1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 /* 24 * Ring initialization rules: 25 * 1. Each segment is initialized to zero, except for link TRBs. 26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 27 * Consumer Cycle State (CCS), depending on ring function. 28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 29 * 30 * Ring behavior rules: 31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 32 * least one free TRB in the ring. This is useful if you want to turn that 33 * into a link TRB and expand the ring. 34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 35 * link TRB, then load the pointer with the address in the link TRB. If the 36 * link TRB had its toggle bit set, you may need to update the ring cycle 37 * state (see cycle bit rules). You may have to do this multiple times 38 * until you reach a non-link TRB. 39 * 3. A ring is full if enqueue++ (for the definition of increment above) 40 * equals the dequeue pointer. 41 * 42 * Cycle bit rules: 43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 44 * in a link TRB, it must toggle the ring cycle state. 45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 46 * in a link TRB, it must toggle the ring cycle state. 47 * 48 * Producer rules: 49 * 1. Check if ring is full before you enqueue. 50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 51 * Update enqueue pointer between each write (which may update the ring 52 * cycle state). 53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 54 * and endpoint rings. If HC is the producer for the event ring, 55 * and it generates an interrupt according to interrupt modulation rules. 56 * 57 * Consumer rules: 58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 59 * the TRB is owned by the consumer. 60 * 2. Update dequeue pointer (which may update the ring cycle state) and 61 * continue processing TRBs until you reach a TRB which is not owned by you. 62 * 3. Notify the producer. SW is the consumer for the event ring, and it 63 * updates event ring dequeue pointer. HC is the consumer for the command and 64 * endpoint rings; it generates events on the event ring for these. 65 */ 66 67 #include <linux/scatterlist.h> 68 #include <linux/slab.h> 69 #include "xhci.h" 70 71 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, 72 struct xhci_virt_device *virt_dev, 73 struct xhci_event_cmd *event); 74 75 /* 76 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 77 * address of the TRB. 78 */ 79 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 80 union xhci_trb *trb) 81 { 82 unsigned long segment_offset; 83 84 if (!seg || !trb || trb < seg->trbs) 85 return 0; 86 /* offset in TRBs */ 87 segment_offset = trb - seg->trbs; 88 if (segment_offset > TRBS_PER_SEGMENT) 89 return 0; 90 return seg->dma + (segment_offset * sizeof(*trb)); 91 } 92 93 /* Does this link TRB point to the first segment in a ring, 94 * or was the previous TRB the last TRB on the last segment in the ERST? 95 */ 96 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring, 97 struct xhci_segment *seg, union xhci_trb *trb) 98 { 99 if (ring == xhci->event_ring) 100 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) && 101 (seg->next == xhci->event_ring->first_seg); 102 else 103 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 104 } 105 106 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring 107 * segment? I.e. would the updated event TRB pointer step off the end of the 108 * event seg? 109 */ 110 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 111 struct xhci_segment *seg, union xhci_trb *trb) 112 { 113 if (ring == xhci->event_ring) 114 return trb == &seg->trbs[TRBS_PER_SEGMENT]; 115 else 116 return TRB_TYPE_LINK_LE32(trb->link.control); 117 } 118 119 static int enqueue_is_link_trb(struct xhci_ring *ring) 120 { 121 struct xhci_link_trb *link = &ring->enqueue->link; 122 return TRB_TYPE_LINK_LE32(link->control); 123 } 124 125 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 126 * TRB is in a new segment. This does not skip over link TRBs, and it does not 127 * effect the ring dequeue or enqueue pointers. 128 */ 129 static void next_trb(struct xhci_hcd *xhci, 130 struct xhci_ring *ring, 131 struct xhci_segment **seg, 132 union xhci_trb **trb) 133 { 134 if (last_trb(xhci, ring, *seg, *trb)) { 135 *seg = (*seg)->next; 136 *trb = ((*seg)->trbs); 137 } else { 138 (*trb)++; 139 } 140 } 141 142 /* 143 * See Cycle bit rules. SW is the consumer for the event ring only. 144 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 145 */ 146 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 147 { 148 unsigned long long addr; 149 150 ring->deq_updates++; 151 152 /* 153 * If this is not event ring, and the dequeue pointer 154 * is not on a link TRB, there is one more usable TRB 155 */ 156 if (ring->type != TYPE_EVENT && 157 !last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) 158 ring->num_trbs_free++; 159 160 do { 161 /* 162 * Update the dequeue pointer further if that was a link TRB or 163 * we're at the end of an event ring segment (which doesn't have 164 * link TRBS) 165 */ 166 if (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) { 167 if (ring->type == TYPE_EVENT && 168 last_trb_on_last_seg(xhci, ring, 169 ring->deq_seg, ring->dequeue)) { 170 ring->cycle_state = (ring->cycle_state ? 0 : 1); 171 } 172 ring->deq_seg = ring->deq_seg->next; 173 ring->dequeue = ring->deq_seg->trbs; 174 } else { 175 ring->dequeue++; 176 } 177 } while (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)); 178 179 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue); 180 } 181 182 /* 183 * See Cycle bit rules. SW is the consumer for the event ring only. 184 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 185 * 186 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 187 * chain bit is set), then set the chain bit in all the following link TRBs. 188 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 189 * have their chain bit cleared (so that each Link TRB is a separate TD). 190 * 191 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 192 * set, but other sections talk about dealing with the chain bit set. This was 193 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 194 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 195 * 196 * @more_trbs_coming: Will you enqueue more TRBs before calling 197 * prepare_transfer()? 198 */ 199 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 200 bool more_trbs_coming) 201 { 202 u32 chain; 203 union xhci_trb *next; 204 unsigned long long addr; 205 206 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 207 /* If this is not event ring, there is one less usable TRB */ 208 if (ring->type != TYPE_EVENT && 209 !last_trb(xhci, ring, ring->enq_seg, ring->enqueue)) 210 ring->num_trbs_free--; 211 next = ++(ring->enqueue); 212 213 ring->enq_updates++; 214 /* Update the dequeue pointer further if that was a link TRB or we're at 215 * the end of an event ring segment (which doesn't have link TRBS) 216 */ 217 while (last_trb(xhci, ring, ring->enq_seg, next)) { 218 if (ring->type != TYPE_EVENT) { 219 /* 220 * If the caller doesn't plan on enqueueing more 221 * TDs before ringing the doorbell, then we 222 * don't want to give the link TRB to the 223 * hardware just yet. We'll give the link TRB 224 * back in prepare_ring() just before we enqueue 225 * the TD at the top of the ring. 226 */ 227 if (!chain && !more_trbs_coming) 228 break; 229 230 /* If we're not dealing with 0.95 hardware or 231 * isoc rings on AMD 0.96 host, 232 * carry over the chain bit of the previous TRB 233 * (which may mean the chain bit is cleared). 234 */ 235 if (!(ring->type == TYPE_ISOC && 236 (xhci->quirks & XHCI_AMD_0x96_HOST)) 237 && !xhci_link_trb_quirk(xhci)) { 238 next->link.control &= 239 cpu_to_le32(~TRB_CHAIN); 240 next->link.control |= 241 cpu_to_le32(chain); 242 } 243 /* Give this link TRB to the hardware */ 244 wmb(); 245 next->link.control ^= cpu_to_le32(TRB_CYCLE); 246 247 /* Toggle the cycle bit after the last ring segment. */ 248 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 249 ring->cycle_state = (ring->cycle_state ? 0 : 1); 250 } 251 } 252 ring->enq_seg = ring->enq_seg->next; 253 ring->enqueue = ring->enq_seg->trbs; 254 next = ring->enqueue; 255 } 256 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue); 257 } 258 259 /* 260 * Check to see if there's room to enqueue num_trbs on the ring and make sure 261 * enqueue pointer will not advance into dequeue segment. See rules above. 262 */ 263 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 264 unsigned int num_trbs) 265 { 266 int num_trbs_in_deq_seg; 267 268 if (ring->num_trbs_free < num_trbs) 269 return 0; 270 271 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { 272 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; 273 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) 274 return 0; 275 } 276 277 return 1; 278 } 279 280 /* Ring the host controller doorbell after placing a command on the ring */ 281 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 282 { 283 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 284 return; 285 286 xhci_dbg(xhci, "// Ding dong!\n"); 287 xhci_writel(xhci, DB_VALUE_HOST, &xhci->dba->doorbell[0]); 288 /* Flush PCI posted writes */ 289 xhci_readl(xhci, &xhci->dba->doorbell[0]); 290 } 291 292 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci) 293 { 294 u64 temp_64; 295 int ret; 296 297 xhci_dbg(xhci, "Abort command ring\n"); 298 299 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) { 300 xhci_dbg(xhci, "The command ring isn't running, " 301 "Have the command ring been stopped?\n"); 302 return 0; 303 } 304 305 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 306 if (!(temp_64 & CMD_RING_RUNNING)) { 307 xhci_dbg(xhci, "Command ring had been stopped\n"); 308 return 0; 309 } 310 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 311 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT, 312 &xhci->op_regs->cmd_ring); 313 314 /* Section 4.6.1.2 of xHCI 1.0 spec says software should 315 * time the completion od all xHCI commands, including 316 * the Command Abort operation. If software doesn't see 317 * CRR negated in a timely manner (e.g. longer than 5 318 * seconds), then it should assume that the there are 319 * larger problems with the xHC and assert HCRST. 320 */ 321 ret = xhci_handshake(xhci, &xhci->op_regs->cmd_ring, 322 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 323 if (ret < 0) { 324 xhci_err(xhci, "Stopped the command ring failed, " 325 "maybe the host is dead\n"); 326 xhci->xhc_state |= XHCI_STATE_DYING; 327 xhci_quiesce(xhci); 328 xhci_halt(xhci); 329 return -ESHUTDOWN; 330 } 331 332 return 0; 333 } 334 335 static int xhci_queue_cd(struct xhci_hcd *xhci, 336 struct xhci_command *command, 337 union xhci_trb *cmd_trb) 338 { 339 struct xhci_cd *cd; 340 cd = kzalloc(sizeof(struct xhci_cd), GFP_ATOMIC); 341 if (!cd) 342 return -ENOMEM; 343 INIT_LIST_HEAD(&cd->cancel_cmd_list); 344 345 cd->command = command; 346 cd->cmd_trb = cmd_trb; 347 list_add_tail(&cd->cancel_cmd_list, &xhci->cancel_cmd_list); 348 349 return 0; 350 } 351 352 /* 353 * Cancel the command which has issue. 354 * 355 * Some commands may hang due to waiting for acknowledgement from 356 * usb device. It is outside of the xHC's ability to control and 357 * will cause the command ring is blocked. When it occurs software 358 * should intervene to recover the command ring. 359 * See Section 4.6.1.1 and 4.6.1.2 360 */ 361 int xhci_cancel_cmd(struct xhci_hcd *xhci, struct xhci_command *command, 362 union xhci_trb *cmd_trb) 363 { 364 int retval = 0; 365 unsigned long flags; 366 367 spin_lock_irqsave(&xhci->lock, flags); 368 369 if (xhci->xhc_state & XHCI_STATE_DYING) { 370 xhci_warn(xhci, "Abort the command ring," 371 " but the xHCI is dead.\n"); 372 retval = -ESHUTDOWN; 373 goto fail; 374 } 375 376 /* queue the cmd desriptor to cancel_cmd_list */ 377 retval = xhci_queue_cd(xhci, command, cmd_trb); 378 if (retval) { 379 xhci_warn(xhci, "Queuing command descriptor failed.\n"); 380 goto fail; 381 } 382 383 /* abort command ring */ 384 retval = xhci_abort_cmd_ring(xhci); 385 if (retval) { 386 xhci_err(xhci, "Abort command ring failed\n"); 387 if (unlikely(retval == -ESHUTDOWN)) { 388 spin_unlock_irqrestore(&xhci->lock, flags); 389 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); 390 xhci_dbg(xhci, "xHCI host controller is dead.\n"); 391 return retval; 392 } 393 } 394 395 fail: 396 spin_unlock_irqrestore(&xhci->lock, flags); 397 return retval; 398 } 399 400 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 401 unsigned int slot_id, 402 unsigned int ep_index, 403 unsigned int stream_id) 404 { 405 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 406 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 407 unsigned int ep_state = ep->ep_state; 408 409 /* Don't ring the doorbell for this endpoint if there are pending 410 * cancellations because we don't want to interrupt processing. 411 * We don't want to restart any stream rings if there's a set dequeue 412 * pointer command pending because the device can choose to start any 413 * stream once the endpoint is on the HW schedule. 414 * FIXME - check all the stream rings for pending cancellations. 415 */ 416 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) || 417 (ep_state & EP_HALTED)) 418 return; 419 xhci_writel(xhci, DB_VALUE(ep_index, stream_id), db_addr); 420 /* The CPU has better things to do at this point than wait for a 421 * write-posting flush. It'll get there soon enough. 422 */ 423 } 424 425 /* Ring the doorbell for any rings with pending URBs */ 426 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 427 unsigned int slot_id, 428 unsigned int ep_index) 429 { 430 unsigned int stream_id; 431 struct xhci_virt_ep *ep; 432 433 ep = &xhci->devs[slot_id]->eps[ep_index]; 434 435 /* A ring has pending URBs if its TD list is not empty */ 436 if (!(ep->ep_state & EP_HAS_STREAMS)) { 437 if (!(list_empty(&ep->ring->td_list))) 438 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 439 return; 440 } 441 442 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 443 stream_id++) { 444 struct xhci_stream_info *stream_info = ep->stream_info; 445 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 446 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 447 stream_id); 448 } 449 } 450 451 /* 452 * Find the segment that trb is in. Start searching in start_seg. 453 * If we must move past a segment that has a link TRB with a toggle cycle state 454 * bit set, then we will toggle the value pointed at by cycle_state. 455 */ 456 static struct xhci_segment *find_trb_seg( 457 struct xhci_segment *start_seg, 458 union xhci_trb *trb, int *cycle_state) 459 { 460 struct xhci_segment *cur_seg = start_seg; 461 struct xhci_generic_trb *generic_trb; 462 463 while (cur_seg->trbs > trb || 464 &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) { 465 generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic; 466 if (generic_trb->field[3] & cpu_to_le32(LINK_TOGGLE)) 467 *cycle_state ^= 0x1; 468 cur_seg = cur_seg->next; 469 if (cur_seg == start_seg) 470 /* Looped over the entire list. Oops! */ 471 return NULL; 472 } 473 return cur_seg; 474 } 475 476 477 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 478 unsigned int slot_id, unsigned int ep_index, 479 unsigned int stream_id) 480 { 481 struct xhci_virt_ep *ep; 482 483 ep = &xhci->devs[slot_id]->eps[ep_index]; 484 /* Common case: no streams */ 485 if (!(ep->ep_state & EP_HAS_STREAMS)) 486 return ep->ring; 487 488 if (stream_id == 0) { 489 xhci_warn(xhci, 490 "WARN: Slot ID %u, ep index %u has streams, " 491 "but URB has no stream ID.\n", 492 slot_id, ep_index); 493 return NULL; 494 } 495 496 if (stream_id < ep->stream_info->num_streams) 497 return ep->stream_info->stream_rings[stream_id]; 498 499 xhci_warn(xhci, 500 "WARN: Slot ID %u, ep index %u has " 501 "stream IDs 1 to %u allocated, " 502 "but stream ID %u is requested.\n", 503 slot_id, ep_index, 504 ep->stream_info->num_streams - 1, 505 stream_id); 506 return NULL; 507 } 508 509 /* Get the right ring for the given URB. 510 * If the endpoint supports streams, boundary check the URB's stream ID. 511 * If the endpoint doesn't support streams, return the singular endpoint ring. 512 */ 513 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 514 struct urb *urb) 515 { 516 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id, 517 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id); 518 } 519 520 /* 521 * Move the xHC's endpoint ring dequeue pointer past cur_td. 522 * Record the new state of the xHC's endpoint ring dequeue segment, 523 * dequeue pointer, and new consumer cycle state in state. 