1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2015 MediaTek Inc. 4 * Author: 5 * Zhigang.Wei <zhigang.wei@mediatek.com> 6 * Chunfeng.Yun <chunfeng.yun@mediatek.com> 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/slab.h> 12 13 #include "xhci.h" 14 #include "xhci-mtk.h" 15 16 #define SSP_BW_BOUNDARY 130000 17 #define SS_BW_BOUNDARY 51000 18 /* table 5-5. High-speed Isoc Transaction Limits in usb_20 spec */ 19 #define HS_BW_BOUNDARY 6144 20 /* usb2 spec section11.18.1: at most 188 FS bytes per microframe */ 21 #define FS_PAYLOAD_MAX 188 22 /* 23 * max number of microframes for split transfer, 24 * for fs isoc in : 1 ss + 1 idle + 7 cs 25 */ 26 #define TT_MICROFRAMES_MAX 9 27 28 #define DBG_BUF_EN 64 29 30 /* schedule error type */ 31 #define ESCH_SS_Y6 1001 32 #define ESCH_SS_OVERLAP 1002 33 #define ESCH_CS_OVERFLOW 1003 34 #define ESCH_BW_OVERFLOW 1004 35 #define ESCH_FIXME 1005 36 37 /* mtk scheduler bitmasks */ 38 #define EP_BPKTS(p) ((p) & 0x7f) 39 #define EP_BCSCOUNT(p) (((p) & 0x7) << 8) 40 #define EP_BBM(p) ((p) << 11) 41 #define EP_BOFFSET(p) ((p) & 0x3fff) 42 #define EP_BREPEAT(p) (((p) & 0x7fff) << 16) 43 44 static char *sch_error_string(int err_num) 45 { 46 switch (err_num) { 47 case ESCH_SS_Y6: 48 return "Can't schedule Start-Split in Y6"; 49 case ESCH_SS_OVERLAP: 50 return "Can't find a suitable Start-Split location"; 51 case ESCH_CS_OVERFLOW: 52 return "The last Complete-Split is greater than 7"; 53 case ESCH_BW_OVERFLOW: 54 return "Bandwidth exceeds the maximum limit"; 55 case ESCH_FIXME: 56 return "FIXME, to be resolved"; 57 default: 58 return "Unknown"; 59 } 60 } 61 62 static int is_fs_or_ls(enum usb_device_speed speed) 63 { 64 return speed == USB_SPEED_FULL || speed == USB_SPEED_LOW; 65 } 66 67 static const char * 68 decode_ep(struct usb_host_endpoint *ep, enum usb_device_speed speed) 69 { 70 static char buf[DBG_BUF_EN]; 71 struct usb_endpoint_descriptor *epd = &ep->desc; 72 unsigned int interval; 73 const char *unit; 74 75 interval = usb_decode_interval(epd, speed); 76 if (interval % 1000) { 77 unit = "us"; 78 } else { 79 unit = "ms"; 80 interval /= 1000; 81 } 82 83 snprintf(buf, DBG_BUF_EN, "%s ep%d%s %s, mpkt:%d, interval:%d/%d%s", 84 usb_speed_string(speed), usb_endpoint_num(epd), 85 usb_endpoint_dir_in(epd) ? "in" : "out", 86 usb_ep_type_string(usb_endpoint_type(epd)), 87 usb_endpoint_maxp(epd), epd->bInterval, interval, unit); 88 89 return buf; 90 } 91 92 static u32 get_bw_boundary(enum usb_device_speed speed) 93 { 94 u32 boundary; 95 96 switch (speed) { 97 case USB_SPEED_SUPER_PLUS: 98 boundary = SSP_BW_BOUNDARY; 99 break; 100 case USB_SPEED_SUPER: 101 boundary = SS_BW_BOUNDARY; 102 break; 103 default: 104 boundary = HS_BW_BOUNDARY; 105 break; 106 } 107 108 return boundary; 109 } 110 111 /* 112 * get the bandwidth domain which @ep belongs to. 113 * 114 * the bandwidth domain