring->first_seg); 102 else 103 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 104 } 105 106 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring 107 * segment? I.e. would the updated event TRB pointer step off the end of the 108 * event seg? 109 */ 110 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 111 struct xhci_segment *seg, union xhci_trb *trb) 112 { 113 if (ring == xhci->event_ring) 114 return trb == &seg->trbs[TRBS_PER_SEGMENT]; 115 else 116 return (le32_to_cpu(trb->link.control) & TRB_TYPE_BITMASK) 117 == TRB_TYPE(TRB_LINK); 118 } 119 120 static int enqueue_is_link_trb(struct xhci_ring *ring) 121 { 122 struct xhci_link_trb *link = &ring->enqueue->link; 123 return ((le32_to_cpu(link->control) & TRB_TYPE_BITMASK) == 124 TRB_TYPE(TRB_LINK)); 125 } 126 127 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 128 * TRB is in a new segment. This does not skip over link TRBs, and it does not 129 * effect the ring dequeue or enqueue pointers. 130 */ 131 static void next_trb(struct xhci_hcd *xhci, 132 struct xhci_ring *ring, 133 struct xhci_segment **seg, 134 union xhci_trb **trb) 135 { 136 if (last_trb(xhci, ring, *seg, *trb)) { 137 *seg = (*seg)->next; 138 *trb = ((*seg)->trbs); 139 } else { 140 (*trb)++; 141 } 142 } 143 144 /* 145 * See Cycle bit rules. SW is the consumer for the event ring only. 146 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 147 */ 148 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring, bool consumer) 149 { 150 union xhci_trb *next = ++(ring->dequeue); 151 unsigned long long addr; 152 153 ring->deq_updates++; 154 /* Update the dequeue pointer further if that was a link TRB or we're at 155 * the end of an event ring segment (which doesn't have link TRBS) 156 */ 157 while (last_trb(xhci, ring, ring->deq_seg, next)) { 158 if (consumer && last_trb_on_last_seg(xhci, ring, ring->deq_seg, next)) { 159 ring->cycle_state = (ring->cycle_state ? 0 : 1); 160 if (!in_interrupt()) 161 xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n", 162 ring, 163 (unsigned int) ring->cycle_state); 164 } 165 ring->deq_seg = ring->deq_seg->next; 166 ring->dequeue = ring->deq_seg->trbs; 167 next = ring->dequeue; 168 } 169 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue); 170 } 171 172 /* 173 * See Cycle bit rules. SW is the consumer for the event ring only. 174 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 175 * 176 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 177 * chain bit is set), then set the chain bit in all the following link TRBs. 178 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 179 * have their chain bit cleared (so that each Link TRB is a separate TD). 180 * 181 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 182 * set, but other sections talk about dealing with the chain bit set. This was 183 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 184 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 185 * 186 * @more_trbs_coming: Will you enqueue more TRBs before calling 187 * prepare_transfer()? 188 */ 189 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 190 bool consumer, bool more_trbs_coming) 191 { 192 u32 chain; 193 union xhci_trb *next; 194 unsigned long long addr; 195 196 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 197 next = ++(ring->enqueue); 198 199 ring->enq_updates++; 200 /* Update the dequeue pointer further if that was a link TRB or we're at 201 * the end of an event ring segment (which doesn't have link TRBS) 202 */ 203 while (last_trb(xhci, ring, ring->enq_seg, next)) { 204 if (!consumer) { 205 if (ring != xhci->event_ring) { 206 /* 207 * If the caller doesn't plan on enqueueing more 208 * TDs before ringing the doorbell, then we 209 * don't want to give the link TRB to the 210 * hardware just yet. We'll give the link TRB 211 * back in prepare_ring() just before we enqueue 212 * the TD at the top of the ring. 213 */ 214 if (!chain && !more_trbs_coming) 215 break; 216 217 /* If we're not dealing with 0.95 hardware, 218 * carry over the chain bit of the previous TRB 219 * (which may mean the chain bit is cleared). 220 */ 221 if (!xhci_link_trb_quirk(xhci)) { 222 next->link.control &= 223 cpu_to_le32(~TRB_CHAIN); 224 next->link.control |= 225 cpu_to_le32(chain); 226 } 227 /* Give this link TRB to the hardware */ 228 wmb(); 229 next->link.control ^= cpu_to_le32(TRB_CYCLE); 230 } 231 /* Toggle the cycle bit after the last ring segment. */ 232 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 233 ring->cycle_state = (ring->cycle_state ? 0 : 1); 234 if (!in_interrupt()) 235 xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n", 236 ring, 237 (unsigned int) ring->cycle_state); 238 } 239 } 240 ring->enq_seg = ring->enq_seg->next; 241 ring->enqueue = ring->enq_seg->trbs; 242 next = ring->enqueue; 243 } 244 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue); 245 } 246 247 /* 248 * Check to see if there's room to enqueue num_trbs on the ring. See rules 249 * above. 250 * FIXME: this would be simpler and faster if we just kept track of the number 251 * of free TRBs in a ring. 252 */ 253 static int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 254 unsigned int num_trbs) 255 { 256 int i; 257 union xhci_trb *enq = ring->enqueue; 258 struct xhci_segment *enq_seg = ring->enq_seg; 259 struct xhci_segment *cur_seg; 260 unsigned int left_on_ring; 261 262 /* If we are currently pointing to a link TRB, advance the 263 * enqueue pointer before checking for space */ 264 while (last_trb(xhci, ring, enq_seg, enq)) { 265 enq_seg = enq_seg->next; 266 enq = enq_seg->trbs; 267 } 268 269 /* Check if ring is empty */ 270 if (enq == ring->dequeue) { 271 /* Can't use link trbs */ 272 left_on_ring = TRBS_PER_SEGMENT - 1; 273 for (cur_seg = enq_seg->next; cur_seg != enq_seg; 274 cur_seg = cur_seg->next) 275 left_on_ring += TRBS_PER_SEGMENT - 1; 276 277 /* Always need one TRB free in the ring. */ 278 left_on_ring -= 1; 279 if (num_trbs > left_on_ring) { 280 xhci_warn(xhci, "Not enough room on ring; " 281 "need %u TRBs, %u TRBs left\n", 282 num_trbs, left_on_ring); 283 return 0; 284 } 285 return 1; 286 } 287 /* Make sure there's an extra empty TRB available */ 288 for (i = 0; i <= num_trbs; ++i) { 289 if (enq == ring->dequeue) 290 return 0; 291 enq++; 292 while (last_trb(xhci, ring, enq_seg, enq)) { 293 enq_seg = enq_seg->next; 294 enq = enq_seg->trbs; 295 } 296 } 297 return 1; 298 } 299 300 /* Ring the host controller doorbell after placing a command on the ring */ 301 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 302 { 303 xhci_dbg(xhci, "// Ding dong!\n"); 304 xhci_writel(xhci, DB_VALUE_HOST, &xhci->dba->doorbell[0]); 305 /* Flush PCI posted writes */ 306 xhci_readl(xhci, &xhci->dba->doorbell[0]); 307 } 308 309 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 310 unsigned int slot_id, 311 unsigned int ep_index, 312 unsigned int stream_id) 313 { 314 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 315 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 316 unsigned int ep_state = ep->ep_state; 317 318 /* Don't ring the doorbell for this endpoint if there are pending 319 * cancellations because we don't want to interrupt processing. 320 * We don't want to restart any stream rings if there's a set dequeue 321 * pointer command pending because the device can choose to start any 322 * stream once the endpoint is on the HW schedule. 323 * FIXME - check all the stream rings for pending cancellations. 324 */ 325 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) || 326 (ep_state & EP_HALTED)) 327 return; 328 xhci_writel(xhci, DB_VALUE(ep_index, stream_id), db_addr); 329 /* The CPU has better things to do at this point than wait for a 330 * write-posting flush. It'll get there soon enough. 331 */ 332 } 333 334 /* Ring the doorbell for any rings with pending URBs */ 335 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 336 unsigned int slot_id, 337 unsigned int ep_index) 338 { 339 unsigned int stream_id; 340 struct xhci_virt_ep *ep; 341 342 ep = &xhci->devs[slot_id]->eps[ep_index]; 343 344 /* A ring has pending URBs if its TD list is not empty */ 345 if (!(ep->ep_state & EP_HAS_STREAMS)) { 346 if (!(list_empty(&ep->ring->td_list))) 347 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 348 return; 349 } 350 351 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 352 stream_id++) { 353 struct xhci_stream_info *stream_info = ep->stream_info; 354 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 355 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 356 stream_id); 357 } 358 } 359 360 /* 361 * Find the segment that trb is in. Start searching in start_seg. 362 * If we must move past a segment that has a link TRB with a toggle cycle state 363 * bit set, then we will toggle the value pointed at by cycle_state. 364 */ 365 static struct xhci_segment *find_trb_seg( 366 struct xhci_segment *start_seg, 367 union xhci_trb *trb, int *cycle_state) 368 { 369 struct xhci_segment *cur_seg = start_seg; 370 struct xhci_generic_trb *generic_trb; 371 372 while (cur_seg->trbs > trb || 373 &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) { 374 generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic; 375 if (le32_to_cpu(generic_trb->field[3]) & LINK_TOGGLE) 376 *cycle_state ^= 0x1; 377 cur_seg = cur_seg->next; 378 if (cur_seg == start_seg) 379 /* Looped over the entire list. Oops! */ 380 return NULL; 381 } 382 return cur_seg; 383 } 384 385 386 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 387 unsigned int slot_id, unsigned int ep_index, 388 unsigned int stream_id) 389 { 390 struct xhci_virt_ep *ep; 391 392 ep = &xhci->devs[slot_id]->eps[ep_index]; 393 /* Common case: no streams */ 394 if (!(ep->ep_state & EP_HAS_STREAMS)) 395 return ep->ring; 396 397 if (stream_id == 0) { 398 xhci_warn(xhci, 399 "WARN: Slot ID %u, ep index %u has streams, " 400 "but URB has no stream ID.\n", 401 slot_id, ep_index); 402 return NULL; 403 } 404 405 if (stream_id < ep->stream_info->num_streams) 406 return ep->stream_info->stream_rings[stream_id]; 407 408 xhci_warn(xhci, 409 "WARN: Slot ID %u, ep index %u has " 410 "stream IDs 1 to %u allocated, " 411 "but stream ID %u is requested.\n", 412 slot_id, ep_index, 413 ep->stream_info->num_streams - 1, 414 stream_id); 415 return NULL; 416 } 417 418 /* Get the right ring for the given URB. 419 * If the endpoint supports streams, boundary check the URB's stream ID. 420 * If the endpoint doesn't support streams, return the singular endpoint ring. 421 */ 422 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 423 struct urb *urb) 424 { 425 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id, 426 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id); 427 } 428 429 /* 430 * Move the xHC's endpoint ring dequeue pointer past cur_td. 431 * Record the new state of the xHC's endpoint ring dequeue segment, 432 * dequeue pointer, and new consumer cycle state in state. 433 * Update our internal representation of the ring's dequeue pointer. 434 * 435 * We do this in three jumps: 436 * - First we update our new ring state to be the same as when the xHC stopped. 437 * - Then we traverse the ring to find the segment that contains 438 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass 439 * any link TRBs with the toggle cycle bit set. 440 * - Finally we move the dequeue state one TRB further, toggling the cycle bit 441 * if we've moved it past a link TRB with the toggle cycle bit set. 442 * 443 * Some of the uses of xhci_generic_trb are grotty, but if they're done 444 * with correct __le32 accesses they should work fine. Only users of this are 445 * in here. 446 */ 447 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, 448 unsigned int slot_id, unsigned int ep_index, 449 unsigned int stream_id, struct xhci_td *cur_td, 450 struct xhci_dequeue_state *state) 451 { 452 struct xhci_virt_device *dev = xhci->devs[slot_id]; 453 struct xhci_ring *ep_ring; 454 struct xhci_generic_trb *trb; 455 struct xhci_ep_ctx *ep_ctx; 456 dma_addr_t addr; 457 458 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 459 ep_index, stream_id); 460 if (!ep_ring) { 461 xhci_warn(xhci, "WARN can't find new dequeue state " 462 "for invalid stream ID %u.\n", 463 stream_id); 464 return; 465 } 466 state->new_cycle_state = 0; 467 xhci_dbg(xhci, "Finding segment containing stopped TRB.\n"); 468 state->new_deq_seg = find_trb_seg(cur_td->start_seg, 469 dev->eps[ep_index].stopped_trb, 470 &state->new_cycle_state); 471 if (!state->new_deq_seg) { 472 WARN_ON(1); 473 return; 474 } 475 476 /* Dig out the cycle state saved by the xHC during the stop ep cmd */ 477 xhci_dbg(xhci, "Finding endpoint context\n"); 478 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 479 state->new_cycle_state = 0x1 & le64_to_cpu(ep_ctx->deq); 480 481 state->new_deq_ptr = cur_td->last_trb; 482 xhci_dbg(xhci, "Finding segment containing last TRB in TD.\n"); 483 state->new_deq_seg = find_trb_seg(state->new_deq_seg, 484 state->new_deq_ptr, 485 &state->new_cycle_state); 486 if (!state->new_deq_seg) { 487 WARN_ON(1); 488 return; 489 } 490 491 trb = &state->new_deq_ptr->generic; 492 if ((le32_to_cpu(trb->field[3]) & TRB_TYPE_BITMASK) == 493 TRB_TYPE(TRB_LINK) && (le32_to_cpu(trb->field[3]) & LINK_TOGGLE)) 494 state->new_cycle_state ^= 0x1; 495 next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr); 496 497 /* 498 * If there is only one segment in a ring, find_trb_seg()'s while loop 499 * will not run, and it will return before it has a chance to see if it 500 * needs to toggle the cycle bit. It can't tell if the stalled transfer 501 * ended just before the link TRB on a one-segment ring, or if the TD 502 * wrapped around the top of the ring, because it doesn't have the TD in 503 * question. Look for the one-segment case where stalled TRB's address 504 * is greater than the new dequeue pointer address. 505 */ 506 if (ep_ring->first_seg == ep_ring->first_seg->next && 507 state->new_deq_ptr < dev->eps[ep_index].stopped_trb) 508 state->new_cycle_state ^= 0x1; 509 xhci_dbg(xhci, "Cycle state = 0x%x\n", state->new_cycle_state); 510 511 /* Don't update the ring cycle state for the producer (us). */ 512 xhci_dbg(xhci, "New dequeue segment = %p (virtual)\n", 513 state->new_deq_seg); 514 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); 515 xhci_dbg(xhci, "New dequeue pointer = 0x%llx (DMA)\n", 516 (unsigned long long) addr); 517 } 518 519 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 520 struct xhci_td *cur_td) 521 { 522 struct xhci_segment *cur_seg; 523 union xhci_trb *cur_trb; 524 525 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb; 526 true; 527 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 528 if ((le32_to_cpu(cur_trb->generic.field[3]) & TRB_TYPE_BITMASK) 529 == TRB_TYPE(TRB_LINK)) { 530 /* Unchain any chained Link TRBs, but 531 * leave the pointers intact. 