1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/usb.h> 24 #include <linux/pci.h> 25 #include <linux/slab.h> 26 #include <linux/dmapool.h> 27 28 #include "xhci.h" 29 30 /* 31 * Allocates a generic ring segment from the ring pool, sets the dma address, 32 * initializes the segment to zero, and sets the private next pointer to NULL. 33 * 34 * Section 4.11.1.1: 35 * "All components of all Command and Transfer TRBs shall be initialized to '0'" 36 */ 37 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags) 38 { 39 struct xhci_segment *seg; 40 dma_addr_t dma; 41 42 seg = kzalloc(sizeof *seg, flags); 43 if (!seg) 44 return NULL; 45 xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg); 46 47 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma); 48 if (!seg->trbs) { 49 kfree(seg); 50 return NULL; 51 } 52 xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n", 53 seg->trbs, (unsigned long long)dma); 54 55 memset(seg->trbs, 0, SEGMENT_SIZE); 56 seg->dma = dma; 57 seg->next = NULL; 58 59 return seg; 60 } 61 62 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg) 63 { 64 if (!seg) 65 return; 66 if (seg->trbs) { 67 xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n", 68 seg->trbs, (unsigned long long)seg->dma); 69 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma); 70 seg->trbs = NULL; 71 } 72 xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg); 73 kfree(seg); 74 } 75 76 /* 77 * Make the prev segment point to the next segment. 78 * 79 * Change the last TRB in the prev segment to be a Link TRB which points to the 80 * DMA address of the next segment. The caller needs to set any Link TRB 81 * related flags, such as End TRB, Toggle Cycle, and no snoop. 82 */ 83 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev, 84 struct xhci_segment *next, bool link_trbs) 85 { 86 u32 val; 87 88 if (!prev || !next) 89 return; 90 prev->next = next; 91 if (link_trbs) { 92 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = next->dma; 93 94 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */ 95 val = prev->trbs[TRBS_PER_SEGMENT-1].link.control; 96 val &= ~TRB_TYPE_BITMASK; 97 val |= TRB_TYPE(TRB_LINK); 98 /* Always set the chain bit with 0.95 hardware */ 99 if (xhci_link_trb_quirk(xhci)) 100 val |= TRB_CHAIN; 101 prev->trbs[TRBS_PER_SEGMENT-1].link.control = val; 102 } 103 xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n", 104 (unsigned long long)prev->dma, 105 (unsigned long long)next->dma); 106 } 107 108 /* XXX: Do we need the hcd structure in all these functions? */ 109 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring) 110 { 111 struct xhci_segment *seg; 112 struct xhci_segment *first_seg; 113 114 if (!ring || !ring->first_seg) 115 return; 116 first_seg = ring->first_seg; 117 seg = first_seg->next; 118 xhci_dbg(xhci, "Freeing ring at %p\n", ring); 119 while (seg != first_seg) { 120 struct xhci_segment *next = seg->next; 121 xhci_segment_free(xhci, seg); 122 seg = next; 123 } 124 xhci_segment_free(xhci, first_seg); 125 ring->first_seg = NULL; 126 kfree(ring); 127 } 128 129 static void xhci_initialize_ring_info(struct xhci_ring *ring) 130 { 131 /* The ring is empty, so the enqueue pointer == dequeue pointer */ 132 ring->enqueue = ring->first_seg->trbs; 133 ring->enq_seg = ring->first_seg; 134 ring->dequeue = ring->enqueue; 135 ring->deq_seg = ring->first_seg; 136 /* The ring is initialized to 0. The producer must write 1 to the cycle 137 * bit to handover ownership of the TRB, so PCS = 1. The consumer must 138 * compare CCS to the cycle bit to check ownership, so CCS = 1. 139 */ 140 ring->cycle_state = 1; 141 /* Not necessary for new rings, but needed for re-initialized rings */ 142 ring->enq_updates = 0; 143 ring->deq_updates = 0; 144 } 145 146 /** 147 * Create a new ring with zero or more segments. 148 * 149 * Link each segment together into a ring. 150 * Set the end flag and the cycle toggle bit on the last segment. 151 * See section 4.9.1 and figures 15 and 16. 152 */ 153 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, 154 unsigned int num_segs, bool link_trbs, gfp_t flags) 155 { 156 struct xhci_ring *ring; 157 struct xhci_segment *prev; 158 159 ring = kzalloc(sizeof *(ring), flags); 160 xhci_dbg(xhci, "Allocating ring at %p\n", ring); 161 if (!ring) 162 return NULL; 163 164 INIT_LIST_HEAD(&ring->td_list); 165 if (num_segs == 0) 166 return ring; 167 168 ring->first_seg = xhci_segment_alloc(xhci, flags); 169 if (!ring->first_seg) 170 goto fail; 171 num_segs--; 172 173 prev = ring->first_seg; 174 while (num_segs > 0) { 175 struct xhci_segment *next; 176 177 next = xhci_segment_alloc(xhci, flags); 178 if (!next) 179 goto fail; 180 xhci_link_segments(xhci, prev, next, link_trbs); 181 182 prev = next; 183 num_segs--; 184 } 185 xhci_link_segments(xhci, prev, ring->first_seg, link_trbs); 186 187 if (link_trbs) { 188 /* See section 4.9.2.1 and 6.4.4.1 */ 189 prev->trbs[TRBS_PER_SEGMENT-1].link.control |= (LINK_TOGGLE); 190 xhci_dbg(xhci, "Wrote link toggle flag to" 191 " segment %p (virtual), 0x%llx (DMA)\n", 192 prev, (unsigned long long)prev->dma); 193 } 194 xhci_initialize_ring_info(ring); 195 return ring; 196 197 fail: 198 xhci_ring_free(xhci, ring); 199 return NULL; 200 } 201 202 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci, 203 struct xhci_virt_device *virt_dev, 204 unsigned int ep_index) 205 { 206 int rings_cached; 207 208 rings_cached = virt_dev->num_rings_cached; 209 if (rings_cached < XHCI_MAX_RINGS_CACHED) { 210 virt_dev->num_rings_cached++; 211 rings_cached = virt_dev->num_rings_cached; 212 virt_dev->ring_cache[rings_cached] = 213 virt_dev->eps[ep_index].ring; 214 xhci_dbg(xhci, "Cached old ring, " 215 "%d ring%s cached\n", 216 rings_cached, 217 (rings_cached > 1) ? "s" : ""); 218 } else { 219 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring); 220 xhci_dbg(xhci, "Ring cache full (%d rings), " 221 "freeing ring\n", 222 virt_dev->num_rings_cached); 223 } 224 virt_dev->eps[ep_index].ring = NULL; 225 } 226 227 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue 228 * pointers to the beginning of the ring. 229 */ 230 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci, 231 struct xhci_ring *ring) 232 { 233 struct xhci_segment *seg = ring->first_seg; 234 do { 235 memset(seg->trbs, 0, 236 sizeof(union xhci_trb)*TRBS_PER_SEGMENT); 237 /* All endpoint rings have link TRBs */ 238 xhci_link_segments(xhci, seg, seg->next, 1); 239 seg = seg->next; 240 } while (seg != ring->first_seg); 241 xhci_initialize_ring_info(ring); 242 /* td list should be empty since all URBs have been cancelled, 243 * but just in case... 244 */ 245 INIT_LIST_HEAD(&ring->td_list); 246 } 247 248 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32) 249 250 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci, 251 int type, gfp_t flags) 252 { 253 struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags); 254 if (!ctx) 255 return NULL; 256 257 BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT)); 258 ctx->type = type; 259 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024; 260 if (type == XHCI_CTX_TYPE_INPUT) 261 ctx->size += CTX_SIZE(xhci->hcc_params); 262 263 ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma); 264 memset(ctx->bytes, 0, ctx->size); 265 return ctx; 266 } 267 268 static void xhci_free_container_ctx(struct xhci_hcd *xhci, 269 struct xhci_container_ctx *ctx) 270 { 271 if (!ctx) 272 return; 273 