xref: /linux/drivers/usb/host/xhci-ring.c (revision 0d456bad36d42d16022be045c8a53ddbb59ee478)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 /*
24  * Ring initialization rules:
25  * 1. Each segment is initialized to zero, except for link TRBs.
26  * 2. Ring cycle state = 0.  This represents Producer Cycle State (PCS) or
27  *    Consumer Cycle State (CCS), depending on ring function.
28  * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
29  *
30  * Ring behavior rules:
31  * 1. A ring is empty if enqueue == dequeue.  This means there will always be at
32  *    least one free TRB in the ring.  This is useful if you want to turn that
33  *    into a link TRB and expand the ring.
34  * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35  *    link TRB, then load the pointer with the address in the link TRB.  If the
36  *    link TRB had its toggle bit set, you may need to update the ring cycle
37  *    state (see cycle bit rules).  You may have to do this multiple times
38  *    until you reach a non-link TRB.
39  * 3. A ring is full if enqueue++ (for the definition of increment above)
40  *    equals the dequeue pointer.
41  *
42  * Cycle bit rules:
43  * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44  *    in a link TRB, it must toggle the ring cycle state.
45  * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46  *    in a link TRB, it must toggle the ring cycle state.
47  *
48  * Producer rules:
49  * 1. Check if ring is full before you enqueue.
50  * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51  *    Update enqueue pointer between each write (which may update the ring
52  *    cycle state).
53  * 3. Notify consumer.  If SW is producer, it rings the doorbell for command
54  *    and endpoint rings.  If HC is the producer for the event ring,
55  *    and it generates an interrupt according to interrupt modulation rules.
56  *
57  * Consumer rules:
58  * 1. Check if TRB belongs to you.  If the cycle bit == your ring cycle state,
59  *    the TRB is owned by the consumer.
60  * 2. Update dequeue pointer (which may update the ring cycle state) and
61  *    continue processing TRBs until you reach a TRB which is not owned by you.
62  * 3. Notify the producer.  SW is the consumer for the event ring, and it
63  *   updates event ring dequeue pointer.  HC is the consumer for the command and
64  *   endpoint rings; it generates events on the event ring for these.
65  */
66 
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include "xhci.h"
70 
71 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
72 		struct xhci_virt_device *virt_dev,
73 		struct xhci_event_cmd *event);
74 
75 /*
76  * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
77  * address of the TRB.
78  */
79 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
80 		union xhci_trb *trb)
81 {
82 	unsigned long segment_offset;
83 
84 	if (!seg || !trb || trb < seg->trbs)
85 		return 0;
86 	/* offset in TRBs */
87 	segment_offset = trb - seg->trbs;
88 	if (segment_offset > TRBS_PER_SEGMENT)
89 		return 0;
90 	return seg->dma + (segment_offset * sizeof(*trb));
91 }
92 
93 /* Does this link TRB point to the first segment in a ring,
94  * or was the previous TRB the last TRB on the last segment in the ERST?
95  */
96 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
97 		struct xhci_segment *seg, union xhci_trb *trb)
98 {
99 	if (ring == xhci->event_ring)
100 		return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
101 			(seg->next == xhci->event_ring->first_seg);
102 	else
103 		return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
104 }
105 
106 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
107  * segment?  I.e. would the updated event TRB pointer step off the end of the
108  * event seg?
109  */
110 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
111 		struct xhci_segment *seg, union xhci_trb *trb)
112 {
113 	if (ring == xhci->event_ring)
114 		return trb == &seg->trbs[TRBS_PER_SEGMENT];
115 	else
116 		return TRB_TYPE_LINK_LE32(trb->link.control);
117 }
118 
119 static int enqueue_is_link_trb(struct xhci_ring *ring)
120 {
121 	struct xhci_link_trb *link = &ring->enqueue->link;
122 	return TRB_TYPE_LINK_LE32(link->control);
123 }
124 
125 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
126  * TRB is in a new segment.  This does not skip over link TRBs, and it does not
127  * effect the ring dequeue or enqueue pointers.
128  */
129 static void next_trb(struct xhci_hcd *xhci,
130 		struct xhci_ring *ring,
131 		struct xhci_segment **seg,
132 		union xhci_trb **trb)
133 {
134 	if (last_trb(xhci, ring, *seg, *trb)) {
135 		*seg = (*seg)->next;
136 		*trb = ((*seg)->trbs);
137 	} else {
138 		(*trb)++;
139 	}
140 }
141 
142 /*
143  * See Cycle bit rules. SW is the consumer for the event ring only.
144  * Don't make a ring full of link TRBs.  That would be dumb and this would loop.
145  */
146 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
147 {
148 	unsigned long long addr;
149 
150 	ring->deq_updates++;
151 
152 	/*
153 	 * If this is not event ring, and the dequeue pointer
154 	 * is not on a link TRB, there is one more usable TRB
155 	 */
156 	if (ring->type != TYPE_EVENT &&
157 			!last_trb(xhci, ring, ring->deq_seg, ring->dequeue))
158 		ring->num_trbs_free++;
159 
160 	do {
161 		/*
162 		 * Update the dequeue pointer further if that was a link TRB or
163 		 * we're at the end of an event ring segment (which doesn't have
164 		 * link TRBS)
165 		 */
166 		if (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) {
167 			if (ring->type == TYPE_EVENT &&
168 					last_trb_on_last_seg(xhci, ring,
169 						ring->deq_seg, ring->dequeue)) {
170 				ring->cycle_state = (ring->cycle_state ? 0 : 1);
171 			}
172 			ring->deq_seg = ring->deq_seg->next;
173 			ring->dequeue = ring->deq_seg->trbs;
174 		} else {
175 			ring->dequeue++;
176 		}
177 	} while (last_trb(xhci, ring, ring->deq_seg, ring->dequeue));
178 
179 	addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue);
180 }
181 
182 /*
183  * See Cycle bit rules. SW is the consumer for the event ring only.
184  * Don't make a ring full of link TRBs.  That would be dumb and this would loop.
185  *
186  * If we've just enqueued a TRB that is in the middle of a TD (meaning the
187  * chain bit is set), then set the chain bit in all the following link TRBs.
188  * If we've enqueued the last TRB in a TD, make sure the following link TRBs
189  * have their chain bit cleared (so that each Link TRB is a separate TD).
190  *
191  * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
192  * set, but other sections talk about dealing with the chain bit set.  This was
193  * fixed in the 0.96 specification errata, but we have to assume that all 0.95
194  * xHCI hardware can't handle the chain bit being cleared on a link TRB.
195  *
196  * @more_trbs_coming:	Will you enqueue more TRBs before calling
197  *			prepare_transfer()?
198  */
199 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
200 			bool more_trbs_coming)
201 {
202 	u32 chain;
203 	union xhci_trb *next;
204 	unsigned long long addr;
205 
206 	chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
207 	/* If this is not event ring, there is one less usable TRB */
208 	if (ring->type != TYPE_EVENT &&
209 			!last_trb(xhci, ring, ring->enq_seg, ring->enqueue))
210 		ring->num_trbs_free--;
211 	next = ++(ring->enqueue);
212 
213 	ring->enq_updates++;
214 	/* Update the dequeue pointer further if that was a link TRB or we're at
215 	 * the end of an event ring segment (which doesn't have link TRBS)
216 	 */
217 	while (last_trb(xhci, ring, ring->enq_seg, next)) {
218 		if (ring->type != TYPE_EVENT) {
219 			/*
220 			 * If the caller doesn't plan on enqueueing more
221 			 * TDs before ringing the doorbell, then we
222 			 * don't want to give the link TRB to the
223 			 * hardware just yet.  We'll give the link TRB
224 			 * back in prepare_ring() just before we enqueue
225 			 * the TD at the top of the ring.
226 			 */
227 			if (!chain && !more_trbs_coming)
228 				break;
229 
230 			/* If we're not dealing with 0.95 hardware or
231 			 * isoc rings on AMD 0.96 host,
232 			 * carry over the chain bit of the previous TRB
233 			 * (which may mean the chain bit is cleared).
234 			 */
235 			if (!(ring->type == TYPE_ISOC &&
236 					(xhci->quirks & XHCI_AMD_0x96_HOST))
237 						&& !xhci_link_trb_quirk(xhci)) {
238 				next->link.control &=
239 					cpu_to_le32(~TRB_CHAIN);
240 				next->link.control |=
241 					cpu_to_le32(chain);
242 			}
243 			/* Give this link TRB to the hardware */
244 			wmb();
245 			next->link.control ^= cpu_to_le32(TRB_CYCLE);
246 
247 			/* Toggle the cycle bit after the last ring segment. */
248 			if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
249 				ring->cycle_state = (ring->cycle_state ? 0 : 1);
250 			}
251 		}
252 		ring->enq_seg = ring->enq_seg->next;
253 		ring->enqueue = ring->enq_seg->trbs;
254 		next = ring->enqueue;
255 	}
256 	addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue);
257 }
258 
259 /*
260  * Check to see if there's room to enqueue num_trbs on the ring and make sure
261  * enqueue pointer will not advance into dequeue segment. See rules above.
262  */
263 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
264 		unsigned int num_trbs)
265 {
266 	int num_trbs_in_deq_seg;
267 
268 	if (ring->num_trbs_free < num_trbs)
269 		return 0;
270 
271 	if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
272 		num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
273 		if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
274 			return 0;
275 	}
276 
277 	return 1;
278 }
279 
280 /* Ring the host controller doorbell after placing a command on the ring */
281 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
282 {
283 	if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
284 		return;
285 
286 	xhci_dbg(xhci, "// Ding dong!\n");
287 	xhci_writel(xhci, DB_VALUE_HOST, &xhci->dba->doorbell[0]);
288 	/* Flush PCI posted writes */
289 	xhci_readl(xhci, &xhci->dba->doorbell[0]);
290 }
291 
292 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci)
293 {
294 	u64 temp_64;
295 	int ret;
296 
297 	xhci_dbg(xhci, "Abort command ring\n");
298 
299 	if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) {
300 		xhci_dbg(xhci, "The command ring isn't running, "
301 				"Have the command ring been stopped?\n");
302 		return 0;
303 	}
304 
305 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
306 	if (!(temp_64 & CMD_RING_RUNNING)) {
307 		xhci_dbg(xhci, "Command ring had been stopped\n");
308 		return 0;
309 	}
310 	xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
311 	xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
312 			&xhci->op_regs->cmd_ring);
313 
314 	/* Section 4.6.1.2 of xHCI 1.0 spec says software should
315 	 * time the completion od all xHCI commands, including
316 	 * the Command Abort operation. If software doesn't see
317 	 * CRR negated in a timely manner (e.g. longer than 5
318 	 * seconds), then it should assume that the there are
319 	 * larger problems with the xHC and assert HCRST.
320 	 */
321 	ret = xhci_handshake(xhci, &xhci->op_regs->cmd_ring,
322 			CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
323 	if (ret < 0) {
324 		xhci_err(xhci, "Stopped the command ring failed, "
325 				"maybe the host is dead\n");
326 		xhci->xhc_state |= XHCI_STATE_DYING;
327 		xhci_quiesce(xhci);
328 		xhci_halt(xhci);
329 		return -ESHUTDOWN;
330 	}
331 
332 	return 0;
333 }
334 
335 static int xhci_queue_cd(struct xhci_hcd *xhci,
336 		struct xhci_command *command,
337 		union xhci_trb *cmd_trb)
338 {
339 	struct xhci_cd *cd;
340 	cd = kzalloc(sizeof(struct xhci_cd), GFP_ATOMIC);
341 	if (!cd)
342 		return -ENOMEM;
343 	INIT_LIST_HEAD(&cd->cancel_cmd_list);
344 
345 	cd->command = command;
346 	cd->cmd_trb = cmd_trb;
347 	list_add_tail(&cd->cancel_cmd_list, &xhci->cancel_cmd_list);
348 
349 	return 0;
350 }
351 
352 /*
353  * Cancel the command which has issue.
354  *
355  * Some commands may hang due to waiting for acknowledgement from
356  * usb device. It is outside of the xHC's ability to control and
357  * will cause the command ring is blocked. When it occurs software
358  * should intervene to recover the command ring.
359  * See Section 4.6.1.1 and 4.6.1.2
360  */
361 int xhci_cancel_cmd(struct xhci_hcd *xhci, struct xhci_command *command,
362 		union xhci_trb *cmd_trb)
363 {
364 	int retval = 0;
365 	unsigned long flags;
366 
367 	spin_lock_irqsave(&xhci->lock, flags);
368 
369 	if (xhci->xhc_state & XHCI_STATE_DYING) {
370 		xhci_warn(xhci, "Abort the command ring,"
371 				" but the xHCI is dead.\n");
372 		retval = -ESHUTDOWN;
373 		goto fail;
374 	}
375 
376 	/* queue the cmd desriptor to cancel_cmd_list */
377 	retval = xhci_queue_cd(xhci, command, cmd_trb);
378 	if (retval) {
379 		xhci_warn(xhci, "Queuing command descriptor failed.\n");
380 		goto fail;
381 	}
382 
383 	/* abort command ring */
384 	retval = xhci_abort_cmd_ring(xhci);
385 	if (retval) {
386 		xhci_err(xhci, "Abort command ring failed\n");
387 		if (unlikely(retval == -ESHUTDOWN)) {
388 			spin_unlock_irqrestore(&xhci->lock, flags);
389 			usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
390 			xhci_dbg(xhci, "xHCI host controller is dead.\n");
391 			return retval;
392 		}
393 	}
394 
395 fail:
396 	spin_unlock_irqrestore(&xhci->lock, flags);
397 	return retval;
398 }
399 
400 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
401 		unsigned int slot_id,
402 		unsigned int ep_index,
403 		unsigned int stream_id)
404 {
405 	__le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
406 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
407 	unsigned int ep_state = ep->ep_state;
408 
409 	/* Don't ring the doorbell for this endpoint if there are pending
410 	 * cancellations because we don't want to interrupt processing.
411 	 * We don't want to restart any stream rings if there's a set dequeue
412 	 * pointer command pending because the device can choose to start any
413 	 * stream once the endpoint is on the HW schedule.
414 	 * FIXME - check all the stream rings for pending cancellations.
415 	 */
416 	if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
417 	    (ep_state & EP_HALTED))
418 		return;
419 	xhci_writel(xhci, DB_VALUE(ep_index, stream_id), db_addr);
420 	/* The CPU has better things to do at this point than wait for a
421 	 * write-posting flush.  It'll get there soon enough.
422 	 */
423 }
424 
425 /* Ring the doorbell for any rings with pending URBs */
426 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
427 		unsigned int slot_id,
428 		unsigned int ep_index)
429 {
430 	unsigned int stream_id;
431 	struct xhci_virt_ep *ep;
432 
433 	ep = &xhci->devs[slot_id]->eps[ep_index];
434 
435 	/* A ring has pending URBs if its TD list is not empty */
436 	if (!(ep->ep_state & EP_HAS_STREAMS)) {
437 		if (!(list_empty(&ep->ring->td_list)))
438 			xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
439 		return;
440 	}
441 
442 	for (stream_id = 1; stream_id < ep->stream_info->num_streams;
443 			stream_id++) {
444 		struct xhci_stream_info *stream_info = ep->stream_info;
445 		if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
446 			xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
447 						stream_id);
448 	}
449 }
450 
451 /*
452  * Find the segment that trb is in.  Start searching in start_seg.
453  * If we must move past a segment that has a link TRB with a toggle cycle state
454  * bit set, then we will toggle the value pointed at by cycle_state.
455  */
456 static struct xhci_segment *find_trb_seg(
457 		struct xhci_segment *start_seg,
458 		union xhci_trb	*trb, int *cycle_state)
459 {
460 	struct xhci_segment *cur_seg = start_seg;
461 	struct xhci_generic_trb *generic_trb;
462 
463 	while (cur_seg->trbs > trb ||
464 			&cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) {
465 		generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic;
466 		if (generic_trb->field[3] & cpu_to_le32(LINK_TOGGLE))
467 			*cycle_state ^= 0x1;
468 		cur_seg = cur_seg->next;
469 		if (cur_seg == start_seg)
470 			/* Looped over the entire list.  Oops! */
471 			return NULL;
472 	}
473 	return cur_seg;
474 }
475 
476 
477 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
478 		unsigned int slot_id, unsigned int ep_index,
479 		unsigned int stream_id)
480 {
481 	struct xhci_virt_ep *ep;
482 
483 	ep = &xhci->devs[slot_id]->eps[ep_index];
484 	/* Common case: no streams */
485 	if (!(ep->ep_state & EP_HAS_STREAMS))
486 		return ep->ring;
487 
488 	if (stream_id == 0) {
489 		xhci_warn(xhci,
490 				"WARN: Slot ID %u, ep index %u has streams, "
491 				"but URB has no stream ID.\n",
492 				slot_id, ep_index);
493 		return NULL;
494 	}
495 
496 	if (stream_id < ep->stream_info->num_streams)
497 		return ep->stream_info->stream_rings[stream_id];
498 
499 	xhci_warn(xhci,
500 			"WARN: Slot ID %u, ep index %u has "
501 			"stream IDs 1 to %u allocated, "
502 			"but stream ID %u is requested.\n",
503 			slot_id, ep_index,
504 			ep->stream_info->num_streams - 1,
505 			stream_id);
506 	return NULL;
507 }
508 
509 /* Get the right ring for the given URB.
510  * If the endpoint supports streams, boundary check the URB's stream ID.
511  * If the endpoint doesn't support streams, return the singular endpoint ring.
512  */
513 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
514 		struct urb *urb)
515 {
516 	return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id,
517 		xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id);
518 }
519 
520 /*
521  * Move the xHC's endpoint ring dequeue pointer past cur_td.
522  * Record the new state of the xHC's endpoint ring dequeue segment,
523  * dequeue pointer, and new consumer cycle state in state.
524  * Update our internal representation of the ring's dequeue pointer.
525  *
526  * We do this in three jumps:
527  *  - First we update our new ring state to be the same as when the xHC stopped.
528  *  - Then we traverse the ring to find the segment that contains
529  *    the last TRB in the TD.  We toggle the xHC's new cycle state when we pass
530  *    any link TRBs with the toggle cycle bit set.
531  *  - Finally we move the dequeue state one TRB further, toggling the cycle bit
532  *    if we've moved it past a link TRB with the toggle cycle bit set.
533  *
534  * Some of the uses of xhci_generic_trb are grotty, but if they're done
535  * with correct __le32 accesses they should work fine.  Only users of this are
536  * in here.