532 */ 533 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN); 534 xhci_dbg(xhci, "Cancel (unchain) link TRB\n"); 535 xhci_dbg(xhci, "Address = %p (0x%llx dma); " 536 "in seg %p (0x%llx dma)\n", 537 cur_trb, 538 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb), 539 cur_seg, 540 (unsigned long long)cur_seg->dma); 541 } else { 542 cur_trb->generic.field[0] = 0; 543 cur_trb->generic.field[1] = 0; 544 cur_trb->generic.field[2] = 0; 545 /* Preserve only the cycle bit of this TRB */ 546 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 547 cur_trb->generic.field[3] |= cpu_to_le32( 548 TRB_TYPE(TRB_TR_NOOP)); 549 xhci_dbg(xhci, "Cancel TRB %p (0x%llx dma) " 550 "in seg %p (0x%llx dma)\n", 551 cur_trb, 552 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb), 553 cur_seg, 554 (unsigned long long)cur_seg->dma); 555 } 556 if (cur_trb == cur_td->last_trb) 557 break; 558 } 559 } 560 561 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id, 562 unsigned int ep_index, unsigned int stream_id, 563 struct xhci_segment *deq_seg, 564 union xhci_trb *deq_ptr, u32 cycle_state); 565 566 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, 567 unsigned int slot_id, unsigned int ep_index, 568 unsigned int stream_id, 569 struct xhci_dequeue_state *deq_state) 570 { 571 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 572 573 xhci_dbg(xhci, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), " 574 "new deq ptr = %p (0x%llx dma), new cycle = %u\n", 575 deq_state->new_deq_seg, 576 (unsigned long long)deq_state->new_deq_seg->dma, 577 deq_state->new_deq_ptr, 578 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr), 579 deq_state->new_cycle_state); 580 queue_set_tr_deq(xhci, slot_id, ep_index, stream_id, 581 deq_state->new_deq_seg, 582 deq_state->new_deq_ptr, 583 (u32) deq_state->new_cycle_state); 584 /* Stop the TD queueing code from ringing the doorbell until 585 * this command completes. The HC won't set the dequeue pointer 586 * if the ring is running, and ringing the doorbell starts the 587 * ring running. 588 */ 589 ep->ep_state |= SET_DEQ_PENDING; 590 } 591 592 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, 593 struct xhci_virt_ep *ep) 594 { 595 ep->ep_state &= ~EP_HALT_PENDING; 596 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the 597 * timer is running on another CPU, we don't decrement stop_cmds_pending 598 * (since we didn't successfully stop the watchdog timer). 599 */ 600 if (del_timer(&ep->stop_cmd_timer)) 601 ep->stop_cmds_pending--; 602 } 603 604 /* Must be called with xhci->lock held in interrupt context */ 605 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 606 struct xhci_td *cur_td, int status, char *adjective) 607 { 608 struct usb_hcd *hcd; 609 struct urb *urb; 610 struct urb_priv *urb_priv; 611 612 urb = cur_td->urb; 613 urb_priv = urb->hcpriv; 614 urb_priv->td_cnt++; 615 hcd = bus_to_hcd(urb->dev->bus); 616 617 /* Only giveback urb when this is the last td in urb */ 618 if (urb_priv->td_cnt == urb_priv->length) { 619 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 620 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 621 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 622 if (xhci->quirks & XHCI_AMD_PLL_FIX) 623 usb_amd_quirk_pll_enable(); 624 } 625 } 626 usb_hcd_unlink_urb_from_ep(hcd, urb); 627 628 spin_unlock(&xhci->lock); 629 usb_hcd_giveback_urb(hcd, urb, status); 630 xhci_urb_free_priv(xhci, urb_priv); 631 spin_lock(&xhci->lock); 632 } 633 } 634 635 /* 636 * When we get a command completion for a Stop Endpoint Command, we need to 637 * unlink any cancelled TDs from the ring. There are two ways to do that: 638 * 639 * 1. If the HW was in the middle of processing the TD that needs to be 640 * cancelled, then we must move the ring's dequeue pointer past the last TRB 641 * in the TD with a Set Dequeue Pointer Command. 642 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 643 * bit cleared) so that the HW will skip over them. 644 */ 645 static void handle_stopped_endpoint(struct xhci_hcd *xhci, 646 union xhci_trb *trb, struct xhci_event_cmd *event) 647 { 648 unsigned int slot_id; 649 unsigned int ep_index; 650 struct xhci_virt_device *virt_dev; 651 struct xhci_ring *ep_ring; 652 struct xhci_virt_ep *ep; 653 struct list_head *entry; 654 struct xhci_td *cur_td = NULL; 655 struct xhci_td *last_unlinked_td; 656 657 struct xhci_dequeue_state deq_state; 658 659 if (unlikely(TRB_TO_SUSPEND_PORT( 660 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])))) { 661 slot_id = TRB_TO_SLOT_ID( 662 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])); 663 virt_dev = xhci->devs[slot_id]; 664 if (virt_dev) 665 handle_cmd_in_cmd_wait_list(xhci, virt_dev, 666 event); 667 else 668 xhci_warn(xhci, "Stop endpoint command " 669 "completion for disabled slot %u\n", 670 slot_id); 671 return; 672 } 673 674 memset(&deq_state, 0, sizeof(deq_state)); 675 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3])); 676 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 677 ep = &xhci->devs[slot_id]->eps[ep_index]; 678 679 if (list_empty(&ep->cancelled_td_list)) { 680 xhci_stop_watchdog_timer_in_irq(xhci, ep); 681 ep->stopped_td = NULL; 682 ep->stopped_trb = NULL; 683 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 684 return; 685 } 686 687 /* Fix up the ep ring first, so HW stops executing cancelled TDs. 688 * We have the xHCI lock, so nothing can modify this list until we drop 689 * it. We're also in the event handler, so we can't get re-interrupted 690 * if another Stop Endpoint command completes 691 */ 692 list_for_each(entry, &ep->cancelled_td_list) { 693 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list); 694 xhci_dbg(xhci, "Cancelling TD starting at %p, 0x%llx (dma).\n", 695 cur_td->first_trb, 696 (unsigned long long)xhci_trb_virt_to_dma(cur_td->start_seg, cur_td->first_trb)); 697 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 698 if (!ep_ring) { 699 /* This shouldn't happen unless a driver is mucking 700 * with the stream ID after submission. This will 701 * leave the TD on the hardware ring, and the hardware 702 * will try to execute it, and may access a buffer 703 * that has already been freed. In the best case, the 704 * hardware will execute it, and the event handler will 705 * ignore the completion event for that TD, since it was 706 * removed from the td_list for that endpoint. In 707 * short, don't muck with the stream ID after 708 * submission. 709 */ 710 xhci_warn(xhci, "WARN Cancelled URB %p " 711 "has invalid stream ID %u.\n", 712 cur_td->urb, 713 cur_td->urb->stream_id); 714 goto remove_finished_td; 715 } 716 /* 717 * If we stopped on the TD we need to cancel, then we have to 718 * move the xHC endpoint ring dequeue pointer past this TD. 719 */ 720 if (cur_td == ep->stopped_td) 721 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, 722 cur_td->urb->stream_id, 723 cur_td, &deq_state); 724 else 725 td_to_noop(xhci, ep_ring, cur_td); 726 remove_finished_td: 727 /* 728 * The event handler won't see a completion for this TD anymore, 729 * so remove it from the endpoint ring's TD list. Keep it in 730 * the cancelled TD list for URB completion later. 731 */ 732 list_del(&cur_td->td_list); 733 } 734 last_unlinked_td = cur_td; 735 xhci_stop_watchdog_timer_in_irq(xhci, ep); 736 737 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ 738 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { 739 xhci_queue_new_dequeue_state(xhci, 740 slot_id, ep_index, 741 ep->stopped_td->urb->stream_id, 742 &deq_state); 743 xhci_ring_cmd_db(xhci); 744 } else { 745 /* Otherwise ring the doorbell(s) to restart queued transfers */ 746 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 747 } 748 ep->stopped_td = NULL; 749 ep->stopped_trb = NULL; 750 751 /* 752 * Drop the lock and complete the URBs in the cancelled TD list. 753 * New TDs to be cancelled might be added to the end of the list before 754 * we can complete all the URBs for the TDs we already unlinked. 755 * So stop when we've completed the URB for the last TD we unlinked. 756 */ 757 do { 758 cur_td = list_entry(ep->cancelled_td_list.next, 759 struct xhci_td, cancelled_td_list); 760 list_del(&cur_td->cancelled_td_list); 761 762 /* Clean up the cancelled URB */ 763 /* Doesn't matter what we pass for status, since the core will 764 * just overwrite it (because the URB has been unlinked). 765 */ 766 xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled"); 767 768 /* Stop processing the cancelled list if the watchdog timer is 769 * running. 770 */ 771 if (xhci->xhc_state & XHCI_STATE_DYING) 772 return; 773 } while (cur_td != last_unlinked_td); 774 775 /* Return to the event handler with xhci->lock re-acquired */ 776 } 777 778 /* Watchdog timer function for when a stop endpoint command fails to complete. 779 * In this case, we assume the host controller is broken or dying or dead. The 780 * host may still be completing some other events, so we have to be careful to 781 * let the event ring handler and the URB dequeueing/enqueueing functions know 782 * through xhci->state. 783 * 784 * The timer may also fire if the host takes a very long time to respond to the 785 * command, and the stop endpoint command completion handler cannot delete the 786 * timer before the timer function is called. Another endpoint cancellation may 787 * sneak in before the timer function can grab the lock, and that may queue 788 * another stop endpoint command and add the timer back. So we cannot use a 789 * simple flag to say whether there is a pending stop endpoint command for a 790 * particular endpoint. 791 * 792 * Instead we use a combination of that flag and a counter for the number of 793 * pending stop endpoint commands. If the timer is the tail end of the last 794 * stop endpoint command, and the endpoint's command is still pending, we assume 795 * the host is dying. 796 */ 797 void xhci_stop_endpoint_command_watchdog(unsigned long arg) 798 { 799 struct xhci_hcd *xhci; 800 struct xhci_virt_ep *ep; 801 struct xhci_virt_ep *temp_ep; 802 struct xhci_ring *ring; 803 struct xhci_td *cur_td; 804 int ret, i, j; 805 806 ep = (struct xhci_virt_ep *) arg; 807 xhci = ep->xhci; 808 809 spin_lock(&xhci->lock); 810 811 ep->stop_cmds_pending--; 812 if (xhci->xhc_state & XHCI_STATE_DYING) { 813 xhci_dbg(xhci, "Stop EP timer ran, but another timer marked " 814 "xHCI as DYING, exiting.\n"); 815 spin_unlock(&xhci->lock); 816 return; 817 } 818 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) { 819 xhci_dbg(xhci, "Stop EP timer ran, but no command pending, " 820 "exiting.\n"); 821 spin_unlock(&xhci->lock); 822 return; 823 } 824 825 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); 826 xhci_warn(xhci, "Assuming host is dying, halting host.\n"); 827 /* Oops, HC is dead or dying or at least not responding to the stop 828 * endpoint command. 829 */ 830 xhci->xhc_state |= XHCI_STATE_DYING; 831 /* Disable interrupts from the host controller and start halting it */ 832 xhci_quiesce(xhci); 833 spin_unlock(&xhci->lock); 834 835 ret = xhci_halt(xhci); 836 837 spin_lock(&xhci->lock); 838 if (ret < 0) { 839 /* This is bad; the host is not responding to commands and it's 840 * not allowing itself to be halted. At least interrupts are 841 * disabled. If we call usb_hc_died(), it will attempt to 842 * disconnect all device drivers under this host. Those 843 * disconnect() methods will wait for all URBs to be unlinked, 844 * so we must complete them. 845 */ 846 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n"); 847 xhci_warn(xhci, "Completing active URBs anyway.\n"); 848 /* We could turn all TDs on the rings to no-ops. This won't 849 * help if the host has cached part of the ring, and is slow if 850 * we want to preserve the cycle bit. Skip it and hope the host 851 * doesn't touch the memory. 852 */ 853 } 854 for (i = 0; i < MAX_HC_SLOTS; i++) { 855 if (!xhci->devs[i]) 856 continue; 857 for (j = 0; j < 31; j++) { 858 temp_ep = &xhci->devs[i]->eps[j]; 859 ring = temp_ep->ring; 860 if (!ring) 861 continue; 862 xhci_dbg(xhci, "Killing URBs for slot ID %u, " 863 "ep index %u\n", i, j); 864 while (!list_empty(&ring->td_list)) { 865 cur_td = list_first_entry(&ring->td_list, 866 struct xhci_td, 867 td_list); 868 list_del(&cur_td->td_list); 869 if (!list_empty(&cur_td->cancelled_td_list)) 870 list_del(&cur_td->cancelled_td_list); 871 xhci_giveback_urb_in_irq(xhci, cur_td, 872 -ESHUTDOWN, "killed"); 873 } 874 while (!list_empty(&temp_ep->cancelled_td_list)) { 875 cur_td = list_first_entry( 876 &temp_ep->cancelled_td_list, 877 struct xhci_td, 878 cancelled_td_list); 879 list_del(&cur_td->cancelled_td_list); 880 xhci_giveback_urb_in_irq(xhci, cur_td, 881 -ESHUTDOWN, "killed"); 882 } 883 } 884 } 885 spin_unlock(&xhci->lock); 886 xhci_dbg(xhci, "Calling usb_hc_died()\n"); 887 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); 888 xhci_dbg(xhci, "xHCI host controller is dead.\n"); 889 } 890 891 /* 892 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 893 * we need to clear the set deq pending flag in the endpoint ring state, so that 894 * the TD queueing code can ring the doorbell again. We also need to ring the 895 * endpoint doorbell to restart the ring, but only if there aren't more 896 * cancellations pending. 897 */ 898 static void handle_set_deq_completion(struct xhci_hcd *xhci, 899 struct xhci_event_cmd *event, 900 union xhci_trb *trb) 901 { 902 unsigned int slot_id; 903 unsigned int ep_index; 904 unsigned int stream_id; 905 struct xhci_ring *ep_ring; 906 struct xhci_virt_device *dev; 907 struct xhci_ep_ctx *ep_ctx; 908 struct xhci_slot_ctx *slot_ctx; 909 910 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3])); 911 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 912 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 913 dev = xhci->devs[slot_id]; 914 915 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); 916 if (!ep_ring) { 917 xhci_warn(xhci, "WARN Set TR deq ptr command for " 918 "freed stream ID %u\n", 919 stream_id); 920 /* XXX: Harmless??? */ 921 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 922 return; 923 } 924 925 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 926 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); 927 928 if (GET_COMP_CODE(le32_to_cpu(event->status)) != COMP_SUCCESS) { 929 unsigned int ep_state; 930 unsigned int slot_state; 931 932 switch (GET_COMP_CODE(le32_to_cpu(event->status))) { 933 case COMP_TRB_ERR: 934 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because " 935 "of stream ID configuration\n"); 936 break; 937 case COMP_CTX_STATE: 938 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due " 939 "to incorrect slot or ep state.