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma); 274 kfree(ctx); 275 } 276 277 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci, 278 struct xhci_container_ctx *ctx) 279 { 280 BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT); 281 return (struct xhci_input_control_ctx *)ctx->bytes; 282 } 283 284 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci, 285 struct xhci_container_ctx *ctx) 286 { 287 if (ctx->type == XHCI_CTX_TYPE_DEVICE) 288 return (struct xhci_slot_ctx *)ctx->bytes; 289 290 return (struct xhci_slot_ctx *) 291 (ctx->bytes + CTX_SIZE(xhci->hcc_params)); 292 } 293 294 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci, 295 struct xhci_container_ctx *ctx, 296 unsigned int ep_index) 297 { 298 /* increment ep index by offset of start of ep ctx array */ 299 ep_index++; 300 if (ctx->type == XHCI_CTX_TYPE_INPUT) 301 ep_index++; 302 303 return (struct xhci_ep_ctx *) 304 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params))); 305 } 306 307 308 /***************** Streams structures manipulation *************************/ 309 310 void xhci_free_stream_ctx(struct xhci_hcd *xhci, 311 unsigned int num_stream_ctxs, 312 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma) 313 { 314 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 315 316 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE) 317 pci_free_consistent(pdev, 318 sizeof(struct xhci_stream_ctx)*num_stream_ctxs, 319 stream_ctx, dma); 320 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE) 321 return dma_pool_free(xhci->small_streams_pool, 322 stream_ctx, dma); 323 else 324 return dma_pool_free(xhci->medium_streams_pool, 325 stream_ctx, dma); 326 } 327 328 /* 329 * The stream context array for each endpoint with bulk streams enabled can 330 * vary in size, based on: 331 * - how many streams the endpoint supports, 332 * - the maximum primary stream array size the host controller supports, 333 * - and how many streams the device driver asks for. 334 * 335 * The stream context array must be a power of 2, and can be as small as 336 * 64 bytes or as large as 1MB. 337 */ 338 struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci, 339 unsigned int num_stream_ctxs, dma_addr_t *dma, 340 gfp_t mem_flags) 341 { 342 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 343 344 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE) 345 return pci_alloc_consistent(pdev, 346 sizeof(struct xhci_stream_ctx)*num_stream_ctxs, 347 dma); 348 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE) 349 return dma_pool_alloc(xhci->small_streams_pool, 350 mem_flags, dma); 351 else 352 return dma_pool_alloc(xhci->medium_streams_pool, 353 mem_flags, dma); 354 } 355 356 struct xhci_ring *xhci_dma_to_transfer_ring( 357 struct xhci_virt_ep *ep, 358 u64 address) 359 { 360 if (ep->ep_state & EP_HAS_STREAMS) 361 return radix_tree_lookup(&ep->stream_info->trb_address_map, 362 address >> SEGMENT_SHIFT); 363 return ep->ring; 364 } 365 366 /* Only use this when you know stream_info is valid */ 367 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 368 static struct xhci_ring *dma_to_stream_ring( 369 struct xhci_stream_info *stream_info, 370 u64 address) 371 { 372 return radix_tree_lookup(&stream_info->trb_address_map, 373 address >> SEGMENT_SHIFT); 374 } 375 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */ 376 377 struct xhci_ring *xhci_stream_id_to_ring( 378 struct xhci_virt_device *dev, 379 unsigned int ep_index, 380 unsigned int stream_id) 381 { 382 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 383 384 if (stream_id == 0) 385 return ep->ring; 386 if (!ep->stream_info) 387 return NULL; 388 389 if (stream_id > ep->stream_info->num_streams) 390 return NULL; 391 return ep->stream_info->stream_rings[stream_id]; 392 } 393 394 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 395 static int xhci_test_radix_tree(struct xhci_hcd *xhci, 396 unsigned int num_streams, 397 struct xhci_stream_info *stream_info) 398 { 399 u32 cur_stream; 400 struct xhci_ring *cur_ring; 401 u64 addr; 402 403 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 404 struct xhci_ring *mapped_ring; 405 int trb_size = sizeof(union xhci_trb); 406 407 cur_ring = stream_info->stream_rings[cur_stream]; 408 for (addr = cur_ring->first_seg->dma; 409 addr < cur_ring->first_seg->dma + SEGMENT_SIZE; 410 addr += trb_size) { 411 mapped_ring = dma_to_stream_ring(stream_info, addr); 412 if (cur_ring != mapped_ring) { 413 xhci_warn(xhci, "WARN: DMA address 0x%08llx " 414 "didn't map to stream ID %u; " 415 "mapped to ring %p\n", 416 (unsigned long long) addr, 417 cur_stream, 418 mapped_ring); 419 return -EINVAL; 420 } 421 } 422 /* One TRB after the end of the ring segment shouldn't return a 423 * pointer to the current ring (although it may be a part of a 424 * different ring). 425 */ 426 mapped_ring = dma_to_stream_ring(stream_info, addr); 427 if (mapped_ring != cur_ring) { 428 /* One TRB before should also fail */ 429 addr = cur_ring->first_seg->dma - trb_size; 430 mapped_ring = dma_to_stream_ring(stream_info, addr); 431 } 432 if (mapped_ring == cur_ring) { 433 xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx " 434 "mapped to valid stream ID %u; " 435 "mapped ring = %p\n", 436 (unsigned long long) addr, 437 cur_stream, 438 mapped_ring); 439 return -EINVAL; 440 } 441 } 442 return 0; 443 } 444 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */ 445 446 /* 447 * Change an endpoint's internal structure so it supports stream IDs. The 448 * number of requested streams includes stream 0, which cannot be used by device 449 * drivers. 450 * 451 * The number of stream contexts in the stream context array may be bigger than 452 * the number of streams the driver wants to use. This is because the number of 453 * stream context array entries must be a power of two. 454 * 455 * We need a radix tree for mapping physical addresses of TRBs to which stream 456 * ID they belong to. We need to do this because the host controller won't tell 457 * us which stream ring the TRB came from. We could store the stream ID in an 458 * event data TRB, but that doesn't help us for the cancellation case, since the 459 * endpoint may stop before it reaches that event data TRB. 460 * 461 * The radix tree maps the upper portion of the TRB DMA address to a ring 462 * segment that has the same upper portion of DMA addresses. For example, say I 463 * have segments of size 1KB, that are always 64-byte aligned. A segment may 464 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the 465 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to 466 * pass the radix tree a key to get the right stream ID: 467 * 468 * 0x10c90fff >> 10 = 0x43243 469 * 0x10c912c0 >> 10 = 0x43244 470 * 0x10c91400 >> 10 = 0x43245 471 * 472 * Obviously, only those TRBs with DMA addresses that are within the segment 473 * will make the radix tree return the stream ID for that ring. 474 * 475 * Caveats for the radix tree: 476 * 477 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an 478 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be 479 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the 480 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit 481 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit 482 * extended systems (where the DMA address can be bigger than 32-bits), 483 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that. 484 */ 485 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci, 486 unsigned int num_stream_ctxs, 487 unsigned int num_streams, gfp_t mem_flags) 488 { 489 struct xhci_stream_info *stream_info; 490 u32 cur_stream; 491 struct xhci_ring *cur_ring; 492 unsigned long key; 493 u64 addr; 494 int ret; 495 496 xhci_dbg(xhci, "Allocating %u streams and %u " 497 "stream context array entries.