xref: /linux/drivers/usb/host/xhci-mtk-sch.c (revision e53b20598f394e37951d6355f1c88ae01165b53f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2015 MediaTek Inc.
4  * Author:
5  *  Zhigang.Wei <zhigang.wei@mediatek.com>
6  *  Chunfeng.Yun <chunfeng.yun@mediatek.com>
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/slab.h>
12 
13 #include "xhci.h"
14 #include "xhci-mtk.h"
15 
16 #define SSP_BW_BOUNDARY	130000
17 #define SS_BW_BOUNDARY	51000
18 /* table 5-5. High-speed Isoc Transaction Limits in usb_20 spec */
19 #define HS_BW_BOUNDARY	6144
20 /* usb2 spec section11.18.1: at most 188 FS bytes per microframe */
21 #define FS_PAYLOAD_MAX 188
22 
23 #define DBG_BUF_EN	64
24 
25 /* schedule error type */
26 #define ESCH_SS_Y6		1001
27 #define ESCH_SS_OVERLAP		1002
28 #define ESCH_CS_OVERFLOW	1003
29 #define ESCH_BW_OVERFLOW	1004
30 #define ESCH_FIXME		1005
31 
32 /* mtk scheduler bitmasks */
33 #define EP_BPKTS(p)	((p) & 0x7f)
34 #define EP_BCSCOUNT(p)	(((p) & 0x7) << 8)
35 #define EP_BBM(p)	((p) << 11)
36 #define EP_BOFFSET(p)	((p) & 0x3fff)
37 #define EP_BREPEAT(p)	(((p) & 0x7fff) << 16)
38 
39 static char *sch_error_string(int err_num)
40 {
41 	switch (err_num) {
42 	case ESCH_SS_Y6:
43 		return "Can't schedule Start-Split in Y6";
44 	case ESCH_SS_OVERLAP:
45 		return "Can't find a suitable Start-Split location";
46 	case ESCH_CS_OVERFLOW:
47 		return "The last Complete-Split is greater than 7";
48 	case ESCH_BW_OVERFLOW:
49 		return "Bandwidth exceeds the maximum limit";
50 	case ESCH_FIXME:
51 		return "FIXME, to be resolved";
52 	default:
53 		return "Unknown";
54 	}
55 }
56 
57 static int is_fs_or_ls(enum usb_device_speed speed)
58 {
59 	return speed == USB_SPEED_FULL || speed == USB_SPEED_LOW;
60 }
61 
62 static const char *
63 decode_ep(struct usb_host_endpoint *ep, enum usb_device_speed speed)
64 {
65 	static char buf[DBG_BUF_EN];
66 	struct usb_endpoint_descriptor *epd = &ep->desc;
67 	unsigned int interval;
68 	const char *unit;
69 
70 	interval = usb_decode_interval(epd, speed);
71 	if (interval % 1000) {
72 		unit = "us";
73 	} else {
74 		unit = "ms";
75 		interval /= 1000;
76 	}
77 
78 	snprintf(buf, DBG_BUF_EN, "%s ep%d%s %s, mpkt:%d, interval:%d/%d%s",
79 		 usb_speed_string(speed), usb_endpoint_num(epd),
80 		 usb_endpoint_dir_in(epd) ? "in" : "out",
81 		 usb_ep_type_string(usb_endpoint_type(epd)),
82 		 usb_endpoint_maxp(epd), epd->bInterval, interval, unit);
83 
84 	return buf;
85 }
86 
87 static u32 get_bw_boundary(enum usb_device_speed speed)
88 {
89 	u32 boundary;
90 
91 	switch (speed) {
92 	case USB_SPEED_SUPER_PLUS:
93 		boundary = SSP_BW_BOUNDARY;
94 		break;
95 	case USB_SPEED_SUPER:
96 		boundary = SS_BW_BOUNDARY;
97 		break;
98 	default:
99 		boundary = HS_BW_BOUNDARY;
100 		break;
101 	}
102 
103 	return boundary;
104 }
105 
106 /*
107 * get the bandwidth domain which @ep belongs to.