\n"); 940 ep_state = le32_to_cpu(ep_ctx->ep_info); 941 ep_state &= EP_STATE_MASK; 942 slot_state = le32_to_cpu(slot_ctx->dev_state); 943 slot_state = GET_SLOT_STATE(slot_state); 944 xhci_dbg(xhci, "Slot state = %u, EP state = %u\n", 945 slot_state, ep_state); 946 break; 947 case COMP_EBADSLT: 948 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because " 949 "slot %u was not enabled.\n", slot_id); 950 break; 951 default: 952 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown " 953 "completion code of %u.\n", 954 GET_COMP_CODE(le32_to_cpu(event->status))); 955 break; 956 } 957 /* OK what do we do now? The endpoint state is hosed, and we 958 * should never get to this point if the synchronization between 959 * queueing, and endpoint state are correct. This might happen 960 * if the device gets disconnected after we've finished 961 * cancelling URBs, which might not be an error... 962 */ 963 } else { 964 xhci_dbg(xhci, "Successful Set TR Deq Ptr cmd, deq = @%08llx\n", 965 le64_to_cpu(ep_ctx->deq)); 966 if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg, 967 dev->eps[ep_index].queued_deq_ptr) == 968 (le64_to_cpu(ep_ctx->deq) & ~(EP_CTX_CYCLE_MASK))) { 969 /* Update the ring's dequeue segment and dequeue pointer 970 * to reflect the new position. 971 */ 972 ep_ring->deq_seg = dev->eps[ep_index].queued_deq_seg; 973 ep_ring->dequeue = dev->eps[ep_index].queued_deq_ptr; 974 } else { 975 xhci_warn(xhci, "Mismatch between completed Set TR Deq " 976 "Ptr command & xHCI internal state.\n"); 977 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 978 dev->eps[ep_index].queued_deq_seg, 979 dev->eps[ep_index].queued_deq_ptr); 980 } 981 } 982 983 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 984 dev->eps[ep_index].queued_deq_seg = NULL; 985 dev->eps[ep_index].queued_deq_ptr = NULL; 986 /* Restart any rings with pending URBs */ 987 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 988 } 989 990 static void handle_reset_ep_completion(struct xhci_hcd *xhci, 991 struct xhci_event_cmd *event, 992 union xhci_trb *trb) 993 { 994 int slot_id; 995 unsigned int ep_index; 996 997 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3])); 998 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 999 /* This command will only fail if the endpoint wasn't halted, 1000 * but we don't care. 1001 */ 1002 xhci_dbg(xhci, "Ignoring reset ep completion code of %u\n", 1003 (unsigned int) GET_COMP_CODE(le32_to_cpu(event->status))); 1004 1005 /* HW with the reset endpoint quirk needs to have a configure endpoint 1006 * command complete before the endpoint can be used. Queue that here 1007 * because the HW can't handle two commands being queued in a row. 1008 */ 1009 if (xhci->quirks & XHCI_RESET_EP_QUIRK) { 1010 xhci_dbg(xhci, "Queueing configure endpoint command\n"); 1011 xhci_queue_configure_endpoint(xhci, 1012 xhci->devs[slot_id]->in_ctx->dma, slot_id, 1013 false); 1014 xhci_ring_cmd_db(xhci); 1015 } else { 1016 /* Clear our internal halted state and restart the ring(s) */ 1017 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; 1018 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1019 } 1020 } 1021 1022 /* Check to see if a command in the device's command queue matches this one. 1023 * Signal the completion or free the command, and return 1. Return 0 if the 1024 * completed command isn't at the head of the command list. 1025 */ 1026 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, 1027 struct xhci_virt_device *virt_dev, 1028 struct xhci_event_cmd *event) 1029 { 1030 struct xhci_command *command; 1031 1032 if (list_empty(&virt_dev->cmd_list)) 1033 return 0; 1034 1035 command = list_entry(virt_dev->cmd_list.next, 1036 struct xhci_command, cmd_list); 1037 if (xhci->cmd_ring->dequeue != command->command_trb) 1038 return 0; 1039 1040 command->status = GET_COMP_CODE(le32_to_cpu(event->status)); 1041 list_del(&command->cmd_list); 1042 if (command->completion) 1043 complete(command->completion); 1044 else 1045 xhci_free_command(xhci, command); 1046 return 1; 1047 } 1048 1049 static void handle_cmd_completion(struct xhci_hcd *xhci, 1050 struct xhci_event_cmd *event) 1051 { 1052 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1053 u64 cmd_dma; 1054 dma_addr_t cmd_dequeue_dma; 1055 struct xhci_input_control_ctx *ctrl_ctx; 1056 struct xhci_virt_device *virt_dev; 1057 unsigned int ep_index; 1058 struct xhci_ring *ep_ring; 1059 unsigned int ep_state; 1060 1061 cmd_dma = le64_to_cpu(event->cmd_trb); 1062 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1063 xhci->cmd_ring->dequeue); 1064 /* Is the command ring deq ptr out of sync with the deq seg ptr? */ 1065 if (cmd_dequeue_dma == 0) { 1066 xhci->error_bitmask |= 1 << 4; 1067 return; 1068 } 1069 /* Does the DMA address match our internal dequeue pointer address? */ 1070 if (cmd_dma != (u64) cmd_dequeue_dma) { 1071 xhci->error_bitmask |= 1 << 5; 1072 return; 1073 } 1074 switch (le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]) 1075 & TRB_TYPE_BITMASK) { 1076 case TRB_TYPE(TRB_ENABLE_SLOT): 1077 if (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_SUCCESS) 1078 xhci->slot_id = slot_id; 1079 else 1080 xhci->slot_id = 0; 1081 complete(&xhci->addr_dev); 1082 break; 1083 case TRB_TYPE(TRB_DISABLE_SLOT): 1084 if (xhci->devs[slot_id]) { 1085 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1086 /* Delete default control endpoint resources */ 1087 xhci_free_device_endpoint_resources(xhci, 1088 xhci->devs[slot_id], true); 1089 xhci_free_virt_device(xhci, slot_id); 1090 } 1091 break; 1092 case TRB_TYPE(TRB_CONFIG_EP): 1093 virt_dev = xhci->devs[slot_id]; 1094 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event)) 1095 break; 1096 /* 1097 * Configure endpoint commands can come from the USB core 1098 * configuration or alt setting changes, or because the HW 1099 * needed an extra configure endpoint command after a reset 1100 * endpoint command or streams were being configured. 1101 * If the command was for a halted endpoint, the xHCI driver 1102 * is not waiting on the configure endpoint command. 1103 */ 1104 ctrl_ctx = xhci_get_input_control_ctx(xhci, 1105 virt_dev->in_ctx); 1106 /* Input ctx add_flags are the endpoint index plus one */ 1107 ep_index = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)) - 1; 1108 /* A usb_set_interface() call directly after clearing a halted 1109 * condition may race on this quirky hardware. Not worth 1110 * worrying about, since this is prototype hardware. Not sure 1111 * if this will work for streams, but streams support was 1112 * untested on this prototype. 1113 */ 1114 if (xhci->quirks & XHCI_RESET_EP_QUIRK && 1115 ep_index != (unsigned int) -1 && 1116 le32_to_cpu(ctrl_ctx->add_flags) - SLOT_FLAG == 1117 le32_to_cpu(ctrl_ctx->drop_flags)) { 1118 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 1119 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 1120 if (!(ep_state & EP_HALTED)) 1121 goto bandwidth_change; 1122 xhci_dbg(xhci, "Completed config ep cmd - " 1123 "last ep index = %d, state = %d\n", 1124 ep_index, ep_state); 1125 /* Clear internal halted state and restart ring(s) */ 1126 xhci->devs[slot_id]->eps[ep_index].ep_state &= 1127 ~EP_HALTED; 1128 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1129 break; 1130 } 1131 bandwidth_change: 1132 xhci_dbg(xhci, "Completed config ep cmd\n"); 1133 xhci->devs[slot_id]->cmd_status = 1134 GET_COMP_CODE(le32_to_cpu(event->status)); 1135 complete(&xhci->devs[slot_id]->cmd_completion); 1136 break; 1137 case TRB_TYPE(TRB_EVAL_CONTEXT): 1138 virt_dev = xhci->devs[slot_id]; 1139 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event)) 1140 break; 1141 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status)); 1142 complete(&xhci->devs[slot_id]->cmd_completion); 1143 break; 1144 case TRB_TYPE(TRB_ADDR_DEV): 1145 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status)); 1146 complete(&xhci->addr_dev); 1147 break; 1148 case TRB_TYPE(TRB_STOP_RING): 1149 handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue, event); 1150 break; 1151 case TRB_TYPE(TRB_SET_DEQ): 1152 handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue); 1153 break; 1154 case TRB_TYPE(TRB_CMD_NOOP): 1155 break; 1156 case TRB_TYPE(TRB_RESET_EP): 1157 handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue); 1158 break; 1159 case TRB_TYPE(TRB_RESET_DEV): 1160 xhci_dbg(xhci, "Completed reset device command.\n"); 1161 slot_id = TRB_TO_SLOT_ID( 1162 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])); 1163 virt_dev = xhci->devs[slot_id]; 1164 if (virt_dev) 1165 handle_cmd_in_cmd_wait_list(xhci, virt_dev, event); 1166 else 1167 xhci_warn(xhci, "Reset device command completion " 1168 "for disabled slot %u\n", slot_id); 1169 break; 1170 case TRB_TYPE(TRB_NEC_GET_FW): 1171 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1172 xhci->error_bitmask |= 1 << 6; 1173 break; 1174 } 1175 xhci_dbg(xhci, "NEC firmware version %2x.%02x\n", 1176 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1177 NEC_FW_MINOR(le32_to_cpu(event->status))); 1178 break; 1179 default: 1180 /* Skip over unknown commands on the event ring */ 1181 xhci->error_bitmask |= 1 << 6; 1182 break; 1183 } 1184 inc_deq(xhci, xhci->cmd_ring, false); 1185 } 1186 1187 static void handle_vendor_event(struct xhci_hcd *xhci, 1188 union xhci_trb *event) 1189 { 1190 u32 trb_type; 1191 1192 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3])); 1193 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1194 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1195 handle_cmd_completion(xhci, &event->event_cmd); 1196 } 1197 1198 /* @port_id: the one-based port ID from the hardware (indexed from array of all 1199 * port registers -- USB 3.0 and USB 2.0). 1200 * 1201 * Returns a zero-based port number, which is suitable for indexing into each of 1202 * the split roothubs' port arrays and bus state arrays. 1203 */ 1204 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd, 1205 struct xhci_hcd *xhci, u32 port_id) 1206 { 1207 unsigned int i; 1208 unsigned int num_similar_speed_ports = 0; 1209 1210 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[], 1211 * and usb2_ports are 0-based indexes. Count the number of similar 1212 * speed ports, up to 1 port before this port. 1213 */ 1214 for (i = 0; i < (port_id - 1); i++) { 1215 u8 port_speed = xhci->port_array[i]; 1216 1217 /* 1218 * Skip ports that don't have known speeds, or have duplicate 1219 * Extended Capabilities port speed entries. 1220 */ 1221 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY) 1222 continue; 1223 1224 /* 1225 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and 1226 * 1.1 ports are under the USB 2.0 hub. If the port speed 1227 * matches the device speed, it's a similar speed port. 1228 */ 1229 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3)) 1230 num_similar_speed_ports++; 1231 } 1232 return num_similar_speed_ports; 1233 } 1234 1235 static void handle_port_status(struct xhci_hcd *xhci, 1236 union xhci_trb *event) 1237 { 1238 struct usb_hcd *hcd; 1239 u32 port_id; 1240 u32 temp, temp1; 1241 int max_ports; 1242 int slot_id; 1243 unsigned int faked_port_index; 1244 u8 major_revision; 1245 struct xhci_bus_state *bus_state; 1246 __le32 __iomem **port_array; 1247 bool bogus_port_status = false; 1248 1249 /* Port status change events always have a successful completion code */ 1250 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) { 1251 xhci_warn(xhci, "WARN: xHC returned failed port status event\n"); 1252 xhci->error_bitmask |= 1 << 8; 1253 } 1254 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1255 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id); 1256 1257 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1258 if ((port_id <= 0) || (port_id > max_ports)) { 1259 xhci_warn(xhci, "Invalid port id %d\n", port_id); 1260 bogus_port_status = true; 1261 goto cleanup; 1262 } 1263 1264 /* Figure out which usb_hcd this port is attached to: 1265 * is it a USB 3.0 port or a USB 2.0/1.1 port? 1266 */ 1267 major_revision = xhci->port_array[port_id - 1]; 1268 if (major_revision == 0) { 1269 xhci_warn(xhci, "Event for port %u not in " 1270 "Extended Capabilities, ignoring.\n", 1271 port_id); 1272 bogus_port_status = true; 1273 goto cleanup; 1274 } 1275 if (major_revision == DUPLICATE_ENTRY) { 1276 xhci_warn(xhci, "Event for port %u duplicated in" 1277 "Extended Capabilities, ignoring.\n", 1278 port_id); 1279 bogus_port_status = true; 1280 goto cleanup; 1281 } 1282 1283 /* 1284 * Hardware port IDs reported by a Port Status Change Event include USB 1285 * 3.0 and USB 2.0 ports. We want to check if the port has reported a 1286 * resume event, but we first need to translate the hardware port ID 1287 * into the index into the ports on the correct split roothub, and the 1288 * correct bus_state structure. 1289 */ 1290 /* Find the right roothub. */ 1291 hcd = xhci_to_hcd(xhci); 1292 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3)) 1293 hcd = xhci->shared_hcd; 1294 bus_state = &xhci->bus_state[hcd_index(hcd)]; 1295 if (hcd->speed == HCD_USB3) 1296 port_array = xhci->usb3_ports; 1297 else 1298 port_array = xhci->usb2_ports; 1299 /* Find the faked port hub number */ 1300 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci, 1301 port_id); 1302 1303 temp = xhci_readl(xhci, port_array[faked_port_index]); 1304 if (hcd->state == HC_STATE_SUSPENDED) { 1305 xhci_dbg(xhci, "resume root hub\n"); 1306 usb_hcd_resume_root_hub(hcd); 1307 } 1308 1309 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) { 1310 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1311 1312 temp1 = xhci_readl(xhci, &xhci->op_regs->command); 1313 if (!(temp1 & CMD_RUN)) { 1314 xhci_warn(xhci, "xHC is not running.