xref: /linux/drivers/usb/host/xhci-mem.c (revision ca853314e78b0a65c20b6a889a23c31f918d4aa2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/usb.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/dmapool.h>
15 #include <linux/dma-mapping.h>
16 
17 #include "xhci.h"
18 #include "xhci-trace.h"
19 #include "xhci-debugfs.h"
20 
21 /*
22  * Allocates a generic ring segment from the ring pool, sets the dma address,
23  * initializes the segment to zero, and sets the private next pointer to NULL.
24  *
25  * Section 4.11.1.1:
26  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
27  */
28 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
29 					       unsigned int cycle_state,
30 					       unsigned int max_packet,
31 					       gfp_t flags)
32 {
33 	struct xhci_segment *seg;
34 	dma_addr_t	dma;
35 	int		i;
36 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
37 
38 	seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
39 	if (!seg)
40 		return NULL;
41 
42 	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
43 	if (!seg->trbs) {
44 		kfree(seg);
45 		return NULL;
46 	}
47 
48 	if (max_packet) {
49 		seg->bounce_buf = kzalloc_node(max_packet, flags,
50 					dev_to_node(dev));
51 		if (!seg->bounce_buf) {
52 			dma_pool_free(xhci->segment_pool, seg->trbs, dma);
53 			kfree(seg);
54 			return NULL;
55 		}
56 	}
57 	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
58 	if (cycle_state == 0) {
59 		for (i = 0; i < TRBS_PER_SEGMENT; i++)
60 			seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
61 	}
62 	seg->dma = dma;
63 	seg->next = NULL;
64 
65 	return seg;
66 }
67 
68 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
69 {
70 	if (seg->trbs) {
71 		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
72 		seg->trbs = NULL;
73 	}
74 	kfree(seg->bounce_buf);
75 	kfree(seg);
76 }
77 
78 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
79 				struct xhci_segment *first)
80 {
81 	struct xhci_segment *seg;
82 
83 	seg = first->next;
84 	while (seg != first) {
85 		struct xhci_segment *next = seg->next;
86 		xhci_segment_free(xhci, seg);
87 		seg = next;
88 	}
89 	xhci_segment_free(xhci, first);
90 }
91 
92 /*
93  * Make the prev segment point to the next segment.
94  *
95  * Change the last TRB in the prev segment to be a Link TRB which points to the
96  * DMA address of the next segment.  The caller needs to set any Link TRB
97  * related flags, such as End TRB, Toggle Cycle, and no snoop.
98  */
99 static void xhci_link_segments(struct xhci_segment *prev,
100 			       struct xhci_segment *next,
101 			       enum xhci_ring_type type, bool chain_links)
102 {
103 	u32 val;
104 
105 	if (!prev || !next)
106 		return;
107 	prev->next = next;
108 	if (type != TYPE_EVENT) {
109 		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
110 			cpu_to_le64(next->dma);
111 
112 		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
113 		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
114 		val &= ~TRB_TYPE_BITMASK;
115 		val |= TRB_TYPE(TRB_LINK);
116 		if (chain_links)
117 			val |= TRB_CHAIN;
118 		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
119 	}
120 }
121 
122 /*
123  * Link the ring to the new segments.
124  * Set Toggle Cycle for the new ring if needed.
125  */
126 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
127 		struct xhci_segment *first, struct xhci_segment *last,
128 		unsigned int num_segs)
129 {
130 	struct xhci_segment *next;
131 	bool chain_links;
132 
133 	if (!ring || !first || !last)
134 		return;
135 
136 	/* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
137 	chain_links = !!(xhci_link_trb_quirk(xhci) ||
138 			 (ring->type == TYPE_ISOC &&
139 			  (xhci->quirks & XHCI_AMD_0x96_HOST)));
140 
141 	next = ring->enq_seg->next;
142 	xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
143 	xhci_link_segments(last, next, ring->type, chain_links);
144 	ring->num_segs += num_segs;
145 	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
146 
147 	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
148 		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
149 			&= ~cpu_to_le32(LINK_TOGGLE);
150 		last->trbs[TRBS_PER_SEGMENT-1].link.control
151 			|= cpu_to_le32(LINK_TOGGLE);
152 		ring->last_seg = last;
153 	}
154 }
155 
156 /*
157  * We need a radix tree for mapping physical addresses of TRBs to which stream
158  * ID they belong to.  We need to do this because the host controller won't tell
159  * us which stream ring the TRB came from.  We could store the stream ID in an
160  * event data TRB, but that doesn't help us for the cancellation case, since the
161  * endpoint may stop before it reaches that event data TRB.
162  *
163  * The radix tree maps the upper portion of the TRB DMA address to a ring
164  * segment that has the same upper portion of DMA addresses.  For example, say I
165  * have segments of size 1KB, that are always 1KB aligned.  A segment may
166  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
167  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
168  * pass the radix tree a key to get the right stream ID:
169  *
170  *	0x10c90fff >> 10 = 0x43243
171  *	0x10c912c0 >> 10 = 0x43244
172  *	0x10c91400 >> 10 = 0x43245
173  *
174  * Obviously, only those TRBs with DMA addresses that are within the segment
175  * will make the radix tree return the stream ID for that ring.