108 *
109 * the bandwidth domain array is saved to @sch_array of struct xhci_hcd_mtk,
110 * each HS root port is treated as a single bandwidth domain,
111 * but each SS root port is treated as two bandwidth domains, one for IN eps,
112 * one for OUT eps.
113 * @real_port value is defined as follow according to xHCI spec:
114 * 1 for SSport0, ..., N+1 for SSportN, N+2 for HSport0, N+3 for HSport1, etc
115 * so the bandwidth domain array is organized as follow for simplification:
116 * SSport0-OUT, SSport0-IN, ..., SSportX-OUT, SSportX-IN, HSport0, ..., HSportY
117 */
118 static struct mu3h_sch_bw_info *
119 get_bw_info(struct xhci_hcd_mtk *mtk, struct usb_device *udev,
120 	    struct usb_host_endpoint *ep)
121 {
122 	struct xhci_hcd *xhci = hcd_to_xhci(mtk->hcd);
123 	struct xhci_virt_device *virt_dev;
124 	int bw_index;
125 
126 	virt_dev = xhci->devs[udev->slot_id];
127 	if (!virt_dev->real_port) {
128 		WARN_ONCE(1, "%s invalid real_port\n", dev_name(&udev->dev));
129 		return NULL;
130 	}
131 
132 	if (udev->speed >= USB_SPEED_SUPER) {
133 		if (usb_endpoint_dir_out(&ep->desc))
134 			bw_index = (virt_dev->real_port - 1) * 2;
135 		else
136 			bw_index = (virt_dev->real_port - 1) * 2 + 1;
137 	} else {
138 		/* add one more for each SS port */
139 		bw_index = virt_dev->real_port + xhci->usb3_rhub.num_ports - 1;
140 	}
141 
142 	return &mtk->sch_array[bw_index];
143 }
144 
145 static u32 get_esit(struct xhci_ep_ctx *ep_ctx)
146 {
147 	u32 esit;
148 
149 	esit = 1 << CTX_TO_EP_INTERVAL(le32_to_cpu(ep_ctx->ep_info));
150 	if (esit > XHCI_MTK_MAX_ESIT)
151 		esit = XHCI_MTK_MAX_ESIT;
152 
153 	return esit;
154 }
155 
156 static struct mu3h_sch_tt *find_tt(struct usb_device *udev)
157 {
158 	struct usb_tt *utt = udev->tt;
159 	struct mu3h_sch_tt *tt, **tt_index, **ptt;
160 	bool allocated_index = false;
161 
162 	if (!utt)
163 		return NULL;	/* Not below a TT */
164 
165 	/*
166 	 * Find/create our data structure.
167 	 * For hubs with a single TT, we get it directly.
168 	 * For hubs with multiple TTs, there's an extra level of pointers.
