1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2015 MediaTek Inc. 4 * Author: 5 * Zhigang.Wei <zhigang.wei@mediatek.com> 6 * Chunfeng.Yun <chunfeng.yun@mediatek.com> 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/slab.h> 12 13 #include "xhci.h" 14 #include "xhci-mtk.h" 15 16 #define SSP_BW_BOUNDARY 130000 17 #define SS_BW_BOUNDARY 51000 18 /* table 5-5. High-speed Isoc Transaction Limits in usb_20 spec */ 19 #define HS_BW_BOUNDARY 6144 20 /* usb2 spec section11.18.1: at most 188 FS bytes per microframe */ 21 #define FS_PAYLOAD_MAX 188 22 /* 23 * max number of microframes for split transfer, 24 * for fs isoc in : 1 ss + 1 idle + 7 cs 25 */ 26 #define TT_MICROFRAMES_MAX 9 27 28 #define DBG_BUF_EN 64 29 30 /* schedule error type */ 31 #define ESCH_SS_Y6 1001 32 #define ESCH_SS_OVERLAP 1002 33 #define ESCH_CS_OVERFLOW 1003 34 #define ESCH_BW_OVERFLOW 1004 35 #define ESCH_FIXME 1005 36 37 /* mtk scheduler bitmasks */ 38 #define EP_BPKTS(p) ((p) & 0x7f) 39 #define EP_BCSCOUNT(p) (((p) & 0x7) << 8) 40 #define EP_BBM(p) ((p) << 11) 41 #define EP_BOFFSET(p) ((p) & 0x3fff) 42 #define EP_BREPEAT(p) (((p) & 0x7fff) << 16) 43 44 static char *sch_error_string(int err_num) 45 { 46 switch (err_num) { 47 case ESCH_SS_Y6: 48 return "Can't schedule Start-Split in Y6"; 49 case ESCH_SS_OVERLAP: 50 return "Can't find a suitable Start-Split location"; 51 case ESCH_CS_OVERFLOW: 52 return "The last Complete-Split is greater than 7"; 53 case ESCH_BW_OVERFLOW: 54 return "Bandwidth exceeds the maximum limit"; 55 case ESCH_FIXME: 56 return "FIXME, to be resolved"; 57 default: 58 return "Unknown"; 59 } 60 } 61 62 static int is_fs_or_ls(enum usb_device_speed speed) 63 { 64 return speed == USB_SPEED_FULL || speed == USB_SPEED_LOW; 65 } 66 67 static const char * 68 decode_ep(struct usb_host_endpoint *ep, enum usb_device_speed speed) 69 { 70 static char buf[DBG_BUF_EN]; 71 struct usb_endpoint_descriptor *epd = &ep->desc; 72 unsigned int interval; 73 const char *unit; 74 75 interval = usb_decode_interval(epd, speed); 76 if (interval % 1000) { 77 unit = "us"; 78 } else { 79 unit = "ms"; 80 interval /= 1000; 81 } 82 83 snprintf(buf, DBG_BUF_EN, "%s ep%d%s %s, mpkt:%d, interval:%d/%d%s", 84 usb_speed_string(speed), usb_endpoint_num(epd), 85 usb_endpoint_dir_in(epd) ? "in" : "out", 86 usb_ep_type_string(usb_endpoint_type(epd)), 87 usb_endpoint_maxp(epd), epd->bInterval, interval, unit); 88 89 return buf; 90 } 91 92 static u32 get_bw_boundary(enum usb_device_speed speed) 93 { 94 u32 boundary; 95 96 switch (speed) { 97 case USB_SPEED_SUPER_PLUS: 98 boundary = SSP_BW_BOUNDARY; 99 break; 100 case USB_SPEED_SUPER: 101 boundary = SS_BW_BOUNDARY; 102 break; 103 default: 104 boundary = HS_BW_BOUNDARY; 105 break; 106 } 107 108 return boundary; 109 } 110 111 /* 112 * get the bandwidth domain which @ep belongs to. 113 * 114 * the bandwidth domain array is