524 * Update our internal representation of the ring's dequeue pointer. 525 * 526 * We do this in three jumps: 527 * - First we update our new ring state to be the same as when the xHC stopped. 528 * - Then we traverse the ring to find the segment that contains 529 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass 530 * any link TRBs with the toggle cycle bit set. 531 * - Finally we move the dequeue state one TRB further, toggling the cycle bit 532 * if we've moved it past a link TRB with the toggle cycle bit set. 533 * 534 * Some of the uses of xhci_generic_trb are grotty, but if they're done 535 * with correct __le32 accesses they should work fine. Only users of this are 536 * in here. 537 */ 538 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, 539 unsigned int slot_id, unsigned int ep_index, 540 unsigned int stream_id, struct xhci_td *cur_td, 541 struct xhci_dequeue_state *state) 542 { 543 struct xhci_virt_device *dev = xhci->devs[slot_id]; 544 struct xhci_ring *ep_ring; 545 struct xhci_generic_trb *trb; 546 struct xhci_ep_ctx *ep_ctx; 547 dma_addr_t addr; 548 549 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 550 ep_index, stream_id); 551 if (!ep_ring) { 552 xhci_warn(xhci, "WARN can't find new dequeue state " 553 "for invalid stream ID %u.\n", 554 stream_id); 555 return; 556 } 557 state->new_cycle_state = 0; 558 xhci_dbg(xhci, "Finding segment containing stopped TRB.\n"); 559 state->new_deq_seg = find_trb_seg(cur_td->start_seg, 560 dev->eps[ep_index].stopped_trb, 561 &state->new_cycle_state); 562 if (!state->new_deq_seg) { 563 WARN_ON(1); 564 return; 565 } 566 567 /* Dig out the cycle state saved by the xHC during the stop ep cmd */ 568 xhci_dbg(xhci, "Finding endpoint context\n"); 569 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 570 state->new_cycle_state = 0x1 & le64_to_cpu(ep_ctx->deq); 571 572 state->new_deq_ptr = cur_td->last_trb; 573 xhci_dbg(xhci, "Finding segment containing last TRB in TD.\n"); 574 state->new_deq_seg = find_trb_seg(state->new_deq_seg, 575 state->new_deq_ptr, 576 &state->new_cycle_state); 577 if (!state->new_deq_seg) { 578 WARN_ON(1); 579 return; 580 } 581 582 trb = &state->new_deq_ptr->generic; 583 if (TRB_TYPE_LINK_LE32(trb->field[3]) && 584 (trb->field[3] & cpu_to_le32(LINK_TOGGLE))) 585 state->new_cycle_state ^= 0x1; 586 next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr); 587 588 /* 589 * If there is only one segment in a ring, find_trb_seg()'s while loop 590 * will not run, and it will return before it has a chance to see if it 591 * needs to toggle the cycle bit. It can't tell if the stalled transfer 592 * ended just before the link TRB on a one-segment ring, or if the TD 593 * wrapped around the top of the ring, because it doesn't have the TD in 594 * question. Look for the one-segment case where stalled TRB's address 595 * is greater than the new dequeue pointer address. 596 */ 597 if (ep_ring->first_seg == ep_ring->first_seg->next && 598 state->new_deq_ptr < dev->eps[ep_index].stopped_trb) 599 state->new_cycle_state ^= 0x1; 600 xhci_dbg(xhci, "Cycle state = 0x%x\n", state->new_cycle_state); 601 602 /* Don't update the ring cycle state for the producer (us). */ 603 xhci_dbg(xhci, "New dequeue segment = %p (virtual)\n", 604 state->new_deq_seg); 605 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); 606 xhci_dbg(xhci, "New dequeue pointer = 0x%llx (DMA)\n", 607 (unsigned long long) addr); 608 } 609 610 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 611 * (The last TRB actually points to the ring enqueue pointer, which is not part 612 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 613 */ 614 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 615 struct xhci_td *cur_td, bool flip_cycle) 616 { 617 struct xhci_segment *cur_seg; 618 union xhci_trb *cur_trb; 619 620 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb; 621 true; 622 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 623 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) { 624 /* Unchain any chained Link TRBs, but 625 * leave the pointers intact. 626 */ 627 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN); 628 /* Flip the cycle bit (link TRBs can't be the first 629 * or last TRB). 630 */ 631 if (flip_cycle) 632 cur_trb->generic.field[3] ^= 633 cpu_to_le32(TRB_CYCLE); 634 xhci_dbg(xhci, "Cancel (unchain) link TRB\n"); 635 xhci_dbg(xhci, "Address = %p (0x%llx dma); " 636 "in seg %p (0x%llx dma)\n", 637 cur_trb, 638 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb), 639 cur_seg, 640 (unsigned long long)cur_seg->dma); 641 } else { 642 cur_trb->generic.field[0] = 0; 643 cur_trb->generic.field[1] = 0; 644 cur_trb->generic.field[2] = 0; 645 /* Preserve only the cycle bit of this TRB */ 646 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 647 /* Flip the cycle bit except on the first or last TRB */ 648 if (flip_cycle && cur_trb != cur_td->first_trb && 649 cur_trb != cur_td->last_trb) 650 cur_trb->generic.field[3] ^= 651 cpu_to_le32(TRB_CYCLE); 652 cur_trb->generic.field[3] |= cpu_to_le32( 653 TRB_TYPE(TRB_TR_NOOP)); 654 xhci_dbg(xhci, "TRB to noop at offset 0x%llx\n", 655 (unsigned long long) 656 xhci_trb_virt_to_dma(cur_seg, cur_trb)); 657 } 658 if (cur_trb == cur_td->last_trb) 659 break; 660 } 661 } 662 663 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id, 664 unsigned int ep_index, unsigned int stream_id, 665 struct xhci_segment *deq_seg, 666 union xhci_trb *deq_ptr, u32 cycle_state); 667 668 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, 669 unsigned int slot_id, unsigned int ep_index, 670 unsigned int stream_id, 671 struct xhci_dequeue_state *deq_state) 672 { 673 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 674 675 xhci_dbg(xhci, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), " 676 "new deq ptr = %p (0x%llx dma), new cycle = %u\n", 677 deq_state->new_deq_seg, 678 (unsigned long long)deq_state->new_deq_seg->dma, 679 deq_state->new_deq_ptr, 680 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr), 681 deq_state->new_cycle_state); 682 queue_set_tr_deq(xhci, slot_id, ep_index, stream_id, 683 deq_state->new_deq_seg, 684 deq_state->new_deq_ptr, 685 (u32) deq_state->new_cycle_state); 686 /* Stop the TD queueing code from ringing the doorbell until 687 * this command completes. The HC won't set the dequeue pointer 688 * if the ring is running, and ringing the doorbell starts the 689 * ring running. 690 */ 691 ep->ep_state |= SET_DEQ_PENDING; 692 } 693 694 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, 695 struct xhci_virt_ep *ep) 696 { 697 ep->ep_state &= ~EP_HALT_PENDING; 698 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the 699 * timer is running on another CPU, we don't decrement stop_cmds_pending 700 * (since we didn't successfully stop the watchdog timer). 701 */ 702 if (del_timer(&ep->stop_cmd_timer)) 703 ep->stop_cmds_pending--; 704 } 705 706 /* Must be called with xhci->lock held in interrupt context */ 707 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 708 struct xhci_td *cur_td, int status, char *adjective) 709 { 710 struct usb_hcd *hcd; 711 struct urb *urb; 712 struct urb_priv *urb_priv; 713 714 urb = cur_td->urb; 715 urb_priv = urb->hcpriv; 716 urb_priv->td_cnt++; 717 hcd = bus_to_hcd(urb->dev->bus); 718 719 /* Only giveback urb when this is the last td in urb */ 720 if (urb_priv->td_cnt == urb_priv->length) { 721 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 722 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 723 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 724 if (xhci->quirks & XHCI_AMD_PLL_FIX) 725 usb_amd_quirk_pll_enable(); 726 } 727 } 728 usb_hcd_unlink_urb_from_ep(hcd, urb); 729 730 spin_unlock(&xhci->lock); 731 usb_hcd_giveback_urb(hcd, urb, status); 732 xhci_urb_free_priv(xhci, urb_priv); 733 spin_lock(&xhci->lock); 734 } 735 } 736 737 /* 738 * When we get a command completion for a Stop Endpoint Command, we need to 739 * unlink any cancelled TDs from the ring. There are two ways to do that: 740 * 741 * 1. If the HW was in the middle of processing the TD that needs to be 742 * cancelled, then we must move the ring's dequeue pointer past the last TRB 743 * in the TD with a Set Dequeue Pointer Command. 744 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 745 * bit cleared) so that the HW will skip over them. 746 */ 747 static void handle_stopped_endpoint(struct xhci_hcd *xhci, 748 union xhci_trb *trb, struct xhci_event_cmd *event) 749 { 750 unsigned int slot_id; 751 unsigned int ep_index; 752 struct xhci_virt_device *virt_dev; 753 struct xhci_ring *ep_ring; 754 struct xhci_virt_ep *ep; 755 struct list_head *entry; 756 struct xhci_td *cur_td = NULL; 757 struct xhci_td *last_unlinked_td; 758 759 struct xhci_dequeue_state deq_state; 760 761 if (unlikely(TRB_TO_SUSPEND_PORT( 762 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])))) { 763 slot_id = TRB_TO_SLOT_ID( 764 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])); 765 virt_dev = xhci->devs[slot_id]; 766 if (virt_dev) 767 handle_cmd_in_cmd_wait_list(xhci, virt_dev, 768 event); 769 else 770 xhci_warn(xhci, "Stop endpoint command " 771 "completion for disabled slot %u\n", 772 slot_id); 773 return; 774 } 775 776 memset(&deq_state, 0, sizeof(deq_state)); 777 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3])); 778 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 779 ep = &xhci->devs[slot_id]->eps[ep_index]; 780 781 if (list_empty(&ep->cancelled_td_list)) { 782 xhci_stop_watchdog_timer_in_irq(xhci, ep); 783 ep->stopped_td = NULL; 784 ep->stopped_trb = NULL; 785 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 786 return; 787 } 788 789 /* Fix up the ep ring first, so HW stops executing cancelled TDs. 790 * We have the xHCI lock, so nothing can modify this list until we drop 791 * it. We're also in the event handler, so we can't get re-interrupted 792 * if another Stop Endpoint command completes 793 */ 794 list_for_each(entry, &ep->cancelled_td_list) { 795 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list); 796 xhci_dbg(xhci, "Removing canceled TD starting at 0x%llx (dma).\n", 797 (unsigned long long)xhci_trb_virt_to_dma( 798 cur_td->start_seg, cur_td->first_trb)); 799 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 800 if (!ep_ring) { 801 /* This shouldn't happen unless a driver is mucking 802 * with the stream ID after submission. This will 803 * leave the TD on the hardware ring, and the hardware 804 * will try to execute it, and may access a buffer 805 * that has already been freed. In the best case, the 806 * hardware will execute it, and the event handler will 807 * ignore the completion event for that TD, since it was 808 * removed from the td_list for that endpoint. In 809 * short, don't muck with the stream ID after 810 * submission. 811 */ 812 xhci_warn(xhci, "WARN Cancelled URB %p " 813 "has invalid stream ID %u.\n", 814 cur_td->urb, 815 cur_td->urb->stream_id); 816 goto remove_finished_td; 817 } 818 /* 819 * If we stopped on the TD we need to cancel, then we have to 820 * move the xHC endpoint ring dequeue pointer past this TD. 821 */ 822 if (cur_td == ep->stopped_td) 823 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, 824 cur_td->urb->stream_id, 825 cur_td, &deq_state); 826 else 827 td_to_noop(xhci, ep_ring, cur_td, false); 828 remove_finished_td: 829 /* 830 * The event handler won't see a completion for this TD anymore, 831 * so remove it from the endpoint ring's TD list. Keep it in 832 * the cancelled TD list for URB completion later. 833 */ 834 list_del_init(&cur_td->td_list); 835 } 836 last_unlinked_td = cur_td; 837 xhci_stop_watchdog_timer_in_irq(xhci, ep); 838 839 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ 840 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { 841 xhci_queue_new_dequeue_state(xhci, 842 slot_id, ep_index, 843 ep->stopped_td->urb->stream_id, 844 &deq_state); 845 xhci_ring_cmd_db(xhci); 846 } else { 847 /* Otherwise ring the doorbell(s) to restart queued transfers */ 848 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 849 } 850 ep->stopped_td = NULL; 851 ep->stopped_trb = NULL; 852 853 /* 854 * Drop the lock and complete the URBs in the cancelled TD list. 855 * New TDs to be cancelled might be added to the end of the list before 856 * we can complete all the URBs for the TDs we already unlinked. 857 * So stop when we've completed the URB for the last TD we unlinked. 858 */ 859 do { 860 cur_td = list_entry(ep->cancelled_td_list.next, 861 struct xhci_td, cancelled_td_list); 862 list_del_init(&cur_td->cancelled_td_list); 863 864 /* Clean up the cancelled URB */ 865 /* Doesn't matter what we pass for status, since the core will 866 * just overwrite it (because the URB has been unlinked). 867 */ 868 xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled"); 869 870 /* Stop processing the cancelled list if the watchdog timer is 871 * running. 872 */ 873 if (xhci->xhc_state & XHCI_STATE_DYING) 874 return; 875 } while (cur_td != last_unlinked_td); 876 877 /* Return to the event handler with xhci->lock re-acquired */ 878 } 879 880 /* Watchdog timer function for when a stop endpoint command fails to complete. 881 * In this case, we assume the host controller is broken or dying or dead. The 882 * host may still be completing some other events, so we have to be careful to 883 * let the event ring handler and the URB dequeueing/enqueueing functions know 884 * through xhci->state. 885 * 886 * The timer may also fire if the host takes a very long time to respond to the 887 * command, and the stop endpoint command completion handler cannot delete the 888 * timer before the timer function is called. Another endpoint cancellation may 889 * sneak in before the timer function can grab the lock, and that may queue 890 * another stop endpoint command and add the timer back. So we cannot use a 891 * simple flag to say whether there is a pending stop endpoint command for a 892 * particular endpoint. 893 * 894 * Instead we use a combination of that flag and a counter for the number of 895 * pending stop endpoint commands. If the timer is the tail end of the last 896 * stop endpoint command, and the endpoint's command is still pending, we assume 897 * the host is dying. 898 */ 899 void xhci_stop_endpoint_command_watchdog(unsigned long arg) 900 { 901 struct xhci_hcd *xhci; 902 struct xhci_virt_ep *ep; 903 struct xhci_virt_ep *temp_ep; 904 struct xhci_ring *ring; 905 struct xhci_td *cur_td; 906 int ret, i, j; 907 unsigned long flags; 908 909 ep = (struct xhci_virt_ep *) arg; 910 xhci = ep->xhci; 911 912 spin_lock_irqsave(&xhci->lock, flags); 913 914 ep->stop_cmds_pending--; 915 if (xhci->xhc_state & XHCI_STATE_DYING) { 916 xhci_dbg(xhci, "Stop EP timer ran, but another timer marked " 917 "xHCI as DYING, exiting.\n"); 918 spin_unlock_irqrestore(&xhci->lock, flags); 919 return; 920 } 921 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) { 922 xhci_dbg(xhci, "Stop EP timer ran, but no command pending, " 923 "exiting.\n"); 924 spin_unlock_irqrestore(&xhci->lock, flags); 925 return; 926 } 927 928 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); 929 xhci_warn(xhci, "Assuming host is dying, halting host.\n"); 930 /* Oops, HC is dead or dying or at least not responding to the stop 931 * endpoint command. 932 */ 933 xhci->xhc_state |= XHCI_STATE_DYING; 934 /* Disable interrupts from the host controller and start halting it */ 935 xhci_quiesce(xhci); 936 spin_unlock_irqrestore(&xhci->lock, flags); 937 938 ret = xhci_halt(xhci); 939 940 spin_lock_irqsave(&xhci->lock, flags); 941 if (ret < 0) { 942 /* This is bad; the host is not responding to commands and it's 943 * not allowing itself to be halted. At least interrupts are 944 * disabled. If we call usb_hc_died(), it will attempt to 945 * disconnect all device drivers under this host. Those 946 * disconnect() methods will wait for all URBs to be unlinked, 947 * so we must complete them. 948 */ 949 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n"); 950 xhci_warn(xhci, "Completing active URBs anyway.\n"); 951 /* We could turn all TDs on the rings to no-ops. This won't 952 * help if the host has cached part of the ring, and is slow if 953 * we want to preserve the cycle bit. Skip it and hope the host 954 * doesn't touch the memory. 