\n", 498 num_streams, num_stream_ctxs); 499 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) { 500 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n"); 501 return NULL; 502 } 503 xhci->cmd_ring_reserved_trbs++; 504 505 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags); 506 if (!stream_info) 507 goto cleanup_trbs; 508 509 stream_info->num_streams = num_streams; 510 stream_info->num_stream_ctxs = num_stream_ctxs; 511 512 /* Initialize the array of virtual pointers to stream rings. */ 513 stream_info->stream_rings = kzalloc( 514 sizeof(struct xhci_ring *)*num_streams, 515 mem_flags); 516 if (!stream_info->stream_rings) 517 goto cleanup_info; 518 519 /* Initialize the array of DMA addresses for stream rings for the HW. */ 520 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci, 521 num_stream_ctxs, &stream_info->ctx_array_dma, 522 mem_flags); 523 if (!stream_info->stream_ctx_array) 524 goto cleanup_ctx; 525 memset(stream_info->stream_ctx_array, 0, 526 sizeof(struct xhci_stream_ctx)*num_stream_ctxs); 527 528 /* Allocate everything needed to free the stream rings later */ 529 stream_info->free_streams_command = 530 xhci_alloc_command(xhci, true, true, mem_flags); 531 if (!stream_info->free_streams_command) 532 goto cleanup_ctx; 533 534 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC); 535 536 /* Allocate rings for all the streams that the driver will use, 537 * and add their segment DMA addresses to the radix tree. 538 * Stream 0 is reserved. 539 */ 540 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 541 stream_info->stream_rings[cur_stream] = 542 xhci_ring_alloc(xhci, 1, true, mem_flags); 543 cur_ring = stream_info->stream_rings[cur_stream]; 544 if (!cur_ring) 545 goto cleanup_rings; 546 cur_ring->stream_id = cur_stream; 547 /* Set deq ptr, cycle bit, and stream context type */ 548 addr = cur_ring->first_seg->dma | 549 SCT_FOR_CTX(SCT_PRI_TR) | 550 cur_ring->cycle_state; 551 stream_info->stream_ctx_array[cur_stream].stream_ring = addr; 552 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", 553 cur_stream, (unsigned long long) addr); 554 555 key = (unsigned long) 556 (cur_ring->first_seg->dma >> SEGMENT_SHIFT); 557 ret = radix_tree_insert(&stream_info->trb_address_map, 558 key, cur_ring); 559 if (ret) { 560 xhci_ring_free(xhci, cur_ring); 561 stream_info->stream_rings[cur_stream] = NULL; 562 goto cleanup_rings; 563 } 564 } 565 /* Leave the other unused stream ring pointers in the stream context 566 * array initialized to zero. This will cause the xHC to give us an 567 * error if the device asks for a stream ID we don't have setup (if it 568 * was any other way, the host controller would assume the ring is 569 * "empty" and wait forever for data to be queued to that stream ID). 570 */ 571 #if XHCI_DEBUG 572 /* Do a little test on the radix tree to make sure it returns the 573 * correct values. 574 */ 575 if (xhci_test_radix_tree(xhci, num_streams, stream_info)) 576 goto cleanup_rings; 577 #endif 578 579 return stream_info; 580 581 cleanup_rings: 582 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 583 cur_ring = stream_info->stream_rings[cur_stream]; 584 if (cur_ring) { 585 addr = cur_ring->first_seg->dma; 586 radix_tree_delete(&stream_info->trb_address_map, 587 addr >> SEGMENT_SHIFT); 588 xhci_ring_free(xhci, cur_ring); 589 stream_info->stream_rings[cur_stream] = NULL; 590 } 591 } 592 xhci_free_command(xhci, stream_info->free_streams_command); 593 cleanup_ctx: 594 kfree(stream_info->stream_rings); 595 cleanup_info: 596 kfree(stream_info); 597 cleanup_trbs: 598 xhci->cmd_ring_reserved_trbs--; 599 return NULL; 600 } 601 /* 602 * Sets the MaxPStreams field and the Linear Stream Array field. 603 * Sets the dequeue pointer to the stream context array. 604 */ 605 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci, 606 struct xhci_ep_ctx *ep_ctx, 607 struct xhci_stream_info *stream_info) 608 { 609 u32 max_primary_streams; 610 /* MaxPStreams is the number of stream context array entries, not the 611 * number we're actually using. Must be in 2^(MaxPstreams + 1) format. 612 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc. 613 */ 614 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2; 615 xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n", 616 1 << (max_primary_streams + 1)); 617 ep_ctx->ep_info &= ~EP_MAXPSTREAMS_MASK; 618 ep_ctx->ep_info |= EP_MAXPSTREAMS(max_primary_streams); 619 ep_ctx->ep_info |= EP_HAS_LSA; 620 ep_ctx->deq = stream_info->ctx_array_dma; 621 } 622 623 /* 624 * Sets the MaxPStreams field and the Linear Stream Array field to 0. 625 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark, 626 * not at the beginning of the ring). 627 */ 628 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci, 629 struct xhci_ep_ctx *ep_ctx, 630 struct xhci_virt_ep *ep) 631 { 632 dma_addr_t addr; 633 ep_ctx->ep_info &= ~EP_MAXPSTREAMS_MASK; 634 ep_ctx->ep_info &= ~EP_HAS_LSA; 635 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue); 636 ep_ctx->deq = addr | ep->ring->cycle_state; 637 } 638 639 /* Frees all stream contexts associated with the endpoint, 640 * 641 * Caller should fix the endpoint context streams fields. 642 */ 643 void xhci_free_stream_info(struct xhci_hcd *xhci, 644 struct xhci_stream_info *stream_info) 645 { 646 int cur_stream; 647 struct xhci_ring *cur_ring; 648 dma_addr_t addr; 649 650 if (!stream_info) 651 return; 652 653 for (cur_stream = 1; cur_stream < stream_info->num_streams; 654 cur_stream++) { 655 cur_ring = stream_info->stream_rings[cur_stream]; 656 if (cur_ring) { 657 addr = cur_ring->first_seg->dma; 658 radix_tree_delete(&stream_info->trb_address_map, 659 addr >> SEGMENT_SHIFT); 660 xhci_ring_free(xhci, cur_ring); 661 stream_info->stream_rings[cur_stream] = NULL; 662 } 663 } 664 xhci_free_command(xhci, stream_info->free_streams_command); 665 xhci->cmd_ring_reserved_trbs--; 666 if (stream_info->stream_ctx_array) 667 xhci_free_stream_ctx(xhci, 668 stream_info->num_stream_ctxs, 669 stream_info->stream_ctx_array, 670 stream_info->ctx_array_dma); 671 672 if (stream_info) 673 kfree(stream_info->stream_rings); 674 kfree(stream_info); 675 } 676 677 678 /***************** Device context manipulation *************************/ 679 680 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci, 681 struct xhci_virt_ep *ep) 682 { 683 init_timer(&ep->stop_cmd_timer); 684 ep->stop_cmd_timer.data = (unsigned long) ep; 685 ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog; 686 ep->xhci = xhci; 687 } 688 689 /* All the xhci_tds in the ring's TD list should be freed at this point */ 690 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id) 691 { 692 struct xhci_virt_device *dev; 693 int i; 694 695 /* Slot ID 0 is reserved */ 696 if (slot_id == 0 || !xhci->devs[slot_id]) 697 return; 698 699 dev = xhci->devs[slot_id]; 700 xhci->dcbaa->dev_context_ptrs[slot_id] = 0; 701 if (!dev) 702 return; 703 704 for (i = 0; i < 31; ++i) { 705 if (dev->eps[i].ring) 706 xhci_ring_free(xhci, dev->eps[i].ring); 707 if (dev->eps[i].stream_info) 708 xhci_free_stream_info(xhci, 