xref: /linux/drivers/usb/host/xhci-mtk.h (revision b7019ac550eb3916f34d79db583e9b7ea2524afa)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2015 MediaTek Inc.
4  * Author:
5  *  Zhigang.Wei <zhigang.wei@mediatek.com>
6  *  Chunfeng.Yun <chunfeng.yun@mediatek.com>
7  */
8 
9 #ifndef _XHCI_MTK_H_
10 #define _XHCI_MTK_H_
11 
12 #include "xhci.h"
13 
14 /**
15  * To simplify scheduler algorithm, set a upper limit for ESIT,
16  * if a synchromous ep's ESIT is larger than @XHCI_MTK_MAX_ESIT,
17  * round down to the limit value, that means allocating more
18  * bandwidth to it.
19  */
20 #define XHCI_MTK_MAX_ESIT	64
21 
22 /**
23  * @split_bit_map: used to avoid split microframes overlay
24  * @ep_list: Endpoints using this TT
25  * @usb_tt: usb TT related
26  * @tt_port: TT port number
27  */
28 struct mu3h_sch_tt {
29 	DECLARE_BITMAP(split_bit_map, XHCI_MTK_MAX_ESIT);
30 	struct list_head ep_list;
31 	struct usb_tt *usb_tt;
32 	int tt_port;
33 };
34 
35 /**
36  * struct mu3h_sch_bw_info: schedule information for bandwidth domain
37  *
38  * @bus_bw: array to keep track of bandwidth already used at each uframes
39  * @bw_ep_list: eps in the bandwidth domain
40  *
41  * treat a HS root port as a bandwidth domain, but treat a SS root port as
42  * two bandwidth domains, one for IN eps and another for OUT eps.
43  */
44 struct mu3h_sch_bw_info {
45 	u32 bus_bw[XHCI_MTK_MAX_ESIT];
46 	struct list_head bw_ep_list;
47 };
48 
49 /**
50  * struct mu3h_sch_ep_info: schedule information for endpoint
51  *
52  * @esit: unit is 125us, equal to 2 << Interval field in ep-context
53  * @num_budget_microframes: number of continuous uframes
54  *		(@repeat==1) scheduled within the interval
55  * @bw_cost_per_microframe: bandwidth cost per microframe
56  * @endpoint: linked into bandwidth domain which it belongs to
57  * @tt_endpoint: linked into mu3h_sch_tt's list which it belongs to
58  * @sch_tt: mu3h_sch_tt linked into
59  * @ep_type: endpoint type
60  * @maxpkt: max packet size of endpoint
61  * @ep: address of usb_host_endpoint struct
62  * @offset: which uframe of the interval that transfer should be
63  *		scheduled first time within the interval
64  * @repeat: the time gap between two uframes that transfers are
65  *		scheduled within a interval. in the simple algorithm, only
66  *		assign 0 or 1 to it; 0 means using only one uframe in a
67  *		interval, and 1 means using @num_budget_microframes
68  *		continuous uframes
69  * @pkts: number of packets to be transferred in the scheduled uframes
70  * @cs_count: number of CS that host will trigger
71  * @burst_mode: burst mode for scheduling. 0: normal burst mode,
72  *		distribute the bMaxBurst+1 packets for a single burst
73  *		according to @pkts and @repeat, repeate the burst multiple
74  *		times; 1: distribute the (bMaxBurst+1)*(Mult+1) packets
75  *		according to @pkts and @repeat. normal mode is used by
76  *		default
77  * @bw_budget_table: table to record bandwidth budget per microframe