\n"); 1315 goto cleanup; 1316 } 1317 1318 if (DEV_SUPERSPEED(temp)) { 1319 xhci_dbg(xhci, "resume SS port %d\n", port_id); 1320 temp = xhci_port_state_to_neutral(temp); 1321 temp &= ~PORT_PLS_MASK; 1322 temp |= PORT_LINK_STROBE | XDEV_U0; 1323 xhci_writel(xhci, temp, port_array[faked_port_index]); 1324 slot_id = xhci_find_slot_id_by_port(hcd, xhci, 1325 faked_port_index); 1326 if (!slot_id) { 1327 xhci_dbg(xhci, "slot_id is zero\n"); 1328 goto cleanup; 1329 } 1330 xhci_ring_device(xhci, slot_id); 1331 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1332 /* Clear PORT_PLC */ 1333 temp = xhci_readl(xhci, port_array[faked_port_index]); 1334 temp = xhci_port_state_to_neutral(temp); 1335 temp |= PORT_PLC; 1336 xhci_writel(xhci, temp, port_array[faked_port_index]); 1337 } else { 1338 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1339 bus_state->resume_done[faked_port_index] = jiffies + 1340 msecs_to_jiffies(20); 1341 mod_timer(&hcd->rh_timer, 1342 bus_state->resume_done[faked_port_index]); 1343 /* Do the rest in GetPortStatus */ 1344 } 1345 } 1346 1347 cleanup: 1348 /* Update event ring dequeue pointer before dropping the lock */ 1349 inc_deq(xhci, xhci->event_ring, true); 1350 1351 /* Don't make the USB core poll the roothub if we got a bad port status 1352 * change event. Besides, at that point we can't tell which roothub 1353 * (USB 2.0 or USB 3.0) to kick. 1354 */ 1355 if (bogus_port_status) 1356 return; 1357 1358 spin_unlock(&xhci->lock); 1359 /* Pass this up to the core */ 1360 usb_hcd_poll_rh_status(hcd); 1361 spin_lock(&xhci->lock); 1362 } 1363 1364 /* 1365 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 1366 * at end_trb, which may be in another segment. If the suspect DMA address is a 1367 * TRB in this TD, this function returns that TRB's segment. Otherwise it 1368 * returns 0. 1369 */ 1370 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg, 1371 union xhci_trb *start_trb, 1372 union xhci_trb *end_trb, 1373 dma_addr_t suspect_dma) 1374 { 1375 dma_addr_t start_dma; 1376 dma_addr_t end_seg_dma; 1377 dma_addr_t end_trb_dma; 1378 struct xhci_segment *cur_seg; 1379 1380 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 1381 cur_seg = start_seg; 1382 1383 do { 1384 if (start_dma == 0) 1385 return NULL; 1386 /* We may get an event for a Link TRB in the middle of a TD */ 1387 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 1388 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 1389 /* If the end TRB isn't in this segment, this is set to 0 */ 1390 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 1391 1392 if (end_trb_dma > 0) { 1393 /* The end TRB is in this segment, so suspect should be here */ 1394 if (start_dma <= end_trb_dma) { 1395 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 1396 return cur_seg; 1397 } else { 1398 /* Case for one segment with 1399 * a TD wrapped around to the top 1400 */ 1401 if ((suspect_dma >= start_dma && 1402 suspect_dma <= end_seg_dma) || 1403 (suspect_dma >= cur_seg->dma && 1404 suspect_dma <= end_trb_dma)) 1405 return cur_seg; 1406 } 1407 return NULL; 1408 } else { 1409 /* Might still be somewhere in this segment */ 1410 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 1411 return cur_seg; 1412 } 1413 cur_seg = cur_seg->next; 1414 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 1415 } while (cur_seg != start_seg); 1416 1417 return NULL; 1418 } 1419 1420 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, 1421 unsigned int slot_id, unsigned int ep_index, 1422 unsigned int stream_id, 1423 struct xhci_td *td, union xhci_trb *event_trb) 1424 { 1425 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 1426 ep->ep_state |= EP_HALTED; 1427 ep->stopped_td = td; 1428 ep->stopped_trb = event_trb; 1429 ep->stopped_stream = stream_id; 1430 1431 xhci_queue_reset_ep(xhci, slot_id, ep_index); 1432 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index); 1433 1434 ep->stopped_td = NULL; 1435 ep->stopped_trb = NULL; 1436 ep->stopped_stream = 0; 1437 1438 xhci_ring_cmd_db(xhci); 1439 } 1440 1441 /* Check if an error has halted the endpoint ring. The class driver will 1442 * cleanup the halt for a non-default control endpoint if we indicate a stall. 1443 * However, a babble and other errors also halt the endpoint ring, and the class 1444 * driver won't clear the halt in that case, so we need to issue a Set Transfer 1445 * Ring Dequeue Pointer command manually. 1446 */ 1447 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 1448 struct xhci_ep_ctx *ep_ctx, 1449 unsigned int trb_comp_code) 1450 { 1451 /* TRB completion codes that may require a manual halt cleanup */ 1452 if (trb_comp_code == COMP_TX_ERR || 1453 trb_comp_code == COMP_BABBLE || 1454 trb_comp_code == COMP_SPLIT_ERR) 1455 /* The 0.96 spec says a babbling control endpoint 1456 * is not halted. The 0.96 spec says it is. Some HW 1457 * claims to be 0.95 compliant, but it halts the control 1458 * endpoint anyway. Check if a babble halted the 1459 * endpoint. 1460 */ 1461 if ((le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) == EP_STATE_HALTED) 1462 return 1; 1463 1464 return 0; 1465 } 1466 1467 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 1468 { 1469 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 1470 /* Vendor defined "informational" completion code, 1471 * treat as not-an-error. 1472 */ 1473 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 1474 trb_comp_code); 1475 xhci_dbg(xhci, "Treating code as success.\n"); 1476 return 1; 1477 } 1478 return 0; 1479 } 1480 1481 /* 1482 * Finish the td processing, remove the td from td list; 1483 * Return 1 if the urb can be given back. 1484 */ 1485 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, 1486 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1487 struct xhci_virt_ep *ep, int *status, bool skip) 1488 { 1489 struct xhci_virt_device *xdev; 1490 struct xhci_ring *ep_ring; 1491 unsigned int slot_id; 1492 int ep_index; 1493 struct urb *urb = NULL; 1494 struct xhci_ep_ctx *ep_ctx; 1495 int ret = 0; 1496 struct urb_priv *urb_priv; 1497 u32 trb_comp_code; 1498 1499 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1500 xdev = xhci->devs[slot_id]; 1501 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1502 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1503 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1504 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1505 1506 if (skip) 1507 goto td_cleanup; 1508 1509 if (trb_comp_code == COMP_STOP_INVAL || 1510 trb_comp_code == COMP_STOP) { 1511 /* The Endpoint Stop Command completion will take care of any 1512 * stopped TDs. A stopped TD may be restarted, so don't update 1513 * the ring dequeue pointer or take this TD off any lists yet. 1514 */ 1515 ep->stopped_td = td; 1516 ep->stopped_trb = event_trb; 1517 return 0; 1518 } else { 1519 if (trb_comp_code == COMP_STALL) { 1520 /* The transfer is completed from the driver's 1521 * perspective, but we need to issue a set dequeue 1522 * command for this stalled endpoint to move the dequeue 1523 * pointer past the TD. We can't do that here because 1524 * the halt condition must be cleared first. Let the 1525 * USB class driver clear the stall later. 1526 */ 1527 ep->stopped_td = td; 1528 ep->stopped_trb = event_trb; 1529 ep->stopped_stream = ep_ring->stream_id; 1530 } else if (xhci_requires_manual_halt_cleanup(xhci, 1531 ep_ctx, trb_comp_code)) { 1532 /* Other types of errors halt the endpoint, but the 1533 * class driver doesn't call usb_reset_endpoint() unless 1534 * the error is -EPIPE. Clear the halted status in the 1535 * xHCI hardware manually. 1536 */ 1537 xhci_cleanup_halted_endpoint(xhci, 1538 slot_id, ep_index, ep_ring->stream_id, 1539 td, event_trb); 1540 } else { 1541 /* Update ring dequeue pointer */ 1542 while (ep_ring->dequeue != td->last_trb) 1543 inc_deq(xhci, ep_ring, false); 1544 inc_deq(xhci, ep_ring, false); 1545 } 1546 1547 td_cleanup: 1548 /* Clean up the endpoint's TD list */ 1549 urb = td->urb; 1550 urb_priv = urb->hcpriv; 1551 1552 /* Do one last check of the actual transfer length. 1553 * If the host controller said we transferred more data than 1554 * the buffer length, urb->actual_length will be a very big 1555 * number (since it's unsigned). Play it safe and say we didn't 1556 * transfer anything. 1557 */ 1558 if (urb->actual_length > urb->transfer_buffer_length) { 1559 xhci_warn(xhci, "URB transfer length is wrong, " 1560 "xHC issue? req. len = %u, " 1561 "act. len = %u\n", 1562 urb->transfer_buffer_length, 1563 urb->actual_length); 1564 urb->actual_length = 0; 1565 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1566 *status = -EREMOTEIO; 1567 else 1568 *status = 0; 1569 } 1570 list_del(&td->td_list); 1571 /* Was this TD slated to be cancelled but completed anyway? */ 1572 if (!list_empty(&td->cancelled_td_list)) 1573 list_del(&td->cancelled_td_list); 1574 1575 urb_priv->td_cnt++; 1576 /* Giveback the urb when all the tds are completed */ 1577 if (urb_priv->td_cnt == urb_priv->length) { 1578 ret = 1; 1579 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 1580 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 1581 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs 1582 == 0) { 1583 if (xhci->quirks & XHCI_AMD_PLL_FIX) 1584 usb_amd_quirk_pll_enable(); 1585 } 1586 } 1587 } 1588 } 1589 1590 return ret; 1591 } 1592 1593 /* 1594 * Process control tds, update urb status and actual_length. 1595 */ 1596 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, 1597 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1598 struct xhci_virt_ep *ep, int *status) 1599 { 1600 struct xhci_virt_device *xdev; 1601 struct xhci_ring *ep_ring; 1602 unsigned int slot_id; 1603 int ep_index; 1604 struct xhci_ep_ctx *ep_ctx; 1605 u32 trb_comp_code; 1606 1607 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1608 xdev = xhci->devs[slot_id]; 1609 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1610 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1611 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1612 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1613 1614 xhci_debug_trb(xhci, xhci->event_ring->dequeue); 1615 switch (trb_comp_code) { 1616 case COMP_SUCCESS: 1617 if (event_trb == ep_ring->dequeue) { 1618 xhci_warn(xhci, "WARN: Success on ctrl setup TRB " 1619 "without IOC set??\n"); 1620 *status = -ESHUTDOWN; 1621 } else if (event_trb != td->last_trb) { 1622 xhci_warn(xhci, "WARN: Success on ctrl data TRB " 1623 "without IOC set??\n"); 1624 *status = -ESHUTDOWN; 1625 } else { 1626 *status = 0; 1627 } 1628 break; 1629 case COMP_SHORT_TX: 1630 xhci_warn(xhci, "WARN: short transfer on control ep\n"); 1631 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1632 *status = -EREMOTEIO; 1633 else 1634 *status = 0; 1635 break; 1636 case COMP_STOP_INVAL: 1637 case COMP_STOP: 1638 return finish_td(xhci, td, event_trb, event, ep, status, false); 1639 default: 1640 if (!xhci_requires_manual_halt_cleanup(xhci, 1641 ep_ctx, trb_comp_code)) 1642 break; 1643 xhci_dbg(xhci, "TRB error code %u, " 1644 "halted endpoint index = %u\n", 1645 trb_comp_code, ep_index); 1646 /* else fall through */ 1647 case COMP_STALL: 1648 /* Did we transfer part of the data (middle) phase? */ 1649 if (event_trb != ep_ring->dequeue && 1650 event_trb != td->last_trb) 1651 td->urb->actual_length = 1652 td->urb->transfer_buffer_length 1653 - TRB_LEN(le32_to_cpu(event->transfer_len)); 1654 else 1655 td->urb->actual_length = 0; 1656 1657 xhci_cleanup_halted_endpoint(xhci, 1658 slot_id, ep_index, 0, td, event_trb); 1659 return finish_td(xhci, td, event_trb, event, ep, status, true); 1660 } 1661 /* 1662 * Did we transfer any data, despite the errors that might have 1663 * happened? I.e. did we get past the setup stage? 1664 */ 1665 if (event_trb != ep_ring->dequeue) { 1666 /* The event was for the status stage */ 1667 if (event_trb == td->last_trb) { 1668 if (td->urb->actual_length != 0) { 1669 /* Don't overwrite a previously set error code 1670 */ 1671 if ((*status == -EINPROGRESS || *status == 0) && 1672 (td->urb->transfer_flags 1673 & URB_SHORT_NOT_OK)) 1674 /* Did we already see a short data 1675 * stage? */ 1676 *status = -EREMOTEIO; 1677 } else { 1678 td->urb->actual_length = 1679 td->urb->transfer_buffer_length; 1680 } 1681 } else { 1682 /* Maybe the event was for the data stage? */ 1683 td->urb->actual_length = 1684 td->urb->transfer_buffer_length - 1685 TRB_LEN(le32_to_cpu(event->transfer_len)); 1686 xhci_dbg(xhci, "Waiting for status " 1687 "stage event\n"); 1688 return 0; 1689 } 1690 } 1691 1692 return finish_td(xhci, td, event_trb, event, ep, status, false); 1693 } 1694 1695 /* 1696 * Process isochronous tds, update urb packet status and actual_length. 1697 */ 1698 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 1699 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1700 struct xhci_virt_ep *ep, int *status) 1701 { 1702 struct xhci_ring *ep_ring; 1703 struct urb_priv *urb_priv; 1704 int idx; 1705 int len = 0; 1706 union xhci_trb *cur_trb; 1707 struct xhci_segment *cur_seg; 1708 struct usb_iso_packet_descriptor *frame; 1709 u32 trb_comp_code; 1710 bool skip_td = false; 1711 1712 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1713 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1714 urb_priv = td->urb->hcpriv; 1715 idx = urb_priv->td_cnt; 1716 frame = &td->urb->iso_frame_desc[idx]; 1717 1718 /* handle completion code */ 1719 switch (trb_comp_code) { 1720 case COMP_SUCCESS: 1721 frame->status = 0; 1722 break; 1723 case COMP_SHORT_TX: 1724 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 1725 -EREMOTEIO : 0; 1726 break; 1727 case COMP_BW_OVER: 1728 frame->status = -ECOMM; 1729 skip_td = true; 1730 break; 1731 case COMP_BUFF_OVER: 1732 case COMP_BABBLE: 1733 frame->status = -EOVERFLOW; 1734 skip_td = true; 1735 break; 1736 case COMP_STALL: 1737 frame->status = -EPROTO; 1738 skip_td = true; 1739 break; 1740 case COMP_STOP: 1741 case COMP_STOP_INVAL: 1742 break; 1743 default: 1744 frame->status = -1; 1745 break; 1746 } 1747 1748 if (trb_comp_code == COMP_SUCCESS || skip_td) { 1749 frame->actual_length = frame->length; 1750 td->urb->actual_length += frame->length; 1751 } else { 1752 for (cur_trb = ep_ring->dequeue, 1753 cur_seg = ep_ring->deq_seg; cur_trb != event_trb; 1754 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 1755 if ((le32_to_cpu(cur_trb->generic.field[3]) & 1756 TRB_TYPE_BITMASK) != TRB_TYPE(TRB_TR_NOOP) && 1757 (le32_to_cpu(cur_trb->generic.field[3]) & 1758 TRB_TYPE_BITMASK) != TRB_TYPE(TRB_LINK)) 1759 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 1760 } 1761 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 1762 TRB_LEN(le32_to_cpu(event->transfer_len)); 1763 1764 if (trb_comp_code != COMP_STOP_INVAL) { 1765 frame->actual_length = len; 1766 td->urb->actual_length += len; 1767 } 1768 } 1769 1770 if ((idx == urb_priv->length - 1) && *status == -EINPROGRESS) 1771 *status = 0; 1772 1773 return finish_td(xhci, td, event_trb, event, ep, status, false); 1774 } 1775 1776 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 1777 struct xhci_transfer_event *event, 1778 struct xhci_virt_ep *ep, int *status) 1779 { 1780 struct xhci_ring *ep_ring; 1781 struct urb_priv *urb_priv; 1782 struct usb_iso_packet_descriptor *frame; 1783 int idx; 1784 1785 ep_ring = xhci_dma_to_transfer_ring(ep, event->buffer); 1786 urb_priv = td->urb->hcpriv; 1787 idx = urb_priv->td_cnt; 1788 frame = &td->urb->iso_frame_desc[idx]; 1789 1790 /* The transfer is partly done */ 1791 *status = -EXDEV; 1792 frame->status = -EXDEV; 1793 1794 /* calc actual length */ 1795 frame->actual_length = 0; 1796 1797 /* Update ring dequeue pointer */ 1798 while (ep_ring->dequeue != td->last_trb) 1799 inc_deq(xhci, ep_ring, false); 1800 inc_deq(xhci, ep_ring, false); 1801 1802 return finish_td(xhci, td, NULL, event, ep, status, true); 1803 } 1804 1805 /* 1806 * Process bulk and interrupt tds, update urb status and actual_length. 