176  *
177  * Caveats for the radix tree:
178  *
179  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
180  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
181  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
182  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
183  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
184  * extended systems (where the DMA address can be bigger than 32-bits),
185  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
186  */
187 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
188 		struct xhci_ring *ring,
189 		struct xhci_segment *seg,
190 		gfp_t mem_flags)
191 {
192 	unsigned long key;
193 	int ret;
194 
195 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
196 	/* Skip any segments that were already added. */
197 	if (radix_tree_lookup(trb_address_map, key))
198 		return 0;
199 
200 	ret = radix_tree_maybe_preload(mem_flags);
201 	if (ret)
202 		return ret;
203 	ret = radix_tree_insert(trb_address_map,
204 			key, ring);
205 	radix_tree_preload_end();
206 	return ret;
207 }
208 
209 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
210 		struct xhci_segment *seg)
211 {
212 	unsigned long key;
213 
214 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
215 	if (radix_tree_lookup(trb_address_map, key))
216 		radix_tree_delete(trb_address_map, key);
217 }
218 
219 static int xhci_update_stream_segment_mapping(
220 		struct radix_tree_root *trb_address_map,
221 		struct xhci_ring *ring,
222 		struct xhci_segment *first_seg,
223 		struct xhci_segment *last_seg,
224 		gfp_t mem_flags)
225 {
226 	struct xhci_segment *seg;
227 	struct xhci_segment *failed_seg;
228 	int ret;
229 
230 	if (WARN_ON_ONCE(trb_address_map == NULL))
231 		return 0;
232 
233 	seg = first_seg;
234 	do {
235 		ret = xhci_insert_segment_mapping(trb_address_map,
236 				ring, seg, mem_flags);
237 		if (ret)
238 			goto remove_streams;
239 		if (seg == last_seg)
240 			return 0;
241 		seg = seg->next;
242 	} while (seg != first_seg);
243 
244 	return 0;
245 
246 remove_streams:
247 	failed_seg = seg;
248 	seg = first_seg;
249 	do {
250 		xhci_remove_segment_mapping(trb_address_map, seg);
251 		if (seg == failed_seg)
252 			return ret;
253 		seg = seg->next;
254 	} while (seg != first_seg);
255 
256 	return ret;
257 }
258 
259 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
260 {
261 	struct xhci_segment *seg;
262 
263 	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
264 		return;
265 
266 	seg = ring->first_seg;
267 	do {
268 		xhci_remove_segment_mapping(ring->trb_address_map, seg);
269 		seg = seg->next;
270 	} while (seg != ring->first_seg);
271 }
272 
273 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
274 {
275 	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
276 			ring->first_seg, ring->last_seg, mem_flags);
277 }
278 
279 /* XXX: Do we need the hcd structure in all these functions? */
280 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
281 {
282 	if (!ring)
283 		return;
284 
285 	trace_xhci_ring_free(ring);
286 
287 	if (ring->first_seg) {
288 		if (ring->type == TYPE_STREAM)
289 			xhci_remove_stream_mapping(ring);
290 		xhci_free_segments_for_ring(xhci, ring->first_seg);
291 	}
292 
293 	kfree(ring);
294 }
295 
296 void xhci_initialize_ring_info(struct xhci_ring *ring,
297 			       unsigned int cycle_state)
298 {
299 	/* The ring is empty, so the enqueue pointer == dequeue pointer */
300 	ring->enqueue = ring->first_seg->trbs;
301 	ring->enq_seg = ring->first_seg;
302 	ring->dequeue = ring->enqueue;
303 	ring->deq_seg = ring->first_seg;
304 	/* The ring is initialized to 0. The producer must write 1 to the cycle
305 	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
306 	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
307 	 *
308 	 * New rings are initialized with cycle state equal to 1; if we are
309 	 * handling ring expansion, set the cycle state equal to the old ring.
310 	 */
311 	ring->cycle_state = cycle_state;
312 
313 	/*
314 	 * Each segment has a link TRB, and leave an extra TRB for SW
315 	 * accounting purpose
316 	 */
317 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
318 }
319 
320 /* Allocate segments and link them for a ring */
321 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
322 		struct xhci_segment **first, struct xhci_segment **last,
323 		unsigned int num_segs, unsigned int cycle_state,
324 		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
325 {
326 	struct xhci_segment *prev;
327 	bool chain_links;
328 
329 	/* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
330 	chain_links = !!(xhci_link_trb_quirk(xhci) ||
331 			 (type == TYPE_ISOC &&
332 			  (xhci->quirks & XHCI_AMD_0x96_HOST)));
333 
334 	prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
335 	if (!prev)
336 		return -ENOMEM;
337 	num_segs--;
338 
339 	*first = prev;
340 	while (num_segs > 0) {
341 		struct xhci_segment	*next;
342 
343 		next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
344 		if (!next) {
345 			prev = *first;
346 			while (prev) {
347 				next = prev->next;
348 				xhci_segment_free(xhci, prev);
349 				prev = next;
350 			}
351 			return -ENOMEM;
352 		}
353 		xhci_link_segments(prev, next, type, chain_links);
354 
355 		prev = next;
356 		num_segs--;
357 	}
358 	xhci_link_segments(prev, *first, type, chain_links);
359 	*last = prev;
360 
361 	return 0;
362 }
363 
364 /*
365  * Create a new ring with zero or more segments.
366  *
367  * Link each segment together into a ring.
368  * Set the end flag and the cycle toggle bit on the last segment.
369  * See section 4.9.1 and figures 15 and 16.