537  */
538 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
539 		unsigned int slot_id, unsigned int ep_index,
540 		unsigned int stream_id, struct xhci_td *cur_td,
541 		struct xhci_dequeue_state *state)
542 {
543 	struct xhci_virt_device *dev = xhci->devs[slot_id];
544 	struct xhci_ring *ep_ring;
545 	struct xhci_generic_trb *trb;
546 	struct xhci_ep_ctx *ep_ctx;
547 	dma_addr_t addr;
548 
549 	ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
550 			ep_index, stream_id);
551 	if (!ep_ring) {
552 		xhci_warn(xhci, "WARN can't find new dequeue state "
553 				"for invalid stream ID %u.\n",
554 				stream_id);
555 		return;
556 	}
557 	state->new_cycle_state = 0;
558 	xhci_dbg(xhci, "Finding segment containing stopped TRB.\n");
559 	state->new_deq_seg = find_trb_seg(cur_td->start_seg,
560 			dev->eps[ep_index].stopped_trb,
561 			&state->new_cycle_state);
562 	if (!state->new_deq_seg) {
563 		WARN_ON(1);
564 		return;
565 	}
566 
567 	/* Dig out the cycle state saved by the xHC during the stop ep cmd */
568 	xhci_dbg(xhci, "Finding endpoint context\n");
569 	ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
570 	state->new_cycle_state = 0x1 & le64_to_cpu(ep_ctx->deq);
571 
572 	state->new_deq_ptr = cur_td->last_trb;
573 	xhci_dbg(xhci, "Finding segment containing last TRB in TD.\n");
574 	state->new_deq_seg = find_trb_seg(state->new_deq_seg,
575 			state->new_deq_ptr,
576 			&state->new_cycle_state);
577 	if (!state->new_deq_seg) {
578 		WARN_ON(1);
579 		return;
580 	}
581 
582 	trb = &state->new_deq_ptr->generic;
583 	if (TRB_TYPE_LINK_LE32(trb->field[3]) &&
584 	    (trb->field[3] & cpu_to_le32(LINK_TOGGLE)))
585 		state->new_cycle_state ^= 0x1;
586 	next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr);
587 
588 	/*
589 	 * If there is only one segment in a ring, find_trb_seg()'s while loop
590 	 * will not run, and it will return before it has a chance to see if it
591 	 * needs to toggle the cycle bit.  It can't tell if the stalled transfer
592 	 * ended just before the link TRB on a one-segment ring, or if the TD
593 	 * wrapped around the top of the ring, because it doesn't have the TD in
594 	 * question.  Look for the one-segment case where stalled TRB's address
595 	 * is greater than the new dequeue pointer address.
596 	 */
597 	if (ep_ring->first_seg == ep_ring->first_seg->next &&
598 			state->new_deq_ptr < dev->eps[ep_index].stopped_trb)
599 		state->new_cycle_state ^= 0x1;
600 	xhci_dbg(xhci, "Cycle state = 0x%x\n", state->new_cycle_state);
601 
602 	/* Don't update the ring cycle state for the producer (us). */
603 	xhci_dbg(xhci, "New dequeue segment = %p (virtual)\n",
604 			state->new_deq_seg);
605 	addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
606 	xhci_dbg(xhci, "New dequeue pointer = 0x%llx (DMA)\n",
607 			(unsigned long long) addr);
608 }
609 
610 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
611  * (The last TRB actually points to the ring enqueue pointer, which is not part
612  * of this TD.)  This is used to remove partially enqueued isoc TDs from a ring.
613  */
614 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
615 		struct xhci_td *cur_td, bool flip_cycle)
616 {
617 	struct xhci_segment *cur_seg;
618 	union xhci_trb *cur_trb;
619 
620 	for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
621 			true;
622 			next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
623 		if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) {
624 			/* Unchain any chained Link TRBs, but
625 			 * leave the pointers intact.
626 			 */
627 			cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN);
628 			/* Flip the cycle bit (link TRBs can't be the first
629 			 * or last TRB).
630 			 */
631 			if (flip_cycle)
632 				cur_trb->generic.field[3] ^=
633 					cpu_to_le32(TRB_CYCLE);
634 			xhci_dbg(xhci, "Cancel (unchain) link TRB\n");
635 			xhci_dbg(xhci, "Address = %p (0x%llx dma); "
636 					"in seg %p (0x%llx dma)\n",
637 					cur_trb,
638 					(unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
639 					cur_seg,
640 					(unsigned long long)cur_seg->dma);
641 		} else {
642 			cur_trb->generic.field[0] = 0;
643 			cur_trb->generic.field[1] = 0;
644 			cur_trb->generic.field[2] = 0;
645 			/* Preserve only the cycle bit of this TRB */
646 			cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
647 			/* Flip the cycle bit except on the first or last TRB */
648 			if (flip_cycle && cur_trb != cur_td->first_trb &&
649 					cur_trb != cur_td->last_trb)
650 				cur_trb->generic.field[3] ^=
651 					cpu_to_le32(TRB_CYCLE);
652 			cur_trb->generic.field[3] |= cpu_to_le32(
653 				TRB_TYPE(TRB_TR_NOOP));
654 			xhci_dbg(xhci, "TRB to noop at offset 0x%llx\n",
655 					(unsigned long long)
656 					xhci_trb_virt_to_dma(cur_seg, cur_trb));
657 		}
658 		if (cur_trb == cur_td->last_trb)
659 			break;
660 	}
661 }
662 
663 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
664 		unsigned int ep_index, unsigned int stream_id,
665 		struct xhci_segment *deq_seg,
666 		union xhci_trb *deq_ptr, u32 cycle_state);
667 
668 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
669 		unsigned int slot_id, unsigned int ep_index,
670 		unsigned int stream_id,
671 		struct xhci_dequeue_state *deq_state)
672 {
673 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
674 
675 	xhci_dbg(xhci, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), "
676 			"new deq ptr = %p (0x%llx dma), new cycle = %u\n",
677 			deq_state->new_deq_seg,
678 			(unsigned long long)deq_state->new_deq_seg->dma,
679 			deq_state->new_deq_ptr,
680 			(unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr),
681 			deq_state->new_cycle_state);
682 	queue_set_tr_deq(xhci, slot_id, ep_index, stream_id,
683 			deq_state->new_deq_seg,
684 			deq_state->new_deq_ptr,
685 			(u32) deq_state->new_cycle_state);
686 	/* Stop the TD queueing code from ringing the doorbell until
687 	 * this command completes.  The HC won't set the dequeue pointer
688 	 * if the ring is running, and ringing the doorbell starts the
689 	 * ring running.
690 	 */
691 	ep->ep_state |= SET_DEQ_PENDING;
692 }
693 
694 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
695 		struct xhci_virt_ep *ep)
696 {
697 	ep->ep_state &= ~EP_HALT_PENDING;
698 	/* Can't del_timer_sync in interrupt, so we attempt to cancel.  If the
699 	 * timer is running on another CPU, we don't decrement stop_cmds_pending
700 	 * (since we didn't successfully stop the watchdog timer).
701 	 */
702 	if (del_timer(&ep->stop_cmd_timer))
703 		ep->stop_cmds_pending--;
704 }
705 
706 /* Must be called with xhci->lock held in interrupt context */
707 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
708 		struct xhci_td *cur_td, int status, char *adjective)
709 {
710 	struct usb_hcd *hcd;
711 	struct urb	*urb;
712 	struct urb_priv	*urb_priv;
713 
714 	urb = cur_td->urb;
715 	urb_priv = urb->hcpriv;
716 	urb_priv->td_cnt++;
717 	hcd = bus_to_hcd(urb->dev->bus);
718 
719 	/* Only giveback urb when this is the last td in urb */
720 	if (urb_priv->td_cnt == urb_priv->length) {
721 		if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
722 			xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
723 			if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs	== 0) {
724 				if (xhci->quirks & XHCI_AMD_PLL_FIX)
725 					usb_amd_quirk_pll_enable();
726 			}
727 		}
728 		usb_hcd_unlink_urb_from_ep(hcd, urb);
729 
730 		spin_unlock(&xhci->lock);
731 		usb_hcd_giveback_urb(hcd, urb, status);
732 		xhci_urb_free_priv(xhci, urb_priv);
733 		spin_lock(&xhci->lock);
734 	}
735 }
736 
737 /*
738  * When we get a command completion for a Stop Endpoint Command, we need to
739  * unlink any cancelled TDs from the ring.  There are two ways to do that:
740  *
741  *  1. If the HW was in the middle of processing the TD that needs to be
742  *     cancelled, then we must move the ring's dequeue pointer past the last TRB
743  *     in the TD with a Set Dequeue Pointer Command.
744  *  2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
745  *     bit cleared) so that the HW will skip over them.
746  */
747 static void handle_stopped_endpoint(struct xhci_hcd *xhci,
748 		union xhci_trb *trb, struct xhci_event_cmd *event)
749 {
750 	unsigned int slot_id;
751 	unsigned int ep_index;
752 	struct xhci_virt_device *virt_dev;
753 	struct xhci_ring *ep_ring;
754 	struct xhci_virt_ep *ep;
755 	struct list_head *entry;
756 	struct xhci_td *cur_td = NULL;
757 	struct xhci_td *last_unlinked_td;
758 
759 	struct xhci_dequeue_state deq_state;
760 
761 	if (unlikely(TRB_TO_SUSPEND_PORT(
762 			     le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])))) {
763 		slot_id = TRB_TO_SLOT_ID(
764 			le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
765 		virt_dev = xhci->devs[slot_id];
766 		if (virt_dev)
767 			handle_cmd_in_cmd_wait_list(xhci, virt_dev,
768 				event);
769 		else
770 			xhci_warn(xhci, "Stop endpoint command "
771 				"completion for disabled slot %u\n",
772 				slot_id);
773 		return;
774 	}
775 
776 	memset(&deq_state, 0, sizeof(deq_state));
777 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
778 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
779 	ep = &xhci->devs[slot_id]->eps[ep_index];
780 
781 	if (list_empty(&ep->cancelled_td_list)) {
782 		xhci_stop_watchdog_timer_in_irq(xhci, ep);
783 		ep->stopped_td = NULL;
784 		ep->stopped_trb = NULL;
785 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
786 		return;
787 	}
788 
789 	/* Fix up the ep ring first, so HW stops executing cancelled TDs.
790 	 * We have the xHCI lock, so nothing can modify this list until we drop
791 	 * it.  We're also in the event handler, so we can't get re-interrupted
792 	 * if another Stop Endpoint command completes
793 	 */
794 	list_for_each(entry, &ep->cancelled_td_list) {
795 		cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
796 		xhci_dbg(xhci, "Removing canceled TD starting at 0x%llx (dma).\n",
797 				(unsigned long long)xhci_trb_virt_to_dma(
798 					cur_td->start_seg, cur_td->first_trb));
799 		ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
800 		if (!ep_ring) {
801 			/* This shouldn't happen unless a driver is mucking
802 			 * with the stream ID after submission.  This will
803 			 * leave the TD on the hardware ring, and the hardware
804 			 * will try to execute it, and may access a buffer
805 			 * that has already been freed.  In the best case, the
806 			 * hardware will execute it, and the event handler will
807 			 * ignore the completion event for that TD, since it was
808 			 * removed from the td_list for that endpoint.  In
809 			 * short, don't muck with the stream ID after
810 			 * submission.
811 			 */
812 			xhci_warn(xhci, "WARN Cancelled URB %p "
813 					"has invalid stream ID %u.\n",
814 					cur_td->urb,
815 					cur_td->urb->stream_id);
816 			goto remove_finished_td;
817 		}
818 		/*
819 		 * If we stopped on the TD we need to cancel, then we have to
820 		 * move the xHC endpoint ring dequeue pointer past this TD.
821 		 */
822 		if (cur_td == ep->stopped_td)
823 			xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
824 					cur_td->urb->stream_id,
825 					cur_td, &deq_state);
826 		else
827 			td_to_noop(xhci, ep_ring, cur_td, false);
828 remove_finished_td:
829 		/*
830 		 * The event handler won't see a completion for this TD anymore,
831 		 * so remove it from the endpoint ring's TD list.  Keep it in
832 		 * the cancelled TD list for URB completion later.
833 		 */
834 		list_del_init(&cur_td->td_list);
835 	}
836 	last_unlinked_td = cur_td;
837 	xhci_stop_watchdog_timer_in_irq(xhci, ep);
838 
839 	/* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
840 	if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
841 		xhci_queue_new_dequeue_state(xhci,
842 				slot_id, ep_index,
843 				ep->stopped_td->urb->stream_id,
844 				&deq_state);
845 		xhci_ring_cmd_db(xhci);
846 	} else {
847 		/* Otherwise ring the doorbell(s) to restart queued transfers */
848 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
849 	}
850 	ep->stopped_td = NULL;
851 	ep->stopped_trb = NULL;
852 
853 	/*
854 	 * Drop the lock and complete the URBs in the cancelled TD list.
855 	 * New TDs to be cancelled might be added to the end of the list before
856 	 * we can complete all the URBs for the TDs we already unlinked.
857 	 * So stop when we've completed the URB for the last TD we unlinked.
858 	 */
859 	do {
860 		cur_td = list_entry(ep->cancelled_td_list.next,
861 				struct xhci_td, cancelled_td_list);
862 		list_del_init(&cur_td->cancelled_td_list);
863 
864 		/* Clean up the cancelled URB */
865 		/* Doesn't matter what we pass for status, since the core will
866 		 * just overwrite it (because the URB has been unlinked).
867 		 */
868 		xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled");
869 
870 		/* Stop processing the cancelled list if the watchdog timer is
871 		 * running.
872 		 */
873 		if (xhci->xhc_state & XHCI_STATE_DYING)
874 			return;
875 	} while (cur_td != last_unlinked_td);
876 
877 	/* Return to the event handler with xhci->lock re-acquired */
878 }
879 
880 /* Watchdog timer function for when a stop endpoint command fails to complete.
881  * In this case, we assume the host controller is broken or dying or dead.  The
882  * host may still be completing some other events, so we have to be careful to
883  * let the event ring handler and the URB dequeueing/enqueueing functions know
884  * through xhci->state.
885  *
886  * The timer may also fire if the host takes a very long time to respond to the
887  * command, and the stop endpoint command completion handler cannot delete the
888  * timer before the timer function is called.  Another endpoint cancellation may
889  * sneak in before the timer function can grab the lock, and that may queue
890  * another stop endpoint command and add the timer back.  So we cannot use a
891  * simple flag to say whether there is a pending stop endpoint command for a
892  * particular endpoint.
893  *
894  * Instead we use a combination of that flag and a counter for the number of
895  * pending stop endpoint commands.  If the timer is the tail end of the last
896  * stop endpoint command, and the endpoint's command is still pending, we assume
897  * the host is dying.
898  */
899 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
900 {
901 	struct xhci_hcd *xhci;
902 	struct xhci_virt_ep *ep;
903 	struct xhci_virt_ep *temp_ep;
904 	struct xhci_ring *ring;
905 	struct xhci_td *cur_td;
906 	int ret, i, j;
907 	unsigned long flags;
908 
909 	ep = (struct xhci_virt_ep *) arg;
910 	xhci = ep->xhci;
911 
912 	spin_lock_irqsave(&xhci->lock, flags);
913 
914 	ep->stop_cmds_pending--;
915 	if (xhci->xhc_state & XHCI_STATE_DYING) {
916 		xhci_dbg(xhci, "Stop EP timer ran, but another timer marked "
917 				"xHCI as DYING, exiting.\n");
918 		spin_unlock_irqrestore(&xhci->lock, flags);
919 		return;
920 	}
921 	if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
922 		xhci_dbg(xhci, "Stop EP timer ran, but no command pending, "
923 				"exiting.\n");
924 		spin_unlock_irqrestore(&xhci->lock, flags);
925 		return;
926 	}
927 
928 	xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
929 	xhci_warn(xhci, "Assuming host is dying, halting host.\n");
930 	/* Oops, HC is dead or dying or at least not responding to the stop
931 	 * endpoint command.
932 	 */
933 	xhci->xhc_state |= XHCI_STATE_DYING;
934 	/* Disable interrupts from the host controller and start halting it */
935 	xhci_quiesce(xhci);
936 	spin_unlock_irqrestore(&xhci->lock, flags);
937 
938 	ret = xhci_halt(xhci);
939 
940 	spin_lock_irqsave(&xhci->lock, flags);
941 	if (ret < 0) {
942 		/* This is bad; the host is not responding to commands and it's
943 		 * not allowing itself to be halted.  At least interrupts are
944 		 * disabled. If we call usb_hc_died(), it will attempt to
945 		 * disconnect all device drivers under this host.  Those
946 		 * disconnect() methods will wait for all URBs to be unlinked,
947 		 * so we must complete them.
948 		 */
949 		xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
950 		xhci_warn(xhci, "Completing active URBs anyway.\n");
951 		/* We could turn all TDs on the rings to no-ops.  This won't
952 		 * help if the host has cached part of the ring, and is slow if
953 		 * we want to preserve the cycle bit.  Skip it and hope the host
954 		 * doesn't touch the memory.
955 		 */
956 	}
957 	for (i = 0; i < MAX_HC_SLOTS; i++) {
958 		if (!xhci->devs[i])
959 			continue;
960 		for (j = 0; j < 31; j++) {
961 			temp_ep = &xhci->devs[i]->eps[j];
962 			ring = temp_ep->ring;
963 			if (!ring)
964 				continue;
965 			xhci_dbg(xhci, "Killing URBs for slot ID %u, "
966 					"ep index %u\n", i, j);
967 			while (!list_empty(&ring->td_list)) {
968 				cur_td = list_first_entry(&ring->td_list,
969 						struct xhci_td,
970 						td_list);
971 				list_del_init(&cur_td->td_list);
972 				if (!list_empty(&cur_td->cancelled_td_list))
973 					list_del_init(&cur_td->cancelled_td_list);
974 				xhci_giveback_urb_in_irq(xhci, cur_td,
975 						-ESHUTDOWN, "killed");
976 			}
977 			while (!list_empty(&temp_ep->cancelled_td_list)) {
978 				cur_td = list_first_entry(
979 						&temp_ep->cancelled_td_list,
980 						struct xhci_td,
981 						cancelled_td_list);
982 				list_del_init(&cur_td->cancelled_td_list);
983 				xhci_giveback_urb_in_irq(xhci, cur_td,
984 						-ESHUTDOWN, "killed");
985 			}
986 		}
987 	}
988 	spin_unlock_irqrestore(&xhci->lock, flags);
989 	xhci_dbg(xhci, "Calling usb_hc_died()\n");
990 	usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
991 	xhci_dbg(xhci, "xHCI host controller is dead.\n");
992 }
993 
994 
995 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
996 		struct xhci_virt_device *dev,
997 		struct xhci_ring *ep_ring,
998 		unsigned int ep_index)
999 {
1000 	union xhci_trb *dequeue_temp;
1001 	int num_trbs_free_temp;
1002 	bool revert = false;
1003 
1004 	num_trbs_free_temp = ep_ring->num_trbs_free;
1005 	dequeue_temp = ep_ring->dequeue;
1006 
1007 	/* If we get two back-to-back stalls, and the first stalled transfer
1008 	 * ends just before a link TRB, the dequeue pointer will be left on
1009 	 * the link TRB by the code in the while loop.  So we have to update
1010 	 * the dequeue pointer one segment further, or we'll jump off
1011 	 * the segment into la-la-land.