1807 */ 1808 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, 1809 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1810 struct xhci_virt_ep *ep, int *status) 1811 { 1812 struct xhci_ring *ep_ring; 1813 union xhci_trb *cur_trb; 1814 struct xhci_segment *cur_seg; 1815 u32 trb_comp_code; 1816 1817 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1818 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1819 1820 switch (trb_comp_code) { 1821 case COMP_SUCCESS: 1822 /* Double check that the HW transferred everything. */ 1823 if (event_trb != td->last_trb) { 1824 xhci_warn(xhci, "WARN Successful completion " 1825 "on short TX\n"); 1826 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1827 *status = -EREMOTEIO; 1828 else 1829 *status = 0; 1830 } else { 1831 *status = 0; 1832 } 1833 break; 1834 case COMP_SHORT_TX: 1835 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1836 *status = -EREMOTEIO; 1837 else 1838 *status = 0; 1839 break; 1840 default: 1841 /* Others already handled above */ 1842 break; 1843 } 1844 if (trb_comp_code == COMP_SHORT_TX) 1845 xhci_dbg(xhci, "ep %#x - asked for %d bytes, " 1846 "%d bytes untransferred\n", 1847 td->urb->ep->desc.bEndpointAddress, 1848 td->urb->transfer_buffer_length, 1849 TRB_LEN(le32_to_cpu(event->transfer_len))); 1850 /* Fast path - was this the last TRB in the TD for this URB? */ 1851 if (event_trb == td->last_trb) { 1852 if (TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 1853 td->urb->actual_length = 1854 td->urb->transfer_buffer_length - 1855 TRB_LEN(le32_to_cpu(event->transfer_len)); 1856 if (td->urb->transfer_buffer_length < 1857 td->urb->actual_length) { 1858 xhci_warn(xhci, "HC gave bad length " 1859 "of %d bytes left\n", 1860 TRB_LEN(le32_to_cpu(event->transfer_len))); 1861 td->urb->actual_length = 0; 1862 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1863 *status = -EREMOTEIO; 1864 else 1865 *status = 0; 1866 } 1867 /* Don't overwrite a previously set error code */ 1868 if (*status == -EINPROGRESS) { 1869 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1870 *status = -EREMOTEIO; 1871 else 1872 *status = 0; 1873 } 1874 } else { 1875 td->urb->actual_length = 1876 td->urb->transfer_buffer_length; 1877 /* Ignore a short packet completion if the 1878 * untransferred length was zero. 1879 */ 1880 if (*status == -EREMOTEIO) 1881 *status = 0; 1882 } 1883 } else { 1884 /* Slow path - walk the list, starting from the dequeue 1885 * pointer, to get the actual length transferred. 1886 */ 1887 td->urb->actual_length = 0; 1888 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg; 1889 cur_trb != event_trb; 1890 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 1891 if ((le32_to_cpu(cur_trb->generic.field[3]) & 1892 TRB_TYPE_BITMASK) != TRB_TYPE(TRB_TR_NOOP) && 1893 (le32_to_cpu(cur_trb->generic.field[3]) & 1894 TRB_TYPE_BITMASK) != TRB_TYPE(TRB_LINK)) 1895 td->urb->actual_length += 1896 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 1897 } 1898 /* If the ring didn't stop on a Link or No-op TRB, add 1899 * in the actual bytes transferred from the Normal TRB 1900 */ 1901 if (trb_comp_code != COMP_STOP_INVAL) 1902 td->urb->actual_length += 1903 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 1904 TRB_LEN(le32_to_cpu(event->transfer_len)); 1905 } 1906 1907 return finish_td(xhci, td, event_trb, event, ep, status, false); 1908 } 1909 1910 /* 1911 * If this function returns an error condition, it means it got a Transfer 1912 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 1913 * At this point, the host controller is probably hosed and should be reset. 1914 */ 1915 static int handle_tx_event(struct xhci_hcd *xhci, 1916 struct xhci_transfer_event *event) 1917 { 1918 struct xhci_virt_device *xdev; 1919 struct xhci_virt_ep *ep; 1920 struct xhci_ring *ep_ring; 1921 unsigned int slot_id; 1922 int ep_index; 1923 struct xhci_td *td = NULL; 1924 dma_addr_t event_dma; 1925 struct xhci_segment *event_seg; 1926 union xhci_trb *event_trb; 1927 struct urb *urb = NULL; 1928 int status = -EINPROGRESS; 1929 struct urb_priv *urb_priv; 1930 struct xhci_ep_ctx *ep_ctx; 1931 u32 trb_comp_code; 1932 int ret = 0; 1933 1934 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1935 xdev = xhci->devs[slot_id]; 1936 if (!xdev) { 1937 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n"); 1938 return -ENODEV; 1939 } 1940 1941 /* Endpoint ID is 1 based, our index is zero based */ 1942 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1943 ep = &xdev->eps[ep_index]; 1944 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1945 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1946 if (!ep_ring || 1947 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) == 1948 EP_STATE_DISABLED) { 1949 xhci_err(xhci, "ERROR Transfer event for disabled endpoint " 1950 "or incorrect stream ring\n"); 1951 return -ENODEV; 1952 } 1953 1954 event_dma = le64_to_cpu(event->buffer); 1955 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1956 /* Look for common error cases */ 1957 switch (trb_comp_code) { 1958 /* Skip codes that require special handling depending on 1959 * transfer type 1960 */ 1961 case COMP_SUCCESS: 1962 case COMP_SHORT_TX: 1963 break; 1964 case COMP_STOP: 1965 xhci_dbg(xhci, "Stopped on Transfer TRB\n"); 1966 break; 1967 case COMP_STOP_INVAL: 1968 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n"); 1969 break; 1970 case COMP_STALL: 1971 xhci_warn(xhci, "WARN: Stalled endpoint\n"); 1972 ep->ep_state |= EP_HALTED; 1973 status = -EPIPE; 1974 break; 1975 case COMP_TRB_ERR: 1976 xhci_warn(xhci, "WARN: TRB error on endpoint\n"); 1977 status = -EILSEQ; 1978 break; 1979 case COMP_SPLIT_ERR: 1980 case COMP_TX_ERR: 1981 xhci_warn(xhci, "WARN: transfer error on endpoint\n"); 1982 status = -EPROTO; 1983 break; 1984 case COMP_BABBLE: 1985 xhci_warn(xhci, "WARN: babble error on endpoint\n"); 1986 status = -EOVERFLOW; 1987 break; 1988 case COMP_DB_ERR: 1989 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n"); 1990 status = -ENOSR; 1991 break; 1992 case COMP_BW_OVER: 1993 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n"); 1994 break; 1995 case COMP_BUFF_OVER: 1996 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n"); 1997 break; 1998 case COMP_UNDERRUN: 1999 /* 2000 * When the Isoch ring is empty, the xHC will generate 2001 * a Ring Overrun Event for IN Isoch endpoint or Ring 2002 * Underrun Event for OUT Isoch endpoint. 2003 */ 2004 xhci_dbg(xhci, "underrun event on endpoint\n"); 2005 if (!list_empty(&ep_ring->td_list)) 2006 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2007 "still with TDs queued?\n", 2008 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2009 ep_index); 2010 goto cleanup; 2011 case COMP_OVERRUN: 2012 xhci_dbg(xhci, "overrun event on endpoint\n"); 2013 if (!list_empty(&ep_ring->td_list)) 2014 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2015 "still with TDs queued?\n", 2016 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2017 ep_index); 2018 goto cleanup; 2019 case COMP_MISSED_INT: 2020 /* 2021 * When encounter missed service error, one or more isoc tds 2022 * may be missed by xHC. 2023 * Set skip flag of the ep_ring; Complete the missed tds as 2024 * short transfer when process the ep_ring next time. 2025 */ 2026 ep->skip = true; 2027 xhci_dbg(xhci, "Miss service interval error, set skip flag\n"); 2028 goto cleanup; 2029 default: 2030 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2031 status = 0; 2032 break; 2033 } 2034 xhci_warn(xhci, "ERROR Unknown event condition, HC probably " 2035 "busted\n"); 2036 goto cleanup; 2037 } 2038 2039 do { 2040 /* This TRB should be in the TD at the head of this ring's 2041 * TD list. 2042 */ 2043 if (list_empty(&ep_ring->td_list)) { 2044 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d " 2045 "with no TDs queued?\n", 2046 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2047 ep_index); 2048 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n", 2049 (unsigned int) (le32_to_cpu(event->flags) 2050 & TRB_TYPE_BITMASK)>>10); 2051 xhci_print_trb_offsets(xhci, (union xhci_trb *) event); 2052 if (ep->skip) { 2053 ep->skip = false; 2054 xhci_dbg(xhci, "td_list is empty while skip " 2055 "flag set. Clear skip flag.\n"); 2056 } 2057 ret = 0; 2058 goto cleanup; 2059 } 2060 2061 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list); 2062 2063 /* Is this a TRB in the currently executing TD? */ 2064 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue, 2065 td->last_trb, event_dma); 2066 if (!event_seg) { 2067 if (!ep->skip || 2068 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2069 /* Some host controllers give a spurious 2070 * successful event after a short transfer. 2071 * Ignore it. 2072 */ 2073 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2074 ep_ring->last_td_was_short) { 2075 ep_ring->last_td_was_short = false; 2076 ret = 0; 2077 goto cleanup; 2078 } 2079 /* HC is busted, give up! */ 2080 xhci_err(xhci, 2081 "ERROR Transfer event TRB DMA ptr not " 2082 "part of current TD\n"); 2083 return -ESHUTDOWN; 2084 } 2085 2086 ret = skip_isoc_td(xhci, td, event, ep, &status); 2087 goto cleanup; 2088 } 2089 if (trb_comp_code == COMP_SHORT_TX) 2090 ep_ring->last_td_was_short = true; 2091 else 2092 ep_ring->last_td_was_short = false; 2093 2094 if (ep->skip) { 2095 xhci_dbg(xhci, "Found td. Clear skip flag.\n"); 2096 ep->skip = false; 2097 } 2098 2099 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) / 2100 sizeof(*event_trb)]; 2101 /* 2102 * No-op TRB should not trigger interrupts. 2103 * If event_trb is a no-op TRB, it means the 2104 * corresponding TD has been cancelled. Just ignore 2105 * the TD. 2106 */ 2107 if ((le32_to_cpu(event_trb->generic.field[3]) 2108 & TRB_TYPE_BITMASK) 2109 == TRB_TYPE(TRB_TR_NOOP)) { 2110 xhci_dbg(xhci, 2111 "event_trb is a no-op TRB. Skip it\n"); 2112 goto cleanup; 2113 } 2114 2115 /* Now update the urb's actual_length and give back to 2116 * the core 2117 */ 2118 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2119 ret = process_ctrl_td(xhci, td, event_trb, event, ep, 2120 &status); 2121 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2122 ret = process_isoc_td(xhci, td, event_trb, event, ep, 2123 &status); 2124 else 2125 ret = process_bulk_intr_td(xhci, td, event_trb, event, 2126 ep, &status); 2127 2128 cleanup: 2129 /* 2130 * Do not update event ring dequeue pointer if ep->skip is set. 2131 * Will roll back to continue process missed tds. 2132 */ 2133 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) { 2134 inc_deq(xhci, xhci->event_ring, true); 2135 } 2136 2137 if (ret) { 2138 urb = td->urb; 2139 urb_priv = urb->hcpriv; 2140 /* Leave the TD around for the reset endpoint function 2141 * to use(but only if it's not a control endpoint, 2142 * since we already queued the Set TR dequeue pointer 2143 * command for stalled control endpoints). 2144 */ 2145 if (usb_endpoint_xfer_control(&urb->ep->desc) || 2146 (trb_comp_code != COMP_STALL && 2147 trb_comp_code != COMP_BABBLE)) 2148 xhci_urb_free_priv(xhci, urb_priv); 2149 2150 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 2151 if ((urb->actual_length != urb->transfer_buffer_length && 2152 (urb->transfer_flags & 2153 URB_SHORT_NOT_OK)) || 2154 status != 0) 2155 xhci_dbg(xhci, "Giveback URB %p, len = %d, " 2156 "expected = %x, status = %d\n", 2157 urb, urb->actual_length, 2158 urb->transfer_buffer_length, 2159 status); 2160 spin_unlock(&xhci->lock); 2161 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status); 2162 spin_lock(&xhci->lock); 2163 } 2164 2165 /* 2166 * If ep->skip is set, it means there are missed tds on the 2167 * endpoint ring need to take care of. 2168 * Process them as short transfer until reach the td pointed by 2169 * the event. 2170 */ 2171 } while (ep->skip && trb_comp_code != COMP_MISSED_INT); 2172 2173 return 0; 2174 } 2175 2176 /* 2177 * This function handles all OS-owned events on the event ring. It may drop 2178 * xhci->lock between event processing (e.g. to pass up port status changes). 2179 * Returns >0 for "possibly more events to process" (caller should call again), 2180 * otherwise 0 if done. In future, <0 returns should indicate error code. 2181 */ 2182 static int xhci_handle_event(struct xhci_hcd *xhci) 2183 { 2184 union xhci_trb *event; 2185 int update_ptrs = 1; 2186 int ret; 2187 2188 if (!xhci->event_ring || !xhci->event_ring->dequeue) { 2189 xhci->error_bitmask |= 1 << 1; 2190 return 0; 2191 } 2192 2193 event = xhci->event_ring->dequeue; 2194 /* Does the HC or OS own the TRB? */ 2195 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2196 xhci->event_ring->cycle_state) { 2197 xhci->error_bitmask |= 1 << 2; 2198 return 0; 2199 } 2200 2201 /* 2202 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2203 * speculative reads of the event's flags/data below. 