169 	 */
170 	tt_index = NULL;
171 	if (utt->multi) {
172 		tt_index = utt->hcpriv;
173 		if (!tt_index) {	/* Create the index array */
174 			tt_index = kcalloc(utt->hub->maxchild,
175 					sizeof(*tt_index), GFP_KERNEL);
176 			if (!tt_index)
177 				return ERR_PTR(-ENOMEM);
178 			utt->hcpriv = tt_index;
179 			allocated_index = true;
180 		}
181 		ptt = &tt_index[udev->ttport - 1];
182 	} else {
183 		ptt = (struct mu3h_sch_tt **) &utt->hcpriv;
184 	}
185 
186 	tt = *ptt;
187 	if (!tt) {	/* Create the mu3h_sch_tt */
188 		tt = kzalloc(sizeof(*tt), GFP_KERNEL);
189 		if (!tt) {
190 			if (allocated_index) {
191 				utt->hcpriv = NULL;
192 				kfree(tt_index);
193 			}
194 			return ERR_PTR(-ENOMEM);
195 		}
196 		INIT_LIST_HEAD(&tt->ep_list);
197 		*ptt = tt;
198 	}
199 
200 	return tt;
201 }
202 
203 /* Release the TT above udev, if it's not in use */
204 static void drop_tt(struct usb_device *udev)
205 {
206 	struct usb_tt *utt = udev->tt;
207 	struct mu3h_sch_tt *tt, **tt_index, **ptt;
208 	int i, cnt;
209 
210 	if (!utt || !utt->hcpriv)
211 		return;		/* Not below a TT, or never allocated */
212 
213 	cnt = 0;
214 	if (utt->multi) {
215 		tt_index = utt->hcpriv;
216 		ptt = &tt_index[udev->ttport - 1];
217 		/*  How many entries are left in tt_index? */
218 		for (i = 0; i < utt->hub->maxchild; ++i)
219 			cnt += !!tt_index[i];
220 	} else {
221 		tt_index = NULL;
222 		ptt = (struct mu3h_sch_tt **)&utt->hcpriv;
223 	}
224 
225 	tt = *ptt;
226 	if (!tt || !list_empty(&tt->ep_list))
227 		return;		/* never allocated , or still in use*/
228 
229 	*ptt = NULL;
230 	kfree(tt);
231 
232 	if (cnt == 1) {
233 		utt->hcpriv = NULL;
234 		kfree(tt_index);
235 	}
236 }
237 
238 static struct mu3h_sch_ep_info *
239 create_sch_ep(struct xhci_hcd_mtk *mtk, struct usb_device *udev,
240 	      struct usb_host_endpoint *ep)
241 {
242 	struct mu3h_sch_ep_info *sch_ep;
243 	struct mu3h_sch_bw_info *bw_info;
244 	struct mu3h_sch_tt *tt = NULL;
245 
246 	bw_info = get_bw_info(mtk, udev, ep);
247 	if (!bw_info)
248 		return ERR_PTR(-ENODEV);
249 
250 	sch_ep = kzalloc(sizeof(*sch_ep), GFP_KERNEL);
251 	if (!sch_ep)
252 		return ERR_PTR(-ENOMEM);
253 
254 	if (is_fs_or_ls(udev->speed)) {
255 		tt = find_tt(udev);
256 		if (IS_ERR(tt)) {
257 			kfree(sch_ep);
258 			return ERR_PTR(-ENOMEM);
259 		}
260 	}
261 
262 	sch_ep->bw_info = bw_info;
263 	sch_ep->sch_tt = tt;
264 	sch_ep->ep = ep;
265 	sch_ep->speed = udev->speed;
266 	INIT_LIST_HEAD(&sch_ep->endpoint);
267 	INIT_LIST_HEAD(&sch_ep->tt_endpoint);
268 	INIT_HLIST_NODE(&sch_ep->hentry);
269 
270 	return sch_ep;
271 }
272 
273 static void setup_sch_info(struct xhci_ep_ctx *ep_ctx,
274 			   struct mu3h_sch_ep_info *sch_ep)
275 {
276 	u32 ep_type;
277 	u32 maxpkt;
278 	u32 max_burst;
279 	u32 mult;
280 	u32 esit_pkts;
281 	u32 max_esit_payload;
282 
283 	ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
284 	maxpkt = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
285 	max_burst = CTX_TO_MAX_BURST(le32_to_cpu(ep_ctx->ep_info2));
