1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 /* 24 * Ring initialization rules: 25 * 1. Each segment is initialized to zero, except for link TRBs. 26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 27 * Consumer Cycle State (CCS), depending on ring function. 28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 29 * 30 * Ring behavior rules: 31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 32 * least one free TRB in the ring. This is useful if you want to turn that 33 * into a link TRB and expand the ring. 34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 35 * link TRB, then load the pointer with the address in the link TRB. If the 36 * link TRB had its toggle bit set, you may need to update the ring cycle 37 * state (see cycle bit rules). You may have to do this multiple times 38 * until you reach a non-link TRB. 39 * 3. A ring is full if enqueue++ (for the definition of increment above) 40 * equals the dequeue pointer. 41 * 42 * Cycle bit rules: 43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 44 * in a link TRB, it must toggle the ring cycle state. 45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 46 * in a link TRB, it must toggle the ring cycle state. 47 * 48 * Producer rules: 49 * 1. Check if ring is full before you enqueue. 50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 51 * Update enqueue pointer between each write (which may update the ring 52 * cycle state). 53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 54 * and endpoint rings. If HC is the producer for the event ring, 55 * and it generates an interrupt according to interrupt modulation rules. 56 * 57 * Consumer rules: 58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 59 * the TRB is owned by the consumer. 60 * 2. Update dequeue pointer (which may update the ring cycle state) and 61 * continue processing TRBs until you reach a TRB which is not owned by you. 62 * 3. Notify the producer. SW is the consumer for the event ring, and it 63 * updates event ring dequeue pointer. HC is the consumer for the command and 64 * endpoint rings; it generates events on the event ring for these. 65 */ 66 67 #include <linux/scatterlist.h> 68 #include <linux/slab.h> 69 #include "xhci.h" 70 #include "xhci-trace.h" 71 #include "xhci-mtk.h" 72 73 /* 74 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 75 * address of the TRB. 76 */ 77 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 78 union xhci_trb *trb) 79 { 80 unsigned long segment_offset; 81 82 if (!seg || !trb || trb < seg->trbs) 83 return 0; 84 /* offset in TRBs */ 85 segment_offset = trb - seg->trbs; 86 if (segment_offset >= TRBS_PER_SEGMENT) 87 return 0; 88 return seg->dma + (segment_offset * sizeof(*trb)); 89 } 90 91 /* Does this link TRB point to the first segment in a ring, 92 * or was the previous TRB the last TRB on the last segment in the ERST? 93 */ 94 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring, 95 struct xhci_segment *seg, union xhci_trb *trb) 96 { 97 if (ring == xhci->event_ring) 98 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) && 99 (seg->next == xhci->event_ring->first_seg); 100 else 101 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 102 } 103 104 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring 105 * segment? I.e. would the updated event TRB pointer step off the end of the 106 * event seg? 107 */ 108 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 109 struct xhci_segment *seg, union xhci_trb *trb) 110 { 111 if (ring == xhci->event_ring) 112 return trb == &seg->trbs[TRBS_PER_SEGMENT]; 113 else 114 return TRB_TYPE_LINK_LE32(trb->link.control); 115 } 116 117 static int enqueue_is_link_trb(struct xhci_ring *ring) 118 { 119 struct xhci_link_trb *link = &ring->enqueue->link; 120 return TRB_TYPE_LINK_LE32(link->control); 121 } 122 123 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 124 * TRB is in a new segment. This does not skip over link TRBs, and it does not 125 * effect the ring dequeue or enqueue pointers. 126 */ 127 static void next_trb(struct xhci_hcd *xhci, 128 struct xhci_ring *ring, 129 struct xhci_segment **seg, 130 union xhci_trb **trb) 131 { 132 if (last_trb(xhci, ring, *seg, *trb)) { 133 *seg = (*seg)->next; 134 *trb = ((*seg)->trbs); 135 } else { 136 (*trb)++; 137 } 138 } 139 140 /* 141 * See Cycle bit rules. SW is the consumer for the event ring only. 142 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 143 */ 144 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 145 { 146 ring->deq_updates++; 147 148 /* 149 * If this is not event ring, and the dequeue pointer 150 * is not on a link TRB, there is one more usable TRB 151 */ 152 if (ring->type != TYPE_EVENT && 153 !last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) 154 ring->num_trbs_free++; 155 156 do { 157 /* 158 * Update the dequeue pointer further if that was a link TRB or 159 * we're at the end of an event ring segment (which doesn't have 160 * link TRBS) 161 */ 162 if (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) { 163 if (ring->type == TYPE_EVENT && 164 last_trb_on_last_seg(xhci, ring, 165 ring->deq_seg, ring->dequeue)) { 166 ring->cycle_state ^= 1; 167 } 168 ring->deq_seg = ring->deq_seg->next; 169 ring->dequeue = ring->deq_seg->trbs; 170 } else { 171 ring->dequeue++; 172 } 173 } while (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)); 174 } 175 176 /* 177 * See Cycle bit rules. SW is the consumer for the event ring only. 178 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 179 * 180 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 181 * chain bit is set), then set the chain bit in all the following link TRBs. 182 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 183 * have their chain bit cleared (so that each Link TRB is a separate TD). 184 * 185 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 186 * set, but other sections talk about dealing with the chain bit set. This was 187 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 188 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 189 * 190 * @more_trbs_coming: Will you enqueue more TRBs before calling 191 * prepare_transfer()? 192 */ 193 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 194 bool more_trbs_coming) 195 { 196 u32 chain; 197 union xhci_trb *next; 198 199 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 200 /* If this is not event ring, there is one less usable TRB */ 201 if (ring->type != TYPE_EVENT && 202 !last_trb(xhci, ring, ring->enq_seg, ring->enqueue)) 203 ring->num_trbs_free--; 204 next = ++(ring->enqueue); 205 206 ring->enq_updates++; 207 /* Update the dequeue pointer further if that was a link TRB or we're at 208 * the end of an event ring segment (which doesn't have link TRBS) 209 */ 210 while (last_trb(xhci, ring, ring->enq_seg, next)) { 211 if (ring->type != TYPE_EVENT) { 212 /* 213 * If the caller doesn't plan on enqueueing more 214 * TDs before ringing the doorbell, then we 215 * don't want to give the link TRB to the 216 * hardware just yet. We'll give the link TRB 217 * back in prepare_ring() just before we enqueue 218 * the TD at the top of the ring. 219 */ 220 if (!chain && !more_trbs_coming) 221 break; 222 223 /* If we're not dealing with 0.95 hardware or 224 * isoc rings on AMD 0.96 host, 225 * carry over the chain bit of the previous TRB 226 * (which may mean the chain bit is cleared). 227 */ 228 if (!(ring->type == TYPE_ISOC && 229 (xhci->quirks & XHCI_AMD_0x96_HOST)) 230 && !xhci_link_trb_quirk(xhci)) { 231 next->link.control &= 232 cpu_to_le32(~TRB_CHAIN); 233 next->link.control |= 234 cpu_to_le32(chain); 235 } 236 /* Give this link TRB to the hardware */ 237 wmb(); 238 next->link.control ^= cpu_to_le32(TRB_CYCLE); 239 240 /* Toggle the cycle bit after the last ring segment. */ 241 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 242 ring->cycle_state ^= 1; 243 } 244 } 245 ring->enq_seg = ring->enq_seg->next; 246 ring->enqueue = ring->enq_seg->trbs; 247 next = ring->enqueue; 248 } 249 } 250 251 /* 252 * Check to see if there's room to enqueue num_trbs on the ring and make sure 253 * enqueue pointer will not advance into dequeue segment. See rules above. 254 */ 255 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 256 unsigned int num_trbs) 257 { 258 int num_trbs_in_deq_seg; 259 260 if (ring->num_trbs_free < num_trbs) 261 return 0; 262 263 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { 264 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; 265 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) 266 return 0; 267 } 268 269 return 1; 270 } 271 272 /* Ring the host controller doorbell after placing a command on the ring */ 273 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 274 { 275 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 276 return; 277 278 xhci_dbg(xhci, "// Ding dong!\n"); 279 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 280 /* Flush PCI posted writes */ 281 readl(&xhci->dba->doorbell[0]); 282 } 283 284 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci) 285 { 286 u64 temp_64; 287 int ret; 288 289 xhci_dbg(xhci, "Abort command ring\n"); 290 291 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 292 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 293 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT, 294 &xhci->op_regs->cmd_ring); 295 296 /* Section 4.6.1.2 of xHCI 1.0 spec says software should 297 * time the completion od all xHCI commands, including 298 * the Command Abort operation. If software doesn't see 299 * CRR negated in a timely manner (e.g. longer than 5 300 * seconds), then it should assume that the there are 301 * larger problems with the xHC and assert HCRST. 302 */ 303 ret = xhci_handshake(&xhci->op_regs->cmd_ring, 304 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 305 if (ret < 0) { 306 /* we are about to kill xhci, give it one more chance */ 307 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT, 308 &xhci->op_regs->cmd_ring); 309 udelay(1000); 310 ret = xhci_handshake(&xhci->op_regs->cmd_ring, 311 CMD_RING_RUNNING, 0, 3 * 1000 * 1000); 312 if (ret == 0) 313 return 0; 314 315 xhci_err(xhci, "Stopped the command ring failed, " 316 "maybe the host is dead\n"); 317 xhci->xhc_state |= XHCI_STATE_DYING; 318 xhci_quiesce(xhci); 319 xhci_halt(xhci); 320 return -ESHUTDOWN; 321 } 322 323 return 0; 324 } 325 326 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 327 unsigned int slot_id, 328 unsigned int ep_index, 329 unsigned int stream_id) 330 { 331 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 332 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 333 unsigned int ep_state = ep->ep_state; 334 335 /* Don't ring the doorbell for this endpoint if there are pending 336 * cancellations because we don't want to interrupt processing. 337 * We don't want to restart any stream rings if there's a set dequeue 338 * pointer command pending because the device can choose to start any 339 * stream once the endpoint is on the HW schedule. 340 */ 341 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) || 342 (ep_state & EP_HALTED)) 343 return; 344 writel(DB_VALUE(ep_index, stream_id), db_addr); 345 /* The CPU has better things to do at this point than wait for a 346 * write-posting flush. It'll get there soon enough. 347 */ 348 } 349 350 /* Ring the doorbell for any rings with pending URBs */ 351 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 352 unsigned int slot_id, 353 unsigned int ep_index) 354 { 355 unsigned int stream_id; 356 struct xhci_virt_ep *ep; 357 358 ep = &xhci->devs[slot_id]->eps[ep_index]; 359 360 /* A ring has pending URBs if its TD list is not empty */ 361 if (!(ep->ep_state & EP_HAS_STREAMS)) { 362 if (ep->ring && !(list_empty(&ep->ring->td_list))) 363 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 364 return; 365 } 366 367 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 368 stream_id++) { 369 struct xhci_stream_info *stream_info = ep->stream_info; 370 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 371 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 372 stream_id); 373 } 374 } 375 376 /* Get the right ring for the given slot_id, ep_index and stream_id. 377 * If the endpoint supports streams, boundary check the URB's stream ID. 378 * If the endpoint doesn't support streams, return the singular endpoint ring. 379 */ 380 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 381 unsigned int slot_id, unsigned int ep_index, 382 unsigned int stream_id) 383 { 384 struct xhci_virt_ep *ep; 385 386 ep = &xhci->devs[slot_id]->eps[ep_index]; 387 /* Common case: no streams */ 388 if (!(ep->ep_state & EP_HAS_STREAMS)) 389 return ep->ring; 390 391 if (stream_id == 0) { 392 xhci_warn(xhci, 393 "WARN: Slot ID %u, ep index %u has streams, " 394 "but URB has no stream ID.\n", 395 slot_id, ep_index); 396 return NULL; 397 } 398 399 if (stream_id < ep->stream_info->num_streams) 400 return ep->stream_info->stream_rings[stream_id]; 401 402 xhci_warn(xhci, 403 "WARN: Slot ID %u, ep index %u has " 404 "stream IDs 1 to %u allocated, " 405 "but stream ID %u is requested.\n", 406 slot_id, ep_index, 407 ep->stream_info->num_streams - 1, 408 stream_id); 409 return NULL; 410 } 411 412 /* 413 * Move the xHC's endpoint ring dequeue pointer past cur_td. 414 * Record the new state of the xHC's endpoint ring dequeue segment, 415 * dequeue pointer, and new consumer cycle state in state. 416 * Update our internal representation of the ring's dequeue pointer. 417 * 418 * We do this in three jumps: 419 * - First we update our new ring state to be the same as when the xHC stopped. 420 * - Then we traverse the ring to find the segment that contains 421 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass 422 * any link TRBs with the toggle cycle bit set. 423 * - Finally we move the dequeue state one TRB further, toggling the cycle bit 424 * if we've moved it past a link TRB with the toggle cycle bit set. 425 * 426 * Some of the uses of xhci_generic_trb are grotty, but if they're done 427 * with correct __le32 accesses they should work fine. Only users of this are 428 * in here. 429 */ 430 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, 431 unsigned int slot_id, unsigned int ep_index, 432 unsigned int stream_id, struct xhci_td *cur_td, 433 struct xhci_dequeue_state *state) 434 { 435 struct xhci_virt_device *dev = xhci->devs[slot_id]; 436 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 437 struct xhci_ring *ep_ring; 438 struct xhci_segment *new_seg; 439 union xhci_trb *new_deq; 440 dma_addr_t addr; 441 u64 hw_dequeue; 442 bool cycle_found = false; 443 bool td_last_trb_found = false; 444 445 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 446 ep_index, stream_id); 447 if (!ep_ring) { 448 xhci_warn(xhci, "WARN can't find new dequeue state " 449 "for invalid stream ID %u.\n", 450 stream_id); 451 return; 452 } 453 454 /* Dig out the cycle state saved by the xHC during the stop ep cmd */ 455 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 456 "Finding endpoint context"); 457 /* 4.6.9 the css flag is written to the stream context for streams */ 458 if (ep->ep_state & EP_HAS_STREAMS) { 459 struct xhci_stream_ctx *ctx = 460 &ep->stream_info->stream_ctx_array[stream_id]; 461 hw_dequeue = le64_to_cpu(ctx->stream_ring); 462 } else { 463 struct xhci_ep_ctx *ep_ctx 464 = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 465 hw_dequeue = le64_to_cpu(ep_ctx->deq); 466 } 467 468 new_seg = ep_ring->deq_seg; 469 new_deq = ep_ring->dequeue; 470 state->new_cycle_state = hw_dequeue & 0x1; 471 472 /* 473 * We want to find the pointer, segment and cycle state of the new trb 474 * (the one after current TD's last_trb). We know the cycle state at 475 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are 476 * found. 