2204 */ 2205 rmb(); 2206 /* FIXME: Handle more event types. */ 2207 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) { 2208 case TRB_TYPE(TRB_COMPLETION): 2209 handle_cmd_completion(xhci, &event->event_cmd); 2210 break; 2211 case TRB_TYPE(TRB_PORT_STATUS): 2212 handle_port_status(xhci, event); 2213 update_ptrs = 0; 2214 break; 2215 case TRB_TYPE(TRB_TRANSFER): 2216 ret = handle_tx_event(xhci, &event->trans_event); 2217 if (ret < 0) 2218 xhci->error_bitmask |= 1 << 9; 2219 else 2220 update_ptrs = 0; 2221 break; 2222 default: 2223 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >= 2224 TRB_TYPE(48)) 2225 handle_vendor_event(xhci, event); 2226 else 2227 xhci->error_bitmask |= 1 << 3; 2228 } 2229 /* Any of the above functions may drop and re-acquire the lock, so check 2230 * to make sure a watchdog timer didn't mark the host as non-responsive. 2231 */ 2232 if (xhci->xhc_state & XHCI_STATE_DYING) { 2233 xhci_dbg(xhci, "xHCI host dying, returning from " 2234 "event handler.\n"); 2235 return 0; 2236 } 2237 2238 if (update_ptrs) 2239 /* Update SW event ring dequeue pointer */ 2240 inc_deq(xhci, xhci->event_ring, true); 2241 2242 /* Are there more items on the event ring? Caller will call us again to 2243 * check. 2244 */ 2245 return 1; 2246 } 2247 2248 /* 2249 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 2250 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 2251 * indicators of an event TRB error, but we check the status *first* to be safe. 2252 */ 2253 irqreturn_t xhci_irq(struct usb_hcd *hcd) 2254 { 2255 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2256 u32 status; 2257 union xhci_trb *trb; 2258 u64 temp_64; 2259 union xhci_trb *event_ring_deq; 2260 dma_addr_t deq; 2261 2262 spin_lock(&xhci->lock); 2263 trb = xhci->event_ring->dequeue; 2264 /* Check if the xHC generated the interrupt, or the irq is shared */ 2265 status = xhci_readl(xhci, &xhci->op_regs->status); 2266 if (status == 0xffffffff) 2267 goto hw_died; 2268 2269 if (!(status & STS_EINT)) { 2270 spin_unlock(&xhci->lock); 2271 return IRQ_NONE; 2272 } 2273 if (status & STS_FATAL) { 2274 xhci_warn(xhci, "WARNING: Host System Error\n"); 2275 xhci_halt(xhci); 2276 hw_died: 2277 spin_unlock(&xhci->lock); 2278 return -ESHUTDOWN; 2279 } 2280 2281 /* 2282 * Clear the op reg interrupt status first, 2283 * so we can receive interrupts from other MSI-X interrupters. 2284 * Write 1 to clear the interrupt status. 2285 */ 2286 status |= STS_EINT; 2287 xhci_writel(xhci, status, &xhci->op_regs->status); 2288 /* FIXME when MSI-X is supported and there are multiple vectors */ 2289 /* Clear the MSI-X event interrupt status */ 2290 2291 if (hcd->irq != -1) { 2292 u32 irq_pending; 2293 /* Acknowledge the PCI interrupt */ 2294 irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending); 2295 irq_pending |= 0x3; 2296 xhci_writel(xhci, irq_pending, &xhci->ir_set->irq_pending); 2297 } 2298 2299 if (xhci->xhc_state & XHCI_STATE_DYING) { 2300 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 2301 "Shouldn't IRQs be disabled?\n"); 2302 /* Clear the event handler busy flag (RW1C); 2303 * the event ring should be empty. 2304 */ 2305 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2306 xhci_write_64(xhci, temp_64 | ERST_EHB, 2307 &xhci->ir_set->erst_dequeue); 2308 spin_unlock(&xhci->lock); 2309 2310 return IRQ_HANDLED; 2311 } 2312 2313 event_ring_deq = xhci->event_ring->dequeue; 2314 /* FIXME this should be a delayed service routine 2315 * that clears the EHB. 2316 */ 2317 while (xhci_handle_event(xhci) > 0) {} 2318 2319 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2320 /* If necessary, update the HW's version of the event ring deq ptr. */ 2321 if (event_ring_deq != xhci->event_ring->dequeue) { 2322 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2323 xhci->event_ring->dequeue); 2324 if (deq == 0) 2325 xhci_warn(xhci, "WARN something wrong with SW event " 2326 "ring dequeue ptr.\n"); 2327 /* Update HC event ring dequeue pointer */ 2328 temp_64 &= ERST_PTR_MASK; 2329 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 2330 } 2331 2332 /* Clear the event handler busy flag (RW1C); event ring is empty. */ 2333 temp_64 |= ERST_EHB; 2334 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); 2335 2336 spin_unlock(&xhci->lock); 2337 2338 return IRQ_HANDLED; 2339 } 2340 2341 irqreturn_t xhci_msi_irq(int irq, struct usb_hcd *hcd) 2342 { 2343 irqreturn_t ret; 2344 struct xhci_hcd *xhci; 2345 2346 xhci = hcd_to_xhci(hcd); 2347 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags); 2348 if (xhci->shared_hcd) 2349 set_bit(HCD_FLAG_SAW_IRQ, &xhci->shared_hcd->flags); 2350 2351 ret = xhci_irq(hcd); 2352 2353 return ret; 2354 } 2355 2356 /**** Endpoint Ring Operations ****/ 2357 2358 /* 2359 * Generic function for queueing a TRB on a ring. 2360 * The caller must have checked to make sure there's room on the ring. 2361 * 2362 * @more_trbs_coming: Will you enqueue more TRBs before calling 2363 * prepare_transfer()? 2364 */ 2365 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 2366 bool consumer, bool more_trbs_coming, 2367 u32 field1, u32 field2, u32 field3, u32 field4) 2368 { 2369 struct xhci_generic_trb *trb; 2370 2371 trb = &ring->enqueue->generic; 2372 trb->field[0] = cpu_to_le32(field1); 2373 trb->field[1] = cpu_to_le32(field2); 2374 trb->field[2] = cpu_to_le32(field3); 2375 trb->field[3] = cpu_to_le32(field4); 2376 inc_enq(xhci, ring, consumer, more_trbs_coming); 2377 } 2378 2379 /* 2380 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 2381 * FIXME allocate segments if the ring is full. 2382 */ 2383 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 2384 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 2385 { 2386 /* Make sure the endpoint has been added to xHC schedule */ 2387 switch (ep_state) { 2388 case EP_STATE_DISABLED: 2389 /* 2390 * USB core changed config/interfaces without notifying us, 2391 * or hardware is reporting the wrong state. 2392 */ 2393 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 2394 return -ENOENT; 2395 case EP_STATE_ERROR: 2396 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 2397 /* FIXME event handling code for error needs to clear it */ 2398 /* XXX not sure if this should be -ENOENT or not */ 2399 return -EINVAL; 2400 case EP_STATE_HALTED: 2401 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 2402 case EP_STATE_STOPPED: 2403 case EP_STATE_RUNNING: 2404 break; 2405 default: 2406 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 2407 /* 2408 * FIXME issue Configure Endpoint command to try to get the HC 2409 * back into a known state. 2410 */ 2411 return -EINVAL; 2412 } 2413 if (!room_on_ring(xhci, ep_ring, num_trbs)) { 2414 /* FIXME allocate more room */ 2415 xhci_err(xhci, "ERROR no room on ep ring\n"); 2416 return -ENOMEM; 2417 } 2418 2419 if (enqueue_is_link_trb(ep_ring)) { 2420 struct xhci_ring *ring = ep_ring; 2421 union xhci_trb *next; 2422 2423 next = ring->enqueue; 2424 2425 while (last_trb(xhci, ring, ring->enq_seg, next)) { 2426 /* If we're not dealing with 0.95 hardware, 2427 * clear the chain bit. 2428 */ 2429 if (!xhci_link_trb_quirk(xhci)) 2430 next->link.control &= cpu_to_le32(~TRB_CHAIN); 2431 else 2432 next->link.control |= cpu_to_le32(TRB_CHAIN); 2433 2434 wmb(); 2435 next->link.control ^= cpu_to_le32((u32) TRB_CYCLE); 2436 2437 /* Toggle the cycle bit after the last ring segment. */ 2438 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 2439 ring->cycle_state = (ring->cycle_state ? 0 : 1); 2440 if (!in_interrupt()) { 2441 xhci_dbg(xhci, "queue_trb: Toggle cycle " 2442 "state for ring %p = %i\n", 2443 ring, (unsigned int)ring->cycle_state); 2444 } 2445 } 2446 ring->enq_seg = ring->enq_seg->next; 2447 ring->enqueue = ring->enq_seg->trbs; 2448 next = ring->enqueue; 2449 } 2450 } 2451 2452 return 0; 2453 } 2454 2455 static int prepare_transfer(struct xhci_hcd *xhci, 2456 struct xhci_virt_device *xdev, 2457 unsigned int ep_index, 2458 unsigned int stream_id, 2459 unsigned int num_trbs, 2460 struct urb *urb, 2461 unsigned int td_index, 2462 gfp_t mem_flags) 2463 { 2464 int ret; 2465 struct urb_priv *urb_priv; 2466 struct xhci_td *td; 2467 struct xhci_ring *ep_ring; 2468 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2469 2470 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); 2471 if (!ep_ring) { 2472 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 2473 stream_id); 2474 return -EINVAL; 2475 } 2476 2477 ret = prepare_ring(xhci, ep_ring, 2478 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 2479 num_trbs, mem_flags); 2480 if (ret) 2481 return ret; 2482 2483 urb_priv = urb->hcpriv; 2484 td = urb_priv->td[td_index]; 2485 2486 INIT_LIST_HEAD(&td->td_list); 2487 INIT_LIST_HEAD(&td->cancelled_td_list); 2488 2489 if (td_index == 0) { 2490 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 2491 if (unlikely(ret)) { 2492 xhci_urb_free_priv(xhci, urb_priv); 2493 urb->hcpriv = NULL; 2494 return ret; 2495 } 2496 } 2497 2498 td->urb = urb; 2499 /* Add this TD to the tail of the endpoint ring's TD list */ 2500 list_add_tail(&td->td_list, &ep_ring->td_list); 2501 td->start_seg = ep_ring->enq_seg; 2502 td->first_trb = ep_ring->enqueue; 2503 2504 urb_priv->td[td_index] = td; 2505 2506 return 0; 2507 } 2508 2509 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb) 2510 { 2511 int num_sgs, num_trbs, running_total, temp, i; 2512 struct scatterlist *sg; 2513 2514 sg = NULL; 2515 num_sgs = urb->num_sgs; 2516 temp = urb->transfer_buffer_length; 2517 2518 xhci_dbg(xhci, "count sg list trbs: \n"); 2519 num_trbs = 0; 2520 for_each_sg(urb->sg, sg, num_sgs, i) { 2521 unsigned int previous_total_trbs = num_trbs; 2522 unsigned int len = sg_dma_len(sg); 2523 2524 /* Scatter gather list entries may cross 64KB boundaries */ 2525 running_total = TRB_MAX_BUFF_SIZE - 2526 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1)); 2527 running_total &= TRB_MAX_BUFF_SIZE - 1; 2528 if (running_total != 0) 2529 num_trbs++; 2530 2531 /* How many more 64KB chunks to transfer, how many more TRBs? */ 2532 while (running_total < sg_dma_len(sg) && running_total < temp) { 2533 num_trbs++; 2534 running_total += TRB_MAX_BUFF_SIZE; 2535 } 2536 xhci_dbg(xhci, " sg #%d: dma = %#llx, len = %#x (%d), num_trbs = %d\n", 2537 i, (unsigned long long)sg_dma_address(sg), 2538 len, len, num_trbs - previous_total_trbs); 2539 2540 len = min_t(int, len, temp); 2541 temp -= len; 2542 if (temp == 0) 2543 break; 2544 } 2545 xhci_dbg(xhci, "\n"); 2546 if (!in_interrupt()) 2547 xhci_dbg(xhci, "ep %#x - urb len = %d, sglist used, " 2548 "num_trbs = %d\n", 2549 urb->ep->desc.bEndpointAddress, 2550 urb->transfer_buffer_length, 2551 num_trbs); 2552 return num_trbs; 2553 } 2554 2555 static void check_trb_math(struct urb *urb, int num_trbs, int running_total) 2556 { 2557 if (num_trbs != 0) 2558 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of " 2559 "TRBs, %d left\n", __func__, 2560 urb->ep->desc.bEndpointAddress, num_trbs); 2561 if (running_total != urb->transfer_buffer_length) 2562 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 2563 "queued %#x (%d), asked for %#x (%d)\n", 2564 __func__, 2565 urb->ep->desc.bEndpointAddress, 2566 running_total, running_total, 2567 urb->transfer_buffer_length, 2568 urb->transfer_buffer_length); 2569 } 2570 2571 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 2572 unsigned int ep_index, unsigned int stream_id, int start_cycle, 2573 struct xhci_generic_trb *start_trb) 2574 { 2575 /* 2576 * Pass all the TRBs to the hardware at once and make sure this write 2577 * isn't reordered. 2578 */ 2579 wmb(); 2580 if (start_cycle) 2581 start_trb->field[3] |= cpu_to_le32(start_cycle); 2582 else 2583 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 2584 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 2585 } 2586 2587 /* 2588 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 2589 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 2590 * (comprised of sg list entries) can take several service intervals to 2591 * transmit. 2592 */ 2593 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 2594 struct urb *urb, int slot_id, unsigned int ep_index) 2595 { 2596 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, 2597 xhci->devs[slot_id]->out_ctx, ep_index); 2598 int xhci_interval; 2599 int ep_interval; 2600 2601 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 2602 ep_interval = urb->interval; 2603 /* Convert to microframes */ 2604 if (urb->dev->speed == USB_SPEED_LOW || 2605 urb->dev->speed == USB_SPEED_FULL) 2606 ep_interval *= 8; 2607 /* FIXME change this to a warning and a suggestion to use the new API 2608 * to set the polling interval (once the API is added). 2609 */ 2610 if (xhci_interval != ep_interval) { 2611 if (printk_ratelimit()) 2612 dev_dbg(&urb->dev->dev, "Driver uses different interval" 2613 " (%d microframe%s) than xHCI " 2614 "(%d microframe%s)\n", 2615 ep_interval, 2616 ep_interval == 1 ? "" : "s", 2617 xhci_interval, 2618 xhci_interval == 1 ? "" : "s"); 2619 urb->interval = xhci_interval; 2620 /* Convert back to frames for LS/FS devices */ 2621 if (urb->dev->speed == USB_SPEED_LOW || 2622 urb->dev->speed == USB_SPEED_FULL) 2623 urb->interval /= 8; 2624 } 2625 return xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index); 2626 } 2627 2628 /* 2629 * The TD size is the number of bytes remaining in the TD (including this TRB), 2630 * right shifted by 10. 2631 * It must fit in bits 21:17, so it can't be bigger than 31. 2632 */ 2633 static u32 xhci_td_remainder(unsigned int remainder) 2634 { 2635 u32 max = (1 << (21 - 17 + 1)) - 1; 2636 2637 if ((remainder >> 10) >= max) 2638 return max << 17; 2639 else 2640 return (remainder >> 10) << 17; 2641 } 2642 2643 /* 2644 * For xHCI 1.0 host controllers, TD size is the number of packets remaining in 2645 * the TD (*not* including this TRB). 2646 * 2647 * Total TD packet count = total_packet_count = 2648 * roundup(TD size in bytes / wMaxPacketSize) 2649 * 2650 * Packets transferred up to and including this TRB = packets_transferred = 2651 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 2652 * 2653 * TD size = total_packet_count - packets_transferred 2654 * 2655 * It must fit in bits 21:17, so it can't be bigger than 31. 2656 */ 2657 2658 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len, 2659 unsigned int total_packet_count, struct urb *urb) 2660 { 2661 int packets_transferred; 2662 2663 /* All the TRB queueing functions don't count the current TRB in 2664 * running_total. 