286 	mult = CTX_TO_EP_MULT(le32_to_cpu(ep_ctx->ep_info));
287 	max_esit_payload =
288 		(CTX_TO_MAX_ESIT_PAYLOAD_HI(
289 			le32_to_cpu(ep_ctx->ep_info)) << 16) |
290 		 CTX_TO_MAX_ESIT_PAYLOAD(le32_to_cpu(ep_ctx->tx_info));
291 
292 	sch_ep->esit = get_esit(ep_ctx);
293 	sch_ep->num_esit = XHCI_MTK_MAX_ESIT / sch_ep->esit;
294 	sch_ep->ep_type = ep_type;
295 	sch_ep->maxpkt = maxpkt;
296 	sch_ep->offset = 0;
297 	sch_ep->burst_mode = 0;
298 	sch_ep->repeat = 0;
299 
300 	if (sch_ep->speed == USB_SPEED_HIGH) {
301 		sch_ep->cs_count = 0;
302 
303 		/*
304 		 * usb_20 spec section5.9
305 		 * a single microframe is enough for HS synchromous endpoints
306 		 * in a interval
307 		 */
308 		sch_ep->num_budget_microframes = 1;
309 
310 		/*
311 		 * xHCI spec section6.2.3.4
312 		 * @max_burst is the number of additional transactions
313 		 * opportunities per microframe
314 		 */
315 		sch_ep->pkts = max_burst + 1;
316 		sch_ep->bw_cost_per_microframe = maxpkt * sch_ep->pkts;
317 	} else if (sch_ep->speed >= USB_SPEED_SUPER) {
318 		/* usb3_r1 spec section4.4.7 & 4.4.8 */
319 		sch_ep->cs_count = 0;
320 		sch_ep->burst_mode = 1;
321 		/*
322 		 * some device's (d)wBytesPerInterval is set as 0,
323 		 * then max_esit_payload is 0, so evaluate esit_pkts from
324 		 * mult and burst
325 		 */
326 		esit_pkts = DIV_ROUND_UP(max_esit_payload, maxpkt);
327 		if (esit_pkts == 0)
328 			esit_pkts = (mult + 1) * (max_burst + 1);
329 
330 		if (ep_type == INT_IN_EP || ep_type == INT_OUT_EP) {
331 			sch_ep->pkts = esit_pkts;
332 			sch_ep->num_budget_microframes = 1;
333 		}
334 
335 		if (ep_type == ISOC_IN_EP || ep_type == ISOC_OUT_EP) {
336 
337 			if (sch_ep->esit == 1)
338 				sch_ep->pkts = esit_pkts;
339 			else if (esit_pkts <= sch_ep->esit)
340 				sch_ep->pkts = 1;
341 			else
342 				sch_ep->pkts = roundup_pow_of_two(esit_pkts)
343 					/ sch_ep->esit;
344 
345 			sch_ep->num_budget_microframes =
346 				DIV_ROUND_UP(esit_pkts, sch_ep->pkts);
347 
348 			sch_ep->repeat = !!(sch_ep->num_budget_microframes > 1);
349 		}
350 		sch_ep->bw_cost_per_microframe = maxpkt * sch_ep->pkts;
351 	} else if (is_fs_or_ls(sch_ep->speed)) {
352 		sch_ep->pkts = 1; /* at most one packet for each microframe */
353 
354 		/*
355 		 * num_budget_microframes and cs_count will be updated when
356 		 * check TT for INT_OUT_EP, ISOC/INT_IN_EP type
357 		 */
358 		sch_ep->cs_count = DIV_ROUND_UP(maxpkt, FS_PAYLOAD_MAX);
359 		sch_ep->num_budget_microframes = sch_ep->cs_count;
360 		sch_ep->bw_cost_per_microframe = min_t(u32, maxpkt, FS_PAYLOAD_MAX);
361 	}
362 }
363 
364 /* Get maximum bandwidth when we schedule at offset slot. */
365 static u32 get_max_bw(struct mu3h_sch_bw_info *sch_bw,
366 	struct mu3h_sch_ep_info *sch_ep, u32 offset)
367 {
368 	u32 max_bw = 0;
369 	u32 bw;
370 	int i, j, k;
371 
372 	for (i = 0; i < sch_ep->num_esit; i++) {
373 		u32 base = offset + i * sch_ep->esit;
374 
375 		for (j = 0; j < sch_ep->num_budget_microframes; j++) {