1012 	 */
1013 	if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) {
1014 		ep_ring->deq_seg = ep_ring->deq_seg->next;
1015 		ep_ring->dequeue = ep_ring->deq_seg->trbs;
1016 	}
1017 
1018 	while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
1019 		/* We have more usable TRBs */
1020 		ep_ring->num_trbs_free++;
1021 		ep_ring->dequeue++;
1022 		if (last_trb(xhci, ep_ring, ep_ring->deq_seg,
1023 				ep_ring->dequeue)) {
1024 			if (ep_ring->dequeue ==
1025 					dev->eps[ep_index].queued_deq_ptr)
1026 				break;
1027 			ep_ring->deq_seg = ep_ring->deq_seg->next;
1028 			ep_ring->dequeue = ep_ring->deq_seg->trbs;
1029 		}
1030 		if (ep_ring->dequeue == dequeue_temp) {
1031 			revert = true;
1032 			break;
1033 		}
1034 	}
1035 
1036 	if (revert) {
1037 		xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
1038 		ep_ring->num_trbs_free = num_trbs_free_temp;
1039 	}
1040 }
1041 
1042 /*
1043  * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
1044  * we need to clear the set deq pending flag in the endpoint ring state, so that
1045  * the TD queueing code can ring the doorbell again.  We also need to ring the
1046  * endpoint doorbell to restart the ring, but only if there aren't more
1047  * cancellations pending.
1048  */
1049 static void handle_set_deq_completion(struct xhci_hcd *xhci,
1050 		struct xhci_event_cmd *event,
1051 		union xhci_trb *trb)
1052 {
1053 	unsigned int slot_id;
1054 	unsigned int ep_index;
1055 	unsigned int stream_id;
1056 	struct xhci_ring *ep_ring;
1057 	struct xhci_virt_device *dev;
1058 	struct xhci_ep_ctx *ep_ctx;
1059 	struct xhci_slot_ctx *slot_ctx;
1060 
1061 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
1062 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1063 	stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
1064 	dev = xhci->devs[slot_id];
1065 
1066 	ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
1067 	if (!ep_ring) {
1068 		xhci_warn(xhci, "WARN Set TR deq ptr command for "
1069 				"freed stream ID %u\n",
1070 				stream_id);
1071 		/* XXX: Harmless??? */
1072 		dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1073 		return;
1074 	}
1075 
1076 	ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
1077 	slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
1078 
1079 	if (GET_COMP_CODE(le32_to_cpu(event->status)) != COMP_SUCCESS) {
1080 		unsigned int ep_state;
1081 		unsigned int slot_state;
1082 
1083 		switch (GET_COMP_CODE(le32_to_cpu(event->status))) {
1084 		case COMP_TRB_ERR:
1085 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because "
1086 					"of stream ID configuration\n");
1087 			break;
1088 		case COMP_CTX_STATE:
1089 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due "
1090 					"to incorrect slot or ep state.\n");
1091 			ep_state = le32_to_cpu(ep_ctx->ep_info);
1092 			ep_state &= EP_STATE_MASK;
1093 			slot_state = le32_to_cpu(slot_ctx->dev_state);
1094 			slot_state = GET_SLOT_STATE(slot_state);
1095 			xhci_dbg(xhci, "Slot state = %u, EP state = %u\n",
1096 					slot_state, ep_state);
1097 			break;
1098 		case COMP_EBADSLT:
1099 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because "
1100 					"slot %u was not enabled.\n", slot_id);
1101 			break;
1102 		default:
1103 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown "
1104 					"completion code of %u.\n",
1105 				  GET_COMP_CODE(le32_to_cpu(event->status)));
1106 			break;
1107 		}
1108 		/* OK what do we do now?  The endpoint state is hosed, and we
1109 		 * should never get to this point if the synchronization between
1110 		 * queueing, and endpoint state are correct.  This might happen
1111 		 * if the device gets disconnected after we've finished
1112 		 * cancelling URBs, which might not be an error...
1113 		 */
1114 	} else {
1115 		xhci_dbg(xhci, "Successful Set TR Deq Ptr cmd, deq = @%08llx\n",
1116 			 le64_to_cpu(ep_ctx->deq));
1117 		if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg,
1118 					 dev->eps[ep_index].queued_deq_ptr) ==
1119 		    (le64_to_cpu(ep_ctx->deq) & ~(EP_CTX_CYCLE_MASK))) {
1120 			/* Update the ring's dequeue segment and dequeue pointer
1121 			 * to reflect the new position.
1122 			 */
1123 			update_ring_for_set_deq_completion(xhci, dev,
1124 				ep_ring, ep_index);
1125 		} else {
1126 			xhci_warn(xhci, "Mismatch between completed Set TR Deq "
1127 					"Ptr command & xHCI internal state.\n");
1128 			xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1129 					dev->eps[ep_index].queued_deq_seg,
1130 					dev->eps[ep_index].queued_deq_ptr);
1131 		}
1132 	}
1133 
1134 	dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1135 	dev->eps[ep_index].queued_deq_seg = NULL;
1136 	dev->eps[ep_index].queued_deq_ptr = NULL;
1137 	/* Restart any rings with pending URBs */
1138 	ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1139 }
1140 
1141 static void handle_reset_ep_completion(struct xhci_hcd *xhci,
1142 		struct xhci_event_cmd *event,
1143 		union xhci_trb *trb)
1144 {
1145 	int slot_id;
1146 	unsigned int ep_index;
1147 
1148 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
1149 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1150 	/* This command will only fail if the endpoint wasn't halted,
1151 	 * but we don't care.
1152 	 */
1153 	xhci_dbg(xhci, "Ignoring reset ep completion code of %u\n",
1154 		 GET_COMP_CODE(le32_to_cpu(event->status)));
1155 
1156 	/* HW with the reset endpoint quirk needs to have a configure endpoint
1157 	 * command complete before the endpoint can be used.  Queue that here
1158 	 * because the HW can't handle two commands being queued in a row.
1159 	 */
1160 	if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1161 		xhci_dbg(xhci, "Queueing configure endpoint command\n");
1162 		xhci_queue_configure_endpoint(xhci,
1163 				xhci->devs[slot_id]->in_ctx->dma, slot_id,
1164 				false);
1165 		xhci_ring_cmd_db(xhci);
1166 	} else {
1167 		/* Clear our internal halted state and restart the ring(s) */
1168 		xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1169 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1170 	}
1171 }
1172 
1173 /* Complete the command and detele it from the devcie's command queue.
1174  */
1175 static void xhci_complete_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
1176 		struct xhci_command *command, u32 status)
1177 {
1178 	command->status = status;
1179 	list_del(&command->cmd_list);
1180 	if (command->completion)
1181 		complete(command->completion);
1182 	else
1183 		xhci_free_command(xhci, command);
1184 }
1185 
1186 
1187 /* Check to see if a command in the device's command queue matches this one.
1188  * Signal the completion or free the command, and return 1.  Return 0 if the
1189  * completed command isn't at the head of the command list.
1190  */
1191 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
1192 		struct xhci_virt_device *virt_dev,
1193 		struct xhci_event_cmd *event)
1194 {
1195 	struct xhci_command *command;
1196 
1197 	if (list_empty(&virt_dev->cmd_list))
1198 		return 0;
1199 
1200 	command = list_entry(virt_dev->cmd_list.next,
1201 			struct xhci_command, cmd_list);
1202 	if (xhci->cmd_ring->dequeue != command->command_trb)
1203 		return 0;
1204 
1205 	xhci_complete_cmd_in_cmd_wait_list(xhci, command,
1206 			GET_COMP_CODE(le32_to_cpu(event->status)));
1207 	return 1;
1208 }
1209 
1210 /*
1211  * Finding the command trb need to be cancelled and modifying it to
1212  * NO OP command. And if the command is in device's command wait
1213  * list, finishing and freeing it.
1214  *
1215  * If we can't find the command trb, we think it had already been
1216  * executed.
1217  */
1218 static void xhci_cmd_to_noop(struct xhci_hcd *xhci, struct xhci_cd *cur_cd)
1219 {
1220 	struct xhci_segment *cur_seg;
1221 	union xhci_trb *cmd_trb;
1222 	u32 cycle_state;
1223 
1224 	if (xhci->cmd_ring->dequeue == xhci->cmd_ring->enqueue)
1225 		return;
1226 
1227 	/* find the current segment of command ring */
1228 	cur_seg = find_trb_seg(xhci->cmd_ring->first_seg,
1229 			xhci->cmd_ring->dequeue, &cycle_state);
1230 
1231 	if (!cur_seg) {
1232 		xhci_warn(xhci, "Command ring mismatch, dequeue = %p %llx (dma)\n",
1233 				xhci->cmd_ring->dequeue,
1234 				(unsigned long long)
1235 				xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1236 					xhci->cmd_ring->dequeue));
1237 		xhci_debug_ring(xhci, xhci->cmd_ring);
1238 		xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
1239 		return;
1240 	}
1241 
1242 	/* find the command trb matched by cd from command ring */
1243 	for (cmd_trb = xhci->cmd_ring->dequeue;
1244 			cmd_trb != xhci->cmd_ring->enqueue;
1245 			next_trb(xhci, xhci->cmd_ring, &cur_seg, &cmd_trb)) {
1246 		/* If the trb is link trb, continue */
1247 		if (TRB_TYPE_LINK_LE32(cmd_trb->generic.field[3]))
1248 			continue;
1249 
1250 		if (cur_cd->cmd_trb == cmd_trb) {
1251 
1252 			/* If the command in device's command list, we should
1253 			 * finish it and free the command structure.
1254 			 */
1255 			if (cur_cd->command)
1256 				xhci_complete_cmd_in_cmd_wait_list(xhci,
1257 					cur_cd->command, COMP_CMD_STOP);
1258 
1259 			/* get cycle state from the origin command trb */
1260 			cycle_state = le32_to_cpu(cmd_trb->generic.field[3])
1261 				& TRB_CYCLE;
1262 
1263 			/* modify the command trb to NO OP command */
1264 			cmd_trb->generic.field[0] = 0;
1265 			cmd_trb->generic.field[1] = 0;
1266 			cmd_trb->generic.field[2] = 0;
1267 			cmd_trb->generic.field[3] = cpu_to_le32(
1268 					TRB_TYPE(TRB_CMD_NOOP) | cycle_state);
1269 			break;
1270 		}
1271 	}
1272 }
1273 
1274 static void xhci_cancel_cmd_in_cd_list(struct xhci_hcd *xhci)
1275 {
1276 	struct xhci_cd *cur_cd, *next_cd;
1277 
1278 	if (list_empty(&xhci->cancel_cmd_list))
1279 		return;
1280 
1281 	list_for_each_entry_safe(cur_cd, next_cd,
1282 			&xhci->cancel_cmd_list, cancel_cmd_list) {
1283 		xhci_cmd_to_noop(xhci, cur_cd);
1284 		list_del(&cur_cd->cancel_cmd_list);
1285 		kfree(cur_cd);
1286 	}
1287 }
1288 
1289 /*
1290  * traversing the cancel_cmd_list. If the command descriptor according
1291  * to cmd_trb is found, the function free it and return 1, otherwise
1292  * return 0.
1293  */
1294 static int xhci_search_cmd_trb_in_cd_list(struct xhci_hcd *xhci,
1295 		union xhci_trb *cmd_trb)
1296 {
1297 	struct xhci_cd *cur_cd, *next_cd;
1298 
1299 	if (list_empty(&xhci->cancel_cmd_list))
1300 		return 0;
1301 
1302 	list_for_each_entry_safe(cur_cd, next_cd,
1303 			&xhci->cancel_cmd_list, cancel_cmd_list) {
1304 		if (cur_cd->cmd_trb == cmd_trb) {
1305 			if (cur_cd->command)
1306 				xhci_complete_cmd_in_cmd_wait_list(xhci,
1307 					cur_cd->command, COMP_CMD_STOP);
1308 			list_del(&cur_cd->cancel_cmd_list);
1309 			kfree(cur_cd);
1310 			return 1;
1311 		}
1312 	}
1313 
1314 	return 0;
1315 }
1316 
1317 /*
1318  * If the cmd_trb_comp_code is COMP_CMD_ABORT, we just check whether the
1319  * trb pointed by the command ring dequeue pointer is the trb we want to
1320  * cancel or not. And if the cmd_trb_comp_code is COMP_CMD_STOP, we will
1321  * traverse the cancel_cmd_list to trun the all of the commands according
1322  * to command descriptor to NO-OP trb.
1323  */
1324 static int handle_stopped_cmd_ring(struct xhci_hcd *xhci,
1325 		int cmd_trb_comp_code)
1326 {
1327 	int cur_trb_is_good = 0;
1328 
1329 	/* Searching the cmd trb pointed by the command ring dequeue
1330 	 * pointer in command descriptor list. If it is found, free it.
1331 	 */
1332 	cur_trb_is_good = xhci_search_cmd_trb_in_cd_list(xhci,
1333 			xhci->cmd_ring->dequeue);
1334 
1335 	if (cmd_trb_comp_code == COMP_CMD_ABORT)
1336 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
1337 	else if (cmd_trb_comp_code == COMP_CMD_STOP) {
1338 		/* traversing the cancel_cmd_list and canceling
1339 		 * the command according to command descriptor
1340 		 */
1341 		xhci_cancel_cmd_in_cd_list(xhci);
1342 
1343 		xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
1344 		/*
1345 		 * ring command ring doorbell again to restart the
1346 		 * command ring
1347 		 */
1348 		if (xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue)
1349 			xhci_ring_cmd_db(xhci);
1350 	}
1351 	return cur_trb_is_good;
1352 }
1353 
1354 static void handle_cmd_completion(struct xhci_hcd *xhci,
1355 		struct xhci_event_cmd *event)
1356 {
1357 	int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1358 	u64 cmd_dma;
1359 	dma_addr_t cmd_dequeue_dma;
1360 	struct xhci_input_control_ctx *ctrl_ctx;
1361 	struct xhci_virt_device *virt_dev;
1362 	unsigned int ep_index;
1363 	struct xhci_ring *ep_ring;
1364 	unsigned int ep_state;
1365 
1366 	cmd_dma = le64_to_cpu(event->cmd_trb);
1367 	cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1368 			xhci->cmd_ring->dequeue);
1369 	/* Is the command ring deq ptr out of sync with the deq seg ptr? */
1370 	if (cmd_dequeue_dma == 0) {
1371 		xhci->error_bitmask |= 1 << 4;
1372 		return;
1373 	}
1374 	/* Does the DMA address match our internal dequeue pointer address? */
1375 	if (cmd_dma != (u64) cmd_dequeue_dma) {
1376 		xhci->error_bitmask |= 1 << 5;
1377 		return;
1378 	}
1379 
1380 	if ((GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_CMD_ABORT) ||
1381 		(GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_CMD_STOP)) {
1382 		/* If the return value is 0, we think the trb pointed by
1383 		 * command ring dequeue pointer is a good trb. The good
1384 		 * trb means we don't want to cancel the trb, but it have
1385 		 * been stopped by host. So we should handle it normally.
1386 		 * Otherwise, driver should invoke inc_deq() and return.
1387 		 */
1388 		if (handle_stopped_cmd_ring(xhci,
1389 				GET_COMP_CODE(le32_to_cpu(event->status)))) {
1390 			inc_deq(xhci, xhci->cmd_ring);
1391 			return;
1392 		}
1393 	}
1394 
1395 	switch (le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])
1396 		& TRB_TYPE_BITMASK) {
1397 	case TRB_TYPE(TRB_ENABLE_SLOT):
1398 		if (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_SUCCESS)
1399 			xhci->slot_id = slot_id;
1400 		else
1401 			xhci->slot_id = 0;
1402 		complete(&xhci->addr_dev);
1403 		break;
1404 	case TRB_TYPE(TRB_DISABLE_SLOT):
1405 		if (xhci->devs[slot_id]) {
1406 			if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1407 				/* Delete default control endpoint resources */
1408 				xhci_free_device_endpoint_resources(xhci,
1409 						xhci->devs[slot_id], true);
1410 			xhci_free_virt_device(xhci, slot_id);
1411 		}
1412 		break;
1413 	case TRB_TYPE(TRB_CONFIG_EP):
1414 		virt_dev = xhci->devs[slot_id];
1415 		if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1416 			break;
1417 		/*
1418 		 * Configure endpoint commands can come from the USB core
1419 		 * configuration or alt setting changes, or because the HW
1420 		 * needed an extra configure endpoint command after a reset
1421 		 * endpoint command or streams were being configured.
1422 		 * If the command was for a halted endpoint, the xHCI driver
1423 		 * is not waiting on the configure endpoint command.
1424 		 */
1425 		ctrl_ctx = xhci_get_input_control_ctx(xhci,
1426 				virt_dev->in_ctx);
1427 		/* Input ctx add_flags are the endpoint index plus one */
1428 		ep_index = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)) - 1;
1429 		/* A usb_set_interface() call directly after clearing a halted
1430 		 * condition may race on this quirky hardware.  Not worth
1431 		 * worrying about, since this is prototype hardware.  Not sure
1432 		 * if this will work for streams, but streams support was
1433 		 * untested on this prototype.
