1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/usb.h> 12 #include <linux/overflow.h> 13 #include <linux/pci.h> 14 #include <linux/slab.h> 15 #include <linux/dmapool.h> 16 #include <linux/dma-mapping.h> 17 18 #include "xhci.h" 19 #include "xhci-trace.h" 20 #include "xhci-debugfs.h" 21 22 /* 23 * Allocates a generic ring segment from the ring pool, sets the dma address, 24 * initializes the segment to zero, and sets the private next pointer to NULL. 25 * 26 * Section 4.11.1.1: 27 * "All components of all Command and Transfer TRBs shall be initialized to '0'" 28 */ 29 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, 30 unsigned int cycle_state, 31 unsigned int max_packet, 32 unsigned int num, 33 gfp_t flags) 34 { 35 struct xhci_segment *seg; 36 dma_addr_t dma; 37 int i; 38 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 39 40 seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev)); 41 if (!seg) 42 return NULL; 43 44 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma); 45 if (!seg->trbs) { 46 kfree(seg); 47 return NULL; 48 } 49 50 if (max_packet) { 51 seg->bounce_buf = kzalloc_node(max_packet, flags, 52 dev_to_node(dev)); 53 if (!seg->bounce_buf) { 54 dma_pool_free(xhci->segment_pool, seg->trbs, dma); 55 kfree(seg); 56 return NULL; 57 } 58 } 59 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */ 60 if (cycle_state == 0) { 61 for (i = 0; i < TRBS_PER_SEGMENT; i++) 62 seg->trbs[i].link.control = cpu_to_le32(TRB_CYCLE); 63 } 64 seg->num = num; 65 seg->dma = dma; 66 seg->next = NULL; 67 68 return seg; 69 } 70 71 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg) 72 { 73 if (seg->trbs) { 74 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma); 75 seg->trbs = NULL; 76 } 77 kfree(seg->bounce_buf); 78 kfree(seg); 79 } 80 81 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci, 82 struct xhci_segment *first) 83 { 84 struct xhci_segment *seg; 85 86 seg = first->next; 87 while (seg != first) { 88 struct xhci_segment *next = seg->next; 89 xhci_segment_free(xhci, seg); 90 seg = next; 91 } 92 xhci_segment_free(xhci, first); 93 } 94 95 /* 96 * Make the prev segment point to the next segment. 97 * 98 * Change the last TRB in the prev segment to be a Link TRB which points to the 99 * DMA address of the next segment. The caller needs to set any Link TRB 100 * related flags, such as End TRB, Toggle Cycle, and no snoop. 101 */ 102 static void xhci_link_segments(struct xhci_segment *prev, 103 struct xhci_segment *next, 104 enum xhci_ring_type type, bool chain_links) 105 { 106 u32 val; 107 108 if (!prev || !next) 109 return; 110 prev->next = next; 111 if (type != TYPE_EVENT) { 112 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = 113 cpu_to_le64(next->dma); 114 115 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */ 116 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control); 117 val &= ~TRB_TYPE_BITMASK; 118 val |= TRB_TYPE(TRB_LINK); 119 if (chain_links) 120 val |= TRB_CHAIN; 121 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val); 122 } 123 } 124 125 /* 126 * Link the ring to the new segments. 127 * Set Toggle Cycle for the new ring if needed. 128 */ 129 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring, 130 struct xhci_segment *first, struct xhci_segment *last, 131 unsigned int num_segs) 132 { 133 struct xhci_segment *next, *seg; 134 bool chain_links; 135 136 if (!ring || !first || !last) 137 return; 138 139 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */ 140 chain_links = !!(xhci_link_trb_quirk(xhci) || 141 (ring->type == TYPE_ISOC && 142 (xhci->quirks & XHCI_AMD_0x96_HOST))); 143 144 next = ring->enq_seg->next; 145 xhci_link_segments(ring->enq_seg, first, ring->type, chain_links); 146 xhci_link_segments(last, next, ring->type, chain_links); 147 ring->num_segs += num_segs; 148 149 if (ring->enq_seg == ring->last_seg) { 150 if (ring->type != TYPE_EVENT) { 151 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control 152 &= ~cpu_to_le32(LINK_TOGGLE); 153 last->trbs[TRBS_PER_SEGMENT-1].link.control 154 |= cpu_to_le32(LINK_TOGGLE); 155 } 156 ring->last_seg = last; 157 } 158 159 for (seg = last; seg != ring->last_seg; seg = seg->next) 160 seg->next->num = seg->num + 1; 161 } 162 163 /* 164 * We need a radix tree for mapping physical addresses of TRBs to which stream 165 * ID they belong to. We need to do this because the host controller won't tell 166 * us which stream ring the TRB came from. We could store the stream ID in an 167 * event data TRB, but that doesn't help us for the cancellation case, since the 168 * endpoint may stop before it reaches that event data TRB. 169 * 170 * The radix tree maps the upper portion of the TRB DMA address to a ring 171 * segment that has the same upper portion of DMA addresses. For example, say I 172 * have segments of size 1KB, that are always 1KB aligned. A segment may 173 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the 174 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to 175 * pass the radix tree a key to get the right stream ID: 176 * 177 * 0x10c90fff >> 10 = 0x43243 178 * 0x10c912c0 >> 10 = 0x43244 179 * 0x10c91400 >> 10 = 0x43245 180 * 181 * Obviously, only those TRBs with DMA addresses that are within the segment 182 * will make the radix tree return the stream ID for that ring. 183 * 184 * Caveats for the radix tree: 185 * 186 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an 187 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be 188 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the 189 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit 190 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit 191 * extended systems (where the DMA address can be bigger than 32-bits), 192 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that. 193 */ 194 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map, 195 struct xhci_ring *ring, 196 struct xhci_segment *seg, 197 gfp_t mem_flags) 198 { 199 unsigned long key; 200 int ret; 201 202 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); 203 /* Skip any segments that were already added. */ 204 if (radix_tree_lookup(trb_address_map, key)) 205 return 0; 206 207 ret = radix_tree_maybe_preload(mem_flags); 208 if (ret) 209 return ret; 210 ret = radix_tree_insert(trb_address_map, 211 key, ring); 212 radix_tree_preload_end(); 213 return ret; 214 } 215 216 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map, 217 struct xhci_segment *seg) 218 { 219 unsigned long key; 220 221 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); 222 if (radix_tree_lookup(trb_address_map, key)) 223 radix_tree_delete(trb_address_map, key); 224 } 225 226 static int xhci_update_stream_segment_mapping( 227 struct radix_tree_root *trb_address_map, 228 struct xhci_ring *ring, 229 struct xhci_segment *first_seg, 230 struct xhci_segment *last_seg, 231 gfp_t mem_flags) 232 { 233 struct xhci_segment *seg; 234 struct xhci_segment *failed_seg; 235 int ret; 236 237 if (WARN_ON_ONCE(trb_address_map == NULL)) 238 return 0; 239 240 seg = first_seg; 241 do { 242 ret = xhci_insert_segment_mapping(trb_address_map, 243 ring, seg, mem_flags); 244 if (ret) 245 goto remove_streams; 246 if (seg == last_seg) 247 return 0; 248 seg = seg->next; 249 } while (seg != first_seg); 250 251 return 0; 252 253 remove_streams: 254 failed_seg = seg; 255 seg = first_seg; 256 do { 257 xhci_remove_segment_mapping(trb_address_map, seg); 258 if (seg == failed_seg) 259 return ret; 260 seg = seg->next; 261 } while (seg != first_seg); 262 263 return ret; 264 } 265 266 static void xhci_remove_stream_mapping(struct xhci_ring *ring) 267 { 268 struct xhci_segment *seg; 269 270 if (WARN_ON_ONCE(ring->trb_address_map == NULL)) 271 return; 272 273 seg = ring->first_seg; 274 do { 275 xhci_remove_segment_mapping(ring->trb_address_map, seg); 276 seg = seg->next; 277 } while (seg != ring->first_seg); 278 } 279 280 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags) 281 { 282 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring, 283 ring->first_seg, ring->last_seg, mem_flags); 284 } 285 286 /* XXX: Do we need the hcd structure in all these functions? */ 287 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring) 288 { 289 if (!ring) 290 return; 291 292 trace_xhci_ring_free(ring); 293 294 if (ring->first_seg) { 295 if (ring->type == TYPE_STREAM) 296 xhci_remove_stream_mapping(ring); 297 xhci_free_segments_for_ring(xhci, ring->first_seg); 298 } 299 300 kfree(ring); 301 } 302 303 void xhci_initialize_ring_info(struct xhci_ring *ring, 304 unsigned int cycle_state) 305 { 306 /* The ring is empty, so the enqueue pointer == dequeue pointer */ 307 ring->enqueue = ring->first_seg->trbs; 308 ring->enq_seg = ring->first_seg; 309 ring->dequeue = ring->enqueue; 310 ring->deq_seg = ring->first_seg; 311 /* The ring is initialized to 0. The producer must write 1 to the cycle 312 * bit to handover ownership of the TRB, so PCS = 1. The consumer must 313 * compare CCS to the cycle bit to check ownership, so CCS = 1. 314 * 315 * New rings are initialized with cycle state equal to 1; if we are 316 * handling ring expansion, set the cycle state equal to the old ring. 317 */ 318 ring->cycle_state = cycle_state; 319 320 /* 321 * Each segment has a link TRB, and leave an extra TRB for SW 322 * accounting purpose 323 */ 324 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 325 } 326 EXPORT_SYMBOL_GPL(xhci_initialize_ring_info); 327 328 /* Allocate segments and link them for a ring */ 329 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci, 330 struct xhci_segment **first, struct xhci_segment **last, 331 unsigned int num_segs, unsigned int num, 332 unsigned int cycle_state, enum xhci_ring_type type, 333 unsigned int max_packet, gfp_t flags) 334 { 335 struct xhci_segment *prev; 336 bool chain_links; 337 338 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */ 339 chain_links = !!