saved to @sch_array of struct xhci_hcd_mtk, 115 * each HS root port is treated as a single bandwidth domain, 116 * but each SS root port is treated as two bandwidth domains, one for IN eps, 117 * one for OUT eps. 118 * @real_port value is defined as follow according to xHCI spec: 119 * 1 for SSport0, ..., N+1 for SSportN, N+2 for HSport0, N+3 for HSport1, etc 120 * so the bandwidth domain array is organized as follow for simplification: 121 * SSport0-OUT, SSport0-IN, ..., SSportX-OUT, SSportX-IN, HSport0, ..., HSportY 122 */ 123 static struct mu3h_sch_bw_info * 124 get_bw_info(struct xhci_hcd_mtk *mtk, struct usb_device *udev, 125 struct usb_host_endpoint *ep) 126 { 127 struct xhci_hcd *xhci = hcd_to_xhci(mtk->hcd); 128 struct xhci_virt_device *virt_dev; 129 int bw_index; 130 131 virt_dev = xhci->devs[udev->slot_id]; 132 if (!virt_dev->real_port) { 133 WARN_ONCE(1, "%s invalid real_port\n", dev_name(&udev->dev)); 134 return NULL; 135 } 136 137 if (udev->speed >= USB_SPEED_SUPER) { 138 if (usb_endpoint_dir_out(&ep->desc)) 139 bw_index = (virt_dev->real_port - 1) * 2; 140 else 141 bw_index = (virt_dev->real_port - 1) * 2 + 1; 142 } else { 143 /* add one more for each SS port */ 144 bw_index = virt_dev->real_port + xhci->usb3_rhub.num_ports - 1; 145 } 146 147 return &mtk->sch_array[bw_index]; 148 } 149 150 static u32 get_esit(struct xhci_ep_ctx *ep_ctx) 151 { 152 u32 esit; 153 154 esit = 1 << CTX_TO_EP_INTERVAL(le32_to_cpu(ep_ctx->ep_info)); 155 if (esit > XHCI_MTK_MAX_ESIT) 156 esit = XHCI_MTK_MAX_ESIT; 157 158 return esit; 159 } 160 161 static struct mu3h_sch_tt *find_tt(struct usb_device *udev) 162 { 163 struct usb_tt *utt = udev->tt; 164 struct mu3h_sch_tt *tt, **tt_index, **ptt; 165 bool allocated_index = false; 166 167 if (!utt) 168 return NULL; /* Not below a TT */ 169 170 /* 171 * Find/create our data structure. 172 * For hubs with a single TT, we get it directly. 173 * For hubs with multiple TTs, there's an extra level of pointers. 174 */ 175 tt_index = NULL; 176 if (utt->multi) { 177 tt_index = utt->hcpriv; 178 if (!tt_index) { /* Create the index array */ 179 tt_index = kcalloc(utt->hub->maxchild, 180 sizeof(*tt_index), GFP_KERNEL); 181 if (!tt_index) 182 return ERR_PTR(-ENOMEM); 183 utt->hcpriv = tt_index; 184 allocated_index = true; 185 } 186 ptt = &tt_index[udev->ttport - 1]; 187 } else { 188 ptt = (struct mu3h_sch_tt **) &utt->hcpriv; 189 } 190 191 tt = *ptt; 192 if (!tt) { /* Create the mu3h_sch_tt */ 193 tt = kzalloc(sizeof(*tt), GFP_KERNEL); 194 if (!tt) { 195 if (allocated_index) { 196 utt->hcpriv = NULL; 197 kfree(tt_index); 198 } 199 return ERR_PTR(-ENOMEM); 200 } 201 INIT_LIST_HEAD(&tt->ep_list); 202 *ptt = tt; 203 } 204 205 return tt; 206 } 207 208 /* Release the TT above udev, if it's not in use */ 209 static void drop_tt(struct usb_device *udev) 210 { 211 struct usb_tt *utt = udev->tt; 212 struct