477 */ 478 do { 479 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) 480 == (dma_addr_t)(hw_dequeue & ~0xf)) { 481 cycle_found = true; 482 if (td_last_trb_found) 483 break; 484 } 485 if (new_deq == cur_td->last_trb) 486 td_last_trb_found = true; 487 488 if (cycle_found && 489 TRB_TYPE_LINK_LE32(new_deq->generic.field[3]) && 490 new_deq->generic.field[3] & cpu_to_le32(LINK_TOGGLE)) 491 state->new_cycle_state ^= 0x1; 492 493 next_trb(xhci, ep_ring, &new_seg, &new_deq); 494 495 /* Search wrapped around, bail out */ 496 if (new_deq == ep->ring->dequeue) { 497 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 498 state->new_deq_seg = NULL; 499 state->new_deq_ptr = NULL; 500 return; 501 } 502 503 } while (!cycle_found || !td_last_trb_found); 504 505 state->new_deq_seg = new_seg; 506 state->new_deq_ptr = new_deq; 507 508 /* Don't update the ring cycle state for the producer (us). */ 509 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 510 "Cycle state = 0x%x", state->new_cycle_state); 511 512 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 513 "New dequeue segment = %p (virtual)", 514 state->new_deq_seg); 515 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); 516 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 517 "New dequeue pointer = 0x%llx (DMA)", 518 (unsigned long long) addr); 519 } 520 521 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 522 * (The last TRB actually points to the ring enqueue pointer, which is not part 523 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 524 */ 525 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 526 struct xhci_td *cur_td, bool flip_cycle) 527 { 528 struct xhci_segment *cur_seg; 529 union xhci_trb *cur_trb; 530 531 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb; 532 true; 533 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 534 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) { 535 /* Unchain any chained Link TRBs, but 536 * leave the pointers intact. 537 */ 538 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN); 539 /* Flip the cycle bit (link TRBs can't be the first 540 * or last TRB). 541 */ 542 if (flip_cycle) 543 cur_trb->generic.field[3] ^= 544 cpu_to_le32(TRB_CYCLE); 545 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 546 "Cancel (unchain) link TRB"); 547 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 548 "Address = %p (0x%llx dma); " 549 "in seg %p (0x%llx dma)", 550 cur_trb, 551 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb), 552 cur_seg, 553 (unsigned long long)cur_seg->dma); 554 } else { 555 cur_trb->generic.field[0] = 0; 556 cur_trb->generic.field[1] = 0; 557 cur_trb->generic.field[2] = 0; 558 /* Preserve only the cycle bit of this TRB */ 559 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 560 /* Flip the cycle bit except on the first or last TRB */ 561 if (flip_cycle && cur_trb != cur_td->first_trb && 562 cur_trb != cur_td->last_trb) 563 cur_trb->generic.field[3] ^= 564 cpu_to_le32(TRB_CYCLE); 565 cur_trb->generic.field[3] |= cpu_to_le32( 566 TRB_TYPE(TRB_TR_NOOP)); 567 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 568 "TRB to noop at offset 0x%llx", 569 (unsigned long long) 570 xhci_trb_virt_to_dma(cur_seg, cur_trb)); 571 } 572 if (cur_trb == cur_td->last_trb) 573 break; 574 } 575 } 576 577 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, 578 struct xhci_virt_ep *ep) 579 { 580 ep->ep_state &= ~EP_HALT_PENDING; 581 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the 582 * timer is running on another CPU, we don't decrement stop_cmds_pending 583 * (since we didn't successfully stop the watchdog timer). 584 */ 585 if (del_timer(&ep->stop_cmd_timer)) 586 ep->stop_cmds_pending--; 587 } 588 589 /* Must be called with xhci->lock held in interrupt context */ 590 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 591 struct xhci_td *cur_td, int status) 592 { 593 struct usb_hcd *hcd; 594 struct urb *urb; 595 struct urb_priv *urb_priv; 596 597 urb = cur_td->urb; 598 urb_priv = urb->hcpriv; 599 urb_priv->td_cnt++; 600 hcd = bus_to_hcd(urb->dev->bus); 601 602 /* Only giveback urb when this is the last td in urb */ 603 if (urb_priv->td_cnt == urb_priv->length) { 604 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 605 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 606 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 607 if (xhci->quirks & XHCI_AMD_PLL_FIX) 608 usb_amd_quirk_pll_enable(); 609 } 610 } 611 usb_hcd_unlink_urb_from_ep(hcd, urb); 612 613 spin_unlock(&xhci->lock); 614 usb_hcd_giveback_urb(hcd, urb, status); 615 xhci_urb_free_priv(urb_priv); 616 spin_lock(&xhci->lock); 617 } 618 } 619 620 /* 621 * When we get a command completion for a Stop Endpoint Command, we need to 622 * unlink any cancelled TDs from the ring. There are two ways to do that: 623 * 624 * 1. If the HW was in the middle of processing the TD that needs to be 625 * cancelled, then we must move the ring's dequeue pointer past the last TRB 626 * in the TD with a Set Dequeue Pointer Command. 627 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 628 * bit cleared) so that the HW will skip over them. 629 */ 630 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 631 union xhci_trb *trb, struct xhci_event_cmd *event) 632 { 633 unsigned int ep_index; 634 struct xhci_ring *ep_ring; 635 struct xhci_virt_ep *ep; 636 struct list_head *entry; 637 struct xhci_td *cur_td = NULL; 638 struct xhci_td *last_unlinked_td; 639 640 struct xhci_dequeue_state deq_state; 641 642 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 643 if (!xhci->devs[slot_id]) 644 xhci_warn(xhci, "Stop endpoint command " 645 "completion for disabled slot %u\n", 646 slot_id); 647 return; 648 } 649 650 memset(&deq_state, 0, sizeof(deq_state)); 651 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 652 ep = &xhci->devs[slot_id]->eps[ep_index]; 653 654 if (list_empty(&ep->cancelled_td_list)) { 655 xhci_stop_watchdog_timer_in_irq(xhci, ep); 656 ep->stopped_td = NULL; 657 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 658 return; 659 } 660 661 /* Fix up the ep ring first, so HW stops executing cancelled TDs. 662 * We have the xHCI lock, so nothing can modify this list until we drop 663 * it. We're also in the event handler, so we can't get re-interrupted 664 * if another Stop Endpoint command completes 665 */ 666 list_for_each(entry, &ep->cancelled_td_list) { 667 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list); 668 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 669 "Removing canceled TD starting at 0x%llx (dma).", 670 (unsigned long long)xhci_trb_virt_to_dma( 671 cur_td->start_seg, cur_td->first_trb)); 672 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 673 if (!ep_ring) { 674 /* This shouldn't happen unless a driver is mucking 675 * with the stream ID after submission. This will 676 * leave the TD on the hardware ring, and the hardware 677 * will try to execute it, and may access a buffer 678 * that has already been freed. In the best case, the 679 * hardware will execute it, and the event handler will 680 * ignore the completion event for that TD, since it was 681 * removed from the td_list for that endpoint. In 682 * short, don't muck with the stream ID after 683 * submission. 684 */ 685 xhci_warn(xhci, "WARN Cancelled URB %p " 686 "has invalid stream ID %u.\n", 687 cur_td->urb, 688 cur_td->urb->stream_id); 689 goto remove_finished_td; 690 } 691 /* 692 * If we stopped on the TD we need to cancel, then we have to 693 * move the xHC endpoint ring dequeue pointer past this TD. 694 */ 695 if (cur_td == ep->stopped_td) 696 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, 697 cur_td->urb->stream_id, 698 cur_td, &deq_state); 699 else 700 td_to_noop(xhci, ep_ring, cur_td, false); 701 remove_finished_td: 702 /* 703 * The event handler won't see a completion for this TD anymore, 704 * so remove it from the endpoint ring's TD list. Keep it in 705 * the cancelled TD list for URB completion later. 706 */ 707 list_del_init(&cur_td->td_list); 708 } 709 last_unlinked_td = cur_td; 710 xhci_stop_watchdog_timer_in_irq(xhci, ep); 711 712 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ 713 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { 714 xhci_queue_new_dequeue_state(xhci, slot_id, ep_index, 715 ep->stopped_td->urb->stream_id, &deq_state); 716 xhci_ring_cmd_db(xhci); 717 } else { 718 /* Otherwise ring the doorbell(s) to restart queued transfers */ 719 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 720 } 721 722 ep->stopped_td = NULL; 723 724 /* 725 * Drop the lock and complete the URBs in the cancelled TD list. 726 * New TDs to be cancelled might be added to the end of the list before 727 * we can complete all the URBs for the TDs we already unlinked. 728 * So stop when we've completed the URB for the last TD we unlinked. 729 */ 730 do { 731 cur_td = list_entry(ep->cancelled_td_list.next, 732 struct xhci_td, cancelled_td_list); 733 list_del_init(&cur_td->cancelled_td_list); 734 735 /* Clean up the cancelled URB */ 736 /* Doesn't matter what we pass for status, since the core will 737 * just overwrite it (because the URB has been unlinked). 738 */ 739 xhci_giveback_urb_in_irq(xhci, cur_td, 0); 740 741 /* Stop processing the cancelled list if the watchdog timer is 742 * running. 743 */ 744 if (xhci->xhc_state & XHCI_STATE_DYING) 745 return; 746 } while (cur_td != last_unlinked_td); 747 748 /* Return to the event handler with xhci->lock re-acquired */ 749 } 750 751 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 752 { 753 struct xhci_td *cur_td; 754 755 while (!list_empty(&ring->td_list)) { 756 cur_td = list_first_entry(&ring->td_list, 757 struct xhci_td, td_list); 758 list_del_init(&cur_td->td_list); 759 if (!list_empty(&cur_td->cancelled_td_list)) 760 list_del_init(&cur_td->cancelled_td_list); 761 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 762 } 763 } 764 765 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 766 int slot_id, int ep_index) 767 { 768 struct xhci_td *cur_td; 769 struct xhci_virt_ep *ep; 770 struct xhci_ring *ring; 771 772 ep = &xhci->devs[slot_id]->eps[ep_index]; 773 if ((ep->ep_state & EP_HAS_STREAMS) || 774 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 775 int stream_id; 776 777 for (stream_id = 0; stream_id < ep->stream_info->num_streams; 778 stream_id++) { 779 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 780 "Killing URBs for slot ID %u, ep index %u, stream %u", 781 slot_id, ep_index, stream_id + 1); 782 xhci_kill_ring_urbs(xhci, 783 ep->stream_info->stream_rings[stream_id]); 784 } 785 } else { 786 ring = ep->ring; 787 if (!ring) 788 return; 789 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 790 "Killing URBs for slot ID %u, ep index %u", 791 slot_id, ep_index); 792 xhci_kill_ring_urbs(xhci, ring); 793 } 794 while (!list_empty(&ep->cancelled_td_list)) { 795 cur_td = list_first_entry(&ep->cancelled_td_list, 796 struct xhci_td, cancelled_td_list); 797 list_del_init(&cur_td->cancelled_td_list); 798 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 799 } 800 } 801 802 /* Watchdog timer function for when a stop endpoint command fails to complete. 803 * In this case, we assume the host controller is broken or dying or dead. The 804 * host may still be completing some other events, so we have to be careful to 805 * let the event ring handler and the URB dequeueing/enqueueing functions know 806 * through xhci->state. 807 * 808 * The timer may also fire if the host takes a very long time to respond to the 809 * command, and the stop endpoint command completion handler cannot delete the 810 * timer before the timer function is called. Another endpoint cancellation may 811 * sneak in before the timer function can grab the lock, and that may queue 812 * another stop endpoint command and add the timer back. So we cannot use a 813 * simple flag to say whether there is a pending stop endpoint command for a 814 * particular endpoint. 815 * 816 * Instead we use a combination of that flag and a counter for the number of 817 * pending stop endpoint commands. If the timer is the tail end of the last 818 * stop endpoint command, and the endpoint's command is still pending, we assume 819 * the host is dying. 820 */ 821 void xhci_stop_endpoint_command_watchdog(unsigned long arg) 822 { 823 struct xhci_hcd *xhci; 824 struct xhci_virt_ep *ep; 825 int ret, i, j; 826 unsigned long flags; 827 828 ep = (struct xhci_virt_ep *) arg; 829 xhci = ep->xhci; 830 831 spin_lock_irqsave(&xhci->lock, flags); 832 833 ep->stop_cmds_pending--; 834 if (xhci->xhc_state & XHCI_STATE_DYING) { 835 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 836 "Stop EP timer ran, but another timer marked " 837 "xHCI as DYING, exiting."); 838 spin_unlock_irqrestore(&xhci->lock, flags); 839 return; 840 } 841 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) { 842 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 843 "Stop EP timer ran, but no command pending, " 844 "exiting."); 845 spin_unlock_irqrestore(&xhci->lock, flags); 846 return; 847 } 848 849 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); 850 xhci_warn(xhci, "Assuming host is dying, halting host.\n"); 851 /* Oops, HC is dead or dying or at least not responding to the stop 852 * endpoint command. 853 */ 854 xhci->xhc_state |= XHCI_STATE_DYING; 855 /* Disable interrupts from the host controller and start halting it */ 856 xhci_quiesce(xhci); 857 spin_unlock_irqrestore(&xhci->lock, flags); 858 859 ret = xhci_halt(xhci); 860 861 spin_lock_irqsave(&xhci->lock, flags); 862 if (ret < 0) { 863 /* This is bad; the host is not responding to commands and it's 864 * not allowing itself to be halted. At least interrupts are 865 * disabled. If we call usb_hc_died(), it will attempt to 866 * disconnect all device drivers under this host. Those 867 * disconnect() methods will wait for all URBs to be unlinked, 868 * so we must complete them. 869 */ 870 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n"); 871 xhci_warn(xhci, "Completing active URBs anyway.\n"); 872 /* We could turn all TDs on the rings to no-ops. This won't 873 * help if the host has cached part of the ring, and is slow if 874 * we want to preserve the cycle bit. Skip it and hope the host 875 * doesn't touch the memory. 876 */ 877 } 878 for (i = 0; i < MAX_HC_SLOTS; i++) { 879 if (!xhci->devs[i]) 880 continue; 881 for (j = 0; j < 31; j++) 882 xhci_kill_endpoint_urbs(xhci, i, j); 883 } 884 spin_unlock_irqrestore(&xhci->lock, flags); 885 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 886 "Calling usb_hc_died()"); 887 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); 888 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 889 "xHCI host controller is dead."); 890 } 891 892 893 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 894 struct xhci_virt_device *dev, 895 struct xhci_ring *ep_ring, 896 unsigned int ep_index) 897 { 898 union xhci_trb *dequeue_temp; 899 int num_trbs_free_temp; 900 bool revert = false; 901 902 num_trbs_free_temp = ep_ring->num_trbs_free; 903 dequeue_temp = ep_ring->dequeue; 904 905 /* If we get two back-to-back stalls, and the first stalled transfer 906 * ends just before a link TRB, the dequeue pointer will be left on 907 * the link TRB by the code in the while loop. So we have to update 908 * the dequeue pointer one segment further, or we'll jump off 909 * the segment into la-la-land. 910 */ 911 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) { 912 ep_ring->deq_seg = ep_ring->deq_seg->next; 913 ep_ring->dequeue = ep_ring->deq_seg->trbs; 914 } 915 916 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 917 /* We have more usable TRBs */ 918 ep_ring->num_trbs_free++; 919 ep_ring->dequeue++; 920 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, 921 ep_ring->dequeue)) { 922 if (ep_ring->dequeue == 923 dev->eps[ep_index].queued_deq_ptr) 924 break; 925 ep_ring->deq_seg = ep_ring->deq_seg->next; 926 ep_ring->dequeue = ep_ring->deq_seg->trbs; 927 } 928 if (ep_ring->dequeue == dequeue_temp) { 929 revert = true; 930 break; 931 } 932 } 933 934 if (revert) { 935 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 936 ep_ring->num_trbs_free = num_trbs_free_temp; 937 } 938 } 939 940 /* 941 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 942 * we need to clear the set deq pending flag in the endpoint ring state, so that 943 * the TD queueing code can ring the doorbell again. We also need to ring the 944 * endpoint doorbell to restart the ring, but only if there aren't more 945 * cancellations pending. 