(xhci_link_trb_quirk(xhci) || 340 (type == TYPE_ISOC && 341 (xhci->quirks & XHCI_AMD_0x96_HOST))); 342 343 prev = xhci_segment_alloc(xhci, cycle_state, max_packet, num, flags); 344 if (!prev) 345 return -ENOMEM; 346 num++; 347 348 *first = prev; 349 while (num < num_segs) { 350 struct xhci_segment *next; 351 352 next = xhci_segment_alloc(xhci, cycle_state, max_packet, num, 353 flags); 354 if (!next) { 355 prev = *first; 356 while (prev) { 357 next = prev->next; 358 xhci_segment_free(xhci, prev); 359 prev = next; 360 } 361 return -ENOMEM; 362 } 363 xhci_link_segments(prev, next, type, chain_links); 364 365 prev = next; 366 num++; 367 } 368 xhci_link_segments(prev, *first, type, chain_links); 369 *last = prev; 370 371 return 0; 372 } 373 374 /* 375 * Create a new ring with zero or more segments. 376 * 377 * Link each segment together into a ring. 378 * Set the end flag and the cycle toggle bit on the last segment. 379 * See section 4.9.1 and figures 15 and 16. 380 */ 381 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, 382 unsigned int num_segs, unsigned int cycle_state, 383 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags) 384 { 385 struct xhci_ring *ring; 386 int ret; 387 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 388 389 ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev)); 390 if (!ring) 391 return NULL; 392 393 ring->num_segs = num_segs; 394 ring->bounce_buf_len = max_packet; 395 INIT_LIST_HEAD(&ring->td_list); 396 ring->type = type; 397 if (num_segs == 0) 398 return ring; 399 400 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg, 401 &ring->last_seg, num_segs, 0, cycle_state, type, 402 max_packet, flags); 403 if (ret) 404 goto fail; 405 406 /* Only event ring does not use link TRB */ 407 if (type != TYPE_EVENT) { 408 /* See section 4.9.2.1 and 6.4.4.1 */ 409 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |= 410 cpu_to_le32(LINK_TOGGLE); 411 } 412 xhci_initialize_ring_info(ring, cycle_state); 413 trace_xhci_ring_alloc(ring); 414 return ring; 415 416 fail: 417 kfree(ring); 418 return NULL; 419 } 420 421 void xhci_free_endpoint_ring(struct xhci_hcd *xhci, 422 struct xhci_virt_device *virt_dev, 423 unsigned int ep_index) 424 { 425 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring); 426 virt_dev->eps[ep_index].ring = NULL; 427 } 428 429 /* 430 * Expand an existing ring. 431 * Allocate a new ring which has same segment numbers and link the two rings. 432 */ 433 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring, 434 unsigned int num_new_segs, gfp_t flags) 435 { 436 struct xhci_segment *first; 437 struct xhci_segment *last; 438 int ret; 439 440 ret = xhci_alloc_segments_for_ring(xhci, &first, &last, 441 num_new_segs, ring->enq_seg->num + 1, 442 ring->cycle_state, ring->type, 443 ring->bounce_buf_len, flags); 444 if (ret) 445 return -ENOMEM; 446 447 if (ring->type == TYPE_STREAM) 448 ret = xhci_update_stream_segment_mapping(ring->trb_address_map, 449 ring, first, last, flags); 450 if (ret) { 451 struct xhci_segment *next; 452 do { 453 next = first->next; 454 xhci_segment_free(xhci, first); 455 if (first == last) 456 break; 457 first = next; 458 } while (true); 459 return ret; 460 } 461 462 xhci_link_rings(xhci, ring, first, last, num_new_segs); 463 trace_xhci_ring_expansion(ring); 464 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 465 "ring expansion succeed, now has %d segments", 466 ring->num_segs); 467 468 return 0; 469 } 470 471 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci, 472 int type, gfp_t flags) 473 { 474 struct xhci_container_ctx *ctx; 475 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 476 477 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT)) 478 return NULL; 479 480 ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev)); 481 if (!ctx) 482 return NULL; 483 484 ctx->type = type; 485 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024; 486 if (type == XHCI_CTX_TYPE_INPUT) 487 ctx->size += CTX_SIZE(xhci->hcc_params); 488 489 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma); 490 if (!ctx->bytes) { 491 kfree(ctx); 492 return NULL; 493 } 494 return ctx; 495 } 496 497 void xhci_free_container_ctx(struct xhci_hcd *xhci, 498 struct xhci_container_ctx *ctx) 499 { 500 if (!ctx) 501 return; 502 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma); 503 kfree(ctx); 504 } 505 506 struct xhci_input_control_ctx *xhci_get_input_control_ctx( 507 struct xhci_container_ctx *ctx) 508 { 509 if (ctx->type != XHCI_CTX_TYPE_INPUT) 510 return NULL; 511 512 return (struct xhci_input_control_ctx *)ctx->bytes; 513 } 514 515 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci, 516 struct xhci_container_ctx *ctx) 517 { 518 if (ctx->type == XHCI_CTX_TYPE_DEVICE) 519 return (struct xhci_slot_ctx *)ctx->bytes; 520 521 return (struct xhci_slot_ctx *) 522 (ctx->bytes + CTX_SIZE(xhci->hcc_params)); 523 } 524 525 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci, 526 struct xhci_container_ctx *ctx, 527 unsigned int ep_index) 528 { 529 /* increment ep index by offset of start of ep ctx array */ 530 ep_index++; 531 if (ctx->type == XHCI_CTX_TYPE_INPUT) 532 ep_index++; 533 534 return (struct xhci_ep_ctx *) 535 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params))); 536 } 537 EXPORT_SYMBOL_GPL(xhci_get_ep_ctx); 538 539 /***************** Streams structures manipulation *************************/ 540 541 static void xhci_free_stream_ctx(struct xhci_hcd *xhci, 542 unsigned int num_stream_ctxs, 543 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma) 544 { 545 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 546 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs; 547 548 if (size > MEDIUM_STREAM_ARRAY_SIZE) 549 dma_free_coherent(dev, size, stream_ctx, dma); 550 else if (size > SMALL_STREAM_ARRAY_SIZE) 551 dma_pool_free(xhci->medium_streams_pool, stream_ctx, dma); 552 else 553 dma_pool_free(xhci->small_streams_pool, stream_ctx, dma); 554 } 555 556 /* 557 * The stream context array for each endpoint with bulk streams enabled can 558 * vary in size, based on: 559 * - how many streams the endpoint supports, 560 * - the maximum primary stream array size the host controller supports, 561 * - and how many streams the device driver asks for. 562 * 563 * The stream context array must be a power of 2, and can be as small as 564 * 64 bytes or as large as 1MB. 565 */ 566 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci, 567 unsigned int num_stream_ctxs, dma_addr_t *dma, 568 gfp_t mem_flags) 569 { 570 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 571 size_t size = size_mul(sizeof(struct xhci_stream_ctx), num_stream_ctxs); 572 573 if (size > MEDIUM_STREAM_ARRAY_SIZE) 574 return dma_alloc_coherent(dev, size, dma, mem_flags); 575 if (size > SMALL_STREAM_ARRAY_SIZE) 576 return dma_pool_zalloc(xhci->medium_streams_pool, mem_flags, dma); 577 else 578 return dma_pool_zalloc(xhci->small_streams_pool, mem_flags, dma); 579 } 580 581 struct xhci_ring *xhci_dma_to_transfer_ring( 582 struct xhci_virt_ep *ep, 583 u64 address) 584 { 585 if (ep->ep_state & EP_HAS_STREAMS) 586 return radix_tree_lookup(&ep->stream_info->trb_address_map, 587 address >> TRB_SEGMENT_SHIFT); 588 return ep->ring; 589 } 590 591 /* 592 * Change an endpoint's internal structure so it supports stream IDs. The 593 * number of requested streams includes stream 0, which cannot be used by device 594 * drivers. 595 * 596 * The number of stream contexts in the stream context array may be bigger than 597 * the number of streams the driver wants to use. This is because the number of 598 * stream context array entries must be a power of two. 599 */ 600 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci, 601 unsigned int num_stream_ctxs, 602 unsigned int num_streams, 603 unsigned int max_packet, gfp_t mem_flags) 604 { 605 struct xhci_stream_info *stream_info; 606 u32 cur_stream; 607 struct xhci_ring *cur_ring; 608 u64 addr; 609 int ret; 610 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 611 612 xhci_dbg(xhci, "Allocating %u streams and %u stream context array entries.\n", 613 num_streams, num_stream_ctxs); 614 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) { 615 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n"); 616 return NULL; 617 } 618 xhci->cmd_ring_reserved_trbs++; 619 620 stream_info = kzalloc_node(sizeof(*stream_info), mem_flags, 621 dev_to_node(dev)); 622 if (!stream_info) 623 goto cleanup_trbs; 624 625 stream_info->num_streams = num_streams; 626 stream_info->num_stream_ctxs = num_stream_ctxs; 627 628 /* Initialize the array of virtual pointers to stream rings. */ 629 stream_info->stream_rings = kcalloc_node( 630 num_streams, sizeof(struct xhci_ring *), mem_flags, 631 dev_to_node(dev)); 632 if (!stream_info->stream_rings) 633 goto cleanup_info; 634 635 /* Initialize the array of DMA addresses for stream rings for the HW. */ 636 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci, 637 num_stream_ctxs, &stream_info->ctx_array_dma, 638 mem_flags); 639 if (!stream_info->stream_ctx_array) 640 goto cleanup_ring_array; 641 642 /* Allocate everything needed to free the stream rings later */ 643 stream_info->free_streams_command = 644 xhci_alloc_command_with_ctx(xhci, true, mem_flags); 645 if (!stream_info->free_streams_command) 646 goto cleanup_ctx; 647 648 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC); 649 650 /* Allocate rings for all the streams that the driver will use, 651 * and add their segment DMA addresses to the radix tree. 652 * Stream 0 is reserved. 653 */ 654 655 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 656 stream_info->stream_rings[cur_stream] = 657 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet, 658 mem_flags); 659 cur_ring = stream_info->stream_rings[cur_stream]; 660 if (!cur_ring) 661 goto cleanup_rings; 662 cur_ring->stream_id = cur_stream; 663 cur_ring->trb_address_map = &stream_info->trb_address_map; 664 /* Set deq ptr, cycle bit, and stream context type */ 665 addr = cur_ring->first_seg->dma | 666 SCT_FOR_CTX(SCT_PRI_TR) | 667 cur_ring->cycle_state; 668 stream_info->stream_ctx_array[cur_stream].stream_ring = 669 cpu_to_le64(addr); 670 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", cur_stream, addr); 671 672 ret = xhci_update_stream_mapping(cur_ring, mem_flags); 673 if (ret) { 674 xhci_ring_free(xhci, cur_ring); 675 stream_info->stream_rings[cur_stream] = NULL; 676 goto cleanup_rings; 677 } 678 } 679 /* Leave the other unused stream ring pointers in the stream context 680 * array initialized to zero. This will cause the xHC to give us an 681 * error if the device asks for a stream ID we don't have setup (if it 682 * was any other way, the host controller would assume the ring is 683 * "empty" and wait forever for data to be queued to that stream ID). 