370  */
371 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
372 		unsigned int num_segs, unsigned int cycle_state,
373 		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
374 {
375 	struct xhci_ring	*ring;
376 	int ret;
377 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
378 
379 	ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
380 	if (!ring)
381 		return NULL;
382 
383 	ring->num_segs = num_segs;
384 	ring->bounce_buf_len = max_packet;
385 	INIT_LIST_HEAD(&ring->td_list);
386 	ring->type = type;
387 	if (num_segs == 0)
388 		return ring;
389 
390 	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
391 			&ring->last_seg, num_segs, cycle_state, type,
392 			max_packet, flags);
393 	if (ret)
394 		goto fail;
395 
396 	/* Only event ring does not use link TRB */
397 	if (type != TYPE_EVENT) {
398 		/* See section 4.9.2.1 and 6.4.4.1 */
399 		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
400 			cpu_to_le32(LINK_TOGGLE);
401 	}
402 	xhci_initialize_ring_info(ring, cycle_state);
403 	trace_xhci_ring_alloc(ring);
404 	return ring;
405 
406 fail:
407 	kfree(ring);
408 	return NULL;
409 }
410 
411 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
412 		struct xhci_virt_device *virt_dev,
413 		unsigned int ep_index)
414 {
415 	xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
416 	virt_dev->eps[ep_index].ring = NULL;
417 }
418 
419 /*
420  * Expand an existing ring.
421  * Allocate a new ring which has same segment numbers and link the two rings.
422  */
423 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
424 				unsigned int num_trbs, gfp_t flags)
425 {
426 	struct xhci_segment	*first;
427 	struct xhci_segment	*last;
428 	unsigned int		num_segs;
429 	unsigned int		num_segs_needed;
430 	int			ret;
431 
432 	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
433 				(TRBS_PER_SEGMENT - 1);
434 
435 	/* Allocate number of segments we needed, or double the ring size */
436 	num_segs = ring->num_segs > num_segs_needed ?
437 			ring->num_segs : num_segs_needed;
438 
439 	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
440 			num_segs, ring->cycle_state, ring->type,
441 			ring->bounce_buf_len, flags);
442 	if (ret)
443 		return -ENOMEM;
444 
445 	if (ring->type == TYPE_STREAM)
446 		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
447 						ring, first, last, flags);
448 	if (ret) {
449 		struct xhci_segment *next;
450 		do {
451 			next = first->next;
452 			xhci_segment_free(xhci, first);
453 			if (first == last)
454 				break;
455 			first = next;
456 		} while (true);
457 		return ret;
458 	}
459 
460 	xhci_link_rings(xhci, ring, first, last, num_segs);
461 	trace_xhci_ring_expansion(ring);
462 	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
463 			"ring expansion succeed, now has %d segments",
464 			ring->num_segs);
465 
466 	return 0;
467 }
468 
469 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
470 						    int type, gfp_t flags)
471 {
472 	struct xhci_container_ctx *ctx;
473 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
474 
475 	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
476 		return NULL;
477 
478 	ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
479 	if (!ctx)
480 		return NULL;
481 
482 	ctx->type = type;
483 	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
484 	if (type == XHCI_CTX_TYPE_INPUT)
485 		ctx->size += CTX_SIZE(xhci->hcc_params);
486 
487 	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
488 	if (!ctx->bytes) {
489 		kfree(ctx);
490 		return NULL;
491 	}
492 	return ctx;
493 }
494 
495 void xhci_free_container_ctx(struct xhci_hcd *xhci,
496 			     struct xhci_container_ctx *ctx)
497 {
498 	if (!ctx)
499 		return;
500 	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
501 	kfree(ctx);
502 }
503 
504 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
505 					      struct xhci_container_ctx *ctx)
506 {
507 	if (ctx->type != XHCI_CTX_TYPE_INPUT)
508 		return NULL;
509 
510 	return (struct xhci_input_control_ctx *)ctx->bytes;
511 }
512 
513 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
514 					struct xhci_container_ctx *ctx)
515 {
516 	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
517 		return (struct xhci_slot_ctx *)ctx->bytes;
518 
519 	return (struct xhci_slot_ctx *)
520 		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
521 }
522 
523 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
524 				    struct xhci_container_ctx *ctx,
525 				    unsigned int ep_index)
526 {
527 	/* increment ep index by offset of start of ep ctx array */
528 	ep_index++;
529 	if (ctx->type == XHCI_CTX_TYPE_INPUT)
530 		ep_index++;
531 
532 	return (struct xhci_ep_ctx *)
533 		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
534 }
535 
536 
537 /***************** Streams structures manipulation *************************/
538 
539 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
540 		unsigned int num_stream_ctxs,
541 		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
542 {
543 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
544 	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
545 
546 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
547 		dma_free_coherent(dev, size,
548 				stream_ctx, dma);
549 	else if (size <= SMALL_STREAM_ARRAY_SIZE)
550 		return dma_pool_free(xhci->small_streams_pool,
551 				stream_ctx, dma);
552 	else
553 		return dma_pool_free(xhci->medium_streams_pool,
554 				stream_ctx, dma);
555 }
556 
557 /*
558  * The stream context array for each endpoint with bulk streams enabled can
559  * vary in size, based on:
560  *  - how many streams the endpoint supports,
561  *  - the maximum primary stream array size the host controller supports,
562  *  - and how many streams the device driver asks for.
563  *
564  * The stream context array must be a power of 2, and can be as small as
565  * 64 bytes or as large as 1MB.