946 */ 947 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 948 union xhci_trb *trb, u32 cmd_comp_code) 949 { 950 unsigned int ep_index; 951 unsigned int stream_id; 952 struct xhci_ring *ep_ring; 953 struct xhci_virt_device *dev; 954 struct xhci_virt_ep *ep; 955 struct xhci_ep_ctx *ep_ctx; 956 struct xhci_slot_ctx *slot_ctx; 957 958 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 959 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 960 dev = xhci->devs[slot_id]; 961 ep = &dev->eps[ep_index]; 962 963 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); 964 if (!ep_ring) { 965 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 966 stream_id); 967 /* XXX: Harmless??? */ 968 goto cleanup; 969 } 970 971 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 972 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); 973 974 if (cmd_comp_code != COMP_SUCCESS) { 975 unsigned int ep_state; 976 unsigned int slot_state; 977 978 switch (cmd_comp_code) { 979 case COMP_TRB_ERR: 980 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 981 break; 982 case COMP_CTX_STATE: 983 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 984 ep_state = le32_to_cpu(ep_ctx->ep_info); 985 ep_state &= EP_STATE_MASK; 986 slot_state = le32_to_cpu(slot_ctx->dev_state); 987 slot_state = GET_SLOT_STATE(slot_state); 988 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 989 "Slot state = %u, EP state = %u", 990 slot_state, ep_state); 991 break; 992 case COMP_EBADSLT: 993 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 994 slot_id); 995 break; 996 default: 997 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 998 cmd_comp_code); 999 break; 1000 } 1001 /* OK what do we do now? The endpoint state is hosed, and we 1002 * should never get to this point if the synchronization between 1003 * queueing, and endpoint state are correct. This might happen 1004 * if the device gets disconnected after we've finished 1005 * cancelling URBs, which might not be an error... 1006 */ 1007 } else { 1008 u64 deq; 1009 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1010 if (ep->ep_state & EP_HAS_STREAMS) { 1011 struct xhci_stream_ctx *ctx = 1012 &ep->stream_info->stream_ctx_array[stream_id]; 1013 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; 1014 } else { 1015 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1016 } 1017 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1018 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1019 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1020 ep->queued_deq_ptr) == deq) { 1021 /* Update the ring's dequeue segment and dequeue pointer 1022 * to reflect the new position. 1023 */ 1024 update_ring_for_set_deq_completion(xhci, dev, 1025 ep_ring, ep_index); 1026 } else { 1027 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1028 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1029 ep->queued_deq_seg, ep->queued_deq_ptr); 1030 } 1031 } 1032 1033 cleanup: 1034 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 1035 dev->eps[ep_index].queued_deq_seg = NULL; 1036 dev->eps[ep_index].queued_deq_ptr = NULL; 1037 /* Restart any rings with pending URBs */ 1038 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1039 } 1040 1041 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1042 union xhci_trb *trb, u32 cmd_comp_code) 1043 { 1044 unsigned int ep_index; 1045 1046 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1047 /* This command will only fail if the endpoint wasn't halted, 1048 * but we don't care. 1049 */ 1050 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1051 "Ignoring reset ep completion code of %u", cmd_comp_code); 1052 1053 /* HW with the reset endpoint quirk needs to have a configure endpoint 1054 * command complete before the endpoint can be used. Queue that here 1055 * because the HW can't handle two commands being queued in a row. 1056 */ 1057 if (xhci->quirks & XHCI_RESET_EP_QUIRK) { 1058 struct xhci_command *command; 1059 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1060 if (!command) { 1061 xhci_warn(xhci, "WARN Cannot submit cfg ep: ENOMEM\n"); 1062 return; 1063 } 1064 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1065 "Queueing configure endpoint command"); 1066 xhci_queue_configure_endpoint(xhci, command, 1067 xhci->devs[slot_id]->in_ctx->dma, slot_id, 1068 false); 1069 xhci_ring_cmd_db(xhci); 1070 } else { 1071 /* Clear our internal halted state */ 1072 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; 1073 } 1074 } 1075 1076 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, 1077 u32 cmd_comp_code) 1078 { 1079 if (cmd_comp_code == COMP_SUCCESS) 1080 xhci->slot_id = slot_id; 1081 else 1082 xhci->slot_id = 0; 1083 } 1084 1085 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1086 { 1087 struct xhci_virt_device *virt_dev; 1088 1089 virt_dev = xhci->devs[slot_id]; 1090 if (!virt_dev) 1091 return; 1092 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1093 /* Delete default control endpoint resources */ 1094 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1095 xhci_free_virt_device(xhci, slot_id); 1096 } 1097 1098 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, 1099 struct xhci_event_cmd *event, u32 cmd_comp_code) 1100 { 1101 struct xhci_virt_device *virt_dev; 1102 struct xhci_input_control_ctx *ctrl_ctx; 1103 unsigned int ep_index; 1104 unsigned int ep_state; 1105 u32 add_flags, drop_flags; 1106 1107 /* 1108 * Configure endpoint commands can come from the USB core 1109 * configuration or alt setting changes, or because the HW 1110 * needed an extra configure endpoint command after a reset 1111 * endpoint command or streams were being configured. 1112 * If the command was for a halted endpoint, the xHCI driver 1113 * is not waiting on the configure endpoint command. 1114 */ 1115 virt_dev = xhci->devs[slot_id]; 1116 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1117 if (!ctrl_ctx) { 1118 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1119 return; 1120 } 1121 1122 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1123 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1124 /* Input ctx add_flags are the endpoint index plus one */ 1125 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1126 1127 /* A usb_set_interface() call directly after clearing a halted 1128 * condition may race on this quirky hardware. Not worth 1129 * worrying about, since this is prototype hardware. Not sure 1130 * if this will work for streams, but streams support was 1131 * untested on this prototype. 1132 */ 1133 if (xhci->quirks & XHCI_RESET_EP_QUIRK && 1134 ep_index != (unsigned int) -1 && 1135 add_flags - SLOT_FLAG == drop_flags) { 1136 ep_state = virt_dev->eps[ep_index].ep_state; 1137 if (!(ep_state & EP_HALTED)) 1138 return; 1139 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1140 "Completed config ep cmd - " 1141 "last ep index = %d, state = %d", 1142 ep_index, ep_state); 1143 /* Clear internal halted state and restart ring(s) */ 1144 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED; 1145 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1146 return; 1147 } 1148 return; 1149 } 1150 1151 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id, 1152 struct xhci_event_cmd *event) 1153 { 1154 xhci_dbg(xhci, "Completed reset device command.\n"); 1155 if (!xhci->devs[slot_id]) 1156 xhci_warn(xhci, "Reset device command completion " 1157 "for disabled slot %u\n", slot_id); 1158 } 1159 1160 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1161 struct xhci_event_cmd *event) 1162 { 1163 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1164 xhci->error_bitmask |= 1 << 6; 1165 return; 1166 } 1167 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1168 "NEC firmware version %2x.%02x", 1169 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1170 NEC_FW_MINOR(le32_to_cpu(event->status))); 1171 } 1172 1173 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) 1174 { 1175 list_del(&cmd->cmd_list); 1176 1177 if (cmd->completion) { 1178 cmd->status = status; 1179 complete(cmd->completion); 1180 } else { 1181 kfree(cmd); 1182 } 1183 } 1184 1185 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1186 { 1187 struct xhci_command *cur_cmd, *tmp_cmd; 1188 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1189 xhci_complete_del_and_free_cmd(cur_cmd, COMP_CMD_ABORT); 1190 } 1191 1192 /* 1193 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 1194 * If there are other commands waiting then restart the ring and kick the timer. 1195 * This must be called with command ring stopped and xhci->lock held. 1196 */ 1197 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 1198 struct xhci_command *cur_cmd) 1199 { 1200 struct xhci_command *i_cmd, *tmp_cmd; 1201 u32 cycle_state; 1202 1203 /* Turn all aborted commands in list to no-ops, then restart */ 1204 list_for_each_entry_safe(i_cmd, tmp_cmd, &xhci->cmd_list, 1205 cmd_list) { 1206 1207 if (i_cmd->status != COMP_CMD_ABORT) 1208 continue; 1209 1210 i_cmd->status = COMP_CMD_STOP; 1211 1212 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 1213 i_cmd->command_trb); 1214 /* get cycle state from the original cmd trb */ 1215 cycle_state = le32_to_cpu( 1216 i_cmd->command_trb->generic.field[3]) & TRB_CYCLE; 1217 /* modify the command trb to no-op command */ 1218 i_cmd->command_trb->generic.field[0] = 0; 1219 i_cmd->command_trb->generic.field[1] = 0; 1220 i_cmd->command_trb->generic.field[2] = 0; 1221 i_cmd->command_trb->generic.field[3] = cpu_to_le32( 1222 TRB_TYPE(TRB_CMD_NOOP) | cycle_state); 1223 1224 /* 1225 * caller waiting for completion is called when command 1226 * completion event is received for these no-op commands 1227 */ 1228 } 1229 1230 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 1231 1232 /* ring command ring doorbell to restart the command ring */ 1233 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 1234 !(xhci->xhc_state & XHCI_STATE_DYING)) { 1235 xhci->current_cmd = cur_cmd; 1236 mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT); 1237 xhci_ring_cmd_db(xhci); 1238 } 1239 return; 1240 } 1241 1242 1243 void xhci_handle_command_timeout(unsigned long data) 1244 { 1245 struct xhci_hcd *xhci; 1246 int ret; 1247 unsigned long flags; 1248 u64 hw_ring_state; 1249 struct xhci_command *cur_cmd = NULL; 1250 xhci = (struct xhci_hcd *) data; 1251 1252 /* mark this command to be cancelled */ 1253 spin_lock_irqsave(&xhci->lock, flags); 1254 if (xhci->current_cmd) { 1255 cur_cmd = xhci->current_cmd; 1256 cur_cmd->status = COMP_CMD_ABORT; 1257 } 1258 1259 1260 /* Make sure command ring is running before aborting it */ 1261 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1262 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1263 (hw_ring_state & CMD_RING_RUNNING)) { 1264 1265 spin_unlock_irqrestore(&xhci->lock, flags); 1266 xhci_dbg(xhci, "Command timeout\n"); 1267 ret = xhci_abort_cmd_ring(xhci); 1268 if (unlikely(ret == -ESHUTDOWN)) { 1269 xhci_err(xhci, "Abort command ring failed\n"); 1270 xhci_cleanup_command_queue(xhci); 1271 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); 1272 xhci_dbg(xhci, "xHCI host controller is dead.\n"); 1273 } 1274 return; 1275 } 1276 /* command timeout on stopped ring, ring can't be aborted */ 1277 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1278 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1279 spin_unlock_irqrestore(&xhci->lock, flags); 1280 return; 1281 } 1282 1283 static void handle_cmd_completion(struct xhci_hcd *xhci, 1284 struct xhci_event_cmd *event) 1285 { 1286 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1287 u64 cmd_dma; 1288 dma_addr_t cmd_dequeue_dma; 1289 u32 cmd_comp_code; 1290 union xhci_trb *cmd_trb; 1291 struct xhci_command *cmd; 1292 u32 cmd_type; 1293 1294 cmd_dma = le64_to_cpu(event->cmd_trb); 1295 cmd_trb = xhci->cmd_ring->dequeue; 1296 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1297 cmd_trb); 1298 /* Is the command ring deq ptr out of sync with the deq seg ptr? */ 1299 if (cmd_dequeue_dma == 0) { 1300 xhci->error_bitmask |= 1 << 4; 1301 return; 1302 } 1303 /* Does the DMA address match our internal dequeue pointer address? */ 1304 if (cmd_dma != (u64) cmd_dequeue_dma) { 1305 xhci->error_bitmask |= 1 << 5; 1306 return; 1307 } 1308 1309 cmd = list_entry(xhci->cmd_list.next, struct xhci_command, cmd_list); 1310 1311 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1312 xhci_err(xhci, 1313 "Command completion event does not match command\n"); 1314 return; 1315 } 1316 1317 del_timer(&xhci->cmd_timer); 1318 1319 trace_xhci_cmd_completion(cmd_trb, (struct xhci_generic_trb *) event); 1320 1321 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1322 1323 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1324 if (cmd_comp_code == COMP_CMD_STOP) { 1325 xhci_handle_stopped_cmd_ring(xhci, cmd); 1326 return; 1327 } 1328 /* 1329 * Host aborted the command ring, check if the current command was 1330 * supposed to be aborted, otherwise continue normally. 1331 * The command ring is stopped now, but the xHC will issue a Command 1332 * Ring Stopped event which will cause us to restart it. 1333 */ 1334 if (cmd_comp_code == COMP_CMD_ABORT) { 1335 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1336 if (cmd->status == COMP_CMD_ABORT) 1337 goto event_handled; 1338 } 1339 1340 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1341 switch (cmd_type) { 1342 case TRB_ENABLE_SLOT: 1343 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd_comp_code); 1344 break; 1345 case TRB_DISABLE_SLOT: 1346 xhci_handle_cmd_disable_slot(xhci, slot_id); 1347 break; 1348 case TRB_CONFIG_EP: 1349 if (!cmd->completion) 1350 xhci_handle_cmd_config_ep(xhci, slot_id, event, 1351 cmd_comp_code); 1352 break; 1353 case TRB_EVAL_CONTEXT: 1354 break; 1355 case TRB_ADDR_DEV: 1356 break; 1357 case TRB_STOP_RING: 1358 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1359 le32_to_cpu(cmd_trb->generic.field[3]))); 1360 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event); 1361 break; 1362 case TRB_SET_DEQ: 1363 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1364 le32_to_cpu(cmd_trb->generic.field[3]))); 1365 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1366 break; 1367 case TRB_CMD_NOOP: 1368 /* Is this an aborted command turned to NO-OP? */ 1369 if (cmd->status == COMP_CMD_STOP) 1370 cmd_comp_code = COMP_CMD_STOP; 1371 break; 1372 case TRB_RESET_EP: 1373 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1374 le32_to_cpu(cmd_trb->generic.field[3]))); 1375 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1376 break; 1377 case TRB_RESET_DEV: 1378 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1379 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1380 */ 1381 slot_id = TRB_TO_SLOT_ID( 1382 le32_to_cpu(cmd_trb->generic.field[3])); 1383 xhci_handle_cmd_reset_dev(xhci, slot_id, event); 1384 break; 1385 case TRB_NEC_GET_FW: 1386 xhci_handle_cmd_nec_get_fw(xhci, event); 1387 break; 1388 default: 1389 /* Skip over unknown commands on the event ring */ 1390 xhci->error_bitmask |= 1 << 6; 1391 break; 1392 } 1393 1394 /* restart timer if this wasn't the last command */ 1395 if (cmd->cmd_list.next != &xhci->cmd_list) { 1396 xhci->current_cmd = list_entry(cmd->cmd_list.next, 1397 struct xhci_command, cmd_list); 1398 mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT); 1399 } 1400 1401 event_handled: 1402 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); 1403 1404 inc_deq(xhci, xhci->cmd_ring); 1405 } 1406 1407 static void handle_vendor_event(struct xhci_hcd *xhci, 1408 union xhci_trb *event) 1409 { 1410 u32 trb_type; 1411 1412 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3])); 1413 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1414 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1415 handle_cmd_completion(xhci, &event->event_cmd); 1416 } 1417 1418 /* @port_id: the one-based port ID from the hardware (indexed from array of all 1419 * port registers -- USB 3.0 and USB 2.0). 1420 * 1421 * Returns a zero-based port number, which is suitable for indexing into each of 1422 * the split roothubs' port arrays and bus state arrays. 1423 * Add one to it in order to call xhci_find_slot_id_by_port. 1424 */ 1425 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd, 1426 struct xhci_hcd *xhci, u32 port_id) 1427 { 1428 unsigned int i; 1429 unsigned int num_similar_speed_ports = 0; 1430 1431 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[], 1432 * and usb2_ports are 0-based indexes. Count the number of similar 1433 * speed ports, up to 1 port before this port. 1434 */ 1435 for (i = 0; i < (port_id - 1); i++) { 1436 u8 port_speed = xhci->port_array[i]; 1437 1438 /* 1439 * Skip ports that don't have known speeds, or have duplicate 1440 * Extended Capabilities port speed entries. 