1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 /* 12 * Ring initialization rules: 13 * 1. Each segment is initialized to zero, except for link TRBs. 14 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 15 * Consumer Cycle State (CCS), depending on ring function. 16 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 17 * 18 * Ring behavior rules: 19 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 20 * least one free TRB in the ring. This is useful if you want to turn that 21 * into a link TRB and expand the ring. 22 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 23 * link TRB, then load the pointer with the address in the link TRB. If the 24 * link TRB had its toggle bit set, you may need to update the ring cycle 25 * state (see cycle bit rules). You may have to do this multiple times 26 * until you reach a non-link TRB. 27 * 3. A ring is full if enqueue++ (for the definition of increment above) 28 * equals the dequeue pointer. 29 * 30 * Cycle bit rules: 31 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 32 * in a link TRB, it must toggle the ring cycle state. 33 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 34 * in a link TRB, it must toggle the ring cycle state. 35 * 36 * Producer rules: 37 * 1. Check if ring is full before you enqueue. 38 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 39 * Update enqueue pointer between each write (which may update the ring 40 * cycle state). 41 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 42 * and endpoint rings. If HC is the producer for the event ring, 43 * and it generates an interrupt according to interrupt modulation rules. 44 * 45 * Consumer rules: 46 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 47 * the TRB is owned by the consumer. 48 * 2. Update dequeue pointer (which may update the ring cycle state) and 49 * continue processing TRBs until you reach a TRB which is not owned by you. 50 * 3. Notify the producer. SW is the consumer for the event ring, and it 51 * updates event ring dequeue pointer. HC is the consumer for the command and 52 * endpoint rings; it generates events on the event ring for these. 53 */ 54 55 #include <linux/scatterlist.h> 56 #include <linux/slab.h> 57 #include <linux/dma-mapping.h> 58 #include "xhci.h" 59 #include "xhci-trace.h" 60 61 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 62 u32 field1, u32 field2, 63 u32 field3, u32 field4, bool command_must_succeed); 64 65 /* 66 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 67 * address of the TRB. 68 */ 69 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 70 union xhci_trb *trb) 71 { 72 unsigned long segment_offset; 73 74 if (!seg || !trb || trb < seg->trbs) 75 return 0; 76 /* offset in TRBs */ 77 segment_offset = trb - seg->trbs; 78 if (segment_offset >= TRBS_PER_SEGMENT) 79 return 0; 80 return seg->dma + (segment_offset * sizeof(*trb)); 81 } 82 83 static bool trb_is_noop(union xhci_trb *trb) 84 { 85 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); 86 } 87 88 static bool trb_is_link(union xhci_trb *trb) 89 { 90 return TRB_TYPE_LINK_LE32(trb->link.control); 91 } 92 93 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) 94 { 95 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; 96 } 97 98 static bool last_trb_on_ring(struct xhci_ring *ring, 99 struct xhci_segment *seg, union xhci_trb *trb) 100 { 101 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); 102 } 103 104 static bool link_trb_toggles_cycle(union xhci_trb *trb) 105 { 106 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 107 } 108 109 static bool last_td_in_urb(struct xhci_td *td) 110 { 111 struct urb_priv *urb_priv = td->urb->hcpriv; 112 113 return urb_priv->num_tds_done == urb_priv->num_tds; 114 } 115 116 static void inc_td_cnt(struct urb *urb) 117 { 118 struct urb_priv *urb_priv = urb->hcpriv; 119 120 urb_priv->num_tds_done++; 121 } 122 123 static void trb_to_noop(union xhci_trb *trb, u32 noop_type) 124 { 125 if (trb_is_link(trb)) { 126 /* unchain chained link TRBs */ 127 trb->link.control &= cpu_to_le32(~TRB_CHAIN); 128 } else { 129 trb->generic.field[0] = 0; 130 trb->generic.field[1] = 0; 131 trb->generic.field[2] = 0; 132 /* Preserve only the cycle bit of this TRB */ 133 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 134 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); 135 } 136 } 137 138 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 139 * TRB is in a new segment. This does not skip over link TRBs, and it does not 140 * effect the ring dequeue or enqueue pointers. 141 */ 142 static void next_trb(struct xhci_hcd *xhci, 143 struct xhci_ring *ring, 144 struct xhci_segment **seg, 145 union xhci_trb **trb) 146 { 147 if (trb_is_link(*trb)) { 148 *seg = (*seg)->next; 149 *trb = ((*seg)->trbs); 150 } else { 151 (*trb)++; 152 } 153 } 154 155 /* 156 * See Cycle bit rules. SW is the consumer for the event ring only. 157 */ 158 void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 159 { 160 unsigned int link_trb_count = 0; 161 162 /* event ring doesn't have link trbs, check for last trb */ 163 if (ring->type == TYPE_EVENT) { 164 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 165 ring->dequeue++; 166 goto out; 167 } 168 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) 169 ring->cycle_state ^= 1; 170 ring->deq_seg = ring->deq_seg->next; 171 ring->dequeue = ring->deq_seg->trbs; 172 goto out; 173 } 174 175 /* All other rings have link trbs */ 176 if (!trb_is_link(ring->dequeue)) { 177 if (last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 178 xhci_warn(xhci, "Missing link TRB at end of segment\n"); 179 } else { 180 ring->dequeue++; 181 ring->num_trbs_free++; 182 } 183 } 184 185 while (trb_is_link(ring->dequeue)) { 186 ring->deq_seg = ring->deq_seg->next; 187 ring->dequeue = ring->deq_seg->trbs; 188 189 if (link_trb_count++ > ring->num_segs) { 190 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 191 break; 192 } 193 } 194 out: 195 trace_xhci_inc_deq(ring); 196 197 return; 198 } 199 200 /* 201 * See Cycle bit rules. SW is the consumer for the event ring only. 202 * 203 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 204 * chain bit is set), then set the chain bit in all the following link TRBs. 205 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 206 * have their chain bit cleared (so that each Link TRB is a separate TD). 207 * 208 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 209 * set, but other sections talk about dealing with the chain bit set. This was 210 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 211 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 212 * 213 * @more_trbs_coming: Will you enqueue more TRBs before calling 214 * prepare_transfer()? 215 */ 216 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 217 bool more_trbs_coming) 218 { 219 u32 chain; 220 union xhci_trb *next; 221 unsigned int link_trb_count = 0; 222 223 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 224 /* If this is not event ring, there is one less usable TRB */ 225 if (!trb_is_link(ring->enqueue)) 226 ring->num_trbs_free--; 227 228 if (last_trb_on_seg(ring->enq_seg, ring->enqueue)) { 229 xhci_err(xhci, "Tried to move enqueue past ring segment\n"); 230 return; 231 } 232 233 next = ++(ring->enqueue); 234 235 /* Update the dequeue pointer further if that was a link TRB */ 236 while (trb_is_link(next)) { 237 238 /* 239 * If the caller doesn't plan on enqueueing more TDs before 240 * ringing the doorbell, then we don't want to give the link TRB 241 * to the hardware just yet. We'll give the link TRB back in 242 * prepare_ring() just before we enqueue the TD at the top of 243 * the ring. 244 */ 245 if (!chain && !more_trbs_coming) 246 break; 247 248 /* If we're not dealing with 0.95 hardware or isoc rings on 249 * AMD 0.96 host, carry over the chain bit of the previous TRB 250 * (which may mean the chain bit is cleared). 251 */ 252 if (!(ring->type == TYPE_ISOC && 253 (xhci->quirks & XHCI_AMD_0x96_HOST)) && 254 !xhci_link_trb_quirk(xhci)) { 255 next->link.control &= cpu_to_le32(~TRB_CHAIN); 256 next->link.control |= cpu_to_le32(chain); 257 } 258 /* Give this link TRB to the hardware */ 259 wmb(); 260 next->link.control ^= cpu_to_le32(TRB_CYCLE); 261 262 /* Toggle the cycle bit after the last ring segment. */ 263 if (link_trb_toggles_cycle(next)) 264 ring->cycle_state ^= 1; 265 266 ring->enq_seg = ring->enq_seg->next; 267 ring->enqueue = ring->enq_seg->trbs; 268 next = ring->enqueue; 269 270 if (link_trb_count++ > ring->num_segs) { 271 xhci_warn(xhci, "%s: Ring link TRB loop\n", __func__); 272 break; 273 } 274 } 275 276 trace_xhci_inc_enq(ring); 277 } 278 279 /* 280 * Check to see if there's room to enqueue num_trbs on the ring and make sure 281 * enqueue pointer will not advance into dequeue segment. See rules above. 282 */ 283 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 284 unsigned int num_trbs) 285 { 286 int num_trbs_in_deq_seg; 287 288 if (ring->num_trbs_free < num_trbs) 289 return 0; 290 291 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { 292 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; 293 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) 294 return 0; 295 } 296 297 return 1; 298 } 299 300 /* Ring the host controller doorbell after placing a command on the ring */ 301 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 302 { 303 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 304 return; 305 306 xhci_dbg(xhci, "// Ding dong!\n"); 307 308 trace_xhci_ring_host_doorbell(0, DB_VALUE_HOST); 309 310 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 311 /* Flush PCI posted writes */ 312 readl(&xhci->dba->doorbell[0]); 313 } 314 315 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay) 316 { 317 return mod_delayed_work(system_wq, &xhci->cmd_timer, delay); 318 } 319 320 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) 321 { 322 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, 323 cmd_list); 324 } 325 326 /* 327 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 328 * If there are other commands waiting then restart the ring and kick the timer. 329 * This must be called with command ring stopped and xhci->lock held. 330 */ 331 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 332 struct xhci_command *cur_cmd) 333 { 334 struct xhci_command *i_cmd; 335 336 /* Turn all aborted commands in list to no-ops, then restart */ 337 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { 338 339 if (i_cmd->status != COMP_COMMAND_ABORTED) 340 continue; 341 342 i_cmd->status = COMP_COMMAND_RING_STOPPED; 343 344 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 345 i_cmd->command_trb); 346 347 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); 348 349 /* 350 * caller waiting for completion is called when command 351 * completion event is received for these no-op commands 352 */ 353 } 354 355 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 356 357 /* ring command ring doorbell to restart the command ring */ 358 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 359 !(xhci->xhc_state & XHCI_STATE_DYING)) { 360 xhci->current_cmd = cur_cmd; 361 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 362 xhci_ring_cmd_db(xhci); 363 } 364 } 365 366 /* Must be called with xhci->lock held, releases and aquires lock back */ 367 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) 368 { 369 struct xhci_segment *new_seg = xhci->cmd_ring->deq_seg; 370 union xhci_trb *new_deq = xhci->cmd_ring->dequeue; 371 u64 crcr; 372 int ret; 373 374 xhci_dbg(xhci, "Abort command ring\n"); 375 376 reinit_completion(&xhci->cmd_ring_stop_completion); 377 378 /* 379 * The control bits like command stop, abort are located in lower 380 * dword of the command ring control register. 381 * Some controllers require all 64 bits to be written to abort the ring. 382 * Make sure the upper dword is valid, pointing to the next command, 383 * avoiding corrupting the command ring pointer in case the command ring 384 * is stopped by the time the upper dword is written. 385 */ 386 next_trb(xhci, NULL, &new_seg, &new_deq); 387 if (trb_is_link(new_deq)) 388 next_trb(xhci, NULL, &new_seg, &new_deq); 389 390 crcr = xhci_trb_virt_to_dma(new_seg, new_deq); 391 xhci_write_64(xhci, crcr | CMD_RING_ABORT, &xhci->op_regs->cmd_ring); 392 393 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the 394 * completion of the Command Abort operation. If CRR is not negated in 5 395 * seconds then driver handles it as if host died (-ENODEV). 396 * In the future we should distinguish between -ENODEV and -ETIMEDOUT 397 * and try to recover a -ETIMEDOUT with a host controller reset. 398 */ 399 ret = xhci_handshake(&xhci->op_regs->cmd_ring, 400 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 401 if (ret < 0) { 402 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret); 403 xhci_halt(xhci); 404 xhci_hc_died(xhci); 405 return ret; 406 } 407 /* 408 * Writing the CMD_RING_ABORT bit should cause a cmd completion event, 409 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared 410 * but the completion event in never sent. Wait 2 secs (arbitrary 411 * number) to handle those cases after negation of CMD_RING_RUNNING. 412 */ 413 spin_unlock_irqrestore(&xhci->lock, flags); 414 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, 415 msecs_to_jiffies(2000)); 416 spin_lock_irqsave(&xhci->lock, flags); 417 if (!ret) { 418 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); 419 xhci_cleanup_command_queue(xhci); 420 } else { 421 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); 422 } 423 return 0; 424 } 425 426 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 427 unsigned int slot_id, 428 unsigned int ep_index, 429 unsigned int stream_id) 430 { 431 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 432 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 433 unsigned int ep_state = ep->ep_state; 434 435 /* Don't ring the doorbell for this endpoint if there are pending 436 * cancellations because we don't want to interrupt processing. 437 * We don't want to restart any stream rings if there's a set dequeue 438 * pointer command pending because the device can choose to start any 439 * stream once the endpoint is on the HW schedule. 440 */ 441 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || 442 (ep_state & EP_HALTED) || (ep_state & EP_CLEARING_TT)) 443 return; 444 445 trace_xhci_ring_ep_doorbell(slot_id, DB_VALUE(ep_index, stream_id)); 446 447 writel(DB_VALUE(ep_index, stream_id), db_addr); 448 /* flush the write */ 449 readl(db_addr); 450 } 451 452 /* Ring the doorbell for any rings with pending URBs */ 453 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 454 unsigned int slot_id, 455 unsigned int ep_index) 456 { 457 unsigned int stream_id; 458 struct xhci_virt_ep *ep; 459 460 ep = &xhci->devs[slot_id]->eps[ep_index]; 461 462 /* A ring has pending URBs if its TD list is not empty */ 463 if (!(ep->ep_state & EP_HAS_STREAMS)) { 464 if (ep->ring && !(list_empty(&ep->ring->td_list))) 465 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 466 return; 467 } 468 469 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 470 stream_id++) { 471 struct xhci_stream_info *stream_info = ep->stream_info; 472 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 473 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 474 stream_id); 475 } 476 } 477 478 void xhci_ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 479 unsigned int slot_id, 480 unsigned int ep_index) 481 { 482 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 483 } 484 485 static struct xhci_virt_ep *xhci_get_virt_ep(struct xhci_hcd *xhci, 486 unsigned int slot_id, 487 unsigned int ep_index) 488 { 489 if (slot_id == 0 || slot_id >= MAX_HC_SLOTS) { 490 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 491 return NULL; 492 } 493 if (ep_index >= EP_CTX_PER_DEV) { 494 xhci_warn(xhci, "Invalid endpoint index %u\n", ep_index); 495 return NULL; 496 } 497 if (!xhci->devs[slot_id]) { 498 xhci_warn(xhci, "No xhci virt device for slot_id %u\n", slot_id); 499 return NULL; 500 } 501 502 return &xhci->devs[slot_id]->eps[ep_index]; 503 } 504 505 static struct xhci_ring *xhci_virt_ep_to_ring(struct xhci_hcd *xhci, 506 struct xhci_virt_ep *ep, 507 unsigned int stream_id) 508 { 509 /* common case, no streams */ 510 if (!(ep->ep_state & EP_HAS_STREAMS)) 511 return ep->ring; 512 513 if (!ep->stream_info) 514 return NULL; 515 516 if (stream_id == 0 || stream_id >= ep->stream_info->num_streams) { 517 xhci_warn(xhci, "Invalid stream_id %u request for slot_id %u ep_index %u\n", 518 stream_id, ep->vdev->slot_id, ep->ep_index); 519 return NULL; 520 } 521 522 return ep->stream_info->stream_rings[stream_id]; 523 } 524 525 /* Get the right ring for the given slot_id, ep_index and stream_id. 526 * If the endpoint supports streams, boundary check the URB's stream ID. 527 * If the endpoint doesn't support streams, return the singular endpoint ring. 528 */ 529 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 530 unsigned int slot_id, unsigned int ep_index, 531 unsigned int stream_id) 532 { 533 struct xhci_virt_ep *ep; 534 535 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 536 if (!ep) 537 return NULL; 538 539 return xhci_virt_ep_to_ring(xhci, ep, stream_id); 540 } 541 542 543 /* 544 * Get the hw dequeue pointer xHC stopped on, either directly from the 545 * endpoint context, or if streams are in use from the stream context. 