1434 		 */
1435 		if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1436 				ep_index != (unsigned int) -1 &&
1437 		    le32_to_cpu(ctrl_ctx->add_flags) - SLOT_FLAG ==
1438 		    le32_to_cpu(ctrl_ctx->drop_flags)) {
1439 			ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
1440 			ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1441 			if (!(ep_state & EP_HALTED))
1442 				goto bandwidth_change;
1443 			xhci_dbg(xhci, "Completed config ep cmd - "
1444 					"last ep index = %d, state = %d\n",
1445 					ep_index, ep_state);
1446 			/* Clear internal halted state and restart ring(s) */
1447 			xhci->devs[slot_id]->eps[ep_index].ep_state &=
1448 				~EP_HALTED;
1449 			ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1450 			break;
1451 		}
1452 bandwidth_change:
1453 		xhci_dbg(xhci, "Completed config ep cmd\n");
1454 		xhci->devs[slot_id]->cmd_status =
1455 			GET_COMP_CODE(le32_to_cpu(event->status));
1456 		complete(&xhci->devs[slot_id]->cmd_completion);
1457 		break;
1458 	case TRB_TYPE(TRB_EVAL_CONTEXT):
1459 		virt_dev = xhci->devs[slot_id];
1460 		if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1461 			break;
1462 		xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1463 		complete(&xhci->devs[slot_id]->cmd_completion);
1464 		break;
1465 	case TRB_TYPE(TRB_ADDR_DEV):
1466 		xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1467 		complete(&xhci->addr_dev);
1468 		break;
1469 	case TRB_TYPE(TRB_STOP_RING):
1470 		handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue, event);
1471 		break;
1472 	case TRB_TYPE(TRB_SET_DEQ):
1473 		handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue);
1474 		break;
1475 	case TRB_TYPE(TRB_CMD_NOOP):
1476 		break;
1477 	case TRB_TYPE(TRB_RESET_EP):
1478 		handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue);
1479 		break;
1480 	case TRB_TYPE(TRB_RESET_DEV):
1481 		xhci_dbg(xhci, "Completed reset device command.\n");
1482 		slot_id = TRB_TO_SLOT_ID(
1483 			le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
1484 		virt_dev = xhci->devs[slot_id];
1485 		if (virt_dev)
1486 			handle_cmd_in_cmd_wait_list(xhci, virt_dev, event);
1487 		else
1488 			xhci_warn(xhci, "Reset device command completion "
1489 					"for disabled slot %u\n", slot_id);
1490 		break;
1491 	case TRB_TYPE(TRB_NEC_GET_FW):
1492 		if (!(xhci->quirks & XHCI_NEC_HOST)) {
1493 			xhci->error_bitmask |= 1 << 6;
1494 			break;
1495 		}
1496 		xhci_dbg(xhci, "NEC firmware version %2x.%02x\n",
1497 			 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1498 			 NEC_FW_MINOR(le32_to_cpu(event->status)));
1499 		break;
1500 	default:
1501 		/* Skip over unknown commands on the event ring */
1502 		xhci->error_bitmask |= 1 << 6;
1503 		break;
1504 	}
1505 	inc_deq(xhci, xhci->cmd_ring);
1506 }
1507 
1508 static void handle_vendor_event(struct xhci_hcd *xhci,
1509 		union xhci_trb *event)
1510 {
1511 	u32 trb_type;
1512 
1513 	trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1514 	xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1515 	if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1516 		handle_cmd_completion(xhci, &event->event_cmd);
1517 }
1518 
1519 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1520  * port registers -- USB 3.0 and USB 2.0).
1521  *
1522  * Returns a zero-based port number, which is suitable for indexing into each of
1523  * the split roothubs' port arrays and bus state arrays.
1524  * Add one to it in order to call xhci_find_slot_id_by_port.
1525  */
1526 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1527 		struct xhci_hcd *xhci, u32 port_id)
1528 {
1529 	unsigned int i;
1530 	unsigned int num_similar_speed_ports = 0;
1531 
1532 	/* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1533 	 * and usb2_ports are 0-based indexes.  Count the number of similar
1534 	 * speed ports, up to 1 port before this port.
1535 	 */
1536 	for (i = 0; i < (port_id - 1); i++) {
1537 		u8 port_speed = xhci->port_array[i];
1538 
1539 		/*
1540 		 * Skip ports that don't have known speeds, or have duplicate
1541 		 * Extended Capabilities port speed entries.
1542 		 */
1543 		if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1544 			continue;
1545 
1546 		/*
1547 		 * USB 3.0 ports are always under a USB 3.0 hub.  USB 2.0 and
1548 		 * 1.1 ports are under the USB 2.0 hub.  If the port speed
1549 		 * matches the device speed, it's a similar speed port.
1550 		 */
1551 		if ((port_speed == 0x03) == (hcd->speed == HCD_USB3))
1552 			num_similar_speed_ports++;
1553 	}
1554 	return num_similar_speed_ports;
1555 }
1556 
1557 static void handle_device_notification(struct xhci_hcd *xhci,
1558 		union xhci_trb *event)
1559 {
1560 	u32 slot_id;
1561 	struct usb_device *udev;
1562 
1563 	slot_id = TRB_TO_SLOT_ID(event->generic.field[3]);
1564 	if (!xhci->devs[slot_id]) {
1565 		xhci_warn(xhci, "Device Notification event for "
1566 				"unused slot %u\n", slot_id);
1567 		return;
1568 	}
1569 
1570 	xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1571 			slot_id);
1572 	udev = xhci->devs[slot_id]->udev;
1573 	if (udev && udev->parent)
1574 		usb_wakeup_notification(udev->parent, udev->portnum);
1575 }
1576 
1577 static void handle_port_status(struct xhci_hcd *xhci,
1578 		union xhci_trb *event)
1579 {
1580 	struct usb_hcd *hcd;
1581 	u32 port_id;
1582 	u32 temp, temp1;
1583 	int max_ports;
1584 	int slot_id;
1585 	unsigned int faked_port_index;
1586 	u8 major_revision;
1587 	struct xhci_bus_state *bus_state;
1588 	__le32 __iomem **port_array;
1589 	bool bogus_port_status = false;
1590 
1591 	/* Port status change events always have a successful completion code */
1592 	if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) {
1593 		xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
1594 		xhci->error_bitmask |= 1 << 8;
1595 	}
1596 	port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1597 	xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1598 
1599 	max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1600 	if ((port_id <= 0) || (port_id > max_ports)) {
1601 		xhci_warn(xhci, "Invalid port id %d\n", port_id);
1602 		bogus_port_status = true;
1603 		goto cleanup;
1604 	}
1605 
1606 	/* Figure out which usb_hcd this port is attached to:
1607 	 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1608 	 */
1609 	major_revision = xhci->port_array[port_id - 1];
1610 	if (major_revision == 0) {
1611 		xhci_warn(xhci, "Event for port %u not in "
1612 				"Extended Capabilities, ignoring.\n",
1613 				port_id);
1614 		bogus_port_status = true;
1615 		goto cleanup;
1616 	}
1617 	if (major_revision == DUPLICATE_ENTRY) {
1618 		xhci_warn(xhci, "Event for port %u duplicated in"
1619 				"Extended Capabilities, ignoring.\n",
1620 				port_id);
1621 		bogus_port_status = true;
1622 		goto cleanup;
1623 	}
1624 
1625 	/*
1626 	 * Hardware port IDs reported by a Port Status Change Event include USB
1627 	 * 3.0 and USB 2.0 ports.  We want to check if the port has reported a
1628 	 * resume event, but we first need to translate the hardware port ID
1629 	 * into the index into the ports on the correct split roothub, and the
1630 	 * correct bus_state structure.
1631 	 */
1632 	/* Find the right roothub. */
1633 	hcd = xhci_to_hcd(xhci);
1634 	if ((major_revision == 0x03) != (hcd->speed == HCD_USB3))
1635 		hcd = xhci->shared_hcd;
1636 	bus_state = &xhci->bus_state[hcd_index(hcd)];
1637 	if (hcd->speed == HCD_USB3)
1638 		port_array = xhci->usb3_ports;
1639 	else
1640 		port_array = xhci->usb2_ports;
1641 	/* Find the faked port hub number */
1642 	faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1643 			port_id);
1644 
1645 	temp = xhci_readl(xhci, port_array[faked_port_index]);
1646 	if (hcd->state == HC_STATE_SUSPENDED) {
1647 		xhci_dbg(xhci, "resume root hub\n");
1648 		usb_hcd_resume_root_hub(hcd);
1649 	}
1650 
1651 	if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1652 		xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1653 
1654 		temp1 = xhci_readl(xhci, &xhci->op_regs->command);
1655 		if (!(temp1 & CMD_RUN)) {
1656 			xhci_warn(xhci, "xHC is not running.\n");
1657 			goto cleanup;
1658 		}
1659 
1660 		if (DEV_SUPERSPEED(temp)) {
1661 			xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1662 			/* Set a flag to say the port signaled remote wakeup,
1663 			 * so we can tell the difference between the end of
1664 			 * device and host initiated resume.
1665 			 */
1666 			bus_state->port_remote_wakeup |= 1 << faked_port_index;
1667 			xhci_test_and_clear_bit(xhci, port_array,
1668 					faked_port_index, PORT_PLC);
1669 			xhci_set_link_state(xhci, port_array, faked_port_index,
1670 						XDEV_U0);
1671 			/* Need to wait until the next link state change
1672 			 * indicates the device is actually in U0.
1673 			 */
1674 			bogus_port_status = true;
1675 			goto cleanup;
1676 		} else {
1677 			xhci_dbg(xhci, "resume HS port %d\n", port_id);
1678 			bus_state->resume_done[faked_port_index] = jiffies +
1679 				msecs_to_jiffies(20);
1680 			set_bit(faked_port_index, &bus_state->resuming_ports);
1681 			mod_timer(&hcd->rh_timer,
1682 				  bus_state->resume_done[faked_port_index]);
1683 			/* Do the rest in GetPortStatus */
1684 		}
1685 	}
1686 
1687 	if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 &&
1688 			DEV_SUPERSPEED(temp)) {
1689 		xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1690 		/* We've just brought the device into U0 through either the
1691 		 * Resume state after a device remote wakeup, or through the
1692 		 * U3Exit state after a host-initiated resume.  If it's a device
1693 		 * initiated remote wake, don't pass up the link state change,
1694 		 * so the roothub behavior is consistent with external
1695 		 * USB 3.0 hub behavior.
1696 		 */
1697 		slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1698 				faked_port_index + 1);
1699 		if (slot_id && xhci->devs[slot_id])
1700 			xhci_ring_device(xhci, slot_id);
1701 		if (bus_state->port_remote_wakeup && (1 << faked_port_index)) {
1702 			bus_state->port_remote_wakeup &=
1703 				~(1 << faked_port_index);
1704 			xhci_test_and_clear_bit(xhci, port_array,
1705 					faked_port_index, PORT_PLC);
1706 			usb_wakeup_notification(hcd->self.root_hub,
1707 					faked_port_index + 1);
1708 			bogus_port_status = true;
1709 			goto cleanup;
1710 		}
1711 	}
1712 
1713 	if (hcd->speed != HCD_USB3)
1714 		xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
1715 					PORT_PLC);
1716 
1717 cleanup:
1718 	/* Update event ring dequeue pointer before dropping the lock */
1719 	inc_deq(xhci, xhci->event_ring);
1720 
1721 	/* Don't make the USB core poll the roothub if we got a bad port status
1722 	 * change event.  Besides, at that point we can't tell which roothub
1723 	 * (USB 2.0 or USB 3.0) to kick.
1724 	 */
1725 	if (bogus_port_status)
1726 		return;
1727 
1728 	spin_unlock(&xhci->lock);
1729 	/* Pass this up to the core */
1730 	usb_hcd_poll_rh_status(hcd);
1731 	spin_lock(&xhci->lock);
1732 }
1733 
1734 /*
1735  * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1736  * at end_trb, which may be in another segment.  If the suspect DMA address is a
1737  * TRB in this TD, this function returns that TRB's segment.  Otherwise it
1738  * returns 0.
1739  */
1740 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg,
1741 		union xhci_trb	*start_trb,
1742 		union xhci_trb	*end_trb,
1743 		dma_addr_t	suspect_dma)
1744 {
1745 	dma_addr_t start_dma;
1746 	dma_addr_t end_seg_dma;
1747 	dma_addr_t end_trb_dma;
1748 	struct xhci_segment *cur_seg;
1749 
1750 	start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1751 	cur_seg = start_seg;
1752 
1753 	do {
1754 		if (start_dma == 0)
1755 			return NULL;
1756 		/* We may get an event for a Link TRB in the middle of a TD */
1757 		end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1758 				&cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1759 		/* If the end TRB isn't in this segment, this is set to 0 */
1760 		end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1761 
1762 		if (end_trb_dma > 0) {
1763 			/* The end TRB is in this segment, so suspect should be here */
1764 			if (start_dma <= end_trb_dma) {
1765 				if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1766 					return cur_seg;
1767 			} else {
1768 				/* Case for one segment with
1769 				 * a TD wrapped around to the top
1770 				 */
1771 				if ((suspect_dma >= start_dma &&
1772 							suspect_dma <= end_seg_dma) ||
1773 						(suspect_dma >= cur_seg->dma &&
1774 						 suspect_dma <= end_trb_dma))
1775 					return cur_seg;
1776 			}
1777 			return NULL;
1778 		} else {
1779 			/* Might still be somewhere in this segment */
1780 			if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1781 				return cur_seg;
1782 		}
1783 		cur_seg = cur_seg->next;
1784 		start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1785 	} while (cur_seg != start_seg);
1786 
1787 	return NULL;
1788 }
1789 
1790 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1791 		unsigned int slot_id, unsigned int ep_index,
1792 		unsigned int stream_id,
1793 		struct xhci_td *td, union xhci_trb *event_trb)
1794 {
1795 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1796 	ep->ep_state |= EP_HALTED;
1797 	ep->stopped_td = td;
1798 	ep->stopped_trb = event_trb;
1799 	ep->stopped_stream = stream_id;
1800 
1801 	xhci_queue_reset_ep(xhci, slot_id, ep_index);
1802 	xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index);
1803 
1804 	ep->stopped_td = NULL;
1805 	ep->stopped_trb = NULL;
1806 	ep->stopped_stream = 0;
1807 
1808 	xhci_ring_cmd_db(xhci);
1809 }
1810 
1811 /* Check if an error has halted the endpoint ring.  The class driver will
1812  * cleanup the halt for a non-default control endpoint if we indicate a stall.
1813  * However, a babble and other errors also halt the endpoint ring, and the class
1814  * driver won't clear the halt in that case, so we need to issue a Set Transfer
1815  * Ring Dequeue Pointer command manually.
1816  */
1817 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1818 		struct xhci_ep_ctx *ep_ctx,
1819 		unsigned int trb_comp_code)
1820 {
1821 	/* TRB completion codes that may require a manual halt cleanup */
1822 	if (trb_comp_code == COMP_TX_ERR ||
1823 			trb_comp_code == COMP_BABBLE ||
1824 			trb_comp_code == COMP_SPLIT_ERR)
1825 		/* The 0.96 spec says a babbling control endpoint
1826 		 * is not halted. The 0.96 spec says it is.  Some HW
1827 		 * claims to be 0.95 compliant, but it halts the control
1828 		 * endpoint anyway.  Check if a babble halted the
1829 		 * endpoint.
1830 		 */
1831 		if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1832 		    cpu_to_le32(EP_STATE_HALTED))
1833 			return 1;
1834 
1835 	return 0;
1836 }
1837 
1838 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1839 {
1840 	if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1841 		/* Vendor defined "informational" completion code,
1842 		 * treat as not-an-error.
1843 		 */
1844 		xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1845 				trb_comp_code);
1846 		xhci_dbg(xhci, "Treating code as success.\n");
1847 		return 1;
1848 	}
1849 	return 0;
1850 }
1851 
1852 /*
1853  * Finish the td processing, remove the td from td list;
1854  * Return 1 if the urb can be given back.
1855  */
1856 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1857 	union xhci_trb *event_trb, struct xhci_transfer_event *event,
1858 	struct xhci_virt_ep *ep, int *status, bool skip)
1859 {
1860 	struct xhci_virt_device *xdev;
1861 	struct xhci_ring *ep_ring;
1862 	unsigned int slot_id;
1863 	int ep_index;
1864 	struct urb *urb = NULL;
1865 	struct xhci_ep_ctx *ep_ctx;
1866 	int ret = 0;
1867 	struct urb_priv	*urb_priv;
1868 	u32 trb_comp_code;
1869 
1870 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1871 	xdev = xhci->devs[slot_id];
1872 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1873 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1874 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1875 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1876 
1877 	if (skip)
1878 		goto td_cleanup;
1879 
1880 	if (trb_comp_code == COMP_STOP_INVAL ||
1881 			trb_comp_code == COMP_STOP) {
1882 		/* The Endpoint Stop Command completion will take care of any
1883 		 * stopped TDs.  A stopped TD may be restarted, so don't update
1884 		 * the ring dequeue pointer or take this TD off any lists yet.
1885 		 */
1886 		ep->stopped_td = td;
1887 		ep->stopped_trb = event_trb;
1888 		return 0;
1889 	} else {
1890 		if (trb_comp_code == COMP_STALL) {
1891 			/* The transfer is completed from the driver's
1892 			 * perspective, but we need to issue a set dequeue
1893 			 * command for this stalled endpoint to move the dequeue
1894 			 * pointer past the TD.  We can't do that here because
1895 			 * the halt condition must be cleared first.  Let the
1896 			 * USB class driver clear the stall later.
1897 			 */
1898 			ep->stopped_td = td;
1899 			ep->stopped_trb = event_trb;
1900 			ep->stopped_stream = ep_ring->stream_id;
1901 		} else if (xhci_requires_manual_halt_cleanup(xhci,
1902 					ep_ctx, trb_comp_code)) {
1903 			/* Other types of errors halt the endpoint, but the
1904 			 * class driver doesn't call usb_reset_endpoint() unless
1905 			 * the error is -EPIPE.  Clear the halted status in the
1906 			 * xHCI hardware manually.
1907 			 */
1908 			xhci_cleanup_halted_endpoint(xhci,
1909 					slot_id, ep_index, ep_ring->stream_id,
1910 					td, event_trb);
1911 		} else {
1912 			/* Update ring dequeue pointer */
1913 			while (ep_ring->dequeue != td->last_trb)
1914 				inc_deq(xhci, ep_ring);
1915 			inc_deq(xhci, ep_ring);
1916 		}
1917 
1918 td_cleanup:
1919 		/* Clean up the endpoint's TD list */
1920 		urb = td->urb;
1921 		urb_priv = urb->hcpriv;
1922 
1923 		/* Do one last check of the actual transfer length.
1924 		 * If the host controller said we transferred more data than
1925 		 * the buffer length, urb->actual_length will be a very big
1926 		 * number (since it's unsigned).  Play it safe and say we didn't
1927 		 * transfer anything.
1928 		 */
1929 		if (urb->actual_length > urb->transfer_buffer_length) {
1930 			xhci_warn(xhci, "URB transfer length is wrong, "
1931 					"xHC issue? req. len = %u, "
1932 					"act. len = %u\n",
1933 					urb->transfer_buffer_length,
1934 					urb->actual_length);
1935 			urb->actual_length = 0;
1936 			if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1937 				*status = -EREMOTEIO;
1938 			else
1939 				*status = 0;
1940 		}
1941 		list_del_init(&td->td_list);
1942 		/* Was this TD slated to be cancelled but completed anyway? */
1943 		if (!list_empty(&td->cancelled_td_list))
1944 			list_del_init(&td->cancelled_td_list);
1945 
1946 		urb_priv->td_cnt++;
1947 		/* Giveback the urb when all the tds are completed */
1948 		if (urb_priv->td_cnt == urb_priv->length) {
1949 			ret = 1;
1950 			if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
1951 				xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
1952 				if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs
1953 					== 0) {
1954 					if (xhci->quirks & XHCI_AMD_PLL_FIX)
1955 						usb_amd_quirk_pll_enable();
1956 				}
1957 			}
1958 		}
1959 	}
1960 
1961 	return ret;
1962 }
1963 
1964 /*
1965  * Process control tds, update urb status and actual_length.