1441 */ 1442 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY) 1443 continue; 1444 1445 /* 1446 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and 1447 * 1.1 ports are under the USB 2.0 hub. If the port speed 1448 * matches the device speed, it's a similar speed port. 1449 */ 1450 if ((port_speed == 0x03) == (hcd->speed >= HCD_USB3)) 1451 num_similar_speed_ports++; 1452 } 1453 return num_similar_speed_ports; 1454 } 1455 1456 static void handle_device_notification(struct xhci_hcd *xhci, 1457 union xhci_trb *event) 1458 { 1459 u32 slot_id; 1460 struct usb_device *udev; 1461 1462 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1463 if (!xhci->devs[slot_id]) { 1464 xhci_warn(xhci, "Device Notification event for " 1465 "unused slot %u\n", slot_id); 1466 return; 1467 } 1468 1469 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1470 slot_id); 1471 udev = xhci->devs[slot_id]->udev; 1472 if (udev && udev->parent) 1473 usb_wakeup_notification(udev->parent, udev->portnum); 1474 } 1475 1476 static void handle_port_status(struct xhci_hcd *xhci, 1477 union xhci_trb *event) 1478 { 1479 struct usb_hcd *hcd; 1480 u32 port_id; 1481 u32 temp, temp1; 1482 int max_ports; 1483 int slot_id; 1484 unsigned int faked_port_index; 1485 u8 major_revision; 1486 struct xhci_bus_state *bus_state; 1487 __le32 __iomem **port_array; 1488 bool bogus_port_status = false; 1489 1490 /* Port status change events always have a successful completion code */ 1491 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) { 1492 xhci_warn(xhci, "WARN: xHC returned failed port status event\n"); 1493 xhci->error_bitmask |= 1 << 8; 1494 } 1495 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1496 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id); 1497 1498 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1499 if ((port_id <= 0) || (port_id > max_ports)) { 1500 xhci_warn(xhci, "Invalid port id %d\n", port_id); 1501 inc_deq(xhci, xhci->event_ring); 1502 return; 1503 } 1504 1505 /* Figure out which usb_hcd this port is attached to: 1506 * is it a USB 3.0 port or a USB 2.0/1.1 port? 1507 */ 1508 major_revision = xhci->port_array[port_id - 1]; 1509 1510 /* Find the right roothub. */ 1511 hcd = xhci_to_hcd(xhci); 1512 if ((major_revision == 0x03) != (hcd->speed >= HCD_USB3)) 1513 hcd = xhci->shared_hcd; 1514 1515 if (major_revision == 0) { 1516 xhci_warn(xhci, "Event for port %u not in " 1517 "Extended Capabilities, ignoring.\n", 1518 port_id); 1519 bogus_port_status = true; 1520 goto cleanup; 1521 } 1522 if (major_revision == DUPLICATE_ENTRY) { 1523 xhci_warn(xhci, "Event for port %u duplicated in" 1524 "Extended Capabilities, ignoring.\n", 1525 port_id); 1526 bogus_port_status = true; 1527 goto cleanup; 1528 } 1529 1530 /* 1531 * Hardware port IDs reported by a Port Status Change Event include USB 1532 * 3.0 and USB 2.0 ports. We want to check if the port has reported a 1533 * resume event, but we first need to translate the hardware port ID 1534 * into the index into the ports on the correct split roothub, and the 1535 * correct bus_state structure. 1536 */ 1537 bus_state = &xhci->bus_state[hcd_index(hcd)]; 1538 if (hcd->speed >= HCD_USB3) 1539 port_array = xhci->usb3_ports; 1540 else 1541 port_array = xhci->usb2_ports; 1542 /* Find the faked port hub number */ 1543 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci, 1544 port_id); 1545 1546 temp = readl(port_array[faked_port_index]); 1547 if (hcd->state == HC_STATE_SUSPENDED) { 1548 xhci_dbg(xhci, "resume root hub\n"); 1549 usb_hcd_resume_root_hub(hcd); 1550 } 1551 1552 if (hcd->speed >= HCD_USB3 && (temp & PORT_PLS_MASK) == XDEV_INACTIVE) 1553 bus_state->port_remote_wakeup &= ~(1 << faked_port_index); 1554 1555 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) { 1556 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1557 1558 temp1 = readl(&xhci->op_regs->command); 1559 if (!(temp1 & CMD_RUN)) { 1560 xhci_warn(xhci, "xHC is not running.\n"); 1561 goto cleanup; 1562 } 1563 1564 if (DEV_SUPERSPEED_ANY(temp)) { 1565 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1566 /* Set a flag to say the port signaled remote wakeup, 1567 * so we can tell the difference between the end of 1568 * device and host initiated resume. 1569 */ 1570 bus_state->port_remote_wakeup |= 1 << faked_port_index; 1571 xhci_test_and_clear_bit(xhci, port_array, 1572 faked_port_index, PORT_PLC); 1573 xhci_set_link_state(xhci, port_array, faked_port_index, 1574 XDEV_U0); 1575 /* Need to wait until the next link state change 1576 * indicates the device is actually in U0. 1577 */ 1578 bogus_port_status = true; 1579 goto cleanup; 1580 } else if (!test_bit(faked_port_index, 1581 &bus_state->resuming_ports)) { 1582 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1583 bus_state->resume_done[faked_port_index] = jiffies + 1584 msecs_to_jiffies(USB_RESUME_TIMEOUT); 1585 set_bit(faked_port_index, &bus_state->resuming_ports); 1586 mod_timer(&hcd->rh_timer, 1587 bus_state->resume_done[faked_port_index]); 1588 /* Do the rest in GetPortStatus */ 1589 } 1590 } 1591 1592 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 && 1593 DEV_SUPERSPEED_ANY(temp)) { 1594 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1595 /* We've just brought the device into U0 through either the 1596 * Resume state after a device remote wakeup, or through the 1597 * U3Exit state after a host-initiated resume. If it's a device 1598 * initiated remote wake, don't pass up the link state change, 1599 * so the roothub behavior is consistent with external 1600 * USB 3.0 hub behavior. 1601 */ 1602 slot_id = xhci_find_slot_id_by_port(hcd, xhci, 1603 faked_port_index + 1); 1604 if (slot_id && xhci->devs[slot_id]) 1605 xhci_ring_device(xhci, slot_id); 1606 if (bus_state->port_remote_wakeup & (1 << faked_port_index)) { 1607 bus_state->port_remote_wakeup &= 1608 ~(1 << faked_port_index); 1609 xhci_test_and_clear_bit(xhci, port_array, 1610 faked_port_index, PORT_PLC); 1611 usb_wakeup_notification(hcd->self.root_hub, 1612 faked_port_index + 1); 1613 bogus_port_status = true; 1614 goto cleanup; 1615 } 1616 } 1617 1618 /* 1619 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 1620 * RExit to a disconnect state). If so, let the the driver know it's 1621 * out of the RExit state. 1622 */ 1623 if (!DEV_SUPERSPEED_ANY(temp) && 1624 test_and_clear_bit(faked_port_index, 1625 &bus_state->rexit_ports)) { 1626 complete(&bus_state->rexit_done[faked_port_index]); 1627 bogus_port_status = true; 1628 goto cleanup; 1629 } 1630 1631 if (hcd->speed < HCD_USB3) 1632 xhci_test_and_clear_bit(xhci, port_array, faked_port_index, 1633 PORT_PLC); 1634 1635 cleanup: 1636 /* Update event ring dequeue pointer before dropping the lock */ 1637 inc_deq(xhci, xhci->event_ring); 1638 1639 /* Don't make the USB core poll the roothub if we got a bad port status 1640 * change event. Besides, at that point we can't tell which roothub 1641 * (USB 2.0 or USB 3.0) to kick. 1642 */ 1643 if (bogus_port_status) 1644 return; 1645 1646 /* 1647 * xHCI port-status-change events occur when the "or" of all the 1648 * status-change bits in the portsc register changes from 0 to 1. 1649 * New status changes won't cause an event if any other change 1650 * bits are still set. When an event occurs, switch over to 1651 * polling to avoid losing status changes. 1652 */ 1653 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1654 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1655 spin_unlock(&xhci->lock); 1656 /* Pass this up to the core */ 1657 usb_hcd_poll_rh_status(hcd); 1658 spin_lock(&xhci->lock); 1659 } 1660 1661 /* 1662 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 1663 * at end_trb, which may be in another segment. If the suspect DMA address is a 1664 * TRB in this TD, this function returns that TRB's segment. Otherwise it 1665 * returns 0. 1666 */ 1667 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, 1668 struct xhci_segment *start_seg, 1669 union xhci_trb *start_trb, 1670 union xhci_trb *end_trb, 1671 dma_addr_t suspect_dma, 1672 bool debug) 1673 { 1674 dma_addr_t start_dma; 1675 dma_addr_t end_seg_dma; 1676 dma_addr_t end_trb_dma; 1677 struct xhci_segment *cur_seg; 1678 1679 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 1680 cur_seg = start_seg; 1681 1682 do { 1683 if (start_dma == 0) 1684 return NULL; 1685 /* We may get an event for a Link TRB in the middle of a TD */ 1686 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 1687 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 1688 /* If the end TRB isn't in this segment, this is set to 0 */ 1689 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 1690 1691 if (debug) 1692 xhci_warn(xhci, 1693 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", 1694 (unsigned long long)suspect_dma, 1695 (unsigned long long)start_dma, 1696 (unsigned long long)end_trb_dma, 1697 (unsigned long long)cur_seg->dma, 1698 (unsigned long long)end_seg_dma); 1699 1700 if (end_trb_dma > 0) { 1701 /* The end TRB is in this segment, so suspect should be here */ 1702 if (start_dma <= end_trb_dma) { 1703 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 1704 return cur_seg; 1705 } else { 1706 /* Case for one segment with 1707 * a TD wrapped around to the top 1708 */ 1709 if ((suspect_dma >= start_dma && 1710 suspect_dma <= end_seg_dma) || 1711 (suspect_dma >= cur_seg->dma && 1712 suspect_dma <= end_trb_dma)) 1713 return cur_seg; 1714 } 1715 return NULL; 1716 } else { 1717 /* Might still be somewhere in this segment */ 1718 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 1719 return cur_seg; 1720 } 1721 cur_seg = cur_seg->next; 1722 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 1723 } while (cur_seg != start_seg); 1724 1725 return NULL; 1726 } 1727 1728 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, 1729 unsigned int slot_id, unsigned int ep_index, 1730 unsigned int stream_id, 1731 struct xhci_td *td, union xhci_trb *event_trb) 1732 { 1733 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 1734 struct xhci_command *command; 1735 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1736 if (!command) 1737 return; 1738 1739 ep->ep_state |= EP_HALTED; 1740 ep->stopped_stream = stream_id; 1741 1742 xhci_queue_reset_ep(xhci, command, slot_id, ep_index); 1743 xhci_cleanup_stalled_ring(xhci, ep_index, td); 1744 1745 ep->stopped_stream = 0; 1746 1747 xhci_ring_cmd_db(xhci); 1748 } 1749 1750 /* Check if an error has halted the endpoint ring. The class driver will 1751 * cleanup the halt for a non-default control endpoint if we indicate a stall. 1752 * However, a babble and other errors also halt the endpoint ring, and the class 1753 * driver won't clear the halt in that case, so we need to issue a Set Transfer 1754 * Ring Dequeue Pointer command manually. 1755 */ 1756 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 1757 struct xhci_ep_ctx *ep_ctx, 1758 unsigned int trb_comp_code) 1759 { 1760 /* TRB completion codes that may require a manual halt cleanup */ 1761 if (trb_comp_code == COMP_TX_ERR || 1762 trb_comp_code == COMP_BABBLE || 1763 trb_comp_code == COMP_SPLIT_ERR) 1764 /* The 0.95 spec says a babbling control endpoint 1765 * is not halted. The 0.96 spec says it is. Some HW 1766 * claims to be 0.95 compliant, but it halts the control 1767 * endpoint anyway. Check if a babble halted the 1768 * endpoint. 1769 */ 1770 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1771 cpu_to_le32(EP_STATE_HALTED)) 1772 return 1; 1773 1774 return 0; 1775 } 1776 1777 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 1778 { 1779 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 1780 /* Vendor defined "informational" completion code, 1781 * treat as not-an-error. 1782 */ 1783 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 1784 trb_comp_code); 1785 xhci_dbg(xhci, "Treating code as success.\n"); 1786 return 1; 1787 } 1788 return 0; 1789 } 1790 1791 /* 1792 * Finish the td processing, remove the td from td list; 1793 * Return 1 if the urb can be given back. 1794 */ 1795 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, 1796 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1797 struct xhci_virt_ep *ep, int *status, bool skip) 1798 { 1799 struct xhci_virt_device *xdev; 1800 struct xhci_ring *ep_ring; 1801 unsigned int slot_id; 1802 int ep_index; 1803 struct urb *urb = NULL; 1804 struct xhci_ep_ctx *ep_ctx; 1805 int ret = 0; 1806 struct urb_priv *urb_priv; 1807 u32 trb_comp_code; 1808 1809 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1810 xdev = xhci->devs[slot_id]; 1811 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1812 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1813 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1814 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1815 1816 if (skip) 1817 goto td_cleanup; 1818 1819 if (trb_comp_code == COMP_STOP_INVAL || 1820 trb_comp_code == COMP_STOP || 1821 trb_comp_code == COMP_STOP_SHORT) { 1822 /* The Endpoint Stop Command completion will take care of any 1823 * stopped TDs. A stopped TD may be restarted, so don't update 1824 * the ring dequeue pointer or take this TD off any lists yet. 1825 */ 1826 ep->stopped_td = td; 1827 return 0; 1828 } 1829 if (trb_comp_code == COMP_STALL || 1830 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 1831 trb_comp_code)) { 1832 /* Issue a reset endpoint command to clear the host side 1833 * halt, followed by a set dequeue command to move the 1834 * dequeue pointer past the TD. 1835 * The class driver clears the device side halt later. 1836 */ 1837 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 1838 ep_ring->stream_id, td, event_trb); 1839 } else { 1840 /* Update ring dequeue pointer */ 1841 while (ep_ring->dequeue != td->last_trb) 1842 inc_deq(xhci, ep_ring); 1843 inc_deq(xhci, ep_ring); 1844 } 1845 1846 td_cleanup: 1847 /* Clean up the endpoint's TD list */ 1848 urb = td->urb; 1849 urb_priv = urb->hcpriv; 1850 1851 /* Do one last check of the actual transfer length. 1852 * If the host controller said we transferred more data than the buffer 1853 * length, urb->actual_length will be a very big number (since it's 1854 * unsigned). Play it safe and say we didn't transfer anything. 1855 */ 1856 if (urb->actual_length > urb->transfer_buffer_length) { 1857 xhci_warn(xhci, "URB transfer length is wrong, xHC issue? req. len = %u, act. len = %u\n", 1858 urb->transfer_buffer_length, 1859 urb->actual_length); 1860 urb->actual_length = 0; 1861 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1862 *status = -EREMOTEIO; 1863 else 1864 *status = 0; 1865 } 1866 list_del_init(&td->td_list); 1867 /* Was this TD slated to be cancelled but completed anyway? */ 1868 if (!list_empty(&td->cancelled_td_list)) 1869 list_del_init(&td->cancelled_td_list); 1870 1871 urb_priv->td_cnt++; 1872 /* Giveback the urb when all the tds are completed */ 1873 if (urb_priv->td_cnt == urb_priv->length) { 1874 ret = 1; 1875 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 1876 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 1877 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 1878 if (xhci->quirks & XHCI_AMD_PLL_FIX) 1879 usb_amd_quirk_pll_enable(); 1880 } 1881 } 1882 } 1883 1884 return ret; 1885 } 1886 1887 /* 1888 * Process control tds, update urb status and actual_length. 1889 */ 1890 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, 1891 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1892 struct xhci_virt_ep *ep, int *status) 1893 { 1894 struct xhci_virt_device *xdev; 1895 struct xhci_ring *ep_ring; 1896 unsigned int slot_id; 1897 int ep_index; 1898 struct xhci_ep_ctx *ep_ctx; 1899 u32 trb_comp_code; 1900 1901 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1902 xdev = xhci->devs[slot_id]; 1903 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1904 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1905 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1906 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1907 1908 switch (trb_comp_code) { 1909 case COMP_SUCCESS: 1910 if (event_trb == ep_ring->dequeue) { 1911 xhci_warn(xhci, "WARN: Success on ctrl setup TRB " 1912 "without IOC set??\n"); 1913 *status = -ESHUTDOWN; 1914 } else if (event_trb != td->last_trb) { 1915 xhci_warn(xhci, "WARN: Success on ctrl data TRB " 1916 "without IOC set??\n"); 1917 *status = -ESHUTDOWN; 1918 } else { 1919 *status = 0; 1920 } 1921 break; 1922 case COMP_SHORT_TX: 1923 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1924 *status = -EREMOTEIO; 1925 else 1926 *status = 0; 1927 break; 1928 case COMP_STOP_SHORT: 1929 if (event_trb == ep_ring->dequeue || event_trb == td->last_trb) 1930 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); 1931 else 1932 td->urb->actual_length = 1933 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 1934 1935 return finish_td(xhci, td, event_trb, event, ep, status, false); 1936 case COMP_STOP: 1937 /* Did we stop at data stage? */ 1938 if (event_trb != ep_ring->dequeue && event_trb != td->last_trb) 1939 td->urb->actual_length = 1940 td->urb->transfer_buffer_length - 1941 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 1942 /* fall through */ 1943 case COMP_STOP_INVAL: 1944 return finish_td(xhci, td, event_trb, event, ep, status, false); 1945 default: 1946 if (!xhci_requires_manual_halt_cleanup(xhci, 1947 ep_ctx, trb_comp_code)) 1948 break; 1949 xhci_dbg(xhci, "TRB error code %u, " 1950 "halted endpoint index = %u\n", 1951 trb_comp_code, ep_index); 1952 /* else fall through */ 1953 case COMP_STALL: 1954 /* Did we transfer part of the data (middle) phase? */ 1955 if (event_trb != ep_ring->dequeue && 1956 event_trb != td->last_trb) 1957 td->urb->actual_length = 1958 td->urb->transfer_buffer_length - 1959 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 1960 else if (!td->urb_length_set) 1961 td->urb->actual_length = 0; 1962 1963 return finish_td(xhci, td, event_trb, event, ep, status, false); 1964 } 1965 /* 1966 * Did we transfer any data, despite the errors that might have 1967 * happened? I.e. did we get past the setup stage? 