546 * The returned hw_dequeue contains the lowest four bits with cycle state 547 * and possbile stream context type. 548 */ 549 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev, 550 unsigned int ep_index, unsigned int stream_id) 551 { 552 struct xhci_ep_ctx *ep_ctx; 553 struct xhci_stream_ctx *st_ctx; 554 struct xhci_virt_ep *ep; 555 556 ep = &vdev->eps[ep_index]; 557 558 if (ep->ep_state & EP_HAS_STREAMS) { 559 st_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 560 return le64_to_cpu(st_ctx->stream_ring); 561 } 562 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 563 return le64_to_cpu(ep_ctx->deq); 564 } 565 566 static int xhci_move_dequeue_past_td(struct xhci_hcd *xhci, 567 unsigned int slot_id, unsigned int ep_index, 568 unsigned int stream_id, struct xhci_td *td) 569 { 570 struct xhci_virt_device *dev = xhci->devs[slot_id]; 571 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 572 struct xhci_ring *ep_ring; 573 struct xhci_command *cmd; 574 struct xhci_segment *new_seg; 575 struct xhci_segment *halted_seg = NULL; 576 union xhci_trb *new_deq; 577 int new_cycle; 578 union xhci_trb *halted_trb; 579 int index = 0; 580 dma_addr_t addr; 581 u64 hw_dequeue; 582 bool cycle_found = false; 583 bool td_last_trb_found = false; 584 u32 trb_sct = 0; 585 int ret; 586 587 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 588 ep_index, stream_id); 589 if (!ep_ring) { 590 xhci_warn(xhci, "WARN can't find new dequeue, invalid stream ID %u\n", 591 stream_id); 592 return -ENODEV; 593 } 594 /* 595 * A cancelled TD can complete with a stall if HW cached the trb. 596 * In this case driver can't find td, but if the ring is empty we 597 * can move the dequeue pointer to the current enqueue position. 598 * We shouldn't hit this anymore as cached cancelled TRBs are given back 599 * after clearing the cache, but be on the safe side and keep it anyway 600 */ 601 if (!td) { 602 if (list_empty(&ep_ring->td_list)) { 603 new_seg = ep_ring->enq_seg; 604 new_deq = ep_ring->enqueue; 605 new_cycle = ep_ring->cycle_state; 606 xhci_dbg(xhci, "ep ring empty, Set new dequeue = enqueue"); 607 goto deq_found; 608 } else { 609 xhci_warn(xhci, "Can't find new dequeue state, missing td\n"); 610 return -EINVAL; 611 } 612 } 613 614 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id); 615 new_seg = ep_ring->deq_seg; 616 new_deq = ep_ring->dequeue; 617 618 /* 619 * Quirk: xHC write-back of the DCS field in the hardware dequeue 620 * pointer is wrong - use the cycle state of the TRB pointed to by 621 * the dequeue pointer. 622 */ 623 if (xhci->quirks & XHCI_EP_CTX_BROKEN_DCS && 624 !(ep->ep_state & EP_HAS_STREAMS)) 625 halted_seg = trb_in_td(xhci, td->start_seg, 626 td->first_trb, td->last_trb, 627 hw_dequeue & ~0xf, false); 628 if (halted_seg) { 629 index = ((dma_addr_t)(hw_dequeue & ~0xf) - halted_seg->dma) / 630 sizeof(*halted_trb); 631 halted_trb = &halted_seg->trbs[index]; 632 new_cycle = halted_trb->generic.field[3] & 0x1; 633 xhci_dbg(xhci, "Endpoint DCS = %d TRB index = %d cycle = %d\n", 634 (u8)(hw_dequeue & 0x1), index, new_cycle); 635 } else { 636 new_cycle = hw_dequeue & 0x1; 637 } 638 639 /* 640 * We want to find the pointer, segment and cycle state of the new trb 641 * (the one after current TD's last_trb). We know the cycle state at 642 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are 643 * found. 644 */ 645 do { 646 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) 647 == (dma_addr_t)(hw_dequeue & ~0xf)) { 648 cycle_found = true; 649 if (td_last_trb_found) 650 break; 651 } 652 if (new_deq == td->last_trb) 653 td_last_trb_found = true; 654 655 if (cycle_found && trb_is_link(new_deq) && 656 link_trb_toggles_cycle(new_deq)) 657 new_cycle ^= 0x1; 658 659 next_trb(xhci, ep_ring, &new_seg, &new_deq); 660 661 /* Search wrapped around, bail out */ 662 if (new_deq == ep->ring->dequeue) { 663 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 664 return -EINVAL; 665 } 666 667 } while (!cycle_found || !td_last_trb_found); 668 669 deq_found: 670 671 /* Don't update the ring cycle state for the producer (us). */ 672 addr = xhci_trb_virt_to_dma(new_seg, new_deq); 673 if (addr == 0) { 674 xhci_warn(xhci, "Can't find dma of new dequeue ptr\n"); 675 xhci_warn(xhci, "deq seg = %p, deq ptr = %p\n", new_seg, new_deq); 676 return -EINVAL; 677 } 678 679 if ((ep->ep_state & SET_DEQ_PENDING)) { 680 xhci_warn(xhci, "Set TR Deq already pending, don't submit for 0x%pad\n", 681 &addr); 682 return -EBUSY; 683 } 684 685 /* This function gets called from contexts where it cannot sleep */ 686 cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC); 687 if (!cmd) { 688 xhci_warn(xhci, "Can't alloc Set TR Deq cmd 0x%pad\n", &addr); 689 return -ENOMEM; 690 } 691 692 if (stream_id) 693 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 694 ret = queue_command(xhci, cmd, 695 lower_32_bits(addr) | trb_sct | new_cycle, 696 upper_32_bits(addr), 697 STREAM_ID_FOR_TRB(stream_id), SLOT_ID_FOR_TRB(slot_id) | 698 EP_ID_FOR_TRB(ep_index) | TRB_TYPE(TRB_SET_DEQ), false); 699 if (ret < 0) { 700 xhci_free_command(xhci, cmd); 701 return ret; 702 } 703 ep->queued_deq_seg = new_seg; 704 ep->queued_deq_ptr = new_deq; 705 706 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 707 "Set TR Deq ptr 0x%llx, cycle %u\n", addr, new_cycle); 708 709 /* Stop the TD queueing code from ringing the doorbell until 710 * this command completes. The HC won't set the dequeue pointer 711 * if the ring is running, and ringing the doorbell starts the 712 * ring running. 713 */ 714 ep->ep_state |= SET_DEQ_PENDING; 715 xhci_ring_cmd_db(xhci); 716 return 0; 717 } 718 719 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 720 * (The last TRB actually points to the ring enqueue pointer, which is not part 721 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 722 */ 723 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 724 struct xhci_td *td, bool flip_cycle) 725 { 726 struct xhci_segment *seg = td->start_seg; 727 union xhci_trb *trb = td->first_trb; 728 729 while (1) { 730 trb_to_noop(trb, TRB_TR_NOOP); 731 732 /* flip cycle if asked to */ 733 if (flip_cycle && trb != td->first_trb && trb != td->last_trb) 734 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); 735 736 if (trb == td->last_trb) 737 break; 738 739 next_trb(xhci, ep_ring, &seg, &trb); 740 } 741 } 742 743 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, 744 struct xhci_virt_ep *ep) 745 { 746 ep->ep_state &= ~EP_STOP_CMD_PENDING; 747 /* Can't del_timer_sync in interrupt */ 748 del_timer(&ep->stop_cmd_timer); 749 } 750 751 /* 752 * Must be called with xhci->lock held in interrupt context, 753 * releases and re-acquires xhci->lock 754 */ 755 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 756 struct xhci_td *cur_td, int status) 757 { 758 struct urb *urb = cur_td->urb; 759 struct urb_priv *urb_priv = urb->hcpriv; 760 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 761 762 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 763 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 764 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 765 if (xhci->quirks & XHCI_AMD_PLL_FIX) 766 usb_amd_quirk_pll_enable(); 767 } 768 } 769 xhci_urb_free_priv(urb_priv); 770 usb_hcd_unlink_urb_from_ep(hcd, urb); 771 trace_xhci_urb_giveback(urb); 772 usb_hcd_giveback_urb(hcd, urb, status); 773 } 774 775 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, 776 struct xhci_ring *ring, struct xhci_td *td) 777 { 778 struct device *dev = xhci_to_hcd(xhci)->self.controller; 779 struct xhci_segment *seg = td->bounce_seg; 780 struct urb *urb = td->urb; 781 size_t len; 782 783 if (!ring || !seg || !urb) 784 return; 785 786 if (usb_urb_dir_out(urb)) { 787 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 788 DMA_TO_DEVICE); 789 return; 790 } 791 792 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 793 DMA_FROM_DEVICE); 794 /* for in tranfers we need to copy the data from bounce to sg */ 795 if (urb->num_sgs) { 796 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, seg->bounce_buf, 797 seg->bounce_len, seg->bounce_offs); 798 if (len != seg->bounce_len) 799 xhci_warn(xhci, "WARN Wrong bounce buffer read length: %zu != %d\n", 800 len, seg->bounce_len); 801 } else { 802 memcpy(urb->transfer_buffer + seg->bounce_offs, seg->bounce_buf, 803 seg->bounce_len); 804 } 805 seg->bounce_len = 0; 806 seg->bounce_offs = 0; 807 } 808 809 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, 810 struct xhci_ring *ep_ring, int status) 811 { 812 struct urb *urb = NULL; 813 814 /* Clean up the endpoint's TD list */ 815 urb = td->urb; 816 817 /* if a bounce buffer was used to align this td then unmap it */ 818 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); 819 820 /* Do one last check of the actual transfer length. 821 * If the host controller said we transferred more data than the buffer 822 * length, urb->actual_length will be a very big number (since it's 823 * unsigned). Play it safe and say we didn't transfer anything. 824 */ 825 if (urb->actual_length > urb->transfer_buffer_length) { 826 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", 827 urb->transfer_buffer_length, urb->actual_length); 828 urb->actual_length = 0; 829 status = 0; 830 } 831 /* TD might be removed from td_list if we are giving back a cancelled URB */ 832 if (!list_empty(&td->td_list)) 833 list_del_init(&td->td_list); 834 /* Giving back a cancelled URB, or if a slated TD completed anyway */ 835 if (!list_empty(&td->cancelled_td_list)) 836 list_del_init(&td->cancelled_td_list); 837 838 inc_td_cnt(urb); 839 /* Giveback the urb when all the tds are completed */ 840 if (last_td_in_urb(td)) { 841 if ((urb->actual_length != urb->transfer_buffer_length && 842 (urb->transfer_flags & URB_SHORT_NOT_OK)) || 843 (status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) 844 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", 845 urb, urb->actual_length, 846 urb->transfer_buffer_length, status); 847 848 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ 849 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 850 status = 0; 851 xhci_giveback_urb_in_irq(xhci, td, status); 852 } 853 854 return 0; 855 } 856 857 858 /* Complete the cancelled URBs we unlinked from td_list. */ 859 static void xhci_giveback_invalidated_tds(struct xhci_virt_ep *ep) 860 { 861 struct xhci_ring *ring; 862 struct xhci_td *td, *tmp_td; 863 864 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 865 cancelled_td_list) { 866 867 ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 868 869 if (td->cancel_status == TD_CLEARED) { 870 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 871 __func__, td->urb); 872 xhci_td_cleanup(ep->xhci, td, ring, td->status); 873 } else { 874 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 875 __func__, td->urb, td->cancel_status); 876 } 877 if (ep->xhci->xhc_state & XHCI_STATE_DYING) 878 return; 879 } 880 } 881 882 static int xhci_reset_halted_ep(struct xhci_hcd *xhci, unsigned int slot_id, 883 unsigned int ep_index, enum xhci_ep_reset_type reset_type) 884 { 885 struct xhci_command *command; 886 int ret = 0; 887 888 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 889 if (!command) { 890 ret = -ENOMEM; 891 goto done; 892 } 893 894 xhci_dbg(xhci, "%s-reset ep %u, slot %u\n", 895 (reset_type == EP_HARD_RESET) ? "Hard" : "Soft", 896 ep_index, slot_id); 897 898 ret = xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type); 899 done: 900 if (ret) 901 xhci_err(xhci, "ERROR queuing reset endpoint for slot %d ep_index %d, %d\n", 902 slot_id, ep_index, ret); 903 return ret; 904 } 905 906 static int xhci_handle_halted_endpoint(struct xhci_hcd *xhci, 907 struct xhci_virt_ep *ep, unsigned int stream_id, 908 struct xhci_td *td, 909 enum xhci_ep_reset_type reset_type) 910 { 911 unsigned int slot_id = ep->vdev->slot_id; 912 int err; 913 914 /* 915 * Avoid resetting endpoint if link is inactive. Can cause host hang. 916 * Device will be reset soon to recover the link so don't do anything 917 */ 918 if (ep->vdev->flags & VDEV_PORT_ERROR) 919 return -ENODEV; 920 921 /* add td to cancelled list and let reset ep handler take care of it */ 922 if (reset_type == EP_HARD_RESET) { 923 ep->ep_state |= EP_HARD_CLEAR_TOGGLE; 924 if (td && list_empty(&td->cancelled_td_list)) { 925 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 926 td->cancel_status = TD_HALTED; 927 } 928 } 929 930 if (ep->ep_state & EP_HALTED) { 931 xhci_dbg(xhci, "Reset ep command for ep_index %d already pending\n", 932 ep->ep_index); 933 return 0; 934 } 935 936 err = xhci_reset_halted_ep(xhci, slot_id, ep->ep_index, reset_type); 937 if (err) 938 return err; 939 940 ep->ep_state |= EP_HALTED; 941 942 xhci_ring_cmd_db(xhci); 943 944 return 0; 945 } 946 947 /* 948 * Fix up the ep ring first, so HW stops executing cancelled TDs. 949 * We have the xHCI lock, so nothing can modify this list until we drop it. 950 * We're also in the event handler, so we can't get re-interrupted if another 951 * Stop Endpoint command completes. 952 * 953 * only call this when ring is not in a running state 954 */ 955 956 static int xhci_invalidate_cancelled_tds(struct xhci_virt_ep *ep) 957 { 958 struct xhci_hcd *xhci; 959 struct xhci_td *td = NULL; 960 struct xhci_td *tmp_td = NULL; 961 struct xhci_td *cached_td = NULL; 962 struct xhci_ring *ring; 963 u64 hw_deq; 964 unsigned int slot_id = ep->vdev->slot_id; 965 int err; 966 967 xhci = ep->xhci; 968 969 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 970 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 971 "Removing canceled TD starting at 0x%llx (dma) in stream %u URB %p", 972 (unsigned long long)xhci_trb_virt_to_dma( 973 td->start_seg, td->first_trb), 974 td->urb->stream_id, td->urb); 975 list_del_init(&td->td_list); 976 ring = xhci_urb_to_transfer_ring(xhci, td->urb); 977 if (!ring) { 978 xhci_warn(xhci, "WARN Cancelled URB %p has invalid stream ID %u.\n", 979 td->urb, td->urb->stream_id); 980 continue; 981 } 982 /* 983 * If a ring stopped on the TD we need to cancel then we have to 984 * move the xHC endpoint ring dequeue pointer past this TD. 985 * Rings halted due to STALL may show hw_deq is past the stalled 986 * TD, but still require a set TR Deq command to flush xHC cache. 987 */ 988 hw_deq = xhci_get_hw_deq(xhci, ep->vdev, ep->ep_index, 989 td->urb->stream_id); 990 hw_deq &= ~0xf; 991 992 if (td->cancel_status == TD_HALTED || 993 trb_in_td(xhci, td->start_seg, td->first_trb, td->last_trb, hw_deq, false)) { 994 switch (td->cancel_status) { 995 case TD_CLEARED: /* TD is already no-op */ 996 case TD_CLEARING_CACHE: /* set TR deq command already queued */ 997 break; 998 case TD_DIRTY: /* TD is cached, clear it */ 999 case TD_HALTED: 1000 td->cancel_status = TD_CLEARING_CACHE; 1001 if (cached_td) 1002 /* FIXME stream case, several stopped rings */ 1003 xhci_dbg(xhci, 1004 "Move dq past stream %u URB %p instead of stream %u URB %p\n", 1005 td->urb->stream_id, td->urb, 1006 cached_td->urb->stream_id, cached_td->urb); 1007 cached_td = td; 1008 break; 1009 } 1010 } else { 1011 td_to_noop(xhci, ring, td, false); 1012 td->cancel_status = TD_CLEARED; 1013 } 1014 } 1015 1016 /* If there's no need to move the dequeue pointer then we're done */ 1017 if (!cached_td) 1018 return 0; 1019 1020 err = xhci_move_dequeue_past_td(xhci, slot_id, ep->ep_index, 1021 cached_td->urb->stream_id, 1022 cached_td); 1023 if (err) { 1024 /* Failed to move past cached td, just set cached TDs to no-op */ 1025 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 1026 if (td->cancel_status != TD_CLEARING_CACHE) 1027 continue; 1028 xhci_dbg(xhci, "Failed to clear cancelled cached URB %p, mark clear anyway\n", 1029 td->urb); 1030 td_to_noop(xhci, ring, td, false); 1031 td->cancel_status = TD_CLEARED; 1032 } 1033 } 1034 return 0; 1035 } 1036 1037 /* 1038 * Returns the TD the endpoint ring halted on. 1039 * Only call for non-running rings without streams. 1040 */ 1041 static struct xhci_td *find_halted_td(struct xhci_virt_ep *ep) 1042 { 1043 struct xhci_td *td; 1044 u64 hw_deq; 1045 1046 if (!list_empty(&ep->ring->td_list)) { /* Not streams compatible */ 1047 hw_deq = xhci_get_hw_deq(ep->xhci, ep->vdev, ep->ep_index, 0); 1048 hw_deq &= ~0xf; 1049 td = list_first_entry(&ep->ring->td_list, struct xhci_td, td_list); 1050 if (trb_in_td(ep->xhci, td->start_seg, td->first_trb, 1051 td->last_trb, hw_deq, false)) 1052 return td; 1053 } 1054 return NULL; 1055 } 1056 1057 /* 1058 * When we get a command completion for a Stop Endpoint Command, we need to 1059 * unlink any cancelled TDs from the ring. There are two ways to do that: 1060 * 1061 * 1. If the HW was in the middle of processing the TD that needs to be 1062 * cancelled, then we must move the ring's dequeue pointer past the last TRB 1063 * in the TD with a Set Dequeue Pointer Command. 1064 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 1065 * bit cleared) so that the HW will skip over them. 1066 */ 1067 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 1068 union xhci_trb *trb, u32 comp_code) 1069 { 1070 unsigned int ep_index; 1071 struct xhci_virt_ep *ep; 1072 struct xhci_ep_ctx *ep_ctx; 1073 struct xhci_td *td = NULL; 1074 enum xhci_ep_reset_type reset_type; 1075 struct xhci_command *command; 1076 int err; 1077 1078 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 1079 if (!xhci->devs[slot_id]) 1080 xhci_warn(xhci, "Stop endpoint command completion for disabled slot %u\n", 1081 slot_id); 1082 return; 1083 } 1084 1085 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1086 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1087 if (!ep) 1088 return; 1089 1090 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1091 1092 trace_xhci_handle_cmd_stop_ep(ep_ctx); 1093 1094 if (comp_code == COMP_CONTEXT_STATE_ERROR) { 1095 /* 1096 * If stop endpoint command raced with a halting endpoint we need to 1097 * reset the host side endpoint first. 1098 * If the TD we halted on isn't cancelled the TD should be given back 1099 * with a proper error code, and the ring dequeue moved past the TD. 1100 * If streams case we can't find hw_deq, or the TD we halted on so do a 1101 * soft reset. 1102 * 1103 * Proper error code is unknown here, it would be -EPIPE if device side 1104 * of enadpoit halted (aka STALL), and -EPROTO if not (transaction error) 1105 * We use -EPROTO, if device is stalled it should return a stall error on 1106 * next transfer, which then will return -EPIPE, and device side stall is 1107 * noted and cleared by class driver. 