709 dev->eps[i].stream_info); 710 } 711 712 if (dev->ring_cache) { 713 for (i = 0; i < dev->num_rings_cached; i++) 714 xhci_ring_free(xhci, dev->ring_cache[i]); 715 kfree(dev->ring_cache); 716 } 717 718 if (dev->in_ctx) 719 xhci_free_container_ctx(xhci, dev->in_ctx); 720 if (dev->out_ctx) 721 xhci_free_container_ctx(xhci, dev->out_ctx); 722 723 kfree(xhci->devs[slot_id]); 724 xhci->devs[slot_id] = NULL; 725 } 726 727 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id, 728 struct usb_device *udev, gfp_t flags) 729 { 730 struct xhci_virt_device *dev; 731 int i; 732 733 /* Slot ID 0 is reserved */ 734 if (slot_id == 0 || xhci->devs[slot_id]) { 735 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id); 736 return 0; 737 } 738 739 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags); 740 if (!xhci->devs[slot_id]) 741 return 0; 742 dev = xhci->devs[slot_id]; 743 744 /* Allocate the (output) device context that will be used in the HC. */ 745 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags); 746 if (!dev->out_ctx) 747 goto fail; 748 749 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id, 750 (unsigned long long)dev->out_ctx->dma); 751 752 /* Allocate the (input) device context for address device command */ 753 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags); 754 if (!dev->in_ctx) 755 goto fail; 756 757 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id, 758 (unsigned long long)dev->in_ctx->dma); 759 760 /* Initialize the cancellation list and watchdog timers for each ep */ 761 for (i = 0; i < 31; i++) { 762 xhci_init_endpoint_timer(xhci, &dev->eps[i]); 763 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list); 764 } 765 766 /* Allocate endpoint 0 ring */ 767 dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags); 768 if (!dev->eps[0].ring) 769 goto fail; 770 771 /* Allocate pointers to the ring cache */ 772 dev->ring_cache = kzalloc( 773 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED, 774 flags); 775 if (!dev->ring_cache) 776 goto fail; 777 dev->num_rings_cached = 0; 778 779 init_completion(&dev->cmd_completion); 780 INIT_LIST_HEAD(&dev->cmd_list); 781 782 /* Point to output device context in dcbaa. */ 783 xhci->dcbaa->dev_context_ptrs[slot_id] = dev->out_ctx->dma; 784 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n", 785 slot_id, 786 &xhci->dcbaa->dev_context_ptrs[slot_id], 787 (unsigned long long) xhci->dcbaa->dev_context_ptrs[slot_id]); 788 789 return 1; 790 fail: 791 xhci_free_virt_device(xhci, slot_id); 792 return 0; 793 } 794 795 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci, 796 struct usb_device *udev) 797 { 798 struct xhci_virt_device *virt_dev; 799 struct xhci_ep_ctx *ep0_ctx; 800 struct xhci_ring *ep_ring; 801 802 virt_dev = xhci->devs[udev->slot_id]; 803 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0); 804 ep_ring = virt_dev->eps[0].ring; 805 /* 806 * FIXME we don't keep track of the dequeue pointer very well after a 807 * Set TR dequeue pointer, so we're setting the dequeue pointer of the 808 * host to our enqueue pointer. This should only be called after a 809 * configured device has reset, so all control transfers should have 810 * been completed or cancelled before the reset. 811 */ 812 ep0_ctx->deq = xhci_trb_virt_to_dma(ep_ring->enq_seg, ep_ring->enqueue); 813 ep0_ctx->deq |= ep_ring->cycle_state; 814 } 815 816 /* Setup an xHCI virtual device for a Set Address command */ 817 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev) 818 { 819 struct xhci_virt_device *dev; 820 struct xhci_ep_ctx *ep0_ctx; 821 struct usb_device *top_dev; 822 struct xhci_slot_ctx *slot_ctx; 823 struct xhci_input_control_ctx *ctrl_ctx; 824 825 dev = xhci->devs[udev->slot_id]; 826 /* Slot ID 0 is reserved */ 827 if (udev->slot_id == 0 || !dev) { 828 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n", 829 udev->slot_id); 830 return -EINVAL; 831 } 832 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0); 833 ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx); 834 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx); 835 836 /* 2) New slot context and endpoint 0 context are valid*/ 837 ctrl_ctx->add_flags = SLOT_FLAG | EP0_FLAG; 838 839 /* 3) Only the control endpoint is valid - one endpoint context */ 840 slot_ctx->dev_info |= LAST_CTX(1); 841 842 slot_ctx->dev_info |= (u32) udev->route; 843 switch (udev->speed) { 844 case USB_SPEED_SUPER: 845 slot_ctx->dev_info |= (u32) SLOT_SPEED_SS; 846 break; 847 case USB_SPEED_HIGH: 848 slot_ctx->dev_info |= (u32) SLOT_SPEED_HS; 849 break; 850 case USB_SPEED_FULL: 851 slot_ctx->dev_info |= (u32) SLOT_SPEED_FS; 852 break; 853 case USB_SPEED_LOW: 854 slot_ctx->dev_info |= (u32) SLOT_SPEED_LS; 855 break; 856 case USB_SPEED_WIRELESS: 857 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n"); 858 return -EINVAL; 859 break; 860 default: 861 /* Speed was set earlier, this shouldn't happen. */ 862 BUG(); 863 } 864 /* Find the root hub port this device is under */ 865 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 866 top_dev = top_dev->parent) 867 /* Found device below root hub */; 868 slot_ctx->dev_info2 |= (u32) ROOT_HUB_PORT(top_dev->portnum); 869 xhci_dbg(xhci, "Set root hub portnum to %d\n", top_dev->portnum); 870 871 /* Is this a LS/FS device under a HS hub? */ 872 if ((udev->speed == USB_SPEED_LOW || udev->speed == USB_SPEED_FULL) && 873 udev->tt) { 874 slot_ctx->tt_info = udev->tt->hub->slot_id; 875 slot_ctx->tt_info |= udev->ttport << 8; 876 if (udev->tt->multi) 877 slot_ctx->dev_info |= DEV_MTT; 878 } 879 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt); 880 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport); 881 882 /* Step 4 - ring already allocated */ 883 /* Step 5 */ 884 ep0_ctx->ep_info2 = EP_TYPE(CTRL_EP); 885 /* 886 * XXX: Not sure about wireless USB devices. 887 */ 888 switch (udev->speed) { 889 case USB_SPEED_SUPER: 890 ep0_ctx->ep_info2 |= MAX_PACKET(512); 891 break; 892 case USB_SPEED_HIGH: 893 /* USB core guesses at a 64-byte max packet first for FS devices */ 894 case USB_SPEED_FULL: 895 ep0_ctx->ep_info2 |= MAX_PACKET(64); 896 break; 897 case USB_SPEED_LOW: 898 ep0_ctx->ep_info2 |= MAX_PACKET(8); 899 break; 900 case USB_SPEED_WIRELESS: 901 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n"); 902 return -EINVAL; 903 break; 904 default: 905 /* New speed? */ 906 BUG(); 907 } 908 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */ 909 ep0_ctx->ep_info2 |= MAX_BURST(0); 910 ep0_ctx->ep_info2 |= ERROR_COUNT(3); 911 912 ep0_ctx->deq = 913 dev->eps[0].ring->first_seg->dma; 914 ep0_ctx->deq |= dev->eps[0].ring->cycle_state; 915 916 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */ 917 918 return 0; 919 } 920 921 /* Return the polling or NAK interval. 922 * 923 * The polling interval is expressed in "microframes". If xHCI's Interval field 924 * is set to N, it will service the endpoint every 2^(Interval)*125us. 925 * 926 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval 927 * is set to 0. 