566  */
567 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
568 		unsigned int num_stream_ctxs, dma_addr_t *dma,
569 		gfp_t mem_flags)
570 {
571 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
572 	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
573 
574 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
575 		return dma_alloc_coherent(dev, size,
576 				dma, mem_flags);
577 	else if (size <= SMALL_STREAM_ARRAY_SIZE)
578 		return dma_pool_alloc(xhci->small_streams_pool,
579 				mem_flags, dma);
580 	else
581 		return dma_pool_alloc(xhci->medium_streams_pool,
582 				mem_flags, dma);
583 }
584 
585 struct xhci_ring *xhci_dma_to_transfer_ring(
586 		struct xhci_virt_ep *ep,
587 		u64 address)
588 {
589 	if (ep->ep_state & EP_HAS_STREAMS)
590 		return radix_tree_lookup(&ep->stream_info->trb_address_map,
591 				address >> TRB_SEGMENT_SHIFT);
592 	return ep->ring;
593 }
594 
595 struct xhci_ring *xhci_stream_id_to_ring(
596 		struct xhci_virt_device *dev,
597 		unsigned int ep_index,
598 		unsigned int stream_id)
599 {
600 	struct xhci_virt_ep *ep = &dev->eps[ep_index];
601 
602 	if (stream_id == 0)
603 		return ep->ring;
604 	if (!ep->stream_info)
605 		return NULL;
606 
607 	if (stream_id >= ep->stream_info->num_streams)
608 		return NULL;
609 	return ep->stream_info->stream_rings[stream_id];
610 }
611 
612 /*
613  * Change an endpoint's internal structure so it supports stream IDs.  The
614  * number of requested streams includes stream 0, which cannot be used by device
615  * drivers.
616  *
617  * The number of stream contexts in the stream context array may be bigger than
618  * the number of streams the driver wants to use.  This is because the number of
619  * stream context array entries must be a power of two.
620  */
621 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
622 		unsigned int num_stream_ctxs,
623 		unsigned int num_streams,
624 		unsigned int max_packet, gfp_t mem_flags)
625 {
626 	struct xhci_stream_info *stream_info;
627 	u32 cur_stream;
628 	struct xhci_ring *cur_ring;
629 	u64 addr;
630 	int ret;
631 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
632 
633 	xhci_dbg(xhci, "Allocating %u streams and %u "
634 			"stream context array entries.\n",
635 			num_streams, num_stream_ctxs);
636 	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
637 		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
638 		return NULL;
639 	}
640 	xhci->cmd_ring_reserved_trbs++;
641 
642 	stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
643 			dev_to_node(dev));
644 	if (!stream_info)
645 		goto cleanup_trbs;
646 
647 	stream_info->num_streams = num_streams;
648 	stream_info->num_stream_ctxs = num_stream_ctxs;
649 
650 	/* Initialize the array of virtual pointers to stream rings. */
651 	stream_info->stream_rings = kcalloc_node(
652 			num_streams, sizeof(struct xhci_ring *), mem_flags,
653 			dev_to_node(dev));
654 	if (!stream_info->stream_rings)
655 		goto cleanup_info;
656 
657 	/* Initialize the array of DMA addresses for stream rings for the HW. */
658 	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
659 			num_stream_ctxs, &stream_info->ctx_array_dma,
660 			mem_flags);
661 	if (!stream_info->stream_ctx_array)
662 		goto cleanup_ctx;
663 	memset(stream_info->stream_ctx_array, 0,
664 			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
665 
666 	/* Allocate everything needed to free the stream rings later */
667 	stream_info->free_streams_command =
668 		xhci_alloc_command_with_ctx(xhci, true, mem_flags);
669 	if (!stream_info->free_streams_command)
670 		goto cleanup_ctx;
671 
672 	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
673 
674 	/* Allocate rings for all the streams that the driver will use,
675 	 * and add their segment DMA addresses to the radix tree.
676 	 * Stream 0 is reserved.
677 	 */
678 
679 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
680 		stream_info->stream_rings[cur_stream] =
681 			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
682 					mem_flags);
683 		cur_ring = stream_info->stream_rings[cur_stream];
684 		if (!cur_ring)
685 			goto cleanup_rings;
686 		cur_ring->stream_id = cur_stream;
687 		cur_ring->trb_address_map = &stream_info->trb_address_map;
688 		/* Set deq ptr, cycle bit, and stream context type */
689 		addr = cur_ring->first_seg->dma |
690 			SCT_FOR_CTX(SCT_PRI_TR) |
691 			cur_ring->cycle_state;
692 		stream_info->stream_ctx_array[cur_stream].stream_ring =
693 			cpu_to_le64(addr);
694 		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
695 				cur_stream, (unsigned long long) addr);
696 
697 		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
698 		if (ret) {
699 			xhci_ring_free(xhci, cur_ring);
700 			stream_info->stream_rings[cur_stream] = NULL;
701 			goto cleanup_rings;
702 		}
703 	}
704 	/* Leave the other unused stream ring pointers in the stream context
705 	 * array initialized to zero.  This will cause the xHC to give us an
706 	 * error if the device asks for a stream ID we don't have setup (if it
707 	 * was any other way, the host controller would assume the ring is
708 	 * "empty" and wait forever for data to be queued to that stream ID).
709 	 */
710 
711 	return stream_info;
712 
713 cleanup_rings:
714 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
715 		cur_ring = stream_info->stream_rings[cur_stream];
716 		if (cur_ring) {
717 			xhci_ring_free(xhci, cur_ring);
718 			stream_info->stream_rings[cur_stream] = NULL;
719 		}
720 	}
721 	xhci_free_command(xhci, stream_info->free_streams_command);
722 cleanup_ctx:
723 	kfree(stream_info->stream_rings);
724 cleanup_info:
725 	kfree(stream_info);
726 cleanup_trbs:
727 	xhci->cmd_ring_reserved_trbs--;
728 	return NULL;
729 }
730 /*
731  * Sets the MaxPStreams field and the Linear Stream Array field.