1108 */ 1109 switch (GET_EP_CTX_STATE(ep_ctx)) { 1110 case EP_STATE_HALTED: 1111 xhci_dbg(xhci, "Stop ep completion raced with stall, reset ep\n"); 1112 if (ep->ep_state & EP_HAS_STREAMS) { 1113 reset_type = EP_SOFT_RESET; 1114 } else { 1115 reset_type = EP_HARD_RESET; 1116 td = find_halted_td(ep); 1117 if (td) 1118 td->status = -EPROTO; 1119 } 1120 /* reset ep, reset handler cleans up cancelled tds */ 1121 err = xhci_handle_halted_endpoint(xhci, ep, 0, td, 1122 reset_type); 1123 if (err) 1124 break; 1125 xhci_stop_watchdog_timer_in_irq(xhci, ep); 1126 return; 1127 case EP_STATE_RUNNING: 1128 /* Race, HW handled stop ep cmd before ep was running */ 1129 xhci_dbg(xhci, "Stop ep completion ctx error, ep is running\n"); 1130 1131 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1132 if (!command) 1133 xhci_stop_watchdog_timer_in_irq(xhci, ep); 1134 1135 mod_timer(&ep->stop_cmd_timer, 1136 jiffies + XHCI_STOP_EP_CMD_TIMEOUT * HZ); 1137 xhci_queue_stop_endpoint(xhci, command, slot_id, ep_index, 0); 1138 xhci_ring_cmd_db(xhci); 1139 1140 return; 1141 default: 1142 break; 1143 } 1144 } 1145 /* will queue a set TR deq if stopped on a cancelled, uncleared TD */ 1146 xhci_invalidate_cancelled_tds(ep); 1147 xhci_stop_watchdog_timer_in_irq(xhci, ep); 1148 1149 /* Otherwise ring the doorbell(s) to restart queued transfers */ 1150 xhci_giveback_invalidated_tds(ep); 1151 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1152 } 1153 1154 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 1155 { 1156 struct xhci_td *cur_td; 1157 struct xhci_td *tmp; 1158 1159 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { 1160 list_del_init(&cur_td->td_list); 1161 1162 if (!list_empty(&cur_td->cancelled_td_list)) 1163 list_del_init(&cur_td->cancelled_td_list); 1164 1165 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); 1166 1167 inc_td_cnt(cur_td->urb); 1168 if (last_td_in_urb(cur_td)) 1169 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1170 } 1171 } 1172 1173 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 1174 int slot_id, int ep_index) 1175 { 1176 struct xhci_td *cur_td; 1177 struct xhci_td *tmp; 1178 struct xhci_virt_ep *ep; 1179 struct xhci_ring *ring; 1180 1181 ep = &xhci->devs[slot_id]->eps[ep_index]; 1182 if ((ep->ep_state & EP_HAS_STREAMS) || 1183 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 1184 int stream_id; 1185 1186 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 1187 stream_id++) { 1188 ring = ep->stream_info->stream_rings[stream_id]; 1189 if (!ring) 1190 continue; 1191 1192 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1193 "Killing URBs for slot ID %u, ep index %u, stream %u", 1194 slot_id, ep_index, stream_id); 1195 xhci_kill_ring_urbs(xhci, ring); 1196 } 1197 } else { 1198 ring = ep->ring; 1199 if (!ring) 1200 return; 1201 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1202 "Killing URBs for slot ID %u, ep index %u", 1203 slot_id, ep_index); 1204 xhci_kill_ring_urbs(xhci, ring); 1205 } 1206 1207 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, 1208 cancelled_td_list) { 1209 list_del_init(&cur_td->cancelled_td_list); 1210 inc_td_cnt(cur_td->urb); 1211 1212 if (last_td_in_urb(cur_td)) 1213 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1214 } 1215 } 1216 1217 /* 1218 * host controller died, register read returns 0xffffffff 1219 * Complete pending commands, mark them ABORTED. 1220 * URBs need to be given back as usb core might be waiting with device locks 1221 * held for the URBs to finish during device disconnect, blocking host remove. 1222 * 1223 * Call with xhci->lock held. 1224 * lock is relased and re-acquired while giving back urb. 1225 */ 1226 void xhci_hc_died(struct xhci_hcd *xhci) 1227 { 1228 int i, j; 1229 1230 if (xhci->xhc_state & XHCI_STATE_DYING) 1231 return; 1232 1233 xhci_err(xhci, "xHCI host controller not responding, assume dead\n"); 1234 xhci->xhc_state |= XHCI_STATE_DYING; 1235 1236 xhci_cleanup_command_queue(xhci); 1237 1238 /* return any pending urbs, remove may be waiting for them */ 1239 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 1240 if (!xhci->devs[i]) 1241 continue; 1242 for (j = 0; j < 31; j++) 1243 xhci_kill_endpoint_urbs(xhci, i, j); 1244 } 1245 1246 /* inform usb core hc died if PCI remove isn't already handling it */ 1247 if (!(xhci->xhc_state & XHCI_STATE_REMOVING)) 1248 usb_hc_died(xhci_to_hcd(xhci)); 1249 } 1250 1251 /* Watchdog timer function for when a stop endpoint command fails to complete. 1252 * In this case, we assume the host controller is broken or dying or dead. The 1253 * host may still be completing some other events, so we have to be careful to 1254 * let the event ring handler and the URB dequeueing/enqueueing functions know 1255 * through xhci->state. 1256 * 1257 * The timer may also fire if the host takes a very long time to respond to the 1258 * command, and the stop endpoint command completion handler cannot delete the 1259 * timer before the timer function is called. Another endpoint cancellation may 1260 * sneak in before the timer function can grab the lock, and that may queue 1261 * another stop endpoint command and add the timer back. So we cannot use a 1262 * simple flag to say whether there is a pending stop endpoint command for a 1263 * particular endpoint. 1264 * 1265 * Instead we use a combination of that flag and checking if a new timer is 1266 * pending. 1267 */ 1268 void xhci_stop_endpoint_command_watchdog(struct timer_list *t) 1269 { 1270 struct xhci_virt_ep *ep = from_timer(ep, t, stop_cmd_timer); 1271 struct xhci_hcd *xhci = ep->xhci; 1272 unsigned long flags; 1273 u32 usbsts; 1274 char str[XHCI_MSG_MAX]; 1275 1276 spin_lock_irqsave(&xhci->lock, flags); 1277 1278 /* bail out if cmd completed but raced with stop ep watchdog timer.*/ 1279 if (!(ep->ep_state & EP_STOP_CMD_PENDING) || 1280 timer_pending(&ep->stop_cmd_timer)) { 1281 spin_unlock_irqrestore(&xhci->lock, flags); 1282 xhci_dbg(xhci, "Stop EP timer raced with cmd completion, exit"); 1283 return; 1284 } 1285 usbsts = readl(&xhci->op_regs->status); 1286 1287 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); 1288 xhci_warn(xhci, "USBSTS:%s\n", xhci_decode_usbsts(str, usbsts)); 1289 1290 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1291 1292 xhci_halt(xhci); 1293 1294 /* 1295 * handle a stop endpoint cmd timeout as if host died (-ENODEV). 1296 * In the future we could distinguish between -ENODEV and -ETIMEDOUT 1297 * and try to recover a -ETIMEDOUT with a host controller reset 1298 */ 1299 xhci_hc_died(xhci); 1300 1301 spin_unlock_irqrestore(&xhci->lock, flags); 1302 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1303 "xHCI host controller is dead."); 1304 } 1305 1306 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 1307 struct xhci_virt_device *dev, 1308 struct xhci_ring *ep_ring, 1309 unsigned int ep_index) 1310 { 1311 union xhci_trb *dequeue_temp; 1312 int num_trbs_free_temp; 1313 bool revert = false; 1314 1315 num_trbs_free_temp = ep_ring->num_trbs_free; 1316 dequeue_temp = ep_ring->dequeue; 1317 1318 /* If we get two back-to-back stalls, and the first stalled transfer 1319 * ends just before a link TRB, the dequeue pointer will be left on 1320 * the link TRB by the code in the while loop. So we have to update 1321 * the dequeue pointer one segment further, or we'll jump off 1322 * the segment into la-la-land. 1323 */ 1324 if (trb_is_link(ep_ring->dequeue)) { 1325 ep_ring->deq_seg = ep_ring->deq_seg->next; 1326 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1327 } 1328 1329 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 1330 /* We have more usable TRBs */ 1331 ep_ring->num_trbs_free++; 1332 ep_ring->dequeue++; 1333 if (trb_is_link(ep_ring->dequeue)) { 1334 if (ep_ring->dequeue == 1335 dev->eps[ep_index].queued_deq_ptr) 1336 break; 1337 ep_ring->deq_seg = ep_ring->deq_seg->next; 1338 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1339 } 1340 if (ep_ring->dequeue == dequeue_temp) { 1341 revert = true; 1342 break; 1343 } 1344 } 1345 1346 if (revert) { 1347 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 1348 ep_ring->num_trbs_free = num_trbs_free_temp; 1349 } 1350 } 1351 1352 /* 1353 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1354 * we need to clear the set deq pending flag in the endpoint ring state, so that 1355 * the TD queueing code can ring the doorbell again. We also need to ring the 1356 * endpoint doorbell to restart the ring, but only if there aren't more 1357 * cancellations pending. 1358 */ 1359 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1360 union xhci_trb *trb, u32 cmd_comp_code) 1361 { 1362 unsigned int ep_index; 1363 unsigned int stream_id; 1364 struct xhci_ring *ep_ring; 1365 struct xhci_virt_ep *ep; 1366 struct xhci_ep_ctx *ep_ctx; 1367 struct xhci_slot_ctx *slot_ctx; 1368 struct xhci_td *td, *tmp_td; 1369 1370 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1371 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1372 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1373 if (!ep) 1374 return; 1375 1376 ep_ring = xhci_virt_ep_to_ring(xhci, ep, stream_id); 1377 if (!ep_ring) { 1378 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 1379 stream_id); 1380 /* XXX: Harmless??? */ 1381 goto cleanup; 1382 } 1383 1384 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1385 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 1386 trace_xhci_handle_cmd_set_deq(slot_ctx); 1387 trace_xhci_handle_cmd_set_deq_ep(ep_ctx); 1388 1389 if (cmd_comp_code != COMP_SUCCESS) { 1390 unsigned int ep_state; 1391 unsigned int slot_state; 1392 1393 switch (cmd_comp_code) { 1394 case COMP_TRB_ERROR: 1395 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 1396 break; 1397 case COMP_CONTEXT_STATE_ERROR: 1398 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1399 ep_state = GET_EP_CTX_STATE(ep_ctx); 1400 slot_state = le32_to_cpu(slot_ctx->dev_state); 1401 slot_state = GET_SLOT_STATE(slot_state); 1402 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1403 "Slot state = %u, EP state = %u", 1404 slot_state, ep_state); 1405 break; 1406 case COMP_SLOT_NOT_ENABLED_ERROR: 1407 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1408 slot_id); 1409 break; 1410 default: 1411 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1412 cmd_comp_code); 1413 break; 1414 } 1415 /* OK what do we do now? The endpoint state is hosed, and we 1416 * should never get to this point if the synchronization between 1417 * queueing, and endpoint state are correct. This might happen 1418 * if the device gets disconnected after we've finished 1419 * cancelling URBs, which might not be an error... 1420 */ 1421 } else { 1422 u64 deq; 1423 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1424 if (ep->ep_state & EP_HAS_STREAMS) { 1425 struct xhci_stream_ctx *ctx = 1426 &ep->stream_info->stream_ctx_array[stream_id]; 1427 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; 1428 } else { 1429 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1430 } 1431 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1432 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1433 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1434 ep->queued_deq_ptr) == deq) { 1435 /* Update the ring's dequeue segment and dequeue pointer 1436 * to reflect the new position. 1437 */ 1438 update_ring_for_set_deq_completion(xhci, ep->vdev, 1439 ep_ring, ep_index); 1440 } else { 1441 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1442 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1443 ep->queued_deq_seg, ep->queued_deq_ptr); 1444 } 1445 } 1446 /* HW cached TDs cleared from cache, give them back */ 1447 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 1448 cancelled_td_list) { 1449 ep_ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 1450 if (td->cancel_status == TD_CLEARING_CACHE) { 1451 td->cancel_status = TD_CLEARED; 1452 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 1453 __func__, td->urb); 1454 xhci_td_cleanup(ep->xhci, td, ep_ring, td->status); 1455 } else { 1456 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 1457 __func__, td->urb, td->cancel_status); 1458 } 1459 } 1460 cleanup: 1461 ep->ep_state &= ~SET_DEQ_PENDING; 1462 ep->queued_deq_seg = NULL; 1463 ep->queued_deq_ptr = NULL; 1464 /* Restart any rings with pending URBs */ 1465 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1466 } 1467 1468 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1469 union xhci_trb *trb, u32 cmd_comp_code) 1470 { 1471 struct xhci_virt_ep *ep; 1472 struct xhci_ep_ctx *ep_ctx; 1473 unsigned int ep_index; 1474 1475 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1476 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1477 if (!ep) 1478 return; 1479 1480 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1481 trace_xhci_handle_cmd_reset_ep(ep_ctx); 1482 1483 /* This command will only fail if the endpoint wasn't halted, 1484 * but we don't care. 1485 */ 1486 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1487 "Ignoring reset ep completion code of %u", cmd_comp_code); 1488 1489 /* Cleanup cancelled TDs as ep is stopped. May queue a Set TR Deq cmd */ 1490 xhci_invalidate_cancelled_tds(ep); 1491 1492 if (xhci->quirks & XHCI_RESET_EP_QUIRK) 1493 xhci_dbg(xhci, "Note: Removed workaround to queue config ep for this hw"); 1494 /* Clear our internal halted state */ 1495 ep->ep_state &= ~EP_HALTED; 1496 1497 xhci_giveback_invalidated_tds(ep); 1498 1499 /* if this was a soft reset, then restart */ 1500 if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP) 1501 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1502 } 1503 1504 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, 1505 struct xhci_command *command, u32 cmd_comp_code) 1506 { 1507 if (cmd_comp_code == COMP_SUCCESS) 1508 command->slot_id = slot_id; 1509 else 1510 command->slot_id = 0; 1511 } 1512 1513 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1514 { 1515 struct xhci_virt_device *virt_dev; 1516 struct xhci_slot_ctx *slot_ctx; 1517 1518 virt_dev = xhci->devs[slot_id]; 1519 if (!virt_dev) 1520 return; 1521 1522 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 1523 trace_xhci_handle_cmd_disable_slot(slot_ctx); 1524 1525 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1526 /* Delete default control endpoint resources */ 1527 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1528 } 1529 1530 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, 1531 u32 cmd_comp_code) 1532 { 1533 struct xhci_virt_device *virt_dev; 1534 struct xhci_input_control_ctx *ctrl_ctx; 1535 struct xhci_ep_ctx *ep_ctx; 1536 unsigned int ep_index; 1537 unsigned int ep_state; 1538 u32 add_flags, drop_flags; 1539 1540 /* 1541 * Configure endpoint commands can come from the USB core 1542 * configuration or alt setting changes, or because the HW 1543 * needed an extra configure endpoint command after a reset 1544 * endpoint command or streams were being configured. 1545 * If the command was for a halted endpoint, the xHCI driver 1546 * is not waiting on the configure endpoint command. 1547 */ 1548 virt_dev = xhci->devs[slot_id]; 1549 if (!virt_dev) 1550 return; 1551 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1552 if (!ctrl_ctx) { 1553 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1554 return; 1555 } 1556 1557 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1558 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1559 /* Input ctx add_flags are the endpoint index plus one */ 1560 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1561 1562 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index); 1563 trace_xhci_handle_cmd_config_ep(ep_ctx); 1564 1565 /* A usb_set_interface() call directly after clearing a halted 1566 * condition may race on this quirky hardware. Not worth 1567 * worrying about, since this is prototype hardware. Not sure 1568 * if this will work for streams, but streams support was 1569 * untested on this prototype. 1570 */ 1571 if (xhci->quirks & XHCI_RESET_EP_QUIRK && 1572 ep_index != (unsigned int) -1 && 1573 add_flags - SLOT_FLAG == drop_flags) { 1574 ep_state = virt_dev->eps[ep_index].ep_state; 1575 if (!(ep_state & EP_HALTED)) 1576 return; 1577 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1578 "Completed config ep cmd - " 1579 "last ep index = %d, state = %d", 1580 ep_index, ep_state); 1581 /* Clear internal halted state and restart ring(s) */ 1582 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED; 1583 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1584 return; 1585 } 1586 return; 1587 } 1588 1589 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id) 1590 { 1591 struct xhci_virt_device *vdev; 1592 struct xhci_slot_ctx *slot_ctx; 1593 1594 vdev = xhci->devs[slot_id]; 1595 if (!vdev) 1596 return; 1597 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1598 trace_xhci_handle_cmd_addr_dev(slot_ctx); 1599 } 1600 1601 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id) 1602 { 1603 struct xhci_virt_device *vdev; 1604 struct xhci_slot_ctx *slot_ctx; 1605 1606 vdev = xhci->devs[slot_id]; 1607 if (!vdev) { 1608 xhci_warn(xhci, "Reset device command completion for disabled slot %u\n", 1609 slot_id); 1610 return; 1611 } 1612 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1613 trace_xhci_handle_cmd_reset_dev(slot_ctx); 1614 1615 xhci_dbg(xhci, "Completed reset device command.\n"); 1616 } 1617 1618 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1619 struct xhci_event_cmd *event) 1620 { 1621 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1622 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); 1623 return; 1624 } 1625 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1626 "NEC firmware version %2x.%02x", 1627 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1628 NEC_FW_MINOR(le32_to_cpu(event->status))); 1629 } 1630 1631 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) 1632 { 1633 list_del(&cmd->cmd_list); 1634 1635 if (cmd->completion) { 1636 cmd->status = status; 1637 complete(cmd->completion); 1638 } else { 1639 kfree(cmd); 1640 } 1641 } 1642 1643 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1644 { 1645 struct xhci_command *cur_cmd, *tmp_cmd; 1646 xhci->current_cmd = NULL; 1647 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1648 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED); 1649 } 1650 1651 void xhci_handle_command_timeout(struct work_struct *work) 1652 { 1653 struct xhci_hcd *xhci; 1654 unsigned long flags; 1655 u64 hw_ring_state; 1656 1657 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); 1658 1659 spin_lock_irqsave(&xhci->lock, flags); 1660 1661 /* 1662 * If timeout work is pending, or current_cmd is NULL, it means we 1663 * raced with command completion. Command is handled so just return. 