955 */ 956 } 957 for (i = 0; i < MAX_HC_SLOTS; i++) { 958 if (!xhci->devs[i]) 959 continue; 960 for (j = 0; j < 31; j++) { 961 temp_ep = &xhci->devs[i]->eps[j]; 962 ring = temp_ep->ring; 963 if (!ring) 964 continue; 965 xhci_dbg(xhci, "Killing URBs for slot ID %u, " 966 "ep index %u\n", i, j); 967 while (!list_empty(&ring->td_list)) { 968 cur_td = list_first_entry(&ring->td_list, 969 struct xhci_td, 970 td_list); 971 list_del_init(&cur_td->td_list); 972 if (!list_empty(&cur_td->cancelled_td_list)) 973 list_del_init(&cur_td->cancelled_td_list); 974 xhci_giveback_urb_in_irq(xhci, cur_td, 975 -ESHUTDOWN, "killed"); 976 } 977 while (!list_empty(&temp_ep->cancelled_td_list)) { 978 cur_td = list_first_entry( 979 &temp_ep->cancelled_td_list, 980 struct xhci_td, 981 cancelled_td_list); 982 list_del_init(&cur_td->cancelled_td_list); 983 xhci_giveback_urb_in_irq(xhci, cur_td, 984 -ESHUTDOWN, "killed"); 985 } 986 } 987 } 988 spin_unlock_irqrestore(&xhci->lock, flags); 989 xhci_dbg(xhci, "Calling usb_hc_died()\n"); 990 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); 991 xhci_dbg(xhci, "xHCI host controller is dead.\n"); 992 } 993 994 995 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 996 struct xhci_virt_device *dev, 997 struct xhci_ring *ep_ring, 998 unsigned int ep_index) 999 { 1000 union xhci_trb *dequeue_temp; 1001 int num_trbs_free_temp; 1002 bool revert = false; 1003 1004 num_trbs_free_temp = ep_ring->num_trbs_free; 1005 dequeue_temp = ep_ring->dequeue; 1006 1007 /* If we get two back-to-back stalls, and the first stalled transfer 1008 * ends just before a link TRB, the dequeue pointer will be left on 1009 * the link TRB by the code in the while loop. So we have to update 1010 * the dequeue pointer one segment further, or we'll jump off 1011 * the segment into la-la-land. 1012 */ 1013 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) { 1014 ep_ring->deq_seg = ep_ring->deq_seg->next; 1015 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1016 } 1017 1018 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 1019 /* We have more usable TRBs */ 1020 ep_ring->num_trbs_free++; 1021 ep_ring->dequeue++; 1022 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, 1023 ep_ring->dequeue)) { 1024 if (ep_ring->dequeue == 1025 dev->eps[ep_index].queued_deq_ptr) 1026 break; 1027 ep_ring->deq_seg = ep_ring->deq_seg->next; 1028 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1029 } 1030 if (ep_ring->dequeue == dequeue_temp) { 1031 revert = true; 1032 break; 1033 } 1034 } 1035 1036 if (revert) { 1037 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 1038 ep_ring->num_trbs_free = num_trbs_free_temp; 1039 } 1040 } 1041 1042 /* 1043 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1044 * we need to clear the set deq pending flag in the endpoint ring state, so that 1045 * the TD queueing code can ring the doorbell again. We also need to ring the 1046 * endpoint doorbell to restart the ring, but only if there aren't more 1047 * cancellations pending. 1048 */ 1049 static void handle_set_deq_completion(struct xhci_hcd *xhci, 1050 struct xhci_event_cmd *event, 1051 union xhci_trb *trb) 1052 { 1053 unsigned int slot_id; 1054 unsigned int ep_index; 1055 unsigned int stream_id; 1056 struct xhci_ring *ep_ring; 1057 struct xhci_virt_device *dev; 1058 struct xhci_ep_ctx *ep_ctx; 1059 struct xhci_slot_ctx *slot_ctx; 1060 1061 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3])); 1062 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1063 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1064 dev = xhci->devs[slot_id]; 1065 1066 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); 1067 if (!ep_ring) { 1068 xhci_warn(xhci, "WARN Set TR deq ptr command for " 1069 "freed stream ID %u\n", 1070 stream_id); 1071 /* XXX: Harmless??? */ 1072 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 1073 return; 1074 } 1075 1076 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 1077 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); 1078 1079 if (GET_COMP_CODE(le32_to_cpu(event->status)) != COMP_SUCCESS) { 1080 unsigned int ep_state; 1081 unsigned int slot_state; 1082 1083 switch (GET_COMP_CODE(le32_to_cpu(event->status))) { 1084 case COMP_TRB_ERR: 1085 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because " 1086 "of stream ID configuration\n"); 1087 break; 1088 case COMP_CTX_STATE: 1089 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due " 1090 "to incorrect slot or ep state.\n"); 1091 ep_state = le32_to_cpu(ep_ctx->ep_info); 1092 ep_state &= EP_STATE_MASK; 1093 slot_state = le32_to_cpu(slot_ctx->dev_state); 1094 slot_state = GET_SLOT_STATE(slot_state); 1095 xhci_dbg(xhci, "Slot state = %u, EP state = %u\n", 1096 slot_state, ep_state); 1097 break; 1098 case COMP_EBADSLT: 1099 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because " 1100 "slot %u was not enabled.\n", slot_id); 1101 break; 1102 default: 1103 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown " 1104 "completion code of %u.\n", 1105 GET_COMP_CODE(le32_to_cpu(event->status))); 1106 break; 1107 } 1108 /* OK what do we do now? The endpoint state is hosed, and we 1109 * should never get to this point if the synchronization between 1110 * queueing, and endpoint state are correct. This might happen 1111 * if the device gets disconnected after we've finished 1112 * cancelling URBs, which might not be an error... 1113 */ 1114 } else { 1115 xhci_dbg(xhci, "Successful Set TR Deq Ptr cmd, deq = @%08llx\n", 1116 le64_to_cpu(ep_ctx->deq)); 1117 if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg, 1118 dev->eps[ep_index].queued_deq_ptr) == 1119 (le64_to_cpu(ep_ctx->deq) & ~(EP_CTX_CYCLE_MASK))) { 1120 /* Update the ring's dequeue segment and dequeue pointer 1121 * to reflect the new position. 1122 */ 1123 update_ring_for_set_deq_completion(xhci, dev, 1124 ep_ring, ep_index); 1125 } else { 1126 xhci_warn(xhci, "Mismatch between completed Set TR Deq " 1127 "Ptr command & xHCI internal state.\n"); 1128 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1129 dev->eps[ep_index].queued_deq_seg, 1130 dev->eps[ep_index].queued_deq_ptr); 1131 } 1132 } 1133 1134 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 1135 dev->eps[ep_index].queued_deq_seg = NULL; 1136 dev->eps[ep_index].queued_deq_ptr = NULL; 1137 /* Restart any rings with pending URBs */ 1138 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1139 } 1140 1141 static void handle_reset_ep_completion(struct xhci_hcd *xhci, 1142 struct xhci_event_cmd *event, 1143 union xhci_trb *trb) 1144 { 1145 int slot_id; 1146 unsigned int ep_index; 1147 1148 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3])); 1149 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1150 /* This command will only fail if the endpoint wasn't halted, 1151 * but we don't care. 1152 */ 1153 xhci_dbg(xhci, "Ignoring reset ep completion code of %u\n", 1154 GET_COMP_CODE(le32_to_cpu(event->status))); 1155 1156 /* HW with the reset endpoint quirk needs to have a configure endpoint 1157 * command complete before the endpoint can be used. Queue that here 1158 * because the HW can't handle two commands being queued in a row. 1159 */ 1160 if (xhci->quirks & XHCI_RESET_EP_QUIRK) { 1161 xhci_dbg(xhci, "Queueing configure endpoint command\n"); 1162 xhci_queue_configure_endpoint(xhci, 1163 xhci->devs[slot_id]->in_ctx->dma, slot_id, 1164 false); 1165 xhci_ring_cmd_db(xhci); 1166 } else { 1167 /* Clear our internal halted state and restart the ring(s) */ 1168 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; 1169 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1170 } 1171 } 1172 1173 /* Complete the command and detele it from the devcie's command queue. 1174 */ 1175 static void xhci_complete_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, 1176 struct xhci_command *command, u32 status) 1177 { 1178 command->status = status; 1179 list_del(&command->cmd_list); 1180 if (command->completion) 1181 complete(command->completion); 1182 else 1183 xhci_free_command(xhci, command); 1184 } 1185 1186 1187 /* Check to see if a command in the device's command queue matches this one. 1188 * Signal the completion or free the command, and return 1. Return 0 if the 1189 * completed command isn't at the head of the command list. 1190 */ 1191 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, 1192 struct xhci_virt_device *virt_dev, 1193 struct xhci_event_cmd *event) 1194 { 1195 struct xhci_command *command; 1196 1197 if (list_empty(&virt_dev->cmd_list)) 1198 return 0; 1199 1200 command = list_entry(virt_dev->cmd_list.next, 1201 struct xhci_command, cmd_list); 1202 if (xhci->cmd_ring->dequeue != command->command_trb) 1203 return 0; 1204 1205 xhci_complete_cmd_in_cmd_wait_list(xhci, command, 1206 GET_COMP_CODE(le32_to_cpu(event->status))); 1207 return 1; 1208 } 1209 1210 /* 1211 * Finding the command trb need to be cancelled and modifying it to 1212 * NO OP command. And if the command is in device's command wait 1213 * list, finishing and freeing it. 1214 * 1215 * If we can't find the command trb, we think it had already been 1216 * executed. 1217 */ 1218 static void xhci_cmd_to_noop(struct xhci_hcd *xhci, struct xhci_cd *cur_cd) 1219 { 1220 struct xhci_segment *cur_seg; 1221 union xhci_trb *cmd_trb; 1222 u32 cycle_state; 1223 1224 if (xhci->cmd_ring->dequeue == xhci->cmd_ring->enqueue) 1225 return; 1226 1227 /* find the current segment of command ring */ 1228 cur_seg = find_trb_seg(xhci->cmd_ring->first_seg, 1229 xhci->cmd_ring->dequeue, &cycle_state); 1230 1231 if (!cur_seg) { 1232 xhci_warn(xhci, "Command ring mismatch, dequeue = %p %llx (dma)\n", 1233 xhci->cmd_ring->dequeue, 1234 (unsigned long long) 1235 xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1236 xhci->cmd_ring->dequeue)); 1237 xhci_debug_ring(xhci, xhci->cmd_ring); 1238 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 1239 return; 1240 } 1241 1242 /* find the command trb matched by cd from command ring */ 1243 for (cmd_trb = xhci->cmd_ring->dequeue; 1244 cmd_trb != xhci->cmd_ring->enqueue; 1245 next_trb(xhci, xhci->cmd_ring, &cur_seg, &cmd_trb)) { 1246 /* If the trb is link trb, continue */ 1247 if (TRB_TYPE_LINK_LE32(cmd_trb->generic.field[3])) 1248 continue; 1249 1250 if (cur_cd->cmd_trb == cmd_trb) { 1251 1252 /* If the command in device's command list, we should 1253 * finish it and free the command structure. 1254 */ 1255 if (cur_cd->command) 1256 xhci_complete_cmd_in_cmd_wait_list(xhci, 1257 cur_cd->command, COMP_CMD_STOP); 1258 1259 /* get cycle state from the origin command trb */ 1260 cycle_state = le32_to_cpu(cmd_trb->generic.field[3]) 1261 & TRB_CYCLE; 1262 1263 /* modify the command trb to NO OP command */ 1264 cmd_trb->generic.field[0] = 0; 1265 cmd_trb->generic.field[1] = 0; 1266 cmd_trb->generic.field[2] = 0; 1267 cmd_trb->generic.field[3] = cpu_to_le32( 1268 TRB_TYPE(TRB_CMD_NOOP) | cycle_state); 1269 break; 1270 } 1271 } 1272 } 1273 1274 static void xhci_cancel_cmd_in_cd_list(struct xhci_hcd *xhci) 1275 { 1276 struct xhci_cd *cur_cd, *next_cd; 1277 1278 if (list_empty(&xhci->cancel_cmd_list)) 1279 return; 1280 1281 list_for_each_entry_safe(cur_cd, next_cd, 1282 &xhci->cancel_cmd_list, cancel_cmd_list) { 1283 xhci_cmd_to_noop(xhci, cur_cd); 1284 list_del(&cur_cd->cancel_cmd_list); 1285 kfree(cur_cd); 1286 } 1287 } 1288 1289 /* 1290 * traversing the cancel_cmd_list. If the command descriptor according 1291 * to cmd_trb is found, the function free it and return 1, otherwise 1292 * return 0. 1293 */ 1294 static int xhci_search_cmd_trb_in_cd_list(struct xhci_hcd *xhci, 1295 union xhci_trb *cmd_trb) 1296 { 1297 struct xhci_cd *cur_cd, *next_cd; 1298 1299 if (list_empty(&xhci->cancel_cmd_list)) 1300 return 0; 1301 1302 list_for_each_entry_safe(cur_cd, next_cd, 1303 &xhci->cancel_cmd_list, cancel_cmd_list) { 1304 if (cur_cd->cmd_trb == cmd_trb) { 1305 if (cur_cd->command) 1306 xhci_complete_cmd_in_cmd_wait_list(xhci, 1307 cur_cd->command, COMP_CMD_STOP); 1308 list_del(&cur_cd->cancel_cmd_list); 1309 kfree(cur_cd); 1310 return 1; 1311 } 1312 } 1313 1314 return 0; 1315 } 1316 1317 /* 1318 * If the cmd_trb_comp_code is COMP_CMD_ABORT, we just check whether the 1319 * trb pointed by the command ring dequeue pointer is the trb we want to 1320 * cancel or not. And if the cmd_trb_comp_code is COMP_CMD_STOP, we will 1321 * traverse the cancel_cmd_list to trun the all of the commands according 1322 * to command descriptor to NO-OP trb. 1323 */ 1324 static int handle_stopped_cmd_ring(struct xhci_hcd *xhci, 1325 int cmd_trb_comp_code) 1326 { 1327 int cur_trb_is_good = 0; 1328 1329 /* Searching the cmd trb pointed by the command ring dequeue 1330 * pointer in command descriptor list. If it is found, free it. 1331 */ 1332 cur_trb_is_good = xhci_search_cmd_trb_in_cd_list(xhci, 1333 xhci->cmd_ring->dequeue); 1334 1335 if (cmd_trb_comp_code == COMP_CMD_ABORT) 1336 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1337 else if (cmd_trb_comp_code == COMP_CMD_STOP) { 1338 /* traversing the cancel_cmd_list and canceling 1339 * the command according to command descriptor 1340 */ 1341 xhci_cancel_cmd_in_cd_list(xhci); 1342 1343 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 1344 /* 1345 * ring command ring doorbell again to restart the 1346 * command ring 1347 */ 1348 if (xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) 1349 xhci_ring_cmd_db(xhci); 1350 } 1351 return cur_trb_is_good; 1352 } 1353 1354 static void handle_cmd_completion(struct xhci_hcd *xhci, 1355 struct xhci_event_cmd *event) 1356 { 1357 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1358 u64 cmd_dma; 1359 dma_addr_t cmd_dequeue_dma; 1360 struct xhci_input_control_ctx *ctrl_ctx; 1361 struct xhci_virt_device *virt_dev; 1362 unsigned int ep_index; 1363 struct xhci_ring *ep_ring; 1364 unsigned int ep_state; 1365 1366 cmd_dma = le64_to_cpu(event->cmd_trb); 1367 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1368 xhci->cmd_ring->dequeue); 1369 /* Is the command ring deq ptr out of sync with the deq seg ptr? */ 1370 if (cmd_dequeue_dma == 0) { 1371 xhci->error_bitmask |= 1 << 4; 1372 return; 1373 } 1374 /* Does the DMA address match our internal dequeue pointer address? */ 1375 if (cmd_dma != (u64) cmd_dequeue_dma) { 1376 xhci->error_bitmask |= 1 << 5; 1377 return; 1378 } 1379 1380 if ((GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_CMD_ABORT) || 1381 (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_CMD_STOP)) { 1382 /* If the return value is 0, we think the trb pointed by 1383 * command ring dequeue pointer is a good trb. The good 1384 * trb means we don't want to cancel the trb, but it have 1385 * been stopped by host. So we should handle it normally. 1386 * Otherwise, driver should invoke inc_deq() and return. 1387 */ 1388 if (handle_stopped_cmd_ring(xhci, 1389 GET_COMP_CODE(le32_to_cpu(event->status)))) { 1390 inc_deq(xhci, xhci->cmd_ring); 1391 return; 1392 } 1393 } 1394 1395 switch (le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]) 1396 & TRB_TYPE_BITMASK) { 1397 case TRB_TYPE(TRB_ENABLE_SLOT): 1398 if (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_SUCCESS) 1399 xhci->slot_id = slot_id; 1400 else 1401 xhci->slot_id = 0; 1402 complete(&xhci->addr_dev); 1403 break; 1404 case TRB_TYPE(TRB_DISABLE_SLOT): 1405 if (xhci->devs[slot_id]) { 1406 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1407 /* Delete default control endpoint resources */ 1408 xhci_free_device_endpoint_resources(xhci, 1409 xhci->devs[slot_id], true); 1410 xhci_free_virt_device(xhci, slot_id); 1411 } 1412 break; 1413 case TRB_TYPE(TRB_CONFIG_EP): 1414 virt_dev = xhci->devs[slot_id]; 1415 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event)) 1416 break; 1417 /* 1418 * Configure endpoint commands can come from the USB core 1419 * configuration or alt setting changes, or because the HW 1420 * needed an extra configure endpoint command after a reset 1421 * endpoint command or streams were being configured. 1422 * If the command was for a halted endpoint, the xHCI driver 1423 * is not waiting on the configure endpoint command. 1424 */ 1425 ctrl_ctx = xhci_get_input_control_ctx(xhci, 1426 virt_dev->in_ctx); 1427 /* Input ctx add_flags are the endpoint index plus one */ 1428 ep_index = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)) - 1; 1429 /* A usb_set_interface() call directly after clearing a halted 1430 * condition may race on this quirky hardware. Not worth 1431 * worrying about, since this is prototype hardware. Not sure 1432 * if this will work for streams, but streams support was 1433 * untested on this prototype. 1434 */ 1435 if (xhci->quirks & XHCI_RESET_EP_QUIRK && 1436 ep_index != (unsigned int) -1 && 1437 le32_to_cpu(ctrl_ctx->add_flags) - SLOT_FLAG == 1438 le32_to_cpu(ctrl_ctx->drop_flags)) { 1439 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 1440 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 1441 if (!