1968 */ 1969 if (event_trb != ep_ring->dequeue) { 1970 /* The event was for the status stage */ 1971 if (event_trb == td->last_trb) { 1972 if (td->urb_length_set) { 1973 /* Don't overwrite a previously set error code 1974 */ 1975 if ((*status == -EINPROGRESS || *status == 0) && 1976 (td->urb->transfer_flags 1977 & URB_SHORT_NOT_OK)) 1978 /* Did we already see a short data 1979 * stage? */ 1980 *status = -EREMOTEIO; 1981 } else { 1982 td->urb->actual_length = 1983 td->urb->transfer_buffer_length; 1984 } 1985 } else { 1986 /* 1987 * Maybe the event was for the data stage? If so, update 1988 * already the actual_length of the URB and flag it as 1989 * set, so that it is not overwritten in the event for 1990 * the last TRB. 1991 */ 1992 td->urb_length_set = true; 1993 td->urb->actual_length = 1994 td->urb->transfer_buffer_length - 1995 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 1996 xhci_dbg(xhci, "Waiting for status " 1997 "stage event\n"); 1998 return 0; 1999 } 2000 } 2001 2002 return finish_td(xhci, td, event_trb, event, ep, status, false); 2003 } 2004 2005 /* 2006 * Process isochronous tds, update urb packet status and actual_length. 2007 */ 2008 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2009 union xhci_trb *event_trb, struct xhci_transfer_event *event, 2010 struct xhci_virt_ep *ep, int *status) 2011 { 2012 struct xhci_ring *ep_ring; 2013 struct urb_priv *urb_priv; 2014 int idx; 2015 int len = 0; 2016 union xhci_trb *cur_trb; 2017 struct xhci_segment *cur_seg; 2018 struct usb_iso_packet_descriptor *frame; 2019 u32 trb_comp_code; 2020 bool skip_td = false; 2021 2022 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2023 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2024 urb_priv = td->urb->hcpriv; 2025 idx = urb_priv->td_cnt; 2026 frame = &td->urb->iso_frame_desc[idx]; 2027 2028 /* handle completion code */ 2029 switch (trb_comp_code) { 2030 case COMP_SUCCESS: 2031 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) { 2032 frame->status = 0; 2033 break; 2034 } 2035 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH)) 2036 trb_comp_code = COMP_SHORT_TX; 2037 /* fallthrough */ 2038 case COMP_STOP_SHORT: 2039 case COMP_SHORT_TX: 2040 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2041 -EREMOTEIO : 0; 2042 break; 2043 case COMP_BW_OVER: 2044 frame->status = -ECOMM; 2045 skip_td = true; 2046 break; 2047 case COMP_BUFF_OVER: 2048 case COMP_BABBLE: 2049 frame->status = -EOVERFLOW; 2050 skip_td = true; 2051 break; 2052 case COMP_DEV_ERR: 2053 case COMP_STALL: 2054 frame->status = -EPROTO; 2055 skip_td = true; 2056 break; 2057 case COMP_TX_ERR: 2058 frame->status = -EPROTO; 2059 if (event_trb != td->last_trb) 2060 return 0; 2061 skip_td = true; 2062 break; 2063 case COMP_STOP: 2064 case COMP_STOP_INVAL: 2065 break; 2066 default: 2067 frame->status = -1; 2068 break; 2069 } 2070 2071 if (trb_comp_code == COMP_SUCCESS || skip_td) { 2072 frame->actual_length = frame->length; 2073 td->urb->actual_length += frame->length; 2074 } else if (trb_comp_code == COMP_STOP_SHORT) { 2075 frame->actual_length = 2076 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2077 td->urb->actual_length += frame->actual_length; 2078 } else { 2079 for (cur_trb = ep_ring->dequeue, 2080 cur_seg = ep_ring->deq_seg; cur_trb != event_trb; 2081 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 2082 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 2083 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 2084 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 2085 } 2086 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 2087 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2088 2089 if (trb_comp_code != COMP_STOP_INVAL) { 2090 frame->actual_length = len; 2091 td->urb->actual_length += len; 2092 } 2093 } 2094 2095 return finish_td(xhci, td, event_trb, event, ep, status, false); 2096 } 2097 2098 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2099 struct xhci_transfer_event *event, 2100 struct xhci_virt_ep *ep, int *status) 2101 { 2102 struct xhci_ring *ep_ring; 2103 struct urb_priv *urb_priv; 2104 struct usb_iso_packet_descriptor *frame; 2105 int idx; 2106 2107 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2108 urb_priv = td->urb->hcpriv; 2109 idx = urb_priv->td_cnt; 2110 frame = &td->urb->iso_frame_desc[idx]; 2111 2112 /* The transfer is partly done. */ 2113 frame->status = -EXDEV; 2114 2115 /* calc actual length */ 2116 frame->actual_length = 0; 2117 2118 /* Update ring dequeue pointer */ 2119 while (ep_ring->dequeue != td->last_trb) 2120 inc_deq(xhci, ep_ring); 2121 inc_deq(xhci, ep_ring); 2122 2123 return finish_td(xhci, td, NULL, event, ep, status, true); 2124 } 2125 2126 /* 2127 * Process bulk and interrupt tds, update urb status and actual_length. 2128 */ 2129 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, 2130 union xhci_trb *event_trb, struct xhci_transfer_event *event, 2131 struct xhci_virt_ep *ep, int *status) 2132 { 2133 struct xhci_ring *ep_ring; 2134 union xhci_trb *cur_trb; 2135 struct xhci_segment *cur_seg; 2136 u32 trb_comp_code; 2137 2138 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2139 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2140 2141 switch (trb_comp_code) { 2142 case COMP_SUCCESS: 2143 /* Double check that the HW transferred everything. */ 2144 if (event_trb != td->last_trb || 2145 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2146 xhci_warn(xhci, "WARN Successful completion " 2147 "on short TX\n"); 2148 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2149 *status = -EREMOTEIO; 2150 else 2151 *status = 0; 2152 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH)) 2153 trb_comp_code = COMP_SHORT_TX; 2154 } else { 2155 *status = 0; 2156 } 2157 break; 2158 case COMP_STOP_SHORT: 2159 case COMP_SHORT_TX: 2160 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2161 *status = -EREMOTEIO; 2162 else 2163 *status = 0; 2164 break; 2165 default: 2166 /* Others already handled above */ 2167 break; 2168 } 2169 if (trb_comp_code == COMP_SHORT_TX) 2170 xhci_dbg(xhci, "ep %#x - asked for %d bytes, " 2171 "%d bytes untransferred\n", 2172 td->urb->ep->desc.bEndpointAddress, 2173 td->urb->transfer_buffer_length, 2174 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len))); 2175 /* Stopped - short packet completion */ 2176 if (trb_comp_code == COMP_STOP_SHORT) { 2177 td->urb->actual_length = 2178 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2179 2180 if (td->urb->transfer_buffer_length < 2181 td->urb->actual_length) { 2182 xhci_warn(xhci, "HC gave bad length of %d bytes txed\n", 2183 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len))); 2184 td->urb->actual_length = 0; 2185 /* status will be set by usb core for canceled urbs */ 2186 } 2187 /* Fast path - was this the last TRB in the TD for this URB? */ 2188 } else if (event_trb == td->last_trb) { 2189 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2190 td->urb->actual_length = 2191 td->urb->transfer_buffer_length - 2192 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2193 if (td->urb->transfer_buffer_length < 2194 td->urb->actual_length) { 2195 xhci_warn(xhci, "HC gave bad length " 2196 "of %d bytes left\n", 2197 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len))); 2198 td->urb->actual_length = 0; 2199 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2200 *status = -EREMOTEIO; 2201 else 2202 *status = 0; 2203 } 2204 /* Don't overwrite a previously set error code */ 2205 if (*status == -EINPROGRESS) { 2206 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2207 *status = -EREMOTEIO; 2208 else 2209 *status = 0; 2210 } 2211 } else { 2212 td->urb->actual_length = 2213 td->urb->transfer_buffer_length; 2214 /* Ignore a short packet completion if the 2215 * untransferred length was zero. 2216 */ 2217 if (*status == -EREMOTEIO) 2218 *status = 0; 2219 } 2220 } else { 2221 /* Slow path - walk the list, starting from the dequeue 2222 * pointer, to get the actual length transferred. 2223 */ 2224 td->urb->actual_length = 0; 2225 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg; 2226 cur_trb != event_trb; 2227 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 2228 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 2229 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 2230 td->urb->actual_length += 2231 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 2232 } 2233 /* If the ring didn't stop on a Link or No-op TRB, add 2234 * in the actual bytes transferred from the Normal TRB 2235 */ 2236 if (trb_comp_code != COMP_STOP_INVAL) 2237 td->urb->actual_length += 2238 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 2239 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2240 } 2241 2242 return finish_td(xhci, td, event_trb, event, ep, status, false); 2243 } 2244 2245 /* 2246 * If this function returns an error condition, it means it got a Transfer 2247 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2248 * At this point, the host controller is probably hosed and should be reset. 2249 */ 2250 static int handle_tx_event(struct xhci_hcd *xhci, 2251 struct xhci_transfer_event *event) 2252 __releases(&xhci->lock) 2253 __acquires(&xhci->lock) 2254 { 2255 struct xhci_virt_device *xdev; 2256 struct xhci_virt_ep *ep; 2257 struct xhci_ring *ep_ring; 2258 unsigned int slot_id; 2259 int ep_index; 2260 struct xhci_td *td = NULL; 2261 dma_addr_t event_dma; 2262 struct xhci_segment *event_seg; 2263 union xhci_trb *event_trb; 2264 struct urb *urb = NULL; 2265 int status = -EINPROGRESS; 2266 struct urb_priv *urb_priv; 2267 struct xhci_ep_ctx *ep_ctx; 2268 struct list_head *tmp; 2269 u32 trb_comp_code; 2270 int ret = 0; 2271 int td_num = 0; 2272 bool handling_skipped_tds = false; 2273 2274 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2275 xdev = xhci->devs[slot_id]; 2276 if (!xdev) { 2277 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n"); 2278 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2279 (unsigned long long) xhci_trb_virt_to_dma( 2280 xhci->event_ring->deq_seg, 2281 xhci->event_ring->dequeue), 2282 lower_32_bits(le64_to_cpu(event->buffer)), 2283 upper_32_bits(le64_to_cpu(event->buffer)), 2284 le32_to_cpu(event->transfer_len), 2285 le32_to_cpu(event->flags)); 2286 xhci_dbg(xhci, "Event ring:\n"); 2287 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 2288 return -ENODEV; 2289 } 2290 2291 /* Endpoint ID is 1 based, our index is zero based */ 2292 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2293 ep = &xdev->eps[ep_index]; 2294 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2295 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2296 if (!ep_ring || 2297 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) == 2298 EP_STATE_DISABLED) { 2299 xhci_err(xhci, "ERROR Transfer event for disabled endpoint " 2300 "or incorrect stream ring\n"); 2301 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2302 (unsigned long long) xhci_trb_virt_to_dma( 2303 xhci->event_ring->deq_seg, 2304 xhci->event_ring->dequeue), 2305 lower_32_bits(le64_to_cpu(event->buffer)), 2306 upper_32_bits(le64_to_cpu(event->buffer)), 2307 le32_to_cpu(event->transfer_len), 2308 le32_to_cpu(event->flags)); 2309 xhci_dbg(xhci, "Event ring:\n"); 2310 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 2311 return -ENODEV; 2312 } 2313 2314 /* Count current td numbers if ep->skip is set */ 2315 if (ep->skip) { 2316 list_for_each(tmp, &ep_ring->td_list) 2317 td_num++; 2318 } 2319 2320 event_dma = le64_to_cpu(event->buffer); 2321 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2322 /* Look for common error cases */ 2323 switch (trb_comp_code) { 2324 /* Skip codes that require special handling depending on 2325 * transfer type 2326 */ 2327 case COMP_SUCCESS: 2328 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2329 break; 2330 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2331 trb_comp_code = COMP_SHORT_TX; 2332 else 2333 xhci_warn_ratelimited(xhci, 2334 "WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n"); 2335 case COMP_SHORT_TX: 2336 break; 2337 case COMP_STOP: 2338 xhci_dbg(xhci, "Stopped on Transfer TRB\n"); 2339 break; 2340 case COMP_STOP_INVAL: 2341 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n"); 2342 break; 2343 case COMP_STOP_SHORT: 2344 xhci_dbg(xhci, "Stopped with short packet transfer detected\n"); 2345 break; 2346 case COMP_STALL: 2347 xhci_dbg(xhci, "Stalled endpoint\n"); 2348 ep->ep_state |= EP_HALTED; 2349 status = -EPIPE; 2350 break; 2351 case COMP_TRB_ERR: 2352 xhci_warn(xhci, "WARN: TRB error on endpoint\n"); 2353 status = -EILSEQ; 2354 break; 2355 case COMP_SPLIT_ERR: 2356 case COMP_TX_ERR: 2357 xhci_dbg(xhci, "Transfer error on endpoint\n"); 2358 status = -EPROTO; 2359 break; 2360 case COMP_BABBLE: 2361 xhci_dbg(xhci, "Babble error on endpoint\n"); 2362 status = -EOVERFLOW; 2363 break; 2364 case COMP_DB_ERR: 2365 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n"); 2366 status = -ENOSR; 2367 break; 2368 case COMP_BW_OVER: 2369 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n"); 2370 break; 2371 case COMP_BUFF_OVER: 2372 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n"); 2373 break; 2374 case COMP_UNDERRUN: 2375 /* 2376 * When the Isoch ring is empty, the xHC will generate 2377 * a Ring Overrun Event for IN Isoch endpoint or Ring 2378 * Underrun Event for OUT Isoch endpoint. 2379 */ 2380 xhci_dbg(xhci, "underrun event on endpoint\n"); 2381 if (!list_empty(&ep_ring->td_list)) 2382 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2383 "still with TDs queued?\n", 2384 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2385 ep_index); 2386 goto cleanup; 2387 case COMP_OVERRUN: 2388 xhci_dbg(xhci, "overrun event on endpoint\n"); 2389 if (!list_empty(&ep_ring->td_list)) 2390 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2391 "still with TDs queued?\n", 2392 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2393 ep_index); 2394 goto cleanup; 2395 case COMP_DEV_ERR: 2396 xhci_warn(xhci, "WARN: detect an incompatible device"); 2397 status = -EPROTO; 2398 break; 2399 case COMP_MISSED_INT: 2400 /* 2401 * When encounter missed service error, one or more isoc tds 2402 * may be missed by xHC. 2403 * Set skip flag of the ep_ring; Complete the missed tds as 2404 * short transfer when process the ep_ring next time. 2405 */ 2406 ep->skip = true; 2407 xhci_dbg(xhci, "Miss service interval error, set skip flag\n"); 2408 goto cleanup; 2409 case COMP_PING_ERR: 2410 ep->skip = true; 2411 xhci_dbg(xhci, "No Ping response error, Skip one Isoc TD\n"); 2412 goto cleanup; 2413 default: 2414 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2415 status = 0; 2416 break; 2417 } 2418 xhci_warn(xhci, "ERROR Unknown event condition %u, HC probably busted\n", 2419 trb_comp_code); 2420 goto cleanup; 2421 } 2422 2423 do { 2424 /* This TRB should be in the TD at the head of this ring's 2425 * TD list. 2426 */ 2427 if (list_empty(&ep_ring->td_list)) { 2428 /* 2429 * A stopped endpoint may generate an extra completion 2430 * event if the device was suspended. Don't print 2431 * warnings. 2432 */ 2433 if (!(trb_comp_code == COMP_STOP || 2434 trb_comp_code == COMP_STOP_INVAL)) { 2435 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2436 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2437 ep_index); 2438 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n", 2439 (le32_to_cpu(event->flags) & 2440 TRB_TYPE_BITMASK)>>10); 2441 xhci_print_trb_offsets(xhci, (union xhci_trb *) event); 2442 } 2443 if (ep->skip) { 2444 ep->skip = false; 2445 xhci_dbg(xhci, "td_list is empty while skip " 2446 "flag set. Clear skip flag.\n"); 2447 } 2448 ret = 0; 2449 goto cleanup; 2450 } 2451 2452 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2453 if (ep->skip && td_num == 0) { 2454 ep->skip = false; 2455 xhci_dbg(xhci, "All tds on the ep_ring skipped. " 2456 "Clear skip flag.