376 			k = XHCI_MTK_BW_INDEX(base + j);
377 			bw = sch_bw->bus_bw[k] + sch_ep->bw_cost_per_microframe;
378 			if (bw > max_bw)
379 				max_bw = bw;
380 		}
381 	}
382 	return max_bw;
383 }
384 
385 static void update_bus_bw(struct mu3h_sch_bw_info *sch_bw,
386 	struct mu3h_sch_ep_info *sch_ep, bool used)
387 {
388 	int bw_updated;
389 	u32 base;
390 	int i, j;
391 
392 	bw_updated = sch_ep->bw_cost_per_microframe * (used ? 1 : -1);
393 
394 	for (i = 0; i < sch_ep->num_esit; i++) {
395 		base = sch_ep->offset + i * sch_ep->esit;
396 		for (j = 0; j < sch_ep->num_budget_microframes; j++)
397 			sch_bw->bus_bw[XHCI_MTK_BW_INDEX(base + j)] += bw_updated;
398 	}
399 }
400 
401 static int check_fs_bus_bw(struct mu3h_sch_ep_info *sch_ep, int offset)
402 {
403 	struct mu3h_sch_tt *tt = sch_ep->sch_tt;
404 	u32 tmp;
405 	int base;
406 	int i, j, k;
407 
408 	for (i = 0; i < sch_ep->num_esit; i++) {
409 		base = offset + i * sch_ep->esit;
410 
411 		/*
412 		 * Compared with hs bus, no matter what ep type,
413 		 * the hub will always delay one uframe to send data
414 		 */
415 		for (j = 0; j < sch_ep->num_budget_microframes; j++) {
416 			k = XHCI_MTK_BW_INDEX(base + j);
417 			tmp = tt->fs_bus_bw[k] + sch_ep->bw_cost_per_microframe;
418 			if (tmp > FS_PAYLOAD_MAX)
419 				return -ESCH_BW_OVERFLOW;
420 		}
421 	}
422 
423 	return 0;
424 }
425 
426 static int check_sch_tt(struct mu3h_sch_ep_info *sch_ep, u32 offset)
427 {
428 	u32 extra_cs_count;
429 	u32 start_ss, last_ss;
430 	u32 start_cs, last_cs;
431 
432 	if (!sch_ep->sch_tt)
433 		return 0;
434 
435 	start_ss = offset % 8;
436 
437 	if (sch_ep->ep_type == ISOC_OUT_EP) {
438 		last_ss = start_ss + sch_ep->cs_count - 1;
439 
440 		/*
441 		 * usb_20 spec section11.18:
442 		 * must never schedule Start-Split in Y6
443 		 */
444 		if (!(start_ss == 7 || last_ss < 6))
445 			return -ESCH_SS_Y6;
446 
447 	} else {
448 		u32 cs_count = DIV_ROUND_UP(sch_ep->maxpkt, FS_PAYLOAD_MAX);
449 
450 		/*
451 		 * usb_20 spec section11.18:
452 		 * must never schedule Start-Split in Y6
453 		 */
454 		if (start_ss == 6)
455 			return -ESCH_SS_Y6;
456 
457 		/* one uframe for ss + one uframe for idle */
458 		start_cs = (start_ss + 2) % 8;
459 		last_cs = start_cs + cs_count - 1;
460 
461 		if (last_cs > 7)
462 			return -ESCH_CS_OVERFLOW;
463 
464 		if (sch_ep->ep_type == ISOC_IN_EP)
465 			extra_cs_count = (last_cs == 7) ? 1 : 2;
466 		else /*  ep_type : INTR IN / INTR OUT */
467 			extra_cs_count = 1;
468 
469 		cs_count += extra_cs_count;
470 		if (cs_count > 7)
471 			cs_count = 7; /* HW limit */
472 
473 		sch_ep->cs_count = cs_count;
474 		/* one for ss, the other for idle */
475 		sch_ep->num_budget_microframes = cs_count + 2;
476 
477 		/*
478 		 * if interval=1, maxp >752, num_budge_micoframe is larger
479 		 * than sch_ep->esit, will overstep boundary
480 		 */
481 		if (sch_ep->num_budget_microframes > sch_ep->esit)
482 			sch_ep->num_budget_microframes = sch_ep->esit;
483 	}
484 
485 	return check_fs_bus_bw(sch_ep, offset);