1966  */
1967 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
1968 	union xhci_trb *event_trb, struct xhci_transfer_event *event,
1969 	struct xhci_virt_ep *ep, int *status)
1970 {
1971 	struct xhci_virt_device *xdev;
1972 	struct xhci_ring *ep_ring;
1973 	unsigned int slot_id;
1974 	int ep_index;
1975 	struct xhci_ep_ctx *ep_ctx;
1976 	u32 trb_comp_code;
1977 
1978 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1979 	xdev = xhci->devs[slot_id];
1980 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1981 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1982 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1983 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1984 
1985 	switch (trb_comp_code) {
1986 	case COMP_SUCCESS:
1987 		if (event_trb == ep_ring->dequeue) {
1988 			xhci_warn(xhci, "WARN: Success on ctrl setup TRB "
1989 					"without IOC set??\n");
1990 			*status = -ESHUTDOWN;
1991 		} else if (event_trb != td->last_trb) {
1992 			xhci_warn(xhci, "WARN: Success on ctrl data TRB "
1993 					"without IOC set??\n");
1994 			*status = -ESHUTDOWN;
1995 		} else {
1996 			*status = 0;
1997 		}
1998 		break;
1999 	case COMP_SHORT_TX:
2000 		if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2001 			*status = -EREMOTEIO;
2002 		else
2003 			*status = 0;
2004 		break;
2005 	case COMP_STOP_INVAL:
2006 	case COMP_STOP:
2007 		return finish_td(xhci, td, event_trb, event, ep, status, false);
2008 	default:
2009 		if (!xhci_requires_manual_halt_cleanup(xhci,
2010 					ep_ctx, trb_comp_code))
2011 			break;
2012 		xhci_dbg(xhci, "TRB error code %u, "
2013 				"halted endpoint index = %u\n",
2014 				trb_comp_code, ep_index);
2015 		/* else fall through */
2016 	case COMP_STALL:
2017 		/* Did we transfer part of the data (middle) phase? */
2018 		if (event_trb != ep_ring->dequeue &&
2019 				event_trb != td->last_trb)
2020 			td->urb->actual_length =
2021 				td->urb->transfer_buffer_length
2022 				- TRB_LEN(le32_to_cpu(event->transfer_len));
2023 		else
2024 			td->urb->actual_length = 0;
2025 
2026 		xhci_cleanup_halted_endpoint(xhci,
2027 			slot_id, ep_index, 0, td, event_trb);
2028 		return finish_td(xhci, td, event_trb, event, ep, status, true);
2029 	}
2030 	/*
2031 	 * Did we transfer any data, despite the errors that might have
2032 	 * happened?  I.e. did we get past the setup stage?
2033 	 */
2034 	if (event_trb != ep_ring->dequeue) {
2035 		/* The event was for the status stage */
2036 		if (event_trb == td->last_trb) {
2037 			if (td->urb->actual_length != 0) {
2038 				/* Don't overwrite a previously set error code
2039 				 */
2040 				if ((*status == -EINPROGRESS || *status == 0) &&
2041 						(td->urb->transfer_flags
2042 						 & URB_SHORT_NOT_OK))
2043 					/* Did we already see a short data
2044 					 * stage? */
2045 					*status = -EREMOTEIO;
2046 			} else {
2047 				td->urb->actual_length =
2048 					td->urb->transfer_buffer_length;
2049 			}
2050 		} else {
2051 		/* Maybe the event was for the data stage? */
2052 			td->urb->actual_length =
2053 				td->urb->transfer_buffer_length -
2054 				TRB_LEN(le32_to_cpu(event->transfer_len));
2055 			xhci_dbg(xhci, "Waiting for status "
2056 					"stage event\n");
2057 			return 0;
2058 		}
2059 	}
2060 
2061 	return finish_td(xhci, td, event_trb, event, ep, status, false);
2062 }
2063 
2064 /*
2065  * Process isochronous tds, update urb packet status and actual_length.
2066  */
2067 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2068 	union xhci_trb *event_trb, struct xhci_transfer_event *event,
2069 	struct xhci_virt_ep *ep, int *status)
2070 {
2071 	struct xhci_ring *ep_ring;
2072 	struct urb_priv *urb_priv;
2073 	int idx;
2074 	int len = 0;
2075 	union xhci_trb *cur_trb;
2076 	struct xhci_segment *cur_seg;
2077 	struct usb_iso_packet_descriptor *frame;
2078 	u32 trb_comp_code;
2079 	bool skip_td = false;
2080 
2081 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2082 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2083 	urb_priv = td->urb->hcpriv;
2084 	idx = urb_priv->td_cnt;
2085 	frame = &td->urb->iso_frame_desc[idx];
2086 
2087 	/* handle completion code */
2088 	switch (trb_comp_code) {
2089 	case COMP_SUCCESS:
2090 		if (TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) {
2091 			frame->status = 0;
2092 			break;
2093 		}
2094 		if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2095 			trb_comp_code = COMP_SHORT_TX;
2096 	case COMP_SHORT_TX:
2097 		frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
2098 				-EREMOTEIO : 0;
2099 		break;
2100 	case COMP_BW_OVER:
2101 		frame->status = -ECOMM;
2102 		skip_td = true;
2103 		break;
2104 	case COMP_BUFF_OVER:
2105 	case COMP_BABBLE:
2106 		frame->status = -EOVERFLOW;
2107 		skip_td = true;
2108 		break;
2109 	case COMP_DEV_ERR:
2110 	case COMP_STALL:
2111 	case COMP_TX_ERR:
2112 		frame->status = -EPROTO;
2113 		skip_td = true;
2114 		break;
2115 	case COMP_STOP:
2116 	case COMP_STOP_INVAL:
2117 		break;
2118 	default:
2119 		frame->status = -1;
2120 		break;
2121 	}
2122 
2123 	if (trb_comp_code == COMP_SUCCESS || skip_td) {
2124 		frame->actual_length = frame->length;
2125 		td->urb->actual_length += frame->length;
2126 	} else {
2127 		for (cur_trb = ep_ring->dequeue,
2128 		     cur_seg = ep_ring->deq_seg; cur_trb != event_trb;
2129 		     next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2130 			if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2131 			    !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2132 				len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2133 		}
2134 		len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2135 			TRB_LEN(le32_to_cpu(event->transfer_len));
2136 
2137 		if (trb_comp_code != COMP_STOP_INVAL) {
2138 			frame->actual_length = len;
2139 			td->urb->actual_length += len;
2140 		}
2141 	}
2142 
2143 	return finish_td(xhci, td, event_trb, event, ep, status, false);
2144 }
2145 
2146 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2147 			struct xhci_transfer_event *event,
2148 			struct xhci_virt_ep *ep, int *status)
2149 {
2150 	struct xhci_ring *ep_ring;
2151 	struct urb_priv *urb_priv;
2152 	struct usb_iso_packet_descriptor *frame;
2153 	int idx;
2154 
2155 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2156 	urb_priv = td->urb->hcpriv;
2157 	idx = urb_priv->td_cnt;
2158 	frame = &td->urb->iso_frame_desc[idx];
2159 
2160 	/* The transfer is partly done. */
2161 	frame->status = -EXDEV;
2162 
2163 	/* calc actual length */
2164 	frame->actual_length = 0;
2165 
2166 	/* Update ring dequeue pointer */
2167 	while (ep_ring->dequeue != td->last_trb)
2168 		inc_deq(xhci, ep_ring);
2169 	inc_deq(xhci, ep_ring);
2170 
2171 	return finish_td(xhci, td, NULL, event, ep, status, true);
2172 }
2173 
2174 /*
2175  * Process bulk and interrupt tds, update urb status and actual_length.
2176  */
2177 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
2178 	union xhci_trb *event_trb, struct xhci_transfer_event *event,
2179 	struct xhci_virt_ep *ep, int *status)
2180 {
2181 	struct xhci_ring *ep_ring;
2182 	union xhci_trb *cur_trb;
2183 	struct xhci_segment *cur_seg;
2184 	u32 trb_comp_code;
2185 
2186 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2187 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2188 
2189 	switch (trb_comp_code) {
2190 	case COMP_SUCCESS:
2191 		/* Double check that the HW transferred everything. */
2192 		if (event_trb != td->last_trb ||
2193 				TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2194 			xhci_warn(xhci, "WARN Successful completion "
2195 					"on short TX\n");
2196 			if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2197 				*status = -EREMOTEIO;
2198 			else
2199 				*status = 0;
2200 			if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2201 				trb_comp_code = COMP_SHORT_TX;
2202 		} else {
2203 			*status = 0;
2204 		}
2205 		break;
2206 	case COMP_SHORT_TX:
2207 		if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2208 			*status = -EREMOTEIO;
2209 		else
2210 			*status = 0;
2211 		break;
2212 	default:
2213 		/* Others already handled above */
2214 		break;
2215 	}
2216 	if (trb_comp_code == COMP_SHORT_TX)
2217 		xhci_dbg(xhci, "ep %#x - asked for %d bytes, "
2218 				"%d bytes untransferred\n",
2219 				td->urb->ep->desc.bEndpointAddress,
2220 				td->urb->transfer_buffer_length,
2221 				TRB_LEN(le32_to_cpu(event->transfer_len)));
2222 	/* Fast path - was this the last TRB in the TD for this URB? */
2223 	if (event_trb == td->last_trb) {
2224 		if (TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2225 			td->urb->actual_length =
2226 				td->urb->transfer_buffer_length -
2227 				TRB_LEN(le32_to_cpu(event->transfer_len));
2228 			if (td->urb->transfer_buffer_length <
2229 					td->urb->actual_length) {
2230 				xhci_warn(xhci, "HC gave bad length "
2231 						"of %d bytes left\n",
2232 					  TRB_LEN(le32_to_cpu(event->transfer_len)));
2233 				td->urb->actual_length = 0;
2234 				if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2235 					*status = -EREMOTEIO;
2236 				else
2237 					*status = 0;
2238 			}
2239 			/* Don't overwrite a previously set error code */
2240 			if (*status == -EINPROGRESS) {
2241 				if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2242 					*status = -EREMOTEIO;
2243 				else
2244 					*status = 0;
2245 			}
2246 		} else {
2247 			td->urb->actual_length =
2248 				td->urb->transfer_buffer_length;
2249 			/* Ignore a short packet completion if the
2250 			 * untransferred length was zero.
2251 			 */
2252 			if (*status == -EREMOTEIO)
2253 				*status = 0;
2254 		}
2255 	} else {
2256 		/* Slow path - walk the list, starting from the dequeue
2257 		 * pointer, to get the actual length transferred.
2258 		 */
2259 		td->urb->actual_length = 0;
2260 		for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
2261 				cur_trb != event_trb;
2262 				next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2263 			if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2264 			    !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2265 				td->urb->actual_length +=
2266 					TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2267 		}
2268 		/* If the ring didn't stop on a Link or No-op TRB, add
2269 		 * in the actual bytes transferred from the Normal TRB
2270 		 */
2271 		if (trb_comp_code != COMP_STOP_INVAL)
2272 			td->urb->actual_length +=
2273 				TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2274 				TRB_LEN(le32_to_cpu(event->transfer_len));
2275 	}
2276 
2277 	return finish_td(xhci, td, event_trb, event, ep, status, false);
2278 }
2279 
2280 /*
2281  * If this function returns an error condition, it means it got a Transfer
2282  * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2283  * At this point, the host controller is probably hosed and should be reset.
2284  */
2285 static int handle_tx_event(struct xhci_hcd *xhci,
2286 		struct xhci_transfer_event *event)
2287 	__releases(&xhci->lock)
2288 	__acquires(&xhci->lock)
2289 {
2290 	struct xhci_virt_device *xdev;
2291 	struct xhci_virt_ep *ep;
2292 	struct xhci_ring *ep_ring;
2293 	unsigned int slot_id;
2294 	int ep_index;
2295 	struct xhci_td *td = NULL;
2296 	dma_addr_t event_dma;
2297 	struct xhci_segment *event_seg;
2298 	union xhci_trb *event_trb;
2299 	struct urb *urb = NULL;
2300 	int status = -EINPROGRESS;
2301 	struct urb_priv *urb_priv;
2302 	struct xhci_ep_ctx *ep_ctx;
2303 	struct list_head *tmp;
2304 	u32 trb_comp_code;
2305 	int ret = 0;
2306 	int td_num = 0;
2307 
2308 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2309 	xdev = xhci->devs[slot_id];
2310 	if (!xdev) {
2311 		xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
2312 		xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2313 			 (unsigned long long) xhci_trb_virt_to_dma(
2314 				 xhci->event_ring->deq_seg,
2315 				 xhci->event_ring->dequeue),
2316 			 lower_32_bits(le64_to_cpu(event->buffer)),
2317 			 upper_32_bits(le64_to_cpu(event->buffer)),
2318 			 le32_to_cpu(event->transfer_len),
2319 			 le32_to_cpu(event->flags));
2320 		xhci_dbg(xhci, "Event ring:\n");
2321 		xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2322 		return -ENODEV;
2323 	}
2324 
2325 	/* Endpoint ID is 1 based, our index is zero based */
2326 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2327 	ep = &xdev->eps[ep_index];
2328 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2329 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2330 	if (!ep_ring ||
2331 	    (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
2332 	    EP_STATE_DISABLED) {
2333 		xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
2334 				"or incorrect stream ring\n");
2335 		xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2336 			 (unsigned long long) xhci_trb_virt_to_dma(
2337 				 xhci->event_ring->deq_seg,
2338 				 xhci->event_ring->dequeue),
2339 			 lower_32_bits(le64_to_cpu(event->buffer)),
2340 			 upper_32_bits(le64_to_cpu(event->buffer)),
2341 			 le32_to_cpu(event->transfer_len),
2342 			 le32_to_cpu(event->flags));
2343 		xhci_dbg(xhci, "Event ring:\n");
2344 		xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2345 		return -ENODEV;
2346 	}
2347 
2348 	/* Count current td numbers if ep->skip is set */
2349 	if (ep->skip) {
2350 		list_for_each(tmp, &ep_ring->td_list)
2351 			td_num++;
2352 	}
2353 
2354 	event_dma = le64_to_cpu(event->buffer);
2355 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2356 	/* Look for common error cases */
2357 	switch (trb_comp_code) {
2358 	/* Skip codes that require special handling depending on
2359 	 * transfer type
2360 	 */
2361 	case COMP_SUCCESS:
2362 		if (TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2363 			break;
2364 		if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2365 			trb_comp_code = COMP_SHORT_TX;
2366 		else
2367 			xhci_warn_ratelimited(xhci,
2368 					"WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n");
2369 	case COMP_SHORT_TX:
2370 		break;
2371 	case COMP_STOP:
2372 		xhci_dbg(xhci, "Stopped on Transfer TRB\n");
2373 		break;
2374 	case COMP_STOP_INVAL:
2375 		xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
2376 		break;
2377 	case COMP_STALL:
2378 		xhci_dbg(xhci, "Stalled endpoint\n");
2379 		ep->ep_state |= EP_HALTED;
2380 		status = -EPIPE;
2381 		break;
2382 	case COMP_TRB_ERR:
2383 		xhci_warn(xhci, "WARN: TRB error on endpoint\n");
2384 		status = -EILSEQ;
2385 		break;
2386 	case COMP_SPLIT_ERR:
2387 	case COMP_TX_ERR:
2388 		xhci_dbg(xhci, "Transfer error on endpoint\n");
2389 		status = -EPROTO;
2390 		break;
2391 	case COMP_BABBLE:
2392 		xhci_dbg(xhci, "Babble error on endpoint\n");
2393 		status = -EOVERFLOW;
2394 		break;
2395 	case COMP_DB_ERR:
2396 		xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
2397 		status = -ENOSR;
2398 		break;
2399 	case COMP_BW_OVER:
2400 		xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
2401 		break;
2402 	case COMP_BUFF_OVER:
2403 		xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
2404 		break;
2405 	case COMP_UNDERRUN:
2406 		/*
2407 		 * When the Isoch ring is empty, the xHC will generate
2408 		 * a Ring Overrun Event for IN Isoch endpoint or Ring
2409 		 * Underrun Event for OUT Isoch endpoint.
2410 		 */
2411 		xhci_dbg(xhci, "underrun event on endpoint\n");
2412 		if (!list_empty(&ep_ring->td_list))
2413 			xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2414 					"still with TDs queued?\n",
2415 				 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2416 				 ep_index);
2417 		goto cleanup;
2418 	case COMP_OVERRUN:
2419 		xhci_dbg(xhci, "overrun event on endpoint\n");
2420 		if (!list_empty(&ep_ring->td_list))
2421 			xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2422 					"still with TDs queued?\n",
2423 				 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2424 				 ep_index);
2425 		goto cleanup;
2426 	case COMP_DEV_ERR:
2427 		xhci_warn(xhci, "WARN: detect an incompatible device");
2428 		status = -EPROTO;
2429 		break;
2430 	case COMP_MISSED_INT:
2431 		/*
2432 		 * When encounter missed service error, one or more isoc tds
2433 		 * may be missed by xHC.
2434 		 * Set skip flag of the ep_ring; Complete the missed tds as
2435 		 * short transfer when process the ep_ring next time.
2436 		 */
2437 		ep->skip = true;
2438 		xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
2439 		goto cleanup;
2440 	default:
2441 		if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2442 			status = 0;
2443 			break;
2444 		}
2445 		xhci_warn(xhci, "ERROR Unknown event condition, HC probably "
2446 				"busted\n");
2447 		goto cleanup;
2448 	}
2449 
2450 	do {
2451 		/* This TRB should be in the TD at the head of this ring's
2452 		 * TD list.