(ep_state & EP_HALTED)) 1442 goto bandwidth_change; 1443 xhci_dbg(xhci, "Completed config ep cmd - " 1444 "last ep index = %d, state = %d\n", 1445 ep_index, ep_state); 1446 /* Clear internal halted state and restart ring(s) */ 1447 xhci->devs[slot_id]->eps[ep_index].ep_state &= 1448 ~EP_HALTED; 1449 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1450 break; 1451 } 1452 bandwidth_change: 1453 xhci_dbg(xhci, "Completed config ep cmd\n"); 1454 xhci->devs[slot_id]->cmd_status = 1455 GET_COMP_CODE(le32_to_cpu(event->status)); 1456 complete(&xhci->devs[slot_id]->cmd_completion); 1457 break; 1458 case TRB_TYPE(TRB_EVAL_CONTEXT): 1459 virt_dev = xhci->devs[slot_id]; 1460 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event)) 1461 break; 1462 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status)); 1463 complete(&xhci->devs[slot_id]->cmd_completion); 1464 break; 1465 case TRB_TYPE(TRB_ADDR_DEV): 1466 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status)); 1467 complete(&xhci->addr_dev); 1468 break; 1469 case TRB_TYPE(TRB_STOP_RING): 1470 handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue, event); 1471 break; 1472 case TRB_TYPE(TRB_SET_DEQ): 1473 handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue); 1474 break; 1475 case TRB_TYPE(TRB_CMD_NOOP): 1476 break; 1477 case TRB_TYPE(TRB_RESET_EP): 1478 handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue); 1479 break; 1480 case TRB_TYPE(TRB_RESET_DEV): 1481 xhci_dbg(xhci, "Completed reset device command.\n"); 1482 slot_id = TRB_TO_SLOT_ID( 1483 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])); 1484 virt_dev = xhci->devs[slot_id]; 1485 if (virt_dev) 1486 handle_cmd_in_cmd_wait_list(xhci, virt_dev, event); 1487 else 1488 xhci_warn(xhci, "Reset device command completion " 1489 "for disabled slot %u\n", slot_id); 1490 break; 1491 case TRB_TYPE(TRB_NEC_GET_FW): 1492 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1493 xhci->error_bitmask |= 1 << 6; 1494 break; 1495 } 1496 xhci_dbg(xhci, "NEC firmware version %2x.%02x\n", 1497 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1498 NEC_FW_MINOR(le32_to_cpu(event->status))); 1499 break; 1500 default: 1501 /* Skip over unknown commands on the event ring */ 1502 xhci->error_bitmask |= 1 << 6; 1503 break; 1504 } 1505 inc_deq(xhci, xhci->cmd_ring); 1506 } 1507 1508 static void handle_vendor_event(struct xhci_hcd *xhci, 1509 union xhci_trb *event) 1510 { 1511 u32 trb_type; 1512 1513 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3])); 1514 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1515 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1516 handle_cmd_completion(xhci, &event->event_cmd); 1517 } 1518 1519 /* @port_id: the one-based port ID from the hardware (indexed from array of all 1520 * port registers -- USB 3.0 and USB 2.0). 1521 * 1522 * Returns a zero-based port number, which is suitable for indexing into each of 1523 * the split roothubs' port arrays and bus state arrays. 1524 * Add one to it in order to call xhci_find_slot_id_by_port. 1525 */ 1526 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd, 1527 struct xhci_hcd *xhci, u32 port_id) 1528 { 1529 unsigned int i; 1530 unsigned int num_similar_speed_ports = 0; 1531 1532 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[], 1533 * and usb2_ports are 0-based indexes. Count the number of similar 1534 * speed ports, up to 1 port before this port. 1535 */ 1536 for (i = 0; i < (port_id - 1); i++) { 1537 u8 port_speed = xhci->port_array[i]; 1538 1539 /* 1540 * Skip ports that don't have known speeds, or have duplicate 1541 * Extended Capabilities port speed entries. 1542 */ 1543 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY) 1544 continue; 1545 1546 /* 1547 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and 1548 * 1.1 ports are under the USB 2.0 hub. If the port speed 1549 * matches the device speed, it's a similar speed port. 1550 */ 1551 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3)) 1552 num_similar_speed_ports++; 1553 } 1554 return num_similar_speed_ports; 1555 } 1556 1557 static void handle_device_notification(struct xhci_hcd *xhci, 1558 union xhci_trb *event) 1559 { 1560 u32 slot_id; 1561 struct usb_device *udev; 1562 1563 slot_id = TRB_TO_SLOT_ID(event->generic.field[3]); 1564 if (!xhci->devs[slot_id]) { 1565 xhci_warn(xhci, "Device Notification event for " 1566 "unused slot %u\n", slot_id); 1567 return; 1568 } 1569 1570 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1571 slot_id); 1572 udev = xhci->devs[slot_id]->udev; 1573 if (udev && udev->parent) 1574 usb_wakeup_notification(udev->parent, udev->portnum); 1575 } 1576 1577 static void handle_port_status(struct xhci_hcd *xhci, 1578 union xhci_trb *event) 1579 { 1580 struct usb_hcd *hcd; 1581 u32 port_id; 1582 u32 temp, temp1; 1583 int max_ports; 1584 int slot_id; 1585 unsigned int faked_port_index; 1586 u8 major_revision; 1587 struct xhci_bus_state *bus_state; 1588 __le32 __iomem **port_array; 1589 bool bogus_port_status = false; 1590 1591 /* Port status change events always have a successful completion code */ 1592 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) { 1593 xhci_warn(xhci, "WARN: xHC returned failed port status event\n"); 1594 xhci->error_bitmask |= 1 << 8; 1595 } 1596 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1597 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id); 1598 1599 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1600 if ((port_id <= 0) || (port_id > max_ports)) { 1601 xhci_warn(xhci, "Invalid port id %d\n", port_id); 1602 bogus_port_status = true; 1603 goto cleanup; 1604 } 1605 1606 /* Figure out which usb_hcd this port is attached to: 1607 * is it a USB 3.0 port or a USB 2.0/1.1 port? 1608 */ 1609 major_revision = xhci->port_array[port_id - 1]; 1610 if (major_revision == 0) { 1611 xhci_warn(xhci, "Event for port %u not in " 1612 "Extended Capabilities, ignoring.\n", 1613 port_id); 1614 bogus_port_status = true; 1615 goto cleanup; 1616 } 1617 if (major_revision == DUPLICATE_ENTRY) { 1618 xhci_warn(xhci, "Event for port %u duplicated in" 1619 "Extended Capabilities, ignoring.\n", 1620 port_id); 1621 bogus_port_status = true; 1622 goto cleanup; 1623 } 1624 1625 /* 1626 * Hardware port IDs reported by a Port Status Change Event include USB 1627 * 3.0 and USB 2.0 ports. We want to check if the port has reported a 1628 * resume event, but we first need to translate the hardware port ID 1629 * into the index into the ports on the correct split roothub, and the 1630 * correct bus_state structure. 1631 */ 1632 /* Find the right roothub. */ 1633 hcd = xhci_to_hcd(xhci); 1634 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3)) 1635 hcd = xhci->shared_hcd; 1636 bus_state = &xhci->bus_state[hcd_index(hcd)]; 1637 if (hcd->speed == HCD_USB3) 1638 port_array = xhci->usb3_ports; 1639 else 1640 port_array = xhci->usb2_ports; 1641 /* Find the faked port hub number */ 1642 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci, 1643 port_id); 1644 1645 temp = xhci_readl(xhci, port_array[faked_port_index]); 1646 if (hcd->state == HC_STATE_SUSPENDED) { 1647 xhci_dbg(xhci, "resume root hub\n"); 1648 usb_hcd_resume_root_hub(hcd); 1649 } 1650 1651 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) { 1652 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1653 1654 temp1 = xhci_readl(xhci, &xhci->op_regs->command); 1655 if (!(temp1 & CMD_RUN)) { 1656 xhci_warn(xhci, "xHC is not running.\n"); 1657 goto cleanup; 1658 } 1659 1660 if (DEV_SUPERSPEED(temp)) { 1661 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1662 /* Set a flag to say the port signaled remote wakeup, 1663 * so we can tell the difference between the end of 1664 * device and host initiated resume. 1665 */ 1666 bus_state->port_remote_wakeup |= 1 << faked_port_index; 1667 xhci_test_and_clear_bit(xhci, port_array, 1668 faked_port_index, PORT_PLC); 1669 xhci_set_link_state(xhci, port_array, faked_port_index, 1670 XDEV_U0); 1671 /* Need to wait until the next link state change 1672 * indicates the device is actually in U0. 1673 */ 1674 bogus_port_status = true; 1675 goto cleanup; 1676 } else { 1677 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1678 bus_state->resume_done[faked_port_index] = jiffies + 1679 msecs_to_jiffies(20); 1680 set_bit(faked_port_index, &bus_state->resuming_ports); 1681 mod_timer(&hcd->rh_timer, 1682 bus_state->resume_done[faked_port_index]); 1683 /* Do the rest in GetPortStatus */ 1684 } 1685 } 1686 1687 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 && 1688 DEV_SUPERSPEED(temp)) { 1689 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1690 /* We've just brought the device into U0 through either the 1691 * Resume state after a device remote wakeup, or through the 1692 * U3Exit state after a host-initiated resume. If it's a device 1693 * initiated remote wake, don't pass up the link state change, 1694 * so the roothub behavior is consistent with external 1695 * USB 3.0 hub behavior. 1696 */ 1697 slot_id = xhci_find_slot_id_by_port(hcd, xhci, 1698 faked_port_index + 1); 1699 if (slot_id && xhci->devs[slot_id]) 1700 xhci_ring_device(xhci, slot_id); 1701 if (bus_state->port_remote_wakeup && (1 << faked_port_index)) { 1702 bus_state->port_remote_wakeup &= 1703 ~(1 << faked_port_index); 1704 xhci_test_and_clear_bit(xhci, port_array, 1705 faked_port_index, PORT_PLC); 1706 usb_wakeup_notification(hcd->self.root_hub, 1707 faked_port_index + 1); 1708 bogus_port_status = true; 1709 goto cleanup; 1710 } 1711 } 1712 1713 if (hcd->speed != HCD_USB3) 1714 xhci_test_and_clear_bit(xhci, port_array, faked_port_index, 1715 PORT_PLC); 1716 1717 cleanup: 1718 /* Update event ring dequeue pointer before dropping the lock */ 1719 inc_deq(xhci, xhci->event_ring); 1720 1721 /* Don't make the USB core poll the roothub if we got a bad port status 1722 * change event. Besides, at that point we can't tell which roothub 1723 * (USB 2.0 or USB 3.0) to kick. 1724 */ 1725 if (bogus_port_status) 1726 return; 1727 1728 spin_unlock(&xhci->lock); 1729 /* Pass this up to the core */ 1730 usb_hcd_poll_rh_status(hcd); 1731 spin_lock(&xhci->lock); 1732 } 1733 1734 /* 1735 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 1736 * at end_trb, which may be in another segment. If the suspect DMA address is a 1737 * TRB in this TD, this function returns that TRB's segment. Otherwise it 1738 * returns 0. 1739 */ 1740 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg, 1741 union xhci_trb *start_trb, 1742 union xhci_trb *end_trb, 1743 dma_addr_t suspect_dma) 1744 { 1745 dma_addr_t start_dma; 1746 dma_addr_t end_seg_dma; 1747 dma_addr_t end_trb_dma; 1748 struct xhci_segment *cur_seg; 1749 1750 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 1751 cur_seg = start_seg; 1752 1753 do { 1754 if (start_dma == 0) 1755 return NULL; 1756 /* We may get an event for a Link TRB in the middle of a TD */ 1757 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 1758 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 1759 /* If the end TRB isn't in this segment, this is set to 0 */ 1760 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 1761 1762 if (end_trb_dma > 0) { 1763 /* The end TRB is in this segment, so suspect should be here */ 1764 if (start_dma <= end_trb_dma) { 1765 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 1766 return cur_seg; 1767 } else { 1768 /* Case for one segment with 1769 * a TD wrapped around to the top 1770 */ 1771 if ((suspect_dma >= start_dma && 1772 suspect_dma <= end_seg_dma) || 1773 (suspect_dma >= cur_seg->dma && 1774 suspect_dma <= end_trb_dma)) 1775 return cur_seg; 1776 } 1777 return NULL; 1778 } else { 1779 /* Might still be somewhere in this segment */ 1780 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 1781 return cur_seg; 1782 } 1783 cur_seg = cur_seg->next; 1784 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 1785 } while (cur_seg != start_seg); 1786 1787 return NULL; 1788 } 1789 1790 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, 1791 unsigned int slot_id, unsigned int ep_index, 1792 unsigned int stream_id, 1793 struct xhci_td *td, union xhci_trb *event_trb) 1794 { 1795 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 1796 ep->ep_state |= EP_HALTED; 1797 ep->stopped_td = td; 1798 ep->stopped_trb = event_trb; 1799 ep->stopped_stream = stream_id; 1800 1801 xhci_queue_reset_ep(xhci, slot_id, ep_index); 1802 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index); 1803 1804 ep->stopped_td = NULL; 1805 ep->stopped_trb = NULL; 1806 ep->stopped_stream = 0; 1807 1808 xhci_ring_cmd_db(xhci); 1809 } 1810 1811 /* Check if an error has halted the endpoint ring. The class driver will 1812 * cleanup the halt for a non-default control endpoint if we indicate a stall. 1813 * However, a babble and other errors also halt the endpoint ring, and the class 1814 * driver won't clear the halt in that case, so we need to issue a Set Transfer 1815 * Ring Dequeue Pointer command manually. 1816 */ 1817 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 1818 struct xhci_ep_ctx *ep_ctx, 1819 unsigned int trb_comp_code) 1820 { 1821 /* TRB completion codes that may require a manual halt cleanup */ 1822 if (trb_comp_code == COMP_TX_ERR || 1823 trb_comp_code == COMP_BABBLE || 1824 trb_comp_code == COMP_SPLIT_ERR) 1825 /* The 0.96 spec says a babbling control endpoint 1826 * is not halted. The 0.96 spec says it is. Some HW 1827 * claims to be 0.95 compliant, but it halts the control 1828 * endpoint anyway. Check if a babble halted the 1829 * endpoint. 1830 */ 1831 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1832 cpu_to_le32(EP_STATE_HALTED)) 1833 return 1; 1834 1835 return 0; 1836 } 1837 1838 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 1839 { 1840 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 1841 /* Vendor defined "informational" completion code, 1842 * treat as not-an-error. 1843 */ 1844 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 1845 trb_comp_code); 1846 xhci_dbg(xhci, "Treating code as success.\n"); 1847 return 1; 1848 } 1849 return 0; 1850 } 1851 1852 /* 1853 * Finish the td processing, remove the td from td list; 1854 * Return 1 if the urb can be given back. 1855 */ 1856 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, 1857 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1858 struct xhci_virt_ep *ep, int *status, bool skip) 1859 { 1860 struct xhci_virt_device *xdev; 1861 struct xhci_ring *ep_ring; 1862 unsigned int slot_id; 1863 int ep_index; 1864 struct urb *urb = NULL; 1865 struct xhci_ep_ctx *ep_ctx; 1866 int ret = 0; 1867 struct urb_priv *urb_priv; 1868 u32 trb_comp_code; 1869 1870 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1871 xdev = xhci->devs[slot_id]; 1872 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1873 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1874 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1875 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1876 1877 if (skip) 1878 goto td_cleanup; 1879 1880 if (trb_comp_code == COMP_STOP_INVAL || 1881 trb_comp_code == COMP_STOP) { 1882 /* The Endpoint Stop Command completion will take care of any 1883 * stopped TDs. A stopped TD may be restarted, so don't update 1884 * the ring dequeue pointer or take this TD off any lists yet. 1885 */ 1886 ep->stopped_td = td; 1887 ep->stopped_trb = event_trb; 1888 return 0; 1889 } else { 1890 if (trb_comp_code == COMP_STALL) { 1891 /* The transfer is completed from the driver's 1892 * perspective, but we need to issue a set dequeue 1893 * command for this stalled endpoint to move the dequeue 1894 * pointer past the TD. We can't do that here because 1895 * the halt condition must be cleared first. Let the 1896 * USB class driver clear the stall later. 1897 */ 1898 ep->stopped_td = td; 1899 ep->stopped_trb = event_trb; 1900 ep->stopped_stream = ep_ring->stream_id; 1901 } else if (xhci_requires_manual_halt_cleanup(xhci, 1902 ep_ctx, trb_comp_code)) { 1903 /* Other types of errors halt the endpoint, but the 1904 * class driver doesn't call usb_reset_endpoint() unless 1905 * the error is -EPIPE. Clear the halted status in the 1906 * xHCI hardware manually. 1907 */ 1908 xhci_cleanup_halted_endpoint(xhci, 1909 slot_id, ep_index, ep_ring->stream_id, 1910 td, event_trb); 1911 } else { 1912 /* Update ring dequeue pointer */ 1913 while (ep_ring->dequeue != td->last_trb) 1914 inc_deq(xhci, ep_ring); 1915 inc_deq(xhci, ep_ring); 1916 } 1917 1918 td_cleanup: 1919 /* Clean up the endpoint's TD list */ 1920 urb = td->urb; 1921 urb_priv = urb->hcpriv; 1922 1923 /* Do one last check of the actual transfer length. 