486 }
487 
488 static void update_sch_tt(struct mu3h_sch_ep_info *sch_ep, bool used)
489 {
490 	struct mu3h_sch_tt *tt = sch_ep->sch_tt;
491 	int bw_updated;
492 	u32 base;
493 	int i, j;
494 
495 	bw_updated = sch_ep->bw_cost_per_microframe * (used ? 1 : -1);
496 
497 	for (i = 0; i < sch_ep->num_esit; i++) {
498 		base = sch_ep->offset + i * sch_ep->esit;
499 
500 		for (j = 0; j < sch_ep->num_budget_microframes; j++)
501 			tt->fs_bus_bw[XHCI_MTK_BW_INDEX(base + j)] += bw_updated;
502 	}
503 
504 	if (used)
505 		list_add_tail(&sch_ep->tt_endpoint, &tt->ep_list);
506 	else
507 		list_del(&sch_ep->tt_endpoint);
508 }
509 
510 static int load_ep_bw(struct mu3h_sch_bw_info *sch_bw,
511 		      struct mu3h_sch_ep_info *sch_ep, bool loaded)
512 {
513 	if (sch_ep->sch_tt)
514 		update_sch_tt(sch_ep, loaded);
515 
516 	/* update bus bandwidth info */
517 	update_bus_bw(sch_bw, sch_ep, loaded);
518 	sch_ep->allocated = loaded;
519 
520 	return 0;
521 }
522 
523 static int check_sch_bw(struct mu3h_sch_ep_info *sch_ep)
524 {
525 	struct mu3h_sch_bw_info *sch_bw = sch_ep->bw_info;
526 	const u32 bw_boundary = get_bw_boundary(sch_ep->speed);
527 	u32 offset;
528 	u32 worst_bw;
529 	u32 min_bw = ~0;
530 	int min_index = -1;
531 	int ret = 0;
532 
533 	/*
534 	 * Search through all possible schedule microframes.
535 	 * and find a microframe where its worst bandwidth is minimum.
536 	 */
537 	for (offset = 0; offset < sch_ep->esit; offset++) {
538 		ret = check_sch_tt(sch_ep, offset);
539 		if (ret)
540 			continue;
541 
542 		worst_bw = get_max_bw(sch_bw, sch_ep, offset);
543 		if (worst_bw > bw_boundary)
544 			continue;
545 
546 		if (min_bw > worst_bw) {
547 			min_bw = worst_bw;
548 			min_index = offset;
549 		}
550 
551 		/* use first-fit for LS/FS */
552 		if (sch_ep->sch_tt && min_index >= 0)
553 			break;
554 
555 		if (min_bw == 0)
556 			break;
557 	}
558 
559 	if (min_index < 0)
560 		return ret ? ret : -ESCH_BW_OVERFLOW;
561 
562 	sch_ep->offset = min_index;
563 
564 	return load_ep_bw(sch_bw, sch_ep, true);
565 }
566 
567 static void destroy_sch_ep(struct xhci_hcd_mtk *mtk, struct usb_device *udev,
568 			   struct mu3h_sch_ep_info *sch_ep)
569 {
570 	/* only release ep bw check passed by check_sch_bw() */
571 	if (sch_ep->allocated)
572 		load_ep_bw(sch_ep->bw_info, sch_ep, false);
573 
574 	if (sch_ep->sch_tt)
575 		drop_tt(udev);
576 
577 	list_del(&sch_ep->endpoint);
578 	hlist_del(&sch_ep->hentry);
579 	kfree(sch_ep);
580 }
581 
582 static bool need_bw_sch(struct usb_device *udev,
583 			struct usb_host_endpoint *ep)
584 {
585 	bool has_tt = udev->tt && udev->tt->hub->parent;
586 
587 	/* only for periodic endpoints */
588 	if (usb_endpoint_xfer_control(&ep->desc)
589 		|| usb_endpoint_xfer_bulk(&ep->desc))
590 		return false;
591 
592 	/*
593 	 * for LS & FS periodic endpoints which its device is not behind
594 	 * a TT are also ignored, root-hub will schedule them directly,
595 	 * but need set @bpkts field of endpoint context to 1.