2665 */ 2666 packets_transferred = (running_total + trb_buff_len) / 2667 le16_to_cpu(urb->ep->desc.wMaxPacketSize); 2668 2669 return xhci_td_remainder(total_packet_count - packets_transferred); 2670 } 2671 2672 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 2673 struct urb *urb, int slot_id, unsigned int ep_index) 2674 { 2675 struct xhci_ring *ep_ring; 2676 unsigned int num_trbs; 2677 struct urb_priv *urb_priv; 2678 struct xhci_td *td; 2679 struct scatterlist *sg; 2680 int num_sgs; 2681 int trb_buff_len, this_sg_len, running_total; 2682 unsigned int total_packet_count; 2683 bool first_trb; 2684 u64 addr; 2685 bool more_trbs_coming; 2686 2687 struct xhci_generic_trb *start_trb; 2688 int start_cycle; 2689 2690 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 2691 if (!ep_ring) 2692 return -EINVAL; 2693 2694 num_trbs = count_sg_trbs_needed(xhci, urb); 2695 num_sgs = urb->num_sgs; 2696 total_packet_count = roundup(urb->transfer_buffer_length, 2697 le16_to_cpu(urb->ep->desc.wMaxPacketSize)); 2698 2699 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id], 2700 ep_index, urb->stream_id, 2701 num_trbs, urb, 0, mem_flags); 2702 if (trb_buff_len < 0) 2703 return trb_buff_len; 2704 2705 urb_priv = urb->hcpriv; 2706 td = urb_priv->td[0]; 2707 2708 /* 2709 * Don't give the first TRB to the hardware (by toggling the cycle bit) 2710 * until we've finished creating all the other TRBs. The ring's cycle 2711 * state may change as we enqueue the other TRBs, so save it too. 2712 */ 2713 start_trb = &ep_ring->enqueue->generic; 2714 start_cycle = ep_ring->cycle_state; 2715 2716 running_total = 0; 2717 /* 2718 * How much data is in the first TRB? 2719 * 2720 * There are three forces at work for TRB buffer pointers and lengths: 2721 * 1. We don't want to walk off the end of this sg-list entry buffer. 2722 * 2. The transfer length that the driver requested may be smaller than 2723 * the amount of memory allocated for this scatter-gather list. 2724 * 3. TRBs buffers can't cross 64KB boundaries. 2725 */ 2726 sg = urb->sg; 2727 addr = (u64) sg_dma_address(sg); 2728 this_sg_len = sg_dma_len(sg); 2729 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1)); 2730 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 2731 if (trb_buff_len > urb->transfer_buffer_length) 2732 trb_buff_len = urb->transfer_buffer_length; 2733 xhci_dbg(xhci, "First length to xfer from 1st sglist entry = %u\n", 2734 trb_buff_len); 2735 2736 first_trb = true; 2737 /* Queue the first TRB, even if it's zero-length */ 2738 do { 2739 u32 field = 0; 2740 u32 length_field = 0; 2741 u32 remainder = 0; 2742 2743 /* Don't change the cycle bit of the first TRB until later */ 2744 if (first_trb) { 2745 first_trb = false; 2746 if (start_cycle == 0) 2747 field |= 0x1; 2748 } else 2749 field |= ep_ring->cycle_state; 2750 2751 /* Chain all the TRBs together; clear the chain bit in the last 2752 * TRB to indicate it's the last TRB in the chain. 2753 */ 2754 if (num_trbs > 1) { 2755 field |= TRB_CHAIN; 2756 } else { 2757 /* FIXME - add check for ZERO_PACKET flag before this */ 2758 td->last_trb = ep_ring->enqueue; 2759 field |= TRB_IOC; 2760 } 2761 2762 /* Only set interrupt on short packet for IN endpoints */ 2763 if (usb_urb_dir_in(urb)) 2764 field |= TRB_ISP; 2765 2766 xhci_dbg(xhci, " sg entry: dma = %#x, len = %#x (%d), " 2767 "64KB boundary at %#x, end dma = %#x\n", 2768 (unsigned int) addr, trb_buff_len, trb_buff_len, 2769 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1), 2770 (unsigned int) addr + trb_buff_len); 2771 if (TRB_MAX_BUFF_SIZE - 2772 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) { 2773 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n"); 2774 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n", 2775 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1), 2776 (unsigned int) addr + trb_buff_len); 2777 } 2778 2779 /* Set the TRB length, TD size, and interrupter fields. */ 2780 if (xhci->hci_version < 0x100) { 2781 remainder = xhci_td_remainder( 2782 urb->transfer_buffer_length - 2783 running_total); 2784 } else { 2785 remainder = xhci_v1_0_td_remainder(running_total, 2786 trb_buff_len, total_packet_count, urb); 2787 } 2788 length_field = TRB_LEN(trb_buff_len) | 2789 remainder | 2790 TRB_INTR_TARGET(0); 2791 2792 if (num_trbs > 1) 2793 more_trbs_coming = true; 2794 else 2795 more_trbs_coming = false; 2796 queue_trb(xhci, ep_ring, false, more_trbs_coming, 2797 lower_32_bits(addr), 2798 upper_32_bits(addr), 2799 length_field, 2800 field | TRB_TYPE(TRB_NORMAL)); 2801 --num_trbs; 2802 running_total += trb_buff_len; 2803 2804 /* Calculate length for next transfer -- 2805 * Are we done queueing all the TRBs for this sg entry? 2806 */ 2807 this_sg_len -= trb_buff_len; 2808 if (this_sg_len == 0) { 2809 --num_sgs; 2810 if (num_sgs == 0) 2811 break; 2812 sg = sg_next(sg); 2813 addr = (u64) sg_dma_address(sg); 2814 this_sg_len = sg_dma_len(sg); 2815 } else { 2816 addr += trb_buff_len; 2817 } 2818 2819 trb_buff_len = TRB_MAX_BUFF_SIZE - 2820 (addr & (TRB_MAX_BUFF_SIZE - 1)); 2821 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 2822 if (running_total + trb_buff_len > urb->transfer_buffer_length) 2823 trb_buff_len = 2824 urb->transfer_buffer_length - running_total; 2825 } while (running_total < urb->transfer_buffer_length); 2826 2827 check_trb_math(urb, num_trbs, running_total); 2828 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 2829 start_cycle, start_trb); 2830 return 0; 2831 } 2832 2833 /* This is very similar to what ehci-q.c qtd_fill() does */ 2834 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 2835 struct urb *urb, int slot_id, unsigned int ep_index) 2836 { 2837 struct xhci_ring *ep_ring; 2838 struct urb_priv *urb_priv; 2839 struct xhci_td *td; 2840 int num_trbs; 2841 struct xhci_generic_trb *start_trb; 2842 bool first_trb; 2843 bool more_trbs_coming; 2844 int start_cycle; 2845 u32 field, length_field; 2846 2847 int running_total, trb_buff_len, ret; 2848 unsigned int total_packet_count; 2849 u64 addr; 2850 2851 if (urb->num_sgs) 2852 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index); 2853 2854 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 2855 if (!ep_ring) 2856 return -EINVAL; 2857 2858 num_trbs = 0; 2859 /* How much data is (potentially) left before the 64KB boundary? */ 2860 running_total = TRB_MAX_BUFF_SIZE - 2861 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 2862 running_total &= TRB_MAX_BUFF_SIZE - 1; 2863 2864 /* If there's some data on this 64KB chunk, or we have to send a 2865 * zero-length transfer, we need at least one TRB 2866 */ 2867 if (running_total != 0 || urb->transfer_buffer_length == 0) 2868 num_trbs++; 2869 /* How many more 64KB chunks to transfer, how many more TRBs? */ 2870 while (running_total < urb->transfer_buffer_length) { 2871 num_trbs++; 2872 running_total += TRB_MAX_BUFF_SIZE; 2873 } 2874 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */ 2875 2876 if (!in_interrupt()) 2877 xhci_dbg(xhci, "ep %#x - urb len = %#x (%d), " 2878 "addr = %#llx, num_trbs = %d\n", 2879 urb->ep->desc.bEndpointAddress, 2880 urb->transfer_buffer_length, 2881 urb->transfer_buffer_length, 2882 (unsigned long long)urb->transfer_dma, 2883 num_trbs); 2884 2885 ret = prepare_transfer(xhci, xhci->devs[slot_id], 2886 ep_index, urb->stream_id, 2887 num_trbs, urb, 0, mem_flags); 2888 if (ret < 0) 2889 return ret; 2890 2891 urb_priv = urb->hcpriv; 2892 td = urb_priv->td[0]; 2893 2894 /* 2895 * Don't give the first TRB to the hardware (by toggling the cycle bit) 2896 * until we've finished creating all the other TRBs. The ring's cycle 2897 * state may change as we enqueue the other TRBs, so save it too. 2898 */ 2899 start_trb = &ep_ring->enqueue->generic; 2900 start_cycle = ep_ring->cycle_state; 2901 2902 running_total = 0; 2903 total_packet_count = roundup(urb->transfer_buffer_length, 2904 le16_to_cpu(urb->ep->desc.wMaxPacketSize)); 2905 /* How much data is in the first TRB? */ 2906 addr = (u64) urb->transfer_dma; 2907 trb_buff_len = TRB_MAX_BUFF_SIZE - 2908 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 2909 if (trb_buff_len > urb->transfer_buffer_length) 2910 trb_buff_len = urb->transfer_buffer_length; 2911 2912 first_trb = true; 2913 2914 /* Queue the first TRB, even if it's zero-length */ 2915 do { 2916 u32 remainder = 0; 2917 field = 0; 2918 2919 /* Don't change the cycle bit of the first TRB until later */ 2920 if (first_trb) { 2921 first_trb = false; 2922 if (start_cycle == 0) 2923 field |= 0x1; 2924 } else 2925 field |= ep_ring->cycle_state; 2926 2927 /* Chain all the TRBs together; clear the chain bit in the last 2928 * TRB to indicate it's the last TRB in the chain. 2929 */ 2930 if (num_trbs > 1) { 2931 field |= TRB_CHAIN; 2932 } else { 2933 /* FIXME - add check for ZERO_PACKET flag before this */ 2934 td->last_trb = ep_ring->enqueue; 2935 field |= TRB_IOC; 2936 } 2937 2938 /* Only set interrupt on short packet for IN endpoints */ 2939 if (usb_urb_dir_in(urb)) 2940 field |= TRB_ISP; 2941 2942 /* Set the TRB length, TD size, and interrupter fields. */ 2943 if (xhci->hci_version < 0x100) { 2944 remainder = xhci_td_remainder( 2945 urb->transfer_buffer_length - 2946 running_total); 2947 } else { 2948 remainder = xhci_v1_0_td_remainder(running_total, 2949 trb_buff_len, total_packet_count, urb); 2950 } 2951 length_field = TRB_LEN(trb_buff_len) | 2952 remainder | 2953 TRB_INTR_TARGET(0); 2954 2955 if (num_trbs > 1) 2956 more_trbs_coming = true; 2957 else 2958 more_trbs_coming = false; 2959 queue_trb(xhci, ep_ring, false, more_trbs_coming, 2960 lower_32_bits(addr), 2961 upper_32_bits(addr), 2962 length_field, 2963 field | TRB_TYPE(TRB_NORMAL)); 2964 --num_trbs; 2965 running_total += trb_buff_len; 2966 2967 /* Calculate length for next transfer */ 2968 addr += trb_buff_len; 2969 trb_buff_len = urb->transfer_buffer_length - running_total; 2970 if (trb_buff_len > TRB_MAX_BUFF_SIZE) 2971 trb_buff_len = TRB_MAX_BUFF_SIZE; 2972 } while (running_total < urb->transfer_buffer_length); 2973 2974 check_trb_math(urb, num_trbs, running_total); 2975 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 2976 start_cycle, start_trb); 2977 return 0; 2978 } 2979 2980 /* Caller must have locked xhci->lock */ 2981 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 2982 struct urb *urb, int slot_id, unsigned int ep_index) 2983 { 2984 struct xhci_ring *ep_ring; 2985 int num_trbs; 2986 int ret; 2987 struct usb_ctrlrequest *setup; 2988 struct xhci_generic_trb *start_trb; 2989 int start_cycle; 2990 u32 field, length_field; 2991 struct urb_priv *urb_priv; 2992 struct xhci_td *td; 2993 2994 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 2995 if (!ep_ring) 2996 return -EINVAL; 2997 2998 /* 2999 * Need to copy setup packet into setup TRB, so we can't use the setup 3000 * DMA address. 3001 */ 3002 if (!urb->setup_packet) 3003 return -EINVAL; 3004 3005 if (!in_interrupt()) 3006 xhci_dbg(xhci, "Queueing ctrl tx for slot id %d, ep %d\n", 3007 slot_id, ep_index); 3008 /* 1 TRB for setup, 1 for status */ 3009 num_trbs = 2; 3010 /* 3011 * Don't need to check if we need additional event data and normal TRBs, 3012 * since data in control transfers will never get bigger than 16MB 3013 * XXX: can we get a buffer that crosses 64KB boundaries? 3014 */ 3015 if (urb->transfer_buffer_length > 0) 3016 num_trbs++; 3017 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3018 ep_index, urb->stream_id, 3019 num_trbs, urb, 0, mem_flags); 3020 if (ret < 0) 3021 return ret; 3022 3023 urb_priv = urb->hcpriv; 3024 td = urb_priv->td[0]; 3025 3026 /* 3027 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3028 * until we've finished creating all the other TRBs. The ring's cycle 3029 * state may change as we enqueue the other TRBs, so save it too. 3030 */ 3031 start_trb = &ep_ring->enqueue->generic; 3032 start_cycle = ep_ring->cycle_state; 3033 3034 /* Queue setup TRB - see section 6.4.1.2.1 */ 3035 /* FIXME better way to translate setup_packet into two u32 fields? */ 3036 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3037 field = 0; 3038 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3039 if (start_cycle == 0) 3040 field |= 0x1; 3041 3042 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */ 3043 if (xhci->hci_version == 0x100) { 3044 if (urb->transfer_buffer_length > 0) { 3045 if (setup->bRequestType & USB_DIR_IN) 3046 field |= TRB_TX_TYPE(TRB_DATA_IN); 3047 else 3048 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3049 } 3050 } 3051 3052 queue_trb(xhci, ep_ring, false, true, 3053 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3054 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3055 TRB_LEN(8) | TRB_INTR_TARGET(0), 3056 /* Immediate data in pointer */ 3057 field); 3058 3059 /* If there's data, queue data TRBs */ 3060 /* Only set interrupt on short packet for IN endpoints */ 3061 if (usb_urb_dir_in(urb)) 3062 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3063 else 3064 field = TRB_TYPE(TRB_DATA); 3065 3066 length_field = TRB_LEN(urb->transfer_buffer_length) | 3067 xhci_td_remainder(urb->transfer_buffer_length) | 3068 TRB_INTR_TARGET(0); 3069 if (urb->transfer_buffer_length > 0) { 3070 if (setup->bRequestType & USB_DIR_IN) 3071 field |= TRB_DIR_IN; 3072 queue_trb(xhci, ep_ring, false, true, 3073 lower_32_bits(urb->transfer_dma), 3074 upper_32_bits(urb->transfer_dma), 3075 length_field, 3076 field | ep_ring->cycle_state); 3077 } 3078 3079 /* Save the DMA address of the last TRB in the TD */ 3080 td->last_trb = ep_ring->enqueue; 3081 3082 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3083 /* If the device sent data, the status stage is an OUT transfer */ 3084 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3085 field = 0; 3086 else 3087 field = TRB_DIR_IN; 3088 queue_trb(xhci, ep_ring, false, false, 3089 0, 3090 0, 3091 TRB_INTR_TARGET(0), 3092 /* Event on completion */ 3093 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3094 3095 giveback_first_trb(xhci, slot_id, ep_index, 0, 3096 start_cycle, start_trb); 3097 return 0; 3098 } 3099 3100 static int count_isoc_trbs_needed(struct xhci_hcd *xhci, 3101 struct urb *urb, int i) 3102 { 3103 int num_trbs = 0; 3104 u64 addr, td_len, running_total; 3105 3106 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3107 td_len = urb->iso_frame_desc[i].length; 3108 3109 running_total = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1)); 3110 running_total &= TRB_MAX_BUFF_SIZE - 1; 3111 if (running_total != 0) 3112 num_trbs++; 3113 3114 while (running_total < td_len) { 3115 num_trbs++; 3116 running_total += TRB_MAX_BUFF_SIZE; 3117 } 3118 3119 return num_trbs; 3120 } 3121 3122 /* 3123 * The transfer burst count field of the isochronous TRB defines the number of 3124 * bursts that are required to move all packets in this TD. Only SuperSpeed 3125 * devices can burst up to bMaxBurst number of packets per service interval. 