1924 * If the host controller said we transferred more data than 1925 * the buffer length, urb->actual_length will be a very big 1926 * number (since it's unsigned). Play it safe and say we didn't 1927 * transfer anything. 1928 */ 1929 if (urb->actual_length > urb->transfer_buffer_length) { 1930 xhci_warn(xhci, "URB transfer length is wrong, " 1931 "xHC issue? req. len = %u, " 1932 "act. len = %u\n", 1933 urb->transfer_buffer_length, 1934 urb->actual_length); 1935 urb->actual_length = 0; 1936 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1937 *status = -EREMOTEIO; 1938 else 1939 *status = 0; 1940 } 1941 list_del_init(&td->td_list); 1942 /* Was this TD slated to be cancelled but completed anyway? */ 1943 if (!list_empty(&td->cancelled_td_list)) 1944 list_del_init(&td->cancelled_td_list); 1945 1946 urb_priv->td_cnt++; 1947 /* Giveback the urb when all the tds are completed */ 1948 if (urb_priv->td_cnt == urb_priv->length) { 1949 ret = 1; 1950 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 1951 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 1952 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs 1953 == 0) { 1954 if (xhci->quirks & XHCI_AMD_PLL_FIX) 1955 usb_amd_quirk_pll_enable(); 1956 } 1957 } 1958 } 1959 } 1960 1961 return ret; 1962 } 1963 1964 /* 1965 * Process control tds, update urb status and actual_length. 1966 */ 1967 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, 1968 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1969 struct xhci_virt_ep *ep, int *status) 1970 { 1971 struct xhci_virt_device *xdev; 1972 struct xhci_ring *ep_ring; 1973 unsigned int slot_id; 1974 int ep_index; 1975 struct xhci_ep_ctx *ep_ctx; 1976 u32 trb_comp_code; 1977 1978 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1979 xdev = xhci->devs[slot_id]; 1980 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1981 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1982 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1983 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1984 1985 switch (trb_comp_code) { 1986 case COMP_SUCCESS: 1987 if (event_trb == ep_ring->dequeue) { 1988 xhci_warn(xhci, "WARN: Success on ctrl setup TRB " 1989 "without IOC set??\n"); 1990 *status = -ESHUTDOWN; 1991 } else if (event_trb != td->last_trb) { 1992 xhci_warn(xhci, "WARN: Success on ctrl data TRB " 1993 "without IOC set??\n"); 1994 *status = -ESHUTDOWN; 1995 } else { 1996 *status = 0; 1997 } 1998 break; 1999 case COMP_SHORT_TX: 2000 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2001 *status = -EREMOTEIO; 2002 else 2003 *status = 0; 2004 break; 2005 case COMP_STOP_INVAL: 2006 case COMP_STOP: 2007 return finish_td(xhci, td, event_trb, event, ep, status, false); 2008 default: 2009 if (!xhci_requires_manual_halt_cleanup(xhci, 2010 ep_ctx, trb_comp_code)) 2011 break; 2012 xhci_dbg(xhci, "TRB error code %u, " 2013 "halted endpoint index = %u\n", 2014 trb_comp_code, ep_index); 2015 /* else fall through */ 2016 case COMP_STALL: 2017 /* Did we transfer part of the data (middle) phase? */ 2018 if (event_trb != ep_ring->dequeue && 2019 event_trb != td->last_trb) 2020 td->urb->actual_length = 2021 td->urb->transfer_buffer_length 2022 - TRB_LEN(le32_to_cpu(event->transfer_len)); 2023 else 2024 td->urb->actual_length = 0; 2025 2026 xhci_cleanup_halted_endpoint(xhci, 2027 slot_id, ep_index, 0, td, event_trb); 2028 return finish_td(xhci, td, event_trb, event, ep, status, true); 2029 } 2030 /* 2031 * Did we transfer any data, despite the errors that might have 2032 * happened? I.e. did we get past the setup stage? 2033 */ 2034 if (event_trb != ep_ring->dequeue) { 2035 /* The event was for the status stage */ 2036 if (event_trb == td->last_trb) { 2037 if (td->urb->actual_length != 0) { 2038 /* Don't overwrite a previously set error code 2039 */ 2040 if ((*status == -EINPROGRESS || *status == 0) && 2041 (td->urb->transfer_flags 2042 & URB_SHORT_NOT_OK)) 2043 /* Did we already see a short data 2044 * stage? */ 2045 *status = -EREMOTEIO; 2046 } else { 2047 td->urb->actual_length = 2048 td->urb->transfer_buffer_length; 2049 } 2050 } else { 2051 /* Maybe the event was for the data stage? */ 2052 td->urb->actual_length = 2053 td->urb->transfer_buffer_length - 2054 TRB_LEN(le32_to_cpu(event->transfer_len)); 2055 xhci_dbg(xhci, "Waiting for status " 2056 "stage event\n"); 2057 return 0; 2058 } 2059 } 2060 2061 return finish_td(xhci, td, event_trb, event, ep, status, false); 2062 } 2063 2064 /* 2065 * Process isochronous tds, update urb packet status and actual_length. 2066 */ 2067 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2068 union xhci_trb *event_trb, struct xhci_transfer_event *event, 2069 struct xhci_virt_ep *ep, int *status) 2070 { 2071 struct xhci_ring *ep_ring; 2072 struct urb_priv *urb_priv; 2073 int idx; 2074 int len = 0; 2075 union xhci_trb *cur_trb; 2076 struct xhci_segment *cur_seg; 2077 struct usb_iso_packet_descriptor *frame; 2078 u32 trb_comp_code; 2079 bool skip_td = false; 2080 2081 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2082 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2083 urb_priv = td->urb->hcpriv; 2084 idx = urb_priv->td_cnt; 2085 frame = &td->urb->iso_frame_desc[idx]; 2086 2087 /* handle completion code */ 2088 switch (trb_comp_code) { 2089 case COMP_SUCCESS: 2090 if (TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) { 2091 frame->status = 0; 2092 break; 2093 } 2094 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH)) 2095 trb_comp_code = COMP_SHORT_TX; 2096 case COMP_SHORT_TX: 2097 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2098 -EREMOTEIO : 0; 2099 break; 2100 case COMP_BW_OVER: 2101 frame->status = -ECOMM; 2102 skip_td = true; 2103 break; 2104 case COMP_BUFF_OVER: 2105 case COMP_BABBLE: 2106 frame->status = -EOVERFLOW; 2107 skip_td = true; 2108 break; 2109 case COMP_DEV_ERR: 2110 case COMP_STALL: 2111 case COMP_TX_ERR: 2112 frame->status = -EPROTO; 2113 skip_td = true; 2114 break; 2115 case COMP_STOP: 2116 case COMP_STOP_INVAL: 2117 break; 2118 default: 2119 frame->status = -1; 2120 break; 2121 } 2122 2123 if (trb_comp_code == COMP_SUCCESS || skip_td) { 2124 frame->actual_length = frame->length; 2125 td->urb->actual_length += frame->length; 2126 } else { 2127 for (cur_trb = ep_ring->dequeue, 2128 cur_seg = ep_ring->deq_seg; cur_trb != event_trb; 2129 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 2130 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 2131 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 2132 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 2133 } 2134 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 2135 TRB_LEN(le32_to_cpu(event->transfer_len)); 2136 2137 if (trb_comp_code != COMP_STOP_INVAL) { 2138 frame->actual_length = len; 2139 td->urb->actual_length += len; 2140 } 2141 } 2142 2143 return finish_td(xhci, td, event_trb, event, ep, status, false); 2144 } 2145 2146 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2147 struct xhci_transfer_event *event, 2148 struct xhci_virt_ep *ep, int *status) 2149 { 2150 struct xhci_ring *ep_ring; 2151 struct urb_priv *urb_priv; 2152 struct usb_iso_packet_descriptor *frame; 2153 int idx; 2154 2155 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2156 urb_priv = td->urb->hcpriv; 2157 idx = urb_priv->td_cnt; 2158 frame = &td->urb->iso_frame_desc[idx]; 2159 2160 /* The transfer is partly done. */ 2161 frame->status = -EXDEV; 2162 2163 /* calc actual length */ 2164 frame->actual_length = 0; 2165 2166 /* Update ring dequeue pointer */ 2167 while (ep_ring->dequeue != td->last_trb) 2168 inc_deq(xhci, ep_ring); 2169 inc_deq(xhci, ep_ring); 2170 2171 return finish_td(xhci, td, NULL, event, ep, status, true); 2172 } 2173 2174 /* 2175 * Process bulk and interrupt tds, update urb status and actual_length. 2176 */ 2177 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, 2178 union xhci_trb *event_trb, struct xhci_transfer_event *event, 2179 struct xhci_virt_ep *ep, int *status) 2180 { 2181 struct xhci_ring *ep_ring; 2182 union xhci_trb *cur_trb; 2183 struct xhci_segment *cur_seg; 2184 u32 trb_comp_code; 2185 2186 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2187 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2188 2189 switch (trb_comp_code) { 2190 case COMP_SUCCESS: 2191 /* Double check that the HW transferred everything. */ 2192 if (event_trb != td->last_trb || 2193 TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2194 xhci_warn(xhci, "WARN Successful completion " 2195 "on short TX\n"); 2196 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2197 *status = -EREMOTEIO; 2198 else 2199 *status = 0; 2200 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH)) 2201 trb_comp_code = COMP_SHORT_TX; 2202 } else { 2203 *status = 0; 2204 } 2205 break; 2206 case COMP_SHORT_TX: 2207 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2208 *status = -EREMOTEIO; 2209 else 2210 *status = 0; 2211 break; 2212 default: 2213 /* Others already handled above */ 2214 break; 2215 } 2216 if (trb_comp_code == COMP_SHORT_TX) 2217 xhci_dbg(xhci, "ep %#x - asked for %d bytes, " 2218 "%d bytes untransferred\n", 2219 td->urb->ep->desc.bEndpointAddress, 2220 td->urb->transfer_buffer_length, 2221 TRB_LEN(le32_to_cpu(event->transfer_len))); 2222 /* Fast path - was this the last TRB in the TD for this URB? */ 2223 if (event_trb == td->last_trb) { 2224 if (TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2225 td->urb->actual_length = 2226 td->urb->transfer_buffer_length - 2227 TRB_LEN(le32_to_cpu(event->transfer_len)); 2228 if (td->urb->transfer_buffer_length < 2229 td->urb->actual_length) { 2230 xhci_warn(xhci, "HC gave bad length " 2231 "of %d bytes left\n", 2232 TRB_LEN(le32_to_cpu(event->transfer_len))); 2233 td->urb->actual_length = 0; 2234 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2235 *status = -EREMOTEIO; 2236 else 2237 *status = 0; 2238 } 2239 /* Don't overwrite a previously set error code */ 2240 if (*status == -EINPROGRESS) { 2241 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2242 *status = -EREMOTEIO; 2243 else 2244 *status = 0; 2245 } 2246 } else { 2247 td->urb->actual_length = 2248 td->urb->transfer_buffer_length; 2249 /* Ignore a short packet completion if the 2250 * untransferred length was zero. 2251 */ 2252 if (*status == -EREMOTEIO) 2253 *status = 0; 2254 } 2255 } else { 2256 /* Slow path - walk the list, starting from the dequeue 2257 * pointer, to get the actual length transferred. 2258 */ 2259 td->urb->actual_length = 0; 2260 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg; 2261 cur_trb != event_trb; 2262 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 2263 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 2264 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 2265 td->urb->actual_length += 2266 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 2267 } 2268 /* If the ring didn't stop on a Link or No-op TRB, add 2269 * in the actual bytes transferred from the Normal TRB 2270 */ 2271 if (trb_comp_code != COMP_STOP_INVAL) 2272 td->urb->actual_length += 2273 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 2274 TRB_LEN(le32_to_cpu(event->transfer_len)); 2275 } 2276 2277 return finish_td(xhci, td, event_trb, event, ep, status, false); 2278 } 2279 2280 /* 2281 * If this function returns an error condition, it means it got a Transfer 2282 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2283 * At this point, the host controller is probably hosed and should be reset. 2284 */ 2285 static int handle_tx_event(struct xhci_hcd *xhci, 2286 struct xhci_transfer_event *event) 2287 __releases(&xhci->lock) 2288 __acquires(&xhci->lock) 2289 { 2290 struct xhci_virt_device *xdev; 2291 struct xhci_virt_ep *ep; 2292 struct xhci_ring *ep_ring; 2293 unsigned int slot_id; 2294 int ep_index; 2295 struct xhci_td *td = NULL; 2296 dma_addr_t event_dma; 2297 struct xhci_segment *event_seg; 2298 union xhci_trb *event_trb; 2299 struct urb *urb = NULL; 2300 int status = -EINPROGRESS; 2301 struct urb_priv *urb_priv; 2302 struct xhci_ep_ctx *ep_ctx; 2303 struct list_head *tmp; 2304 u32 trb_comp_code; 2305 int ret = 0; 2306 int td_num = 0; 2307 2308 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2309 xdev = xhci->devs[slot_id]; 2310 if (!xdev) { 2311 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n"); 2312 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2313 (unsigned long long) xhci_trb_virt_to_dma( 2314 xhci->event_ring->deq_seg, 2315 xhci->event_ring->dequeue), 2316 lower_32_bits(le64_to_cpu(event->buffer)), 2317 upper_32_bits(le64_to_cpu(event->buffer)), 2318 le32_to_cpu(event->transfer_len), 2319 le32_to_cpu(event->flags)); 2320 xhci_dbg(xhci, "Event ring:\n"); 2321 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 2322 return -ENODEV; 2323 } 2324 2325 /* Endpoint ID is 1 based, our index is zero based */ 2326 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2327 ep = &xdev->eps[ep_index]; 2328 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2329 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2330 if (!ep_ring || 2331 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) == 2332 EP_STATE_DISABLED) { 2333 xhci_err(xhci, "ERROR Transfer event for disabled endpoint " 2334 "or incorrect stream ring\n"); 2335 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2336 (unsigned long long) xhci_trb_virt_to_dma( 2337 xhci->event_ring->deq_seg, 2338 xhci->event_ring->dequeue), 2339 lower_32_bits(le64_to_cpu(event->buffer)), 2340 upper_32_bits(le64_to_cpu(event->buffer)), 2341 le32_to_cpu(event->transfer_len), 2342 le32_to_cpu(event->flags)); 2343 xhci_dbg(xhci, "Event ring:\n"); 2344 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 2345 return -ENODEV; 2346 } 2347 2348 /* Count current td numbers if ep->skip is set */ 2349 if (ep->skip) { 2350 list_for_each(tmp, &ep_ring->td_list) 2351 td_num++; 2352 } 2353 2354 event_dma = le64_to_cpu(event->buffer); 2355 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2356 /* Look for common error cases */ 2357 switch (trb_comp_code) { 2358 /* Skip codes that require special handling depending on 2359 * transfer type 2360 */ 2361 case COMP_SUCCESS: 2362 if (TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2363 break; 2364 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2365 trb_comp_code = COMP_SHORT_TX; 2366 else 2367 xhci_warn_ratelimited(xhci, 2368 "WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n"); 2369 case COMP_SHORT_TX: 2370 break; 2371 case COMP_STOP: 2372 xhci_dbg(xhci, "Stopped on Transfer TRB\n"); 2373 break; 2374 case COMP_STOP_INVAL: 2375 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n"); 2376 break; 2377 case COMP_STALL: 2378 xhci_dbg(xhci, "Stalled endpoint\n"); 2379 ep->ep_state |= EP_HALTED; 2380 status = -EPIPE; 2381 break; 2382 case COMP_TRB_ERR: 2383 xhci_warn(xhci, "WARN: TRB error on endpoint\n"); 2384 status = -EILSEQ; 2385 break; 2386 case COMP_SPLIT_ERR: 2387 case COMP_TX_ERR: 2388 xhci_dbg(xhci, "Transfer error on endpoint\n"); 2389 status = -EPROTO; 2390 break; 2391 case COMP_BABBLE: 2392 xhci_dbg(xhci, "Babble error on endpoint\n"); 2393 status = -EOVERFLOW; 2394 break; 2395 case COMP_DB_ERR: 2396 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n"); 2397 status = -ENOSR; 2398 break; 2399 case COMP_BW_OVER: 2400 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n"); 2401 break; 2402 case COMP_BUFF_OVER: 2403 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n"); 2404 break; 2405 case COMP_UNDERRUN: 2406 /* 2407 * When the Isoch ring is empty, the xHC will generate 2408 * a Ring Overrun Event for IN Isoch endpoint or Ring 2409 * Underrun Event for OUT Isoch endpoint. 2410 */ 2411 xhci_dbg(xhci, "underrun event on endpoint\n"); 2412 if (!list_empty(&ep_ring->td_list)) 2413 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2414 "still with TDs queued?\n", 2415 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2416 ep_index); 2417 goto cleanup; 2418 case COMP_OVERRUN: 2419 xhci_dbg(xhci, "overrun event on endpoint\n"); 2420 if (!list_empty(&ep_ring->td_list)) 2421 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2422 "still with TDs queued?