2453 		 */
2454 		if (list_empty(&ep_ring->td_list)) {
2455 			xhci_warn(xhci, "WARN Event TRB for slot %d ep %d "
2456 					"with no TDs queued?\n",
2457 				  TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2458 				  ep_index);
2459 			xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
2460 				 (le32_to_cpu(event->flags) &
2461 				  TRB_TYPE_BITMASK)>>10);
2462 			xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
2463 			if (ep->skip) {
2464 				ep->skip = false;
2465 				xhci_dbg(xhci, "td_list is empty while skip "
2466 						"flag set. Clear skip flag.\n");
2467 			}
2468 			ret = 0;
2469 			goto cleanup;
2470 		}
2471 
2472 		/* We've skipped all the TDs on the ep ring when ep->skip set */
2473 		if (ep->skip && td_num == 0) {
2474 			ep->skip = false;
2475 			xhci_dbg(xhci, "All tds on the ep_ring skipped. "
2476 						"Clear skip flag.\n");
2477 			ret = 0;
2478 			goto cleanup;
2479 		}
2480 
2481 		td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
2482 		if (ep->skip)
2483 			td_num--;
2484 
2485 		/* Is this a TRB in the currently executing TD? */
2486 		event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue,
2487 				td->last_trb, event_dma);
2488 
2489 		/*
2490 		 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2491 		 * is not in the current TD pointed by ep_ring->dequeue because
2492 		 * that the hardware dequeue pointer still at the previous TRB
2493 		 * of the current TD. The previous TRB maybe a Link TD or the
2494 		 * last TRB of the previous TD. The command completion handle
2495 		 * will take care the rest.
2496 		 */
2497 		if (!event_seg && trb_comp_code == COMP_STOP_INVAL) {
2498 			ret = 0;
2499 			goto cleanup;
2500 		}
2501 
2502 		if (!event_seg) {
2503 			if (!ep->skip ||
2504 			    !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2505 				/* Some host controllers give a spurious
2506 				 * successful event after a short transfer.
2507 				 * Ignore it.
2508 				 */
2509 				if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2510 						ep_ring->last_td_was_short) {
2511 					ep_ring->last_td_was_short = false;
2512 					ret = 0;
2513 					goto cleanup;
2514 				}
2515 				/* HC is busted, give up! */
2516 				xhci_err(xhci,
2517 					"ERROR Transfer event TRB DMA ptr not "
2518 					"part of current TD\n");
2519 				return -ESHUTDOWN;
2520 			}
2521 
2522 			ret = skip_isoc_td(xhci, td, event, ep, &status);
2523 			goto cleanup;
2524 		}
2525 		if (trb_comp_code == COMP_SHORT_TX)
2526 			ep_ring->last_td_was_short = true;
2527 		else
2528 			ep_ring->last_td_was_short = false;
2529 
2530 		if (ep->skip) {
2531 			xhci_dbg(xhci, "Found td. Clear skip flag.\n");
2532 			ep->skip = false;
2533 		}
2534 
2535 		event_trb = &event_seg->trbs[(event_dma - event_seg->dma) /
2536 						sizeof(*event_trb)];
2537 		/*
2538 		 * No-op TRB should not trigger interrupts.
2539 		 * If event_trb is a no-op TRB, it means the
2540 		 * corresponding TD has been cancelled. Just ignore
2541 		 * the TD.
2542 		 */
2543 		if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) {
2544 			xhci_dbg(xhci,
2545 				 "event_trb is a no-op TRB. Skip it\n");
2546 			goto cleanup;
2547 		}
2548 
2549 		/* Now update the urb's actual_length and give back to
2550 		 * the core
2551 		 */
2552 		if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2553 			ret = process_ctrl_td(xhci, td, event_trb, event, ep,
2554 						 &status);
2555 		else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2556 			ret = process_isoc_td(xhci, td, event_trb, event, ep,
2557 						 &status);
2558 		else
2559 			ret = process_bulk_intr_td(xhci, td, event_trb, event,
2560 						 ep, &status);
2561 
2562 cleanup:
2563 		/*
2564 		 * Do not update event ring dequeue pointer if ep->skip is set.
2565 		 * Will roll back to continue process missed tds.
2566 		 */
2567 		if (trb_comp_code == COMP_MISSED_INT || !ep->skip) {
2568 			inc_deq(xhci, xhci->event_ring);
2569 		}
2570 
2571 		if (ret) {
2572 			urb = td->urb;
2573 			urb_priv = urb->hcpriv;
2574 			/* Leave the TD around for the reset endpoint function
2575 			 * to use(but only if it's not a control endpoint,
2576 			 * since we already queued the Set TR dequeue pointer
2577 			 * command for stalled control endpoints).
2578 			 */
2579 			if (usb_endpoint_xfer_control(&urb->ep->desc) ||
2580 				(trb_comp_code != COMP_STALL &&
2581 					trb_comp_code != COMP_BABBLE))
2582 				xhci_urb_free_priv(xhci, urb_priv);
2583 
2584 			usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
2585 			if ((urb->actual_length != urb->transfer_buffer_length &&
2586 						(urb->transfer_flags &
2587 						 URB_SHORT_NOT_OK)) ||
2588 					(status != 0 &&
2589 					 !usb_endpoint_xfer_isoc(&urb->ep->desc)))
2590 				xhci_dbg(xhci, "Giveback URB %p, len = %d, "
2591 						"expected = %d, status = %d\n",
2592 						urb, urb->actual_length,
2593 						urb->transfer_buffer_length,
2594 						status);
2595 			spin_unlock(&xhci->lock);
2596 			/* EHCI, UHCI, and OHCI always unconditionally set the
2597 			 * urb->status of an isochronous endpoint to 0.
2598 			 */
2599 			if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2600 				status = 0;
2601 			usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status);
2602 			spin_lock(&xhci->lock);
2603 		}
2604 
2605 	/*
2606 	 * If ep->skip is set, it means there are missed tds on the
2607 	 * endpoint ring need to take care of.
2608 	 * Process them as short transfer until reach the td pointed by
2609 	 * the event.
2610 	 */
2611 	} while (ep->skip && trb_comp_code != COMP_MISSED_INT);
2612 
2613 	return 0;
2614 }
2615 
2616 /*
2617  * This function handles all OS-owned events on the event ring.  It may drop
2618  * xhci->lock between event processing (e.g. to pass up port status changes).
2619  * Returns >0 for "possibly more events to process" (caller should call again),
2620  * otherwise 0 if done.  In future, <0 returns should indicate error code.
2621  */
2622 static int xhci_handle_event(struct xhci_hcd *xhci)
2623 {
2624 	union xhci_trb *event;
2625 	int update_ptrs = 1;
2626 	int ret;
2627 
2628 	if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2629 		xhci->error_bitmask |= 1 << 1;
2630 		return 0;
2631 	}
2632 
2633 	event = xhci->event_ring->dequeue;
2634 	/* Does the HC or OS own the TRB? */
2635 	if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2636 	    xhci->event_ring->cycle_state) {
2637 		xhci->error_bitmask |= 1 << 2;
2638 		return 0;
2639 	}
2640 
2641 	/*
2642 	 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2643 	 * speculative reads of the event's flags/data below.
2644 	 */
2645 	rmb();
2646 	/* FIXME: Handle more event types. */
2647 	switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) {
2648 	case TRB_TYPE(TRB_COMPLETION):
2649 		handle_cmd_completion(xhci, &event->event_cmd);
2650 		break;
2651 	case TRB_TYPE(TRB_PORT_STATUS):
2652 		handle_port_status(xhci, event);
2653 		update_ptrs = 0;
2654 		break;
2655 	case TRB_TYPE(TRB_TRANSFER):
2656 		ret = handle_tx_event(xhci, &event->trans_event);
2657 		if (ret < 0)
2658 			xhci->error_bitmask |= 1 << 9;
2659 		else
2660 			update_ptrs = 0;
2661 		break;
2662 	case TRB_TYPE(TRB_DEV_NOTE):
2663 		handle_device_notification(xhci, event);
2664 		break;
2665 	default:
2666 		if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2667 		    TRB_TYPE(48))
2668 			handle_vendor_event(xhci, event);
2669 		else
2670 			xhci->error_bitmask |= 1 << 3;
2671 	}
2672 	/* Any of the above functions may drop and re-acquire the lock, so check
2673 	 * to make sure a watchdog timer didn't mark the host as non-responsive.
2674 	 */
2675 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2676 		xhci_dbg(xhci, "xHCI host dying, returning from "
2677 				"event handler.\n");
2678 		return 0;
2679 	}
2680 
2681 	if (update_ptrs)
2682 		/* Update SW event ring dequeue pointer */
2683 		inc_deq(xhci, xhci->event_ring);
2684 
2685 	/* Are there more items on the event ring?  Caller will call us again to
2686 	 * check.
2687 	 */
2688 	return 1;
2689 }
2690 
2691 /*
2692  * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2693  * we might get bad data out of the event ring.  Section 4.10.2.7 has a list of
2694  * indicators of an event TRB error, but we check the status *first* to be safe.
2695  */
2696 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2697 {
2698 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2699 	u32 status;
2700 	union xhci_trb *trb;
2701 	u64 temp_64;
2702 	union xhci_trb *event_ring_deq;
2703 	dma_addr_t deq;
2704 
2705 	spin_lock(&xhci->lock);
2706 	trb = xhci->event_ring->dequeue;
2707 	/* Check if the xHC generated the interrupt, or the irq is shared */
2708 	status = xhci_readl(xhci, &xhci->op_regs->status);
2709 	if (status == 0xffffffff)
2710 		goto hw_died;
2711 
2712 	if (!(status & STS_EINT)) {
2713 		spin_unlock(&xhci->lock);
2714 		return IRQ_NONE;
2715 	}
2716 	if (status & STS_FATAL) {
2717 		xhci_warn(xhci, "WARNING: Host System Error\n");
2718 		xhci_halt(xhci);
2719 hw_died:
2720 		spin_unlock(&xhci->lock);
2721 		return -ESHUTDOWN;
2722 	}
2723 
2724 	/*
2725 	 * Clear the op reg interrupt status first,
2726 	 * so we can receive interrupts from other MSI-X interrupters.
2727 	 * Write 1 to clear the interrupt status.
2728 	 */
2729 	status |= STS_EINT;
2730 	xhci_writel(xhci, status, &xhci->op_regs->status);
2731 	/* FIXME when MSI-X is supported and there are multiple vectors */
2732 	/* Clear the MSI-X event interrupt status */
2733 
2734 	if (hcd->irq) {
2735 		u32 irq_pending;
2736 		/* Acknowledge the PCI interrupt */
2737 		irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
2738 		irq_pending |= IMAN_IP;
2739 		xhci_writel(xhci, irq_pending, &xhci->ir_set->irq_pending);
2740 	}
2741 
2742 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2743 		xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2744 				"Shouldn't IRQs be disabled?\n");
2745 		/* Clear the event handler busy flag (RW1C);
2746 		 * the event ring should be empty.
2747 		 */
2748 		temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2749 		xhci_write_64(xhci, temp_64 | ERST_EHB,
2750 				&xhci->ir_set->erst_dequeue);
2751 		spin_unlock(&xhci->lock);
2752 
2753 		return IRQ_HANDLED;
2754 	}
2755 
2756 	event_ring_deq = xhci->event_ring->dequeue;
2757 	/* FIXME this should be a delayed service routine
2758 	 * that clears the EHB.
2759 	 */
2760 	while (xhci_handle_event(xhci) > 0) {}
2761 
2762 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2763 	/* If necessary, update the HW's version of the event ring deq ptr. */
2764 	if (event_ring_deq != xhci->event_ring->dequeue) {
2765 		deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2766 				xhci->event_ring->dequeue);
2767 		if (deq == 0)
2768 			xhci_warn(xhci, "WARN something wrong with SW event "
2769 					"ring dequeue ptr.\n");
2770 		/* Update HC event ring dequeue pointer */
2771 		temp_64 &= ERST_PTR_MASK;
2772 		temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2773 	}
2774 
2775 	/* Clear the event handler busy flag (RW1C); event ring is empty. */
2776 	temp_64 |= ERST_EHB;
2777 	xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2778 
2779 	spin_unlock(&xhci->lock);
2780 
2781 	return IRQ_HANDLED;
2782 }
2783 
2784 irqreturn_t xhci_msi_irq(int irq, struct usb_hcd *hcd)
2785 {
2786 	return xhci_irq(hcd);
2787 }
2788 
2789 /****		Endpoint Ring Operations	****/
2790 
2791 /*
2792  * Generic function for queueing a TRB on a ring.
2793  * The caller must have checked to make sure there's room on the ring.
2794  *
2795  * @more_trbs_coming:	Will you enqueue more TRBs before calling
2796  *			prepare_transfer()?
2797  */
2798 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2799 		bool more_trbs_coming,
2800 		u32 field1, u32 field2, u32 field3, u32 field4)
2801 {
2802 	struct xhci_generic_trb *trb;
2803 
2804 	trb = &ring->enqueue->generic;
2805 	trb->field[0] = cpu_to_le32(field1);
2806 	trb->field[1] = cpu_to_le32(field2);
2807 	trb->field[2] = cpu_to_le32(field3);
2808 	trb->field[3] = cpu_to_le32(field4);
2809 	inc_enq(xhci, ring, more_trbs_coming);
2810 }
2811 
2812 /*
2813  * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2814  * FIXME allocate segments if the ring is full.
2815  */
2816 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2817 		u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2818 {
2819 	unsigned int num_trbs_needed;
2820 
2821 	/* Make sure the endpoint has been added to xHC schedule */
2822 	switch (ep_state) {
2823 	case EP_STATE_DISABLED:
2824 		/*
2825 		 * USB core changed config/interfaces without notifying us,
2826 		 * or hardware is reporting the wrong state.
2827 		 */
2828 		xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2829 		return -ENOENT;
2830 	case EP_STATE_ERROR:
2831 		xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2832 		/* FIXME event handling code for error needs to clear it */
2833 		/* XXX not sure if this should be -ENOENT or not */
2834 		return -EINVAL;
2835 	case EP_STATE_HALTED:
2836 		xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2837 	case EP_STATE_STOPPED:
2838 	case EP_STATE_RUNNING:
2839 		break;
2840 	default:
2841 		xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2842 		/*
2843 		 * FIXME issue Configure Endpoint command to try to get the HC
2844 		 * back into a known state.
2845 		 */
2846 		return -EINVAL;
2847 	}
2848 
2849 	while (1) {
2850 		if (room_on_ring(xhci, ep_ring, num_trbs))
2851 			break;
2852 
2853 		if (ep_ring == xhci->cmd_ring) {
2854 			xhci_err(xhci, "Do not support expand command ring\n");
2855 			return -ENOMEM;
2856 		}
2857 
2858 		xhci_dbg(xhci, "ERROR no room on ep ring, "
2859 					"try ring expansion\n");
2860 		num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
2861 		if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
2862 					mem_flags)) {
2863 			xhci_err(xhci, "Ring expansion failed\n");
2864 			return -ENOMEM;
2865 		}
2866 	}
2867 
2868 	if (enqueue_is_link_trb(ep_ring)) {
2869 		struct xhci_ring *ring = ep_ring;
2870 		union xhci_trb *next;
2871 
2872 		next = ring->enqueue;
2873 
2874 		while (last_trb(xhci, ring, ring->enq_seg, next)) {
2875 			/* If we're not dealing with 0.95 hardware or isoc rings
2876 			 * on AMD 0.96 host, clear the chain bit.
2877 			 */
2878 			if (!xhci_link_trb_quirk(xhci) &&
2879 					!(ring->type == TYPE_ISOC &&
2880 					 (xhci->quirks & XHCI_AMD_0x96_HOST)))
2881 				next->link.control &= cpu_to_le32(~TRB_CHAIN);
2882 			else
2883 				next->link.control |= cpu_to_le32(TRB_CHAIN);
2884 
2885 			wmb();
2886 			next->link.control ^= cpu_to_le32(TRB_CYCLE);
2887 
2888 			/* Toggle the cycle bit after the last ring segment. */
2889 			if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
2890 				ring->cycle_state = (ring->cycle_state ? 0 : 1);
2891 			}
2892 			ring->enq_seg = ring->enq_seg->next;
2893 			ring->enqueue = ring->enq_seg->trbs;
2894 			next = ring->enqueue;
2895 		}
2896 	}
2897 
2898 	return 0;
2899 }
2900 
2901 static int prepare_transfer(struct xhci_hcd *xhci,
2902 		struct xhci_virt_device *xdev,
2903 		unsigned int ep_index,
2904 		unsigned int stream_id,
2905 		unsigned int num_trbs,
2906 		struct urb *urb,
2907 		unsigned int td_index,
2908 		gfp_t mem_flags)
2909 {
2910 	int ret;
2911 	struct urb_priv *urb_priv;
2912 	struct xhci_td	*td;
2913 	struct xhci_ring *ep_ring;
2914 	struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2915 
2916 	ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2917 	if (!ep_ring) {
2918 		xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2919 				stream_id);
2920 		return -EINVAL;
2921 	}
2922 
2923 	ret = prepare_ring(xhci, ep_ring,
2924 			   le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
2925 			   num_trbs, mem_flags);
2926 	if (ret)
2927 		return ret;
2928 
2929 	urb_priv = urb->hcpriv;
2930 	td = urb_priv->td[td_index];
2931 
2932 	INIT_LIST_HEAD(&td->td_list);
2933 	INIT_LIST_HEAD(&td->cancelled_td_list);
2934 
2935 	if (td_index == 0) {
2936 		ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2937 		if (unlikely(ret))
2938 			return ret;
2939 	}
2940 
2941 	td->urb = urb;
2942 	/* Add this TD to the tail of the endpoint ring's TD list */
2943 	list_add_tail(&td->td_list, &ep_ring->td_list);
2944 	td->start_seg = ep_ring->enq_seg;
2945 	td->first_trb = ep_ring->enqueue;
2946 
2947 	urb_priv->td[td_index] = td;
2948 
2949 	return 0;
2950 }
2951 
2952 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb)
2953 {
2954 	int num_sgs, num_trbs, running_total, temp, i;
2955 	struct scatterlist *sg;
2956 
2957 	sg = NULL;
2958 	num_sgs = urb->num_mapped_sgs;
2959 	temp = urb->transfer_buffer_length;
2960 
2961 	num_trbs = 0;
2962 	for_each_sg(urb->sg, sg, num_sgs, i) {
2963 		unsigned int len = sg_dma_len(sg);
2964 
2965 		/* Scatter gather list entries may cross 64KB boundaries */
2966 		running_total = TRB_MAX_BUFF_SIZE -
2967 			(sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1));
2968 		running_total &= TRB_MAX_BUFF_SIZE - 1;
2969 		if (running_total != 0)
2970 			num_trbs++;
2971 
2972 		/* How many more 64KB chunks to transfer, how many more TRBs? */
2973 		while (running_total < sg_dma_len(sg) && running_total < temp) {
2974 			num_trbs++;
2975 			running_total += TRB_MAX_BUFF_SIZE;
2976 		}
2977 		len = min_t(int, len, temp);
2978 		temp -= len;
2979 		if (temp == 0)
2980 			break;
2981 	}
2982 	return num_trbs;
2983 }
2984 
2985 static void check_trb_math(struct urb *urb, int num_trbs, int running_total)
2986 {
2987 	if (num_trbs != 0)
2988 		dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of "
2989 				"TRBs, %d left\n", __func__,
2990 				urb->ep->desc.bEndpointAddress, num_trbs);
2991 	if (running_total != urb->transfer_buffer_length)
2992 		dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
2993 				"queued %#x (%d), asked for %#x (%d)\n",
2994 				__func__,
2995 				urb->ep->desc.bEndpointAddress,
2996 				running_total, running_total,
2997 				urb->transfer_buffer_length,
2998 				urb->transfer_buffer_length);
2999 }
3000 
3001 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
3002 		unsigned int ep_index, unsigned int stream_id, int start_cycle,
3003 		struct xhci_generic_trb *start_trb)
3004 {
3005 	/*
3006 	 * Pass all the TRBs to the hardware at once and make sure this write
3007 	 * isn't reordered.