1664 */ 1665 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { 1666 spin_unlock_irqrestore(&xhci->lock, flags); 1667 return; 1668 } 1669 /* mark this command to be cancelled */ 1670 xhci->current_cmd->status = COMP_COMMAND_ABORTED; 1671 1672 /* Make sure command ring is running before aborting it */ 1673 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1674 if (hw_ring_state == ~(u64)0) { 1675 xhci_hc_died(xhci); 1676 goto time_out_completed; 1677 } 1678 1679 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1680 (hw_ring_state & CMD_RING_RUNNING)) { 1681 /* Prevent new doorbell, and start command abort */ 1682 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 1683 xhci_dbg(xhci, "Command timeout\n"); 1684 xhci_abort_cmd_ring(xhci, flags); 1685 goto time_out_completed; 1686 } 1687 1688 /* host removed. Bail out */ 1689 if (xhci->xhc_state & XHCI_STATE_REMOVING) { 1690 xhci_dbg(xhci, "host removed, ring start fail?\n"); 1691 xhci_cleanup_command_queue(xhci); 1692 1693 goto time_out_completed; 1694 } 1695 1696 /* command timeout on stopped ring, ring can't be aborted */ 1697 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1698 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1699 1700 time_out_completed: 1701 spin_unlock_irqrestore(&xhci->lock, flags); 1702 return; 1703 } 1704 1705 static void handle_cmd_completion(struct xhci_hcd *xhci, 1706 struct xhci_event_cmd *event) 1707 { 1708 unsigned int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1709 u64 cmd_dma; 1710 dma_addr_t cmd_dequeue_dma; 1711 u32 cmd_comp_code; 1712 union xhci_trb *cmd_trb; 1713 struct xhci_command *cmd; 1714 u32 cmd_type; 1715 1716 if (slot_id >= MAX_HC_SLOTS) { 1717 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 1718 return; 1719 } 1720 1721 cmd_dma = le64_to_cpu(event->cmd_trb); 1722 cmd_trb = xhci->cmd_ring->dequeue; 1723 1724 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic); 1725 1726 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1727 cmd_trb); 1728 /* 1729 * Check whether the completion event is for our internal kept 1730 * command. 1731 */ 1732 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { 1733 xhci_warn(xhci, 1734 "ERROR mismatched command completion event\n"); 1735 return; 1736 } 1737 1738 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); 1739 1740 cancel_delayed_work(&xhci->cmd_timer); 1741 1742 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1743 1744 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1745 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) { 1746 complete_all(&xhci->cmd_ring_stop_completion); 1747 return; 1748 } 1749 1750 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1751 xhci_err(xhci, 1752 "Command completion event does not match command\n"); 1753 return; 1754 } 1755 1756 /* 1757 * Host aborted the command ring, check if the current command was 1758 * supposed to be aborted, otherwise continue normally. 1759 * The command ring is stopped now, but the xHC will issue a Command 1760 * Ring Stopped event which will cause us to restart it. 1761 */ 1762 if (cmd_comp_code == COMP_COMMAND_ABORTED) { 1763 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1764 if (cmd->status == COMP_COMMAND_ABORTED) { 1765 if (xhci->current_cmd == cmd) 1766 xhci->current_cmd = NULL; 1767 goto event_handled; 1768 } 1769 } 1770 1771 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1772 switch (cmd_type) { 1773 case TRB_ENABLE_SLOT: 1774 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code); 1775 break; 1776 case TRB_DISABLE_SLOT: 1777 xhci_handle_cmd_disable_slot(xhci, slot_id); 1778 break; 1779 case TRB_CONFIG_EP: 1780 if (!cmd->completion) 1781 xhci_handle_cmd_config_ep(xhci, slot_id, cmd_comp_code); 1782 break; 1783 case TRB_EVAL_CONTEXT: 1784 break; 1785 case TRB_ADDR_DEV: 1786 xhci_handle_cmd_addr_dev(xhci, slot_id); 1787 break; 1788 case TRB_STOP_RING: 1789 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1790 le32_to_cpu(cmd_trb->generic.field[3]))); 1791 if (!cmd->completion) 1792 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, 1793 cmd_comp_code); 1794 break; 1795 case TRB_SET_DEQ: 1796 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1797 le32_to_cpu(cmd_trb->generic.field[3]))); 1798 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1799 break; 1800 case TRB_CMD_NOOP: 1801 /* Is this an aborted command turned to NO-OP? */ 1802 if (cmd->status == COMP_COMMAND_RING_STOPPED) 1803 cmd_comp_code = COMP_COMMAND_RING_STOPPED; 1804 break; 1805 case TRB_RESET_EP: 1806 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1807 le32_to_cpu(cmd_trb->generic.field[3]))); 1808 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1809 break; 1810 case TRB_RESET_DEV: 1811 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1812 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1813 */ 1814 slot_id = TRB_TO_SLOT_ID( 1815 le32_to_cpu(cmd_trb->generic.field[3])); 1816 xhci_handle_cmd_reset_dev(xhci, slot_id); 1817 break; 1818 case TRB_NEC_GET_FW: 1819 xhci_handle_cmd_nec_get_fw(xhci, event); 1820 break; 1821 default: 1822 /* Skip over unknown commands on the event ring */ 1823 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); 1824 break; 1825 } 1826 1827 /* restart timer if this wasn't the last command */ 1828 if (!list_is_singular(&xhci->cmd_list)) { 1829 xhci->current_cmd = list_first_entry(&cmd->cmd_list, 1830 struct xhci_command, cmd_list); 1831 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 1832 } else if (xhci->current_cmd == cmd) { 1833 xhci->current_cmd = NULL; 1834 } 1835 1836 event_handled: 1837 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); 1838 1839 inc_deq(xhci, xhci->cmd_ring); 1840 } 1841 1842 static void handle_vendor_event(struct xhci_hcd *xhci, 1843 union xhci_trb *event, u32 trb_type) 1844 { 1845 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1846 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1847 handle_cmd_completion(xhci, &event->event_cmd); 1848 } 1849 1850 static void handle_device_notification(struct xhci_hcd *xhci, 1851 union xhci_trb *event) 1852 { 1853 u32 slot_id; 1854 struct usb_device *udev; 1855 1856 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1857 if (!xhci->devs[slot_id]) { 1858 xhci_warn(xhci, "Device Notification event for " 1859 "unused slot %u\n", slot_id); 1860 return; 1861 } 1862 1863 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1864 slot_id); 1865 udev = xhci->devs[slot_id]->udev; 1866 if (udev && udev->parent) 1867 usb_wakeup_notification(udev->parent, udev->portnum); 1868 } 1869 1870 /* 1871 * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI 1872 * Controller. 1873 * As per ThunderX2errata-129 USB 2 device may come up as USB 1 1874 * If a connection to a USB 1 device is followed by another connection 1875 * to a USB 2 device. 1876 * 1877 * Reset the PHY after the USB device is disconnected if device speed 1878 * is less than HCD_USB3. 1879 * Retry the reset sequence max of 4 times checking the PLL lock status. 1880 * 1881 */ 1882 static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci) 1883 { 1884 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1885 u32 pll_lock_check; 1886 u32 retry_count = 4; 1887 1888 do { 1889 /* Assert PHY reset */ 1890 writel(0x6F, hcd->regs + 0x1048); 1891 udelay(10); 1892 /* De-assert the PHY reset */ 1893 writel(0x7F, hcd->regs + 0x1048); 1894 udelay(200); 1895 pll_lock_check = readl(hcd->regs + 0x1070); 1896 } while (!(pll_lock_check & 0x1) && --retry_count); 1897 } 1898 1899 static void handle_port_status(struct xhci_hcd *xhci, 1900 union xhci_trb *event) 1901 { 1902 struct usb_hcd *hcd; 1903 u32 port_id; 1904 u32 portsc, cmd_reg; 1905 int max_ports; 1906 int slot_id; 1907 unsigned int hcd_portnum; 1908 struct xhci_bus_state *bus_state; 1909 bool bogus_port_status = false; 1910 struct xhci_port *port; 1911 1912 /* Port status change events always have a successful completion code */ 1913 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) 1914 xhci_warn(xhci, 1915 "WARN: xHC returned failed port status event\n"); 1916 1917 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1918 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1919 1920 if ((port_id <= 0) || (port_id > max_ports)) { 1921 xhci_warn(xhci, "Port change event with invalid port ID %d\n", 1922 port_id); 1923 inc_deq(xhci, xhci->event_ring); 1924 return; 1925 } 1926 1927 port = &xhci->hw_ports[port_id - 1]; 1928 if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) { 1929 xhci_warn(xhci, "Port change event, no port for port ID %u\n", 1930 port_id); 1931 bogus_port_status = true; 1932 goto cleanup; 1933 } 1934 1935 /* We might get interrupts after shared_hcd is removed */ 1936 if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) { 1937 xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n"); 1938 bogus_port_status = true; 1939 goto cleanup; 1940 } 1941 1942 hcd = port->rhub->hcd; 1943 bus_state = &port->rhub->bus_state; 1944 hcd_portnum = port->hcd_portnum; 1945 portsc = readl(port->addr); 1946 1947 xhci_dbg(xhci, "Port change event, %d-%d, id %d, portsc: 0x%x\n", 1948 hcd->self.busnum, hcd_portnum + 1, port_id, portsc); 1949 1950 trace_xhci_handle_port_status(hcd_portnum, portsc); 1951 1952 if (hcd->state == HC_STATE_SUSPENDED) { 1953 xhci_dbg(xhci, "resume root hub\n"); 1954 usb_hcd_resume_root_hub(hcd); 1955 } 1956 1957 if (hcd->speed >= HCD_USB3 && 1958 (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) { 1959 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1); 1960 if (slot_id && xhci->devs[slot_id]) 1961 xhci->devs[slot_id]->flags |= VDEV_PORT_ERROR; 1962 } 1963 1964 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) { 1965 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1966 1967 cmd_reg = readl(&xhci->op_regs->command); 1968 if (!(cmd_reg & CMD_RUN)) { 1969 xhci_warn(xhci, "xHC is not running.\n"); 1970 goto cleanup; 1971 } 1972 1973 if (DEV_SUPERSPEED_ANY(portsc)) { 1974 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1975 /* Set a flag to say the port signaled remote wakeup, 1976 * so we can tell the difference between the end of 1977 * device and host initiated resume. 1978 */ 1979 bus_state->port_remote_wakeup |= 1 << hcd_portnum; 1980 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1981 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 1982 xhci_set_link_state(xhci, port, XDEV_U0); 1983 /* Need to wait until the next link state change 1984 * indicates the device is actually in U0. 1985 */ 1986 bogus_port_status = true; 1987 goto cleanup; 1988 } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) { 1989 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1990 bus_state->resume_done[hcd_portnum] = jiffies + 1991 msecs_to_jiffies(USB_RESUME_TIMEOUT); 1992 set_bit(hcd_portnum, &bus_state->resuming_ports); 1993 /* Do the rest in GetPortStatus after resume time delay. 1994 * Avoid polling roothub status before that so that a 1995 * usb device auto-resume latency around ~40ms. 1996 */ 1997 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1998 mod_timer(&hcd->rh_timer, 1999 bus_state->resume_done[hcd_portnum]); 2000 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 2001 bogus_port_status = true; 2002 } 2003 } 2004 2005 if ((portsc & PORT_PLC) && 2006 DEV_SUPERSPEED_ANY(portsc) && 2007 ((portsc & PORT_PLS_MASK) == XDEV_U0 || 2008 (portsc & PORT_PLS_MASK) == XDEV_U1 || 2009 (portsc & PORT_PLS_MASK) == XDEV_U2)) { 2010 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 2011 complete(&bus_state->u3exit_done[hcd_portnum]); 2012 /* We've just brought the device into U0/1/2 through either the 2013 * Resume state after a device remote wakeup, or through the 2014 * U3Exit state after a host-initiated resume. If it's a device 2015 * initiated remote wake, don't pass up the link state change, 2016 * so the roothub behavior is consistent with external 2017 * USB 3.0 hub behavior. 2018 */ 2019 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1); 2020 if (slot_id && xhci->devs[slot_id]) 2021 xhci_ring_device(xhci, slot_id); 2022 if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) { 2023 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2024 usb_wakeup_notification(hcd->self.root_hub, 2025 hcd_portnum + 1); 2026 bogus_port_status = true; 2027 goto cleanup; 2028 } 2029 } 2030 2031 /* 2032 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 2033 * RExit to a disconnect state). If so, let the the driver know it's 2034 * out of the RExit state. 2035 */ 2036 if (!DEV_SUPERSPEED_ANY(portsc) && hcd->speed < HCD_USB3 && 2037 test_and_clear_bit(hcd_portnum, 2038 &bus_state->rexit_ports)) { 2039 complete(&bus_state->rexit_done[hcd_portnum]); 2040 bogus_port_status = true; 2041 goto cleanup; 2042 } 2043 2044 if (hcd->speed < HCD_USB3) { 2045 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2046 if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) && 2047 (portsc & PORT_CSC) && !(portsc & PORT_CONNECT)) 2048 xhci_cavium_reset_phy_quirk(xhci); 2049 } 2050 2051 cleanup: 2052 /* Update event ring dequeue pointer before dropping the lock */ 2053 inc_deq(xhci, xhci->event_ring); 2054 2055 /* Don't make the USB core poll the roothub if we got a bad port status 2056 * change event. Besides, at that point we can't tell which roothub 2057 * (USB 2.0 or USB 3.0) to kick. 2058 */ 2059 if (bogus_port_status) 2060 return; 2061 2062 /* 2063 * xHCI port-status-change events occur when the "or" of all the 2064 * status-change bits in the portsc register changes from 0 to 1. 2065 * New status changes won't cause an event if any other change 2066 * bits are still set. When an event occurs, switch over to 2067 * polling to avoid losing status changes. 2068 */ 2069 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 2070 __func__, hcd->self.busnum); 2071 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2072 spin_unlock(&xhci->lock); 2073 /* Pass this up to the core */ 2074 usb_hcd_poll_rh_status(hcd); 2075 spin_lock(&xhci->lock); 2076 } 2077 2078 /* 2079 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 2080 * at end_trb, which may be in another segment. If the suspect DMA address is a 2081 * TRB in this TD, this function returns that TRB's segment. Otherwise it 2082 * returns 0. 2083 */ 2084 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, 2085 struct xhci_segment *start_seg, 2086 union xhci_trb *start_trb, 2087 union xhci_trb *end_trb, 2088 dma_addr_t suspect_dma, 2089 bool debug) 2090 { 2091 dma_addr_t start_dma; 2092 dma_addr_t end_seg_dma; 2093 dma_addr_t end_trb_dma; 2094 struct xhci_segment *cur_seg; 2095 2096 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 2097 cur_seg = start_seg; 2098 2099 do { 2100 if (start_dma == 0) 2101 return NULL; 2102 /* We may get an event for a Link TRB in the middle of a TD */ 2103 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 2104 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 2105 /* If the end TRB isn't in this segment, this is set to 0 */ 2106 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 2107 2108 if (debug) 2109 xhci_warn(xhci, 2110 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", 2111 (unsigned long long)suspect_dma, 2112 (unsigned long long)start_dma, 2113 (unsigned long long)end_trb_dma, 2114 (unsigned long long)cur_seg->dma, 2115 (unsigned long long)end_seg_dma); 2116 2117 if (end_trb_dma > 0) { 2118 /* The end TRB is in this segment, so suspect should be here */ 2119 if (start_dma <= end_trb_dma) { 2120 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 2121 return cur_seg; 2122 } else { 2123 /* Case for one segment with 2124 * a TD wrapped around to the top 2125 */ 2126 if ((suspect_dma >= start_dma && 2127 suspect_dma <= end_seg_dma) || 2128 (suspect_dma >= cur_seg->dma && 2129 suspect_dma <= end_trb_dma)) 2130 return cur_seg; 2131 } 2132 return NULL; 2133 } else { 2134 /* Might still be somewhere in this segment */ 2135 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 2136 return cur_seg; 2137 } 2138 cur_seg = cur_seg->next; 2139 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 2140 } while (cur_seg != start_seg); 2141 2142 return NULL; 2143 } 2144 2145 static void xhci_clear_hub_tt_buffer(struct xhci_hcd *xhci, struct xhci_td *td, 2146 struct xhci_virt_ep *ep) 2147 { 2148 /* 2149 * As part of low/full-speed endpoint-halt processing 2150 * we must clear the TT buffer (USB 2.0 specification 11.17.5). 2151 */ 2152 if (td->urb->dev->tt && !usb_pipeint(td->urb->pipe) && 2153 (td->urb->dev->tt->hub != xhci_to_hcd(xhci)->self.root_hub) && 2154 !(ep->ep_state & EP_CLEARING_TT)) { 2155 ep->ep_state |= EP_CLEARING_TT; 2156 td->urb->ep->hcpriv = td->urb->dev; 2157 if (usb_hub_clear_tt_buffer(td->urb)) 2158 ep->ep_state &= ~EP_CLEARING_TT; 2159 } 2160 } 2161 2162 /* Check if an error has halted the endpoint ring. The class driver will 2163 * cleanup the halt for a non-default control endpoint if we indicate a stall. 2164 * However, a babble and other errors also halt the endpoint ring, and the class 2165 * driver won't clear the halt in that case, so we need to issue a Set Transfer 2166 * Ring Dequeue Pointer command manually. 2167 */ 2168 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 2169 struct xhci_ep_ctx *ep_ctx, 2170 unsigned int trb_comp_code) 2171 { 2172 /* TRB completion codes that may require a manual halt cleanup */ 2173 if (trb_comp_code == COMP_USB_TRANSACTION_ERROR || 2174 trb_comp_code == COMP_BABBLE_DETECTED_ERROR || 2175 trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR) 2176 /* The 0.95 spec says a babbling control endpoint 2177 * is not halted. The 0.96 spec says it is. Some HW 2178 * claims to be 0.95 compliant, but it halts the control 2179 * endpoint anyway. Check if a babble halted the 2180 * endpoint. 