928 */ 929 static inline unsigned int xhci_get_endpoint_interval(struct usb_device *udev, 930 struct usb_host_endpoint *ep) 931 { 932 unsigned int interval = 0; 933 934 switch (udev->speed) { 935 case USB_SPEED_HIGH: 936 /* Max NAK rate */ 937 if (usb_endpoint_xfer_control(&ep->desc) || 938 usb_endpoint_xfer_bulk(&ep->desc)) 939 interval = ep->desc.bInterval; 940 /* Fall through - SS and HS isoc/int have same decoding */ 941 case USB_SPEED_SUPER: 942 if (usb_endpoint_xfer_int(&ep->desc) || 943 usb_endpoint_xfer_isoc(&ep->desc)) { 944 if (ep->desc.bInterval == 0) 945 interval = 0; 946 else 947 interval = ep->desc.bInterval - 1; 948 if (interval > 15) 949 interval = 15; 950 if (interval != ep->desc.bInterval + 1) 951 dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n", 952 ep->desc.bEndpointAddress, 1 << interval); 953 } 954 break; 955 /* Convert bInterval (in 1-255 frames) to microframes and round down to 956 * nearest power of 2. 957 */ 958 case USB_SPEED_FULL: 959 case USB_SPEED_LOW: 960 if (usb_endpoint_xfer_int(&ep->desc) || 961 usb_endpoint_xfer_isoc(&ep->desc)) { 962 interval = fls(8*ep->desc.bInterval) - 1; 963 if (interval > 10) 964 interval = 10; 965 if (interval < 3) 966 interval = 3; 967 if ((1 << interval) != 8*ep->desc.bInterval) 968 dev_warn(&udev->dev, 969 "ep %#x - rounding interval" 970 " to %d microframes, " 971 "ep desc says %d microframes\n", 972 ep->desc.bEndpointAddress, 973 1 << interval, 974 8*ep->desc.bInterval); 975 } 976 break; 977 default: 978 BUG(); 979 } 980 return EP_INTERVAL(interval); 981 } 982 983 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps. 984 * High speed endpoint descriptors can define "the number of additional 985 * transaction opportunities per microframe", but that goes in the Max Burst 986 * endpoint context field. 987 */ 988 static inline u32 xhci_get_endpoint_mult(struct usb_device *udev, 989 struct usb_host_endpoint *ep) 990 { 991 if (udev->speed != USB_SPEED_SUPER || 992 !usb_endpoint_xfer_isoc(&ep->desc)) 993 return 0; 994 return ep->ss_ep_comp.bmAttributes; 995 } 996 997 static inline u32 xhci_get_endpoint_type(struct usb_device *udev, 998 struct usb_host_endpoint *ep) 999 { 1000 int in; 1001 u32 type; 1002 1003 in = usb_endpoint_dir_in(&ep->desc); 1004 if (usb_endpoint_xfer_control(&ep->desc)) { 1005 type = EP_TYPE(CTRL_EP); 1006 } else if (usb_endpoint_xfer_bulk(&ep->desc)) { 1007 if (in) 1008 type = EP_TYPE(BULK_IN_EP); 1009 else 1010 type = EP_TYPE(BULK_OUT_EP); 1011 } else if (usb_endpoint_xfer_isoc(&ep->desc)) { 1012 if (in) 1013 type = EP_TYPE(ISOC_IN_EP); 1014 else 1015 type = EP_TYPE(ISOC_OUT_EP); 1016 } else if (usb_endpoint_xfer_int(&ep->desc)) { 1017 if (in) 1018 type = EP_TYPE(INT_IN_EP); 1019 else 1020 type = EP_TYPE(INT_OUT_EP); 1021 } else { 1022 BUG(); 1023 } 1024 return type; 1025 } 1026 1027 /* Return the maximum endpoint service interval time (ESIT) payload. 1028 * Basically, this is the maxpacket size, multiplied by the burst size 1029 * and mult size. 1030 */ 1031 static inline u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci, 1032 struct usb_device *udev, 1033 struct usb_host_endpoint *ep) 1034 { 1035 int max_burst; 1036 int max_packet; 1037 1038 /* Only applies for interrupt or isochronous endpoints */ 1039 if (usb_endpoint_xfer_control(&ep->desc) || 1040 usb_endpoint_xfer_bulk(&ep->desc)) 1041 return 0; 1042 1043 if (udev->speed == USB_SPEED_SUPER) 1044 return ep->ss_ep_comp.wBytesPerInterval; 1045 1046 max_packet = ep->desc.wMaxPacketSize & 0x3ff; 1047 max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11; 1048 /* A 0 in max burst means 1 transfer per ESIT */ 1049 return max_packet * (max_burst + 1); 1050 } 1051 1052 /* Set up an endpoint with one ring segment. Do not allocate stream rings. 1053 * Drivers will have to call usb_alloc_streams() to do that. 1054 */ 1055 int xhci_endpoint_init(struct xhci_hcd *xhci, 1056 struct xhci_virt_device *virt_dev, 1057 struct usb_device *udev, 1058 struct usb_host_endpoint *ep, 1059 gfp_t mem_flags) 1060 { 1061 unsigned int ep_index; 1062 struct xhci_ep_ctx *ep_ctx; 1063 struct xhci_ring *ep_ring; 1064 unsigned int max_packet; 1065 unsigned int max_burst; 1066 u32 max_esit_payload; 1067 1068 ep_index = xhci_get_endpoint_index(&ep->desc); 1069 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1070 1071 /* Set up the endpoint ring */ 1072 /* 1073 * Isochronous endpoint ring needs bigger size because one isoc URB 1074 * carries multiple packets and it will insert multiple tds to the 1075 * ring. 1076 * This should be replaced with dynamic ring resizing in the future. 1077 */ 1078 if (usb_endpoint_xfer_isoc(&ep->desc)) 1079 virt_dev->eps[ep_index].new_ring = 1080 xhci_ring_alloc(xhci, 8, true, mem_flags); 1081 else 1082 virt_dev->eps[ep_index].new_ring = 1083 xhci_ring_alloc(xhci, 1, true, mem_flags); 1084 if (!virt_dev->eps[ep_index].new_ring) { 1085 /* Attempt to use the ring cache */ 1086 if (virt_dev->num_rings_cached == 0) 1087 return -ENOMEM; 1088 virt_dev->eps[ep_index].new_ring = 1089 virt_dev->ring_cache[virt_dev->num_rings_cached]; 1090 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL; 1091 virt_dev->num_rings_cached--; 1092 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring); 1093 } 1094 virt_dev->eps[ep_index].skip = false; 1095 ep_ring = virt_dev->eps[ep_index].new_ring; 1096 ep_ctx->deq = ep_ring->first_seg->dma | ep_ring->cycle_state; 1097 1098 ep_ctx->ep_info = xhci_get_endpoint_interval(udev, ep); 1099 ep_ctx->ep_info |= EP_MULT(xhci_get_endpoint_mult(udev, ep)); 1100 1101 /* FIXME dig Mult and streams info out of ep companion desc */ 1102 1103 /* Allow 3 retries for everything but isoc; 1104 * error count = 0 means infinite retries. 1105 */ 1106 if (!usb_endpoint_xfer_isoc(&ep->desc)) 1107 ep_ctx->ep_info2 = ERROR_COUNT(3); 1108 else 1109 ep_ctx->ep_info2 = ERROR_COUNT(1); 1110 1111 ep_ctx->ep_info2 |= xhci_get_endpoint_type(udev, ep); 1112 1113 /* Set the max packet size and max burst */ 1114 switch (udev->speed) { 1115 case USB_SPEED_SUPER: 1116 max_packet = ep->desc.wMaxPacketSize; 1117 ep_ctx->ep_info2 |= MAX_PACKET(max_packet); 1118 /* dig out max burst from ep companion desc */ 1119 max_packet = ep->ss_ep_comp.bMaxBurst; 1120 if (!max_packet) 1121 xhci_warn(xhci, "WARN no SS endpoint bMaxBurst\n"); 1122 ep_ctx->ep_info2 |= MAX_BURST(max_packet); 1123 break; 1124 case USB_SPEED_HIGH: 1125 /* bits 11:12 specify the number of additional transaction 1126 * opportunities per microframe (USB 2.0, section 9.6.6) 1127 */ 1128 if (usb_endpoint_xfer_isoc(&ep->desc) || 1129 usb_endpoint_xfer_int(&ep->desc)) { 1130 max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11; 1131 ep_ctx->ep_info2 |= MAX_BURST(max_burst); 1132 } 1133 /* Fall through */ 1134 case USB_SPEED_FULL: 1135 case USB_SPEED_LOW: 1136 max_packet = ep->desc.wMaxPacketSize & 0x3ff; 1137 ep_ctx->ep_info2 |= MAX_PACKET(max_packet); 1138 break; 1139 default: 1140 BUG(); 1141 } 1142 max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep); 1143 ep_ctx->tx_info = MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload); 1144 1145 /* 1146 * XXX no idea how to calculate the average TRB buffer length for bulk 1147 * endpoints, as the driver gives us no clue how big each scatter gather 1148 * list entry (or buffer) is going to be. 1149 * 1150 * For isochronous and interrupt endpoints, we set it to the max 1151 * available, until we have new API in the USB core to allow drivers to 1152 * declare how much bandwidth they actually need. 1153 * 1154 * Normally, it would be calculated by taking the total of the buffer 1155 * lengths in the TD and then dividing by the number of TRBs in a TD, 1156 * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't 1157 * use Event Data TRBs, and we don't chain in a link TRB on short 1158 * transfers, we're basically dividing by 1. 