684 */ 685 686 return stream_info; 687 688 cleanup_rings: 689 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 690 cur_ring = stream_info->stream_rings[cur_stream]; 691 if (cur_ring) { 692 xhci_ring_free(xhci, cur_ring); 693 stream_info->stream_rings[cur_stream] = NULL; 694 } 695 } 696 xhci_free_command(xhci, stream_info->free_streams_command); 697 cleanup_ctx: 698 xhci_free_stream_ctx(xhci, 699 stream_info->num_stream_ctxs, 700 stream_info->stream_ctx_array, 701 stream_info->ctx_array_dma); 702 cleanup_ring_array: 703 kfree(stream_info->stream_rings); 704 cleanup_info: 705 kfree(stream_info); 706 cleanup_trbs: 707 xhci->cmd_ring_reserved_trbs--; 708 return NULL; 709 } 710 /* 711 * Sets the MaxPStreams field and the Linear Stream Array field. 712 * Sets the dequeue pointer to the stream context array. 713 */ 714 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci, 715 struct xhci_ep_ctx *ep_ctx, 716 struct xhci_stream_info *stream_info) 717 { 718 u32 max_primary_streams; 719 /* MaxPStreams is the number of stream context array entries, not the 720 * number we're actually using. Must be in 2^(MaxPstreams + 1) format. 721 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc. 722 */ 723 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2; 724 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 725 "Setting number of stream ctx array entries to %u", 726 1 << (max_primary_streams + 1)); 727 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK); 728 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams) 729 | EP_HAS_LSA); 730 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma); 731 } 732 733 /* 734 * Sets the MaxPStreams field and the Linear Stream Array field to 0. 735 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark, 736 * not at the beginning of the ring). 737 */ 738 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx, 739 struct xhci_virt_ep *ep) 740 { 741 dma_addr_t addr; 742 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA)); 743 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue); 744 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state); 745 } 746 747 /* Frees all stream contexts associated with the endpoint, 748 * 749 * Caller should fix the endpoint context streams fields. 750 */ 751 void xhci_free_stream_info(struct xhci_hcd *xhci, 752 struct xhci_stream_info *stream_info) 753 { 754 int cur_stream; 755 struct xhci_ring *cur_ring; 756 757 if (!stream_info) 758 return; 759 760 for (cur_stream = 1; cur_stream < stream_info->num_streams; 761 cur_stream++) { 762 cur_ring = stream_info->stream_rings[cur_stream]; 763 if (cur_ring) { 764 xhci_ring_free(xhci, cur_ring); 765 stream_info->stream_rings[cur_stream] = NULL; 766 } 767 } 768 xhci_free_command(xhci, stream_info->free_streams_command); 769 xhci->cmd_ring_reserved_trbs--; 770 if (stream_info->stream_ctx_array) 771 xhci_free_stream_ctx(xhci, 772 stream_info->num_stream_ctxs, 773 stream_info->stream_ctx_array, 774 stream_info->ctx_array_dma); 775 776 kfree(stream_info->stream_rings); 777 kfree(stream_info); 778 } 779 780 781 /***************** Device context manipulation *************************/ 782 783 static void xhci_free_tt_info(struct xhci_hcd *xhci, 784 struct xhci_virt_device *virt_dev, 785 int slot_id) 786 { 787 struct list_head *tt_list_head; 788 struct xhci_tt_bw_info *tt_info, *next; 789 bool slot_found = false; 790 791 /* If the device never made it past the Set Address stage, 792 * it may not have the real_port set correctly. 793 */ 794 if (virt_dev->real_port == 0 || 795 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) { 796 xhci_dbg(xhci, "Bad real port.\n"); 797 return; 798 } 799 800 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts); 801 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { 802 /* Multi-TT hubs will have more than one entry */ 803 if (tt_info->slot_id == slot_id) { 804 slot_found = true; 805 list_del(&tt_info->tt_list); 806 kfree(tt_info); 807 } else if (slot_found) { 808 break; 809 } 810 } 811 } 812 813 int xhci_alloc_tt_info(struct xhci_hcd *xhci, 814 struct xhci_virt_device *virt_dev, 815 struct usb_device *hdev, 816 struct usb_tt *tt, gfp_t mem_flags) 817 { 818 struct xhci_tt_bw_info *tt_info; 819 unsigned int num_ports; 820 int i, j; 821 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 822 823 if (!tt->multi) 824 num_ports = 1; 825 else 826 num_ports = hdev->maxchild; 827 828 for (i = 0; i < num_ports; i++, tt_info++) { 829 struct xhci_interval_bw_table *bw_table; 830 831 tt_info = kzalloc_node(sizeof(*tt_info), mem_flags, 832 dev_to_node(dev)); 833 if (!tt_info) 834 goto free_tts; 835 INIT_LIST_HEAD(&tt_info->tt_list); 836 list_add(&tt_info->tt_list, 837 &xhci->rh_bw[virt_dev->real_port - 1].tts); 838 tt_info->slot_id = virt_dev->udev->slot_id; 839 if (tt->multi) 840 tt_info->ttport = i+1; 841 bw_table = &tt_info->bw_table; 842 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 843 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 844 } 845 return 0; 846 847 free_tts: 848 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id); 849 return -ENOMEM; 850 } 851 852 853 /* All the xhci_tds in the ring's TD list should be freed at this point. 854 * Should be called with xhci->lock held if there is any chance the TT lists 855 * will be manipulated by the configure endpoint, allocate device, or update 856 * hub functions while this function is removing the TT entries from the list. 857 */ 858 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id) 859 { 860 struct xhci_virt_device *dev; 861 int i; 862 int old_active_eps = 0; 863 864 /* Slot ID 0 is reserved */ 865 if (slot_id == 0 || !xhci->devs[slot_id]) 866 return; 867 868 dev = xhci->devs[slot_id]; 869 870 xhci->dcbaa->dev_context_ptrs[slot_id] = 0; 871 if (!dev) 872 return; 873 874 trace_xhci_free_virt_device(dev); 875 876 if (dev->tt_info) 877 old_active_eps = dev->tt_info->active_eps; 878 879 for (i = 0; i < 31; i++) { 880 if (dev->eps[i].ring) 881 xhci_ring_free(xhci, dev->eps[i].ring); 882 if (dev->eps[i].stream_info) 883 xhci_free_stream_info(xhci, 884 dev->eps[i].stream_info); 885 /* 886 * Endpoints are normally deleted from the bandwidth list when 887 * endpoints are dropped, before device is freed. 888 * If host is dying or being removed then endpoints aren't 889 * dropped cleanly, so delete the endpoint from list here. 890 * Only applicable for hosts with software bandwidth checking. 891 */ 892 893 if (!list_empty(&dev->eps[i].bw_endpoint_list)) { 894 list_del_init(&dev->eps[i].bw_endpoint_list); 895 xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n", 896 slot_id, i); 897 } 898 } 899 /* If this is a hub, free the TT(s) from the TT list */ 900 xhci_free_tt_info(xhci, dev, slot_id); 901 /* If necessary, update the number of active TTs on this root port */ 902 xhci_update_tt_active_eps(xhci, dev, old_active_eps); 903 904 if (dev->in_ctx) 905 xhci_free_container_ctx(xhci, dev->in_ctx); 906 if (dev->out_ctx) 907 xhci_free_container_ctx(xhci, dev->out_ctx); 908 909 if (dev->udev && dev->udev->slot_id) 910 dev->udev->slot_id = 0; 911 kfree(xhci->devs[slot_id]); 912 xhci->devs[slot_id] = NULL; 913 } 914 915 /* 916 * Free a virt_device structure. 917 * If the virt_device added a tt_info (a hub) and has children pointing to 918 * that tt_info, then free the child first. Recursive. 919 * We can't rely on udev at this point to find child-parent relationships. 920 */ 921 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id) 922 { 923 struct xhci_virt_device *vdev; 924 struct list_head *tt_list_head; 925 struct xhci_tt_bw_info *tt_info, *next; 926 int i; 927 928 vdev = xhci->devs[slot_id]; 929 if (!vdev) 930 return; 931 932 if (vdev->real_port == 0 || 933 vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) { 934 xhci_dbg(xhci, "Bad vdev->real_port.\n"); 935 goto out; 936 } 937 938 tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts); 939 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { 940 /* is this a hub device that added a tt_info to the tts list */ 941 if (tt_info->slot_id == slot_id) { 942 /* are any devices using this tt_info? */ 943 for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 944 vdev = xhci->devs[i]; 945 if (vdev && (vdev->tt_info == tt_info)) 946 xhci_free_virt_devices_depth_first( 947 xhci, i); 948 } 949 } 950 } 951 out: 952 /* we are now at a leaf device */ 953 xhci_debugfs_remove_slot(xhci, slot_id); 954 xhci_free_virt_device(xhci, slot_id); 955 } 956 957 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id, 958 struct usb_device *udev, gfp_t flags) 959 { 960 struct xhci_virt_device *dev; 961 int i; 962 963 /* Slot ID 0 is reserved */ 964 if (slot_id == 0 || xhci->devs[slot_id]) { 965 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id); 966 return 0; 967 } 968 969 dev = kzalloc(sizeof(*dev), flags); 970 if (!dev) 971 return 0; 972 973 dev->slot_id = slot_id; 974 975 /* Allocate the (output) device context that will be used in the HC. */ 976 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags); 977 if (!dev->out_ctx) 978 goto fail; 979 980 xhci_dbg(xhci, "Slot %d output ctx = 0x%pad (dma)\n", slot_id, &dev->out_ctx->dma); 981 982 /* Allocate the (input) device context for address device command */ 983 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags); 984 if (!dev->in_ctx) 985 goto fail; 986 987 xhci_dbg(xhci, "Slot %d input ctx = 0x%pad (dma)\n", slot_id, &dev->in_ctx->dma); 988 989 /* Initialize the cancellation and bandwidth list for each ep */ 990 for (i = 0; i < 31; i++) { 991 dev->eps[i].ep_index = i; 992 dev->eps[i].vdev = dev; 993 dev->eps[i].xhci = xhci; 994 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list); 995 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list); 996 } 997 998 /* Allocate endpoint 0 ring */ 999 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags); 1000 if (!dev->eps[0].ring) 1001 goto fail; 1002 1003 dev->udev = udev; 1004 1005 /* Point to output device context in dcbaa. */ 1006 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma); 1007 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n", 1008 slot_id, 1009 &xhci->dcbaa->dev_context_ptrs[slot_id], 1010 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id])); 1011 1012 trace_xhci_alloc_virt_device(dev); 1013 1014 xhci->devs[slot_id] = dev; 1015 1016 return 1; 1017 fail: 1018 1019 if (dev->in_ctx) 1020 xhci_free_container_ctx(xhci, dev->in_ctx); 1021 if (dev->out_ctx) 1022 xhci_free_container_ctx(xhci, dev->out_ctx); 1023 kfree(dev); 1024 1025 return 0; 1026 } 1027 1028 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci, 1029 struct usb_device *udev) 1030 { 1031 struct xhci_virt_device *virt_dev; 1032 struct xhci_ep_ctx *ep0_ctx; 1033 struct xhci_ring *ep_ring; 1034 1035 virt_dev = xhci->devs[udev->slot_id]; 1036 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0); 1037 ep_ring = virt_dev->eps[0].ring; 1038 /* 1039 * FIXME we don't keep track of the dequeue pointer very well after a 1040 * Set TR dequeue pointer, so we're setting the dequeue pointer of the 1041 * host to our enqueue pointer. This should only be called after a 1042 * configured device has reset, so all control transfers should have 1043 * been completed or cancelled before the reset. 