2181 */ 2182 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) 2183 return 1; 2184 2185 return 0; 2186 } 2187 2188 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 2189 { 2190 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 2191 /* Vendor defined "informational" completion code, 2192 * treat as not-an-error. 2193 */ 2194 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 2195 trb_comp_code); 2196 xhci_dbg(xhci, "Treating code as success.\n"); 2197 return 1; 2198 } 2199 return 0; 2200 } 2201 2202 static int finish_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2203 struct xhci_ring *ep_ring, struct xhci_td *td, 2204 u32 trb_comp_code) 2205 { 2206 struct xhci_ep_ctx *ep_ctx; 2207 2208 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2209 2210 switch (trb_comp_code) { 2211 case COMP_STOPPED_LENGTH_INVALID: 2212 case COMP_STOPPED_SHORT_PACKET: 2213 case COMP_STOPPED: 2214 /* 2215 * The "Stop Endpoint" completion will take care of any 2216 * stopped TDs. A stopped TD may be restarted, so don't update 2217 * the ring dequeue pointer or take this TD off any lists yet. 2218 */ 2219 return 0; 2220 case COMP_USB_TRANSACTION_ERROR: 2221 case COMP_BABBLE_DETECTED_ERROR: 2222 case COMP_SPLIT_TRANSACTION_ERROR: 2223 /* 2224 * If endpoint context state is not halted we might be 2225 * racing with a reset endpoint command issued by a unsuccessful 2226 * stop endpoint completion (context error). In that case the 2227 * td should be on the cancelled list, and EP_HALTED flag set. 2228 * 2229 * Or then it's not halted due to the 0.95 spec stating that a 2230 * babbling control endpoint should not halt. The 0.96 spec 2231 * again says it should. Some HW claims to be 0.95 compliant, 2232 * but it halts the control endpoint anyway. 2233 */ 2234 if (GET_EP_CTX_STATE(ep_ctx) != EP_STATE_HALTED) { 2235 /* 2236 * If EP_HALTED is set and TD is on the cancelled list 2237 * the TD and dequeue pointer will be handled by reset 2238 * ep command completion 2239 */ 2240 if ((ep->ep_state & EP_HALTED) && 2241 !list_empty(&td->cancelled_td_list)) { 2242 xhci_dbg(xhci, "Already resolving halted ep for 0x%llx\n", 2243 (unsigned long long)xhci_trb_virt_to_dma( 2244 td->start_seg, td->first_trb)); 2245 return 0; 2246 } 2247 /* endpoint not halted, don't reset it */ 2248 break; 2249 } 2250 /* Almost same procedure as for STALL_ERROR below */ 2251 xhci_clear_hub_tt_buffer(xhci, td, ep); 2252 xhci_handle_halted_endpoint(xhci, ep, ep_ring->stream_id, td, 2253 EP_HARD_RESET); 2254 return 0; 2255 case COMP_STALL_ERROR: 2256 /* 2257 * xhci internal endpoint state will go to a "halt" state for 2258 * any stall, including default control pipe protocol stall. 2259 * To clear the host side halt we need to issue a reset endpoint 2260 * command, followed by a set dequeue command to move past the 2261 * TD. 2262 * Class drivers clear the device side halt from a functional 2263 * stall later. Hub TT buffer should only be cleared for FS/LS 2264 * devices behind HS hubs for functional stalls. 2265 */ 2266 if (ep->ep_index != 0) 2267 xhci_clear_hub_tt_buffer(xhci, td, ep); 2268 2269 xhci_handle_halted_endpoint(xhci, ep, ep_ring->stream_id, td, 2270 EP_HARD_RESET); 2271 2272 return 0; /* xhci_handle_halted_endpoint marked td cancelled */ 2273 default: 2274 break; 2275 } 2276 2277 /* Update ring dequeue pointer */ 2278 ep_ring->dequeue = td->last_trb; 2279 ep_ring->deq_seg = td->last_trb_seg; 2280 ep_ring->num_trbs_free += td->num_trbs - 1; 2281 inc_deq(xhci, ep_ring); 2282 2283 return xhci_td_cleanup(xhci, td, ep_ring, td->status); 2284 } 2285 2286 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */ 2287 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring, 2288 union xhci_trb *stop_trb) 2289 { 2290 u32 sum; 2291 union xhci_trb *trb = ring->dequeue; 2292 struct xhci_segment *seg = ring->deq_seg; 2293 2294 for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) { 2295 if (!trb_is_noop(trb) && !trb_is_link(trb)) 2296 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); 2297 } 2298 return sum; 2299 } 2300 2301 /* 2302 * Process control tds, update urb status and actual_length. 2303 */ 2304 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2305 struct xhci_ring *ep_ring, struct xhci_td *td, 2306 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2307 { 2308 struct xhci_ep_ctx *ep_ctx; 2309 u32 trb_comp_code; 2310 u32 remaining, requested; 2311 u32 trb_type; 2312 2313 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); 2314 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2315 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2316 requested = td->urb->transfer_buffer_length; 2317 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2318 2319 switch (trb_comp_code) { 2320 case COMP_SUCCESS: 2321 if (trb_type != TRB_STATUS) { 2322 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n", 2323 (trb_type == TRB_DATA) ? "data" : "setup"); 2324 td->status = -ESHUTDOWN; 2325 break; 2326 } 2327 td->status = 0; 2328 break; 2329 case COMP_SHORT_PACKET: 2330 td->status = 0; 2331 break; 2332 case COMP_STOPPED_SHORT_PACKET: 2333 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2334 td->urb->actual_length = remaining; 2335 else 2336 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); 2337 goto finish_td; 2338 case COMP_STOPPED: 2339 switch (trb_type) { 2340 case TRB_SETUP: 2341 td->urb->actual_length = 0; 2342 goto finish_td; 2343 case TRB_DATA: 2344 case TRB_NORMAL: 2345 td->urb->actual_length = requested - remaining; 2346 goto finish_td; 2347 case TRB_STATUS: 2348 td->urb->actual_length = requested; 2349 goto finish_td; 2350 default: 2351 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", 2352 trb_type); 2353 goto finish_td; 2354 } 2355 case COMP_STOPPED_LENGTH_INVALID: 2356 goto finish_td; 2357 default: 2358 if (!xhci_requires_manual_halt_cleanup(xhci, 2359 ep_ctx, trb_comp_code)) 2360 break; 2361 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", 2362 trb_comp_code, ep->ep_index); 2363 fallthrough; 2364 case COMP_STALL_ERROR: 2365 /* Did we transfer part of the data (middle) phase? */ 2366 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2367 td->urb->actual_length = requested - remaining; 2368 else if (!td->urb_length_set) 2369 td->urb->actual_length = 0; 2370 goto finish_td; 2371 } 2372 2373 /* stopped at setup stage, no data transferred */ 2374 if (trb_type == TRB_SETUP) 2375 goto finish_td; 2376 2377 /* 2378 * if on data stage then update the actual_length of the URB and flag it 2379 * as set, so it won't be overwritten in the event for the last TRB. 2380 */ 2381 if (trb_type == TRB_DATA || 2382 trb_type == TRB_NORMAL) { 2383 td->urb_length_set = true; 2384 td->urb->actual_length = requested - remaining; 2385 xhci_dbg(xhci, "Waiting for status stage event\n"); 2386 return 0; 2387 } 2388 2389 /* at status stage */ 2390 if (!td->urb_length_set) 2391 td->urb->actual_length = requested; 2392 2393 finish_td: 2394 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2395 } 2396 2397 /* 2398 * Process isochronous tds, update urb packet status and actual_length. 2399 */ 2400 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2401 struct xhci_ring *ep_ring, struct xhci_td *td, 2402 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2403 { 2404 struct urb_priv *urb_priv; 2405 int idx; 2406 struct usb_iso_packet_descriptor *frame; 2407 u32 trb_comp_code; 2408 bool sum_trbs_for_length = false; 2409 u32 remaining, requested, ep_trb_len; 2410 int short_framestatus; 2411 2412 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2413 urb_priv = td->urb->hcpriv; 2414 idx = urb_priv->num_tds_done; 2415 frame = &td->urb->iso_frame_desc[idx]; 2416 requested = frame->length; 2417 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2418 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2419 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2420 -EREMOTEIO : 0; 2421 2422 /* handle completion code */ 2423 switch (trb_comp_code) { 2424 case COMP_SUCCESS: 2425 if (remaining) { 2426 frame->status = short_framestatus; 2427 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2428 sum_trbs_for_length = true; 2429 break; 2430 } 2431 frame->status = 0; 2432 break; 2433 case COMP_SHORT_PACKET: 2434 frame->status = short_framestatus; 2435 sum_trbs_for_length = true; 2436 break; 2437 case COMP_BANDWIDTH_OVERRUN_ERROR: 2438 frame->status = -ECOMM; 2439 break; 2440 case COMP_ISOCH_BUFFER_OVERRUN: 2441 case COMP_BABBLE_DETECTED_ERROR: 2442 frame->status = -EOVERFLOW; 2443 break; 2444 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2445 case COMP_STALL_ERROR: 2446 frame->status = -EPROTO; 2447 break; 2448 case COMP_USB_TRANSACTION_ERROR: 2449 frame->status = -EPROTO; 2450 if (ep_trb != td->last_trb) 2451 return 0; 2452 break; 2453 case COMP_STOPPED: 2454 sum_trbs_for_length = true; 2455 break; 2456 case COMP_STOPPED_SHORT_PACKET: 2457 /* field normally containing residue now contains tranferred */ 2458 frame->status = short_framestatus; 2459 requested = remaining; 2460 break; 2461 case COMP_STOPPED_LENGTH_INVALID: 2462 requested = 0; 2463 remaining = 0; 2464 break; 2465 default: 2466 sum_trbs_for_length = true; 2467 frame->status = -1; 2468 break; 2469 } 2470 2471 if (sum_trbs_for_length) 2472 frame->actual_length = sum_trb_lengths(xhci, ep->ring, ep_trb) + 2473 ep_trb_len - remaining; 2474 else 2475 frame->actual_length = requested; 2476 2477 td->urb->actual_length += frame->actual_length; 2478 2479 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2480 } 2481 2482 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2483 struct xhci_virt_ep *ep, int status) 2484 { 2485 struct urb_priv *urb_priv; 2486 struct usb_iso_packet_descriptor *frame; 2487 int idx; 2488 2489 urb_priv = td->urb->hcpriv; 2490 idx = urb_priv->num_tds_done; 2491 frame = &td->urb->iso_frame_desc[idx]; 2492 2493 /* The transfer is partly done. */ 2494 frame->status = -EXDEV; 2495 2496 /* calc actual length */ 2497 frame->actual_length = 0; 2498 2499 /* Update ring dequeue pointer */ 2500 ep->ring->dequeue = td->last_trb; 2501 ep->ring->deq_seg = td->last_trb_seg; 2502 ep->ring->num_trbs_free += td->num_trbs - 1; 2503 inc_deq(xhci, ep->ring); 2504 2505 return xhci_td_cleanup(xhci, td, ep->ring, status); 2506 } 2507 2508 /* 2509 * Process bulk and interrupt tds, update urb status and actual_length. 2510 */ 2511 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2512 struct xhci_ring *ep_ring, struct xhci_td *td, 2513 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2514 { 2515 struct xhci_slot_ctx *slot_ctx; 2516 u32 trb_comp_code; 2517 u32 remaining, requested, ep_trb_len; 2518 2519 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 2520 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2521 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2522 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2523 requested = td->urb->transfer_buffer_length; 2524 2525 switch (trb_comp_code) { 2526 case COMP_SUCCESS: 2527 ep_ring->err_count = 0; 2528 /* handle success with untransferred data as short packet */ 2529 if (ep_trb != td->last_trb || remaining) { 2530 xhci_warn(xhci, "WARN Successful completion on short TX\n"); 2531 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2532 td->urb->ep->desc.bEndpointAddress, 2533 requested, remaining); 2534 } 2535 td->status = 0; 2536 break; 2537 case COMP_SHORT_PACKET: 2538 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2539 td->urb->ep->desc.bEndpointAddress, 2540 requested, remaining); 2541 td->status = 0; 2542 break; 2543 case COMP_STOPPED_SHORT_PACKET: 2544 td->urb->actual_length = remaining; 2545 goto finish_td; 2546 case COMP_STOPPED_LENGTH_INVALID: 2547 /* stopped on ep trb with invalid length, exclude it */ 2548 ep_trb_len = 0; 2549 remaining = 0; 2550 break; 2551 case COMP_USB_TRANSACTION_ERROR: 2552 if (xhci->quirks & XHCI_NO_SOFT_RETRY || 2553 (ep_ring->err_count++ > MAX_SOFT_RETRY) || 2554 le32_to_cpu(slot_ctx->tt_info) & TT_SLOT) 2555 break; 2556 2557 td->status = 0; 2558 2559 xhci_handle_halted_endpoint(xhci, ep, ep_ring->stream_id, td, 2560 EP_SOFT_RESET); 2561 return 0; 2562 default: 2563 /* do nothing */ 2564 break; 2565 } 2566 2567 if (ep_trb == td->last_trb) 2568 td->urb->actual_length = requested - remaining; 2569 else 2570 td->urb->actual_length = 2571 sum_trb_lengths(xhci, ep_ring, ep_trb) + 2572 ep_trb_len - remaining; 2573 finish_td: 2574 if (remaining > requested) { 2575 xhci_warn(xhci, "bad transfer trb length %d in event trb\n", 2576 remaining); 2577 td->urb->actual_length = 0; 2578 } 2579 2580 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2581 } 2582 2583 /* 2584 * If this function returns an error condition, it means it got a Transfer 2585 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2586 * At this point, the host controller is probably hosed and should be reset. 2587 */ 2588 static int handle_tx_event(struct xhci_hcd *xhci, 2589 struct xhci_transfer_event *event) 2590 { 2591 struct xhci_virt_ep *ep; 2592 struct xhci_ring *ep_ring; 2593 unsigned int slot_id; 2594 int ep_index; 2595 struct xhci_td *td = NULL; 2596 dma_addr_t ep_trb_dma; 2597 struct xhci_segment *ep_seg; 2598 union xhci_trb *ep_trb; 2599 int status = -EINPROGRESS; 2600 struct xhci_ep_ctx *ep_ctx; 2601 struct list_head *tmp; 2602 u32 trb_comp_code; 2603 int td_num = 0; 2604 bool handling_skipped_tds = false; 2605 2606 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2607 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2608 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2609 ep_trb_dma = le64_to_cpu(event->buffer); 2610 2611 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 2612 if (!ep) { 2613 xhci_err(xhci, "ERROR Invalid Transfer event\n"); 2614 goto err_out; 2615 } 2616 2617 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma); 2618 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 2619 2620 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { 2621 xhci_err(xhci, 2622 "ERROR Transfer event for disabled endpoint slot %u ep %u\n", 2623 slot_id, ep_index); 2624 goto err_out; 2625 } 2626 2627 /* Some transfer events don't always point to a trb, see xhci 4.17.4 */ 2628 if (!ep_ring) { 2629 switch (trb_comp_code) { 2630 case COMP_STALL_ERROR: 2631 case COMP_USB_TRANSACTION_ERROR: 2632 case COMP_INVALID_STREAM_TYPE_ERROR: 2633 case COMP_INVALID_STREAM_ID_ERROR: 2634 xhci_handle_halted_endpoint(xhci, ep, 0, NULL, 2635 EP_SOFT_RESET); 2636 goto cleanup; 2637 case COMP_RING_UNDERRUN: 2638 case COMP_RING_OVERRUN: 2639 case COMP_STOPPED_LENGTH_INVALID: 2640 goto cleanup; 2641 default: 2642 xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n", 2643 slot_id, ep_index); 2644 goto err_out; 2645 } 2646 } 2647 2648 /* Count current td numbers if ep->skip is set */ 2649 if (ep->skip) { 2650 list_for_each(tmp, &ep_ring->td_list) 2651 td_num++; 2652 } 2653 2654 /* Look for common error cases */ 2655 switch (trb_comp_code) { 2656 /* Skip codes that require special handling depending on 2657 * transfer type 2658 */ 2659 case COMP_SUCCESS: 2660 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2661 break; 2662 if (xhci->quirks & XHCI_TRUST_TX_LENGTH || 2663 ep_ring->last_td_was_short) 2664 trb_comp_code = COMP_SHORT_PACKET; 2665 else 2666 xhci_warn_ratelimited(xhci, 2667 "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n", 2668 slot_id, ep_index); 2669 break; 2670 case COMP_SHORT_PACKET: 2671 break; 2672 /* Completion codes for endpoint stopped state */ 2673 case COMP_STOPPED: 2674 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n", 2675 slot_id, ep_index); 2676 break; 2677 case COMP_STOPPED_LENGTH_INVALID: 2678 xhci_dbg(xhci, 2679 "Stopped on No-op or Link TRB for slot %u ep %u\n", 2680 slot_id, ep_index); 2681 break; 2682 case COMP_STOPPED_SHORT_PACKET: 2683 xhci_dbg(xhci, 2684 "Stopped with short packet transfer detected for slot %u ep %u\n", 2685 slot_id, ep_index); 2686 break; 2687 /* Completion codes for endpoint halted state */ 2688 case COMP_STALL_ERROR: 2689 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id, 2690 ep_index); 2691 status = -EPIPE; 2692 break; 2693 case COMP_SPLIT_TRANSACTION_ERROR: 2694 xhci_dbg(xhci, "Split transaction error for slot %u ep %u\n", 2695 slot_id, ep_index); 2696 status = -EPROTO; 2697 break; 2698 case COMP_USB_TRANSACTION_ERROR: 2699 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n", 2700 slot_id, ep_index); 2701 status = -EPROTO; 2702 break; 2703 case COMP_BABBLE_DETECTED_ERROR: 2704 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n", 2705 slot_id, ep_index); 2706 status = -EOVERFLOW; 2707 break; 2708 /* Completion codes for endpoint error state */ 2709 case COMP_TRB_ERROR: 2710 xhci_warn(xhci, 2711 "WARN: TRB error for slot %u ep %u on endpoint\n", 2712 slot_id, ep_index); 2713 status = -EILSEQ; 2714 break; 2715 /* completion codes not indicating endpoint state change */ 2716 case COMP_DATA_BUFFER_ERROR: 2717 xhci_warn(xhci, 2718 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n", 2719 slot_id, ep_index); 2720 status = -ENOSR; 2721 break; 2722 case COMP_BANDWIDTH_OVERRUN_ERROR: 2723 xhci_warn(xhci, 2724 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n", 2725 slot_id, ep_index); 2726 break; 2727 case COMP_ISOCH_BUFFER_OVERRUN: 2728 xhci_warn(xhci, 2729 "WARN: buffer overrun event for slot %u ep %u on endpoint", 2730 slot_id, ep_index); 2731 break; 2732 case COMP_RING_UNDERRUN: 2733 /* 2734 * When the Isoch ring is empty, the xHC will generate 2735 * a Ring Overrun Event for IN Isoch endpoint or Ring 2736 * Underrun Event for OUT Isoch endpoint. 2737 */ 2738 xhci_dbg(xhci, "underrun event on endpoint\n"); 2739 if (!list_empty(&ep_ring->td_list)) 2740 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2741 "still with TDs queued?\n", 2742 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2743 ep_index); 2744 goto cleanup; 2745 case COMP_RING_OVERRUN: 2746 xhci_dbg(xhci, "overrun event on endpoint\n"); 2747 if (!list_empty(&ep_ring->td_list)) 2748 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2749 "still with TDs queued?