1159 */ 1160 ep_ctx->tx_info |= AVG_TRB_LENGTH_FOR_EP(max_esit_payload); 1161 1162 /* FIXME Debug endpoint context */ 1163 return 0; 1164 } 1165 1166 void xhci_endpoint_zero(struct xhci_hcd *xhci, 1167 struct xhci_virt_device *virt_dev, 1168 struct usb_host_endpoint *ep) 1169 { 1170 unsigned int ep_index; 1171 struct xhci_ep_ctx *ep_ctx; 1172 1173 ep_index = xhci_get_endpoint_index(&ep->desc); 1174 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1175 1176 ep_ctx->ep_info = 0; 1177 ep_ctx->ep_info2 = 0; 1178 ep_ctx->deq = 0; 1179 ep_ctx->tx_info = 0; 1180 /* Don't free the endpoint ring until the set interface or configuration 1181 * request succeeds. 1182 */ 1183 } 1184 1185 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy. 1186 * Useful when you want to change one particular aspect of the endpoint and then 1187 * issue a configure endpoint command. 1188 */ 1189 void xhci_endpoint_copy(struct xhci_hcd *xhci, 1190 struct xhci_container_ctx *in_ctx, 1191 struct xhci_container_ctx *out_ctx, 1192 unsigned int ep_index) 1193 { 1194 struct xhci_ep_ctx *out_ep_ctx; 1195 struct xhci_ep_ctx *in_ep_ctx; 1196 1197 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1198 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 1199 1200 in_ep_ctx->ep_info = out_ep_ctx->ep_info; 1201 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2; 1202 in_ep_ctx->deq = out_ep_ctx->deq; 1203 in_ep_ctx->tx_info = out_ep_ctx->tx_info; 1204 } 1205 1206 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx. 1207 * Useful when you want to change one particular aspect of the endpoint and then 1208 * issue a configure endpoint command. Only the context entries field matters, 1209 * but we'll copy the whole thing anyway. 1210 */ 1211 void xhci_slot_copy(struct xhci_hcd *xhci, 1212 struct xhci_container_ctx *in_ctx, 1213 struct xhci_container_ctx *out_ctx) 1214 { 1215 struct xhci_slot_ctx *in_slot_ctx; 1216 struct xhci_slot_ctx *out_slot_ctx; 1217 1218 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1219 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx); 1220 1221 in_slot_ctx->dev_info = out_slot_ctx->dev_info; 1222 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2; 1223 in_slot_ctx->tt_info = out_slot_ctx->tt_info; 1224 in_slot_ctx->dev_state = out_slot_ctx->dev_state; 1225 } 1226 1227 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */ 1228 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags) 1229 { 1230 int i; 1231 struct device *dev = xhci_to_hcd(xhci)->self.controller; 1232 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1233 1234 xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp); 1235 1236 if (!num_sp) 1237 return 0; 1238 1239 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags); 1240 if (!xhci->scratchpad) 1241 goto fail_sp; 1242 1243 xhci->scratchpad->sp_array = 1244 pci_alloc_consistent(to_pci_dev(dev), 1245 num_sp * sizeof(u64), 1246 &xhci->scratchpad->sp_dma); 1247 if (!xhci->scratchpad->sp_array) 1248 goto fail_sp2; 1249 1250 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags); 1251 if (!xhci->scratchpad->sp_buffers) 1252 goto fail_sp3; 1253 1254 xhci->scratchpad->sp_dma_buffers = 1255 kzalloc(sizeof(dma_addr_t) * num_sp, flags); 1256 1257 if (!xhci->scratchpad->sp_dma_buffers) 1258 goto fail_sp4; 1259 1260 xhci->dcbaa->dev_context_ptrs[0] = xhci->scratchpad->sp_dma; 1261 for (i = 0; i < num_sp; i++) { 1262 dma_addr_t dma; 1263 void *buf = pci_alloc_consistent(to_pci_dev(dev), 1264 xhci->page_size, &dma); 1265 if (!buf) 1266 goto fail_sp5; 1267 1268 xhci->scratchpad->sp_array[i] = dma; 1269 xhci->scratchpad->sp_buffers[i] = buf; 1270 xhci->scratchpad->sp_dma_buffers[i] = dma; 1271 } 1272 1273 return 0; 1274 1275 fail_sp5: 1276 for (i = i - 1; i >= 0; i--) { 1277 pci_free_consistent(to_pci_dev(dev), xhci->page_size, 1278 xhci->scratchpad->sp_buffers[i], 1279 xhci->scratchpad->sp_dma_buffers[i]); 1280 } 1281 kfree(xhci->scratchpad->sp_dma_buffers); 1282 1283 fail_sp4: 1284 kfree(xhci->scratchpad->sp_buffers); 1285 1286 fail_sp3: 1287 pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64), 1288 xhci->scratchpad->sp_array, 1289 xhci->scratchpad->sp_dma); 1290 1291 fail_sp2: 1292 kfree(xhci->scratchpad); 1293 xhci->scratchpad = NULL; 1294 1295 fail_sp: 1296 return -ENOMEM; 1297 } 1298 1299 static void scratchpad_free(struct xhci_hcd *xhci) 1300 { 1301 int num_sp; 1302 int i; 1303 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 1304 1305 if (!xhci->scratchpad) 1306 return; 1307 1308 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1309 1310 for (i = 0; i < num_sp; i++) { 1311 pci_free_consistent(pdev, xhci->page_size, 1312 xhci->scratchpad->sp_buffers[i], 1313 xhci->scratchpad->sp_dma_buffers[i]); 1314 } 1315 kfree(xhci->scratchpad->sp_dma_buffers); 1316 kfree(xhci->scratchpad->sp_buffers); 1317 pci_free_consistent(pdev, num_sp * sizeof(u64), 1318 xhci->scratchpad->sp_array, 1319 xhci->scratchpad->sp_dma); 1320 kfree(xhci->scratchpad); 1321 xhci->scratchpad = NULL; 1322 } 1323 1324 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci, 1325 bool allocate_in_ctx, bool allocate_completion, 1326 gfp_t mem_flags) 1327 { 1328 struct xhci_command *command; 1329 1330 command = kzalloc(sizeof(*command), mem_flags); 1331 if (!command) 1332 return NULL; 1333 1334 if (allocate_in_ctx) { 1335 command->in_ctx = 1336 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, 1337 mem_flags); 1338 if (!command->in_ctx) { 1339 kfree(command); 1340 return NULL; 1341 } 1342 } 1343 1344 if (allocate_completion) { 1345 command->completion = 1346 kzalloc(sizeof(struct completion), mem_flags); 1347 if (!command->completion) { 1348 xhci_free_container_ctx(xhci, command->in_ctx); 1349 kfree(command); 1350 return NULL; 1351 } 1352 init_completion(command->completion); 1353 } 1354 1355 command->status = 0; 1356 INIT_LIST_HEAD(&command->cmd_list); 1357 return command; 1358 } 1359 1360 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv) 1361 { 1362 int last; 1363 1364 if (!urb_priv) 1365 return; 1366 1367 last = urb_priv->length - 1; 1368 if (last >= 0) { 1369 int i; 1370 for (i = 0; i <= last; i++) 1371 kfree(urb_priv->td[i]); 1372 } 1373 kfree(urb_priv); 1374 } 1375 1376 void xhci_free_command(struct xhci_hcd *xhci, 1377 struct xhci_command *command) 1378 { 1379 xhci_free_container_ctx(xhci, 1380 command->in_ctx); 1381 kfree(command->completion); 1382 kfree(command); 1383 } 1384 1385 void xhci_mem_cleanup(struct xhci_hcd *xhci) 1386 { 1387 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 1388 int size; 1389 int i; 1390 1391 /* Free the Event Ring Segment Table and the actual Event Ring */ 1392 if (xhci->ir_set) { 1393 xhci_writel(xhci, 0, &xhci->ir_set->erst_size); 1394 xhci_write_64(xhci, 0, &xhci->ir_set->erst_base); 1395 xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue); 1396 } 1397 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries); 1398 if (xhci->erst.entries) 1399 pci_free_consistent(pdev, size, 1400 xhci->erst.entries, xhci->erst.erst_dma_addr); 1401 xhci->erst.entries = NULL; 1402 xhci_dbg(xhci, "Freed ERST\n"); 1403 if (xhci->event_ring) 1404 xhci_ring_free(xhci, xhci->event_ring); 1405 xhci->event_ring = NULL; 1406 xhci_dbg(xhci, "Freed event ring\n"); 1407 1408 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 1409 if (xhci->cmd_ring) 1410 xhci_ring_free(xhci, xhci->cmd_ring); 1411 xhci->cmd_ring = NULL; 1412 