array is saved to @sch_array of struct xhci_hcd_mtk, 115 * each HS root port is treated as a single bandwidth domain, 116 * but each SS root port is treated as two bandwidth domains, one for IN eps, 117 * one for OUT eps. 118 * @real_port value is defined as follow according to xHCI spec: 119 * 1 for SSport0, ..., N+1 for SSportN, N+2 for HSport0, N+3 for HSport1, etc 120 * so the bandwidth domain array is organized as follow for simplification: 121 * SSport0-OUT, SSport0-IN, ..., SSportX-OUT, SSportX-IN, HSport0, ..., HSportY 122 */ 123 static struct mu3h_sch_bw_info * 124 get_bw_info(struct xhci_hcd_mtk *mtk, struct usb_device *udev, 125 struct usb_host_endpoint *ep) 126 { 127 struct xhci_hcd *xhci = hcd_to_xhci(mtk->hcd); 128 struct xhci_virt_device *virt_dev; 129 int bw_index; 130 131 virt_dev = xhci->devs[udev->slot_id]; 132 if (!virt_dev->real_port) { 133 WARN_ONCE(1, "%s invalid real_port\n", dev_name(&udev->dev)); 134 return NULL; 135 } 136 137 if (udev->speed >= USB_SPEED_SUPER) { 138 if (usb_endpoint_dir_out(&ep->desc)) 139 bw_index = (virt_dev->real_port - 1) * 2; 140 else 141 bw_index = (virt_dev->real_port - 1) * 2 + 1; 142 } else { 143 /* add one more for each SS port */ 144 bw_index = virt_dev->real_port + xhci->usb3_rhub.num_ports - 1; 145 } 146 147 return &mtk->sch_array[bw_index]; 148 } 149 150 static u32 get_esit(struct xhci_ep_ctx *ep_ctx) 151 { 152 u32 esit; 153 154 esit = 1 << CTX_TO_EP_INTERVAL(le32_to_cpu(ep_ctx->ep_info)); 155 if (esit > XHCI_MTK_MAX_ESIT) 156 esit = XHCI_MTK_MAX_ESIT; 157 158 return esit; 159 } 160 161 static struct mu3h_sch_tt *find_tt(struct usb_device *udev) 162 { 163 struct usb_tt *utt = udev->tt; 164 struct mu3h_sch_tt *tt, **tt_index, **ptt; 165 bool allocated_index = false; 166 167 if (!utt) 168 return NULL; /* Not below a TT */ 169 170 /* 171 * Find/create our data structure. 172 * For hubs with a single TT, we get it directly. 173 * For hubs with multiple TTs, there's an extra level of pointers. 174 */ 175 tt_index = NULL; 176 if (utt->multi) { 177 tt_index = utt->hcpriv; 178 if (!tt_index) { /* Create the index array */ 179 tt_index = kcalloc(utt->hub->maxchild, 180 sizeof(*tt_index), GFP_KERNEL); 181 if (!tt_index) 182 return ERR_PTR(-ENOMEM); 183 utt->hcpriv = tt_index; 184 allocated_index = true; 185 } 186 ptt = &tt_index[udev->ttport - 1]; 187 } else { 188 ptt = (struct mu3h_sch_tt **) &utt->hcpriv; 189 } 190 191 tt = *ptt; 192 if (!tt) { /* Create the mu3h_sch_tt */ 193 tt = kzalloc(sizeof(*tt), GFP_KERNEL); 194 if (!tt) { 195 if (allocated_index) { 196 utt->hcpriv = NULL; 197 kfree(tt_index); 198 } 199 return ERR_PTR(-ENOMEM); 200 } 201 INIT_LIST_HEAD(&tt->ep_list); 202 *ptt = tt; 203 } 204 205 return tt; 206 } 207 208 /* Release the TT above udev, if it's not in use */ 209 static void drop_tt(struct usb_device *udev) 210 { 211 struct usb_tt *utt = udev->tt; 