\n", 2750 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2751 ep_index); 2752 goto cleanup; 2753 case COMP_MISSED_SERVICE_ERROR: 2754 /* 2755 * When encounter missed service error, one or more isoc tds 2756 * may be missed by xHC. 2757 * Set skip flag of the ep_ring; Complete the missed tds as 2758 * short transfer when process the ep_ring next time. 2759 */ 2760 ep->skip = true; 2761 xhci_dbg(xhci, 2762 "Miss service interval error for slot %u ep %u, set skip flag\n", 2763 slot_id, ep_index); 2764 goto cleanup; 2765 case COMP_NO_PING_RESPONSE_ERROR: 2766 ep->skip = true; 2767 xhci_dbg(xhci, 2768 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n", 2769 slot_id, ep_index); 2770 goto cleanup; 2771 2772 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2773 /* needs disable slot command to recover */ 2774 xhci_warn(xhci, 2775 "WARN: detect an incompatible device for slot %u ep %u", 2776 slot_id, ep_index); 2777 status = -EPROTO; 2778 break; 2779 default: 2780 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2781 status = 0; 2782 break; 2783 } 2784 xhci_warn(xhci, 2785 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n", 2786 trb_comp_code, slot_id, ep_index); 2787 goto cleanup; 2788 } 2789 2790 do { 2791 /* This TRB should be in the TD at the head of this ring's 2792 * TD list. 2793 */ 2794 if (list_empty(&ep_ring->td_list)) { 2795 /* 2796 * Don't print wanings if it's due to a stopped endpoint 2797 * generating an extra completion event if the device 2798 * was suspended. Or, a event for the last TRB of a 2799 * short TD we already got a short event for. 2800 * The short TD is already removed from the TD list. 2801 */ 2802 2803 if (!(trb_comp_code == COMP_STOPPED || 2804 trb_comp_code == COMP_STOPPED_LENGTH_INVALID || 2805 ep_ring->last_td_was_short)) { 2806 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2807 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2808 ep_index); 2809 } 2810 if (ep->skip) { 2811 ep->skip = false; 2812 xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n", 2813 slot_id, ep_index); 2814 } 2815 if (trb_comp_code == COMP_STALL_ERROR || 2816 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2817 trb_comp_code)) { 2818 xhci_handle_halted_endpoint(xhci, ep, 2819 ep_ring->stream_id, 2820 NULL, 2821 EP_HARD_RESET); 2822 } 2823 goto cleanup; 2824 } 2825 2826 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2827 if (ep->skip && td_num == 0) { 2828 ep->skip = false; 2829 xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n", 2830 slot_id, ep_index); 2831 goto cleanup; 2832 } 2833 2834 td = list_first_entry(&ep_ring->td_list, struct xhci_td, 2835 td_list); 2836 if (ep->skip) 2837 td_num--; 2838 2839 /* Is this a TRB in the currently executing TD? */ 2840 ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue, 2841 td->last_trb, ep_trb_dma, false); 2842 2843 /* 2844 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2845 * is not in the current TD pointed by ep_ring->dequeue because 2846 * that the hardware dequeue pointer still at the previous TRB 2847 * of the current TD. The previous TRB maybe a Link TD or the 2848 * last TRB of the previous TD. The command completion handle 2849 * will take care the rest. 2850 */ 2851 if (!ep_seg && (trb_comp_code == COMP_STOPPED || 2852 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) { 2853 goto cleanup; 2854 } 2855 2856 if (!ep_seg) { 2857 if (!ep->skip || 2858 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2859 /* Some host controllers give a spurious 2860 * successful event after a short transfer. 2861 * Ignore it. 2862 */ 2863 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2864 ep_ring->last_td_was_short) { 2865 ep_ring->last_td_was_short = false; 2866 goto cleanup; 2867 } 2868 /* HC is busted, give up! */ 2869 xhci_err(xhci, 2870 "ERROR Transfer event TRB DMA ptr not " 2871 "part of current TD ep_index %d " 2872 "comp_code %u\n", ep_index, 2873 trb_comp_code); 2874 trb_in_td(xhci, ep_ring->deq_seg, 2875 ep_ring->dequeue, td->last_trb, 2876 ep_trb_dma, true); 2877 return -ESHUTDOWN; 2878 } 2879 2880 skip_isoc_td(xhci, td, ep, status); 2881 goto cleanup; 2882 } 2883 if (trb_comp_code == COMP_SHORT_PACKET) 2884 ep_ring->last_td_was_short = true; 2885 else 2886 ep_ring->last_td_was_short = false; 2887 2888 if (ep->skip) { 2889 xhci_dbg(xhci, 2890 "Found td. Clear skip flag for slot %u ep %u.\n", 2891 slot_id, ep_index); 2892 ep->skip = false; 2893 } 2894 2895 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / 2896 sizeof(*ep_trb)]; 2897 2898 trace_xhci_handle_transfer(ep_ring, 2899 (struct xhci_generic_trb *) ep_trb); 2900 2901 /* 2902 * No-op TRB could trigger interrupts in a case where 2903 * a URB was killed and a STALL_ERROR happens right 2904 * after the endpoint ring stopped. Reset the halted 2905 * endpoint. Otherwise, the endpoint remains stalled 2906 * indefinitely. 2907 */ 2908 2909 if (trb_is_noop(ep_trb)) { 2910 if (trb_comp_code == COMP_STALL_ERROR || 2911 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2912 trb_comp_code)) 2913 xhci_handle_halted_endpoint(xhci, ep, 2914 ep_ring->stream_id, 2915 td, EP_HARD_RESET); 2916 goto cleanup; 2917 } 2918 2919 td->status = status; 2920 2921 /* update the urb's actual_length and give back to the core */ 2922 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2923 process_ctrl_td(xhci, ep, ep_ring, td, ep_trb, event); 2924 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2925 process_isoc_td(xhci, ep, ep_ring, td, ep_trb, event); 2926 else 2927 process_bulk_intr_td(xhci, ep, ep_ring, td, ep_trb, event); 2928 cleanup: 2929 handling_skipped_tds = ep->skip && 2930 trb_comp_code != COMP_MISSED_SERVICE_ERROR && 2931 trb_comp_code != COMP_NO_PING_RESPONSE_ERROR; 2932 2933 /* 2934 * Do not update event ring dequeue pointer if we're in a loop 2935 * processing missed tds. 2936 */ 2937 if (!handling_skipped_tds) 2938 inc_deq(xhci, xhci->event_ring); 2939 2940 /* 2941 * If ep->skip is set, it means there are missed tds on the 2942 * endpoint ring need to take care of. 2943 * Process them as short transfer until reach the td pointed by 2944 * the event. 2945 */ 2946 } while (handling_skipped_tds); 2947 2948 return 0; 2949 2950 err_out: 2951 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2952 (unsigned long long) xhci_trb_virt_to_dma( 2953 xhci->event_ring->deq_seg, 2954 xhci->event_ring->dequeue), 2955 lower_32_bits(le64_to_cpu(event->buffer)), 2956 upper_32_bits(le64_to_cpu(event->buffer)), 2957 le32_to_cpu(event->transfer_len), 2958 le32_to_cpu(event->flags)); 2959 return -ENODEV; 2960 } 2961 2962 /* 2963 * This function handles all OS-owned events on the event ring. It may drop 2964 * xhci->lock between event processing (e.g. to pass up port status changes). 2965 * Returns >0 for "possibly more events to process" (caller should call again), 2966 * otherwise 0 if done. In future, <0 returns should indicate error code. 2967 */ 2968 static int xhci_handle_event(struct xhci_hcd *xhci) 2969 { 2970 union xhci_trb *event; 2971 int update_ptrs = 1; 2972 u32 trb_type; 2973 int ret; 2974 2975 /* Event ring hasn't been allocated yet. */ 2976 if (!xhci->event_ring || !xhci->event_ring->dequeue) { 2977 xhci_err(xhci, "ERROR event ring not ready\n"); 2978 return -ENOMEM; 2979 } 2980 2981 event = xhci->event_ring->dequeue; 2982 /* Does the HC or OS own the TRB? */ 2983 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2984 xhci->event_ring->cycle_state) 2985 return 0; 2986 2987 trace_xhci_handle_event(xhci->event_ring, &event->generic); 2988 2989 /* 2990 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2991 * speculative reads of the event's flags/data below. 2992 */ 2993 rmb(); 2994 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->event_cmd.flags)); 2995 /* FIXME: Handle more event types. */ 2996 2997 switch (trb_type) { 2998 case TRB_COMPLETION: 2999 handle_cmd_completion(xhci, &event->event_cmd); 3000 break; 3001 case TRB_PORT_STATUS: 3002 handle_port_status(xhci, event); 3003 update_ptrs = 0; 3004 break; 3005 case TRB_TRANSFER: 3006 ret = handle_tx_event(xhci, &event->trans_event); 3007 if (ret >= 0) 3008 update_ptrs = 0; 3009 break; 3010 case TRB_DEV_NOTE: 3011 handle_device_notification(xhci, event); 3012 break; 3013 default: 3014 if (trb_type >= TRB_VENDOR_DEFINED_LOW) 3015 handle_vendor_event(xhci, event, trb_type); 3016 else 3017 xhci_warn(xhci, "ERROR unknown event type %d\n", trb_type); 3018 } 3019 /* Any of the above functions may drop and re-acquire the lock, so check 3020 * to make sure a watchdog timer didn't mark the host as non-responsive. 3021 */ 3022 if (xhci->xhc_state & XHCI_STATE_DYING) { 3023 xhci_dbg(xhci, "xHCI host dying, returning from " 3024 "event handler.\n"); 3025 return 0; 3026 } 3027 3028 if (update_ptrs) 3029 /* Update SW event ring dequeue pointer */ 3030 inc_deq(xhci, xhci->event_ring); 3031 3032 /* Are there more items on the event ring? Caller will call us again to 3033 * check. 3034 */ 3035 return 1; 3036 } 3037 3038 /* 3039 * Update Event Ring Dequeue Pointer: 3040 * - When all events have finished 3041 * - To avoid "Event Ring Full Error" condition 3042 */ 3043 static void xhci_update_erst_dequeue(struct xhci_hcd *xhci, 3044 union xhci_trb *event_ring_deq) 3045 { 3046 u64 temp_64; 3047 dma_addr_t deq; 3048 3049 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 3050 /* If necessary, update the HW's version of the event ring deq ptr. */ 3051 if (event_ring_deq != xhci->event_ring->dequeue) { 3052 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 3053 xhci->event_ring->dequeue); 3054 if (deq == 0) 3055 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr\n"); 3056 /* 3057 * Per 4.9.4, Software writes to the ERDP register shall 3058 * always advance the Event Ring Dequeue Pointer value. 3059 */ 3060 if ((temp_64 & (u64) ~ERST_PTR_MASK) == 3061 ((u64) deq & (u64) ~ERST_PTR_MASK)) 3062 return; 3063 3064 /* Update HC event ring dequeue pointer */ 3065 temp_64 &= ERST_PTR_MASK; 3066 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 3067 } 3068 3069 /* Clear the event handler busy flag (RW1C) */ 3070 temp_64 |= ERST_EHB; 3071 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); 3072 } 3073 3074 /* 3075 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 3076 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 3077 * indicators of an event TRB error, but we check the status *first* to be safe. 3078 */ 3079 irqreturn_t xhci_irq(struct usb_hcd *hcd) 3080 { 3081 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3082 union xhci_trb *event_ring_deq; 3083 irqreturn_t ret = IRQ_NONE; 3084 u64 temp_64; 3085 u32 status; 3086 int event_loop = 0; 3087 3088 spin_lock(&xhci->lock); 3089 /* Check if the xHC generated the interrupt, or the irq is shared */ 3090 status = readl(&xhci->op_regs->status); 3091 if (status == ~(u32)0) { 3092 xhci_hc_died(xhci); 3093 ret = IRQ_HANDLED; 3094 goto out; 3095 } 3096 3097 if (!(status & STS_EINT)) 3098 goto out; 3099 3100 if (status & STS_FATAL) { 3101 xhci_warn(xhci, "WARNING: Host System Error\n"); 3102 xhci_halt(xhci); 3103 ret = IRQ_HANDLED; 3104 goto out; 3105 } 3106 3107 /* 3108 * Clear the op reg interrupt status first, 3109 * so we can receive interrupts from other MSI-X interrupters. 3110 * Write 1 to clear the interrupt status. 3111 */ 3112 status |= STS_EINT; 3113 writel(status, &xhci->op_regs->status); 3114 3115 if (!hcd->msi_enabled) { 3116 u32 irq_pending; 3117 irq_pending = readl(&xhci->ir_set->irq_pending); 3118 irq_pending |= IMAN_IP; 3119 writel(irq_pending, &xhci->ir_set->irq_pending); 3120 } 3121 3122 if (xhci->xhc_state & XHCI_STATE_DYING || 3123 xhci->xhc_state & XHCI_STATE_HALTED) { 3124 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 3125 "Shouldn't IRQs be disabled?\n"); 3126 /* Clear the event handler busy flag (RW1C); 3127 * the event ring should be empty. 3128 */ 3129 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 3130 xhci_write_64(xhci, temp_64 | ERST_EHB, 3131 &xhci->ir_set->erst_dequeue); 3132 ret = IRQ_HANDLED; 3133 goto out; 3134 } 3135 3136 event_ring_deq = xhci->event_ring->dequeue; 3137 /* FIXME this should be a delayed service routine 3138 * that clears the EHB. 3139 */ 3140 while (xhci_handle_event(xhci) > 0) { 3141 if (event_loop++ < TRBS_PER_SEGMENT / 2) 3142 continue; 3143 xhci_update_erst_dequeue(xhci, event_ring_deq); 3144 event_ring_deq = xhci->event_ring->dequeue; 3145 3146 /* ring is half-full, force isoc trbs to interrupt more often */ 3147 if (xhci->isoc_bei_interval > AVOID_BEI_INTERVAL_MIN) 3148 xhci->isoc_bei_interval = xhci->isoc_bei_interval / 2; 3149 3150 event_loop = 0; 3151 } 3152 3153 xhci_update_erst_dequeue(xhci, event_ring_deq); 3154 ret = IRQ_HANDLED; 3155 3156 out: 3157 spin_unlock(&xhci->lock); 3158 3159 return ret; 3160 } 3161 3162 irqreturn_t xhci_msi_irq(int irq, void *hcd) 3163 { 3164 return xhci_irq(hcd); 3165 } 3166 3167 /**** Endpoint Ring Operations ****/ 3168 3169 /* 3170 * Generic function for queueing a TRB on a ring. 3171 * The caller must have checked to make sure there's room on the ring. 3172 * 3173 * @more_trbs_coming: Will you enqueue more TRBs before calling 3174 * prepare_transfer()? 3175 */ 3176 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 3177 bool more_trbs_coming, 3178 u32 field1, u32 field2, u32 field3, u32 field4) 3179 { 3180 struct xhci_generic_trb *trb; 3181 3182 trb = &ring->enqueue->generic; 3183 trb->field[0] = cpu_to_le32(field1); 3184 trb->field[1] = cpu_to_le32(field2); 3185 trb->field[2] = cpu_to_le32(field3); 3186 /* make sure TRB is fully written before giving it to the controller */ 3187 wmb(); 3188 trb->field[3] = cpu_to_le32(field4); 3189 3190 trace_xhci_queue_trb(ring, trb); 3191 3192 inc_enq(xhci, ring, more_trbs_coming); 3193 } 3194 3195 /* 3196 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 3197 * FIXME allocate segments if the ring is full. 3198 */ 3199 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 3200 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 3201 { 3202 unsigned int num_trbs_needed; 3203 unsigned int link_trb_count = 0; 3204 3205 /* Make sure the endpoint has been added to xHC schedule */ 3206 switch (ep_state) { 3207 case EP_STATE_DISABLED: 3208 /* 3209 * USB core changed config/interfaces without notifying us, 3210 * or hardware is reporting the wrong state. 3211 */ 3212 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 3213 return -ENOENT; 3214 case EP_STATE_ERROR: 3215 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 3216 /* FIXME event handling code for error needs to clear it */ 3217 /* XXX not sure if this should be -ENOENT or not */ 3218 return -EINVAL; 3219 case EP_STATE_HALTED: 3220 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 3221 break; 3222 case EP_STATE_STOPPED: 3223 case EP_STATE_RUNNING: 3224 break; 3225 default: 3226 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 3227 /* 3228 * FIXME issue Configure Endpoint command to try to get the HC 3229 * back into a known state. 3230 */ 3231 return -EINVAL; 3232 } 3233 3234 while (1) { 3235 if (room_on_ring(xhci, ep_ring, num_trbs)) 3236 break; 3237 3238 if (ep_ring == xhci->cmd_ring) { 3239 xhci_err(xhci, "Do not support expand command ring\n"); 3240 return -ENOMEM; 3241 } 3242 3243 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 3244 "ERROR no room on ep ring, try ring expansion"); 3245 num_trbs_needed = num_trbs - ep_ring->num_trbs_free; 3246 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed, 3247 mem_flags)) { 3248 xhci_err(xhci, "Ring expansion failed\n"); 3249 return -ENOMEM; 3250 } 3251 } 3252 3253 while (trb_is_link(ep_ring->enqueue)) { 3254 /* If we're not dealing with 0.95 hardware or isoc rings 3255 * on AMD 0.96 host, clear the chain bit. 3256 */ 3257 if (!xhci_link_trb_quirk(xhci) && 3258 !(ep_ring->type == TYPE_ISOC && 3259 (xhci->quirks & XHCI_AMD_0x96_HOST))) 3260 ep_ring->enqueue->link.control &= 3261 cpu_to_le32(~TRB_CHAIN); 3262 else 3263 ep_ring->enqueue->link.control |= 3264 cpu_to_le32(TRB_CHAIN); 3265 3266 wmb(); 3267 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); 3268 3269 /* Toggle the cycle bit after the last ring segment. */ 3270 if (link_trb_toggles_cycle(ep_ring->enqueue)) 3271 ep_ring->cycle_state ^= 1; 3272 3273 ep_ring->enq_seg = ep_ring->enq_seg->next; 3274 ep_ring->enqueue = ep_ring->enq_seg->trbs; 3275 3276 /* prevent infinite loop if all first trbs are link trbs */ 3277 if (link_trb_count++ > ep_ring->num_segs) { 3278 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 3279 return -EINVAL; 3280 } 3281 } 3282 3283 if (last_trb_on_seg(ep_ring->enq_seg, ep_ring->enqueue)) { 3284 xhci_warn(xhci, "Missing link TRB at end of ring segment\n"); 3285 return -EINVAL; 3286 } 3287 3288 return 0; 3289 } 3290 3291 static int prepare_transfer(struct xhci_hcd *xhci, 3292 struct xhci_virt_device *xdev, 3293 unsigned int ep_index, 3294 unsigned int stream_id, 3295 unsigned int num_trbs, 3296 struct urb *urb, 3297 unsigned int td_index, 3298 gfp_t mem_flags) 3299 { 3300 int ret; 3301 struct urb_priv *urb_priv; 3302 struct xhci_td *td; 3303 struct xhci_ring *ep_ring; 3304 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3305 3306 ep_ring = xhci_triad_to_transfer_ring(xhci, xdev->slot_id, ep_index, 3307 stream_id); 3308 if (!ep_ring) { 3309 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 3310 stream_id); 3311 return -EINVAL; 3312 } 3313 3314 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 3315 num_trbs, mem_flags); 3316 if (ret) 3317 return ret; 3318 3319 urb_priv = urb->hcpriv; 3320 td = &urb_priv->td[td_index]; 3321 3322 INIT_LIST_HEAD(&td->td_list); 3323 INIT_LIST_HEAD(&td->cancelled_td_list); 3324 3325 if (td_index == 0) { 3326 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 3327 if (unlikely(ret)) 3328 return ret; 3329 } 3330 3331 td->urb = urb; 3332 /* Add this TD to the tail of the endpoint ring's TD list */ 3333 list_add_tail(&td->td_list, &ep_ring->td_list); 3334 td->start_seg = ep_ring->enq_seg; 3335 td->first_trb = ep_ring->enqueue; 3336 3337 return 0; 3338 } 3339 3340 unsigned int count_trbs(u64 addr, u64 len) 3341 { 3342 unsigned int num_trbs; 3343 3344 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3345 TRB_MAX_BUFF_SIZE); 3346 if (num_trbs == 0) 3347 num_trbs++; 3348 3349 return num_trbs; 3350 } 3351 3352 static inline unsigned int count_trbs_needed(struct urb *urb) 3353 { 3354 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); 3355 } 3356 3357 static unsigned int count_sg_trbs_needed(struct urb *urb) 3358 { 3359 struct scatterlist *sg; 3360 unsigned int i, len, full_len, num_trbs = 0; 3361 3362 full_len = urb->transfer_buffer_length; 3363 3364 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { 3365 len = sg_dma_len(sg); 3366 num_trbs += count_trbs(sg_dma_address(sg), len); 3367 len = min_t(unsigned int, len, full_len); 3368 full_len -= len; 3369 if (full_len == 0) 3370 break; 3371 } 3372 3373 return num_trbs; 3374 } 3375 3376 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) 3377 { 3378 u64 addr, len; 3379 3380 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3381 len = urb->iso_frame_desc[i].length; 3382 3383 return count_trbs(addr, len); 3384 } 3385 3386 static void check_trb_math(struct urb *urb, int running_total) 3387 { 3388 if (unlikely(running_total != urb->transfer_buffer_length)) 3389 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3390 "queued %#x (%d), asked for %#x (%d)\n", 3391 __func__, 3392 urb->ep->desc.bEndpointAddress, 3393 running_total, running_total, 3394 urb->transfer_buffer_length, 3395 urb->transfer_buffer_length); 3396 } 3397 3398 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3399 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3400 struct xhci_generic_trb *start_trb) 3401 { 3402 /* 3403 * Pass all the TRBs to the hardware at once and make sure this write 3404 * isn't reordered. 