3126 * This field is zero based, meaning a value of zero in the field means one 3127 * burst. Basically, for everything but SuperSpeed devices, this field will be 3128 * zero. Only xHCI 1.0 host controllers support this field. 3129 */ 3130 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3131 struct usb_device *udev, 3132 struct urb *urb, unsigned int total_packet_count) 3133 { 3134 unsigned int max_burst; 3135 3136 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER) 3137 return 0; 3138 3139 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3140 return roundup(total_packet_count, max_burst + 1) - 1; 3141 } 3142 3143 /* 3144 * Returns the number of packets in the last "burst" of packets. This field is 3145 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3146 * the last burst packet count is equal to the total number of packets in the 3147 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3148 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3149 * contain 1 to (bMaxBurst + 1) packets. 3150 */ 3151 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3152 struct usb_device *udev, 3153 struct urb *urb, unsigned int total_packet_count) 3154 { 3155 unsigned int max_burst; 3156 unsigned int residue; 3157 3158 if (xhci->hci_version < 0x100) 3159 return 0; 3160 3161 switch (udev->speed) { 3162 case USB_SPEED_SUPER: 3163 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3164 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3165 residue = total_packet_count % (max_burst + 1); 3166 /* If residue is zero, the last burst contains (max_burst + 1) 3167 * number of packets, but the TLBPC field is zero-based. 3168 */ 3169 if (residue == 0) 3170 return max_burst; 3171 return residue - 1; 3172 default: 3173 if (total_packet_count == 0) 3174 return 0; 3175 return total_packet_count - 1; 3176 } 3177 } 3178 3179 /* This is for isoc transfer */ 3180 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3181 struct urb *urb, int slot_id, unsigned int ep_index) 3182 { 3183 struct xhci_ring *ep_ring; 3184 struct urb_priv *urb_priv; 3185 struct xhci_td *td; 3186 int num_tds, trbs_per_td; 3187 struct xhci_generic_trb *start_trb; 3188 bool first_trb; 3189 int start_cycle; 3190 u32 field, length_field; 3191 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3192 u64 start_addr, addr; 3193 int i, j; 3194 bool more_trbs_coming; 3195 3196 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 3197 3198 num_tds = urb->number_of_packets; 3199 if (num_tds < 1) { 3200 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 3201 return -EINVAL; 3202 } 3203 3204 if (!in_interrupt()) 3205 xhci_dbg(xhci, "ep %#x - urb len = %#x (%d)," 3206 " addr = %#llx, num_tds = %d\n", 3207 urb->ep->desc.bEndpointAddress, 3208 urb->transfer_buffer_length, 3209 urb->transfer_buffer_length, 3210 (unsigned long long)urb->transfer_dma, 3211 num_tds); 3212 3213 start_addr = (u64) urb->transfer_dma; 3214 start_trb = &ep_ring->enqueue->generic; 3215 start_cycle = ep_ring->cycle_state; 3216 3217 /* Queue the first TRB, even if it's zero-length */ 3218 for (i = 0; i < num_tds; i++) { 3219 unsigned int total_packet_count; 3220 unsigned int burst_count; 3221 unsigned int residue; 3222 3223 first_trb = true; 3224 running_total = 0; 3225 addr = start_addr + urb->iso_frame_desc[i].offset; 3226 td_len = urb->iso_frame_desc[i].length; 3227 td_remain_len = td_len; 3228 /* FIXME: Ignoring zero-length packets, can those happen? */ 3229 total_packet_count = roundup(td_len, 3230 le16_to_cpu(urb->ep->desc.wMaxPacketSize)); 3231 burst_count = xhci_get_burst_count(xhci, urb->dev, urb, 3232 total_packet_count); 3233 residue = xhci_get_last_burst_packet_count(xhci, 3234 urb->dev, urb, total_packet_count); 3235 3236 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i); 3237 3238 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 3239 urb->stream_id, trbs_per_td, urb, i, mem_flags); 3240 if (ret < 0) 3241 return ret; 3242 3243 urb_priv = urb->hcpriv; 3244 td = urb_priv->td[i]; 3245 3246 for (j = 0; j < trbs_per_td; j++) { 3247 u32 remainder = 0; 3248 field = TRB_TBC(burst_count) | TRB_TLBPC(residue); 3249 3250 if (first_trb) { 3251 /* Queue the isoc TRB */ 3252 field |= TRB_TYPE(TRB_ISOC); 3253 /* Assume URB_ISO_ASAP is set */ 3254 field |= TRB_SIA; 3255 if (i == 0) { 3256 if (start_cycle == 0) 3257 field |= 0x1; 3258 } else 3259 field |= ep_ring->cycle_state; 3260 first_trb = false; 3261 } else { 3262 /* Queue other normal TRBs */ 3263 field |= TRB_TYPE(TRB_NORMAL); 3264 field |= ep_ring->cycle_state; 3265 } 3266 3267 /* Only set interrupt on short packet for IN EPs */ 3268 if (usb_urb_dir_in(urb)) 3269 field |= TRB_ISP; 3270 3271 /* Chain all the TRBs together; clear the chain bit in 3272 * the last TRB to indicate it's the last TRB in the 3273 * chain. 3274 */ 3275 if (j < trbs_per_td - 1) { 3276 field |= TRB_CHAIN; 3277 more_trbs_coming = true; 3278 } else { 3279 td->last_trb = ep_ring->enqueue; 3280 field |= TRB_IOC; 3281 if (xhci->hci_version == 0x100) { 3282 /* Set BEI bit except for the last td */ 3283 if (i < num_tds - 1) 3284 field |= TRB_BEI; 3285 } 3286 more_trbs_coming = false; 3287 } 3288 3289 /* Calculate TRB length */ 3290 trb_buff_len = TRB_MAX_BUFF_SIZE - 3291 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1)); 3292 if (trb_buff_len > td_remain_len) 3293 trb_buff_len = td_remain_len; 3294 3295 /* Set the TRB length, TD size, & interrupter fields. */ 3296 if (xhci->hci_version < 0x100) { 3297 remainder = xhci_td_remainder( 3298 td_len - running_total); 3299 } else { 3300 remainder = xhci_v1_0_td_remainder( 3301 running_total, trb_buff_len, 3302 total_packet_count, urb); 3303 } 3304 length_field = TRB_LEN(trb_buff_len) | 3305 remainder | 3306 TRB_INTR_TARGET(0); 3307 3308 queue_trb(xhci, ep_ring, false, more_trbs_coming, 3309 lower_32_bits(addr), 3310 upper_32_bits(addr), 3311 length_field, 3312 field); 3313 running_total += trb_buff_len; 3314 3315 addr += trb_buff_len; 3316 td_remain_len -= trb_buff_len; 3317 } 3318 3319 /* Check TD length */ 3320 if (running_total != td_len) { 3321 xhci_err(xhci, "ISOC TD length unmatch\n"); 3322 return -EINVAL; 3323 } 3324 } 3325 3326 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 3327 if (xhci->quirks & XHCI_AMD_PLL_FIX) 3328 usb_amd_quirk_pll_disable(); 3329 } 3330 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 3331 3332 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3333 start_cycle, start_trb); 3334 return 0; 3335 } 3336 3337 /* 3338 * Check transfer ring to guarantee there is enough room for the urb. 3339 * Update ISO URB start_frame and interval. 3340 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to 3341 * update the urb->start_frame by now. 3342 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input. 3343 */ 3344 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 3345 struct urb *urb, int slot_id, unsigned int ep_index) 3346 { 3347 struct xhci_virt_device *xdev; 3348 struct xhci_ring *ep_ring; 3349 struct xhci_ep_ctx *ep_ctx; 3350 int start_frame; 3351 int xhci_interval; 3352 int ep_interval; 3353 int num_tds, num_trbs, i; 3354 int ret; 3355 3356 xdev = xhci->devs[slot_id]; 3357 ep_ring = xdev->eps[ep_index].ring; 3358 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3359 3360 num_trbs = 0; 3361 num_tds = urb->number_of_packets; 3362 for (i = 0; i < num_tds; i++) 3363 num_trbs += count_isoc_trbs_needed(xhci, urb, i); 3364 3365 /* Check the ring to guarantee there is enough room for the whole urb. 3366 * Do not insert any td of the urb to the ring if the check failed. 3367 */ 3368 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 3369 num_trbs, mem_flags); 3370 if (ret) 3371 return ret; 3372 3373 start_frame = xhci_readl(xhci, &xhci->run_regs->microframe_index); 3374 start_frame &= 0x3fff; 3375 3376 urb->start_frame = start_frame; 3377 if (urb->dev->speed == USB_SPEED_LOW || 3378 urb->dev->speed == USB_SPEED_FULL) 3379 urb->start_frame >>= 3; 3380 3381 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3382 ep_interval = urb->interval; 3383 /* Convert to microframes */ 3384 if (urb->dev->speed == USB_SPEED_LOW || 3385 urb->dev->speed == USB_SPEED_FULL) 3386 ep_interval *= 8; 3387 /* FIXME change this to a warning and a suggestion to use the new API 3388 * to set the polling interval (once the API is added). 3389 */ 3390 if (xhci_interval != ep_interval) { 3391 if (printk_ratelimit()) 3392 dev_dbg(&urb->dev->dev, "Driver uses different interval" 3393 " (%d microframe%s) than xHCI " 3394 "(%d microframe%s)\n", 3395 ep_interval, 3396 ep_interval == 1 ? "" : "s", 3397 xhci_interval, 3398 xhci_interval == 1 ? "" : "s"); 3399 urb->interval = xhci_interval; 3400 /* Convert back to frames for LS/FS devices */ 3401 if (urb->dev->speed == USB_SPEED_LOW || 3402 urb->dev->speed == USB_SPEED_FULL) 3403 urb->interval /= 8; 3404 } 3405 return xhci_queue_isoc_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index); 3406 } 3407 3408 /**** Command Ring Operations ****/ 3409 3410 /* Generic function for queueing a command TRB on the command ring. 3411 * Check to make sure there's room on the command ring for one command TRB. 3412 * Also check that there's room reserved for commands that must not fail. 3413 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 3414 * then only check for the number of reserved spots. 3415 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 3416 * because the command event handler may want to resubmit a failed command. 3417 */ 3418 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2, 3419 u32 field3, u32 field4, bool command_must_succeed) 3420 { 3421 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 3422 int ret; 3423 3424 if (!command_must_succeed) 3425 reserved_trbs++; 3426 3427 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 3428 reserved_trbs, GFP_ATOMIC); 3429 if (ret < 0) { 3430 xhci_err(xhci, "ERR: No room for command on command ring\n"); 3431 if (command_must_succeed) 3432 xhci_err(xhci, "ERR: Reserved TRB counting for " 3433 "unfailable commands failed.\n"); 3434 return ret; 3435 } 3436 queue_trb(xhci, xhci->cmd_ring, false, false, field1, field2, field3, 3437 field4 | xhci->cmd_ring->cycle_state); 3438 return 0; 3439 } 3440 3441 /* Queue a slot enable or disable request on the command ring */ 3442 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id) 3443 { 3444 return queue_command(xhci, 0, 0, 0, 3445 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 3446 } 3447 3448 /* Queue an address device command TRB */ 3449 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 3450 u32 slot_id) 3451 { 3452 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 3453 upper_32_bits(in_ctx_ptr), 0, 3454 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id), 3455 false); 3456 } 3457 3458 int xhci_queue_vendor_command(struct xhci_hcd *xhci, 3459 u32 field1, u32 field2, u32 field3, u32 field4) 3460 { 3461 return queue_command(xhci, field1, field2, field3, field4, false); 3462 } 3463 3464 /* Queue a reset device command TRB */ 3465 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id) 3466 { 3467 return queue_command(xhci, 0, 0, 0, 3468 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 3469 false); 3470 } 3471 3472 /* Queue a configure endpoint command TRB */ 3473 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 3474 u32 slot_id, bool command_must_succeed) 3475 { 3476 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 3477 upper_32_bits(in_ctx_ptr), 0, 3478 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 3479 command_must_succeed); 3480 } 3481 3482 /* Queue an evaluate context command TRB */ 3483 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 3484 u32 slot_id) 3485 { 3486 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 3487 upper_32_bits(in_ctx_ptr), 0, 3488 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 3489 false); 3490 } 3491 3492 /* 3493 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 3494 * activity on an endpoint that is about to be suspended. 3495 */ 3496 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id, 3497 unsigned int ep_index, int suspend) 3498 { 3499 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3500 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3501 u32 type = TRB_TYPE(TRB_STOP_RING); 3502 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 3503 3504 return queue_command(xhci, 0, 0, 0, 3505 trb_slot_id | trb_ep_index | type | trb_suspend, false); 3506 } 3507 3508 /* Set Transfer Ring Dequeue Pointer command. 3509 * This should not be used for endpoints that have streams enabled. 3510 */ 3511 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id, 3512 unsigned int ep_index, unsigned int stream_id, 3513 struct xhci_segment *deq_seg, 3514 union xhci_trb *deq_ptr, u32 cycle_state) 3515 { 3516 dma_addr_t addr; 3517 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3518 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3519 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id); 3520 u32 type = TRB_TYPE(TRB_SET_DEQ); 3521 struct xhci_virt_ep *ep; 3522 3523 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr); 3524 if (addr == 0) { 3525 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 3526 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", 3527 deq_seg, deq_ptr); 3528 return 0; 3529 } 3530 ep = &xhci->devs[slot_id]->eps[ep_index]; 3531 if ((ep->ep_state & SET_DEQ_PENDING)) { 3532 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 3533 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n"); 3534 return 0; 3535 } 3536 ep->queued_deq_seg = deq_seg; 3537 ep->queued_deq_ptr = deq_ptr; 3538 return queue_command(xhci, lower_32_bits(addr) | cycle_state, 3539 upper_32_bits(addr), trb_stream_id, 3540 trb_slot_id | trb_ep_index | type, false); 3541 } 3542 3543 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id, 3544 unsigned int ep_index) 3545 { 3546 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3547 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3548 u32 type = TRB_TYPE(TRB_RESET_EP); 3549 3550 return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type, 3551 false); 3552 } 3553