mu3h_sch_tt *tt, **tt_index, **ptt; 213 int i, cnt; 214 215 if (!utt || !utt->hcpriv) 216 return; /* Not below a TT, or never allocated */ 217 218 cnt = 0; 219 if (utt->multi) { 220 tt_index = utt->hcpriv; 221 ptt = &tt_index[udev->ttport - 1]; 222 /* How many entries are left in tt_index? */ 223 for (i = 0; i < utt->hub->maxchild; ++i) 224 cnt += !!tt_index[i]; 225 } else { 226 tt_index = NULL; 227 ptt = (struct mu3h_sch_tt **)&utt->hcpriv; 228 } 229 230 tt = *ptt; 231 if (!tt || !list_empty(&tt->ep_list)) 232 return; /* never allocated , or still in use*/ 233 234 *ptt = NULL; 235 kfree(tt); 236 237 if (cnt == 1) { 238 utt->hcpriv = NULL; 239 kfree(tt_index); 240 } 241 } 242 243 static struct mu3h_sch_ep_info * 244 create_sch_ep(struct xhci_hcd_mtk *mtk, struct usb_device *udev, 245 struct usb_host_endpoint *ep, struct xhci_ep_ctx *ep_ctx) 246 { 247 struct mu3h_sch_ep_info *sch_ep; 248 struct mu3h_sch_bw_info *bw_info; 249 struct mu3h_sch_tt *tt = NULL; 250 u32 len_bw_budget_table; 251 size_t mem_size; 252 253 bw_info = get_bw_info(mtk, udev, ep); 254 if (!bw_info) 255 return ERR_PTR(-ENODEV); 256 257 if (is_fs_or_ls(udev->speed)) 258 len_bw_budget_table = TT_MICROFRAMES_MAX; 259 else if ((udev->speed >= USB_SPEED_SUPER) 260 && usb_endpoint_xfer_isoc(&ep->desc)) 261 len_bw_budget_table = get_esit(ep_ctx); 262 else 263 len_bw_budget_table = 1; 264 265 mem_size = sizeof(struct mu3h_sch_ep_info) + 266 len_bw_budget_table * sizeof(u32); 267 sch_ep = kzalloc(mem_size, GFP_KERNEL); 268 if (!sch_ep) 269 return ERR_PTR(-ENOMEM); 270 271 if (is_fs_or_ls(udev->speed)) { 272 tt = find_tt(udev); 273 if (IS_ERR(tt)) { 274 kfree(sch_ep); 275 return ERR_PTR(-ENOMEM); 276 } 277 } 278 279 sch_ep->bw_info = bw_info; 280 sch_ep->sch_tt = tt; 281 sch_ep->ep = ep; 282 sch_ep->speed = udev->speed; 283 INIT_LIST_HEAD(&sch_ep->endpoint); 284 INIT_LIST_HEAD(&sch_ep->tt_endpoint); 285 INIT_HLIST_NODE(&sch_ep->hentry); 286 287 return sch_ep; 288 } 289 290 static void setup_sch_info(struct xhci_ep_ctx *ep_ctx, 291 struct mu3h_sch_ep_info *sch_ep) 292 { 293 u32 ep_type; 294 u32 maxpkt; 295 u32 max_burst; 296 u32 mult; 297 u32 esit_pkts; 298 u32 max_esit_payload; 299 u32 *bwb_table = sch_ep->bw_budget_table; 300 int i; 301 302 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2)); 303 maxpkt = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 304 max_burst = CTX_TO_MAX_BURST(le32_to_cpu(ep_ctx->ep_info2)); 305 mult = CTX_TO_EP_MULT(le32_to_cpu(ep_ctx->ep_info)); 306 max_esit_payload = 307 (CTX_TO_MAX_ESIT_PAYLOAD_HI( 308 le32_to_cpu(ep_ctx->ep_info)) << 16) | 309 CTX_TO_MAX_ESIT_PAYLOAD(le32_to_cpu(ep_ctx->tx_info)); 310 311 sch_ep->esit = get_esit(ep_ctx); 312 sch_ep->num_esit = XHCI_MTK_MAX_ESIT / sch_ep->esit; 313 sch_ep->ep_type = ep_type; 314 sch_ep->maxpkt = maxpkt; 315 sch_ep->offset = 0; 316 sch_ep->burst_mode = 0; 317 sch_ep->repeat = 0; 