\n"); 2457 ret = 0; 2458 goto cleanup; 2459 } 2460 2461 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list); 2462 if (ep->skip) 2463 td_num--; 2464 2465 /* Is this a TRB in the currently executing TD? */ 2466 event_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue, 2467 td->last_trb, event_dma, false); 2468 2469 /* 2470 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2471 * is not in the current TD pointed by ep_ring->dequeue because 2472 * that the hardware dequeue pointer still at the previous TRB 2473 * of the current TD. The previous TRB maybe a Link TD or the 2474 * last TRB of the previous TD. The command completion handle 2475 * will take care the rest. 2476 */ 2477 if (!event_seg && (trb_comp_code == COMP_STOP || 2478 trb_comp_code == COMP_STOP_INVAL)) { 2479 ret = 0; 2480 goto cleanup; 2481 } 2482 2483 if (!event_seg) { 2484 if (!ep->skip || 2485 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2486 /* Some host controllers give a spurious 2487 * successful event after a short transfer. 2488 * Ignore it. 2489 */ 2490 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2491 ep_ring->last_td_was_short) { 2492 ep_ring->last_td_was_short = false; 2493 ret = 0; 2494 goto cleanup; 2495 } 2496 /* HC is busted, give up! */ 2497 xhci_err(xhci, 2498 "ERROR Transfer event TRB DMA ptr not " 2499 "part of current TD ep_index %d " 2500 "comp_code %u\n", ep_index, 2501 trb_comp_code); 2502 trb_in_td(xhci, ep_ring->deq_seg, 2503 ep_ring->dequeue, td->last_trb, 2504 event_dma, true); 2505 return -ESHUTDOWN; 2506 } 2507 2508 ret = skip_isoc_td(xhci, td, event, ep, &status); 2509 goto cleanup; 2510 } 2511 if (trb_comp_code == COMP_SHORT_TX) 2512 ep_ring->last_td_was_short = true; 2513 else 2514 ep_ring->last_td_was_short = false; 2515 2516 if (ep->skip) { 2517 xhci_dbg(xhci, "Found td. Clear skip flag.\n"); 2518 ep->skip = false; 2519 } 2520 2521 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) / 2522 sizeof(*event_trb)]; 2523 /* 2524 * No-op TRB should not trigger interrupts. 2525 * If event_trb is a no-op TRB, it means the 2526 * corresponding TD has been cancelled. Just ignore 2527 * the TD. 2528 */ 2529 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) { 2530 xhci_dbg(xhci, 2531 "event_trb is a no-op TRB. Skip it\n"); 2532 goto cleanup; 2533 } 2534 2535 /* Now update the urb's actual_length and give back to 2536 * the core 2537 */ 2538 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2539 ret = process_ctrl_td(xhci, td, event_trb, event, ep, 2540 &status); 2541 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2542 ret = process_isoc_td(xhci, td, event_trb, event, ep, 2543 &status); 2544 else 2545 ret = process_bulk_intr_td(xhci, td, event_trb, event, 2546 ep, &status); 2547 2548 cleanup: 2549 2550 2551 handling_skipped_tds = ep->skip && 2552 trb_comp_code != COMP_MISSED_INT && 2553 trb_comp_code != COMP_PING_ERR; 2554 2555 /* 2556 * Do not update event ring dequeue pointer if we're in a loop 2557 * processing missed tds. 2558 */ 2559 if (!handling_skipped_tds) 2560 inc_deq(xhci, xhci->event_ring); 2561 2562 if (ret) { 2563 urb = td->urb; 2564 urb_priv = urb->hcpriv; 2565 2566 xhci_urb_free_priv(urb_priv); 2567 2568 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 2569 if ((urb->actual_length != urb->transfer_buffer_length && 2570 (urb->transfer_flags & 2571 URB_SHORT_NOT_OK)) || 2572 (status != 0 && 2573 !usb_endpoint_xfer_isoc(&urb->ep->desc))) 2574 xhci_dbg(xhci, "Giveback URB %p, len = %d, " 2575 "expected = %d, status = %d\n", 2576 urb, urb->actual_length, 2577 urb->transfer_buffer_length, 2578 status); 2579 spin_unlock(&xhci->lock); 2580 /* EHCI, UHCI, and OHCI always unconditionally set the 2581 * urb->status of an isochronous endpoint to 0. 2582 */ 2583 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 2584 status = 0; 2585 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status); 2586 spin_lock(&xhci->lock); 2587 } 2588 2589 /* 2590 * If ep->skip is set, it means there are missed tds on the 2591 * endpoint ring need to take care of. 2592 * Process them as short transfer until reach the td pointed by 2593 * the event. 2594 */ 2595 } while (handling_skipped_tds); 2596 2597 return 0; 2598 } 2599 2600 /* 2601 * This function handles all OS-owned events on the event ring. It may drop 2602 * xhci->lock between event processing (e.g. to pass up port status changes). 2603 * Returns >0 for "possibly more events to process" (caller should call again), 2604 * otherwise 0 if done. In future, <0 returns should indicate error code. 2605 */ 2606 static int xhci_handle_event(struct xhci_hcd *xhci) 2607 { 2608 union xhci_trb *event; 2609 int update_ptrs = 1; 2610 int ret; 2611 2612 if (!xhci->event_ring || !xhci->event_ring->dequeue) { 2613 xhci->error_bitmask |= 1 << 1; 2614 return 0; 2615 } 2616 2617 event = xhci->event_ring->dequeue; 2618 /* Does the HC or OS own the TRB? */ 2619 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2620 xhci->event_ring->cycle_state) { 2621 xhci->error_bitmask |= 1 << 2; 2622 return 0; 2623 } 2624 2625 /* 2626 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2627 * speculative reads of the event's flags/data below. 2628 */ 2629 rmb(); 2630 /* FIXME: Handle more event types. */ 2631 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) { 2632 case TRB_TYPE(TRB_COMPLETION): 2633 handle_cmd_completion(xhci, &event->event_cmd); 2634 break; 2635 case TRB_TYPE(TRB_PORT_STATUS): 2636 handle_port_status(xhci, event); 2637 update_ptrs = 0; 2638 break; 2639 case TRB_TYPE(TRB_TRANSFER): 2640 ret = handle_tx_event(xhci, &event->trans_event); 2641 if (ret < 0) 2642 xhci->error_bitmask |= 1 << 9; 2643 else 2644 update_ptrs = 0; 2645 break; 2646 case TRB_TYPE(TRB_DEV_NOTE): 2647 handle_device_notification(xhci, event); 2648 break; 2649 default: 2650 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >= 2651 TRB_TYPE(48)) 2652 handle_vendor_event(xhci, event); 2653 else 2654 xhci->error_bitmask |= 1 << 3; 2655 } 2656 /* Any of the above functions may drop and re-acquire the lock, so check 2657 * to make sure a watchdog timer didn't mark the host as non-responsive. 2658 */ 2659 if (xhci->xhc_state & XHCI_STATE_DYING) { 2660 xhci_dbg(xhci, "xHCI host dying, returning from " 2661 "event handler.\n"); 2662 return 0; 2663 } 2664 2665 if (update_ptrs) 2666 /* Update SW event ring dequeue pointer */ 2667 inc_deq(xhci, xhci->event_ring); 2668 2669 /* Are there more items on the event ring? Caller will call us again to 2670 * check. 2671 */ 2672 return 1; 2673 } 2674 2675 /* 2676 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 2677 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 2678 * indicators of an event TRB error, but we check the status *first* to be safe. 2679 */ 2680 irqreturn_t xhci_irq(struct usb_hcd *hcd) 2681 { 2682 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2683 u32 status; 2684 u64 temp_64; 2685 union xhci_trb *event_ring_deq; 2686 dma_addr_t deq; 2687 2688 spin_lock(&xhci->lock); 2689 /* Check if the xHC generated the interrupt, or the irq is shared */ 2690 status = readl(&xhci->op_regs->status); 2691 if (status == 0xffffffff) 2692 goto hw_died; 2693 2694 if (!(status & STS_EINT)) { 2695 spin_unlock(&xhci->lock); 2696 return IRQ_NONE; 2697 } 2698 if (status & STS_FATAL) { 2699 xhci_warn(xhci, "WARNING: Host System Error\n"); 2700 xhci_halt(xhci); 2701 hw_died: 2702 spin_unlock(&xhci->lock); 2703 return IRQ_HANDLED; 2704 } 2705 2706 /* 2707 * Clear the op reg interrupt status first, 2708 * so we can receive interrupts from other MSI-X interrupters. 2709 * Write 1 to clear the interrupt status. 2710 */ 2711 status |= STS_EINT; 2712 writel(status, &xhci->op_regs->status); 2713 /* FIXME when MSI-X is supported and there are multiple vectors */ 2714 /* Clear the MSI-X event interrupt status */ 2715 2716 if (hcd->irq) { 2717 u32 irq_pending; 2718 /* Acknowledge the PCI interrupt */ 2719 irq_pending = readl(&xhci->ir_set->irq_pending); 2720 irq_pending |= IMAN_IP; 2721 writel(irq_pending, &xhci->ir_set->irq_pending); 2722 } 2723 2724 if (xhci->xhc_state & XHCI_STATE_DYING) { 2725 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 2726 "Shouldn't IRQs be disabled?\n"); 2727 /* Clear the event handler busy flag (RW1C); 2728 * the event ring should be empty. 2729 */ 2730 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2731 xhci_write_64(xhci, temp_64 | ERST_EHB, 2732 &xhci->ir_set->erst_dequeue); 2733 spin_unlock(&xhci->lock); 2734 2735 return IRQ_HANDLED; 2736 } 2737 2738 event_ring_deq = xhci->event_ring->dequeue; 2739 /* FIXME this should be a delayed service routine 2740 * that clears the EHB. 2741 */ 2742 while (xhci_handle_event(xhci) > 0) {} 2743 2744 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2745 /* If necessary, update the HW's version of the event ring deq ptr. */ 2746 if (event_ring_deq != xhci->event_ring->dequeue) { 2747 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2748 xhci->event_ring->dequeue); 2749 if (deq == 0) 2750 xhci_warn(xhci, "WARN something wrong with SW event " 2751 "ring dequeue ptr.\n"); 2752 /* Update HC event ring dequeue pointer */ 2753 temp_64 &= ERST_PTR_MASK; 2754 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 2755 } 2756 2757 /* Clear the event handler busy flag (RW1C); event ring is empty. */ 2758 temp_64 |= ERST_EHB; 2759 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); 2760 2761 spin_unlock(&xhci->lock); 2762 2763 return IRQ_HANDLED; 2764 } 2765 2766 irqreturn_t xhci_msi_irq(int irq, void *hcd) 2767 { 2768 return xhci_irq(hcd); 2769 } 2770 2771 /**** Endpoint Ring Operations ****/ 2772 2773 /* 2774 * Generic function for queueing a TRB on a ring. 2775 * The caller must have checked to make sure there's room on the ring. 2776 * 2777 * @more_trbs_coming: Will you enqueue more TRBs before calling 2778 * prepare_transfer()? 2779 */ 2780 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 2781 bool more_trbs_coming, 2782 u32 field1, u32 field2, u32 field3, u32 field4) 2783 { 2784 struct xhci_generic_trb *trb; 2785 2786 trb = &ring->enqueue->generic; 2787 trb->field[0] = cpu_to_le32(field1); 2788 trb->field[1] = cpu_to_le32(field2); 2789 trb->field[2] = cpu_to_le32(field3); 2790 trb->field[3] = cpu_to_le32(field4); 2791 inc_enq(xhci, ring, more_trbs_coming); 2792 } 2793 2794 /* 2795 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 2796 * FIXME allocate segments if the ring is full. 2797 */ 2798 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 2799 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 2800 { 2801 unsigned int num_trbs_needed; 2802 2803 /* Make sure the endpoint has been added to xHC schedule */ 2804 switch (ep_state) { 2805 case EP_STATE_DISABLED: 2806 /* 2807 * USB core changed config/interfaces without notifying us, 2808 * or hardware is reporting the wrong state. 2809 */ 2810 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 2811 return -ENOENT; 2812 case EP_STATE_ERROR: 2813 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 2814 /* FIXME event handling code for error needs to clear it */ 2815 /* XXX not sure if this should be -ENOENT or not */ 2816 return -EINVAL; 2817 case EP_STATE_HALTED: 2818 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 2819 case EP_STATE_STOPPED: 2820 case EP_STATE_RUNNING: 2821 break; 2822 default: 2823 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 2824 /* 2825 * FIXME issue Configure Endpoint command to try to get the HC 2826 * back into a known state. 2827 */ 2828 return -EINVAL; 2829 } 2830 2831 while (1) { 2832 if (room_on_ring(xhci, ep_ring, num_trbs)) 2833 break; 2834 2835 if (ep_ring == xhci->cmd_ring) { 2836 xhci_err(xhci, "Do not support expand command ring\n"); 2837 return -ENOMEM; 2838 } 2839 2840 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 2841 "ERROR no room on ep ring, try ring expansion"); 2842 num_trbs_needed = num_trbs - ep_ring->num_trbs_free; 2843 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed, 2844 mem_flags)) { 2845 xhci_err(xhci, "Ring expansion failed\n"); 2846 return -ENOMEM; 2847 } 2848 } 2849 2850 if (enqueue_is_link_trb(ep_ring)) { 2851 struct xhci_ring *ring = ep_ring; 2852 union xhci_trb *next; 2853 2854 next = ring->enqueue; 2855 2856 while (last_trb(xhci, ring, ring->enq_seg, next)) { 2857 /* If we're not dealing with 0.95 hardware or isoc rings 2858 * on AMD 0.96 host, clear the chain bit. 2859 */ 2860 if (!xhci_link_trb_quirk(xhci) && 2861 !(ring->type == TYPE_ISOC && 2862 (xhci->quirks & XHCI_AMD_0x96_HOST))) 2863 next->link.control &= cpu_to_le32(~TRB_CHAIN); 2864 else 2865 next->link.control |= cpu_to_le32(TRB_CHAIN); 2866 2867 wmb(); 2868 next->link.control ^= cpu_to_le32(TRB_CYCLE); 2869 2870 /* Toggle the cycle bit after the last ring segment. */ 2871 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 2872 ring->cycle_state ^= 1; 2873 } 2874 ring->enq_seg = ring->enq_seg->next; 2875 ring->enqueue = ring->enq_seg->trbs; 2876 next = ring->enqueue; 2877 } 2878 } 2879 2880 return 0; 2881 } 2882 2883 static int prepare_transfer(struct xhci_hcd *xhci, 2884 struct xhci_virt_device *xdev, 2885 unsigned int ep_index, 2886 unsigned int stream_id, 2887 unsigned int num_trbs, 2888 struct urb *urb, 2889 unsigned int td_index, 2890 gfp_t mem_flags) 2891 { 2892 int ret; 2893 struct urb_priv *urb_priv; 2894 struct xhci_td *td; 2895 struct xhci_ring *ep_ring; 2896 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2897 2898 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); 2899 if (!ep_ring) { 2900 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 2901 stream_id); 2902 return -EINVAL; 2903 } 2904 2905 ret = prepare_ring(xhci, ep_ring, 2906 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 2907 num_trbs, mem_flags); 2908 if (ret) 2909 return ret; 2910 2911 urb_priv = urb->hcpriv; 2912 td = urb_priv->td[td_index]; 2913 2914 INIT_LIST_HEAD(&td->td_list); 2915 INIT_LIST_HEAD(&td->cancelled_td_list); 2916 2917 if (td_index == 0) { 2918 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 2919 if (unlikely(ret)) 2920 return ret; 2921 } 2922 2923 td->urb = urb; 2924 /* Add this TD to the tail of the endpoint ring's TD list */ 2925 list_add_tail(&td->td_list, &ep_ring->td_list); 2926 td->start_seg = ep_ring->enq_seg; 2927 td->first_trb = ep_ring->enqueue; 2928 2929 urb_priv->td[td_index] = td; 2930 2931 return 0; 2932 } 2933 2934 static unsigned int count_trbs(u64 addr, u64 len) 2935 { 2936 unsigned int num_trbs; 2937 2938 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 2939 TRB_MAX_BUFF_SIZE); 2940 if (num_trbs == 0) 2941 num_trbs++; 2942 2943 return num_trbs; 2944 } 2945 2946 static inline unsigned int count_trbs_needed(struct urb *urb) 2947 { 2948 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); 2949 } 2950 2951 static unsigned int count_sg_trbs_needed(struct urb *urb) 2952 { 2953 struct scatterlist *sg; 2954 unsigned int i, len, full_len, num_trbs = 0; 2955 2956 full_len = urb->transfer_buffer_length; 2957 2958 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { 2959 len = sg_dma_len(sg); 2960 num_trbs += count_trbs(sg_dma_address(sg), len); 2961 len = min_t(unsigned int, len, full_len); 2962 full_len -= len; 2963 if (full_len == 0) 2964 break; 2965 } 2966 2967 return num_trbs; 2968 } 2969 2970 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) 2971 { 2972 u64 addr, len; 2973 2974 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 2975 len = urb->iso_frame_desc[i].length; 2976 2977 return count_trbs(addr, len); 2978 } 2979 2980 static void check_trb_math(struct urb *urb, int running_total) 2981 { 2982 if (unlikely(running_total != urb->transfer_buffer_length)) 2983 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 2984 "queued %#x (%d), asked for %#x (%d)\n", 2985 __func__, 2986 urb->ep->desc.bEndpointAddress, 2987 running_total, running_total, 2988 urb->transfer_buffer_length, 2989 urb->transfer_buffer_length); 2990 } 2991 2992 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 2993 unsigned int ep_index, unsigned int stream_id, int start_cycle, 2994 struct xhci_generic_trb *start_trb) 2995 { 2996 /* 2997 * Pass all the TRBs to the hardware at once and make sure this write 2998 * isn't reordered. 2999 */ 3000 wmb(); 3001 if (start_cycle) 3002 start_trb->field[3] |= cpu_to_le32(start_cycle); 3003 else 3004 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3005 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3006 } 3007 3008 static void check_interval(struct xhci_hcd *xhci, struct urb *urb, 3009 struct xhci_ep_ctx *ep_ctx) 3010 { 3011 int xhci_interval; 3012 int ep_interval; 3013 3014 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3015 ep_interval = urb->interval; 3016 3017 /* Convert to microframes */ 3018 if (urb->dev->speed == USB_SPEED_LOW || 3019 urb->dev->speed == USB_SPEED_FULL) 3020 ep_interval *= 8; 3021 3022 /* FIXME change this to a warning and a suggestion to use the new API 3023 * to set the polling interval (once the API is added). 