\n", 2423 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2424 ep_index); 2425 goto cleanup; 2426 case COMP_DEV_ERR: 2427 xhci_warn(xhci, "WARN: detect an incompatible device"); 2428 status = -EPROTO; 2429 break; 2430 case COMP_MISSED_INT: 2431 /* 2432 * When encounter missed service error, one or more isoc tds 2433 * may be missed by xHC. 2434 * Set skip flag of the ep_ring; Complete the missed tds as 2435 * short transfer when process the ep_ring next time. 2436 */ 2437 ep->skip = true; 2438 xhci_dbg(xhci, "Miss service interval error, set skip flag\n"); 2439 goto cleanup; 2440 default: 2441 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2442 status = 0; 2443 break; 2444 } 2445 xhci_warn(xhci, "ERROR Unknown event condition, HC probably " 2446 "busted\n"); 2447 goto cleanup; 2448 } 2449 2450 do { 2451 /* This TRB should be in the TD at the head of this ring's 2452 * TD list. 2453 */ 2454 if (list_empty(&ep_ring->td_list)) { 2455 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d " 2456 "with no TDs queued?\n", 2457 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2458 ep_index); 2459 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n", 2460 (le32_to_cpu(event->flags) & 2461 TRB_TYPE_BITMASK)>>10); 2462 xhci_print_trb_offsets(xhci, (union xhci_trb *) event); 2463 if (ep->skip) { 2464 ep->skip = false; 2465 xhci_dbg(xhci, "td_list is empty while skip " 2466 "flag set. Clear skip flag.\n"); 2467 } 2468 ret = 0; 2469 goto cleanup; 2470 } 2471 2472 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2473 if (ep->skip && td_num == 0) { 2474 ep->skip = false; 2475 xhci_dbg(xhci, "All tds on the ep_ring skipped. " 2476 "Clear skip flag.\n"); 2477 ret = 0; 2478 goto cleanup; 2479 } 2480 2481 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list); 2482 if (ep->skip) 2483 td_num--; 2484 2485 /* Is this a TRB in the currently executing TD? */ 2486 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue, 2487 td->last_trb, event_dma); 2488 2489 /* 2490 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2491 * is not in the current TD pointed by ep_ring->dequeue because 2492 * that the hardware dequeue pointer still at the previous TRB 2493 * of the current TD. The previous TRB maybe a Link TD or the 2494 * last TRB of the previous TD. The command completion handle 2495 * will take care the rest. 2496 */ 2497 if (!event_seg && trb_comp_code == COMP_STOP_INVAL) { 2498 ret = 0; 2499 goto cleanup; 2500 } 2501 2502 if (!event_seg) { 2503 if (!ep->skip || 2504 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2505 /* Some host controllers give a spurious 2506 * successful event after a short transfer. 2507 * Ignore it. 2508 */ 2509 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2510 ep_ring->last_td_was_short) { 2511 ep_ring->last_td_was_short = false; 2512 ret = 0; 2513 goto cleanup; 2514 } 2515 /* HC is busted, give up! */ 2516 xhci_err(xhci, 2517 "ERROR Transfer event TRB DMA ptr not " 2518 "part of current TD\n"); 2519 return -ESHUTDOWN; 2520 } 2521 2522 ret = skip_isoc_td(xhci, td, event, ep, &status); 2523 goto cleanup; 2524 } 2525 if (trb_comp_code == COMP_SHORT_TX) 2526 ep_ring->last_td_was_short = true; 2527 else 2528 ep_ring->last_td_was_short = false; 2529 2530 if (ep->skip) { 2531 xhci_dbg(xhci, "Found td. Clear skip flag.\n"); 2532 ep->skip = false; 2533 } 2534 2535 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) / 2536 sizeof(*event_trb)]; 2537 /* 2538 * No-op TRB should not trigger interrupts. 2539 * If event_trb is a no-op TRB, it means the 2540 * corresponding TD has been cancelled. Just ignore 2541 * the TD. 2542 */ 2543 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) { 2544 xhci_dbg(xhci, 2545 "event_trb is a no-op TRB. Skip it\n"); 2546 goto cleanup; 2547 } 2548 2549 /* Now update the urb's actual_length and give back to 2550 * the core 2551 */ 2552 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2553 ret = process_ctrl_td(xhci, td, event_trb, event, ep, 2554 &status); 2555 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2556 ret = process_isoc_td(xhci, td, event_trb, event, ep, 2557 &status); 2558 else 2559 ret = process_bulk_intr_td(xhci, td, event_trb, event, 2560 ep, &status); 2561 2562 cleanup: 2563 /* 2564 * Do not update event ring dequeue pointer if ep->skip is set. 2565 * Will roll back to continue process missed tds. 2566 */ 2567 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) { 2568 inc_deq(xhci, xhci->event_ring); 2569 } 2570 2571 if (ret) { 2572 urb = td->urb; 2573 urb_priv = urb->hcpriv; 2574 /* Leave the TD around for the reset endpoint function 2575 * to use(but only if it's not a control endpoint, 2576 * since we already queued the Set TR dequeue pointer 2577 * command for stalled control endpoints). 2578 */ 2579 if (usb_endpoint_xfer_control(&urb->ep->desc) || 2580 (trb_comp_code != COMP_STALL && 2581 trb_comp_code != COMP_BABBLE)) 2582 xhci_urb_free_priv(xhci, urb_priv); 2583 2584 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 2585 if ((urb->actual_length != urb->transfer_buffer_length && 2586 (urb->transfer_flags & 2587 URB_SHORT_NOT_OK)) || 2588 (status != 0 && 2589 !usb_endpoint_xfer_isoc(&urb->ep->desc))) 2590 xhci_dbg(xhci, "Giveback URB %p, len = %d, " 2591 "expected = %d, status = %d\n", 2592 urb, urb->actual_length, 2593 urb->transfer_buffer_length, 2594 status); 2595 spin_unlock(&xhci->lock); 2596 /* EHCI, UHCI, and OHCI always unconditionally set the 2597 * urb->status of an isochronous endpoint to 0. 2598 */ 2599 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 2600 status = 0; 2601 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status); 2602 spin_lock(&xhci->lock); 2603 } 2604 2605 /* 2606 * If ep->skip is set, it means there are missed tds on the 2607 * endpoint ring need to take care of. 2608 * Process them as short transfer until reach the td pointed by 2609 * the event. 2610 */ 2611 } while (ep->skip && trb_comp_code != COMP_MISSED_INT); 2612 2613 return 0; 2614 } 2615 2616 /* 2617 * This function handles all OS-owned events on the event ring. It may drop 2618 * xhci->lock between event processing (e.g. to pass up port status changes). 2619 * Returns >0 for "possibly more events to process" (caller should call again), 2620 * otherwise 0 if done. In future, <0 returns should indicate error code. 2621 */ 2622 static int xhci_handle_event(struct xhci_hcd *xhci) 2623 { 2624 union xhci_trb *event; 2625 int update_ptrs = 1; 2626 int ret; 2627 2628 if (!xhci->event_ring || !xhci->event_ring->dequeue) { 2629 xhci->error_bitmask |= 1 << 1; 2630 return 0; 2631 } 2632 2633 event = xhci->event_ring->dequeue; 2634 /* Does the HC or OS own the TRB? */ 2635 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2636 xhci->event_ring->cycle_state) { 2637 xhci->error_bitmask |= 1 << 2; 2638 return 0; 2639 } 2640 2641 /* 2642 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2643 * speculative reads of the event's flags/data below. 2644 */ 2645 rmb(); 2646 /* FIXME: Handle more event types. */ 2647 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) { 2648 case TRB_TYPE(TRB_COMPLETION): 2649 handle_cmd_completion(xhci, &event->event_cmd); 2650 break; 2651 case TRB_TYPE(TRB_PORT_STATUS): 2652 handle_port_status(xhci, event); 2653 update_ptrs = 0; 2654 break; 2655 case TRB_TYPE(TRB_TRANSFER): 2656 ret = handle_tx_event(xhci, &event->trans_event); 2657 if (ret < 0) 2658 xhci->error_bitmask |= 1 << 9; 2659 else 2660 update_ptrs = 0; 2661 break; 2662 case TRB_TYPE(TRB_DEV_NOTE): 2663 handle_device_notification(xhci, event); 2664 break; 2665 default: 2666 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >= 2667 TRB_TYPE(48)) 2668 handle_vendor_event(xhci, event); 2669 else 2670 xhci->error_bitmask |= 1 << 3; 2671 } 2672 /* Any of the above functions may drop and re-acquire the lock, so check 2673 * to make sure a watchdog timer didn't mark the host as non-responsive. 2674 */ 2675 if (xhci->xhc_state & XHCI_STATE_DYING) { 2676 xhci_dbg(xhci, "xHCI host dying, returning from " 2677 "event handler.\n"); 2678 return 0; 2679 } 2680 2681 if (update_ptrs) 2682 /* Update SW event ring dequeue pointer */ 2683 inc_deq(xhci, xhci->event_ring); 2684 2685 /* Are there more items on the event ring? Caller will call us again to 2686 * check. 2687 */ 2688 return 1; 2689 } 2690 2691 /* 2692 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 2693 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 2694 * indicators of an event TRB error, but we check the status *first* to be safe. 2695 */ 2696 irqreturn_t xhci_irq(struct usb_hcd *hcd) 2697 { 2698 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2699 u32 status; 2700 union xhci_trb *trb; 2701 u64 temp_64; 2702 union xhci_trb *event_ring_deq; 2703 dma_addr_t deq; 2704 2705 spin_lock(&xhci->lock); 2706 trb = xhci->event_ring->dequeue; 2707 /* Check if the xHC generated the interrupt, or the irq is shared */ 2708 status = xhci_readl(xhci, &xhci->op_regs->status); 2709 if (status == 0xffffffff) 2710 goto hw_died; 2711 2712 if (!(status & STS_EINT)) { 2713 spin_unlock(&xhci->lock); 2714 return IRQ_NONE; 2715 } 2716 if (status & STS_FATAL) { 2717 xhci_warn(xhci, "WARNING: Host System Error\n"); 2718 xhci_halt(xhci); 2719 hw_died: 2720 spin_unlock(&xhci->lock); 2721 return -ESHUTDOWN; 2722 } 2723 2724 /* 2725 * Clear the op reg interrupt status first, 2726 * so we can receive interrupts from other MSI-X interrupters. 2727 * Write 1 to clear the interrupt status. 2728 */ 2729 status |= STS_EINT; 2730 xhci_writel(xhci, status, &xhci->op_regs->status); 2731 /* FIXME when MSI-X is supported and there are multiple vectors */ 2732 /* Clear the MSI-X event interrupt status */ 2733 2734 if (hcd->irq) { 2735 u32 irq_pending; 2736 /* Acknowledge the PCI interrupt */ 2737 irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending); 2738 irq_pending |= IMAN_IP; 2739 xhci_writel(xhci, irq_pending, &xhci->ir_set->irq_pending); 2740 } 2741 2742 if (xhci->xhc_state & XHCI_STATE_DYING) { 2743 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 2744 "Shouldn't IRQs be disabled?\n"); 2745 /* Clear the event handler busy flag (RW1C); 2746 * the event ring should be empty. 2747 */ 2748 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2749 xhci_write_64(xhci, temp_64 | ERST_EHB, 2750 &xhci->ir_set->erst_dequeue); 2751 spin_unlock(&xhci->lock); 2752 2753 return IRQ_HANDLED; 2754 } 2755 2756 event_ring_deq = xhci->event_ring->dequeue; 2757 /* FIXME this should be a delayed service routine 2758 * that clears the EHB. 2759 */ 2760 while (xhci_handle_event(xhci) > 0) {} 2761 2762 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2763 /* If necessary, update the HW's version of the event ring deq ptr. */ 2764 if (event_ring_deq != xhci->event_ring->dequeue) { 2765 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2766 xhci->event_ring->dequeue); 2767 if (deq == 0) 2768 xhci_warn(xhci, "WARN something wrong with SW event " 2769 "ring dequeue ptr.\n"); 2770 /* Update HC event ring dequeue pointer */ 2771 temp_64 &= ERST_PTR_MASK; 2772 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 2773 } 2774 2775 /* Clear the event handler busy flag (RW1C); event ring is empty. */ 2776 temp_64 |= ERST_EHB; 2777 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); 2778 2779 spin_unlock(&xhci->lock); 2780 2781 return IRQ_HANDLED; 2782 } 2783 2784 irqreturn_t xhci_msi_irq(int irq, struct usb_hcd *hcd) 2785 { 2786 return xhci_irq(hcd); 2787 } 2788 2789 /**** Endpoint Ring Operations ****/ 2790 2791 /* 2792 * Generic function for queueing a TRB on a ring. 2793 * The caller must have checked to make sure there's room on the ring. 2794 * 2795 * @more_trbs_coming: Will you enqueue more TRBs before calling 2796 * prepare_transfer()? 2797 */ 2798 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 2799 bool more_trbs_coming, 2800 u32 field1, u32 field2, u32 field3, u32 field4) 2801 { 2802 struct xhci_generic_trb *trb; 2803 2804 trb = &ring->enqueue->generic; 2805 trb->field[0] = cpu_to_le32(field1); 2806 trb->field[1] = cpu_to_le32(field2); 2807 trb->field[2] = cpu_to_le32(field3); 2808 trb->field[3] = cpu_to_le32(field4); 2809 inc_enq(xhci, ring, more_trbs_coming); 2810 } 2811 2812 /* 2813 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 2814 * FIXME allocate segments if the ring is full. 2815 */ 2816 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 2817 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 2818 { 2819 unsigned int num_trbs_needed; 2820 2821 /* Make sure the endpoint has been added to xHC schedule */ 2822 switch (ep_state) { 2823 case EP_STATE_DISABLED: 2824 /* 2825 * USB core changed config/interfaces without notifying us, 2826 * or hardware is reporting the wrong state. 2827 */ 2828 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 2829 return -ENOENT; 2830 case EP_STATE_ERROR: 2831 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 2832 /* FIXME event handling code for error needs to clear it */ 2833 /* XXX not sure if this should be -ENOENT or not */ 2834 return -EINVAL; 2835 case EP_STATE_HALTED: 2836 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 2837 case EP_STATE_STOPPED: 2838 case EP_STATE_RUNNING: 2839 break; 2840 default: 2841 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 2842 /* 2843 * FIXME issue Configure Endpoint command to try to get the HC 2844 * back into a known state. 2845 */ 2846 return -EINVAL; 2847 } 2848 2849 while (1) { 2850 if (room_on_ring(xhci, ep_ring, num_trbs)) 2851 break; 2852 2853 if (ep_ring == xhci->cmd_ring) { 2854 xhci_err(xhci, "Do not support expand command ring\n"); 2855 return -ENOMEM; 2856 } 2857 2858 xhci_dbg(xhci, "ERROR no room on ep ring, " 2859 "try ring expansion\n"); 2860 num_trbs_needed = num_trbs - ep_ring->num_trbs_free; 2861 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed, 2862 mem_flags)) { 2863 xhci_err(xhci, "Ring expansion failed\n"); 2864 return -ENOMEM; 2865 } 2866 } 2867 2868 if (enqueue_is_link_trb(ep_ring)) { 2869 struct xhci_ring *ring = ep_ring; 2870 union xhci_trb *next; 2871 2872 next = ring->enqueue; 2873 2874 while (last_trb(xhci, ring, ring->enq_seg, next)) { 2875 /* If we're not dealing with 0.95 hardware or isoc rings 2876 * on AMD 0.96 host, clear the chain bit. 2877 */ 2878 if (!xhci_link_trb_quirk(xhci) && 2879 !(ring->type == TYPE_ISOC && 2880 (xhci->quirks & XHCI_AMD_0x96_HOST))) 2881 next->link.control &= cpu_to_le32(~TRB_CHAIN); 2882 else 2883 next->link.control |= cpu_to_le32(TRB_CHAIN); 2884 2885 wmb(); 2886 next->link.control ^= cpu_to_le32(TRB_CYCLE); 2887 2888 /* Toggle the cycle bit after the last ring segment. */ 2889 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 2890 ring->cycle_state = (ring->cycle_state ? 0 : 1); 2891 } 2892 ring->enq_seg = ring->enq_seg->next; 2893 ring->enqueue = ring->enq_seg->trbs; 2894 next = ring->enqueue; 2895 } 2896 } 2897 2898 return 0; 2899 } 2900 2901 static int prepare_transfer(struct xhci_hcd *xhci, 2902 struct xhci_virt_device *xdev, 2903 unsigned int ep_index, 2904 unsigned int stream_id, 2905 unsigned int num_trbs, 2906 struct urb *urb, 2907 unsigned int td_index, 2908 gfp_t mem_flags) 2909 { 2910 int ret; 2911 struct urb_priv *urb_priv; 2912 struct xhci_td *td; 2913 struct xhci_ring *ep_ring; 2914 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2915 2916 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); 2917 if (!ep_ring) { 2918 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 2919 stream_id); 2920 return -EINVAL; 2921 } 2922 2923 ret = prepare_ring(xhci, ep_ring, 2924 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 2925 num_trbs, mem_flags); 2926 if (ret) 2927 return ret; 2928 2929 urb_priv = urb->hcpriv; 2930 td = urb_priv->td[td_index]; 2931 2932 INIT_LIST_HEAD(&td->td_list); 2933 INIT_LIST_HEAD(&td->cancelled_td_list); 2934 2935 if (td_index == 0) { 2936 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 2937 if (unlikely(ret)) 2938 return ret; 2939 } 2940 2941 td->urb = urb; 2942 /* Add this TD to the tail of the endpoint ring's TD list */ 2943 list_add_tail(&td->td_list, &ep_ring->td_list); 2944 td->start_seg = ep_ring->enq_seg; 2945 td->first_trb = ep_ring->enqueue; 2946 2947 urb_priv->td[td_index] = td; 2948 2949 return 0; 2950 } 2951 2952 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb) 2953 { 2954 int num_sgs, num_trbs, running_total, temp, i; 2955 struct scatterlist *sg; 2956 2957 sg = NULL; 2958 num_sgs = urb->num_mapped_sgs; 2959 temp = urb->transfer_buffer_length; 2960 2961 num_trbs = 0; 2962 for_each_sg(urb->sg, sg, num_sgs, i) { 2963 unsigned int len = sg_dma_len(sg); 2964 2965 /* Scatter gather list entries may cross 64KB boundaries */ 2966 running_total = TRB_MAX_BUFF_SIZE - 2967 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1)); 2968 running_total &= TRB_MAX_BUFF_SIZE - 1; 2969 if (running_total != 0) 2970 num_trbs++; 2971 2972 /* How many more 64KB chunks to transfer, how many more TRBs? */ 2973 while (running_total < sg_dma_len(sg) && running_total < temp) { 2974 num_trbs++; 2975 running_total += TRB_MAX_BUFF_SIZE; 2976 } 2977 len = min_t(int, len, temp); 2978 temp -= len; 2979 if (temp == 0) 2980 break; 2981 } 2982 return num_trbs; 2983 } 2984 2985 static void check_trb_math(struct urb *urb, int num_trbs, int running_total) 2986 { 2987 if (num_trbs != 0) 2988 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of " 2989 "TRBs, %d left\n", __func__, 2990 urb->ep->desc.bEndpointAddress, num_trbs); 2991 if (running_total != urb->transfer_buffer_length) 2992 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 2993 "queued %#x (%d), asked for %#x (%d)\n", 2994 __func__, 2995 urb->ep->desc.bEndpointAddress, 2996 running_total, running_total, 2997 urb->transfer_buffer_length, 2998 urb->transfer_buffer_length); 2999 } 3000 3001 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3002 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3003 struct xhci_generic_trb *start_trb) 3004 { 3005 /* 3006 * Pass all the TRBs to the hardware at once and make sure this write 3007 * isn't reordered. 