318 319 if (sch_ep->speed == USB_SPEED_HIGH) { 320 sch_ep->cs_count = 0; 321 322 /* 323 * usb_20 spec section5.9 324 * a single microframe is enough for HS synchromous endpoints 325 * in a interval 326 */ 327 sch_ep->num_budget_microframes = 1; 328 329 /* 330 * xHCI spec section6.2.3.4 331 * @max_burst is the number of additional transactions 332 * opportunities per microframe 333 */ 334 sch_ep->pkts = max_burst + 1; 335 sch_ep->bw_cost_per_microframe = maxpkt * sch_ep->pkts; 336 bwb_table[0] = sch_ep->bw_cost_per_microframe; 337 } else if (sch_ep->speed >= USB_SPEED_SUPER) { 338 /* usb3_r1 spec section4.4.7 & 4.4.8 */ 339 sch_ep->cs_count = 0; 340 sch_ep->burst_mode = 1; 341 /* 342 * some device's (d)wBytesPerInterval is set as 0, 343 * then max_esit_payload is 0, so evaluate esit_pkts from 344 * mult and burst 345 */ 346 esit_pkts = DIV_ROUND_UP(max_esit_payload, maxpkt); 347 if (esit_pkts == 0) 348 esit_pkts = (mult + 1) * (max_burst + 1); 349 350 if (ep_type == INT_IN_EP || ep_type == INT_OUT_EP) { 351 sch_ep->pkts = esit_pkts; 352 sch_ep->num_budget_microframes = 1; 353 bwb_table[0] = maxpkt * sch_ep->pkts; 354 } 355 356 if (ep_type == ISOC_IN_EP || ep_type == ISOC_OUT_EP) { 357 358 if (sch_ep->esit == 1) 359 sch_ep->pkts = esit_pkts; 360 else if (esit_pkts <= sch_ep->esit) 361 sch_ep->pkts = 1; 362 else 363 sch_ep->pkts = roundup_pow_of_two(esit_pkts) 364 / sch_ep->esit; 365 366 sch_ep->num_budget_microframes = 367 DIV_ROUND_UP(esit_pkts, sch_ep->pkts); 368 369 sch_ep->repeat = !!(sch_ep->num_budget_microframes > 1); 370 sch_ep->bw_cost_per_microframe = maxpkt * sch_ep->pkts; 371 372 for (i = 0; i < sch_ep->num_budget_microframes - 1; i++) 373 bwb_table[i] = sch_ep->bw_cost_per_microframe; 374 375 /* last one <= bw_cost_per_microframe */ 376 bwb_table[i] = maxpkt * esit_pkts 377 - i * sch_ep->bw_cost_per_microframe; 378 } 379 } else if (is_fs_or_ls(sch_ep->speed)) { 380 sch_ep->pkts = 1; /* at most one packet for each microframe */ 381 382 /* 383 * num_budget_microframes and cs_count will be updated when 384 * check TT for INT_OUT_EP, ISOC/INT_IN_EP type 385 */ 386 sch_ep->cs_count = DIV_ROUND_UP(maxpkt, FS_PAYLOAD_MAX); 387 sch_ep->num_budget_microframes = sch_ep->cs_count; 388 sch_ep->bw_cost_per_microframe = 389 (maxpkt < FS_PAYLOAD_MAX) ? maxpkt : FS_PAYLOAD_MAX; 390 391 /* init budget table */ 392 if (ep_type == ISOC_OUT_EP) { 393 for (i = 0; i < sch_ep->num_budget_microframes; i++) 394 bwb_table[i] = sch_ep->bw_cost_per_microframe; 395 } else if (ep_type == INT_OUT_EP) { 396 /* only first one consumes bandwidth, others as zero */ 397 bwb_table[0] = sch_ep->bw_cost_per_microframe; 398 } else { /* INT_IN_EP or ISOC_IN_EP */ 399 bwb_table[0] = 0; /* start split */ 400 bwb_table[1] = 0; /* idle */ 401 /* 402 * due to cs_count will be updated according to cs 403 * position, assign all remainder budget array 404 * elements as @bw_cost_per_microframe, but only first 405 * @num_budget_microframes elements will be used later 406 */ 407 for (i = 2; i < TT_MICROFRAMES_MAX; i++) 408 bwb_table[i] = sch_ep->bw_cost_per_microframe; 409 } 410 } 411 } 412 413 /* Get maximum bandwidth when we schedule at offset slot. */ 414 static u32 get_max_bw(struct mu3h_sch_bw_info *sch_bw, 415 struct mu3h_sch_ep_info *sch_ep, u32 offset) 416 { 417 u32 max_bw = 0; 418 u32 bw; 419 int i, j, k; 420 421 for (i = 0; i < sch_ep->num_esit; i++) { 422 u32 base = offset + i * sch_ep->esit; 423 424 for (j = 0; j < sch_ep->num_budget_microframes; j++) { 425 k = XHCI_MTK_BW_INDEX(base + j); 426 bw = sch_bw->bus_bw[k] + sch_ep->bw_budget_table[j]; 427 if (bw > max_bw) 428 max_bw = bw; 429 } 430 } 431 return max_bw; 432 } 433 434 static void update_bus_bw(struct mu3h_sch_bw_info *sch_bw, 435 struct mu3h_sch_ep_info *sch_ep, bool used) 436 { 437 u32 base; 438 int i, j, k; 439 440 for (i = 0; i < sch_ep->num_esit; i++) { 441 base = sch_ep->offset + i * sch_ep->esit; 442 for (j = 0; j < sch_ep->num_budget_microframes; j++) { 443 k = XHCI_MTK_BW_INDEX(base + j); 444 if (used) 445 sch_bw->bus_bw[k] += sch_ep->bw_budget_table[j]; 446 else 447 sch_bw->bus_bw[k] -= sch_ep->bw_budget_table[j]; 448 } 449 } 450 } 451 452 static int check_fs_bus_bw(struct mu3h_sch_ep_info *sch_ep, int offset) 453 { 454 struct mu3h_sch_tt *tt = sch_ep->sch_tt; 455 u32 tmp; 456 int base; 457 int i, j, k; 458 459 for (i = 0; i < sch_ep->num_esit; i++) { 460 base = offset + i * sch_ep->esit; 461 462 /* 463 * Compared with hs bus, no matter what ep type, 464 * the hub will always delay one uframe to send data 465 */ 466 for (j = 0; j < sch_ep->num_budget_microframes; j++) { 467 k = XHCI_MTK_BW_INDEX(base + j); 468 tmp = tt->fs_bus_bw[k] + sch_ep->bw_budget_table[j]; 469 if (tmp > FS_PAYLOAD_MAX) 470 return -ESCH_BW_OVERFLOW; 471 } 472 } 473 474 return 0; 475 } 476 477 static int check_sch_tt(struct mu3h_sch_ep_info *sch_ep, u32 offset) 478 { 479 u32 extra_cs_count; 480 u32 start_ss, last_ss; 481 u32 start_cs, last_cs; 482 483 if (!sch_ep->sch_tt) 484 return 0; 485 486 start_ss = offset % 8; 487 488 if (sch_ep->ep_type == ISOC_OUT_EP) { 489 last_ss = start_ss + sch_ep->cs_count - 1; 490 491 /* 492 * usb_20 spec section11.18: 493 * must never schedule Start-Split in Y6 494 */ 495 if (!(start_ss == 7 || last_ss < 6)) 496 return -ESCH_SS_Y6; 497 498 } else { 499 u32 cs_count = DIV_ROUND_UP(sch_ep->maxpkt, FS_PAYLOAD_MAX); 500 501 /* 502 * usb_20 spec section11.18: 503 * must never schedule Start-Split in Y6 504 */ 505 if (start_ss == 6) 506 return -ESCH_SS_Y6; 507 508 /* one uframe for ss + one uframe for idle */ 509 start_cs = (start_ss + 2) % 8; 510 last_cs = start_cs + cs_count - 1; 511 512 if (last_cs > 7) 513 return -ESCH_CS_OVERFLOW; 514 515 if (sch_ep->ep_type == ISOC_IN_EP) 516 extra_cs_count = (last_cs == 7) ? 