3405 */ 3406 wmb(); 3407 if (start_cycle) 3408 start_trb->field[3] |= cpu_to_le32(start_cycle); 3409 else 3410 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3411 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3412 } 3413 3414 static void check_interval(struct xhci_hcd *xhci, struct urb *urb, 3415 struct xhci_ep_ctx *ep_ctx) 3416 { 3417 int xhci_interval; 3418 int ep_interval; 3419 3420 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3421 ep_interval = urb->interval; 3422 3423 /* Convert to microframes */ 3424 if (urb->dev->speed == USB_SPEED_LOW || 3425 urb->dev->speed == USB_SPEED_FULL) 3426 ep_interval *= 8; 3427 3428 /* FIXME change this to a warning and a suggestion to use the new API 3429 * to set the polling interval (once the API is added). 3430 */ 3431 if (xhci_interval != ep_interval) { 3432 dev_dbg_ratelimited(&urb->dev->dev, 3433 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3434 ep_interval, ep_interval == 1 ? "" : "s", 3435 xhci_interval, xhci_interval == 1 ? "" : "s"); 3436 urb->interval = xhci_interval; 3437 /* Convert back to frames for LS/FS devices */ 3438 if (urb->dev->speed == USB_SPEED_LOW || 3439 urb->dev->speed == USB_SPEED_FULL) 3440 urb->interval /= 8; 3441 } 3442 } 3443 3444 /* 3445 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3446 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3447 * (comprised of sg list entries) can take several service intervals to 3448 * transmit. 3449 */ 3450 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3451 struct urb *urb, int slot_id, unsigned int ep_index) 3452 { 3453 struct xhci_ep_ctx *ep_ctx; 3454 3455 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); 3456 check_interval(xhci, urb, ep_ctx); 3457 3458 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3459 } 3460 3461 /* 3462 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3463 * packets remaining in the TD (*not* including this TRB). 3464 * 3465 * Total TD packet count = total_packet_count = 3466 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3467 * 3468 * Packets transferred up to and including this TRB = packets_transferred = 3469 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3470 * 3471 * TD size = total_packet_count - packets_transferred 3472 * 3473 * For xHCI 0.96 and older, TD size field should be the remaining bytes 3474 * including this TRB, right shifted by 10 3475 * 3476 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. 3477 * This is taken care of in the TRB_TD_SIZE() macro 3478 * 3479 * The last TRB in a TD must have the TD size set to zero. 3480 */ 3481 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, 3482 int trb_buff_len, unsigned int td_total_len, 3483 struct urb *urb, bool more_trbs_coming) 3484 { 3485 u32 maxp, total_packet_count; 3486 3487 /* MTK xHCI 0.96 contains some features from 1.0 */ 3488 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) 3489 return ((td_total_len - transferred) >> 10); 3490 3491 /* One TRB with a zero-length data packet. */ 3492 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || 3493 trb_buff_len == td_total_len) 3494 return 0; 3495 3496 /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */ 3497 if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100)) 3498 trb_buff_len = 0; 3499 3500 maxp = usb_endpoint_maxp(&urb->ep->desc); 3501 total_packet_count = DIV_ROUND_UP(td_total_len, maxp); 3502 3503 /* Queueing functions don't count the current TRB into transferred */ 3504 return (total_packet_count - ((transferred + trb_buff_len) / maxp)); 3505 } 3506 3507 3508 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, 3509 u32 *trb_buff_len, struct xhci_segment *seg) 3510 { 3511 struct device *dev = xhci_to_hcd(xhci)->self.controller; 3512 unsigned int unalign; 3513 unsigned int max_pkt; 3514 u32 new_buff_len; 3515 size_t len; 3516 3517 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3518 unalign = (enqd_len + *trb_buff_len) % max_pkt; 3519 3520 /* we got lucky, last normal TRB data on segment is packet aligned */ 3521 if (unalign == 0) 3522 return 0; 3523 3524 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", 3525 unalign, *trb_buff_len); 3526 3527 /* is the last nornal TRB alignable by splitting it */ 3528 if (*trb_buff_len > unalign) { 3529 *trb_buff_len -= unalign; 3530 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); 3531 return 0; 3532 } 3533 3534 /* 3535 * We want enqd_len + trb_buff_len to sum up to a number aligned to 3536 * number which is divisible by the endpoint's wMaxPacketSize. IOW: 3537 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. 3538 */ 3539 new_buff_len = max_pkt - (enqd_len % max_pkt); 3540 3541 if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) 3542 new_buff_len = (urb->transfer_buffer_length - enqd_len); 3543 3544 /* create a max max_pkt sized bounce buffer pointed to by last trb */ 3545 if (usb_urb_dir_out(urb)) { 3546 if (urb->num_sgs) { 3547 len = sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 3548 seg->bounce_buf, new_buff_len, enqd_len); 3549 if (len != new_buff_len) 3550 xhci_warn(xhci, "WARN Wrong bounce buffer write length: %zu != %d\n", 3551 len, new_buff_len); 3552 } else { 3553 memcpy(seg->bounce_buf, urb->transfer_buffer + enqd_len, new_buff_len); 3554 } 3555 3556 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3557 max_pkt, DMA_TO_DEVICE); 3558 } else { 3559 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3560 max_pkt, DMA_FROM_DEVICE); 3561 } 3562 3563 if (dma_mapping_error(dev, seg->bounce_dma)) { 3564 /* try without aligning. Some host controllers survive */ 3565 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); 3566 return 0; 3567 } 3568 *trb_buff_len = new_buff_len; 3569 seg->bounce_len = new_buff_len; 3570 seg->bounce_offs = enqd_len; 3571 3572 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); 3573 3574 return 1; 3575 } 3576 3577 /* This is very similar to what ehci-q.c qtd_fill() does */ 3578 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3579 struct urb *urb, int slot_id, unsigned int ep_index) 3580 { 3581 struct xhci_ring *ring; 3582 struct urb_priv *urb_priv; 3583 struct xhci_td *td; 3584 struct xhci_generic_trb *start_trb; 3585 struct scatterlist *sg = NULL; 3586 bool more_trbs_coming = true; 3587 bool need_zero_pkt = false; 3588 bool first_trb = true; 3589 unsigned int num_trbs; 3590 unsigned int start_cycle, num_sgs = 0; 3591 unsigned int enqd_len, block_len, trb_buff_len, full_len; 3592 int sent_len, ret; 3593 u32 field, length_field, remainder; 3594 u64 addr, send_addr; 3595 3596 ring = xhci_urb_to_transfer_ring(xhci, urb); 3597 if (!ring) 3598 return -EINVAL; 3599 3600 full_len = urb->transfer_buffer_length; 3601 /* If we have scatter/gather list, we use it. */ 3602 if (urb->num_sgs && !(urb->transfer_flags & URB_DMA_MAP_SINGLE)) { 3603 num_sgs = urb->num_mapped_sgs; 3604 sg = urb->sg; 3605 addr = (u64) sg_dma_address(sg); 3606 block_len = sg_dma_len(sg); 3607 num_trbs = count_sg_trbs_needed(urb); 3608 } else { 3609 num_trbs = count_trbs_needed(urb); 3610 addr = (u64) urb->transfer_dma; 3611 block_len = full_len; 3612 } 3613 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3614 ep_index, urb->stream_id, 3615 num_trbs, urb, 0, mem_flags); 3616 if (unlikely(ret < 0)) 3617 return ret; 3618 3619 urb_priv = urb->hcpriv; 3620 3621 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3622 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) 3623 need_zero_pkt = true; 3624 3625 td = &urb_priv->td[0]; 3626 3627 /* 3628 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3629 * until we've finished creating all the other TRBs. The ring's cycle 3630 * state may change as we enqueue the other TRBs, so save it too. 3631 */ 3632 start_trb = &ring->enqueue->generic; 3633 start_cycle = ring->cycle_state; 3634 send_addr = addr; 3635 3636 /* Queue the TRBs, even if they are zero-length */ 3637 for (enqd_len = 0; first_trb || enqd_len < full_len; 3638 enqd_len += trb_buff_len) { 3639 field = TRB_TYPE(TRB_NORMAL); 3640 3641 /* TRB buffer should not cross 64KB boundaries */ 3642 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3643 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); 3644 3645 if (enqd_len + trb_buff_len > full_len) 3646 trb_buff_len = full_len - enqd_len; 3647 3648 /* Don't change the cycle bit of the first TRB until later */ 3649 if (first_trb) { 3650 first_trb = false; 3651 if (start_cycle == 0) 3652 field |= TRB_CYCLE; 3653 } else 3654 field |= ring->cycle_state; 3655 3656 /* Chain all the TRBs together; clear the chain bit in the last 3657 * TRB to indicate it's the last TRB in the chain. 3658 */ 3659 if (enqd_len + trb_buff_len < full_len) { 3660 field |= TRB_CHAIN; 3661 if (trb_is_link(ring->enqueue + 1)) { 3662 if (xhci_align_td(xhci, urb, enqd_len, 3663 &trb_buff_len, 3664 ring->enq_seg)) { 3665 send_addr = ring->enq_seg->bounce_dma; 3666 /* assuming TD won't span 2 segs */ 3667 td->bounce_seg = ring->enq_seg; 3668 } 3669 } 3670 } 3671 if (enqd_len + trb_buff_len >= full_len) { 3672 field &= ~TRB_CHAIN; 3673 field |= TRB_IOC; 3674 more_trbs_coming = false; 3675 td->last_trb = ring->enqueue; 3676 td->last_trb_seg = ring->enq_seg; 3677 if (xhci_urb_suitable_for_idt(urb)) { 3678 memcpy(&send_addr, urb->transfer_buffer, 3679 trb_buff_len); 3680 le64_to_cpus(&send_addr); 3681 field |= TRB_IDT; 3682 } 3683 } 3684 3685 /* Only set interrupt on short packet for IN endpoints */ 3686 if (usb_urb_dir_in(urb)) 3687 field |= TRB_ISP; 3688 3689 /* Set the TRB length, TD size, and interrupter fields. */ 3690 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, 3691 full_len, urb, more_trbs_coming); 3692 3693 length_field = TRB_LEN(trb_buff_len) | 3694 TRB_TD_SIZE(remainder) | 3695 TRB_INTR_TARGET(0); 3696 3697 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, 3698 lower_32_bits(send_addr), 3699 upper_32_bits(send_addr), 3700 length_field, 3701 field); 3702 td->num_trbs++; 3703 addr += trb_buff_len; 3704 sent_len = trb_buff_len; 3705 3706 while (sg && sent_len >= block_len) { 3707 /* New sg entry */ 3708 --num_sgs; 3709 sent_len -= block_len; 3710 sg = sg_next(sg); 3711 if (num_sgs != 0 && sg) { 3712 block_len = sg_dma_len(sg); 3713 addr = (u64) sg_dma_address(sg); 3714 addr += sent_len; 3715 } 3716 } 3717 block_len -= sent_len; 3718 send_addr = addr; 3719 } 3720 3721 if (need_zero_pkt) { 3722 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3723 ep_index, urb->stream_id, 3724 1, urb, 1, mem_flags); 3725 urb_priv->td[1].last_trb = ring->enqueue; 3726 urb_priv->td[1].last_trb_seg = ring->enq_seg; 3727 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; 3728 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); 3729 urb_priv->td[1].num_trbs++; 3730 } 3731 3732 check_trb_math(urb, enqd_len); 3733 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3734 start_cycle, start_trb); 3735 return 0; 3736 } 3737 3738 /* Caller must have locked xhci->lock */ 3739 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3740 struct urb *urb, int slot_id, unsigned int ep_index) 3741 { 3742 struct xhci_ring *ep_ring; 3743 int num_trbs; 3744 int ret; 3745 struct usb_ctrlrequest *setup; 3746 struct xhci_generic_trb *start_trb; 3747 int start_cycle; 3748 u32 field; 3749 struct urb_priv *urb_priv; 3750 struct xhci_td *td; 3751 3752 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3753 if (!ep_ring) 3754 return -EINVAL; 3755 3756 /* 3757 * Need to copy setup packet into setup TRB, so we can't use the setup 3758 * DMA address. 3759 */ 3760 if (!urb->setup_packet) 3761 return -EINVAL; 3762 3763 /* 1 TRB for setup, 1 for status */ 3764 num_trbs = 2; 3765 /* 3766 * Don't need to check if we need additional event data and normal TRBs, 3767 * since data in control transfers will never get bigger than 16MB 3768 * XXX: can we get a buffer that crosses 64KB boundaries? 3769 */ 3770 if (urb->transfer_buffer_length > 0) 3771 num_trbs++; 3772 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3773 ep_index, urb->stream_id, 3774 num_trbs, urb, 0, mem_flags); 3775 if (ret < 0) 3776 return ret; 3777 3778 urb_priv = urb->hcpriv; 3779 td = &urb_priv->td[0]; 3780 td->num_trbs = num_trbs; 3781 3782 /* 3783 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3784 * until we've finished creating all the other TRBs. The ring's cycle 3785 * state may change as we enqueue the other TRBs, so save it too. 3786 */ 3787 start_trb = &ep_ring->enqueue->generic; 3788 start_cycle = ep_ring->cycle_state; 3789 3790 /* Queue setup TRB - see section 6.4.1.2.1 */ 3791 /* FIXME better way to translate setup_packet into two u32 fields? */ 3792 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3793 field = 0; 3794 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3795 if (start_cycle == 0) 3796 field |= 0x1; 3797 3798 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ 3799 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { 3800 if (urb->transfer_buffer_length > 0) { 3801 if (setup->bRequestType & USB_DIR_IN) 3802 field |= TRB_TX_TYPE(TRB_DATA_IN); 3803 else 3804 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3805 } 3806 } 3807 3808 queue_trb(xhci, ep_ring, true, 3809 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3810 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3811 TRB_LEN(8) | TRB_INTR_TARGET(0), 3812 /* Immediate data in pointer */ 3813 field); 3814 3815 /* If there's data, queue data TRBs */ 3816 /* Only set interrupt on short packet for IN endpoints */ 3817 if (usb_urb_dir_in(urb)) 3818 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3819 else 3820 field = TRB_TYPE(TRB_DATA); 3821 3822 if (urb->transfer_buffer_length > 0) { 3823 u32 length_field, remainder; 3824 u64 addr; 3825 3826 if (xhci_urb_suitable_for_idt(urb)) { 3827 memcpy(&addr, urb->transfer_buffer, 3828 urb->transfer_buffer_length); 3829 le64_to_cpus(&addr); 3830 field |= TRB_IDT; 3831 } else { 3832 addr = (u64) urb->transfer_dma; 3833 } 3834 3835 remainder = xhci_td_remainder(xhci, 0, 3836 urb->transfer_buffer_length, 3837 urb->transfer_buffer_length, 3838 urb, 1); 3839 length_field = TRB_LEN(urb->transfer_buffer_length) | 3840 TRB_TD_SIZE(remainder) | 3841 TRB_INTR_TARGET(0); 3842 if (setup->bRequestType & USB_DIR_IN) 3843 field |= TRB_DIR_IN; 3844 queue_trb(xhci, ep_ring, true, 3845 lower_32_bits(addr), 3846 upper_32_bits(addr), 3847 length_field, 3848 field | ep_ring->cycle_state); 3849 } 3850 3851 /* Save the DMA address of the last TRB in the TD */ 3852 td->last_trb = ep_ring->enqueue; 3853 td->last_trb_seg = ep_ring->enq_seg; 3854 3855 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3856 /* If the device sent data, the status stage is an OUT transfer */ 3857 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3858 field = 0; 3859 else 3860 field = TRB_DIR_IN; 3861 queue_trb(xhci, ep_ring, false, 3862 0, 3863 0, 3864 TRB_INTR_TARGET(0), 3865 /* Event on completion */ 3866 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3867 3868 giveback_first_trb(xhci, slot_id, ep_index, 0, 3869 start_cycle, start_trb); 3870 return 0; 3871 } 3872 3873 /* 3874 * The transfer burst count field of the isochronous TRB defines the number of 3875 * bursts that are required to move all packets in this TD. Only SuperSpeed 3876 * devices can burst up to bMaxBurst number of packets per service interval. 3877 * This field is zero based, meaning a value of zero in the field means one 3878 * burst. Basically, for everything but SuperSpeed devices, this field will be 3879 * zero. Only xHCI 1.0 host controllers support this field. 3880 */ 3881 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3882 struct urb *urb, unsigned int total_packet_count) 3883 { 3884 unsigned int max_burst; 3885 3886 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) 3887 return 0; 3888 3889 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3890 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3891 } 3892 3893 /* 3894 * Returns the number of packets in the last "burst" of packets. This field is 3895 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3896 * the last burst packet count is equal to the total number of packets in the 3897 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3898 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3899 * contain 1 to (bMaxBurst + 1) packets. 