212 struct mu3h_sch_tt *tt, **tt_index, **ptt; 213 int i, cnt; 214 215 if (!utt || !utt->hcpriv) 216 return; /* Not below a TT, or never allocated */ 217 218 cnt = 0; 219 if (utt->multi) { 220 tt_index = utt->hcpriv; 221 ptt = &tt_index[udev->ttport - 1]; 222 /* How many entries are left in tt_index? */ 223 for (i = 0; i < utt->hub->maxchild; ++i) 224 cnt += !!tt_index[i]; 225 } else { 226 tt_index = NULL; 227 ptt = (struct mu3h_sch_tt **)&utt->hcpriv; 228 } 229 230 tt = *ptt; 231 if (!tt || !list_empty(&tt->ep_list)) 232 return; /* never allocated , or still in use*/ 233 234 *ptt = NULL; 235 kfree(tt); 236 237 if (cnt == 1) { 238 utt->hcpriv = NULL; 239 kfree(tt_index); 240 } 241 } 242 243 static struct mu3h_sch_ep_info * 244 create_sch_ep(struct xhci_hcd_mtk *mtk, struct usb_device *udev, 245 struct usb_host_endpoint *ep, struct xhci_ep_ctx *ep_ctx) 246 { 247 struct mu3h_sch_ep_info *sch_ep; 248 struct mu3h_sch_bw_info *bw_info; 249 struct mu3h_sch_tt *tt = NULL; 250 u32 len_bw_budget_table; 251 252 bw_info = get_bw_info(mtk, udev, ep); 253 if (!bw_info) 254 return ERR_PTR(-ENODEV); 255 256 if (is_fs_or_ls(udev->speed)) 257 len_bw_budget_table = TT_MICROFRAMES_MAX; 258 else if ((udev->speed >= USB_SPEED_SUPER) 259 && usb_endpoint_xfer_isoc(&ep->desc)) 260 len_bw_budget_table = get_esit(ep_ctx); 261 else 262 len_bw_budget_table = 1; 263 264 sch_ep = kzalloc(struct_size(sch_ep, bw_budget_table, 265 len_bw_budget_table), 266 GFP_KERNEL); 267 if (!sch_ep) 268 return ERR_PTR(-ENOMEM); 269 270 if (is_fs_or_ls(udev->speed)) { 271 tt = find_tt(udev); 272 if (IS_ERR(tt)) { 273 kfree(sch_ep); 274 return ERR_PTR(-ENOMEM); 275 } 276 } 277 278 sch_ep->bw_info = bw_info; 279 sch_ep->sch_tt = tt; 280 sch_ep->ep = ep; 281 sch_ep->speed = udev->speed; 282 INIT_LIST_HEAD(&sch_ep->endpoint); 283 INIT_LIST_HEAD(&sch_ep->tt_endpoint); 284 INIT_HLIST_NODE(&sch_ep->hentry); 285 286 return sch_ep; 287 } 288 289 static void setup_sch_info(struct xhci_ep_ctx *ep_ctx, 290 struct mu3h_sch_ep_info *sch_ep) 291 { 292 u32 ep_type; 293 u32 maxpkt; 294 u32 max_burst; 295 u32 mult; 296 u32 esit_pkts; 297 u32 max_esit_payload; 298 u32 *bwb_table = sch_ep->bw_budget_table; 299 int i; 300 301 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2)); 302 maxpkt = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 303 max_burst = CTX_TO_MAX_BURST(le32_to_cpu(ep_ctx->ep_info2)); 304 mult = CTX_TO_EP_MULT(le32_to_cpu(ep_ctx->ep_info)); 305 max_esit_payload = 306 (CTX_TO_MAX_ESIT_PAYLOAD_HI( 307 le32_to_cpu(ep_ctx->ep_info)) << 16) | 308 CTX_TO_MAX_ESIT_PAYLOAD(le32_to_cpu(ep_ctx->tx_info)); 309 310 sch_ep->esit = get_esit(ep_ctx); 311 sch_ep->num_esit = XHCI_MTK_MAX_ESIT / sch_ep->esit; 312 sch_ep->ep_type = ep_type; 313 sch_ep->maxpkt = maxpkt; 314 sch_ep->offset = 0; 315 sch_ep->burst_mode = 0; 316 sch_ep->repeat = 0; 317 318 if (sch_ep->speed == USB_SPEED_HIGH) { 319 sch_ep->cs_count = 0; 320 321 /* 322 * usb_20 spec section5.9 323 * a single microframe is enough for HS synchromous endpoints 324 * in a interval 325 */ 326 sch_ep->num_budget_microframes = 1; 327 328 /* 329 * xHCI spec section6.2.3.4 330 * @max_burst is the number of additional transactions 331 * opportunities per microframe 332 */ 333 sch_ep->pkts = max_burst + 1; 334 sch_ep->bw_cost_per_microframe = maxpkt * sch_ep->pkts; 335 bwb_table[0] = sch_ep->bw_cost_per_microframe; 336 } else if (sch_ep->speed >= USB_SPEED_SUPER) { 337 /* usb3_r1 spec section4.4.7 & 4.4.8 */ 338 sch_ep->cs_count = 0; 339 sch_ep->burst_mode = 1; 340 /* 341 * some device's (d)wBytesPerInterval is set as 0, 342 * then max_esit_payload is 0, so evaluate esit_pkts from 343 * mult and burst 344 */ 345 esit_pkts = DIV_ROUND_UP(max_esit_payload, maxpkt); 346 if (esit_pkts == 0) 347 esit_pkts = (mult + 1) * (max_burst + 1); 348 349 if (ep_type == INT_IN_EP || ep_type == INT_OUT_EP) { 350 sch_ep->pkts = esit_pkts; 351 sch_ep->num_budget_microframes = 1; 352 bwb_table[0] = maxpkt * sch_ep->pkts; 353 } 354 355 if (ep_type == ISOC_IN_EP || ep_type == ISOC_OUT_EP) { 356 357 if (sch_ep->esit == 1) 358 sch_ep->pkts = esit_pkts; 359 else if (esit_pkts <= sch_ep->esit) 360 sch_ep->pkts = 1; 361 else 362 sch_ep->pkts = roundup_pow_of_two(esit_pkts) 363 / sch_ep->esit; 364 365 sch_ep->num_budget_microframes = 366 DIV_ROUND_UP(esit_pkts, sch_ep->pkts); 367 368 sch_ep->repeat = !!(sch_ep->num_budget_microframes > 1); 369 sch_ep->bw_cost_per_microframe = maxpkt * sch_ep->pkts; 370 371 for (i = 0; i < sch_ep->num_budget_microframes - 1; i++) 372 bwb_table[i] = sch_ep->bw_cost_per_microframe; 373 374 /* last one <= bw_cost_per_microframe */ 375 bwb_table[i] = maxpkt * esit_pkts 376 - i * sch_ep->bw_cost_per_microframe; 377 } 378 } else if (is_fs_or_ls(sch_ep->speed)) { 379 sch_ep->pkts = 1; /* at most one packet for each microframe */ 380 381 /* 382 * num_budget_microframes and cs_count will be updated when 383 * check TT for INT_OUT_EP, ISOC/INT_IN_EP type 384 */ 385 sch_ep->cs_count = DIV_ROUND_UP(maxpkt, FS_PAYLOAD_MAX); 386 sch_ep->num_budget_microframes = sch_ep->cs_count; 387 sch_ep->bw_cost_per_microframe = 388 (maxpkt < FS_PAYLOAD_MAX) ? maxpkt : FS_PAYLOAD_MAX; 389 390 /* init budget table */ 391 if (ep_type == ISOC_OUT_EP) { 392 for (i = 0; i < sch_ep->num_budget_microframes; i++) 393 bwb_table[i] = sch_ep->bw_cost_per_microframe; 394 } else if (ep_type == INT_OUT_EP) { 395 /* only first one consumes bandwidth, others as zero */ 396 bwb_table[0] = sch_ep->bw_cost_per_microframe; 397 } else { /* INT_IN_EP or ISOC_IN_EP */ 398 bwb_table[0] = 0; /* start split */ 399 bwb_table[1] = 0; /* idle */ 400 /* 401 * due to cs_count will be updated according to cs 402 * position, assign all remainder budget array 403 * elements as @bw_cost_per_microframe, but only first 404 * @num_budget_microframes elements will be used later 405 */ 406 for (i = 2; i < TT_MICROFRAMES_MAX; i++) 407 bwb_table[i] = sch_ep->bw_cost_per_microframe; 408 } 409 } 410 } 411 412 /* Get maximum bandwidth when we schedule at offset slot. */ 413 static u32 get_max_bw(struct mu3h_sch_bw_info *sch_bw, 414 struct mu3h_sch_ep_info *sch_ep, u32 offset) 415 { 416 u32 max_bw = 0; 417 u32 bw; 418 int i, j, k; 419 420 for (i = 0; i < sch_ep->num_esit; i++) { 421 u32 base = offset + i * sch_ep->esit; 422 423 for (j = 0; j < sch_ep->num_budget_microframes; j++) { 424 k = XHCI_MTK_BW_INDEX(base + j); 425 bw = sch_bw->bus_bw[k] + sch_ep->bw_budget_table[j]; 426 if (bw > max_bw) 427 max_bw = bw; 428 } 429 } 430 return max_bw; 431 } 432 433 static void update_bus_bw(struct mu3h_sch_bw_info *sch_bw, 434 struct mu3h_sch_ep_info *sch_ep, bool used) 435 { 436 u32 base; 437 int i, j, k; 438 439 for (i = 0; i < sch_ep->num_esit; i++) { 440 base = sch_ep->offset + i * sch_ep->esit; 441 for (j = 0; j < sch_ep->num_budget_microframes; j++) { 442 k = XHCI_MTK_BW_INDEX(base + j); 443 if (used) 444 sch_bw->bus_bw[k] += sch_ep->bw_budget_table[j]; 445 else 446 sch_bw->bus_bw[k] -= sch_ep->bw_budget_table[j]; 447 } 448 } 449 } 450 451 static int check_fs_bus_bw(struct mu3h_sch_ep_info *sch_ep, int offset) 452 { 453 struct mu3h_sch_tt *tt = sch_ep->sch_tt; 454 u32 tmp; 455 int base; 456 int i, j, k; 457 458 for (i = 0; i < sch_ep->num_esit; i++) { 459 base = offset + i * sch_ep->esit; 460 461 /* 462 * Compared with hs bus, no matter what ep type, 463 * the hub will always delay one uframe to send data 464 */ 465 for (j = 0; j < sch_ep->num_budget_microframes; j++) { 466 k = XHCI_MTK_BW_INDEX(base + j); 467 tmp = tt->fs_bus_bw[k] + sch_ep->bw_budget_table[j]; 468 if (tmp > FS_PAYLOAD_MAX) 469 return -ESCH_BW_OVERFLOW; 470 } 471 } 472 473 return 0; 474 } 475 476 static int check_sch_tt(struct mu3h_sch_ep_info *sch_ep, u32 offset) 477 { 478 u32 extra_cs_count; 479 u32 start_ss, last_ss; 480 u32 start_cs, last_cs; 481 482 if (!sch_ep->sch_tt) 483 return 0; 484 485 start_ss = offset % 8; 486 487 if (sch_ep->ep_type == ISOC_OUT_EP) { 488 last_ss = start_ss + sch_ep->cs_count - 1; 489 490 /* 491 * usb_20 spec section11.18: 492 * must never schedule Start-Split in Y6 493 */ 494 if (!(start_ss == 7 || last_ss < 6)) 495 return -ESCH_SS_Y6; 496 497 } else { 498 u32 cs_count = DIV_ROUND_UP(sch_ep->maxpkt, FS_PAYLOAD_MAX); 499 500 /* 501 * usb_20 spec section11.18: 502 * must never schedule Start-Split in Y6 503 */ 504 if (start_ss == 6) 505 return -ESCH_SS_Y6; 506 507 /* one uframe for ss + one uframe for idle */ 508 start_cs = (start_ss + 2) % 8; 509 last_cs = start_cs + cs_count - 1; 510 511 if (last_cs > 7) 512 return -ESCH_CS_OVERFLOW; 513 514 if (sch_ep->ep_type == ISOC_IN_EP) 515 extra_cs_count = (last_cs == 7) ? 