1 : 2; 517 else /* ep_type : INTR IN / INTR OUT */ 518 extra_cs_count = 1; 519 520 cs_count += extra_cs_count; 521 if (cs_count > 7) 522 cs_count = 7; /* HW limit */ 523 524 sch_ep->cs_count = cs_count; 525 /* one for ss, the other for idle */ 526 sch_ep->num_budget_microframes = cs_count + 2; 527 528 /* 529 * if interval=1, maxp >752, num_budge_micoframe is larger 530 * than sch_ep->esit, will overstep boundary 531 */ 532 if (sch_ep->num_budget_microframes > sch_ep->esit) 533 sch_ep->num_budget_microframes = sch_ep->esit; 534 } 535 536 return check_fs_bus_bw(sch_ep, offset); 537 } 538 539 static void update_sch_tt(struct mu3h_sch_ep_info *sch_ep, bool used) 540 { 541 struct mu3h_sch_tt *tt = sch_ep->sch_tt; 542 u32 base; 543 int i, j, k; 544 545 for (i = 0; i < sch_ep->num_esit; i++) { 546 base = sch_ep->offset + i * sch_ep->esit; 547 548 for (j = 0; j < sch_ep->num_budget_microframes; j++) { 549 k = XHCI_MTK_BW_INDEX(base + j); 550 if (used) 551 tt->fs_bus_bw[k] += sch_ep->bw_budget_table[j]; 552 else 553 tt->fs_bus_bw[k] -= sch_ep->bw_budget_table[j]; 554 } 555 } 556 557 if (used) 558 list_add_tail(&sch_ep->tt_endpoint, &tt->ep_list); 559 else 560 list_del(&sch_ep->tt_endpoint); 561 } 562 563 static int load_ep_bw(struct mu3h_sch_bw_info *sch_bw, 564 struct mu3h_sch_ep_info *sch_ep, bool loaded) 565 { 566 if (sch_ep->sch_tt) 567 update_sch_tt(sch_ep, loaded); 568 569 /* update bus bandwidth info */ 570 update_bus_bw(sch_bw, sch_ep, loaded); 571 sch_ep->allocated = loaded; 572 573 return 0; 574 } 575 576 static int check_sch_bw(struct mu3h_sch_ep_info *sch_ep) 577 { 578 struct mu3h_sch_bw_info *sch_bw = sch_ep->bw_info; 579 const u32 bw_boundary = get_bw_boundary(sch_ep->speed); 580 u32 offset; 581 u32 worst_bw; 582 u32 min_bw = ~0; 583 int min_index = -1; 584 int ret = 0; 585 586 /* 587 * Search through all possible schedule microframes. 588 * and find a microframe where its worst bandwidth is minimum. 589 */ 590 for (offset = 0; offset < sch_ep->esit; offset++) { 591 ret = check_sch_tt(sch_ep, offset); 592 if (ret) 593 continue; 594 595 worst_bw = get_max_bw(sch_bw, sch_ep, offset); 596 if (worst_bw > bw_boundary) 597 continue; 598 599 if (min_bw > worst_bw) { 600 min_bw = worst_bw; 601 min_index = offset; 602 } 603 604 /* use first-fit for LS/FS */ 605 if (sch_ep->sch_tt && min_index >= 0) 606 break; 607 608 if (min_bw == 0) 609 break; 610 } 611 612 if (min_index < 0) 613 return ret ? ret : -ESCH_BW_OVERFLOW; 614 615 sch_ep->offset = min_index; 616 617 return load_ep_bw(sch_bw, sch_ep, true); 618 } 619 620 static void destroy_sch_ep(struct xhci_hcd_mtk *mtk, struct usb_device *udev, 621 struct mu3h_sch_ep_info *sch_ep) 622 { 623 /* only release ep bw check passed by check_sch_bw() */ 624 if (sch_ep->allocated) 625 load_ep_bw(sch_ep->bw_info, sch_ep, false); 626 627 if (sch_ep->sch_tt) 628 drop_tt(udev); 