3008 */ 3009 wmb(); 3010 if (start_cycle) 3011 start_trb->field[3] |= cpu_to_le32(start_cycle); 3012 else 3013 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3014 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3015 } 3016 3017 /* 3018 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3019 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3020 * (comprised of sg list entries) can take several service intervals to 3021 * transmit. 3022 */ 3023 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3024 struct urb *urb, int slot_id, unsigned int ep_index) 3025 { 3026 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, 3027 xhci->devs[slot_id]->out_ctx, ep_index); 3028 int xhci_interval; 3029 int ep_interval; 3030 3031 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3032 ep_interval = urb->interval; 3033 /* Convert to microframes */ 3034 if (urb->dev->speed == USB_SPEED_LOW || 3035 urb->dev->speed == USB_SPEED_FULL) 3036 ep_interval *= 8; 3037 /* FIXME change this to a warning and a suggestion to use the new API 3038 * to set the polling interval (once the API is added). 3039 */ 3040 if (xhci_interval != ep_interval) { 3041 if (printk_ratelimit()) 3042 dev_dbg(&urb->dev->dev, "Driver uses different interval" 3043 " (%d microframe%s) than xHCI " 3044 "(%d microframe%s)\n", 3045 ep_interval, 3046 ep_interval == 1 ? "" : "s", 3047 xhci_interval, 3048 xhci_interval == 1 ? "" : "s"); 3049 urb->interval = xhci_interval; 3050 /* Convert back to frames for LS/FS devices */ 3051 if (urb->dev->speed == USB_SPEED_LOW || 3052 urb->dev->speed == USB_SPEED_FULL) 3053 urb->interval /= 8; 3054 } 3055 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3056 } 3057 3058 /* 3059 * The TD size is the number of bytes remaining in the TD (including this TRB), 3060 * right shifted by 10. 3061 * It must fit in bits 21:17, so it can't be bigger than 31. 3062 */ 3063 static u32 xhci_td_remainder(unsigned int remainder) 3064 { 3065 u32 max = (1 << (21 - 17 + 1)) - 1; 3066 3067 if ((remainder >> 10) >= max) 3068 return max << 17; 3069 else 3070 return (remainder >> 10) << 17; 3071 } 3072 3073 /* 3074 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3075 * packets remaining in the TD (*not* including this TRB). 3076 * 3077 * Total TD packet count = total_packet_count = 3078 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3079 * 3080 * Packets transferred up to and including this TRB = packets_transferred = 3081 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3082 * 3083 * TD size = total_packet_count - packets_transferred 3084 * 3085 * It must fit in bits 21:17, so it can't be bigger than 31. 3086 * The last TRB in a TD must have the TD size set to zero. 3087 */ 3088 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len, 3089 unsigned int total_packet_count, struct urb *urb, 3090 unsigned int num_trbs_left) 3091 { 3092 int packets_transferred; 3093 3094 /* One TRB with a zero-length data packet. */ 3095 if (num_trbs_left == 0 || (running_total == 0 && trb_buff_len == 0)) 3096 return 0; 3097 3098 /* All the TRB queueing functions don't count the current TRB in 3099 * running_total. 3100 */ 3101 packets_transferred = (running_total + trb_buff_len) / 3102 usb_endpoint_maxp(&urb->ep->desc); 3103 3104 if ((total_packet_count - packets_transferred) > 31) 3105 return 31 << 17; 3106 return (total_packet_count - packets_transferred) << 17; 3107 } 3108 3109 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3110 struct urb *urb, int slot_id, unsigned int ep_index) 3111 { 3112 struct xhci_ring *ep_ring; 3113 unsigned int num_trbs; 3114 struct urb_priv *urb_priv; 3115 struct xhci_td *td; 3116 struct scatterlist *sg; 3117 int num_sgs; 3118 int trb_buff_len, this_sg_len, running_total; 3119 unsigned int total_packet_count; 3120 bool first_trb; 3121 u64 addr; 3122 bool more_trbs_coming; 3123 3124 struct xhci_generic_trb *start_trb; 3125 int start_cycle; 3126 3127 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3128 if (!ep_ring) 3129 return -EINVAL; 3130 3131 num_trbs = count_sg_trbs_needed(xhci, urb); 3132 num_sgs = urb->num_mapped_sgs; 3133 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length, 3134 usb_endpoint_maxp(&urb->ep->desc)); 3135 3136 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id], 3137 ep_index, urb->stream_id, 3138 num_trbs, urb, 0, mem_flags); 3139 if (trb_buff_len < 0) 3140 return trb_buff_len; 3141 3142 urb_priv = urb->hcpriv; 3143 td = urb_priv->td[0]; 3144 3145 /* 3146 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3147 * until we've finished creating all the other TRBs. The ring's cycle 3148 * state may change as we enqueue the other TRBs, so save it too. 3149 */ 3150 start_trb = &ep_ring->enqueue->generic; 3151 start_cycle = ep_ring->cycle_state; 3152 3153 running_total = 0; 3154 /* 3155 * How much data is in the first TRB? 3156 * 3157 * There are three forces at work for TRB buffer pointers and lengths: 3158 * 1. We don't want to walk off the end of this sg-list entry buffer. 3159 * 2. The transfer length that the driver requested may be smaller than 3160 * the amount of memory allocated for this scatter-gather list. 3161 * 3. TRBs buffers can't cross 64KB boundaries. 3162 */ 3163 sg = urb->sg; 3164 addr = (u64) sg_dma_address(sg); 3165 this_sg_len = sg_dma_len(sg); 3166 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1)); 3167 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 3168 if (trb_buff_len > urb->transfer_buffer_length) 3169 trb_buff_len = urb->transfer_buffer_length; 3170 3171 first_trb = true; 3172 /* Queue the first TRB, even if it's zero-length */ 3173 do { 3174 u32 field = 0; 3175 u32 length_field = 0; 3176 u32 remainder = 0; 3177 3178 /* Don't change the cycle bit of the first TRB until later */ 3179 if (first_trb) { 3180 first_trb = false; 3181 if (start_cycle == 0) 3182 field |= 0x1; 3183 } else 3184 field |= ep_ring->cycle_state; 3185 3186 /* Chain all the TRBs together; clear the chain bit in the last 3187 * TRB to indicate it's the last TRB in the chain. 3188 */ 3189 if (num_trbs > 1) { 3190 field |= TRB_CHAIN; 3191 } else { 3192 /* FIXME - add check for ZERO_PACKET flag before this */ 3193 td->last_trb = ep_ring->enqueue; 3194 field |= TRB_IOC; 3195 } 3196 3197 /* Only set interrupt on short packet for IN endpoints */ 3198 if (usb_urb_dir_in(urb)) 3199 field |= TRB_ISP; 3200 3201 if (TRB_MAX_BUFF_SIZE - 3202 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) { 3203 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n"); 3204 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n", 3205 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1), 3206 (unsigned int) addr + trb_buff_len); 3207 } 3208 3209 /* Set the TRB length, TD size, and interrupter fields. */ 3210 if (xhci->hci_version < 0x100) { 3211 remainder = xhci_td_remainder( 3212 urb->transfer_buffer_length - 3213 running_total); 3214 } else { 3215 remainder = xhci_v1_0_td_remainder(running_total, 3216 trb_buff_len, total_packet_count, urb, 3217 num_trbs - 1); 3218 } 3219 length_field = TRB_LEN(trb_buff_len) | 3220 remainder | 3221 TRB_INTR_TARGET(0); 3222 3223 if (num_trbs > 1) 3224 more_trbs_coming = true; 3225 else 3226 more_trbs_coming = false; 3227 queue_trb(xhci, ep_ring, more_trbs_coming, 3228 lower_32_bits(addr), 3229 upper_32_bits(addr), 3230 length_field, 3231 field | TRB_TYPE(TRB_NORMAL)); 3232 --num_trbs; 3233 running_total += trb_buff_len; 3234 3235 /* Calculate length for next transfer -- 3236 * Are we done queueing all the TRBs for this sg entry? 3237 */ 3238 this_sg_len -= trb_buff_len; 3239 if (this_sg_len == 0) { 3240 --num_sgs; 3241 if (num_sgs == 0) 3242 break; 3243 sg = sg_next(sg); 3244 addr = (u64) sg_dma_address(sg); 3245 this_sg_len = sg_dma_len(sg); 3246 } else { 3247 addr += trb_buff_len; 3248 } 3249 3250 trb_buff_len = TRB_MAX_BUFF_SIZE - 3251 (addr & (TRB_MAX_BUFF_SIZE - 1)); 3252 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 3253 if (running_total + trb_buff_len > urb->transfer_buffer_length) 3254 trb_buff_len = 3255 urb->transfer_buffer_length - running_total; 3256 } while (running_total < urb->transfer_buffer_length); 3257 3258 check_trb_math(urb, num_trbs, running_total); 3259 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3260 start_cycle, start_trb); 3261 return 0; 3262 } 3263 3264 /* This is very similar to what ehci-q.c qtd_fill() does */ 3265 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3266 struct urb *urb, int slot_id, unsigned int ep_index) 3267 { 3268 struct xhci_ring *ep_ring; 3269 struct urb_priv *urb_priv; 3270 struct xhci_td *td; 3271 int num_trbs; 3272 struct xhci_generic_trb *start_trb; 3273 bool first_trb; 3274 bool more_trbs_coming; 3275 int start_cycle; 3276 u32 field, length_field; 3277 3278 int running_total, trb_buff_len, ret; 3279 unsigned int total_packet_count; 3280 u64 addr; 3281 3282 if (urb->num_sgs) 3283 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index); 3284 3285 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3286 if (!ep_ring) 3287 return -EINVAL; 3288 3289 num_trbs = 0; 3290 /* How much data is (potentially) left before the 64KB boundary? */ 3291 running_total = TRB_MAX_BUFF_SIZE - 3292 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 3293 running_total &= TRB_MAX_BUFF_SIZE - 1; 3294 3295 /* If there's some data on this 64KB chunk, or we have to send a 3296 * zero-length transfer, we need at least one TRB 3297 */ 3298 if (running_total != 0 || urb->transfer_buffer_length == 0) 3299 num_trbs++; 3300 /* How many more 64KB chunks to transfer, how many more TRBs? */ 3301 while (running_total < urb->transfer_buffer_length) { 3302 num_trbs++; 3303 running_total += TRB_MAX_BUFF_SIZE; 3304 } 3305 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */ 3306 3307 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3308 ep_index, urb->stream_id, 3309 num_trbs, urb, 0, mem_flags); 3310 if (ret < 0) 3311 return ret; 3312 3313 urb_priv = urb->hcpriv; 3314 td = urb_priv->td[0]; 3315 3316 /* 3317 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3318 * until we've finished creating all the other TRBs. The ring's cycle 3319 * state may change as we enqueue the other TRBs, so save it too. 3320 */ 3321 start_trb = &ep_ring->enqueue->generic; 3322 start_cycle = ep_ring->cycle_state; 3323 3324 running_total = 0; 3325 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length, 3326 usb_endpoint_maxp(&urb->ep->desc)); 3327 /* How much data is in the first TRB? */ 3328 addr = (u64) urb->transfer_dma; 3329 trb_buff_len = TRB_MAX_BUFF_SIZE - 3330 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 3331 if (trb_buff_len > urb->transfer_buffer_length) 3332 trb_buff_len = urb->transfer_buffer_length; 3333 3334 first_trb = true; 3335 3336 /* Queue the first TRB, even if it's zero-length */ 3337 do { 3338 u32 remainder = 0; 3339 field = 0; 3340 3341 /* Don't change the cycle bit of the first TRB until later */ 3342 if (first_trb) { 3343 first_trb = false; 3344 if (start_cycle == 0) 3345 field |= 0x1; 3346 } else 3347 field |= ep_ring->cycle_state; 3348 3349 /* Chain all the TRBs together; clear the chain bit in the last 3350 * TRB to indicate it's the last TRB in the chain. 3351 */ 3352 if (num_trbs > 1) { 3353 field |= TRB_CHAIN; 3354 } else { 3355 /* FIXME - add check for ZERO_PACKET flag before this */ 3356 td->last_trb = ep_ring->enqueue; 3357 field |= TRB_IOC; 3358 } 3359 3360 /* Only set interrupt on short packet for IN endpoints */ 3361 if (usb_urb_dir_in(urb)) 3362 field |= TRB_ISP; 3363 3364 /* Set the TRB length, TD size, and interrupter fields. */ 3365 if (xhci->hci_version < 0x100) { 3366 remainder = xhci_td_remainder( 3367 urb->transfer_buffer_length - 3368 running_total); 3369 } else { 3370 remainder = xhci_v1_0_td_remainder(running_total, 3371 trb_buff_len, total_packet_count, urb, 3372 num_trbs - 1); 3373 } 3374 length_field = TRB_LEN(trb_buff_len) | 3375 remainder | 3376 TRB_INTR_TARGET(0); 3377 3378 if (num_trbs > 1) 3379 more_trbs_coming = true; 3380 else 3381 more_trbs_coming = false; 3382 queue_trb(xhci, ep_ring, more_trbs_coming, 3383 lower_32_bits(addr), 3384 upper_32_bits(addr), 3385 length_field, 3386 field | TRB_TYPE(TRB_NORMAL)); 3387 --num_trbs; 3388 running_total += trb_buff_len; 3389 3390 /* Calculate length for next transfer */ 3391 addr += trb_buff_len; 3392 trb_buff_len = urb->transfer_buffer_length - running_total; 3393 if (trb_buff_len > TRB_MAX_BUFF_SIZE) 3394 trb_buff_len = TRB_MAX_BUFF_SIZE; 3395 } while (running_total < urb->transfer_buffer_length); 3396 3397 check_trb_math(urb, num_trbs, running_total); 3398 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3399 start_cycle, start_trb); 3400 return 0; 3401 } 3402 3403 /* Caller must have locked xhci->lock */ 3404 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3405 struct urb *urb, int slot_id, unsigned int ep_index) 3406 { 3407 struct xhci_ring *ep_ring; 3408 int num_trbs; 3409 int ret; 3410 struct usb_ctrlrequest *setup; 3411 struct xhci_generic_trb *start_trb; 3412 int start_cycle; 3413 u32 field, length_field; 3414 struct urb_priv *urb_priv; 3415 struct xhci_td *td; 3416 3417 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3418 if (!ep_ring) 3419 return -EINVAL; 3420 3421 /* 3422 * Need to copy setup packet into setup TRB, so we can't use the setup 3423 * DMA address. 3424 */ 3425 if (!urb->setup_packet) 3426 return -EINVAL; 3427 3428 /* 1 TRB for setup, 1 for status */ 3429 num_trbs = 2; 3430 /* 3431 * Don't need to check if we need additional event data and normal TRBs, 3432 * since data in control transfers will never get bigger than 16MB 3433 * XXX: can we get a buffer that crosses 64KB boundaries? 3434 */ 3435 if (urb->transfer_buffer_length > 0) 3436 num_trbs++; 3437 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3438 ep_index, urb->stream_id, 3439 num_trbs, urb, 0, mem_flags); 3440 if (ret < 0) 3441 return ret; 3442 3443 urb_priv = urb->hcpriv; 3444 td = urb_priv->td[0]; 3445 3446 /* 3447 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3448 * until we've finished creating all the other TRBs. The ring's cycle 3449 * state may change as we enqueue the other TRBs, so save it too. 3450 */ 3451 start_trb = &ep_ring->enqueue->generic; 3452 start_cycle = ep_ring->cycle_state; 3453 3454 /* Queue setup TRB - see section 6.4.1.2.1 */ 3455 /* FIXME better way to translate setup_packet into two u32 fields? */ 3456 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3457 field = 0; 3458 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3459 if (start_cycle == 0) 3460 field |= 0x1; 3461 3462 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */ 3463 if (xhci->hci_version == 0x100) { 3464 if (urb->transfer_buffer_length > 0) { 3465 if (setup->bRequestType & USB_DIR_IN) 3466 field |= TRB_TX_TYPE(TRB_DATA_IN); 3467 else 3468 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3469 } 3470 } 3471 3472 queue_trb(xhci, ep_ring, true, 3473 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3474 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3475 TRB_LEN(8) | TRB_INTR_TARGET(0), 3476 /* Immediate data in pointer */ 3477 field); 3478 3479 /* If there's data, queue data TRBs */ 3480 /* Only set interrupt on short packet for IN endpoints */ 3481 if (usb_urb_dir_in(urb)) 3482 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3483 else 3484 field = TRB_TYPE(TRB_DATA); 3485 3486 length_field = TRB_LEN(urb->transfer_buffer_length) | 3487 xhci_td_remainder(urb->transfer_buffer_length) | 3488 TRB_INTR_TARGET(0); 3489 if (urb->transfer_buffer_length > 0) { 3490 if (setup->bRequestType & USB_DIR_IN) 3491 field |= TRB_DIR_IN; 3492 queue_trb(xhci, ep_ring, true, 3493 lower_32_bits(urb->transfer_dma), 3494 upper_32_bits(urb->transfer_dma), 3495 length_field, 3496 field | ep_ring->cycle_state); 3497 } 3498 3499 /* Save the DMA address of the last TRB in the TD */ 3500 td->last_trb = ep_ring->enqueue; 3501 3502 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3503 /* If the device sent data, the status stage is an OUT transfer */ 3504 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3505 field = 0; 3506 else 3507 field = TRB_DIR_IN; 3508 queue_trb(xhci, ep_ring, false, 3509 0, 3510 0, 3511 TRB_INTR_TARGET(0), 3512 /* Event on completion */ 3513 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3514 3515 giveback_first_trb(xhci, slot_id, ep_index, 0, 3516 start_cycle, start_trb); 3517 return 0; 3518 } 3519 3520 static int count_isoc_trbs_needed(struct xhci_hcd *xhci, 3521 struct urb *urb, int i) 3522 { 3523 int num_trbs = 0; 3524 u64 addr, td_len; 3525 3526 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3527 td_len = urb->iso_frame_desc[i].length; 3528 3529 num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3530 TRB_MAX_BUFF_SIZE); 3531 if (num_trbs == 0) 3532 num_trbs++; 3533 3534 return num_trbs; 3535 } 3536 3537 /* 3538 * The transfer burst count field of the isochronous TRB defines the number of 3539 * bursts that are required to move all packets in this TD. Only SuperSpeed 3540 * devices can burst up to bMaxBurst number of packets per service interval. 