596 	 */
597 	if (is_fs_or_ls(udev->speed) && !has_tt)
598 		return false;
599 
600 	/* skip endpoint with zero maxpkt */
601 	if (usb_endpoint_maxp(&ep->desc) == 0)
602 		return false;
603 
604 	return true;
605 }
606 
607 int xhci_mtk_sch_init(struct xhci_hcd_mtk *mtk)
608 {
609 	struct xhci_hcd *xhci = hcd_to_xhci(mtk->hcd);
610 	struct mu3h_sch_bw_info *sch_array;
611 	int num_usb_bus;
612 
613 	/* ss IN and OUT are separated */
614 	num_usb_bus = xhci->usb3_rhub.num_ports * 2 + xhci->usb2_rhub.num_ports;
615 
616 	sch_array = kcalloc(num_usb_bus, sizeof(*sch_array), GFP_KERNEL);
617 	if (sch_array == NULL)
618 		return -ENOMEM;
619 
620 	mtk->sch_array = sch_array;
621 
622 	INIT_LIST_HEAD(&mtk->bw_ep_chk_list);
623 	hash_init(mtk->sch_ep_hash);
624 
625 	return 0;
626 }
627 
628 void xhci_mtk_sch_exit(struct xhci_hcd_mtk *mtk)
629 {
630 	kfree(mtk->sch_array);
631 }
632 
633 static int add_ep_quirk(struct usb_hcd *hcd, struct usb_device *udev,
634 			struct usb_host_endpoint *ep)
635 {
636 	struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd);
637 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
638 	struct xhci_ep_ctx *ep_ctx;
639 	struct xhci_virt_device *virt_dev;
640 	struct mu3h_sch_ep_info *sch_ep;
641 	unsigned int ep_index;
642 
643 	virt_dev = xhci->devs[udev->slot_id];
644 	ep_index = xhci_get_endpoint_index(&ep->desc);
645 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
646 
647 	if (!need_bw_sch(udev, ep)) {
648 		/*
649 		 * set @bpkts to 1 if it is LS or FS periodic endpoint, and its
650 		 * device does not connected through an external HS hub
651 		 */
652 		if (usb_endpoint_xfer_int(&ep->desc)
653 			|| usb_endpoint_xfer_isoc(&ep->desc))
654 			ep_ctx->reserved[0] = cpu_to_le32(EP_BPKTS(1));
655 
656 		return 0;
657 	}
658 
659 	xhci_dbg(xhci, "%s %s\n", __func__, decode_ep(ep, udev->speed));
660 
661 	sch_ep = create_sch_ep(mtk, udev, ep);
662 	if (IS_ERR_OR_NULL(sch_ep))
663 		return -ENOMEM;
664 
665 	setup_sch_info(ep_ctx, sch_ep);
666 
667 	list_add_tail(&sch_ep->endpoint, &mtk->bw_ep_chk_list);
668 	hash_add(mtk->sch_ep_hash, &sch_ep->hentry, (unsigned long)ep);
669 
670 	return 0;
671 }
672 
673 static void drop_ep_quirk(struct usb_hcd *hcd, struct usb_device *udev,
674 			  struct usb_host_endpoint *ep)
675 {
676 	struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd);
677 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
678 	struct mu3h_sch_ep_info *sch_ep;
679 	struct hlist_node *hn;
680 
681 	if (!need_bw_sch(udev, ep))
682 		return;
683 
684 	xhci_dbg(xhci, "%s %s\n", __func__, decode_ep(ep, udev->speed));
685 
686 	hash_for_each_possible_safe(mtk->sch_ep_hash, sch_ep,