78  */
79 struct mu3h_sch_ep_info {
80 	u32 esit;
81 	u32 num_budget_microframes;
82 	u32 bw_cost_per_microframe;
83 	struct list_head endpoint;
84 	struct list_head tt_endpoint;
85 	struct mu3h_sch_tt *sch_tt;
86 	u32 ep_type;
87 	u32 maxpkt;
88 	void *ep;
89 	/*
90 	 * mtk xHCI scheduling information put into reserved DWs
91 	 * in ep context
92 	 */
93 	u32 offset;
94 	u32 repeat;
95 	u32 pkts;
96 	u32 cs_count;
97 	u32 burst_mode;
98 	u32 bw_budget_table[0];
99 };
100 
101 #define MU3C_U3_PORT_MAX 4
102 #define MU3C_U2_PORT_MAX 5
103 
104 /**
105  * struct mu3c_ippc_regs: MTK ssusb ip port control registers
106  * @ip_pw_ctr0~3: ip power and clock control registers
107  * @ip_pw_sts1~2: ip power and clock status registers
108  * @ip_xhci_cap: ip xHCI capability register
109  * @u3_ctrl_p[x]: ip usb3 port x control register, only low 4bytes are used
110  * @u2_ctrl_p[x]: ip usb2 port x control register, only low 4bytes are used
111  * @u2_phy_pll: usb2 phy pll control register
112  */
113 struct mu3c_ippc_regs {
114 	__le32 ip_pw_ctr0;
115 	__le32 ip_pw_ctr1;
116 	__le32 ip_pw_ctr2;
117 	__le32 ip_pw_ctr3;
118 	__le32 ip_pw_sts1;
119 	__le32 ip_pw_sts2;
120 	__le32 reserved0[3];
121 	__le32 ip_xhci_cap;
122 	__le32 reserved1[2];
123 	__le64 u3_ctrl_p[MU3C_U3_PORT_MAX];
124 	__le64 u2_ctrl_p[MU3C_U2_PORT_MAX];
125 	__le32 reserved2;
126 	__le32 u2_phy_pll;
127 	__le32 reserved3[33]; /* 0x80 ~ 0xff */
128 };
129 
130 struct xhci_hcd_mtk {
131 	struct device *dev;
132 	struct usb_hcd *hcd;
133 	struct mu3h_sch_bw_info *sch_array;
134 	struct mu3c_ippc_regs __iomem *ippc_regs;
135 	bool has_ippc;
136 	int num_u2_ports;
137 	int num_u3_ports;
138 	int u3p_dis_msk;
139 	struct regulator *vusb33;
140 	struct regulator *vbus;
141 	struct clk *sys_clk;	/* sys and mac clock */
142 	struct clk *ref_clk;
143 	struct clk *mcu_clk;
144 	struct clk *dma_clk;
145 	struct regmap *pericfg;
146 	struct phy **phys;
147 	int num_phys;
148 	bool lpm_support;
149 	/* usb remote wakeup */
150 	bool uwk_en;
151 	struct regmap *uwk;
152 	u32 uwk_reg_base;
153 	u32 uwk_vers;
154 };
155 
156 static inline struct xhci_hcd_mtk *hcd_to_mtk(struct usb_hcd *hcd)
157 {
158 	return dev_get_drvdata(hcd->self.controller);
159 }
160 
161 #if IS_ENABLED(CONFIG_USB_XHCI_MTK)
162 int xhci_mtk_sch_init(struct xhci_hcd_mtk *mtk);
163 void xhci_mtk_sch_exit(struct xhci_hcd_mtk *mtk);
164 int xhci_mtk_add_ep_quirk(struct usb_hcd *hcd, struct usb_device *udev,
165 		struct usb_host_endpoint *ep);
166 void xhci_mtk_drop_ep_quirk(struct usb_hcd *hcd, struct usb_device *udev,
167 		struct usb_host_endpoint *ep);
168 
169 #else
170 static inline int xhci_mtk_add_ep_quirk(struct usb_hcd *hcd,
171 	struct usb_device *udev, struct usb_host_endpoint *ep)
172 {
173 	return 0;
174 }
175 
176 static inline void xhci_mtk_drop_ep_quirk(struct usb_hcd *hcd,
177 	struct usb_device *udev, struct usb_host_endpoint *ep)
178 {
179 }
180 
181 #endif
182 
183 #endif		/* _XHCI_MTK_H_ */
184