3008 	 */
3009 	wmb();
3010 	if (start_cycle)
3011 		start_trb->field[3] |= cpu_to_le32(start_cycle);
3012 	else
3013 		start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
3014 	xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
3015 }
3016 
3017 /*
3018  * xHCI uses normal TRBs for both bulk and interrupt.  When the interrupt
3019  * endpoint is to be serviced, the xHC will consume (at most) one TD.  A TD
3020  * (comprised of sg list entries) can take several service intervals to
3021  * transmit.
3022  */
3023 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3024 		struct urb *urb, int slot_id, unsigned int ep_index)
3025 {
3026 	struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci,
3027 			xhci->devs[slot_id]->out_ctx, ep_index);
3028 	int xhci_interval;
3029 	int ep_interval;
3030 
3031 	xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3032 	ep_interval = urb->interval;
3033 	/* Convert to microframes */
3034 	if (urb->dev->speed == USB_SPEED_LOW ||
3035 			urb->dev->speed == USB_SPEED_FULL)
3036 		ep_interval *= 8;
3037 	/* FIXME change this to a warning and a suggestion to use the new API
3038 	 * to set the polling interval (once the API is added).
3039 	 */
3040 	if (xhci_interval != ep_interval) {
3041 		if (printk_ratelimit())
3042 			dev_dbg(&urb->dev->dev, "Driver uses different interval"
3043 					" (%d microframe%s) than xHCI "
3044 					"(%d microframe%s)\n",
3045 					ep_interval,
3046 					ep_interval == 1 ? "" : "s",
3047 					xhci_interval,
3048 					xhci_interval == 1 ? "" : "s");
3049 		urb->interval = xhci_interval;
3050 		/* Convert back to frames for LS/FS devices */
3051 		if (urb->dev->speed == USB_SPEED_LOW ||
3052 				urb->dev->speed == USB_SPEED_FULL)
3053 			urb->interval /= 8;
3054 	}
3055 	return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
3056 }
3057 
3058 /*
3059  * The TD size is the number of bytes remaining in the TD (including this TRB),
3060  * right shifted by 10.
3061  * It must fit in bits 21:17, so it can't be bigger than 31.
3062  */
3063 static u32 xhci_td_remainder(unsigned int remainder)
3064 {
3065 	u32 max = (1 << (21 - 17 + 1)) - 1;
3066 
3067 	if ((remainder >> 10) >= max)
3068 		return max << 17;
3069 	else
3070 		return (remainder >> 10) << 17;
3071 }
3072 
3073 /*
3074  * For xHCI 1.0 host controllers, TD size is the number of max packet sized
3075  * packets remaining in the TD (*not* including this TRB).
3076  *
3077  * Total TD packet count = total_packet_count =
3078  *     DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
3079  *
3080  * Packets transferred up to and including this TRB = packets_transferred =
3081  *     rounddown(total bytes transferred including this TRB / wMaxPacketSize)
3082  *
3083  * TD size = total_packet_count - packets_transferred
3084  *
3085  * It must fit in bits 21:17, so it can't be bigger than 31.
3086  * The last TRB in a TD must have the TD size set to zero.
3087  */
3088 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len,
3089 		unsigned int total_packet_count, struct urb *urb,
3090 		unsigned int num_trbs_left)
3091 {
3092 	int packets_transferred;
3093 
3094 	/* One TRB with a zero-length data packet. */
3095 	if (num_trbs_left == 0 || (running_total == 0 && trb_buff_len == 0))
3096 		return 0;
3097 
3098 	/* All the TRB queueing functions don't count the current TRB in
3099 	 * running_total.
3100 	 */
3101 	packets_transferred = (running_total + trb_buff_len) /
3102 		usb_endpoint_maxp(&urb->ep->desc);
3103 
3104 	if ((total_packet_count - packets_transferred) > 31)
3105 		return 31 << 17;
3106 	return (total_packet_count - packets_transferred) << 17;
3107 }
3108 
3109 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3110 		struct urb *urb, int slot_id, unsigned int ep_index)
3111 {
3112 	struct xhci_ring *ep_ring;
3113 	unsigned int num_trbs;
3114 	struct urb_priv *urb_priv;
3115 	struct xhci_td *td;
3116 	struct scatterlist *sg;
3117 	int num_sgs;
3118 	int trb_buff_len, this_sg_len, running_total;
3119 	unsigned int total_packet_count;
3120 	bool first_trb;
3121 	u64 addr;
3122 	bool more_trbs_coming;
3123 
3124 	struct xhci_generic_trb *start_trb;
3125 	int start_cycle;
3126 
3127 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3128 	if (!ep_ring)
3129 		return -EINVAL;
3130 
3131 	num_trbs = count_sg_trbs_needed(xhci, urb);
3132 	num_sgs = urb->num_mapped_sgs;
3133 	total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length,
3134 			usb_endpoint_maxp(&urb->ep->desc));
3135 
3136 	trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id],
3137 			ep_index, urb->stream_id,
3138 			num_trbs, urb, 0, mem_flags);
3139 	if (trb_buff_len < 0)
3140 		return trb_buff_len;
3141 
3142 	urb_priv = urb->hcpriv;
3143 	td = urb_priv->td[0];
3144 
3145 	/*
3146 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3147 	 * until we've finished creating all the other TRBs.  The ring's cycle
3148 	 * state may change as we enqueue the other TRBs, so save it too.
3149 	 */
3150 	start_trb = &ep_ring->enqueue->generic;
3151 	start_cycle = ep_ring->cycle_state;
3152 
3153 	running_total = 0;
3154 	/*
3155 	 * How much data is in the first TRB?
3156 	 *
3157 	 * There are three forces at work for TRB buffer pointers and lengths:
3158 	 * 1. We don't want to walk off the end of this sg-list entry buffer.
3159 	 * 2. The transfer length that the driver requested may be smaller than
3160 	 *    the amount of memory allocated for this scatter-gather list.
3161 	 * 3. TRBs buffers can't cross 64KB boundaries.
3162 	 */
3163 	sg = urb->sg;
3164 	addr = (u64) sg_dma_address(sg);
3165 	this_sg_len = sg_dma_len(sg);
3166 	trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
3167 	trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
3168 	if (trb_buff_len > urb->transfer_buffer_length)
3169 		trb_buff_len = urb->transfer_buffer_length;
3170 
3171 	first_trb = true;
3172 	/* Queue the first TRB, even if it's zero-length */
3173 	do {
3174 		u32 field = 0;
3175 		u32 length_field = 0;
3176 		u32 remainder = 0;
3177 
3178 		/* Don't change the cycle bit of the first TRB until later */
3179 		if (first_trb) {
3180 			first_trb = false;
3181 			if (start_cycle == 0)
3182 				field |= 0x1;
3183 		} else
3184 			field |= ep_ring->cycle_state;
3185 
3186 		/* Chain all the TRBs together; clear the chain bit in the last
3187 		 * TRB to indicate it's the last TRB in the chain.
3188 		 */
3189 		if (num_trbs > 1) {
3190 			field |= TRB_CHAIN;
3191 		} else {
3192 			/* FIXME - add check for ZERO_PACKET flag before this */
3193 			td->last_trb = ep_ring->enqueue;
3194 			field |= TRB_IOC;
3195 		}
3196 
3197 		/* Only set interrupt on short packet for IN endpoints */
3198 		if (usb_urb_dir_in(urb))
3199 			field |= TRB_ISP;
3200 
3201 		if (TRB_MAX_BUFF_SIZE -
3202 				(addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) {
3203 			xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n");
3204 			xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n",
3205 					(unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
3206 					(unsigned int) addr + trb_buff_len);
3207 		}
3208 
3209 		/* Set the TRB length, TD size, and interrupter fields. */
3210 		if (xhci->hci_version < 0x100) {
3211 			remainder = xhci_td_remainder(
3212 					urb->transfer_buffer_length -
3213 					running_total);
3214 		} else {
3215 			remainder = xhci_v1_0_td_remainder(running_total,
3216 					trb_buff_len, total_packet_count, urb,
3217 					num_trbs - 1);
3218 		}
3219 		length_field = TRB_LEN(trb_buff_len) |
3220 			remainder |
3221 			TRB_INTR_TARGET(0);
3222 
3223 		if (num_trbs > 1)
3224 			more_trbs_coming = true;
3225 		else
3226 			more_trbs_coming = false;
3227 		queue_trb(xhci, ep_ring, more_trbs_coming,
3228 				lower_32_bits(addr),
3229 				upper_32_bits(addr),
3230 				length_field,
3231 				field | TRB_TYPE(TRB_NORMAL));
3232 		--num_trbs;
3233 		running_total += trb_buff_len;
3234 
3235 		/* Calculate length for next transfer --
3236 		 * Are we done queueing all the TRBs for this sg entry?
3237 		 */
3238 		this_sg_len -= trb_buff_len;
3239 		if (this_sg_len == 0) {
3240 			--num_sgs;
3241 			if (num_sgs == 0)
3242 				break;
3243 			sg = sg_next(sg);
3244 			addr = (u64) sg_dma_address(sg);
3245 			this_sg_len = sg_dma_len(sg);
3246 		} else {
3247 			addr += trb_buff_len;
3248 		}
3249 
3250 		trb_buff_len = TRB_MAX_BUFF_SIZE -
3251 			(addr & (TRB_MAX_BUFF_SIZE - 1));
3252 		trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
3253 		if (running_total + trb_buff_len > urb->transfer_buffer_length)
3254 			trb_buff_len =
3255 				urb->transfer_buffer_length - running_total;
3256 	} while (running_total < urb->transfer_buffer_length);
3257 
3258 	check_trb_math(urb, num_trbs, running_total);
3259 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3260 			start_cycle, start_trb);
3261 	return 0;
3262 }
3263 
3264 /* This is very similar to what ehci-q.c qtd_fill() does */
3265 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3266 		struct urb *urb, int slot_id, unsigned int ep_index)
3267 {
3268 	struct xhci_ring *ep_ring;
3269 	struct urb_priv *urb_priv;
3270 	struct xhci_td *td;
3271 	int num_trbs;
3272 	struct xhci_generic_trb *start_trb;
3273 	bool first_trb;
3274 	bool more_trbs_coming;
3275 	int start_cycle;
3276 	u32 field, length_field;
3277 
3278 	int running_total, trb_buff_len, ret;
3279 	unsigned int total_packet_count;
3280 	u64 addr;
3281 
3282 	if (urb->num_sgs)
3283 		return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index);
3284 
3285 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3286 	if (!ep_ring)
3287 		return -EINVAL;
3288 
3289 	num_trbs = 0;
3290 	/* How much data is (potentially) left before the 64KB boundary? */
3291 	running_total = TRB_MAX_BUFF_SIZE -
3292 		(urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
3293 	running_total &= TRB_MAX_BUFF_SIZE - 1;
3294 
3295 	/* If there's some data on this 64KB chunk, or we have to send a
3296 	 * zero-length transfer, we need at least one TRB
3297 	 */
3298 	if (running_total != 0 || urb->transfer_buffer_length == 0)
3299 		num_trbs++;
3300 	/* How many more 64KB chunks to transfer, how many more TRBs? */
3301 	while (running_total < urb->transfer_buffer_length) {
3302 		num_trbs++;
3303 		running_total += TRB_MAX_BUFF_SIZE;
3304 	}
3305 	/* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */
3306 
3307 	ret = prepare_transfer(xhci, xhci->devs[slot_id],
3308 			ep_index, urb->stream_id,
3309 			num_trbs, urb, 0, mem_flags);
3310 	if (ret < 0)
3311 		return ret;
3312 
3313 	urb_priv = urb->hcpriv;
3314 	td = urb_priv->td[0];
3315 
3316 	/*
3317 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3318 	 * until we've finished creating all the other TRBs.  The ring's cycle
3319 	 * state may change as we enqueue the other TRBs, so save it too.
3320 	 */
3321 	start_trb = &ep_ring->enqueue->generic;
3322 	start_cycle = ep_ring->cycle_state;
3323 
3324 	running_total = 0;
3325 	total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length,
3326 			usb_endpoint_maxp(&urb->ep->desc));
3327 	/* How much data is in the first TRB? */
3328 	addr = (u64) urb->transfer_dma;
3329 	trb_buff_len = TRB_MAX_BUFF_SIZE -
3330 		(urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
3331 	if (trb_buff_len > urb->transfer_buffer_length)
3332 		trb_buff_len = urb->transfer_buffer_length;
3333 
3334 	first_trb = true;
3335 
3336 	/* Queue the first TRB, even if it's zero-length */
3337 	do {
3338 		u32 remainder = 0;
3339 		field = 0;
3340 
3341 		/* Don't change the cycle bit of the first TRB until later */
3342 		if (first_trb) {
3343 			first_trb = false;
3344 			if (start_cycle == 0)
3345 				field |= 0x1;
3346 		} else
3347 			field |= ep_ring->cycle_state;
3348 
3349 		/* Chain all the TRBs together; clear the chain bit in the last
3350 		 * TRB to indicate it's the last TRB in the chain.
3351 		 */
3352 		if (num_trbs > 1) {
3353 			field |= TRB_CHAIN;
3354 		} else {
3355 			/* FIXME - add check for ZERO_PACKET flag before this */
3356 			td->last_trb = ep_ring->enqueue;
3357 			field |= TRB_IOC;
3358 		}
3359 
3360 		/* Only set interrupt on short packet for IN endpoints */
3361 		if (usb_urb_dir_in(urb))
3362 			field |= TRB_ISP;
3363 
3364 		/* Set the TRB length, TD size, and interrupter fields. */
3365 		if (xhci->hci_version < 0x100) {
3366 			remainder = xhci_td_remainder(
3367 					urb->transfer_buffer_length -
3368 					running_total);
3369 		} else {
3370 			remainder = xhci_v1_0_td_remainder(running_total,
3371 					trb_buff_len, total_packet_count, urb,
3372 					num_trbs - 1);
3373 		}
3374 		length_field = TRB_LEN(trb_buff_len) |
3375 			remainder |
3376 			TRB_INTR_TARGET(0);
3377 
3378 		if (num_trbs > 1)
3379 			more_trbs_coming = true;
3380 		else
3381 			more_trbs_coming = false;
3382 		queue_trb(xhci, ep_ring, more_trbs_coming,
3383 				lower_32_bits(addr),
3384 				upper_32_bits(addr),
3385 				length_field,
3386 				field | TRB_TYPE(TRB_NORMAL));
3387 		--num_trbs;
3388 		running_total += trb_buff_len;
3389 
3390 		/* Calculate length for next transfer */
3391 		addr += trb_buff_len;
3392 		trb_buff_len = urb->transfer_buffer_length - running_total;
3393 		if (trb_buff_len > TRB_MAX_BUFF_SIZE)
3394 			trb_buff_len = TRB_MAX_BUFF_SIZE;
3395 	} while (running_total < urb->transfer_buffer_length);
3396 
3397 	check_trb_math(urb, num_trbs, running_total);
3398 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3399 			start_cycle, start_trb);
3400 	return 0;
3401 }
3402 
3403 /* Caller must have locked xhci->lock */
3404 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3405 		struct urb *urb, int slot_id, unsigned int ep_index)
3406 {
3407 	struct xhci_ring *ep_ring;
3408 	int num_trbs;
3409 	int ret;
3410 	struct usb_ctrlrequest *setup;
3411 	struct xhci_generic_trb *start_trb;
3412 	int start_cycle;
3413 	u32 field, length_field;
3414 	struct urb_priv *urb_priv;
3415 	struct xhci_td *td;
3416 
3417 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3418 	if (!ep_ring)
3419 		return -EINVAL;
3420 
3421 	/*
3422 	 * Need to copy setup packet into setup TRB, so we can't use the setup
3423 	 * DMA address.
3424 	 */
3425 	if (!urb->setup_packet)
3426 		return -EINVAL;
3427 
3428 	/* 1 TRB for setup, 1 for status */
3429 	num_trbs = 2;
3430 	/*
3431 	 * Don't need to check if we need additional event data and normal TRBs,
3432 	 * since data in control transfers will never get bigger than 16MB
3433 	 * XXX: can we get a buffer that crosses 64KB boundaries?
3434 	 */
3435 	if (urb->transfer_buffer_length > 0)
3436 		num_trbs++;
3437 	ret = prepare_transfer(xhci, xhci->devs[slot_id],
3438 			ep_index, urb->stream_id,
3439 			num_trbs, urb, 0, mem_flags);
3440 	if (ret < 0)
3441 		return ret;
3442 
3443 	urb_priv = urb->hcpriv;
3444 	td = urb_priv->td[0];
3445 
3446 	/*
3447 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3448 	 * until we've finished creating all the other TRBs.  The ring's cycle
3449 	 * state may change as we enqueue the other TRBs, so save it too.