xhci_dbg(xhci, "Freed command ring\n"); 1413 1414 for (i = 1; i < MAX_HC_SLOTS; ++i) 1415 xhci_free_virt_device(xhci, i); 1416 1417 if (xhci->segment_pool) 1418 dma_pool_destroy(xhci->segment_pool); 1419 xhci->segment_pool = NULL; 1420 xhci_dbg(xhci, "Freed segment pool\n"); 1421 1422 if (xhci->device_pool) 1423 dma_pool_destroy(xhci->device_pool); 1424 xhci->device_pool = NULL; 1425 xhci_dbg(xhci, "Freed device context pool\n"); 1426 1427 if (xhci->small_streams_pool) 1428 dma_pool_destroy(xhci->small_streams_pool); 1429 xhci->small_streams_pool = NULL; 1430 xhci_dbg(xhci, "Freed small stream array pool\n"); 1431 1432 if (xhci->medium_streams_pool) 1433 dma_pool_destroy(xhci->medium_streams_pool); 1434 xhci->medium_streams_pool = NULL; 1435 xhci_dbg(xhci, "Freed medium stream array pool\n"); 1436 1437 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 1438 if (xhci->dcbaa) 1439 pci_free_consistent(pdev, sizeof(*xhci->dcbaa), 1440 xhci->dcbaa, xhci->dcbaa->dma); 1441 xhci->dcbaa = NULL; 1442 1443 scratchpad_free(xhci); 1444 xhci->page_size = 0; 1445 xhci->page_shift = 0; 1446 } 1447 1448 static int xhci_test_trb_in_td(struct xhci_hcd *xhci, 1449 struct xhci_segment *input_seg, 1450 union xhci_trb *start_trb, 1451 union xhci_trb *end_trb, 1452 dma_addr_t input_dma, 1453 struct xhci_segment *result_seg, 1454 char *test_name, int test_number) 1455 { 1456 unsigned long long start_dma; 1457 unsigned long long end_dma; 1458 struct xhci_segment *seg; 1459 1460 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb); 1461 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb); 1462 1463 seg = trb_in_td(input_seg, start_trb, end_trb, input_dma); 1464 if (seg != result_seg) { 1465 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n", 1466 test_name, test_number); 1467 xhci_warn(xhci, "Tested TRB math w/ seg %p and " 1468 "input DMA 0x%llx\n", 1469 input_seg, 1470 (unsigned long long) input_dma); 1471 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), " 1472 "ending TRB %p (0x%llx DMA)\n", 1473 start_trb, start_dma, 1474 end_trb, end_dma); 1475 xhci_warn(xhci, "Expected seg %p, got seg %p\n", 1476 result_seg, seg); 1477 return -1; 1478 } 1479 return 0; 1480 } 1481 1482 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */ 1483 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags) 1484 { 1485 struct { 1486 dma_addr_t input_dma; 1487 struct xhci_segment *result_seg; 1488 } simple_test_vector [] = { 1489 /* A zeroed DMA field should fail */ 1490 { 0, NULL }, 1491 /* One TRB before the ring start should fail */ 1492 { xhci->event_ring->first_seg->dma - 16, NULL }, 1493 /* One byte before the ring start should fail */ 1494 { xhci->event_ring->first_seg->dma - 1, NULL }, 1495 /* Starting TRB should succeed */ 1496 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg }, 1497 /* Ending TRB should succeed */ 1498 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16, 1499 xhci->event_ring->first_seg }, 1500 /* One byte after the ring end should fail */ 1501 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL }, 1502 /* One TRB after the ring end should fail */ 1503 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL }, 1504 /* An address of all ones should fail */ 1505 { (dma_addr_t) (~0), NULL }, 1506 }; 1507 struct { 1508 struct xhci_segment *input_seg; 1509 union xhci_trb *start_trb; 1510 union xhci_trb *end_trb; 1511 dma_addr_t input_dma; 1512 struct xhci_segment *result_seg; 1513 } complex_test_vector [] = { 1514 /* Test feeding a valid DMA address from a different ring */ 1515 { .input_seg = xhci->event_ring->first_seg, 1516 .start_trb = xhci->event_ring->first_seg->trbs, 1517 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 1518 .input_dma = xhci->cmd_ring->first_seg->dma, 1519 .result_seg = NULL, 1520 }, 1521 /* Test feeding a valid end TRB from a different ring */ 1522 { .input_seg = xhci->event_ring->first_seg, 1523 .start_trb = xhci->event_ring->first_seg->trbs, 1524 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 1525 .input_dma = xhci->cmd_ring->first_seg->dma, 1526 .result_seg = NULL, 1527 }, 1528 /* Test feeding a valid start and end TRB from a different ring */ 1529 { .input_seg = xhci->event_ring->first_seg, 1530 .start_trb = xhci->cmd_ring->first_seg->trbs, 1531 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 1532 .input_dma = xhci->cmd_ring->first_seg->dma, 1533 .result_seg = NULL, 1534 }, 1535 /* TRB in this ring, but after this TD */ 1536 { .input_seg = xhci->event_ring->first_seg, 1537 .start_trb = &xhci->event_ring->first_seg->trbs[0], 1538 .end_trb = &xhci->event_ring->first_seg->trbs[3], 1539 .input_dma = xhci->event_ring->first_seg->dma + 4*16, 1540 .result_seg = NULL, 1541 }, 1542 /* TRB in this ring, but before this TD */ 1543 { .input_seg = xhci->event_ring->first_seg, 1544 .start_trb = &xhci->event_ring->first_seg->trbs[3], 1545 .end_trb = &xhci->event_ring->first_seg->trbs[6], 1546 .input_dma = xhci->event_ring->first_seg->dma + 2*16, 1547 .result_seg = NULL, 1548 }, 1549 /* TRB in this ring, but after this wrapped TD */ 1550 { .input_seg = xhci->event_ring->first_seg, 1551 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 1552 .end_trb = &xhci->event_ring->first_seg->trbs[1], 1553 .input_dma = xhci->event_ring->first_seg->dma + 2*16, 1554 .result_seg = NULL, 1555 }, 1556 /* TRB in this ring, but before this wrapped TD */ 1557 { .input_seg = xhci->event_ring->first_seg, 1558 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 1559 .end_trb = &xhci->event_ring->first_seg->trbs[1], 1560 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16, 1561 .result_seg = NULL, 1562 }, 1563 /* TRB not in this ring, and we have a wrapped TD */ 1564 { .input_seg = xhci->event_ring->first_seg, 1565 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 1566 .end_trb = &xhci->event_ring->first_seg->trbs[1], 1567 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16, 1568 .result_seg = NULL, 1569 }, 1570 }; 1571 1572 unsigned int num_tests; 1573 int i, ret; 1574 1575 num_tests = ARRAY_SIZE(simple_test_vector); 1576 for (i = 0; i < num_tests; i++) { 1577 ret = xhci_test_trb_in_td(xhci, 1578 xhci->event_ring->first_seg, 1579 xhci->event_ring->first_seg->trbs, 1580 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 1581 simple_test_vector[i].input_dma, 1582 simple_test_vector[i].result_seg, 1583 "Simple", i); 1584 if (ret < 0) 1585 return ret; 1586 } 1587 1588 num_tests = ARRAY_SIZE(complex_test_vector); 1589 for (i = 0; i < num_tests; i++) { 1590 ret = xhci_test_trb_in_td(xhci, 1591 complex_test_vector[i].input_seg, 1592 complex_test_vector[i].start_trb, 1593 complex_test_vector[i].end_trb, 1594 complex_test_vector[i].input_dma, 1595 complex_test_vector[i].result_seg, 1596 "Complex", i); 1597 if (ret < 0) 1598 return ret; 1599 } 1600 xhci_dbg(xhci, "TRB math tests passed.\n"); 1601 return 0; 1602 } 1603 1604 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci) 1605 { 1606 u64 temp; 1607 dma_addr_t deq; 1608 1609 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 1610 xhci->event_ring->dequeue); 1611 if (deq == 0 && !in_interrupt()) 1612 xhci_warn(xhci, "WARN something wrong with SW event ring " 1613 "dequeue ptr.\n"); 1614 /* Update HC event ring dequeue pointer */ 1615 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 1616 temp &= ERST_PTR_MASK; 1617 /* Don't clear the EHB bit (which is RW1C) because 1618 * there might be more events to service. 