732  * Sets the dequeue pointer to the stream context array.
733  */
734 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
735 		struct xhci_ep_ctx *ep_ctx,
736 		struct xhci_stream_info *stream_info)
737 {
738 	u32 max_primary_streams;
739 	/* MaxPStreams is the number of stream context array entries, not the
740 	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
741 	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
742 	 */
743 	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
744 	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
745 			"Setting number of stream ctx array entries to %u",
746 			1 << (max_primary_streams + 1));
747 	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
748 	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
749 				       | EP_HAS_LSA);
750 	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
751 }
752 
753 /*
754  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
755  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
756  * not at the beginning of the ring).
757  */
758 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
759 		struct xhci_virt_ep *ep)
760 {
761 	dma_addr_t addr;
762 	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
763 	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
764 	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
765 }
766 
767 /* Frees all stream contexts associated with the endpoint,
768  *
769  * Caller should fix the endpoint context streams fields.
770  */
771 void xhci_free_stream_info(struct xhci_hcd *xhci,
772 		struct xhci_stream_info *stream_info)
773 {
774 	int cur_stream;
775 	struct xhci_ring *cur_ring;
776 
777 	if (!stream_info)
778 		return;
779 
780 	for (cur_stream = 1; cur_stream < stream_info->num_streams;
781 			cur_stream++) {
782 		cur_ring = stream_info->stream_rings[cur_stream];
783 		if (cur_ring) {
784 			xhci_ring_free(xhci, cur_ring);
785 			stream_info->stream_rings[cur_stream] = NULL;
786 		}
787 	}
788 	xhci_free_command(xhci, stream_info->free_streams_command);
789 	xhci->cmd_ring_reserved_trbs--;
790 	if (stream_info->stream_ctx_array)
791 		xhci_free_stream_ctx(xhci,
792 				stream_info->num_stream_ctxs,
793 				stream_info->stream_ctx_array,
794 				stream_info->ctx_array_dma);
795 
796 	kfree(stream_info->stream_rings);
797 	kfree(stream_info);
798 }
799 
800 
801 /***************** Device context manipulation *************************/
802 
803 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
804 		struct xhci_virt_ep *ep)
805 {
806 	timer_setup(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
807 		    0);
808 	ep->xhci = xhci;
809 }
810 
811 static void xhci_free_tt_info(struct xhci_hcd *xhci,
812 		struct xhci_virt_device *virt_dev,
813 		int slot_id)
814 {
815 	struct list_head *tt_list_head;
816 	struct xhci_tt_bw_info *tt_info, *next;
817 	bool slot_found = false;
818 
819 	/* If the device never made it past the Set Address stage,
820 	 * it may not have the real_port set correctly.
821 	 */
822 	if (virt_dev->real_port == 0 ||
823 			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
824 		xhci_dbg(xhci, "Bad real port.\n");
825 		return;
826 	}
827 
828 	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
829 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
830 		/* Multi-TT hubs will have more than one entry */
831 		if (tt_info->slot_id == slot_id) {
832 			slot_found = true;
833 			list_del(&tt_info->tt_list);
834 			kfree(tt_info);
835 		} else if (slot_found) {
836 			break;
837 		}
838 	}
839 }
840 
841 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
842 		struct xhci_virt_device *virt_dev,
843 		struct usb_device *hdev,
844 		struct usb_tt *tt, gfp_t mem_flags)
845 {
846 	struct xhci_tt_bw_info		*tt_info;
847 	unsigned int			num_ports;
848 	int				i, j;
849 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
850 
851 	if (!tt->multi)
852 		num_ports = 1;
853 	else
854 		num_ports = hdev->maxchild;
855 
856 	for (i = 0; i < num_ports; i++, tt_info++) {
857 		struct xhci_interval_bw_table *bw_table;
858 
859 		tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
860 				dev_to_node(dev));
861 		if (!tt_info)
862 			goto free_tts;
863 		INIT_LIST_HEAD(&tt_info->tt_list);
864 		list_add(&tt_info->tt_list,
865 				&xhci->rh_bw[virt_dev->real_port - 1].tts);
866 		tt_info->slot_id = virt_dev->udev->slot_id;
867 		if (tt->multi)
868 			tt_info->ttport = i+1;
869 		bw_table = &tt_info->bw_table;
870 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
871 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
872 	}
873 	return 0;
874 
875 free_tts:
876 	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
877 	return -ENOMEM;
878 }
879 
880 
881 /* All the xhci_tds in the ring's TD list should be freed at this point.
882  * Should be called with xhci->lock held if there is any chance the TT lists
883  * will be manipulated by the configure endpoint, allocate device, or update
884  * hub functions while this function is removing the TT entries from the list.
885  */
886 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
887 {
888 	struct xhci_virt_device *dev;
889 	int i;
890 	int old_active_eps = 0;
891 
892 	/* Slot ID 0 is reserved */
893 	if (slot_id == 0 || !xhci->devs[slot_id])
894 		return;
895 
896 	dev = xhci->devs[slot_id];
897 
898 	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
899 	if (!dev)
900 		return;
901 
902 	trace_xhci_free_virt_device(dev);
903 
904 	if (dev->tt_info)
905 		old_active_eps = dev->tt_info->active_eps;
906 
907 	for (i = 0; i < 31; i++) {
908 		if (dev->eps[i].ring)
909 			xhci_ring_free(xhci, dev->eps[i].ring);
910 		if (dev->eps[i].stream_info)
911 			xhci_free_stream_info(xhci,
912 					dev->eps[i].stream_info);
913 		/* Endpoints on the TT/root port lists should have been removed
914 		 * when usb_disable_device() was called for the device.