1 : 2; 516 else /* ep_type : INTR IN / INTR OUT */ 517 extra_cs_count = 1; 518 519 cs_count += extra_cs_count; 520 if (cs_count > 7) 521 cs_count = 7; /* HW limit */ 522 523 sch_ep->cs_count = cs_count; 524 /* one for ss, the other for idle */ 525 sch_ep->num_budget_microframes = cs_count + 2; 526 527 /* 528 * if interval=1, maxp >752, num_budge_micoframe is larger 529 * than sch_ep->esit, will overstep boundary 530 */ 531 if (sch_ep->num_budget_microframes > sch_ep->esit) 532 sch_ep->num_budget_microframes = sch_ep->esit; 533 } 534 535 return check_fs_bus_bw(sch_ep, offset); 536 } 537 538 static void update_sch_tt(struct mu3h_sch_ep_info *sch_ep, bool used) 539 { 540 struct mu3h_sch_tt *tt = sch_ep->sch_tt; 541 u32 base; 542 int i, j, k; 543 544 for (i = 0; i < sch_ep->num_esit; i++) { 545 base = sch_ep->offset + i * sch_ep->esit; 546 547 for (j = 0; j < sch_ep->num_budget_microframes; j++) { 548 k = XHCI_MTK_BW_INDEX(base + j); 549 if (used) 550 tt->fs_bus_bw[k] += sch_ep->bw_budget_table[j]; 551 else 552 tt->fs_bus_bw[k] -= sch_ep->bw_budget_table[j]; 553 } 554 } 555 556 if (used) 557 list_add_tail(&sch_ep->tt_endpoint, &tt->ep_list); 558 else 559 list_del(&sch_ep->tt_endpoint); 560 } 561 562 static int load_ep_bw(struct mu3h_sch_bw_info *sch_bw, 563 struct mu3h_sch_ep_info *sch_ep, bool loaded) 564 { 565 if (sch_ep->sch_tt) 566 update_sch_tt(sch_ep, loaded); 567 568 /* update bus bandwidth info */ 569 update_bus_bw(sch_bw, sch_ep, loaded); 570 sch_ep->allocated = loaded; 571 572 return 0; 573 } 574 575 static int check_sch_bw(struct mu3h_sch_ep_info *sch_ep) 576 { 577 struct mu3h_sch_bw_info *sch_bw = sch_ep->bw_info; 578 const u32 bw_boundary = get_bw_boundary(sch_ep->speed); 579 u32 offset; 580 u32 worst_bw; 581 u32 min_bw = ~0; 582 int min_index = -1; 583 int ret = 0; 584 585 /* 586 * Search through all possible schedule microframes. 587 * and find a microframe where its worst bandwidth is minimum. 588 */ 589 for (offset = 0; offset < sch_ep->esit; offset++) { 590 ret = check_sch_tt(sch_ep, offset); 591 if (ret) 592 continue; 593 594 worst_bw = get_max_bw(sch_bw, sch_ep, offset); 595 if (worst_bw > bw_boundary) 596 continue; 597 598 if (min_bw > worst_bw) { 599 min_bw = worst_bw; 600 min_index = offset; 601 } 602 603 /* use first-fit for LS/FS */ 604 if (sch_ep->sch_tt && min_index >= 0) 605 break; 606 607 if (min_bw == 0) 608 break; 609 } 610 611 if (min_index < 0) 612 return ret ? ret : -ESCH_BW_OVERFLOW; 613 614 sch_ep->offset = min_index; 615 616 return load_ep_bw(sch_bw, sch_ep, true); 617 } 618 619 static void destroy_sch_ep(struct xhci_hcd_mtk *mtk, struct usb_device *udev, 620 struct mu3h_sch_ep_info *sch_ep) 621 { 622 /* only release ep bw check passed by check_sch_bw() */ 623 if (sch_ep->allocated) 624 load_ep_bw(sch_ep->bw_info, sch_ep, false); 625 626 if (sch_ep->sch_tt) 627 drop_tt(udev); 628 629 