3541 * This field is zero based, meaning a value of zero in the field means one 3542 * burst. Basically, for everything but SuperSpeed devices, this field will be 3543 * zero. Only xHCI 1.0 host controllers support this field. 3544 */ 3545 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3546 struct usb_device *udev, 3547 struct urb *urb, unsigned int total_packet_count) 3548 { 3549 unsigned int max_burst; 3550 3551 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER) 3552 return 0; 3553 3554 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3555 return roundup(total_packet_count, max_burst + 1) - 1; 3556 } 3557 3558 /* 3559 * Returns the number of packets in the last "burst" of packets. This field is 3560 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3561 * the last burst packet count is equal to the total number of packets in the 3562 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3563 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3564 * contain 1 to (bMaxBurst + 1) packets. 3565 */ 3566 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3567 struct usb_device *udev, 3568 struct urb *urb, unsigned int total_packet_count) 3569 { 3570 unsigned int max_burst; 3571 unsigned int residue; 3572 3573 if (xhci->hci_version < 0x100) 3574 return 0; 3575 3576 switch (udev->speed) { 3577 case USB_SPEED_SUPER: 3578 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3579 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3580 residue = total_packet_count % (max_burst + 1); 3581 /* If residue is zero, the last burst contains (max_burst + 1) 3582 * number of packets, but the TLBPC field is zero-based. 3583 */ 3584 if (residue == 0) 3585 return max_burst; 3586 return residue - 1; 3587 default: 3588 if (total_packet_count == 0) 3589 return 0; 3590 return total_packet_count - 1; 3591 } 3592 } 3593 3594 /* This is for isoc transfer */ 3595 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3596 struct urb *urb, int slot_id, unsigned int ep_index) 3597 { 3598 struct xhci_ring *ep_ring; 3599 struct urb_priv *urb_priv; 3600 struct xhci_td *td; 3601 int num_tds, trbs_per_td; 3602 struct xhci_generic_trb *start_trb; 3603 bool first_trb; 3604 int start_cycle; 3605 u32 field, length_field; 3606 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3607 u64 start_addr, addr; 3608 int i, j; 3609 bool more_trbs_coming; 3610 3611 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 3612 3613 num_tds = urb->number_of_packets; 3614 if (num_tds < 1) { 3615 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 3616 return -EINVAL; 3617 } 3618 3619 start_addr = (u64) urb->transfer_dma; 3620 start_trb = &ep_ring->enqueue->generic; 3621 start_cycle = ep_ring->cycle_state; 3622 3623 urb_priv = urb->hcpriv; 3624 /* Queue the first TRB, even if it's zero-length */ 3625 for (i = 0; i < num_tds; i++) { 3626 unsigned int total_packet_count; 3627 unsigned int burst_count; 3628 unsigned int residue; 3629 3630 first_trb = true; 3631 running_total = 0; 3632 addr = start_addr + urb->iso_frame_desc[i].offset; 3633 td_len = urb->iso_frame_desc[i].length; 3634 td_remain_len = td_len; 3635 total_packet_count = DIV_ROUND_UP(td_len, 3636 usb_endpoint_maxp(&urb->ep->desc)); 3637 /* A zero-length transfer still involves at least one packet. */ 3638 if (total_packet_count == 0) 3639 total_packet_count++; 3640 burst_count = xhci_get_burst_count(xhci, urb->dev, urb, 3641 total_packet_count); 3642 residue = xhci_get_last_burst_packet_count(xhci, 3643 urb->dev, urb, total_packet_count); 3644 3645 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i); 3646 3647 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 3648 urb->stream_id, trbs_per_td, urb, i, mem_flags); 3649 if (ret < 0) { 3650 if (i == 0) 3651 return ret; 3652 goto cleanup; 3653 } 3654 3655 td = urb_priv->td[i]; 3656 for (j = 0; j < trbs_per_td; j++) { 3657 u32 remainder = 0; 3658 field = TRB_TBC(burst_count) | TRB_TLBPC(residue); 3659 3660 if (first_trb) { 3661 /* Queue the isoc TRB */ 3662 field |= TRB_TYPE(TRB_ISOC); 3663 /* Assume URB_ISO_ASAP is set */ 3664 field |= TRB_SIA; 3665 if (i == 0) { 3666 if (start_cycle == 0) 3667 field |= 0x1; 3668 } else 3669 field |= ep_ring->cycle_state; 3670 first_trb = false; 3671 } else { 3672 /* Queue other normal TRBs */ 3673 field |= TRB_TYPE(TRB_NORMAL); 3674 field |= ep_ring->cycle_state; 3675 } 3676 3677 /* Only set interrupt on short packet for IN EPs */ 3678 if (usb_urb_dir_in(urb)) 3679 field |= TRB_ISP; 3680 3681 /* Chain all the TRBs together; clear the chain bit in 3682 * the last TRB to indicate it's the last TRB in the 3683 * chain. 3684 */ 3685 if (j < trbs_per_td - 1) { 3686 field |= TRB_CHAIN; 3687 more_trbs_coming = true; 3688 } else { 3689 td->last_trb = ep_ring->enqueue; 3690 field |= TRB_IOC; 3691 if (xhci->hci_version == 0x100 && 3692 !(xhci->quirks & 3693 XHCI_AVOID_BEI)) { 3694 /* Set BEI bit except for the last td */ 3695 if (i < num_tds - 1) 3696 field |= TRB_BEI; 3697 } 3698 more_trbs_coming = false; 3699 } 3700 3701 /* Calculate TRB length */ 3702 trb_buff_len = TRB_MAX_BUFF_SIZE - 3703 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1)); 3704 if (trb_buff_len > td_remain_len) 3705 trb_buff_len = td_remain_len; 3706 3707 /* Set the TRB length, TD size, & interrupter fields. */ 3708 if (xhci->hci_version < 0x100) { 3709 remainder = xhci_td_remainder( 3710 td_len - running_total); 3711 } else { 3712 remainder = xhci_v1_0_td_remainder( 3713 running_total, trb_buff_len, 3714 total_packet_count, urb, 3715 (trbs_per_td - j - 1)); 3716 } 3717 length_field = TRB_LEN(trb_buff_len) | 3718 remainder | 3719 TRB_INTR_TARGET(0); 3720 3721 queue_trb(xhci, ep_ring, more_trbs_coming, 3722 lower_32_bits(addr), 3723 upper_32_bits(addr), 3724 length_field, 3725 field); 3726 running_total += trb_buff_len; 3727 3728 addr += trb_buff_len; 3729 td_remain_len -= trb_buff_len; 3730 } 3731 3732 /* Check TD length */ 3733 if (running_total != td_len) { 3734 xhci_err(xhci, "ISOC TD length unmatch\n"); 3735 ret = -EINVAL; 3736 goto cleanup; 3737 } 3738 } 3739 3740 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 3741 if (xhci->quirks & XHCI_AMD_PLL_FIX) 3742 usb_amd_quirk_pll_disable(); 3743 } 3744 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 3745 3746 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3747 start_cycle, start_trb); 3748 return 0; 3749 cleanup: 3750 /* Clean up a partially enqueued isoc transfer. */ 3751 3752 for (i--; i >= 0; i--) 3753 list_del_init(&urb_priv->td[i]->td_list); 3754 3755 /* Use the first TD as a temporary variable to turn the TDs we've queued 3756 * into No-ops with a software-owned cycle bit. That way the hardware 3757 * won't accidentally start executing bogus TDs when we partially 3758 * overwrite them. td->first_trb and td->start_seg are already set. 3759 */ 3760 urb_priv->td[0]->last_trb = ep_ring->enqueue; 3761 /* Every TRB except the first & last will have its cycle bit flipped. */ 3762 td_to_noop(xhci, ep_ring, urb_priv->td[0], true); 3763 3764 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 3765 ep_ring->enqueue = urb_priv->td[0]->first_trb; 3766 ep_ring->enq_seg = urb_priv->td[0]->start_seg; 3767 ep_ring->cycle_state = start_cycle; 3768 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp; 3769 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 3770 return ret; 3771 } 3772 3773 /* 3774 * Check transfer ring to guarantee there is enough room for the urb. 3775 * Update ISO URB start_frame and interval. 3776 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to 3777 * update the urb->start_frame by now. 3778 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input. 3779 */ 3780 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 3781 struct urb *urb, int slot_id, unsigned int ep_index) 3782 { 3783 struct xhci_virt_device *xdev; 3784 struct xhci_ring *ep_ring; 3785 struct xhci_ep_ctx *ep_ctx; 3786 int start_frame; 3787 int xhci_interval; 3788 int ep_interval; 3789 int num_tds, num_trbs, i; 3790 int ret; 3791 3792 xdev = xhci->devs[slot_id]; 3793 ep_ring = xdev->eps[ep_index].ring; 3794 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3795 3796 num_trbs = 0; 3797 num_tds = urb->number_of_packets; 3798 for (i = 0; i < num_tds; i++) 3799 num_trbs += count_isoc_trbs_needed(xhci, urb, i); 3800 3801 /* Check the ring to guarantee there is enough room for the whole urb. 3802 * Do not insert any td of the urb to the ring if the check failed. 3803 */ 3804 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 3805 num_trbs, mem_flags); 3806 if (ret) 3807 return ret; 3808 3809 start_frame = xhci_readl(xhci, &xhci->run_regs->microframe_index); 3810 start_frame &= 0x3fff; 3811 3812 urb->start_frame = start_frame; 3813 if (urb->dev->speed == USB_SPEED_LOW || 3814 urb->dev->speed == USB_SPEED_FULL) 3815 urb->start_frame >>= 3; 3816 3817 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3818 ep_interval = urb->interval; 3819 /* Convert to microframes */ 3820 if (urb->dev->speed == USB_SPEED_LOW || 3821 urb->dev->speed == USB_SPEED_FULL) 3822 ep_interval *= 8; 3823 /* FIXME change this to a warning and a suggestion to use the new API 3824 * to set the polling interval (once the API is added). 3825 */ 3826 if (xhci_interval != ep_interval) { 3827 if (printk_ratelimit()) 3828 dev_dbg(&urb->dev->dev, "Driver uses different interval" 3829 " (%d microframe%s) than xHCI " 3830 "(%d microframe%s)\n", 3831 ep_interval, 3832 ep_interval == 1 ? "" : "s", 3833 xhci_interval, 3834 xhci_interval == 1 ? "" : "s"); 3835 urb->interval = xhci_interval; 3836 /* Convert back to frames for LS/FS devices */ 3837 if (urb->dev->speed == USB_SPEED_LOW || 3838 urb->dev->speed == USB_SPEED_FULL) 3839 urb->interval /= 8; 3840 } 3841 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free; 3842 3843 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 3844 } 3845 3846 /**** Command Ring Operations ****/ 3847 3848 /* Generic function for queueing a command TRB on the command ring. 3849 * Check to make sure there's room on the command ring for one command TRB. 3850 * Also check that there's room reserved for commands that must not fail. 3851 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 3852 * then only check for the number of reserved spots. 3853 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 3854 * because the command event handler may want to resubmit a failed command. 3855 */ 3856 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2, 3857 u32 field3, u32 field4, bool command_must_succeed) 3858 { 3859 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 3860 int ret; 3861 3862 if (!command_must_succeed) 3863 reserved_trbs++; 3864 3865 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 3866 reserved_trbs, GFP_ATOMIC); 3867 if (ret < 0) { 3868 xhci_err(xhci, "ERR: No room for command on command ring\n"); 3869 if (command_must_succeed) 3870 xhci_err(xhci, "ERR: Reserved TRB counting for " 3871 "unfailable commands failed.\n"); 3872 return ret; 3873 } 3874 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 3875 field4 | xhci->cmd_ring->cycle_state); 3876 return 0; 3877 } 3878 3879 /* Queue a slot enable or disable request on the command ring */ 3880 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id) 3881 { 3882 return queue_command(xhci, 0, 0, 0, 3883 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 3884 } 3885 3886 /* Queue an address device command TRB */ 3887 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 3888 u32 slot_id) 3889 { 3890 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 3891 upper_32_bits(in_ctx_ptr), 0, 3892 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id), 3893 false); 3894 } 3895 3896 int xhci_queue_vendor_command(struct xhci_hcd *xhci, 3897 u32 field1, u32 field2, u32 field3, u32 field4) 3898 { 3899 return queue_command(xhci, field1, field2, field3, field4, false); 3900 } 3901 3902 /* Queue a reset device command TRB */ 3903 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id) 3904 { 3905 return queue_command(xhci, 0, 0, 0, 3906 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 3907 false); 3908 } 3909 3910 /* Queue a configure endpoint command TRB */ 3911 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 3912 u32 slot_id, bool command_must_succeed) 3913 { 3914 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 3915 upper_32_bits(in_ctx_ptr), 0, 3916 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 3917 command_must_succeed); 3918 } 3919 3920 /* Queue an evaluate context command TRB */ 3921 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 3922 u32 slot_id, bool command_must_succeed) 3923 { 3924 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 3925 upper_32_bits(in_ctx_ptr), 0, 3926 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 3927 command_must_succeed); 3928 } 3929 3930 /* 3931 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 3932 * activity on an endpoint that is about to be suspended. 3933 */ 3934 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id, 3935 unsigned int ep_index, int suspend) 3936 { 3937 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3938 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3939 u32 type = TRB_TYPE(TRB_STOP_RING); 3940 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 3941 3942 return queue_command(xhci, 0, 0, 0, 3943 trb_slot_id | trb_ep_index | type | trb_suspend, false); 3944 } 3945 3946 /* Set Transfer Ring Dequeue Pointer command. 3947 * This should not be used for endpoints that have streams enabled. 3948 */ 3949 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id, 3950 unsigned int ep_index, unsigned int stream_id, 3951 struct xhci_segment *deq_seg, 3952 union xhci_trb *deq_ptr, u32 cycle_state) 3953 { 3954 dma_addr_t addr; 3955 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3956 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3957 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id); 3958 u32 type = TRB_TYPE(TRB_SET_DEQ); 3959 struct xhci_virt_ep *ep; 3960 3961 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr); 3962 if (addr == 0) { 3963 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 3964 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", 3965 deq_seg, deq_ptr); 3966 return 0; 3967 } 3968 ep = &xhci->devs[slot_id]->eps[ep_index]; 3969 if ((ep->ep_state & SET_DEQ_PENDING)) { 3970 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 3971 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n"); 3972 return 0; 3973 } 3974 ep->queued_deq_seg = deq_seg; 3975 ep->queued_deq_ptr = deq_ptr; 3976 return queue_command(xhci, lower_32_bits(addr) | cycle_state, 3977 upper_32_bits(addr), trb_stream_id, 3978 trb_slot_id | trb_ep_index | type, false); 3979 } 3980 3981 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id, 3982 unsigned int ep_index) 3983 { 3984 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3985 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3986 u32 type = TRB_TYPE(TRB_RESET_EP); 3987 3988 return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type, 3989 false); 3990 } 3991