915 		 * We can't drop them anyway, because the udev might have gone
916 		 * away by this point, and we can't tell what speed it was.
917 		 */
918 		if (!list_empty(&dev->eps[i].bw_endpoint_list))
919 			xhci_warn(xhci, "Slot %u endpoint %u "
920 					"not removed from BW list!\n",
921 					slot_id, i);
922 	}
923 	/* If this is a hub, free the TT(s) from the TT list */
924 	xhci_free_tt_info(xhci, dev, slot_id);
925 	/* If necessary, update the number of active TTs on this root port */
926 	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
927 
928 	if (dev->in_ctx)
929 		xhci_free_container_ctx(xhci, dev->in_ctx);
930 	if (dev->out_ctx)
931 		xhci_free_container_ctx(xhci, dev->out_ctx);
932 
933 	if (dev->udev && dev->udev->slot_id)
934 		dev->udev->slot_id = 0;
935 	kfree(xhci->devs[slot_id]);
936 	xhci->devs[slot_id] = NULL;
937 }
938 
939 /*
940  * Free a virt_device structure.
941  * If the virt_device added a tt_info (a hub) and has children pointing to
942  * that tt_info, then free the child first. Recursive.
943  * We can't rely on udev at this point to find child-parent relationships.
944  */
945 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
946 {
947 	struct xhci_virt_device *vdev;
948 	struct list_head *tt_list_head;
949 	struct xhci_tt_bw_info *tt_info, *next;
950 	int i;
951 
952 	vdev = xhci->devs[slot_id];
953 	if (!vdev)
954 		return;
955 
956 	if (vdev->real_port == 0 ||
957 			vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
958 		xhci_dbg(xhci, "Bad vdev->real_port.\n");
959 		goto out;
960 	}
961 
962 	tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
963 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
964 		/* is this a hub device that added a tt_info to the tts list */
965 		if (tt_info->slot_id == slot_id) {
966 			/* are any devices using this tt_info? */
967 			for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
968 				vdev = xhci->devs[i];
969 				if (vdev && (vdev->tt_info == tt_info))
970 					xhci_free_virt_devices_depth_first(
971 						xhci, i);
972 			}
973 		}
974 	}
975 out:
976 	/* we are now at a leaf device */
977 	xhci_debugfs_remove_slot(xhci, slot_id);
978 	xhci_free_virt_device(xhci, slot_id);
979 }
980 
981 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
982 		struct usb_device *udev, gfp_t flags)
983 {
984 	struct xhci_virt_device *dev;
985 	int i;
986 
987 	/* Slot ID 0 is reserved */
988 	if (slot_id == 0 || xhci->devs[slot_id]) {
989 		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
990 		return 0;
991 	}
992 
993 	dev = kzalloc(sizeof(*dev), flags);
994 	if (!dev)
995 		return 0;
996 
997 	/* Allocate the (output) device context that will be used in the HC. */
998 	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
999 	if (!dev->out_ctx)
1000 		goto fail;
1001 
1002 	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
1003 			(unsigned long long)dev->out_ctx->dma);
1004 
1005 	/* Allocate the (input) device context for address device command */
1006 	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
1007 	if (!dev->in_ctx)
1008 		goto fail;
1009 
1010 	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1011 			(unsigned long long)dev->in_ctx->dma);
1012 
1013 	/* Initialize the cancellation list and watchdog timers for each ep */
1014 	for (i = 0; i < 31; i++) {
1015 		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1016 		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1017 		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1018 	}
1019 
1020 	/* Allocate endpoint 0 ring */
1021 	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1022 	if (!dev->eps[0].ring)
1023 		goto fail;
1024 
1025 	dev->udev = udev;
1026 
1027 	/* Point to output device context in dcbaa. */
1028 	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1029 	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1030 		 slot_id,
1031 		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1032 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1033 
1034 	trace_xhci_alloc_virt_device(dev);
1035 
1036 	xhci->devs[slot_id] = dev;
1037 
1038 	return 1;
1039 fail:
1040 
1041 	if (dev->in_ctx)
1042 		xhci_free_container_ctx(xhci, dev->in_ctx);
1043 	if (dev->out_ctx)
1044 		xhci_free_container_ctx(xhci, dev->out_ctx);
1045 	kfree(dev);
1046 
1047 	return 0;
1048 }
1049 
1050 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1051 		struct usb_device *udev)
1052 {
1053 	struct xhci_virt_device *virt_dev;
1054 	struct xhci_ep_ctx	*ep0_ctx;
1055 	struct xhci_ring	*ep_ring;
1056 
1057 	virt_dev = xhci->devs[udev->slot_id];
1058 	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1059 	ep_ring = virt_dev->eps[0].ring;
1060 	/*
1061 	 * FIXME we don't keep track of the dequeue pointer very well after a
1062 	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1063 	 * host to our enqueue pointer.  This should only be called after a
1064 	 * configured device has reset, so all control transfers should have
1065 	 * been completed or cancelled before the reset.
1066 	 */
1067 	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1068 							ep_ring->enqueue)
1069 				   | ep_ring->cycle_state);
1070 }
1071 
1072 /*
1073  * The xHCI roothub may have ports of differing speeds in any order in the port
1074  * status registers.