list_del(&sch_ep->endpoint); 630 hlist_del(&sch_ep->hentry); 631 kfree(sch_ep); 632 } 633 634 static bool need_bw_sch(struct usb_device *udev, 635 struct usb_host_endpoint *ep) 636 { 637 bool has_tt = udev->tt && udev->tt->hub->parent; 638 639 /* only for periodic endpoints */ 640 if (usb_endpoint_xfer_control(&ep->desc) 641 || usb_endpoint_xfer_bulk(&ep->desc)) 642 return false; 643 644 /* 645 * for LS & FS periodic endpoints which its device is not behind 646 * a TT are also ignored, root-hub will schedule them directly, 647 * but need set @bpkts field of endpoint context to 1. 648 */ 649 if (is_fs_or_ls(udev->speed) && !has_tt) 650 return false; 651 652 /* skip endpoint with zero maxpkt */ 653 if (usb_endpoint_maxp(&ep->desc) == 0) 654 return false; 655 656 return true; 657 } 658 659 int xhci_mtk_sch_init(struct xhci_hcd_mtk *mtk) 660 { 661 struct xhci_hcd *xhci = hcd_to_xhci(mtk->hcd); 662 struct mu3h_sch_bw_info *sch_array; 663 int num_usb_bus; 664 665 /* ss IN and OUT are separated */ 666 num_usb_bus = xhci->usb3_rhub.num_ports * 2 + xhci->usb2_rhub.num_ports; 667 668 sch_array = kcalloc(num_usb_bus, sizeof(*sch_array), GFP_KERNEL); 669 if (sch_array == NULL) 670 return -ENOMEM; 671 672 mtk->sch_array = sch_array; 673 674 INIT_LIST_HEAD(&mtk->bw_ep_chk_list); 675 hash_init(mtk->sch_ep_hash); 676 677 return 0; 678 } 679 680 void xhci_mtk_sch_exit(struct xhci_hcd_mtk *mtk) 681 { 682 kfree(mtk->sch_array); 683 } 684 685 static int add_ep_quirk(struct usb_hcd *hcd, struct usb_device *udev, 686 struct usb_host_endpoint *ep) 687 { 688 struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd); 689 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 690 struct xhci_ep_ctx *ep_ctx; 691 struct xhci_virt_device *virt_dev; 692 struct mu3h_sch_ep_info *sch_ep; 693 unsigned int ep_index; 694 695 virt_dev = xhci->devs[udev->slot_id]; 696 ep_index = xhci_get_endpoint_index(&ep->desc); 697 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 698 699 if (!need_bw_sch(udev, ep)) { 700 /* 701 * set @bpkts to 1 if it is LS or FS periodic endpoint, and its 702 * device does not connected through an external HS hub 703 */ 704 if (usb_endpoint_xfer_int(&ep->desc) 705 || usb_endpoint_xfer_isoc(&ep->desc)) 706 ep_ctx->reserved[0] = cpu_to_le32(EP_BPKTS(1)); 707 708 return 0; 709 } 710 711 xhci_dbg(xhci, "%s %s\n", __func__, decode_ep(ep, udev->speed)); 712 713 sch_ep = create_sch_ep(mtk, udev, ep, ep_ctx); 714 if (IS_ERR_OR_NULL(sch_ep)) 715 return -ENOMEM; 716 717 setup_sch_info(ep_ctx, sch_ep); 718 719 list_add_tail(&sch_ep->endpoint, &mtk->bw_ep_chk_list); 720 hash_add(mtk->sch_ep_hash, &sch_ep->hentry, (unsigned long)ep); 721 722 return 0; 723 } 724 725 static void drop_ep_quirk(struct usb_hcd *hcd, struct usb_device *udev, 726 struct usb_host_endpoint *ep) 727 { 728 struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd); 