1044 */ 1045 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg, 1046 ep_ring->enqueue) 1047 | ep_ring->cycle_state); 1048 } 1049 1050 /* 1051 * The xHCI roothub may have ports of differing speeds in any order in the port 1052 * status registers. 1053 * 1054 * The xHCI hardware wants to know the roothub port number that the USB device 1055 * is attached to (or the roothub port its ancestor hub is attached to). All we 1056 * know is the index of that port under either the USB 2.0 or the USB 3.0 1057 * roothub, but that doesn't give us the real index into the HW port status 1058 * registers. Call xhci_find_raw_port_number() to get real index. 1059 */ 1060 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci, 1061 struct usb_device *udev) 1062 { 1063 struct usb_device *top_dev; 1064 struct usb_hcd *hcd; 1065 1066 if (udev->speed >= USB_SPEED_SUPER) 1067 hcd = xhci_get_usb3_hcd(xhci); 1068 else 1069 hcd = xhci->main_hcd; 1070 1071 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 1072 top_dev = top_dev->parent) 1073 /* Found device below root hub */; 1074 1075 return xhci_find_raw_port_number(hcd, top_dev->portnum); 1076 } 1077 1078 /* Setup an xHCI virtual device for a Set Address command */ 1079 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev) 1080 { 1081 struct xhci_virt_device *dev; 1082 struct xhci_ep_ctx *ep0_ctx; 1083 struct xhci_slot_ctx *slot_ctx; 1084 u32 port_num; 1085 u32 max_packets; 1086 struct usb_device *top_dev; 1087 1088 dev = xhci->devs[udev->slot_id]; 1089 /* Slot ID 0 is reserved */ 1090 if (udev->slot_id == 0 || !dev) { 1091 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n", 1092 udev->slot_id); 1093 return -EINVAL; 1094 } 1095 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0); 1096 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx); 1097 1098 /* 3) Only the control endpoint is valid - one endpoint context */ 1099 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route); 1100 switch (udev->speed) { 1101 case USB_SPEED_SUPER_PLUS: 1102 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP); 1103 max_packets = MAX_PACKET(512); 1104 break; 1105 case USB_SPEED_SUPER: 1106 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS); 1107 max_packets = MAX_PACKET(512); 1108 break; 1109 case USB_SPEED_HIGH: 1110 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS); 1111 max_packets = MAX_PACKET(64); 1112 break; 1113 /* USB core guesses at a 64-byte max packet first for FS devices */ 1114 case USB_SPEED_FULL: 1115 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS); 1116 max_packets = MAX_PACKET(64); 1117 break; 1118 case USB_SPEED_LOW: 1119 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS); 1120 max_packets = MAX_PACKET(8); 1121 break; 1122 default: 1123 /* Speed was set earlier, this shouldn't happen. */ 1124 return -EINVAL; 1125 } 1126 /* Find the root hub port this device is under */ 1127 port_num = xhci_find_real_port_number(xhci, udev); 1128 if (!port_num) 1129 return -EINVAL; 1130 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num)); 1131 /* Set the port number in the virtual_device to the faked port number */ 1132 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 1133 top_dev = top_dev->parent) 1134 /* Found device below root hub */; 1135 dev->fake_port = top_dev->portnum; 1136 dev->real_port = port_num; 1137 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num); 1138 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port); 1139 1140 /* Find the right bandwidth table that this device will be a part of. 1141 * If this is a full speed device attached directly to a root port (or a 1142 * decendent of one), it counts as a primary bandwidth domain, not a 1143 * secondary bandwidth domain under a TT. An xhci_tt_info structure 1144 * will never be created for the HS root hub. 1145 */ 1146 if (!udev->tt || !udev->tt->hub->parent) { 1147 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table; 1148 } else { 1149 struct xhci_root_port_bw_info *rh_bw; 1150 struct xhci_tt_bw_info *tt_bw; 1151 1152 rh_bw = &xhci->rh_bw[port_num - 1]; 1153 /* Find the right TT. */ 1154 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) { 1155 if (tt_bw->slot_id != udev->tt->hub->slot_id) 1156 continue; 1157 1158 if (!dev->udev->tt->multi || 1159 (udev->tt->multi && 1160 tt_bw->ttport == dev->udev->ttport)) { 1161 dev->bw_table = &tt_bw->bw_table; 1162 dev->tt_info = tt_bw; 1163 break; 1164 } 1165 } 1166 if (!dev->tt_info) 1167 xhci_warn(xhci, "WARN: Didn't find a matching TT\n"); 1168 } 1169 1170 /* Is this a LS/FS device under an external HS hub? */ 1171 if (udev->tt && udev->tt->hub->parent) { 1172 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id | 1173 (udev->ttport << 8)); 1174 if (udev->tt->multi) 1175 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 1176 } 1177 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt); 1178 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport); 1179 1180 /* Step 4 - ring already allocated */ 1181 /* Step 5 */ 1182 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP)); 1183 1184 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */ 1185 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) | 1186 max_packets); 1187 1188 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma | 1189 dev->eps[0].ring->cycle_state); 1190 1191 trace_xhci_setup_addressable_virt_device(dev); 1192 1193 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */ 1194 1195 return 0; 1196 } 1197 1198 /* 1199 * Convert interval expressed as 2^(bInterval - 1) == interval into 1200 * straight exponent value 2^n == interval. 1201 * 1202 */ 1203 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev, 1204 struct usb_host_endpoint *ep) 1205 { 1206 unsigned int interval; 1207 1208 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1; 1209 if (interval != ep->desc.bInterval - 1) 1210 dev_warn(&udev->dev, 1211 "ep %#x - rounding interval to %d %sframes\n", 1212 ep->desc.bEndpointAddress, 1213 1 << interval, 1214 udev->speed == USB_SPEED_FULL ? "" : "micro"); 1215 1216 if (udev->speed == USB_SPEED_FULL) { 1217 /* 1218 * Full speed isoc endpoints specify interval in frames, 1219 * not microframes. We are using microframes everywhere, 1220 * so adjust accordingly. 1221 */ 1222 interval += 3; /* 1 frame = 2^3 uframes */ 1223 } 1224 1225 return interval; 1226 } 1227 1228 /* 1229 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of 1230 * microframes, rounded down to nearest power of 2. 1231 */ 1232 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev, 1233 struct usb_host_endpoint *ep, unsigned int desc_interval, 1234 unsigned int min_exponent, unsigned int max_exponent) 1235 { 1236 unsigned int interval; 1237 1238 interval = fls(desc_interval) - 1; 1239 interval = clamp_val(interval, min_exponent, max_exponent); 1240 if ((1 << interval) != desc_interval) 1241 dev_dbg(&udev->dev, 1242 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n", 1243 ep->desc.bEndpointAddress, 1244 1 << interval, 1245 desc_interval); 1246 1247 return interval; 1248 } 1249 1250 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev, 1251 struct usb_host_endpoint *ep) 1252 { 1253 if (ep->desc.bInterval == 0) 1254 return 0; 1255 return xhci_microframes_to_exponent(udev, ep, 1256 ep->desc.bInterval, 0, 15); 1257 } 1258 1259 1260 static unsigned int xhci_parse_frame_interval(struct usb_device *udev, 1261 struct usb_host_endpoint *ep) 1262 { 1263 return xhci_microframes_to_exponent(udev, ep, 1264 ep->desc.bInterval * 8, 3, 10); 1265 } 1266 1267 /* Return the polling or NAK interval. 1268 * 1269 * The polling interval is expressed in "microframes". If xHCI's Interval field 1270 * is set to N, it will service the endpoint every 2^(Interval)*125us. 1271 * 1272 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval 1273 * is set to 0. 1274 */ 1275 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev, 1276 struct usb_host_endpoint *ep) 1277 { 1278 unsigned int interval = 0; 1279 1280 switch (udev->speed) { 1281 case USB_SPEED_HIGH: 1282 /* Max NAK rate */ 1283 if (usb_endpoint_xfer_control(&ep->desc) || 1284 usb_endpoint_xfer_bulk(&ep->desc)) { 1285 interval = xhci_parse_microframe_interval(udev, ep); 1286 break; 1287 } 1288 fallthrough; /* SS and HS isoc/int have same decoding */ 1289 1290 case USB_SPEED_SUPER_PLUS: 1291 case USB_SPEED_SUPER: 1292 if (usb_endpoint_xfer_int(&ep->desc) || 1293 usb_endpoint_xfer_isoc(&ep->desc)) { 1294 interval = xhci_parse_exponent_interval(udev, ep); 1295 } 1296 break; 1297 1298 case USB_SPEED_FULL: 1299 if (usb_endpoint_xfer_isoc(&ep->desc)) { 1300 interval = xhci_parse_exponent_interval(udev, ep); 1301 break; 1302 } 1303 /* 1304 * Fall through for interrupt endpoint interval decoding 1305 * since it uses the same rules as low speed interrupt 1306 * endpoints. 