1075  *
1076  * The xHCI hardware wants to know the roothub port number that the USB device
1077  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1078  * know is the index of that port under either the USB 2.0 or the USB 3.0
1079  * roothub, but that doesn't give us the real index into the HW port status
1080  * registers. Call xhci_find_raw_port_number() to get real index.
1081  */
1082 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1083 		struct usb_device *udev)
1084 {
1085 	struct usb_device *top_dev;
1086 	struct usb_hcd *hcd;
1087 
1088 	if (udev->speed >= USB_SPEED_SUPER)
1089 		hcd = xhci->shared_hcd;
1090 	else
1091 		hcd = xhci->main_hcd;
1092 
1093 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1094 			top_dev = top_dev->parent)
1095 		/* Found device below root hub */;
1096 
1097 	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
1098 }
1099 
1100 /* Setup an xHCI virtual device for a Set Address command */
1101 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1102 {
1103 	struct xhci_virt_device *dev;
1104 	struct xhci_ep_ctx	*ep0_ctx;
1105 	struct xhci_slot_ctx    *slot_ctx;
1106 	u32			port_num;
1107 	u32			max_packets;
1108 	struct usb_device *top_dev;
1109 
1110 	dev = xhci->devs[udev->slot_id];
1111 	/* Slot ID 0 is reserved */
1112 	if (udev->slot_id == 0 || !dev) {
1113 		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1114 				udev->slot_id);
1115 		return -EINVAL;
1116 	}
1117 	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1118 	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1119 
1120 	/* 3) Only the control endpoint is valid - one endpoint context */
1121 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1122 	switch (udev->speed) {
1123 	case USB_SPEED_SUPER_PLUS:
1124 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1125 		max_packets = MAX_PACKET(512);
1126 		break;
1127 	case USB_SPEED_SUPER:
1128 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1129 		max_packets = MAX_PACKET(512);
1130 		break;
1131 	case USB_SPEED_HIGH:
1132 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1133 		max_packets = MAX_PACKET(64);
1134 		break;
1135 	/* USB core guesses at a 64-byte max packet first for FS devices */
1136 	case USB_SPEED_FULL:
1137 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1138 		max_packets = MAX_PACKET(64);
1139 		break;
1140 	case USB_SPEED_LOW:
1141 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1142 		max_packets = MAX_PACKET(8);
1143 		break;
1144 	case USB_SPEED_WIRELESS:
1145 		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1146 		return -EINVAL;
1147 	default:
1148 		/* Speed was set earlier, this shouldn't happen. */
1149 		return -EINVAL;
1150 	}
1151 	/* Find the root hub port this device is under */
1152 	port_num = xhci_find_real_port_number(xhci, udev);
1153 	if (!port_num)
1154 		return -EINVAL;
1155 	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1156 	/* Set the port number in the virtual_device to the faked port number */
1157 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1158 			top_dev = top_dev->parent)
1159 		/* Found device below root hub */;
1160 	dev->fake_port = top_dev->portnum;
1161 	dev->real_port = port_num;
1162 	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1163 	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1164 
1165 	/* Find the right bandwidth table that this device will be a part of.
1166 	 * If this is a full speed device attached directly to a root port (or a
1167 	 * decendent of one), it counts as a primary bandwidth domain, not a
1168 	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1169 	 * will never be created for the HS root hub.
1170 	 */
1171 	if (!udev->tt || !udev->tt->hub->parent) {
1172 		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1173 	} else {
1174 		struct xhci_root_port_bw_info *rh_bw;
1175 		struct xhci_tt_bw_info *tt_bw;
1176 
1177 		rh_bw = &xhci->rh_bw[port_num - 1];
1178 		/* Find the right TT. */
1179 		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1180 			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1181 				continue;
1182 
1183 			if (!dev->udev->tt->multi ||
1184 					(udev->tt->multi &&
1185 					 tt_bw->ttport == dev->udev->ttport)) {
1186 				dev->bw_table = &tt_bw->bw_table;
1187 				dev->tt_info = tt_bw;
1188 				break;
1189 			}
1190 		}
1191 		if (!dev->tt_info)
1192 			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1193 	}
1194 
1195 	/* Is this a LS/FS device under an external HS hub? */
1196 	if (udev->tt && udev->tt->hub->parent) {
1197 		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1198 						(udev->ttport << 8));
1199 		if (udev->tt->multi)
1200 			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1201 	}
1202 	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1203 	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1204 
1205 	/* Step 4 - ring already allocated */
1206 	/* Step 5 */
1207 	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1208 
1209 	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1210 	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1211 					 max_packets);
1212 
1213 	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1214 				   dev->eps[0].ring->cycle_state);
1215 
1216 	trace_xhci_setup_addressable_virt_device(dev);
1217 
1218 	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1219 
1220 	return 0;
1221 }
1222 
1223 /*
1224  * Convert interval expressed as 2^(bInterval - 1) == interval into
1225  * straight exponent value 2^n == interval.
1226  *
1227  */
1228 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1229 		struct usb_host_endpoint *ep)
1230 {
1231 	unsigned int interval;
1232 
1233 	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1234 	if (interval != ep->desc.bInterval - 1)
1235 		dev_warn(&udev->dev,
1236 			 "ep %#x - rounding interval to %d %sframes\n",
1237 			 ep->desc.bEndpointAddress,
1238 			 1 << interval,
1239 			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1240 
1241 	if (udev->speed == USB_SPEED_FULL) {
1242 		/*
1243 		 * Full speed isoc endpoints specify interval in frames,
1244 		 * not microframes. We are using microframes everywhere,
1245 		 * so adjust accordingly.