629 630 list_del(&sch_ep->endpoint); 631 hlist_del(&sch_ep->hentry); 632 kfree(sch_ep); 633 } 634 635 static bool need_bw_sch(struct usb_device *udev, 636 struct usb_host_endpoint *ep) 637 { 638 bool has_tt = udev->tt && udev->tt->hub->parent; 639 640 /* only for periodic endpoints */ 641 if (usb_endpoint_xfer_control(&ep->desc) 642 || usb_endpoint_xfer_bulk(&ep->desc)) 643 return false; 644 645 /* 646 * for LS & FS periodic endpoints which its device is not behind 647 * a TT are also ignored, root-hub will schedule them directly, 648 * but need set @bpkts field of endpoint context to 1. 649 */ 650 if (is_fs_or_ls(udev->speed) && !has_tt) 651 return false; 652 653 /* skip endpoint with zero maxpkt */ 654 if (usb_endpoint_maxp(&ep->desc) == 0) 655 return false; 656 657 return true; 658 } 659 660 int xhci_mtk_sch_init(struct xhci_hcd_mtk *mtk) 661 { 662 struct xhci_hcd *xhci = hcd_to_xhci(mtk->hcd); 663 struct mu3h_sch_bw_info *sch_array; 664 int num_usb_bus; 665 666 /* ss IN and OUT are separated */ 667 num_usb_bus = xhci->usb3_rhub.num_ports * 2 + xhci->usb2_rhub.num_ports; 668 669 sch_array = kcalloc(num_usb_bus, sizeof(*sch_array), GFP_KERNEL); 670 if (sch_array == NULL) 671 return -ENOMEM; 672 673 mtk->sch_array = sch_array; 674 675 INIT_LIST_HEAD(&mtk->bw_ep_chk_list); 676 hash_init(mtk->sch_ep_hash); 677 678 return 0; 679 } 680 681 void xhci_mtk_sch_exit(struct xhci_hcd_mtk *mtk) 682 { 683 kfree(mtk->sch_array); 684 } 685 686 static int add_ep_quirk(struct usb_hcd *hcd, struct usb_device *udev, 687 struct usb_host_endpoint *ep) 688 { 689 struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd); 690 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 691 struct xhci_ep_ctx *ep_ctx; 692 struct xhci_virt_device *virt_dev; 693 struct mu3h_sch_ep_info *sch_ep; 694 unsigned int ep_index; 695 696 virt_dev = xhci->devs[udev->slot_id]; 697 ep_index = xhci_get_endpoint_index(&ep->desc); 698 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 699 700 if (!need_bw_sch(udev, ep)) { 701 /* 702 * set @bpkts to 1 if it is LS or FS periodic endpoint, and its 703 * device does not connected through an external HS hub 704 */ 705 if (usb_endpoint_xfer_int(&ep->desc) 706 || usb_endpoint_xfer_isoc(&ep->desc)) 707 ep_ctx->reserved[0] = cpu_to_le32(EP_BPKTS(1)); 708 709 return 0; 710 } 711 712 xhci_dbg(xhci, "%s %s\n", __func__, decode_ep(ep, udev->speed)); 713 714 sch_ep = create_sch_ep(mtk, udev, ep, ep_ctx); 715 if (IS_ERR_OR_NULL(sch_ep)) 716 return -ENOMEM; 717 718 setup_sch_info(ep_ctx, sch_ep); 719 720 list_add_tail(&sch_ep->endpoint, &mtk->bw_ep_chk_list); 721 hash_add(mtk->sch_ep_hash, &sch_ep->hentry, (unsigned long)ep); 722 723 return 0; 724 } 725 726 static void drop_ep_quirk(struct usb_hcd *hcd, struct usb_device *udev, 727 struct usb_host_endpoint *ep) 728 { 729 struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd); 