729 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 730 struct mu3h_sch_ep_info *sch_ep; 731 struct hlist_node *hn; 732 733 if (!need_bw_sch(udev, ep)) 734 return; 735 736 xhci_dbg(xhci, "%s %s\n", __func__, decode_ep(ep, udev->speed)); 737 738 hash_for_each_possible_safe(mtk->sch_ep_hash, sch_ep, 739 hn, hentry, (unsigned long)ep) { 740 if (sch_ep->ep == ep) { 741 destroy_sch_ep(mtk, udev, sch_ep); 742 break; 743 } 744 } 745 } 746 747 int xhci_mtk_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 748 { 749 struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd); 750 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 751 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; 752 struct mu3h_sch_ep_info *sch_ep; 753 int ret; 754 755 xhci_dbg(xhci, "%s() udev %s\n", __func__, dev_name(&udev->dev)); 756 757 list_for_each_entry(sch_ep, &mtk->bw_ep_chk_list, endpoint) { 758 struct xhci_ep_ctx *ep_ctx; 759 struct usb_host_endpoint *ep = sch_ep->ep; 760 unsigned int ep_index = xhci_get_endpoint_index(&ep->desc); 761 762 ret = check_sch_bw(sch_ep); 763 if (ret) { 764 xhci_err(xhci, "Not enough bandwidth! (%s)\n", 765 sch_error_string(-ret)); 766 return -ENOSPC; 767 } 768 769 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 770 ep_ctx->reserved[0] = cpu_to_le32(EP_BPKTS(sch_ep->pkts) 771 | EP_BCSCOUNT(sch_ep->cs_count) 772 | EP_BBM(sch_ep->burst_mode)); 773 ep_ctx->reserved[1] = cpu_to_le32(EP_BOFFSET(sch_ep->offset) 774 | EP_BREPEAT(sch_ep->repeat)); 775 776 xhci_dbg(xhci, " PKTS:%x, CSCOUNT:%x, BM:%x, OFFSET:%x, REPEAT:%x\n", 777 sch_ep->pkts, sch_ep->cs_count, sch_ep->burst_mode, 778 sch_ep->offset, sch_ep->repeat); 779 } 780 781 ret = xhci_check_bandwidth(hcd, udev); 782 if (!ret) 783 list_del_init(&mtk->bw_ep_chk_list); 784 785 return ret; 786 } 787 788 void xhci_mtk_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 789 { 790 struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd); 791 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 792 struct mu3h_sch_ep_info *sch_ep, *tmp; 793 794 xhci_dbg(xhci, "%s() udev %s\n", __func__, dev_name(&udev->dev)); 795 796 list_for_each_entry_safe(sch_ep, tmp, &mtk->bw_ep_chk_list, endpoint) 797 destroy_sch_ep(mtk, udev, sch_ep); 798 799 xhci_reset_bandwidth(hcd, udev); 800 } 801 802 int xhci_mtk_add_ep(struct usb_hcd *hcd, struct usb_device *udev, 803 struct usb_host_endpoint *ep) 804 { 805 int ret; 806 807 ret = xhci_add_endpoint(hcd, udev, ep); 808 if (ret) 809 return ret; 810 811 if (ep->hcpriv) 812 ret = add_ep_quirk(hcd, udev, ep); 813 814 return ret; 815 } 816 817 int xhci_mtk_drop_ep(struct usb_hcd *hcd, struct usb_device *udev, 818 struct usb_host_endpoint *ep) 819 { 820 int ret; 821 822 ret = xhci_drop_endpoint(hcd, udev, ep); 823 if (ret) 824 return ret; 825 826 if (ep->hcpriv) 827 drop_ep_quirk(hcd, udev, ep); 828 829 return 0; 830 } 831