1619 */ 1620 temp &= ~ERST_EHB; 1621 xhci_dbg(xhci, "// Write event ring dequeue pointer, " 1622 "preserving EHB bit\n"); 1623 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp, 1624 &xhci->ir_set->erst_dequeue); 1625 } 1626 1627 1628 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags) 1629 { 1630 dma_addr_t dma; 1631 struct device *dev = xhci_to_hcd(xhci)->self.controller; 1632 unsigned int val, val2; 1633 u64 val_64; 1634 struct xhci_segment *seg; 1635 u32 page_size; 1636 int i; 1637 1638 page_size = xhci_readl(xhci, &xhci->op_regs->page_size); 1639 xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size); 1640 for (i = 0; i < 16; i++) { 1641 if ((0x1 & page_size) != 0) 1642 break; 1643 page_size = page_size >> 1; 1644 } 1645 if (i < 16) 1646 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024); 1647 else 1648 xhci_warn(xhci, "WARN: no supported page size\n"); 1649 /* Use 4K pages, since that's common and the minimum the HC supports */ 1650 xhci->page_shift = 12; 1651 xhci->page_size = 1 << xhci->page_shift; 1652 xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024); 1653 1654 /* 1655 * Program the Number of Device Slots Enabled field in the CONFIG 1656 * register with the max value of slots the HC can handle. 1657 */ 1658 val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1)); 1659 xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n", 1660 (unsigned int) val); 1661 val2 = xhci_readl(xhci, &xhci->op_regs->config_reg); 1662 val |= (val2 & ~HCS_SLOTS_MASK); 1663 xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n", 1664 (unsigned int) val); 1665 xhci_writel(xhci, val, &xhci->op_regs->config_reg); 1666 1667 /* 1668 * Section 5.4.8 - doorbell array must be 1669 * "physically contiguous and 64-byte (cache line) aligned". 1670 */ 1671 xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev), 1672 sizeof(*xhci->dcbaa), &dma); 1673 if (!xhci->dcbaa) 1674 goto fail; 1675 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa)); 1676 xhci->dcbaa->dma = dma; 1677 xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n", 1678 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa); 1679 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr); 1680 1681 /* 1682 * Initialize the ring segment pool. The ring must be a contiguous 1683 * structure comprised of TRBs. The TRBs must be 16 byte aligned, 1684 * however, the command ring segment needs 64-byte aligned segments, 1685 * so we pick the greater alignment need. 1686 */ 1687 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev, 1688 SEGMENT_SIZE, 64, xhci->page_size); 1689 1690 /* See Table 46 and Note on Figure 55 */ 1691 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev, 1692 2112, 64, xhci->page_size); 1693 if (!xhci->segment_pool || !xhci->device_pool) 1694 goto fail; 1695 1696 /* Linear stream context arrays don't have any boundary restrictions, 1697 * and only need to be 16-byte aligned. 1698 */ 1699 xhci->small_streams_pool = 1700 dma_pool_create("xHCI 256 byte stream ctx arrays", 1701 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0); 1702 xhci->medium_streams_pool = 1703 dma_pool_create("xHCI 1KB stream ctx arrays", 1704 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0); 1705 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE 1706 * will be allocated with pci_alloc_consistent() 1707 */ 1708 1709 if (!xhci->small_streams_pool || !xhci->medium_streams_pool) 1710 goto fail; 1711 1712 /* Set up the command ring to have one segments for now. */ 1713 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags); 1714 if (!xhci->cmd_ring) 1715 goto fail; 1716 xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring); 1717 xhci_dbg(xhci, "First segment DMA is 0x%llx\n", 1718 (unsigned long long)xhci->cmd_ring->first_seg->dma); 1719 1720 /* Set the address in the Command Ring Control register */ 1721 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1722 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 1723 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) | 1724 xhci->cmd_ring->cycle_state; 1725 xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val); 1726 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 1727 xhci_dbg_cmd_ptrs(xhci); 1728 1729 val = xhci_readl(xhci, &xhci->cap_regs->db_off); 1730 val &= DBOFF_MASK; 1731 xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x" 1732 " from cap regs base addr\n", val); 1733 xhci->dba = (void *) xhci->cap_regs + val; 1734 xhci_dbg_regs(xhci); 1735 xhci_print_run_regs(xhci); 1736 /* Set ir_set to interrupt register set 0 */ 1737 xhci->ir_set = (void *) xhci->run_regs->ir_set; 1738 1739 /* 1740 * Event ring setup: Allocate a normal ring, but also setup 1741 * the event ring segment table (ERST). Section 4.9.3. 1742 */ 1743 xhci_dbg(xhci, "// Allocating event ring\n"); 1744 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags); 1745 if (!xhci->event_ring) 1746 goto fail; 1747 if (xhci_check_trb_in_td_math(xhci, flags) < 0) 1748 goto fail; 1749 1750 xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev), 1751 sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma); 1752 if (!xhci->erst.entries) 1753 goto fail; 1754 xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n", 1755 (unsigned long long)dma); 1756 1757 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS); 1758 xhci->erst.num_entries = ERST_NUM_SEGS; 1759 xhci->erst.erst_dma_addr = dma; 1760 xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n", 1761 xhci->erst.num_entries, 1762 xhci->erst.entries, 1763 (unsigned long long)xhci->erst.erst_dma_addr); 1764 1765 /* set ring base address and size for each segment table entry */ 1766 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) { 1767 struct xhci_erst_entry *entry = &xhci->erst.entries[val]; 1768 entry->seg_addr = seg->dma; 1769 entry->seg_size = TRBS_PER_SEGMENT; 1770 entry->rsvd = 0; 1771 seg = seg->next; 1772 } 1773 1774 /* set ERST count with the number of entries in the segment table */ 1775 val = xhci_readl(xhci, &xhci->ir_set->erst_size); 1776 val &= ERST_SIZE_MASK; 1777 val |= ERST_NUM_SEGS; 1778 xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n", 1779 val); 1780 xhci_writel(xhci, val, &xhci->ir_set->erst_size); 1781 1782 xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n"); 1783 /* set the segment table base address */ 1784 xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n", 1785 (unsigned long long)xhci->erst.erst_dma_addr); 1786 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base); 1787 val_64 &= ERST_PTR_MASK; 1788 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK); 1789 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base); 1790 1791 /* Set the event ring dequeue address */ 1792 xhci_set_hc_event_deq(xhci); 1793 xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n"); 1794 xhci_print_ir_set(xhci, xhci->ir_set, 0); 1795 1796 /* 1797 * XXX: Might need to set the Interrupter Moderation Register to 1798 * something other than the default (~1ms minimum between interrupts). 1799 * See section 5.5.1.2. 1800 */ 1801 init_completion(&xhci->addr_dev); 1802 for (i = 0; i < MAX_HC_SLOTS; ++i) 1803 xhci->devs[i] = NULL; 1804 1805 if (scratchpad_alloc(xhci, flags)) 1806 goto fail; 1807 1808 return 0; 1809 1810 fail: 1811 xhci_warn(xhci, "Couldn't initialize memory\n"); 1812 xhci_mem_cleanup(xhci); 1813 return -ENOMEM; 1814 } 1815