1307 */ 1308 fallthrough; 1309 1310 case USB_SPEED_LOW: 1311 if (usb_endpoint_xfer_int(&ep->desc) || 1312 usb_endpoint_xfer_isoc(&ep->desc)) { 1313 1314 interval = xhci_parse_frame_interval(udev, ep); 1315 } 1316 break; 1317 1318 default: 1319 BUG(); 1320 } 1321 return interval; 1322 } 1323 1324 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps. 1325 * High speed endpoint descriptors can define "the number of additional 1326 * transaction opportunities per microframe", but that goes in the Max Burst 1327 * endpoint context field. 1328 */ 1329 static u32 xhci_get_endpoint_mult(struct usb_device *udev, 1330 struct usb_host_endpoint *ep) 1331 { 1332 if (udev->speed < USB_SPEED_SUPER || 1333 !usb_endpoint_xfer_isoc(&ep->desc)) 1334 return 0; 1335 return ep->ss_ep_comp.bmAttributes; 1336 } 1337 1338 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev, 1339 struct usb_host_endpoint *ep) 1340 { 1341 /* Super speed and Plus have max burst in ep companion desc */ 1342 if (udev->speed >= USB_SPEED_SUPER) 1343 return ep->ss_ep_comp.bMaxBurst; 1344 1345 if (udev->speed == USB_SPEED_HIGH && 1346 (usb_endpoint_xfer_isoc(&ep->desc) || 1347 usb_endpoint_xfer_int(&ep->desc))) 1348 return usb_endpoint_maxp_mult(&ep->desc) - 1; 1349 1350 return 0; 1351 } 1352 1353 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep) 1354 { 1355 int in; 1356 1357 in = usb_endpoint_dir_in(&ep->desc); 1358 1359 switch (usb_endpoint_type(&ep->desc)) { 1360 case USB_ENDPOINT_XFER_CONTROL: 1361 return CTRL_EP; 1362 case USB_ENDPOINT_XFER_BULK: 1363 return in ? BULK_IN_EP : BULK_OUT_EP; 1364 case USB_ENDPOINT_XFER_ISOC: 1365 return in ? ISOC_IN_EP : ISOC_OUT_EP; 1366 case USB_ENDPOINT_XFER_INT: 1367 return in ? INT_IN_EP : INT_OUT_EP; 1368 } 1369 return 0; 1370 } 1371 1372 /* Return the maximum endpoint service interval time (ESIT) payload. 1373 * Basically, this is the maxpacket size, multiplied by the burst size 1374 * and mult size. 1375 */ 1376 static u32 xhci_get_max_esit_payload(struct usb_device *udev, 1377 struct usb_host_endpoint *ep) 1378 { 1379 int max_burst; 1380 int max_packet; 1381 1382 /* Only applies for interrupt or isochronous endpoints */ 1383 if (usb_endpoint_xfer_control(&ep->desc) || 1384 usb_endpoint_xfer_bulk(&ep->desc)) 1385 return 0; 1386 1387 /* SuperSpeedPlus Isoc ep sending over 48k per esit */ 1388 if ((udev->speed >= USB_SPEED_SUPER_PLUS) && 1389 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes)) 1390 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval); 1391 1392 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */ 1393 if (udev->speed >= USB_SPEED_SUPER) 1394 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); 1395 1396 max_packet = usb_endpoint_maxp(&ep->desc); 1397 max_burst = usb_endpoint_maxp_mult(&ep->desc); 1398 /* A 0 in max burst means 1 transfer per ESIT */ 1399 return max_packet * max_burst; 1400 } 1401 1402 /* Set up an endpoint with one ring segment. Do not allocate stream rings. 1403 * Drivers will have to call usb_alloc_streams() to do that. 1404 */ 1405 int xhci_endpoint_init(struct xhci_hcd *xhci, 1406 struct xhci_virt_device *virt_dev, 1407 struct usb_device *udev, 1408 struct usb_host_endpoint *ep, 1409 gfp_t mem_flags) 1410 { 1411 unsigned int ep_index; 1412 struct xhci_ep_ctx *ep_ctx; 1413 struct xhci_ring *ep_ring; 1414 unsigned int max_packet; 1415 enum xhci_ring_type ring_type; 1416 u32 max_esit_payload; 1417 u32 endpoint_type; 1418 unsigned int max_burst; 1419 unsigned int interval; 1420 unsigned int mult; 1421 unsigned int avg_trb_len; 1422 unsigned int err_count = 0; 1423 1424 ep_index = xhci_get_endpoint_index(&ep->desc); 1425 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1426 1427 endpoint_type = xhci_get_endpoint_type(ep); 1428 if (!endpoint_type) 1429 return -EINVAL; 1430 1431 ring_type = usb_endpoint_type(&ep->desc); 1432 1433 /* 1434 * Get values to fill the endpoint context, mostly from ep descriptor. 1435 * The average TRB buffer lengt for bulk endpoints is unclear as we 1436 * have no clue on scatter gather list entry size. For Isoc and Int, 1437 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details. 1438 */ 1439 max_esit_payload = xhci_get_max_esit_payload(udev, ep); 1440 interval = xhci_get_endpoint_interval(udev, ep); 1441 1442 /* Periodic endpoint bInterval limit quirk */ 1443 if (usb_endpoint_xfer_int(&ep->desc) || 1444 usb_endpoint_xfer_isoc(&ep->desc)) { 1445 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) && 1446 udev->speed >= USB_SPEED_HIGH && 1447 interval >= 7) { 1448 interval = 6; 1449 } 1450 } 1451 1452 mult = xhci_get_endpoint_mult(udev, ep); 1453 max_packet = usb_endpoint_maxp(&ep->desc); 1454 max_burst = xhci_get_endpoint_max_burst(udev, ep); 1455 avg_trb_len = max_esit_payload; 1456 1457 /* FIXME dig Mult and streams info out of ep companion desc */ 1458 1459 /* Allow 3 retries for everything but isoc, set CErr = 3 */ 1460 if (!usb_endpoint_xfer_isoc(&ep->desc)) 1461 err_count = 3; 1462 /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */ 1463 if (usb_endpoint_xfer_bulk(&ep->desc)) { 1464 if (udev->speed == USB_SPEED_HIGH) 1465 max_packet = 512; 1466 if (udev->speed == USB_SPEED_FULL) { 1467 max_packet = rounddown_pow_of_two(max_packet); 1468 max_packet = clamp_val(max_packet, 8, 64); 1469 } 1470 } 1471 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */ 1472 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100) 1473 avg_trb_len = 8; 1474 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */ 1475 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2)) 1476 mult = 0; 1477 1478 /* Set up the endpoint ring */ 1479 virt_dev->eps[ep_index].new_ring = 1480 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags); 1481 if (!virt_dev->eps[ep_index].new_ring) 1482 return -ENOMEM; 1483 1484 virt_dev->eps[ep_index].skip = false; 1485 ep_ring = virt_dev->eps[ep_index].new_ring; 1486 1487 /* Fill the endpoint context */ 1488 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) | 1489 EP_INTERVAL(interval) | 1490 EP_MULT(mult)); 1491 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) | 1492 MAX_PACKET(max_packet) | 1493 MAX_BURST(max_burst) | 1494 ERROR_COUNT(err_count)); 1495 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | 1496 ep_ring->cycle_state); 1497 1498 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) | 1499 EP_AVG_TRB_LENGTH(avg_trb_len)); 1500 1501 return 0; 1502 } 1503 1504 void xhci_endpoint_zero(struct xhci_hcd *xhci, 1505 struct xhci_virt_device *virt_dev, 1506 struct usb_host_endpoint *ep) 1507 { 1508 unsigned int ep_index; 1509 struct xhci_ep_ctx *ep_ctx; 1510 1511 ep_index = xhci_get_endpoint_index(&ep->desc); 1512 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1513 1514 ep_ctx->ep_info = 0; 1515 ep_ctx->ep_info2 = 0; 1516 ep_ctx->deq = 0; 1517 ep_ctx->tx_info = 0; 1518 /* Don't free the endpoint ring until the set interface or configuration 1519 * request succeeds. 1520 */ 1521 } 1522 1523 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info) 1524 { 1525 bw_info->ep_interval = 0; 1526 bw_info->mult = 0; 1527 bw_info->num_packets = 0; 1528 bw_info->max_packet_size = 0; 1529 bw_info->type = 0; 1530 bw_info->max_esit_payload = 0; 1531 } 1532 1533 void xhci_update_bw_info(struct xhci_hcd *xhci, 1534 struct xhci_container_ctx *in_ctx, 1535 struct xhci_input_control_ctx *ctrl_ctx, 1536 struct xhci_virt_device *virt_dev) 1537 { 1538 struct xhci_bw_info *bw_info; 1539 struct xhci_ep_ctx *ep_ctx; 1540 unsigned int ep_type; 1541 int i; 1542 1543 for (i = 1; i < 31; i++) { 1544 bw_info = &virt_dev->eps[i].bw_info; 1545 1546 /* We can't tell what endpoint type is being dropped, but 1547 * unconditionally clearing the bandwidth info for non-periodic 1548 * endpoints should be harmless because the info will never be 1549 * set in the first place. 1550 */ 1551 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) { 1552 /* Dropped endpoint */ 1553 xhci_clear_endpoint_bw_info(bw_info); 1554 continue; 1555 } 1556 1557 if (EP_IS_ADDED(ctrl_ctx, i)) { 1558 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i); 1559 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2)); 1560 1561 /* Ignore non-periodic endpoints */ 1562 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 1563 ep_type != ISOC_IN_EP && 1564 ep_type != INT_IN_EP) 1565 continue; 1566 1567 /* Added or changed endpoint */ 1568 bw_info->ep_interval = CTX_TO_EP_INTERVAL( 1569 le32_to_cpu(ep_ctx->ep_info)); 1570 /* Number of packets and mult are zero-based in the 1571 * input context, but we want one-based for the 1572 * interval table. 1573 */ 1574 bw_info->mult = CTX_TO_EP_MULT( 1575 le32_to_cpu(ep_ctx->ep_info)) + 1; 1576 bw_info->num_packets = CTX_TO_MAX_BURST( 1577 le32_to_cpu(ep_ctx->ep_info2)) + 1; 1578 bw_info->max_packet_size = MAX_PACKET_DECODED( 1579 le32_to_cpu(ep_ctx->ep_info2)); 1580 bw_info->type = ep_type; 1581 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD( 1582 le32_to_cpu(ep_ctx->tx_info)); 1583 } 1584 } 1585 } 1586 1587 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy. 1588 * Useful when you want to change one particular aspect of the endpoint and then 1589 * issue a configure endpoint command. 1590 */ 1591 void xhci_endpoint_copy(struct xhci_hcd *xhci, 1592 struct xhci_container_ctx *in_ctx, 1593 struct xhci_container_ctx *out_ctx, 1594 unsigned int ep_index) 1595 { 1596 struct xhci_ep_ctx *out_ep_ctx; 1597 struct xhci_ep_ctx *in_ep_ctx; 1598 1599 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1600 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 1601 1602 in_ep_ctx->ep_info = out_ep_ctx->ep_info; 1603 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2; 1604 in_ep_ctx->deq = out_ep_ctx->deq; 1605 in_ep_ctx->tx_info = out_ep_ctx->tx_info; 1606 if (xhci->quirks & XHCI_MTK_HOST) { 1607 in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0]; 1608 in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1]; 1609 } 1610 } 1611 1612 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx. 1613 * Useful when you want to change one particular aspect of the endpoint and then 1614 * issue a configure endpoint command. Only the context entries field matters, 1615 * but we'll copy the whole thing anyway. 