3450 	 */
3451 	start_trb = &ep_ring->enqueue->generic;
3452 	start_cycle = ep_ring->cycle_state;
3453 
3454 	/* Queue setup TRB - see section 6.4.1.2.1 */
3455 	/* FIXME better way to translate setup_packet into two u32 fields? */
3456 	setup = (struct usb_ctrlrequest *) urb->setup_packet;
3457 	field = 0;
3458 	field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3459 	if (start_cycle == 0)
3460 		field |= 0x1;
3461 
3462 	/* xHCI 1.0 6.4.1.2.1: Transfer Type field */
3463 	if (xhci->hci_version == 0x100) {
3464 		if (urb->transfer_buffer_length > 0) {
3465 			if (setup->bRequestType & USB_DIR_IN)
3466 				field |= TRB_TX_TYPE(TRB_DATA_IN);
3467 			else
3468 				field |= TRB_TX_TYPE(TRB_DATA_OUT);
3469 		}
3470 	}
3471 
3472 	queue_trb(xhci, ep_ring, true,
3473 		  setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3474 		  le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3475 		  TRB_LEN(8) | TRB_INTR_TARGET(0),
3476 		  /* Immediate data in pointer */
3477 		  field);
3478 
3479 	/* If there's data, queue data TRBs */
3480 	/* Only set interrupt on short packet for IN endpoints */
3481 	if (usb_urb_dir_in(urb))
3482 		field = TRB_ISP | TRB_TYPE(TRB_DATA);
3483 	else
3484 		field = TRB_TYPE(TRB_DATA);
3485 
3486 	length_field = TRB_LEN(urb->transfer_buffer_length) |
3487 		xhci_td_remainder(urb->transfer_buffer_length) |
3488 		TRB_INTR_TARGET(0);
3489 	if (urb->transfer_buffer_length > 0) {
3490 		if (setup->bRequestType & USB_DIR_IN)
3491 			field |= TRB_DIR_IN;
3492 		queue_trb(xhci, ep_ring, true,
3493 				lower_32_bits(urb->transfer_dma),
3494 				upper_32_bits(urb->transfer_dma),
3495 				length_field,
3496 				field | ep_ring->cycle_state);
3497 	}
3498 
3499 	/* Save the DMA address of the last TRB in the TD */
3500 	td->last_trb = ep_ring->enqueue;
3501 
3502 	/* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3503 	/* If the device sent data, the status stage is an OUT transfer */
3504 	if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3505 		field = 0;
3506 	else
3507 		field = TRB_DIR_IN;
3508 	queue_trb(xhci, ep_ring, false,
3509 			0,
3510 			0,
3511 			TRB_INTR_TARGET(0),
3512 			/* Event on completion */
3513 			field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3514 
3515 	giveback_first_trb(xhci, slot_id, ep_index, 0,
3516 			start_cycle, start_trb);
3517 	return 0;
3518 }
3519 
3520 static int count_isoc_trbs_needed(struct xhci_hcd *xhci,
3521 		struct urb *urb, int i)
3522 {
3523 	int num_trbs = 0;
3524 	u64 addr, td_len;
3525 
3526 	addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3527 	td_len = urb->iso_frame_desc[i].length;
3528 
3529 	num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
3530 			TRB_MAX_BUFF_SIZE);
3531 	if (num_trbs == 0)
3532 		num_trbs++;
3533 
3534 	return num_trbs;
3535 }
3536 
3537 /*
3538  * The transfer burst count field of the isochronous TRB defines the number of
3539  * bursts that are required to move all packets in this TD.  Only SuperSpeed
3540  * devices can burst up to bMaxBurst number of packets per service interval.
3541  * This field is zero based, meaning a value of zero in the field means one
3542  * burst.  Basically, for everything but SuperSpeed devices, this field will be
3543  * zero.  Only xHCI 1.0 host controllers support this field.
3544  */
3545 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3546 		struct usb_device *udev,
3547 		struct urb *urb, unsigned int total_packet_count)
3548 {
3549 	unsigned int max_burst;
3550 
3551 	if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER)
3552 		return 0;
3553 
3554 	max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3555 	return roundup(total_packet_count, max_burst + 1) - 1;
3556 }
3557 
3558 /*
3559  * Returns the number of packets in the last "burst" of packets.  This field is
3560  * valid for all speeds of devices.  USB 2.0 devices can only do one "burst", so
3561  * the last burst packet count is equal to the total number of packets in the
3562  * TD.  SuperSpeed endpoints can have up to 3 bursts.  All but the last burst
3563  * must contain (bMaxBurst + 1) number of packets, but the last burst can
3564  * contain 1 to (bMaxBurst + 1) packets.
3565  */
3566 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3567 		struct usb_device *udev,
3568 		struct urb *urb, unsigned int total_packet_count)
3569 {
3570 	unsigned int max_burst;
3571 	unsigned int residue;
3572 
3573 	if (xhci->hci_version < 0x100)
3574 		return 0;
3575 
3576 	switch (udev->speed) {
3577 	case USB_SPEED_SUPER:
3578 		/* bMaxBurst is zero based: 0 means 1 packet per burst */
3579 		max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3580 		residue = total_packet_count % (max_burst + 1);
3581 		/* If residue is zero, the last burst contains (max_burst + 1)
3582 		 * number of packets, but the TLBPC field is zero-based.
3583 		 */
3584 		if (residue == 0)
3585 			return max_burst;
3586 		return residue - 1;
3587 	default:
3588 		if (total_packet_count == 0)
3589 			return 0;
3590 		return total_packet_count - 1;
3591 	}
3592 }
3593 
3594 /* This is for isoc transfer */
3595 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3596 		struct urb *urb, int slot_id, unsigned int ep_index)
3597 {
3598 	struct xhci_ring *ep_ring;
3599 	struct urb_priv *urb_priv;
3600 	struct xhci_td *td;
3601 	int num_tds, trbs_per_td;
3602 	struct xhci_generic_trb *start_trb;
3603 	bool first_trb;
3604 	int start_cycle;
3605 	u32 field, length_field;
3606 	int running_total, trb_buff_len, td_len, td_remain_len, ret;
3607 	u64 start_addr, addr;
3608 	int i, j;
3609 	bool more_trbs_coming;
3610 
3611 	ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3612 
3613 	num_tds = urb->number_of_packets;
3614 	if (num_tds < 1) {
3615 		xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3616 		return -EINVAL;
3617 	}
3618 
3619 	start_addr = (u64) urb->transfer_dma;
3620 	start_trb = &ep_ring->enqueue->generic;
3621 	start_cycle = ep_ring->cycle_state;
3622 
3623 	urb_priv = urb->hcpriv;
3624 	/* Queue the first TRB, even if it's zero-length */
3625 	for (i = 0; i < num_tds; i++) {
3626 		unsigned int total_packet_count;
3627 		unsigned int burst_count;
3628 		unsigned int residue;
3629 
3630 		first_trb = true;
3631 		running_total = 0;
3632 		addr = start_addr + urb->iso_frame_desc[i].offset;
3633 		td_len = urb->iso_frame_desc[i].length;
3634 		td_remain_len = td_len;
3635 		total_packet_count = DIV_ROUND_UP(td_len,
3636 				usb_endpoint_maxp(&urb->ep->desc));
3637 		/* A zero-length transfer still involves at least one packet. */
3638 		if (total_packet_count == 0)
3639 			total_packet_count++;
3640 		burst_count = xhci_get_burst_count(xhci, urb->dev, urb,
3641 				total_packet_count);
3642 		residue = xhci_get_last_burst_packet_count(xhci,
3643 				urb->dev, urb, total_packet_count);
3644 
3645 		trbs_per_td = count_isoc_trbs_needed(xhci, urb, i);
3646 
3647 		ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3648 				urb->stream_id, trbs_per_td, urb, i, mem_flags);
3649 		if (ret < 0) {
3650 			if (i == 0)
3651 				return ret;
3652 			goto cleanup;
3653 		}
3654 
3655 		td = urb_priv->td[i];
3656 		for (j = 0; j < trbs_per_td; j++) {
3657 			u32 remainder = 0;
3658 			field = TRB_TBC(burst_count) | TRB_TLBPC(residue);
3659 
3660 			if (first_trb) {
3661 				/* Queue the isoc TRB */
3662 				field |= TRB_TYPE(TRB_ISOC);
3663 				/* Assume URB_ISO_ASAP is set */
3664 				field |= TRB_SIA;
3665 				if (i == 0) {
3666 					if (start_cycle == 0)
3667 						field |= 0x1;
3668 				} else
3669 					field |= ep_ring->cycle_state;
3670 				first_trb = false;
3671 			} else {
3672 				/* Queue other normal TRBs */
3673 				field |= TRB_TYPE(TRB_NORMAL);
3674 				field |= ep_ring->cycle_state;
3675 			}
3676 
3677 			/* Only set interrupt on short packet for IN EPs */
3678 			if (usb_urb_dir_in(urb))
3679 				field |= TRB_ISP;
3680 
3681 			/* Chain all the TRBs together; clear the chain bit in
3682 			 * the last TRB to indicate it's the last TRB in the
3683 			 * chain.
3684 			 */
3685 			if (j < trbs_per_td - 1) {
3686 				field |= TRB_CHAIN;
3687 				more_trbs_coming = true;
3688 			} else {
3689 				td->last_trb = ep_ring->enqueue;
3690 				field |= TRB_IOC;
3691 				if (xhci->hci_version == 0x100 &&
3692 						!(xhci->quirks &
3693 							XHCI_AVOID_BEI)) {
3694 					/* Set BEI bit except for the last td */
3695 					if (i < num_tds - 1)
3696 						field |= TRB_BEI;
3697 				}
3698 				more_trbs_coming = false;
3699 			}
3700 
3701 			/* Calculate TRB length */
3702 			trb_buff_len = TRB_MAX_BUFF_SIZE -
3703 				(addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
3704 			if (trb_buff_len > td_remain_len)
3705 				trb_buff_len = td_remain_len;
3706 
3707 			/* Set the TRB length, TD size, & interrupter fields. */
3708 			if (xhci->hci_version < 0x100) {
3709 				remainder = xhci_td_remainder(
3710 						td_len - running_total);
3711 			} else {
3712 				remainder = xhci_v1_0_td_remainder(
3713 						running_total, trb_buff_len,
3714 						total_packet_count, urb,
3715 						(trbs_per_td - j - 1));
3716 			}
3717 			length_field = TRB_LEN(trb_buff_len) |
3718 				remainder |
3719 				TRB_INTR_TARGET(0);
3720 
3721 			queue_trb(xhci, ep_ring, more_trbs_coming,
3722 				lower_32_bits(addr),
3723 				upper_32_bits(addr),
3724 				length_field,
3725 				field);
3726 			running_total += trb_buff_len;
3727 
3728 			addr += trb_buff_len;
3729 			td_remain_len -= trb_buff_len;
3730 		}
3731 
3732 		/* Check TD length */
3733 		if (running_total != td_len) {
3734 			xhci_err(xhci, "ISOC TD length unmatch\n");
3735 			ret = -EINVAL;
3736 			goto cleanup;
3737 		}
3738 	}
3739 
3740 	if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3741 		if (xhci->quirks & XHCI_AMD_PLL_FIX)
3742 			usb_amd_quirk_pll_disable();
3743 	}
3744 	xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3745 
3746 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3747 			start_cycle, start_trb);
3748 	return 0;
3749 cleanup:
3750 	/* Clean up a partially enqueued isoc transfer. */
3751 
3752 	for (i--; i >= 0; i--)
3753 		list_del_init(&urb_priv->td[i]->td_list);
3754 
3755 	/* Use the first TD as a temporary variable to turn the TDs we've queued
3756 	 * into No-ops with a software-owned cycle bit. That way the hardware
3757 	 * won't accidentally start executing bogus TDs when we partially
3758 	 * overwrite them.  td->first_trb and td->start_seg are already set.
3759 	 */
3760 	urb_priv->td[0]->last_trb = ep_ring->enqueue;
3761 	/* Every TRB except the first & last will have its cycle bit flipped. */
3762 	td_to_noop(xhci, ep_ring, urb_priv->td[0], true);
3763 
3764 	/* Reset the ring enqueue back to the first TRB and its cycle bit. */
3765 	ep_ring->enqueue = urb_priv->td[0]->first_trb;
3766 	ep_ring->enq_seg = urb_priv->td[0]->start_seg;
3767 	ep_ring->cycle_state = start_cycle;
3768 	ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
3769 	usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3770 	return ret;
3771 }
3772 
3773 /*
3774  * Check transfer ring to guarantee there is enough room for the urb.
3775  * Update ISO URB start_frame and interval.
3776  * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to
3777  * update the urb->start_frame by now.
3778  * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input.
3779  */
3780 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3781 		struct urb *urb, int slot_id, unsigned int ep_index)
3782 {
3783 	struct xhci_virt_device *xdev;
3784 	struct xhci_ring *ep_ring;
3785 	struct xhci_ep_ctx *ep_ctx;
3786 	int start_frame;
3787 	int xhci_interval;
3788 	int ep_interval;
3789 	int num_tds, num_trbs, i;
3790 	int ret;
3791 
3792 	xdev = xhci->devs[slot_id];
3793 	ep_ring = xdev->eps[ep_index].ring;
3794 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3795 
3796 	num_trbs = 0;
3797 	num_tds = urb->number_of_packets;
3798 	for (i = 0; i < num_tds; i++)
3799 		num_trbs += count_isoc_trbs_needed(xhci, urb, i);
3800 
3801 	/* Check the ring to guarantee there is enough room for the whole urb.
3802 	 * Do not insert any td of the urb to the ring if the check failed.
3803 	 */
3804 	ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3805 			   num_trbs, mem_flags);
3806 	if (ret)
3807 		return ret;
3808 
3809 	start_frame = xhci_readl(xhci, &xhci->run_regs->microframe_index);
3810 	start_frame &= 0x3fff;
3811 
3812 	urb->start_frame = start_frame;
3813 	if (urb->dev->speed == USB_SPEED_LOW ||
3814 			urb->dev->speed == USB_SPEED_FULL)
3815 		urb->start_frame >>= 3;
3816 
3817 	xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3818 	ep_interval = urb->interval;
3819 	/* Convert to microframes */
3820 	if (urb->dev->speed == USB_SPEED_LOW ||
3821 			urb->dev->speed == USB_SPEED_FULL)
3822 		ep_interval *= 8;
3823 	/* FIXME change this to a warning and a suggestion to use the new API
3824 	 * to set the polling interval (once the API is added).
3825 	 */
3826 	if (xhci_interval != ep_interval) {
3827 		if (printk_ratelimit())
3828 			dev_dbg(&urb->dev->dev, "Driver uses different interval"
3829 					" (%d microframe%s) than xHCI "
3830 					"(%d microframe%s)\n",
3831 					ep_interval,
3832 					ep_interval == 1 ? "" : "s",
3833 					xhci_interval,
3834 					xhci_interval == 1 ? "" : "s");
3835 		urb->interval = xhci_interval;
3836 		/* Convert back to frames for LS/FS devices */
3837 		if (urb->dev->speed == USB_SPEED_LOW ||
3838 				urb->dev->speed == USB_SPEED_FULL)
3839 			urb->interval /= 8;
3840 	}
3841 	ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
3842 
3843 	return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
3844 }
3845 
3846 /****		Command Ring Operations		****/
3847 
3848 /* Generic function for queueing a command TRB on the command ring.
3849  * Check to make sure there's room on the command ring for one command TRB.
3850  * Also check that there's room reserved for commands that must not fail.
3851  * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3852  * then only check for the number of reserved spots.
3853  * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3854  * because the command event handler may want to resubmit a failed command.
3855  */
3856 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2,
3857 		u32 field3, u32 field4, bool command_must_succeed)
3858 {
3859 	int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3860 	int ret;
3861 
3862 	if (!command_must_succeed)
3863 		reserved_trbs++;
3864 
3865 	ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3866 			reserved_trbs, GFP_ATOMIC);
3867 	if (ret < 0) {
3868 		xhci_err(xhci, "ERR: No room for command on command ring\n");
3869 		if (command_must_succeed)
3870 			xhci_err(xhci, "ERR: Reserved TRB counting for "
3871 					"unfailable commands failed.\n");
3872 		return ret;
3873 	}
3874 	queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
3875 			field4 | xhci->cmd_ring->cycle_state);
3876 	return 0;
3877 }
3878 
3879 /* Queue a slot enable or disable request on the command ring */
3880 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id)
3881 {
3882 	return queue_command(xhci, 0, 0, 0,
3883 			TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3884 }
3885 
3886 /* Queue an address device command TRB */
3887 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3888 		u32 slot_id)
3889 {
3890 	return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3891 			upper_32_bits(in_ctx_ptr), 0,
3892 			TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id),
3893 			false);
3894 }
3895 
3896 int xhci_queue_vendor_command(struct xhci_hcd *xhci,
3897 		u32 field1, u32 field2, u32 field3, u32 field4)
3898 {
3899 	return queue_command(xhci, field1, field2, field3, field4, false);
3900 }
3901 
3902 /* Queue a reset device command TRB */
3903 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id)
3904 {
3905 	return queue_command(xhci, 0, 0, 0,
3906 			TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3907 			false);
3908 }
3909 
3910 /* Queue a configure endpoint command TRB */
3911 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3912 		u32 slot_id, bool command_must_succeed)
3913 {
3914 	return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3915 			upper_32_bits(in_ctx_ptr), 0,
3916 			TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3917 			command_must_succeed);
3918 }
3919 
3920 /* Queue an evaluate context command TRB */
3921 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3922 		u32 slot_id, bool command_must_succeed)
3923 {
3924 	return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3925 			upper_32_bits(in_ctx_ptr), 0,
3926 			TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3927 			command_must_succeed);
3928 }
3929 
3930 /*
3931  * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3932  * activity on an endpoint that is about to be suspended.
3933  */
3934 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id,
3935 		unsigned int ep_index, int suspend)
3936 {
3937 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3938 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3939 	u32 type = TRB_TYPE(TRB_STOP_RING);
3940 	u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
3941 
3942 	return queue_command(xhci, 0, 0, 0,
3943 			trb_slot_id | trb_ep_index | type | trb_suspend, false);
3944 }
3945 
3946 /* Set Transfer Ring Dequeue Pointer command.
3947  * This should not be used for endpoints that have streams enabled.
3948  */
3949 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
3950 		unsigned int ep_index, unsigned int stream_id,
3951 		struct xhci_segment *deq_seg,
3952 		union xhci_trb *deq_ptr, u32 cycle_state)
3953 {
3954 	dma_addr_t addr;
3955 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3956 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3957 	u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
3958 	u32 type = TRB_TYPE(TRB_SET_DEQ);
3959 	struct xhci_virt_ep *ep;
3960 
3961 	addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr);
3962 	if (addr == 0) {
3963 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3964 		xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
3965 				deq_seg, deq_ptr);
3966 		return 0;
3967 	}
3968 	ep = &xhci->devs[slot_id]->eps[ep_index];
3969 	if ((ep->ep_state & SET_DEQ_PENDING)) {
3970 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3971 		xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
3972 		return 0;
3973 	}
3974 	ep->queued_deq_seg = deq_seg;
3975 	ep->queued_deq_ptr = deq_ptr;
3976 	return queue_command(xhci, lower_32_bits(addr) | cycle_state,
3977 			upper_32_bits(addr), trb_stream_id,
3978 			trb_slot_id | trb_ep_index | type, false);
3979 }
3980 
3981 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id,
3982 		unsigned int ep_index)
3983 {
3984 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3985 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3986 	u32 type = TRB_TYPE(TRB_RESET_EP);
3987 
3988 	return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type,
3989 			false);
3990 }
3991