687 				    hn, hentry, (unsigned long)ep) {
688 		if (sch_ep->ep == ep) {
689 			destroy_sch_ep(mtk, udev, sch_ep);
690 			break;
691 		}
692 	}
693 }
694 
695 int xhci_mtk_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
696 {
697 	struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd);
698 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
699 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
700 	struct mu3h_sch_ep_info *sch_ep;
701 	int ret;
702 
703 	xhci_dbg(xhci, "%s() udev %s\n", __func__, dev_name(&udev->dev));
704 
705 	list_for_each_entry(sch_ep, &mtk->bw_ep_chk_list, endpoint) {
706 		struct xhci_ep_ctx *ep_ctx;
707 		struct usb_host_endpoint *ep = sch_ep->ep;
708 		unsigned int ep_index = xhci_get_endpoint_index(&ep->desc);
709 
710 		ret = check_sch_bw(sch_ep);
711 		if (ret) {
712 			xhci_err(xhci, "Not enough bandwidth! (%s)\n",
713 				 sch_error_string(-ret));
714 			return -ENOSPC;
715 		}
716 
717 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
718 		ep_ctx->reserved[0] = cpu_to_le32(EP_BPKTS(sch_ep->pkts)
719 			| EP_BCSCOUNT(sch_ep->cs_count)
720 			| EP_BBM(sch_ep->burst_mode));
721 		ep_ctx->reserved[1] = cpu_to_le32(EP_BOFFSET(sch_ep->offset)
722 			| EP_BREPEAT(sch_ep->repeat));
723 
724 		xhci_dbg(xhci, " PKTS:%x, CSCOUNT:%x, BM:%x, OFFSET:%x, REPEAT:%x\n",
725 			sch_ep->pkts, sch_ep->cs_count, sch_ep->burst_mode,
726 			sch_ep->offset, sch_ep->repeat);
727 	}
728 
729 	ret = xhci_check_bandwidth(hcd, udev);
730 	if (!ret)
731 		list_del_init(&mtk->bw_ep_chk_list);
732 
733 	return ret;
734 }
735 
736 void xhci_mtk_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
737 {
738 	struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd);
739 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
740 	struct mu3h_sch_ep_info *sch_ep, *tmp;
741 
742 	xhci_dbg(xhci, "%s() udev %s\n", __func__, dev_name(&udev->dev));
743 
744 	list_for_each_entry_safe(sch_ep, tmp, &mtk->bw_ep_chk_list, endpoint)
745 		destroy_sch_ep(mtk, udev, sch_ep);
746 
747 	xhci_reset_bandwidth(hcd, udev);
748 }
749 
750 int xhci_mtk_add_ep(struct usb_hcd *hcd, struct usb_device *udev,
751 		    struct usb_host_endpoint *ep)
752 {
753 	int ret;
754 
755 	ret = xhci_add_endpoint(hcd, udev, ep);
756 	if (ret)
757 		return ret;
758 
759 	if (ep->hcpriv)
760 		ret = add_ep_quirk(hcd, udev, ep);
761 
762 	return ret;
763 }
764 
765 int xhci_mtk_drop_ep(struct usb_hcd *hcd, struct usb_device *udev,
766 		     struct usb_host_endpoint *ep)
767 {
768 	int ret;
769 
770 	ret = xhci_drop_endpoint(hcd, udev, ep);
771 	if (ret)
772 		return ret;
773 
774 	if (ep->hcpriv)
775 		drop_ep_quirk(hcd, udev, ep);
776 
777 	return 0;
778 }
779