3024 */ 3025 if (xhci_interval != ep_interval) { 3026 dev_dbg_ratelimited(&urb->dev->dev, 3027 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3028 ep_interval, ep_interval == 1 ? "" : "s", 3029 xhci_interval, xhci_interval == 1 ? "" : "s"); 3030 urb->interval = xhci_interval; 3031 /* Convert back to frames for LS/FS devices */ 3032 if (urb->dev->speed == USB_SPEED_LOW || 3033 urb->dev->speed == USB_SPEED_FULL) 3034 urb->interval /= 8; 3035 } 3036 } 3037 3038 /* 3039 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3040 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3041 * (comprised of sg list entries) can take several service intervals to 3042 * transmit. 3043 */ 3044 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3045 struct urb *urb, int slot_id, unsigned int ep_index) 3046 { 3047 struct xhci_ep_ctx *ep_ctx; 3048 3049 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); 3050 check_interval(xhci, urb, ep_ctx); 3051 3052 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3053 } 3054 3055 /* 3056 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3057 * packets remaining in the TD (*not* including this TRB). 3058 * 3059 * Total TD packet count = total_packet_count = 3060 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3061 * 3062 * Packets transferred up to and including this TRB = packets_transferred = 3063 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3064 * 3065 * TD size = total_packet_count - packets_transferred 3066 * 3067 * For xHCI 0.96 and older, TD size field should be the remaining bytes 3068 * including this TRB, right shifted by 10 3069 * 3070 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. 3071 * This is taken care of in the TRB_TD_SIZE() macro 3072 * 3073 * The last TRB in a TD must have the TD size set to zero. 3074 */ 3075 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, 3076 int trb_buff_len, unsigned int td_total_len, 3077 struct urb *urb, unsigned int num_trbs_left) 3078 { 3079 u32 maxp, total_packet_count; 3080 3081 /* MTK xHCI is mostly 0.97 but contains some features from 1.0 */ 3082 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) 3083 return ((td_total_len - transferred) >> 10); 3084 3085 /* One TRB with a zero-length data packet. */ 3086 if (num_trbs_left == 0 || (transferred == 0 && trb_buff_len == 0) || 3087 trb_buff_len == td_total_len) 3088 return 0; 3089 3090 /* for MTK xHCI, TD size doesn't include this TRB */ 3091 if (xhci->quirks & XHCI_MTK_HOST) 3092 trb_buff_len = 0; 3093 3094 maxp = GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc)); 3095 total_packet_count = DIV_ROUND_UP(td_total_len, maxp); 3096 3097 /* Queueing functions don't count the current TRB into transferred */ 3098 return (total_packet_count - ((transferred + trb_buff_len) / maxp)); 3099 } 3100 3101 /* This is very similar to what ehci-q.c qtd_fill() does */ 3102 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3103 struct urb *urb, int slot_id, unsigned int ep_index) 3104 { 3105 struct xhci_ring *ep_ring; 3106 struct urb_priv *urb_priv; 3107 struct xhci_td *td; 3108 struct xhci_generic_trb *start_trb; 3109 struct scatterlist *sg = NULL; 3110 bool more_trbs_coming; 3111 bool zero_length_needed; 3112 unsigned int num_trbs, last_trb_num, i; 3113 unsigned int start_cycle, num_sgs = 0; 3114 unsigned int running_total, block_len, trb_buff_len; 3115 unsigned int full_len; 3116 int ret; 3117 u32 field, length_field, remainder; 3118 u64 addr; 3119 3120 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3121 if (!ep_ring) 3122 return -EINVAL; 3123 3124 /* If we have scatter/gather list, we use it. */ 3125 if (urb->num_sgs) { 3126 num_sgs = urb->num_mapped_sgs; 3127 sg = urb->sg; 3128 num_trbs = count_sg_trbs_needed(urb); 3129 } else 3130 num_trbs = count_trbs_needed(urb); 3131 3132 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3133 ep_index, urb->stream_id, 3134 num_trbs, urb, 0, mem_flags); 3135 if (unlikely(ret < 0)) 3136 return ret; 3137 3138 urb_priv = urb->hcpriv; 3139 3140 last_trb_num = num_trbs - 1; 3141 3142 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3143 zero_length_needed = urb->transfer_flags & URB_ZERO_PACKET && 3144 urb_priv->length == 2; 3145 if (zero_length_needed) { 3146 num_trbs++; 3147 xhci_dbg(xhci, "Creating zero length td.\n"); 3148 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3149 ep_index, urb->stream_id, 3150 1, urb, 1, mem_flags); 3151 if (unlikely(ret < 0)) 3152 return ret; 3153 } 3154 3155 td = urb_priv->td[0]; 3156 3157 /* 3158 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3159 * until we've finished creating all the other TRBs. The ring's cycle 3160 * state may change as we enqueue the other TRBs, so save it too. 3161 */ 3162 start_trb = &ep_ring->enqueue->generic; 3163 start_cycle = ep_ring->cycle_state; 3164 3165 full_len = urb->transfer_buffer_length; 3166 running_total = 0; 3167 block_len = 0; 3168 3169 /* Queue the TRBs, even if they are zero-length */ 3170 for (i = 0; i < num_trbs; i++) { 3171 field = TRB_TYPE(TRB_NORMAL); 3172 3173 if (block_len == 0) { 3174 /* A new contiguous block. */ 3175 if (sg) { 3176 addr = (u64) sg_dma_address(sg); 3177 block_len = sg_dma_len(sg); 3178 } else { 3179 addr = (u64) urb->transfer_dma; 3180 block_len = full_len; 3181 } 3182 /* TRB buffer should not cross 64KB boundaries */ 3183 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3184 trb_buff_len = min_t(unsigned int, 3185 trb_buff_len, 3186 block_len); 3187 } else { 3188 /* Further through the contiguous block. */ 3189 trb_buff_len = block_len; 3190 if (trb_buff_len > TRB_MAX_BUFF_SIZE) 3191 trb_buff_len = TRB_MAX_BUFF_SIZE; 3192 } 3193 3194 if (running_total + trb_buff_len > full_len) 3195 trb_buff_len = full_len - running_total; 3196 3197 /* Don't change the cycle bit of the first TRB until later */ 3198 if (i == 0) { 3199 if (start_cycle == 0) 3200 field |= TRB_CYCLE; 3201 } else 3202 field |= ep_ring->cycle_state; 3203 3204 /* Chain all the TRBs together; clear the chain bit in the last 3205 * TRB to indicate it's the last TRB in the chain. 3206 */ 3207 if (i < last_trb_num) { 3208 field |= TRB_CHAIN; 3209 } else { 3210 field |= TRB_IOC; 3211 if (i == last_trb_num) 3212 td->last_trb = ep_ring->enqueue; 3213 else if (zero_length_needed) { 3214 trb_buff_len = 0; 3215 urb_priv->td[1]->last_trb = ep_ring->enqueue; 3216 } 3217 } 3218 3219 /* Only set interrupt on short packet for IN endpoints */ 3220 if (usb_urb_dir_in(urb)) 3221 field |= TRB_ISP; 3222 3223 /* Set the TRB length, TD size, and interrupter fields. */ 3224 remainder = xhci_td_remainder(xhci, running_total, 3225 trb_buff_len, full_len, 3226 urb, num_trbs - i - 1); 3227 3228 length_field = TRB_LEN(trb_buff_len) | 3229 TRB_TD_SIZE(remainder) | 3230 TRB_INTR_TARGET(0); 3231 3232 if (i < num_trbs - 1) 3233 more_trbs_coming = true; 3234 else 3235 more_trbs_coming = false; 3236 queue_trb(xhci, ep_ring, more_trbs_coming, 3237 lower_32_bits(addr), 3238 upper_32_bits(addr), 3239 length_field, 3240 field); 3241 3242 running_total += trb_buff_len; 3243 addr += trb_buff_len; 3244 block_len -= trb_buff_len; 3245 3246 if (sg) { 3247 if (block_len == 0) { 3248 /* New sg entry */ 3249 --num_sgs; 3250 if (num_sgs == 0) 3251 break; 3252 sg = sg_next(sg); 3253 } 3254 } 3255 } 3256 3257 check_trb_math(urb, running_total); 3258 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3259 start_cycle, start_trb); 3260 return 0; 3261 } 3262 3263 /* Caller must have locked xhci->lock */ 3264 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3265 struct urb *urb, int slot_id, unsigned int ep_index) 3266 { 3267 struct xhci_ring *ep_ring; 3268 int num_trbs; 3269 int ret; 3270 struct usb_ctrlrequest *setup; 3271 struct xhci_generic_trb *start_trb; 3272 int start_cycle; 3273 u32 field, length_field, remainder; 3274 struct urb_priv *urb_priv; 3275 struct xhci_td *td; 3276 3277 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3278 if (!ep_ring) 3279 return -EINVAL; 3280 3281 /* 3282 * Need to copy setup packet into setup TRB, so we can't use the setup 3283 * DMA address. 3284 */ 3285 if (!urb->setup_packet) 3286 return -EINVAL; 3287 3288 /* 1 TRB for setup, 1 for status */ 3289 num_trbs = 2; 3290 /* 3291 * Don't need to check if we need additional event data and normal TRBs, 3292 * since data in control transfers will never get bigger than 16MB 3293 * XXX: can we get a buffer that crosses 64KB boundaries? 3294 */ 3295 if (urb->transfer_buffer_length > 0) 3296 num_trbs++; 3297 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3298 ep_index, urb->stream_id, 3299 num_trbs, urb, 0, mem_flags); 3300 if (ret < 0) 3301 return ret; 3302 3303 urb_priv = urb->hcpriv; 3304 td = urb_priv->td[0]; 3305 3306 /* 3307 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3308 * until we've finished creating all the other TRBs. The ring's cycle 3309 * state may change as we enqueue the other TRBs, so save it too. 3310 */ 3311 start_trb = &ep_ring->enqueue->generic; 3312 start_cycle = ep_ring->cycle_state; 3313 3314 /* Queue setup TRB - see section 6.4.1.2.1 */ 3315 /* FIXME better way to translate setup_packet into two u32 fields? */ 3316 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3317 field = 0; 3318 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3319 if (start_cycle == 0) 3320 field |= 0x1; 3321 3322 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ 3323 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { 3324 if (urb->transfer_buffer_length > 0) { 3325 if (setup->bRequestType & USB_DIR_IN) 3326 field |= TRB_TX_TYPE(TRB_DATA_IN); 3327 else 3328 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3329 } 3330 } 3331 3332 queue_trb(xhci, ep_ring, true, 3333 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3334 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3335 TRB_LEN(8) | TRB_INTR_TARGET(0), 3336 /* Immediate data in pointer */ 3337 field); 3338 3339 /* If there's data, queue data TRBs */ 3340 /* Only set interrupt on short packet for IN endpoints */ 3341 if (usb_urb_dir_in(urb)) 3342 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3343 else 3344 field = TRB_TYPE(TRB_DATA); 3345 3346 remainder = xhci_td_remainder(xhci, 0, 3347 urb->transfer_buffer_length, 3348 urb->transfer_buffer_length, 3349 urb, 1); 3350 3351 length_field = TRB_LEN(urb->transfer_buffer_length) | 3352 TRB_TD_SIZE(remainder) | 3353 TRB_INTR_TARGET(0); 3354 3355 if (urb->transfer_buffer_length > 0) { 3356 if (setup->bRequestType & USB_DIR_IN) 3357 field |= TRB_DIR_IN; 3358 queue_trb(xhci, ep_ring, true, 3359 lower_32_bits(urb->transfer_dma), 3360 upper_32_bits(urb->transfer_dma), 3361 length_field, 3362 field | ep_ring->cycle_state); 3363 } 3364 3365 /* Save the DMA address of the last TRB in the TD */ 3366 td->last_trb = ep_ring->enqueue; 3367 3368 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3369 /* If the device sent data, the status stage is an OUT transfer */ 3370 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3371 field = 0; 3372 else 3373 field = TRB_DIR_IN; 3374 queue_trb(xhci, ep_ring, false, 3375 0, 3376 0, 3377 TRB_INTR_TARGET(0), 3378 /* Event on completion */ 3379 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3380 3381 giveback_first_trb(xhci, slot_id, ep_index, 0, 3382 start_cycle, start_trb); 3383 return 0; 3384 } 3385 3386 /* 3387 * The transfer burst count field of the isochronous TRB defines the number of 3388 * bursts that are required to move all packets in this TD. Only SuperSpeed 3389 * devices can burst up to bMaxBurst number of packets per service interval. 3390 * This field is zero based, meaning a value of zero in the field means one 3391 * burst. Basically, for everything but SuperSpeed devices, this field will be 3392 * zero. Only xHCI 1.0 host controllers support this field. 3393 */ 3394 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3395 struct urb *urb, unsigned int total_packet_count) 3396 { 3397 unsigned int max_burst; 3398 3399 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) 3400 return 0; 3401 3402 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3403 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3404 } 3405 3406 /* 3407 * Returns the number of packets in the last "burst" of packets. This field is 3408 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3409 * the last burst packet count is equal to the total number of packets in the 3410 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3411 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3412 * contain 1 to (bMaxBurst + 1) packets. 3413 */ 3414 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3415 struct urb *urb, unsigned int total_packet_count) 3416 { 3417 unsigned int max_burst; 3418 unsigned int residue; 3419 3420 if (xhci->hci_version < 0x100) 3421 return 0; 3422 3423 if (urb->dev->speed >= USB_SPEED_SUPER) { 3424 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3425 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3426 residue = total_packet_count % (max_burst + 1); 3427 /* If residue is zero, the last burst contains (max_burst + 1) 3428 * number of packets, but the TLBPC field is zero-based. 3429 */ 3430 if (residue == 0) 3431 return max_burst; 3432 return residue - 1; 3433 } 3434 if (total_packet_count == 0) 3435 return 0; 3436 return total_packet_count - 1; 3437 } 3438 3439 /* 3440 * Calculates Frame ID field of the isochronous TRB identifies the 3441 * target frame that the Interval associated with this Isochronous 3442 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. 3443 * 3444 * Returns actual frame id on success, negative value on error. 3445 */ 3446 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, 3447 struct urb *urb, int index) 3448 { 3449 int start_frame, ist, ret = 0; 3450 int start_frame_id, end_frame_id, current_frame_id; 3451 3452 if (urb->dev->speed == USB_SPEED_LOW || 3453 urb->dev->speed == USB_SPEED_FULL) 3454 start_frame = urb->start_frame + index * urb->interval; 3455 else 3456 start_frame = (urb->start_frame + index * urb->interval) >> 3; 3457 3458 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): 3459 * 3460 * If bit [3] of IST is cleared to '0', software can add a TRB no 3461 * later than IST[2:0] Microframes before that TRB is scheduled to 3462 * be executed. 3463 * If bit [3] of IST is set to '1', software can add a TRB no later 3464 * than IST[2:0] Frames before that TRB is scheduled to be executed. 3465 */ 3466 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3467 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3468 ist <<= 3; 3469 3470 /* Software shall not schedule an Isoch TD with a Frame ID value that 3471 * is less than the Start Frame ID or greater than the End Frame ID, 3472 * where: 3473 * 3474 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 3475 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 3476 * 3477 * Both the End Frame ID and Start Frame ID values are calculated 3478 * in microframes. When software determines the valid Frame ID value; 3479 * The End Frame ID value should be rounded down to the nearest Frame 3480 * boundary, and the Start Frame ID value should be rounded up to the 3481 * nearest Frame boundary. 