1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2015 MediaTek Inc. 4 * Author: 5 * Zhigang.Wei <zhigang.wei@mediatek.com> 6 * Chunfeng.Yun <chunfeng.yun@mediatek.com> 7 */ 8 9 #ifndef _XHCI_MTK_H_ 10 #define _XHCI_MTK_H_ 11 12 #include "xhci.h" 13 14 /** 15 * To simplify scheduler algorithm, set a upper limit for ESIT, 16 * if a synchromous ep's ESIT is larger than @XHCI_MTK_MAX_ESIT, 17 * round down to the limit value, that means allocating more 18 * bandwidth to it. 19 */ 20 #define XHCI_MTK_MAX_ESIT 64 21 22 /** 23 * @split_bit_map: used to avoid split microframes overlay 24 * @ep_list: Endpoints using this TT 25 * @usb_tt: usb TT related 26 * @tt_port: TT port number 27 */ 28 struct mu3h_sch_tt { 29 DECLARE_BITMAP(split_bit_map, XHCI_MTK_MAX_ESIT); 30 struct list_head ep_list; 31 struct usb_tt *usb_tt; 32 int tt_port; 33 }; 34 35 /** 36 * struct mu3h_sch_bw_info: schedule information for bandwidth domain 37 * 38 * @bus_bw: array to keep track of bandwidth already used at each uframes 39 * @bw_ep_list: eps in the bandwidth domain 40 * 41 * treat a HS root port as a bandwidth domain, but treat a SS root port as 42 * two bandwidth domains, one for IN eps and another for OUT eps. 43 */ 44 struct mu3h_sch_bw_info { 45 u32 bus_bw[XHCI_MTK_MAX_ESIT]; 46 struct list_head bw_ep_list; 47 }; 48 49 /** 50 * struct mu3h_sch_ep_info: schedule information for endpoint 51 * 52 * @esit: unit is 125us, equal to 2 << Interval field in ep-context 53 * @num_budget_microframes: number of continuous uframes 54 * (@repeat==1) scheduled within the interval 55 * @bw_cost_per_microframe: bandwidth cost per microframe 56 * @endpoint: linked into bandwidth domain which it belongs to 57 * @tt_endpoint: linked into mu3h_sch_tt's list which it belongs to 58 * @sch_tt: mu3h_sch_tt linked into 59 * @ep_type: endpoint type 60 * @maxpkt: max packet size of endpoint 61 * @ep: address of usb_host_endpoint struct 62 * @offset: which uframe of the interval that transfer should be 63 * scheduled first time within the interval 64 * @repeat: the time gap between two uframes that transfers are 65 * scheduled within a interval. in the simple algorithm, only 66 * assign 0 or 1 to it; 0 means using only one uframe in a 67 * interval, and 1 means using @num_budget_microframes 68 * continuous uframes 69 * @pkts: number of packets to be transferred in the scheduled uframes 70 * @cs_count: number of CS that host will trigger 71 * @burst_mode: burst mode for scheduling. 0: normal burst mode, 72 * distribute the bMaxBurst+1 packets for a single burst 73 * according to @pkts and @repeat, repeate the burst multiple 74 * times; 1: distribute the (bMaxBurst+1)*(Mult+1) packets 75 * according to @pkts and @repeat. normal mode is used by 76 * default 77 * @bw_budget_table: table to record bandwidth budget per microframe 78 */ 79 struct mu3h_sch_ep_info { 80 u32 esit; 81 u32 num_budget_microframes; 82 u32 bw_cost_per_microframe; 83 struct list_head endpoint; 84 struct list_head tt_endpoint; 85 struct mu3h_sch_tt *sch_tt; 86 u32 ep_type; 87 u32 maxpkt; 88 void *ep; 89 /* 90 * mtk xHCI scheduling information put into reserved DWs 91 * in ep context 92 */ 93 u32 offset; 94 u32 repeat; 95 u32 pkts; 96 u32 cs_count; 97 u32 burst_mode; 98 u32 bw_budget_table[0]; 99 }; 100 101 #define MU3C_U3_PORT_MAX 4 102 #define MU3C_U2_PORT_MAX 5 103 104 /** 105 * struct mu3c_ippc_regs: MTK ssusb ip port control registers 106 * @ip_pw_ctr0~3: ip power and clock control registers 107 * @ip_pw_sts1~2: ip power and clock status registers 108 * @ip_xhci_cap: ip xHCI capability register 109 * @u3_ctrl_p[x]: ip usb3 port x control register, only low 4bytes are used 110 * @u2_ctrl_p[x]: ip usb2 port x control register, only low 4bytes are used 111 * @u2_phy_pll: usb2 phy pll control register 112 */ 113 struct mu3c_ippc_regs { 114 __le32 ip_pw_ctr0; 115 __le32 ip_pw_ctr1; 116 __le32 ip_pw_ctr2; 117 __le32 ip_pw_ctr3; 118 __le32 ip_pw_sts1; 119 __le32 ip_pw_sts2; 120 __le32 reserved0[3]; 121 __le32 ip_xhci_cap; 122 __le32 reserved1[2]; 123 __le64 u3_ctrl_p[MU3C_U3_PORT_MAX]; 124 __le64 u2_ctrl_p[MU3C_U2_PORT_MAX]; 125 __le32 reserved2; 126 __le32 u2_phy_pll; 127 __le32 reserved3[33]; /* 0x80 ~ 0xff */ 128 }; 129 130 struct xhci_hcd_mtk { 131 struct device *dev; 132 struct usb_hcd *hcd; 133 struct mu3h_sch_bw_info *sch_array; 134 struct mu3c_ippc_regs __iomem *ippc_regs; 135 bool has_ippc; 136 int num_u2_ports; 137 int num_u3_ports; 138 int u3p_dis_msk; 139 struct regulator *vusb33; 140 struct regulator *vbus; 141 struct clk *sys_clk; /* sys and mac clock */ 142 struct clk *ref_clk; 143 struct clk *mcu_clk; 144 struct clk *dma_clk; 145 struct regmap *pericfg; 146 struct phy **phys; 147 int num_phys; 148 bool lpm_support; 149 /* usb remote wakeup */ 150 bool uwk_en; 151 struct regmap *uwk; 152 u32 uwk_reg_base; 153 u32 uwk_vers; 154 }; 155 156 static inline struct xhci_hcd_mtk *hcd_to_mtk(struct usb_hcd *hcd) 157 { 158 return dev_get_drvdata(hcd->self.controller); 159 } 160 161 #if IS_ENABLED(CONFIG_USB_XHCI_MTK) 162 int xhci_mtk_sch_init(struct xhci_hcd_mtk *mtk); 163 void xhci_mtk_sch_exit(struct xhci_hcd_mtk *mtk); 164 int xhci_mtk_add_ep_quirk(struct usb_hcd *hcd, struct usb_device *udev, 165 struct usb_host_endpoint *ep); 166 void xhci_mtk_drop_ep_quirk(struct usb_hcd *hcd, struct usb_device *udev, 167 struct usb_host_endpoint *ep); 168 169 #else 170 static inline int xhci_mtk_add_ep_quirk(struct usb_hcd *hcd, 171 struct usb_device *udev, struct usb_host_endpoint *ep) 172 { 173 return 0; 174 } 175 176 static inline void xhci_mtk_drop_ep_quirk(struct usb_hcd *hcd, 177 struct usb_device *udev, struct usb_host_endpoint *ep) 178 { 179 } 180 181 #endif 182 183 #endif /* _XHCI_MTK_H_ */ 184