730 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 731 struct mu3h_sch_ep_info *sch_ep; 732 struct hlist_node *hn; 733 734 if (!need_bw_sch(udev, ep)) 735 return; 736 737 xhci_dbg(xhci, "%s %s\n", __func__, decode_ep(ep, udev->speed)); 738 739 hash_for_each_possible_safe(mtk->sch_ep_hash, sch_ep, 740 hn, hentry, (unsigned long)ep) { 741 if (sch_ep->ep == ep) { 742 destroy_sch_ep(mtk, udev, sch_ep); 743 break; 744 } 745 } 746 } 747 748 int xhci_mtk_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 749 { 750 struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd); 751 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 752 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; 753 struct mu3h_sch_ep_info *sch_ep; 754 int ret; 755 756 xhci_dbg(xhci, "%s() udev %s\n", __func__, dev_name(&udev->dev)); 757 758 list_for_each_entry(sch_ep, &mtk->bw_ep_chk_list, endpoint) { 759 struct xhci_ep_ctx *ep_ctx; 760 struct usb_host_endpoint *ep = sch_ep->ep; 761 unsigned int ep_index = xhci_get_endpoint_index(&ep->desc); 762 763 ret = check_sch_bw(sch_ep); 764 if (ret) { 765 xhci_err(xhci, "Not enough bandwidth! (%s)\n", 766 sch_error_string(-ret)); 767 return -ENOSPC; 768 } 769 770 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 771 ep_ctx->reserved[0] = cpu_to_le32(EP_BPKTS(sch_ep->pkts) 772 | EP_BCSCOUNT(sch_ep->cs_count) 773 | EP_BBM(sch_ep->burst_mode)); 774 ep_ctx->reserved[1] = cpu_to_le32(EP_BOFFSET(sch_ep->offset) 775 | EP_BREPEAT(sch_ep->repeat)); 776 777 xhci_dbg(xhci, " PKTS:%x, CSCOUNT:%x, BM:%x, OFFSET:%x, REPEAT:%x\n", 778 sch_ep->pkts, sch_ep->cs_count, sch_ep->burst_mode, 779 sch_ep->offset, sch_ep->repeat); 780 } 781 782 ret = xhci_check_bandwidth(hcd, udev); 783 if (!ret) 784 INIT_LIST_HEAD(&mtk->bw_ep_chk_list); 785 786 return ret; 787 } 788 789 void xhci_mtk_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 790 { 791 struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd); 792 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 793 struct mu3h_sch_ep_info *sch_ep, *tmp; 794 795 xhci_dbg(xhci, "%s() udev %s\n", __func__, dev_name(&udev->dev)); 796 797 list_for_each_entry_safe(sch_ep, tmp, &mtk->bw_ep_chk_list, endpoint) 798 destroy_sch_ep(mtk, udev, sch_ep); 799 800 xhci_reset_bandwidth(hcd, udev); 801 } 802 803 int xhci_mtk_add_ep(struct usb_hcd *hcd, struct usb_device *udev, 804 struct usb_host_endpoint *ep) 805 { 806 int ret; 807 808 ret = xhci_add_endpoint(hcd, udev, ep); 809 if (ret) 810 return ret; 811 812 if (ep->hcpriv) 813 ret = add_ep_quirk(hcd, udev, ep); 814 815 return ret; 816 } 817 818 int xhci_mtk_drop_ep(struct usb_hcd *hcd, struct usb_device *udev, 819 struct usb_host_endpoint *ep) 820 { 821 int ret; 822 823 ret = xhci_drop_endpoint(hcd, udev, ep); 824 if (ret) 825 return ret; 826 827 if (ep->hcpriv) 828 drop_ep_quirk(hcd, udev, ep); 829 830 return 0; 831 } 832