3900 */ 3901 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3902 struct urb *urb, unsigned int total_packet_count) 3903 { 3904 unsigned int max_burst; 3905 unsigned int residue; 3906 3907 if (xhci->hci_version < 0x100) 3908 return 0; 3909 3910 if (urb->dev->speed >= USB_SPEED_SUPER) { 3911 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3912 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3913 residue = total_packet_count % (max_burst + 1); 3914 /* If residue is zero, the last burst contains (max_burst + 1) 3915 * number of packets, but the TLBPC field is zero-based. 3916 */ 3917 if (residue == 0) 3918 return max_burst; 3919 return residue - 1; 3920 } 3921 if (total_packet_count == 0) 3922 return 0; 3923 return total_packet_count - 1; 3924 } 3925 3926 /* 3927 * Calculates Frame ID field of the isochronous TRB identifies the 3928 * target frame that the Interval associated with this Isochronous 3929 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. 3930 * 3931 * Returns actual frame id on success, negative value on error. 3932 */ 3933 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, 3934 struct urb *urb, int index) 3935 { 3936 int start_frame, ist, ret = 0; 3937 int start_frame_id, end_frame_id, current_frame_id; 3938 3939 if (urb->dev->speed == USB_SPEED_LOW || 3940 urb->dev->speed == USB_SPEED_FULL) 3941 start_frame = urb->start_frame + index * urb->interval; 3942 else 3943 start_frame = (urb->start_frame + index * urb->interval) >> 3; 3944 3945 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): 3946 * 3947 * If bit [3] of IST is cleared to '0', software can add a TRB no 3948 * later than IST[2:0] Microframes before that TRB is scheduled to 3949 * be executed. 3950 * If bit [3] of IST is set to '1', software can add a TRB no later 3951 * than IST[2:0] Frames before that TRB is scheduled to be executed. 3952 */ 3953 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3954 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3955 ist <<= 3; 3956 3957 /* Software shall not schedule an Isoch TD with a Frame ID value that 3958 * is less than the Start Frame ID or greater than the End Frame ID, 3959 * where: 3960 * 3961 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 3962 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 3963 * 3964 * Both the End Frame ID and Start Frame ID values are calculated 3965 * in microframes. When software determines the valid Frame ID value; 3966 * The End Frame ID value should be rounded down to the nearest Frame 3967 * boundary, and the Start Frame ID value should be rounded up to the 3968 * nearest Frame boundary. 3969 */ 3970 current_frame_id = readl(&xhci->run_regs->microframe_index); 3971 start_frame_id = roundup(current_frame_id + ist + 1, 8); 3972 end_frame_id = rounddown(current_frame_id + 895 * 8, 8); 3973 3974 start_frame &= 0x7ff; 3975 start_frame_id = (start_frame_id >> 3) & 0x7ff; 3976 end_frame_id = (end_frame_id >> 3) & 0x7ff; 3977 3978 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n", 3979 __func__, index, readl(&xhci->run_regs->microframe_index), 3980 start_frame_id, end_frame_id, start_frame); 3981 3982 if (start_frame_id < end_frame_id) { 3983 if (start_frame > end_frame_id || 3984 start_frame < start_frame_id) 3985 ret = -EINVAL; 3986 } else if (start_frame_id > end_frame_id) { 3987 if ((start_frame > end_frame_id && 3988 start_frame < start_frame_id)) 3989 ret = -EINVAL; 3990 } else { 3991 ret = -EINVAL; 3992 } 3993 3994 if (index == 0) { 3995 if (ret == -EINVAL || start_frame == start_frame_id) { 3996 start_frame = start_frame_id + 1; 3997 if (urb->dev->speed == USB_SPEED_LOW || 3998 urb->dev->speed == USB_SPEED_FULL) 3999 urb->start_frame = start_frame; 4000 else 4001 urb->start_frame = start_frame << 3; 4002 ret = 0; 4003 } 4004 } 4005 4006 if (ret) { 4007 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", 4008 start_frame, current_frame_id, index, 4009 start_frame_id, end_frame_id); 4010 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); 4011 return ret; 4012 } 4013 4014 return start_frame; 4015 } 4016 4017 /* Check if we should generate event interrupt for a TD in an isoc URB */ 4018 static bool trb_block_event_intr(struct xhci_hcd *xhci, int num_tds, int i) 4019 { 4020 if (xhci->hci_version < 0x100) 4021 return false; 4022 /* always generate an event interrupt for the last TD */ 4023 if (i == num_tds - 1) 4024 return false; 4025 /* 4026 * If AVOID_BEI is set the host handles full event rings poorly, 4027 * generate an event at least every 8th TD to clear the event ring 4028 */ 4029 if (i && xhci->quirks & XHCI_AVOID_BEI) 4030 return !!(i % xhci->isoc_bei_interval); 4031 4032 return true; 4033 } 4034 4035 /* This is for isoc transfer */ 4036 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 4037 struct urb *urb, int slot_id, unsigned int ep_index) 4038 { 4039 struct xhci_ring *ep_ring; 4040 struct urb_priv *urb_priv; 4041 struct xhci_td *td; 4042 int num_tds, trbs_per_td; 4043 struct xhci_generic_trb *start_trb; 4044 bool first_trb; 4045 int start_cycle; 4046 u32 field, length_field; 4047 int running_total, trb_buff_len, td_len, td_remain_len, ret; 4048 u64 start_addr, addr; 4049 int i, j; 4050 bool more_trbs_coming; 4051 struct xhci_virt_ep *xep; 4052 int frame_id; 4053 4054 xep = &xhci->devs[slot_id]->eps[ep_index]; 4055 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 4056 4057 num_tds = urb->number_of_packets; 4058 if (num_tds < 1) { 4059 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 4060 return -EINVAL; 4061 } 4062 start_addr = (u64) urb->transfer_dma; 4063 start_trb = &ep_ring->enqueue->generic; 4064 start_cycle = ep_ring->cycle_state; 4065 4066 urb_priv = urb->hcpriv; 4067 /* Queue the TRBs for each TD, even if they are zero-length */ 4068 for (i = 0; i < num_tds; i++) { 4069 unsigned int total_pkt_count, max_pkt; 4070 unsigned int burst_count, last_burst_pkt_count; 4071 u32 sia_frame_id; 4072 4073 first_trb = true; 4074 running_total = 0; 4075 addr = start_addr + urb->iso_frame_desc[i].offset; 4076 td_len = urb->iso_frame_desc[i].length; 4077 td_remain_len = td_len; 4078 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 4079 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); 4080 4081 /* A zero-length transfer still involves at least one packet. */ 4082 if (total_pkt_count == 0) 4083 total_pkt_count++; 4084 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); 4085 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, 4086 urb, total_pkt_count); 4087 4088 trbs_per_td = count_isoc_trbs_needed(urb, i); 4089 4090 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 4091 urb->stream_id, trbs_per_td, urb, i, mem_flags); 4092 if (ret < 0) { 4093 if (i == 0) 4094 return ret; 4095 goto cleanup; 4096 } 4097 td = &urb_priv->td[i]; 4098 td->num_trbs = trbs_per_td; 4099 /* use SIA as default, if frame id is used overwrite it */ 4100 sia_frame_id = TRB_SIA; 4101 if (!(urb->transfer_flags & URB_ISO_ASAP) && 4102 HCC_CFC(xhci->hcc_params)) { 4103 frame_id = xhci_get_isoc_frame_id(xhci, urb, i); 4104 if (frame_id >= 0) 4105 sia_frame_id = TRB_FRAME_ID(frame_id); 4106 } 4107 /* 4108 * Set isoc specific data for the first TRB in a TD. 4109 * Prevent HW from getting the TRBs by keeping the cycle state 4110 * inverted in the first TDs isoc TRB. 4111 */ 4112 field = TRB_TYPE(TRB_ISOC) | 4113 TRB_TLBPC(last_burst_pkt_count) | 4114 sia_frame_id | 4115 (i ? ep_ring->cycle_state : !start_cycle); 4116 4117 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ 4118 if (!xep->use_extended_tbc) 4119 field |= TRB_TBC(burst_count); 4120 4121 /* fill the rest of the TRB fields, and remaining normal TRBs */ 4122 for (j = 0; j < trbs_per_td; j++) { 4123 u32 remainder = 0; 4124 4125 /* only first TRB is isoc, overwrite otherwise */ 4126 if (!first_trb) 4127 field = TRB_TYPE(TRB_NORMAL) | 4128 ep_ring->cycle_state; 4129 4130 /* Only set interrupt on short packet for IN EPs */ 4131 if (usb_urb_dir_in(urb)) 4132 field |= TRB_ISP; 4133 4134 /* Set the chain bit for all except the last TRB */ 4135 if (j < trbs_per_td - 1) { 4136 more_trbs_coming = true; 4137 field |= TRB_CHAIN; 4138 } else { 4139 more_trbs_coming = false; 4140 td->last_trb = ep_ring->enqueue; 4141 td->last_trb_seg = ep_ring->enq_seg; 4142 field |= TRB_IOC; 4143 if (trb_block_event_intr(xhci, num_tds, i)) 4144 field |= TRB_BEI; 4145 } 4146 /* Calculate TRB length */ 4147 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 4148 if (trb_buff_len > td_remain_len) 4149 trb_buff_len = td_remain_len; 4150 4151 /* Set the TRB length, TD size, & interrupter fields. */ 4152 remainder = xhci_td_remainder(xhci, running_total, 4153 trb_buff_len, td_len, 4154 urb, more_trbs_coming); 4155 4156 length_field = TRB_LEN(trb_buff_len) | 4157 TRB_INTR_TARGET(0); 4158 4159 /* xhci 1.1 with ETE uses TD Size field for TBC */ 4160 if (first_trb && xep->use_extended_tbc) 4161 length_field |= TRB_TD_SIZE_TBC(burst_count); 4162 else 4163 length_field |= TRB_TD_SIZE(remainder); 4164 first_trb = false; 4165 4166 queue_trb(xhci, ep_ring, more_trbs_coming, 4167 lower_32_bits(addr), 4168 upper_32_bits(addr), 4169 length_field, 4170 field); 4171 running_total += trb_buff_len; 4172 4173 addr += trb_buff_len; 4174 td_remain_len -= trb_buff_len; 4175 } 4176 4177 /* Check TD length */ 4178 if (running_total != td_len) { 4179 xhci_err(xhci, "ISOC TD length unmatch\n"); 4180 ret = -EINVAL; 4181 goto cleanup; 4182 } 4183 } 4184 4185 /* store the next frame id */ 4186 if (HCC_CFC(xhci->hcc_params)) 4187 xep->next_frame_id = urb->start_frame + num_tds * urb->interval; 4188 4189 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 4190 if (xhci->quirks & XHCI_AMD_PLL_FIX) 4191 usb_amd_quirk_pll_disable(); 4192 } 4193 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 4194 4195 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 4196 start_cycle, start_trb); 4197 return 0; 4198 cleanup: 4199 /* Clean up a partially enqueued isoc transfer. */ 4200 4201 for (i--; i >= 0; i--) 4202 list_del_init(&urb_priv->td[i].td_list); 4203 4204 /* Use the first TD as a temporary variable to turn the TDs we've queued 4205 * into No-ops with a software-owned cycle bit. That way the hardware 4206 * won't accidentally start executing bogus TDs when we partially 4207 * overwrite them. td->first_trb and td->start_seg are already set. 4208 */ 4209 urb_priv->td[0].last_trb = ep_ring->enqueue; 4210 /* Every TRB except the first & last will have its cycle bit flipped. */ 4211 td_to_noop(xhci, ep_ring, &urb_priv->td[0], true); 4212 4213 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 4214 ep_ring->enqueue = urb_priv->td[0].first_trb; 4215 ep_ring->enq_seg = urb_priv->td[0].start_seg; 4216 ep_ring->cycle_state = start_cycle; 4217 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp; 4218 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 4219 return ret; 4220 } 4221 4222 /* 4223 * Check transfer ring to guarantee there is enough room for the urb. 4224 * Update ISO URB start_frame and interval. 4225 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to 4226 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or 4227 * Contiguous Frame ID is not supported by HC. 4228 */ 4229 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 4230 struct urb *urb, int slot_id, unsigned int ep_index) 4231 { 4232 struct xhci_virt_device *xdev; 4233 struct xhci_ring *ep_ring; 4234 struct xhci_ep_ctx *ep_ctx; 4235 int start_frame; 4236 int num_tds, num_trbs, i; 4237 int ret; 4238 struct xhci_virt_ep *xep; 4239 int ist; 4240 4241 xdev = xhci->devs[slot_id]; 4242 xep = &xhci->devs[slot_id]->eps[ep_index]; 4243 ep_ring = xdev->eps[ep_index].ring; 4244 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 4245 4246 num_trbs = 0; 4247 num_tds = urb->number_of_packets; 4248 for (i = 0; i < num_tds; i++) 4249 num_trbs += count_isoc_trbs_needed(urb, i); 4250 4251 /* Check the ring to guarantee there is enough room for the whole urb. 4252 * Do not insert any td of the urb to the ring if the check failed. 4253 */ 4254 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 4255 num_trbs, mem_flags); 4256 if (ret) 4257 return ret; 4258 4259 /* 4260 * Check interval value. This should be done before we start to 4261 * calculate the start frame value. 4262 */ 4263 check_interval(xhci, urb, ep_ctx); 4264 4265 /* Calculate the start frame and put it in urb->start_frame. */ 4266 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { 4267 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) { 4268 urb->start_frame = xep->next_frame_id; 4269 goto skip_start_over; 4270 } 4271 } 4272 4273 start_frame = readl(&xhci->run_regs->microframe_index); 4274 start_frame &= 0x3fff; 4275 /* 4276 * Round up to the next frame and consider the time before trb really 4277 * gets scheduled by hardare. 4278 */ 4279 ist = HCS_IST(xhci->hcs_params2) & 0x7; 4280 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 4281 ist <<= 3; 4282 start_frame += ist + XHCI_CFC_DELAY; 4283 start_frame = roundup(start_frame, 8); 4284 4285 /* 4286 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT 4287 * is greate than 8 microframes. 4288 */ 4289 if (urb->dev->speed == USB_SPEED_LOW || 4290 urb->dev->speed == USB_SPEED_FULL) { 4291 start_frame = roundup(start_frame, urb->interval << 3); 4292 urb->start_frame = start_frame >> 3; 4293 } else { 4294 start_frame = roundup(start_frame, urb->interval); 4295 urb->start_frame = start_frame; 4296 } 4297 4298 skip_start_over: 4299 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free; 4300 4301 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 4302 } 4303 4304 /**** Command Ring Operations ****/ 4305 4306 /* Generic function for queueing a command TRB on the command ring. 4307 * Check to make sure there's room on the command ring for one command TRB. 4308 * Also check that there's room reserved for commands that must not fail. 4309 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 4310 * then only check for the number of reserved spots. 4311 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 4312 * because the command event handler may want to resubmit a failed command. 4313 */ 4314 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4315 u32 field1, u32 field2, 4316 u32 field3, u32 field4, bool command_must_succeed) 4317 { 4318 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 4319 int ret; 4320 4321 if ((xhci->xhc_state & XHCI_STATE_DYING) || 4322 (xhci->xhc_state & XHCI_STATE_HALTED)) { 4323 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); 4324 return -ESHUTDOWN; 4325 } 4326 4327 if (!command_must_succeed) 4328 reserved_trbs++; 4329 4330 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 4331 reserved_trbs, GFP_ATOMIC); 4332 if (ret < 0) { 4333 xhci_err(xhci, "ERR: No room for command on command ring\n"); 4334 if (command_must_succeed) 4335 xhci_err(xhci, "ERR: Reserved TRB counting for " 4336 "unfailable commands failed.\n"); 4337 return ret; 4338 } 4339 4340 cmd->command_trb = xhci->cmd_ring->enqueue; 4341 4342 /* if there are no other commands queued we start the timeout timer */ 4343 if (list_empty(&xhci->cmd_list)) { 4344 xhci->current_cmd = cmd; 4345 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 4346 } 4347 4348 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 4349 4350 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 4351 field4 | xhci->cmd_ring->cycle_state); 4352 return 0; 4353 } 4354 4355 /* Queue a slot enable or disable request on the command ring */ 4356 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 4357 u32 trb_type, u32 slot_id) 4358 { 4359 return queue_command(xhci, cmd, 0, 0, 0, 4360 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 4361 } 4362 4363 /* Queue an address device command TRB */ 4364 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4365 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 4366 { 4367 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4368 upper_32_bits(in_ctx_ptr), 0, 4369 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 4370 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 4371 } 4372 4373 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4374 u32 field1, u32 field2, u32 field3, u32 field4) 4375 { 4376 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 4377 } 4378 4379 /* Queue a reset device command TRB */ 4380 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4381 u32 slot_id) 4382 { 4383 return queue_command(xhci, cmd, 0, 0, 0, 4384 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 4385 false); 4386 } 4387 4388 /* Queue a configure endpoint command TRB */ 4389 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 4390 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 4391 u32 slot_id, bool command_must_succeed) 4392 { 4393 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4394 upper_32_bits(in_ctx_ptr), 0, 4395 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 4396 command_must_succeed); 4397 } 4398 4399 /* Queue an evaluate context command TRB */ 4400 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 4401 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 4402 { 4403 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4404 upper_32_bits(in_ctx_ptr), 0, 4405 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 4406 command_must_succeed); 4407 } 4408 4409 /* 4410 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 4411 * activity on an endpoint that is about to be suspended. 4412 */ 4413 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 4414 int slot_id, unsigned int ep_index, int suspend) 4415 { 4416 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4417 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4418 u32 type = TRB_TYPE(TRB_STOP_RING); 4419 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 4420 4421 return queue_command(xhci, cmd, 0, 0, 0, 4422 trb_slot_id | trb_ep_index | type | trb_suspend, false); 4423 } 4424 4425 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 4426 int slot_id, unsigned int ep_index, 4427 enum xhci_ep_reset_type reset_type) 4428 { 4429 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4430 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4431 u32 type = TRB_TYPE(TRB_RESET_EP); 4432 4433 if (reset_type == EP_SOFT_RESET) 4434 type |= TRB_TSP; 4435 4436 return queue_command(xhci, cmd, 0, 0, 0, 4437 trb_slot_id | trb_ep_index | type, false); 4438 } 4439