1616 */ 1617 void xhci_slot_copy(struct xhci_hcd *xhci, 1618 struct xhci_container_ctx *in_ctx, 1619 struct xhci_container_ctx *out_ctx) 1620 { 1621 struct xhci_slot_ctx *in_slot_ctx; 1622 struct xhci_slot_ctx *out_slot_ctx; 1623 1624 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1625 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx); 1626 1627 in_slot_ctx->dev_info = out_slot_ctx->dev_info; 1628 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2; 1629 in_slot_ctx->tt_info = out_slot_ctx->tt_info; 1630 in_slot_ctx->dev_state = out_slot_ctx->dev_state; 1631 } 1632 1633 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */ 1634 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags) 1635 { 1636 int i; 1637 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1638 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1639 1640 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1641 "Allocating %d scratchpad buffers", num_sp); 1642 1643 if (!num_sp) 1644 return 0; 1645 1646 xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags, 1647 dev_to_node(dev)); 1648 if (!xhci->scratchpad) 1649 goto fail_sp; 1650 1651 xhci->scratchpad->sp_array = dma_alloc_coherent(dev, 1652 size_mul(sizeof(u64), num_sp), 1653 &xhci->scratchpad->sp_dma, flags); 1654 if (!xhci->scratchpad->sp_array) 1655 goto fail_sp2; 1656 1657 xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *), 1658 flags, dev_to_node(dev)); 1659 if (!xhci->scratchpad->sp_buffers) 1660 goto fail_sp3; 1661 1662 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma); 1663 for (i = 0; i < num_sp; i++) { 1664 dma_addr_t dma; 1665 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma, 1666 flags); 1667 if (!buf) 1668 goto fail_sp4; 1669 1670 xhci->scratchpad->sp_array[i] = dma; 1671 xhci->scratchpad->sp_buffers[i] = buf; 1672 } 1673 1674 return 0; 1675 1676 fail_sp4: 1677 while (i--) 1678 dma_free_coherent(dev, xhci->page_size, 1679 xhci->scratchpad->sp_buffers[i], 1680 xhci->scratchpad->sp_array[i]); 1681 1682 kfree(xhci->scratchpad->sp_buffers); 1683 1684 fail_sp3: 1685 dma_free_coherent(dev, num_sp * sizeof(u64), 1686 xhci->scratchpad->sp_array, 1687 xhci->scratchpad->sp_dma); 1688 1689 fail_sp2: 1690 kfree(xhci->scratchpad); 1691 xhci->scratchpad = NULL; 1692 1693 fail_sp: 1694 return -ENOMEM; 1695 } 1696 1697 static void scratchpad_free(struct xhci_hcd *xhci) 1698 { 1699 int num_sp; 1700 int i; 1701 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1702 1703 if (!xhci->scratchpad) 1704 return; 1705 1706 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1707 1708 for (i = 0; i < num_sp; i++) { 1709 dma_free_coherent(dev, xhci->page_size, 1710 xhci->scratchpad->sp_buffers[i], 1711 xhci->scratchpad->sp_array[i]); 1712 } 1713 kfree(xhci->scratchpad->sp_buffers); 1714 dma_free_coherent(dev, num_sp * sizeof(u64), 1715 xhci->scratchpad->sp_array, 1716 xhci->scratchpad->sp_dma); 1717 kfree(xhci->scratchpad); 1718 xhci->scratchpad = NULL; 1719 } 1720 1721 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci, 1722 bool allocate_completion, gfp_t mem_flags) 1723 { 1724 struct xhci_command *command; 1725 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1726 1727 command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev)); 1728 if (!command) 1729 return NULL; 1730 1731 if (allocate_completion) { 1732 command->completion = 1733 kzalloc_node(sizeof(struct completion), mem_flags, 1734 dev_to_node(dev)); 1735 if (!command->completion) { 1736 kfree(command); 1737 return NULL; 1738 } 1739 init_completion(command->completion); 1740 } 1741 1742 command->status = 0; 1743 /* set default timeout to 5000 ms */ 1744 command->timeout_ms = XHCI_CMD_DEFAULT_TIMEOUT; 1745 INIT_LIST_HEAD(&command->cmd_list); 1746 return command; 1747 } 1748 1749 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci, 1750 bool allocate_completion, gfp_t mem_flags) 1751 { 1752 struct xhci_command *command; 1753 1754 command = xhci_alloc_command(xhci, allocate_completion, mem_flags); 1755 if (!command) 1756 return NULL; 1757 1758 command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, 1759 mem_flags); 1760 if (!command->in_ctx) { 1761 kfree(command->completion); 1762 kfree(command); 1763 return NULL; 1764 } 1765 return command; 1766 } 1767 1768 void xhci_urb_free_priv(struct urb_priv *urb_priv) 1769 { 1770 kfree(urb_priv); 1771 } 1772 1773 void xhci_free_command(struct xhci_hcd *xhci, 1774 struct xhci_command *command) 1775 { 1776 xhci_free_container_ctx(xhci, 1777 command->in_ctx); 1778 kfree(command->completion); 1779 kfree(command); 1780 } 1781 1782 static int xhci_alloc_erst(struct xhci_hcd *xhci, 1783 struct xhci_ring *evt_ring, 1784 struct xhci_erst *erst, 1785 gfp_t flags) 1786 { 1787 size_t size; 1788 unsigned int val; 1789 struct xhci_segment *seg; 1790 struct xhci_erst_entry *entry; 1791 1792 size = size_mul(sizeof(struct xhci_erst_entry), evt_ring->num_segs); 1793 erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev, 1794 size, &erst->erst_dma_addr, flags); 1795 if (!erst->entries) 1796 return -ENOMEM; 1797 1798 erst->num_entries = evt_ring->num_segs; 1799 1800 seg = evt_ring->first_seg; 1801 for (val = 0; val < evt_ring->num_segs; val++) { 1802 entry = &erst->entries[val]; 1803 entry->seg_addr = cpu_to_le64(seg->dma); 1804 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT); 1805 entry->rsvd = 0; 1806 seg = seg->next; 1807 } 1808 1809 return 0; 1810 } 1811 1812 static void 1813 xhci_remove_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir) 1814 { 1815 u32 tmp; 1816 1817 if (!ir) 1818 return; 1819 1820 /* 1821 * Clean out interrupter registers except ERSTBA. Clearing either the 1822 * low or high 32 bits of ERSTBA immediately causes the controller to 1823 * dereference the partially cleared 64 bit address, causing IOMMU error. 1824 */ 1825 if (ir->ir_set) { 1826 tmp = readl(&ir->ir_set->erst_size); 1827 tmp &= ERST_SIZE_MASK; 1828 writel(tmp, &ir->ir_set->erst_size); 1829 1830 xhci_write_64(xhci, ERST_EHB, &ir->ir_set->erst_dequeue); 1831 } 1832 } 1833 1834 static void 1835 xhci_free_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir) 1836 { 1837 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1838 size_t erst_size; 1839 1840 if (!ir) 1841 return; 1842 1843 erst_size = sizeof(struct xhci_erst_entry) * ir->erst.num_entries; 1844 if (ir->erst.entries) 1845 dma_free_coherent(dev, erst_size, 1846 ir->erst.entries, 1847 ir->erst.erst_dma_addr); 1848 ir->erst.entries = NULL; 1849 1850 /* free interrupter event ring */ 1851 if (ir->event_ring) 1852 xhci_ring_free(xhci, ir->event_ring); 1853 1854 ir->event_ring = NULL; 1855 1856 kfree(ir); 1857 } 1858 1859 void xhci_remove_secondary_interrupter(struct usb_hcd *hcd, struct xhci_interrupter *ir) 1860 { 1861 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1862 unsigned int intr_num; 1863 1864 spin_lock_irq(&xhci->lock); 1865 1866 /* interrupter 0 is primary interrupter, don't touch it */ 1867 if (!ir || !ir->intr_num || ir->intr_num >= xhci->max_interrupters) { 1868 xhci_dbg(xhci, "Invalid secondary interrupter, can't remove\n"); 1869 spin_unlock_irq(&xhci->lock); 1870 return; 1871 } 1872 1873 intr_num = ir->intr_num; 1874 1875 xhci_remove_interrupter(xhci, ir); 1876 xhci->interrupters[intr_num] = NULL; 1877 1878 spin_unlock_irq(&xhci->lock); 1879 1880 xhci_free_interrupter(xhci, ir); 1881 } 1882 EXPORT_SYMBOL_GPL(xhci_remove_secondary_interrupter); 1883 1884 void xhci_mem_cleanup(struct xhci_hcd *xhci) 1885 { 1886 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1887 int i, j, num_ports; 1888 1889 cancel_delayed_work_sync(&xhci->cmd_timer); 1890 1891 for (i = 0; i < xhci->max_interrupters; i++) { 1892 if (xhci->interrupters[i]) { 1893 xhci_remove_interrupter(xhci, xhci->interrupters[i]); 1894 xhci_free_interrupter(xhci, xhci->interrupters[i]); 1895 xhci->interrupters[i] = NULL; 1896 } 1897 } 1898 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed interrupters"); 1899 1900 if (xhci->cmd_ring) 1901 xhci_ring_free(xhci, xhci->cmd_ring); 1902 xhci->cmd_ring = NULL; 1903 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring"); 1904 xhci_cleanup_command_queue(xhci); 1905 1906 num_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1907 for (i = 0; i < num_ports && xhci->rh_bw; i++) { 1908 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table; 1909 for (j = 0; j < XHCI_MAX_INTERVAL; j++) { 1910 struct list_head *ep = &bwt->interval_bw[j].endpoints; 1911 while (!list_empty(ep)) 1912 list_del_init(ep->next); 1913 } 1914 } 1915 1916 for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--) 1917 xhci_free_virt_devices_depth_first(xhci, i); 1918 1919 dma_pool_destroy(xhci->segment_pool); 1920 xhci->segment_pool = NULL; 1921 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool"); 1922 1923 dma_pool_destroy(xhci->device_pool); 1924 xhci->device_pool = NULL; 1925 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool"); 1926 1927 dma_pool_destroy(xhci->small_streams_pool); 1928 xhci->small_streams_pool = NULL; 1929 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1930 "Freed small stream array pool"); 1931 1932 dma_pool_destroy(xhci->medium_streams_pool); 1933 xhci->medium_streams_pool = NULL; 1934 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1935 "Freed medium stream array pool"); 1936 1937 if (xhci->dcbaa) 1938 dma_free_coherent(dev, sizeof(*xhci->dcbaa), 1939 xhci->dcbaa, xhci->dcbaa->dma); 1940 xhci->dcbaa = NULL; 1941 1942 scratchpad_free(xhci); 1943 1944 if (!xhci->rh_bw) 1945 goto no_bw; 1946 1947 for (i = 0; i < num_ports; i++) { 1948 struct xhci_tt_bw_info *tt, *n; 1949 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) { 1950 list_del(&tt->tt_list); 1951 kfree(tt); 1952 } 1953 } 1954 1955 no_bw: 1956 xhci->cmd_ring_reserved_trbs = 0; 1957 xhci->usb2_rhub.num_ports = 0; 1958 xhci->usb3_rhub.num_ports = 0; 1959 xhci->num_active_eps = 0; 1960 kfree(xhci->usb2_rhub.ports); 1961 kfree(xhci->usb3_rhub.ports); 1962 kfree(xhci->hw_ports); 1963 kfree(xhci->rh_bw); 1964 kfree(xhci->ext_caps); 1965 for (i = 0; i < xhci->num_port_caps; i++) 1966 kfree(xhci->port_caps[i].psi); 1967 kfree(xhci->port_caps); 1968 kfree(xhci->interrupters); 1969 xhci->num_port_caps = 0; 1970 1971 xhci->usb2_rhub.ports = NULL; 1972 xhci->usb3_rhub.ports = NULL; 1973 xhci->hw_ports = NULL; 1974 xhci->rh_bw = NULL; 1975 xhci->ext_caps = NULL; 1976 xhci->port_caps = NULL; 1977 xhci->interrupters = NULL; 1978 1979 xhci->page_size = 0; 1980 xhci->page_shift = 0; 1981 xhci->usb2_rhub.bus_state.bus_suspended = 0; 1982 xhci->usb3_rhub.bus_state.bus_suspended = 0; 1983 } 1984 1985 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci, struct xhci_interrupter *ir) 1986 { 1987 dma_addr_t deq; 1988 1989 deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg, 1990 ir->event_ring->dequeue); 1991 if (!deq) 1992 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr.\n"); 1993 /* Update HC event ring dequeue pointer */ 1994 /* Don't clear the EHB bit (which is RW1C) because 1995 * there might be more events to service. 1996 */ 1997 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1998 "// Write event ring dequeue pointer, preserving EHB bit"); 1999 xhci_write_64(xhci, deq & ERST_PTR_MASK, &ir->ir_set->erst_dequeue); 2000 } 2001 2002 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports, 2003 __le32 __iomem *addr, int max_caps) 2004 { 2005 u32 temp, port_offset, port_count; 2006 int i; 2007 u8 major_revision, minor_revision, tmp_minor_revision; 2008 struct xhci_hub *rhub; 2009 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2010 struct xhci_port_cap *port_cap; 2011 2012 temp = readl(addr); 2013 major_revision = XHCI_EXT_PORT_MAJOR(temp); 2014 minor_revision = XHCI_EXT_PORT_MINOR(temp); 2015 2016 if (major_revision == 0x03) { 2017 rhub = &xhci->usb3_rhub; 2018 /* 2019 * Some hosts incorrectly use sub-minor version for minor 2020 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01 2021 * for bcdUSB 0x310). Since there is no USB release with sub 2022 * minor version 0x301 to 0x309, we can assume that they are 2023 * incorrect and fix it here. 2024 */ 2025 if (minor_revision > 0x00 && minor_revision < 0x10) 2026 minor_revision <<= 4; 2027 /* 2028 * Some zhaoxin's xHCI controller that follow usb3.1 spec 2029 * but only support Gen1. 2030 */ 2031 if (xhci->quirks & XHCI_ZHAOXIN_HOST) { 2032 tmp_minor_revision = minor_revision; 2033 minor_revision = 0; 2034 } 2035 2036 } else if (major_revision <= 0x02) { 2037 rhub = &xhci->usb2_rhub; 2038 } else { 2039 xhci_warn(xhci, "Ignoring unknown port speed, Ext Cap %p, revision = 0x%x\n", 2040 addr, major_revision); 2041 /* Ignoring port protocol we can't understand. FIXME */ 2042 return; 2043 } 2044 2045 /* Port offset and count in the third dword, see section 7.2 */ 2046 temp = readl(addr + 2); 2047 port_offset = XHCI_EXT_PORT_OFF(temp); 2048 port_count = XHCI_EXT_PORT_COUNT(temp); 2049 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2050 "Ext Cap %p, port offset = %u, count = %u, revision = 0x%x", 2051 addr, port_offset, port_count, major_revision); 2052 /* Port count includes the current port offset */ 2053 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports) 2054 /* WTF? "Valid values are ‘1’ to MaxPorts" */ 2055 return; 2056 2057 port_cap = &xhci->port_caps[xhci->num_port_caps++]; 2058 if (xhci->num_port_caps > max_caps) 2059 return; 2060 2061 port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp); 2062 2063 if (port_cap->psi_count) { 2064 port_cap->psi = kcalloc_node(port_cap->psi_count, 2065 sizeof(*port_cap->psi), 2066 GFP_KERNEL, dev_to_node(dev)); 2067 if (!port_cap->psi) 2068 port_cap->psi_count = 0; 2069 2070 port_cap->psi_uid_count++; 2071 for (i = 0; i < port_cap->psi_count; i++) { 2072 port_cap->psi[i] = readl(addr + 4 + i); 2073 2074 /* count unique ID values, two consecutive entries can 2075 * have the same ID if link is assymetric 2076 */ 2077 if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) != 2078 XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1]))) 2079 port_cap->psi_uid_count++; 2080 2081 if (xhci->quirks & XHCI_ZHAOXIN_HOST && 2082 major_revision == 0x03 && 2083 XHCI_EXT_PORT_PSIV(port_cap->psi[i]) >= 5) 2084 minor_revision = tmp_minor_revision; 2085 2086 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n", 2087 XHCI_EXT_PORT_PSIV(port_cap->psi[i]), 2088 XHCI_EXT_PORT_PSIE(port_cap->psi[i]), 2089 XHCI_EXT_PORT_PLT(port_cap->psi[i]), 2090 XHCI_EXT_PORT_PFD(port_cap->psi[i]), 2091 XHCI_EXT_PORT_LP(port_cap->psi[i]), 2092 XHCI_EXT_PORT_PSIM(port_cap->psi[i])); 2093 } 2094 } 2095 2096 rhub->maj_rev = major_revision; 2097 2098 if (rhub->min_rev < minor_revision) 2099 rhub->min_rev = minor_revision; 2100 2101 port_cap->maj_rev = major_revision; 2102 port_cap->min_rev = minor_revision; 2103 2104 /* cache usb2 port capabilities */ 2105 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps) 2106 xhci->ext_caps[xhci->num_ext_caps++] = temp; 2107 2108 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) && 2109 (temp & XHCI_HLC)) { 2110 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2111 "xHCI 1.0: support USB2 hardware lpm"); 2112 xhci->hw_lpm_support = 1; 2113 } 2114 2115 port_offset--; 2116 for (i = port_offset; i < (port_offset + port_count); i++) { 2117 struct xhci_port *hw_port = &xhci->hw_ports[i]; 2118 /* Duplicate entry. Ignore the port if the revisions differ. */ 2119 if (hw_port->rhub) { 2120 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p, port %u\n", addr, i); 2121 xhci_warn(xhci, "Port was marked as USB %u, duplicated as USB %u\n", 2122 hw_port->rhub->maj_rev, major_revision); 2123 /* Only adjust the roothub port counts if we haven't 2124 * found a similar duplicate. 2125 */ 2126 if (hw_port->rhub != rhub && 2127 hw_port->hcd_portnum != DUPLICATE_ENTRY) { 2128 hw_port->rhub->num_ports--; 2129 hw_port->hcd_portnum = DUPLICATE_ENTRY; 2130 } 2131 continue; 2132 } 2133 hw_port->rhub = rhub; 2134 hw_port->port_cap = port_cap; 2135 rhub->num_ports++; 2136 } 2137 /* FIXME: Should we disable ports not in the Extended Capabilities? */ 2138 } 2139 2140 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci, 2141 struct xhci_hub *rhub, gfp_t flags) 2142 { 2143 int port_index = 0; 2144 int i; 2145 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2146 2147 if (!rhub->num_ports) 2148 return; 2149 rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports), 2150 flags, dev_to_node(dev)); 2151 if (!rhub->ports) 2152 return; 2153 2154 for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) { 2155 if (xhci->hw_ports[i].rhub != rhub || 2156 xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY) 2157 continue; 2158 xhci->hw_ports[i].hcd_portnum = port_index; 2159 rhub->ports[port_index] = &xhci->hw_ports[i]; 2160 port_index++; 2161 if (port_index == rhub->num_ports) 2162 break; 2163 } 2164 } 2165 2166 /* 2167 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that 2168 * specify what speeds each port is supposed to be. We can't count on the port 2169 * speed bits in the PORTSC register being correct until a device is connected, 2170 * but we need to set up the two fake roothubs with the correct number of USB 2171 * 3.0 and USB 2.0 ports at host controller initialization time. 2172 */ 2173 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags) 2174 { 2175 void __iomem *base; 2176 u32 offset; 2177 unsigned int num_ports; 2178 int i, j; 2179 int cap_count = 0; 2180 u32 cap_start; 2181 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2182 2183 num_ports = HCS_MAX_PORTS(xhci->hcs_params1); 2184 xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports), 2185 flags, dev_to_node(dev)); 2186 if (!xhci->hw_ports) 2187 return -ENOMEM; 2188 2189 for (i = 0; i < num_ports; i++) { 2190 xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base + 2191 NUM_PORT_REGS * i; 2192 xhci->hw_ports[i].hw_portnum = i; 2193 2194 init_completion(&xhci->hw_ports[i].rexit_done); 2195 init_completion(&xhci->hw_ports[i].u3exit_done); 2196 } 2197 2198 xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags, 2199 dev_to_node(dev)); 2200 if (!xhci->rh_bw) 2201 return -ENOMEM; 2202 for (i = 0; i < num_ports; i++) { 2203 struct xhci_interval_bw_table *bw_table; 2204 2205 INIT_LIST_HEAD(&xhci->rh_bw[i].tts); 2206 bw_table = &xhci->rh_bw[i].bw_table; 2207 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 2208 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 2209 } 2210 base = &xhci->cap_regs->hc_capbase; 2211 2212 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL); 2213 if (!cap_start) { 2214 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n"); 2215 return -ENODEV; 2216 } 2217 2218 offset = cap_start; 2219 /* count extended protocol capability entries for later caching */ 2220 while (offset) { 2221 cap_count++; 2222 offset = xhci_find_next_ext_cap(base, offset, 2223 XHCI_EXT_CAPS_PROTOCOL); 2224 } 2225 2226 xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps), 2227 flags, dev_to_node(dev)); 2228 if (!xhci->ext_caps) 2229 return -ENOMEM; 2230 2231 xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps), 2232 flags, dev_to_node(dev)); 2233 if (!xhci->port_caps) 2234 return -ENOMEM; 2235 2236 offset = cap_start; 2237 2238 while (offset) { 2239 xhci_add_in_port(xhci, num_ports, base + offset, cap_count); 2240 if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports == 2241 num_ports) 2242 break; 2243 offset = xhci_find_next_ext_cap(base, offset, 2244 XHCI_EXT_CAPS_PROTOCOL); 2245 } 2246 if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) { 2247 xhci_warn(xhci, "No ports on the roothubs?\n"); 2248 return -ENODEV; 2249 } 2250 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2251 "Found %u USB 2.0 ports and %u USB 3.0 ports.", 2252 xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports); 2253 2254 /* Place limits on the number of roothub ports so that the hub 2255 * descriptors aren't longer than the USB core will allocate. 