3482 */ 3483 current_frame_id = readl(&xhci->run_regs->microframe_index); 3484 start_frame_id = roundup(current_frame_id + ist + 1, 8); 3485 end_frame_id = rounddown(current_frame_id + 895 * 8, 8); 3486 3487 start_frame &= 0x7ff; 3488 start_frame_id = (start_frame_id >> 3) & 0x7ff; 3489 end_frame_id = (end_frame_id >> 3) & 0x7ff; 3490 3491 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n", 3492 __func__, index, readl(&xhci->run_regs->microframe_index), 3493 start_frame_id, end_frame_id, start_frame); 3494 3495 if (start_frame_id < end_frame_id) { 3496 if (start_frame > end_frame_id || 3497 start_frame < start_frame_id) 3498 ret = -EINVAL; 3499 } else if (start_frame_id > end_frame_id) { 3500 if ((start_frame > end_frame_id && 3501 start_frame < start_frame_id)) 3502 ret = -EINVAL; 3503 } else { 3504 ret = -EINVAL; 3505 } 3506 3507 if (index == 0) { 3508 if (ret == -EINVAL || start_frame == start_frame_id) { 3509 start_frame = start_frame_id + 1; 3510 if (urb->dev->speed == USB_SPEED_LOW || 3511 urb->dev->speed == USB_SPEED_FULL) 3512 urb->start_frame = start_frame; 3513 else 3514 urb->start_frame = start_frame << 3; 3515 ret = 0; 3516 } 3517 } 3518 3519 if (ret) { 3520 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", 3521 start_frame, current_frame_id, index, 3522 start_frame_id, end_frame_id); 3523 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); 3524 return ret; 3525 } 3526 3527 return start_frame; 3528 } 3529 3530 /* This is for isoc transfer */ 3531 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3532 struct urb *urb, int slot_id, unsigned int ep_index) 3533 { 3534 struct xhci_ring *ep_ring; 3535 struct urb_priv *urb_priv; 3536 struct xhci_td *td; 3537 int num_tds, trbs_per_td; 3538 struct xhci_generic_trb *start_trb; 3539 bool first_trb; 3540 int start_cycle; 3541 u32 field, length_field; 3542 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3543 u64 start_addr, addr; 3544 int i, j; 3545 bool more_trbs_coming; 3546 struct xhci_virt_ep *xep; 3547 int frame_id; 3548 3549 xep = &xhci->devs[slot_id]->eps[ep_index]; 3550 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 3551 3552 num_tds = urb->number_of_packets; 3553 if (num_tds < 1) { 3554 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 3555 return -EINVAL; 3556 } 3557 start_addr = (u64) urb->transfer_dma; 3558 start_trb = &ep_ring->enqueue->generic; 3559 start_cycle = ep_ring->cycle_state; 3560 3561 urb_priv = urb->hcpriv; 3562 /* Queue the TRBs for each TD, even if they are zero-length */ 3563 for (i = 0; i < num_tds; i++) { 3564 unsigned int total_pkt_count, max_pkt; 3565 unsigned int burst_count, last_burst_pkt_count; 3566 u32 sia_frame_id; 3567 3568 first_trb = true; 3569 running_total = 0; 3570 addr = start_addr + urb->iso_frame_desc[i].offset; 3571 td_len = urb->iso_frame_desc[i].length; 3572 td_remain_len = td_len; 3573 max_pkt = GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc)); 3574 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); 3575 3576 /* A zero-length transfer still involves at least one packet. */ 3577 if (total_pkt_count == 0) 3578 total_pkt_count++; 3579 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); 3580 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, 3581 urb, total_pkt_count); 3582 3583 trbs_per_td = count_isoc_trbs_needed(urb, i); 3584 3585 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 3586 urb->stream_id, trbs_per_td, urb, i, mem_flags); 3587 if (ret < 0) { 3588 if (i == 0) 3589 return ret; 3590 goto cleanup; 3591 } 3592 td = urb_priv->td[i]; 3593 3594 /* use SIA as default, if frame id is used overwrite it */ 3595 sia_frame_id = TRB_SIA; 3596 if (!(urb->transfer_flags & URB_ISO_ASAP) && 3597 HCC_CFC(xhci->hcc_params)) { 3598 frame_id = xhci_get_isoc_frame_id(xhci, urb, i); 3599 if (frame_id >= 0) 3600 sia_frame_id = TRB_FRAME_ID(frame_id); 3601 } 3602 /* 3603 * Set isoc specific data for the first TRB in a TD. 3604 * Prevent HW from getting the TRBs by keeping the cycle state 3605 * inverted in the first TDs isoc TRB. 3606 */ 3607 field = TRB_TYPE(TRB_ISOC) | 3608 TRB_TLBPC(last_burst_pkt_count) | 3609 sia_frame_id | 3610 (i ? ep_ring->cycle_state : !start_cycle); 3611 3612 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ 3613 if (!xep->use_extended_tbc) 3614 field |= TRB_TBC(burst_count); 3615 3616 /* fill the rest of the TRB fields, and remaining normal TRBs */ 3617 for (j = 0; j < trbs_per_td; j++) { 3618 u32 remainder = 0; 3619 3620 /* only first TRB is isoc, overwrite otherwise */ 3621 if (!first_trb) 3622 field = TRB_TYPE(TRB_NORMAL) | 3623 ep_ring->cycle_state; 3624 3625 /* Only set interrupt on short packet for IN EPs */ 3626 if (usb_urb_dir_in(urb)) 3627 field |= TRB_ISP; 3628 3629 /* Set the chain bit for all except the last TRB */ 3630 if (j < trbs_per_td - 1) { 3631 more_trbs_coming = true; 3632 field |= TRB_CHAIN; 3633 } else { 3634 more_trbs_coming = false; 3635 td->last_trb = ep_ring->enqueue; 3636 field |= TRB_IOC; 3637 /* set BEI, except for the last TD */ 3638 if (xhci->hci_version >= 0x100 && 3639 !(xhci->quirks & XHCI_AVOID_BEI) && 3640 i < num_tds - 1) 3641 field |= TRB_BEI; 3642 } 3643 /* Calculate TRB length */ 3644 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3645 if (trb_buff_len > td_remain_len) 3646 trb_buff_len = td_remain_len; 3647 3648 /* Set the TRB length, TD size, & interrupter fields. */ 3649 remainder = xhci_td_remainder(xhci, running_total, 3650 trb_buff_len, td_len, 3651 urb, trbs_per_td - j - 1); 3652 3653 length_field = TRB_LEN(trb_buff_len) | 3654 TRB_INTR_TARGET(0); 3655 3656 /* xhci 1.1 with ETE uses TD Size field for TBC */ 3657 if (first_trb && xep->use_extended_tbc) 3658 length_field |= TRB_TD_SIZE_TBC(burst_count); 3659 else 3660 length_field |= TRB_TD_SIZE(remainder); 3661 first_trb = false; 3662 3663 queue_trb(xhci, ep_ring, more_trbs_coming, 3664 lower_32_bits(addr), 3665 upper_32_bits(addr), 3666 length_field, 3667 field); 3668 running_total += trb_buff_len; 3669 3670 addr += trb_buff_len; 3671 td_remain_len -= trb_buff_len; 3672 } 3673 3674 /* Check TD length */ 3675 if (running_total != td_len) { 3676 xhci_err(xhci, "ISOC TD length unmatch\n"); 3677 ret = -EINVAL; 3678 goto cleanup; 3679 } 3680 } 3681 3682 /* store the next frame id */ 3683 if (HCC_CFC(xhci->hcc_params)) 3684 xep->next_frame_id = urb->start_frame + num_tds * urb->interval; 3685 3686 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 3687 if (xhci->quirks & XHCI_AMD_PLL_FIX) 3688 usb_amd_quirk_pll_disable(); 3689 } 3690 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 3691 3692 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3693 start_cycle, start_trb); 3694 return 0; 3695 cleanup: 3696 /* Clean up a partially enqueued isoc transfer. */ 3697 3698 for (i--; i >= 0; i--) 3699 list_del_init(&urb_priv->td[i]->td_list); 3700 3701 /* Use the first TD as a temporary variable to turn the TDs we've queued 3702 * into No-ops with a software-owned cycle bit. That way the hardware 3703 * won't accidentally start executing bogus TDs when we partially 3704 * overwrite them. td->first_trb and td->start_seg are already set. 3705 */ 3706 urb_priv->td[0]->last_trb = ep_ring->enqueue; 3707 /* Every TRB except the first & last will have its cycle bit flipped. */ 3708 td_to_noop(xhci, ep_ring, urb_priv->td[0], true); 3709 3710 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 3711 ep_ring->enqueue = urb_priv->td[0]->first_trb; 3712 ep_ring->enq_seg = urb_priv->td[0]->start_seg; 3713 ep_ring->cycle_state = start_cycle; 3714 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp; 3715 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 3716 return ret; 3717 } 3718 3719 /* 3720 * Check transfer ring to guarantee there is enough room for the urb. 3721 * Update ISO URB start_frame and interval. 3722 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to 3723 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or 3724 * Contiguous Frame ID is not supported by HC. 3725 */ 3726 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 3727 struct urb *urb, int slot_id, unsigned int ep_index) 3728 { 3729 struct xhci_virt_device *xdev; 3730 struct xhci_ring *ep_ring; 3731 struct xhci_ep_ctx *ep_ctx; 3732 int start_frame; 3733 int num_tds, num_trbs, i; 3734 int ret; 3735 struct xhci_virt_ep *xep; 3736 int ist; 3737 3738 xdev = xhci->devs[slot_id]; 3739 xep = &xhci->devs[slot_id]->eps[ep_index]; 3740 ep_ring = xdev->eps[ep_index].ring; 3741 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3742 3743 num_trbs = 0; 3744 num_tds = urb->number_of_packets; 3745 for (i = 0; i < num_tds; i++) 3746 num_trbs += count_isoc_trbs_needed(urb, i); 3747 3748 /* Check the ring to guarantee there is enough room for the whole urb. 3749 * Do not insert any td of the urb to the ring if the check failed. 3750 */ 3751 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 3752 num_trbs, mem_flags); 3753 if (ret) 3754 return ret; 3755 3756 /* 3757 * Check interval value. This should be done before we start to 3758 * calculate the start frame value. 3759 */ 3760 check_interval(xhci, urb, ep_ctx); 3761 3762 /* Calculate the start frame and put it in urb->start_frame. */ 3763 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { 3764 if ((le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) == 3765 EP_STATE_RUNNING) { 3766 urb->start_frame = xep->next_frame_id; 3767 goto skip_start_over; 3768 } 3769 } 3770 3771 start_frame = readl(&xhci->run_regs->microframe_index); 3772 start_frame &= 0x3fff; 3773 /* 3774 * Round up to the next frame and consider the time before trb really 3775 * gets scheduled by hardare. 3776 */ 3777 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3778 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3779 ist <<= 3; 3780 start_frame += ist + XHCI_CFC_DELAY; 3781 start_frame = roundup(start_frame, 8); 3782 3783 /* 3784 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT 3785 * is greate than 8 microframes. 3786 */ 3787 if (urb->dev->speed == USB_SPEED_LOW || 3788 urb->dev->speed == USB_SPEED_FULL) { 3789 start_frame = roundup(start_frame, urb->interval << 3); 3790 urb->start_frame = start_frame >> 3; 3791 } else { 3792 start_frame = roundup(start_frame, urb->interval); 3793 urb->start_frame = start_frame; 3794 } 3795 3796 skip_start_over: 3797 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free; 3798 3799 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 3800 } 3801 3802 /**** Command Ring Operations ****/ 3803 3804 /* Generic function for queueing a command TRB on the command ring. 3805 * Check to make sure there's room on the command ring for one command TRB. 3806 * Also check that there's room reserved for commands that must not fail. 3807 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 3808 * then only check for the number of reserved spots. 3809 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 3810 * because the command event handler may want to resubmit a failed command. 3811 */ 3812 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 3813 u32 field1, u32 field2, 3814 u32 field3, u32 field4, bool command_must_succeed) 3815 { 3816 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 3817 int ret; 3818 3819 if ((xhci->xhc_state & XHCI_STATE_DYING) || 3820 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3821 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); 3822 return -ESHUTDOWN; 3823 } 3824 3825 if (!command_must_succeed) 3826 reserved_trbs++; 3827 3828 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 3829 reserved_trbs, GFP_ATOMIC); 3830 if (ret < 0) { 3831 xhci_err(xhci, "ERR: No room for command on command ring\n"); 3832 if (command_must_succeed) 3833 xhci_err(xhci, "ERR: Reserved TRB counting for " 3834 "unfailable commands failed.\n"); 3835 return ret; 3836 } 3837 3838 cmd->command_trb = xhci->cmd_ring->enqueue; 3839 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 3840 3841 /* if there are no other commands queued we start the timeout timer */ 3842 if (xhci->cmd_list.next == &cmd->cmd_list && 3843 !timer_pending(&xhci->cmd_timer)) { 3844 xhci->current_cmd = cmd; 3845 mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT); 3846 } 3847 3848 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 3849 field4 | xhci->cmd_ring->cycle_state); 3850 return 0; 3851 } 3852 3853 /* Queue a slot enable or disable request on the command ring */ 3854 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 3855 u32 trb_type, u32 slot_id) 3856 { 3857 return queue_command(xhci, cmd, 0, 0, 0, 3858 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 3859 } 3860 3861 /* Queue an address device command TRB */ 3862 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 3863 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 3864 { 3865 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3866 upper_32_bits(in_ctx_ptr), 0, 3867 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 3868 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 3869 } 3870 3871 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 3872 u32 field1, u32 field2, u32 field3, u32 field4) 3873 { 3874 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 3875 } 3876 3877 /* Queue a reset device command TRB */ 3878 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 3879 u32 slot_id) 3880 { 3881 return queue_command(xhci, cmd, 0, 0, 0, 3882 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 3883 false); 3884 } 3885 3886 /* Queue a configure endpoint command TRB */ 3887 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 3888 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 3889 u32 slot_id, bool command_must_succeed) 3890 { 3891 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3892 upper_32_bits(in_ctx_ptr), 0, 3893 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 3894 command_must_succeed); 3895 } 3896 3897 /* Queue an evaluate context command TRB */ 3898 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 3899 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 3900 { 3901 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3902 upper_32_bits(in_ctx_ptr), 0, 3903 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 3904 command_must_succeed); 3905 } 3906 3907 /* 3908 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 3909 * activity on an endpoint that is about to be suspended. 3910 */ 3911 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 3912 int slot_id, unsigned int ep_index, int suspend) 3913 { 3914 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3915 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3916 u32 type = TRB_TYPE(TRB_STOP_RING); 3917 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 3918 3919 return queue_command(xhci, cmd, 0, 0, 0, 3920 trb_slot_id | trb_ep_index | type | trb_suspend, false); 3921 } 3922 3923 /* Set Transfer Ring Dequeue Pointer command */ 3924 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, 3925 unsigned int slot_id, unsigned int ep_index, 3926 unsigned int stream_id, 3927 struct xhci_dequeue_state *deq_state) 3928 { 3929 dma_addr_t addr; 3930 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3931 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3932 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id); 3933 u32 trb_sct = 0; 3934 u32 type = TRB_TYPE(TRB_SET_DEQ); 3935 struct xhci_virt_ep *ep; 3936 struct xhci_command *cmd; 3937 int ret; 3938 3939 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 3940 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u", 3941 deq_state->new_deq_seg, 3942 (unsigned long long)deq_state->new_deq_seg->dma, 3943 deq_state->new_deq_ptr, 3944 (unsigned long long)xhci_trb_virt_to_dma( 3945 deq_state->new_deq_seg, deq_state->new_deq_ptr), 3946 deq_state->new_cycle_state); 3947 3948 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 3949 deq_state->new_deq_ptr); 3950 if (addr == 0) { 3951 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 3952 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", 3953 deq_state->new_deq_seg, deq_state->new_deq_ptr); 3954 return; 3955 } 3956 ep = &xhci->devs[slot_id]->eps[ep_index]; 3957 if ((ep->ep_state & SET_DEQ_PENDING)) { 3958 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 3959 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n"); 3960 return; 3961 } 3962 3963 /* This function gets called from contexts where it cannot sleep */ 3964 cmd = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 3965 if (!cmd) { 3966 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr: ENOMEM\n"); 3967 return; 3968 } 3969 3970 ep->queued_deq_seg = deq_state->new_deq_seg; 3971 ep->queued_deq_ptr = deq_state->new_deq_ptr; 3972 if (stream_id) 3973 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 3974 ret = queue_command(xhci, cmd, 3975 lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state, 3976 upper_32_bits(addr), trb_stream_id, 3977 trb_slot_id | trb_ep_index | type, false); 3978 if (ret < 0) { 3979 xhci_free_command(xhci, cmd); 3980 return; 3981 } 3982 3983 /* Stop the TD queueing code from ringing the doorbell until 3984 * this command completes. The HC won't set the dequeue pointer 3985 * if the ring is running, and ringing the doorbell starts the 3986 * ring running. 3987 */ 3988 ep->ep_state |= SET_DEQ_PENDING; 3989 } 3990 3991 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 3992 int slot_id, unsigned int ep_index) 3993 { 3994 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3995 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3996 u32 type = TRB_TYPE(TRB_RESET_EP); 3997 3998 return queue_command(xhci, cmd, 0, 0, 0, 3999 trb_slot_id | trb_ep_index | type, false); 4000 } 4001