2256 */ 2257 if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) { 2258 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2259 "Limiting USB 3.0 roothub ports to %u.", 2260 USB_SS_MAXPORTS); 2261 xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS; 2262 } 2263 if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) { 2264 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2265 "Limiting USB 2.0 roothub ports to %u.", 2266 USB_MAXCHILDREN); 2267 xhci->usb2_rhub.num_ports = USB_MAXCHILDREN; 2268 } 2269 2270 if (!xhci->usb2_rhub.num_ports) 2271 xhci_info(xhci, "USB2 root hub has no ports\n"); 2272 2273 if (!xhci->usb3_rhub.num_ports) 2274 xhci_info(xhci, "USB3 root hub has no ports\n"); 2275 2276 xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags); 2277 xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags); 2278 2279 return 0; 2280 } 2281 2282 static struct xhci_interrupter * 2283 xhci_alloc_interrupter(struct xhci_hcd *xhci, int segs, gfp_t flags) 2284 { 2285 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2286 struct xhci_interrupter *ir; 2287 unsigned int num_segs = segs; 2288 int ret; 2289 2290 ir = kzalloc_node(sizeof(*ir), flags, dev_to_node(dev)); 2291 if (!ir) 2292 return NULL; 2293 2294 /* number of ring segments should be greater than 0 */ 2295 if (segs <= 0) 2296 num_segs = min_t(unsigned int, 1 << HCS_ERST_MAX(xhci->hcs_params2), 2297 ERST_MAX_SEGS); 2298 2299 ir->event_ring = xhci_ring_alloc(xhci, num_segs, 1, TYPE_EVENT, 0, 2300 flags); 2301 if (!ir->event_ring) { 2302 xhci_warn(xhci, "Failed to allocate interrupter event ring\n"); 2303 kfree(ir); 2304 return NULL; 2305 } 2306 2307 ret = xhci_alloc_erst(xhci, ir->event_ring, &ir->erst, flags); 2308 if (ret) { 2309 xhci_warn(xhci, "Failed to allocate interrupter erst\n"); 2310 xhci_ring_free(xhci, ir->event_ring); 2311 kfree(ir); 2312 return NULL; 2313 } 2314 2315 return ir; 2316 } 2317 2318 static int 2319 xhci_add_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir, 2320 unsigned int intr_num) 2321 { 2322 u64 erst_base; 2323 u32 erst_size; 2324 2325 if (intr_num >= xhci->max_interrupters) { 2326 xhci_warn(xhci, "Can't add interrupter %d, max interrupters %d\n", 2327 intr_num, xhci->max_interrupters); 2328 return -EINVAL; 2329 } 2330 2331 if (xhci->interrupters[intr_num]) { 2332 xhci_warn(xhci, "Interrupter %d\n already set up", intr_num); 2333 return -EINVAL; 2334 } 2335 2336 xhci->interrupters[intr_num] = ir; 2337 ir->intr_num = intr_num; 2338 ir->ir_set = &xhci->run_regs->ir_set[intr_num]; 2339 2340 /* set ERST count with the number of entries in the segment table */ 2341 erst_size = readl(&ir->ir_set->erst_size); 2342 erst_size &= ERST_SIZE_MASK; 2343 erst_size |= ir->event_ring->num_segs; 2344 writel(erst_size, &ir->ir_set->erst_size); 2345 2346 erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base); 2347 erst_base &= ERST_BASE_RSVDP; 2348 erst_base |= ir->erst.erst_dma_addr & ~ERST_BASE_RSVDP; 2349 xhci_write_64(xhci, erst_base, &ir->ir_set->erst_base); 2350 2351 /* Set the event ring dequeue address of this interrupter */ 2352 xhci_set_hc_event_deq(xhci, ir); 2353 2354 return 0; 2355 } 2356 2357 struct xhci_interrupter * 2358 xhci_create_secondary_interrupter(struct usb_hcd *hcd, int num_seg) 2359 { 2360 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2361 struct xhci_interrupter *ir; 2362 unsigned int i; 2363 int err = -ENOSPC; 2364 2365 if (!xhci->interrupters || xhci->max_interrupters <= 1) 2366 return NULL; 2367 2368 ir = xhci_alloc_interrupter(xhci, num_seg, GFP_KERNEL); 2369 if (!ir) 2370 return NULL; 2371 2372 spin_lock_irq(&xhci->lock); 2373 2374 /* Find available secondary interrupter, interrupter 0 is reserved for primary */ 2375 for (i = 1; i < xhci->max_interrupters; i++) { 2376 if (xhci->interrupters[i] == NULL) { 2377 err = xhci_add_interrupter(xhci, ir, i); 2378 break; 2379 } 2380 } 2381 2382 spin_unlock_irq(&xhci->lock); 2383 2384 if (err) { 2385 xhci_warn(xhci, "Failed to add secondary interrupter, max interrupters %d\n", 2386 xhci->max_interrupters); 2387 xhci_free_interrupter(xhci, ir); 2388 return NULL; 2389 } 2390 2391 xhci_dbg(xhci, "Add secondary interrupter %d, max interrupters %d\n", 2392 i, xhci->max_interrupters); 2393 2394 return ir; 2395 } 2396 EXPORT_SYMBOL_GPL(xhci_create_secondary_interrupter); 2397 2398 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags) 2399 { 2400 struct xhci_interrupter *ir; 2401 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2402 dma_addr_t dma; 2403 unsigned int val, val2; 2404 u64 val_64; 2405 u32 page_size, temp; 2406 int i; 2407 2408 INIT_LIST_HEAD(&xhci->cmd_list); 2409 2410 /* init command timeout work */ 2411 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout); 2412 init_completion(&xhci->cmd_ring_stop_completion); 2413 2414 page_size = readl(&xhci->op_regs->page_size); 2415 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2416 "Supported page size register = 0x%x", page_size); 2417 i = ffs(page_size); 2418 if (i < 16) 2419 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2420 "Supported page size of %iK", (1 << (i+12)) / 1024); 2421 else 2422 xhci_warn(xhci, "WARN: no supported page size\n"); 2423 /* Use 4K pages, since that's common and the minimum the HC supports */ 2424 xhci->page_shift = 12; 2425 xhci->page_size = 1 << xhci->page_shift; 2426 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2427 "HCD page size set to %iK", xhci->page_size / 1024); 2428 2429 /* 2430 * Program the Number of Device Slots Enabled field in the CONFIG 2431 * register with the max value of slots the HC can handle. 2432 */ 2433 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1)); 2434 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2435 "// xHC can handle at most %d device slots.", val); 2436 val2 = readl(&xhci->op_regs->config_reg); 2437 val |= (val2 & ~HCS_SLOTS_MASK); 2438 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2439 "// Setting Max device slots reg = 0x%x.", val); 2440 writel(val, &xhci->op_regs->config_reg); 2441 2442 /* 2443 * xHCI section 5.4.6 - Device Context array must be 2444 * "physically contiguous and 64-byte (cache line) aligned". 2445 */ 2446 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma, 2447 flags); 2448 if (!xhci->dcbaa) 2449 goto fail; 2450 xhci->dcbaa->dma = dma; 2451 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2452 "// Device context base array address = 0x%pad (DMA), %p (virt)", 2453 &xhci->dcbaa->dma, xhci->dcbaa); 2454 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr); 2455 2456 /* 2457 * Initialize the ring segment pool. The ring must be a contiguous 2458 * structure comprised of TRBs. The TRBs must be 16 byte aligned, 2459 * however, the command ring segment needs 64-byte aligned segments 2460 * and our use of dma addresses in the trb_address_map radix tree needs 2461 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need. 2462 */ 2463 if (xhci->quirks & XHCI_ZHAOXIN_TRB_FETCH) 2464 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev, 2465 TRB_SEGMENT_SIZE * 2, TRB_SEGMENT_SIZE * 2, xhci->page_size * 2); 2466 else 2467 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev, 2468 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size); 2469 2470 /* See Table 46 and Note on Figure 55 */ 2471 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev, 2472 2112, 64, xhci->page_size); 2473 if (!xhci->segment_pool || !xhci->device_pool) 2474 goto fail; 2475 2476 /* Linear stream context arrays don't have any boundary restrictions, 2477 * and only need to be 16-byte aligned. 2478 */ 2479 xhci->small_streams_pool = 2480 dma_pool_create("xHCI 256 byte stream ctx arrays", 2481 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0); 2482 xhci->medium_streams_pool = 2483 dma_pool_create("xHCI 1KB stream ctx arrays", 2484 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0); 2485 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE 2486 * will be allocated with dma_alloc_coherent() 2487 */ 2488 2489 if (!xhci->small_streams_pool || !xhci->medium_streams_pool) 2490 goto fail; 2491 2492 /* Set up the command ring to have one segments for now. */ 2493 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags); 2494 if (!xhci->cmd_ring) 2495 goto fail; 2496 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2497 "Allocated command ring at %p", xhci->cmd_ring); 2498 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%pad", 2499 &xhci->cmd_ring->first_seg->dma); 2500 2501 /* Set the address in the Command Ring Control register */ 2502 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 2503 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 2504 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) | 2505 xhci->cmd_ring->cycle_state; 2506 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2507 "// Setting command ring address to 0x%016llx", val_64); 2508 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 2509 2510 /* Reserve one command ring TRB for disabling LPM. 2511 * Since the USB core grabs the shared usb_bus bandwidth mutex before 2512 * disabling LPM, we only need to reserve one TRB for all devices. 2513 */ 2514 xhci->cmd_ring_reserved_trbs++; 2515 2516 val = readl(&xhci->cap_regs->db_off); 2517 val &= DBOFF_MASK; 2518 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2519 "// Doorbell array is located at offset 0x%x from cap regs base addr", 2520 val); 2521 xhci->dba = (void __iomem *) xhci->cap_regs + val; 2522 2523 /* Allocate and set up primary interrupter 0 with an event ring. */ 2524 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2525 "Allocating primary event ring"); 2526 xhci->interrupters = kcalloc_node(xhci->max_interrupters, sizeof(*xhci->interrupters), 2527 flags, dev_to_node(dev)); 2528 2529 ir = xhci_alloc_interrupter(xhci, 0, flags); 2530 if (!ir) 2531 goto fail; 2532 2533 if (xhci_add_interrupter(xhci, ir, 0)) 2534 goto fail; 2535 2536 xhci->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX; 2537 2538 /* 2539 * XXX: Might need to set the Interrupter Moderation Register to 2540 * something other than the default (~1ms minimum between interrupts). 2541 * See section 5.5.1.2. 2542 */ 2543 for (i = 0; i < MAX_HC_SLOTS; i++) 2544 xhci->devs[i] = NULL; 2545 2546 if (scratchpad_alloc(xhci, flags)) 2547 goto fail; 2548 if (xhci_setup_port_arrays(xhci, flags)) 2549 goto fail; 2550 2551 /* Enable USB 3.0 device notifications for function remote wake, which 2552 * is necessary for allowing USB 3.0 devices to do remote wakeup from 2553 * U3 (device suspend). 2554 */ 2555 temp = readl(&xhci->op_regs->dev_notification); 2556 temp &= ~DEV_NOTE_MASK; 2557 temp |= DEV_NOTE_FWAKE; 2558 writel(temp, &xhci->op_regs->dev_notification); 2559 2560 return 0; 2561 2562 fail: 2563 xhci_halt(xhci); 2564 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 2565 xhci_mem_cleanup(xhci); 2566 return -ENOMEM; 2567 } 2568