1246 		 */
1247 		interval += 3;	/* 1 frame = 2^3 uframes */
1248 	}
1249 
1250 	return interval;
1251 }
1252 
1253 /*
1254  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1255  * microframes, rounded down to nearest power of 2.
1256  */
1257 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1258 		struct usb_host_endpoint *ep, unsigned int desc_interval,
1259 		unsigned int min_exponent, unsigned int max_exponent)
1260 {
1261 	unsigned int interval;
1262 
1263 	interval = fls(desc_interval) - 1;
1264 	interval = clamp_val(interval, min_exponent, max_exponent);
1265 	if ((1 << interval) != desc_interval)
1266 		dev_dbg(&udev->dev,
1267 			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1268 			 ep->desc.bEndpointAddress,
1269 			 1 << interval,
1270 			 desc_interval);
1271 
1272 	return interval;
1273 }
1274 
1275 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1276 		struct usb_host_endpoint *ep)
1277 {
1278 	if (ep->desc.bInterval == 0)
1279 		return 0;
1280 	return xhci_microframes_to_exponent(udev, ep,
1281 			ep->desc.bInterval, 0, 15);
1282 }
1283 
1284 
1285 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1286 		struct usb_host_endpoint *ep)
1287 {
1288 	return xhci_microframes_to_exponent(udev, ep,
1289 			ep->desc.bInterval * 8, 3, 10);
1290 }
1291 
1292 /* Return the polling or NAK interval.
1293  *
1294  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1295  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1296  *
1297  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1298  * is set to 0.
1299  */
1300 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1301 		struct usb_host_endpoint *ep)
1302 {
1303 	unsigned int interval = 0;
1304 
1305 	switch (udev->speed) {
1306 	case USB_SPEED_HIGH:
1307 		/* Max NAK rate */
1308 		if (usb_endpoint_xfer_control(&ep->desc) ||
1309 		    usb_endpoint_xfer_bulk(&ep->desc)) {
1310 			interval = xhci_parse_microframe_interval(udev, ep);
1311 			break;
1312 		}
1313 		fallthrough;	/* SS and HS isoc/int have same decoding */
1314 
1315 	case USB_SPEED_SUPER_PLUS:
1316 	case USB_SPEED_SUPER:
1317 		if (usb_endpoint_xfer_int(&ep->desc) ||
1318 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1319 			interval = xhci_parse_exponent_interval(udev, ep);
1320 		}
1321 		break;
1322 
1323 	case USB_SPEED_FULL:
1324 		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1325 			interval = xhci_parse_exponent_interval(udev, ep);
1326 			break;
1327 		}
1328 		/*
1329 		 * Fall through for interrupt endpoint interval decoding
1330 		 * since it uses the same rules as low speed interrupt
1331 		 * endpoints.
1332 		 */
1333 		fallthrough;
1334 
1335 	case USB_SPEED_LOW:
1336 		if (usb_endpoint_xfer_int(&ep->desc) ||
1337 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1338 
1339 			interval = xhci_parse_frame_interval(udev, ep);
1340 		}
1341 		break;
1342 
1343 	default:
1344 		BUG();
1345 	}
1346 	return interval;
1347 }
1348 
1349 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1350  * High speed endpoint descriptors can define "the number of additional
1351  * transaction opportunities per microframe", but that goes in the Max Burst
1352  * endpoint context field.
1353  */
1354 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1355 		struct usb_host_endpoint *ep)
1356 {
1357 	if (udev->speed < USB_SPEED_SUPER ||
1358 			!usb_endpoint_xfer_isoc(&ep->desc))
1359 		return 0;
1360 	return ep->ss_ep_comp.bmAttributes;
1361 }
1362 
1363 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1364 				       struct usb_host_endpoint *ep)
1365 {
1366 	/* Super speed and Plus have max burst in ep companion desc */
1367 	if (udev->speed >= USB_SPEED_SUPER)
1368 		return ep->ss_ep_comp.bMaxBurst;
1369 
1370 	if (udev->speed == USB_SPEED_HIGH &&
1371 	    (usb_endpoint_xfer_isoc(&ep->desc) ||
1372 	     usb_endpoint_xfer_int(&ep->desc)))
1373 		return usb_endpoint_maxp_mult(&ep->desc) - 1;
1374 
1375 	return 0;
1376 }
1377 
1378 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1379 {
1380 	int in;
1381 
1382 	in = usb_endpoint_dir_in(&ep->desc);
1383 
1384 	switch (usb_endpoint_type(&ep->desc)) {
1385 	case USB_ENDPOINT_XFER_CONTROL:
1386 		return CTRL_EP;
1387 	case USB_ENDPOINT_XFER_BULK:
1388 		return in ? BULK_IN_EP : BULK_OUT_EP;
1389 	case USB_ENDPOINT_XFER_ISOC:
1390 		return in ? ISOC_IN_EP : ISOC_OUT_EP;
1391 	case USB_ENDPOINT_XFER_INT:
1392 		return in ? INT_IN_EP : INT_OUT_EP;
1393 	}
1394 	return 0;
1395 }
1396 
1397 /* Return the maximum endpoint service interval time (ESIT) payload.
1398  * Basically, this is the maxpacket size, multiplied by the burst size
1399  * and mult size.
1400  */
1401 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1402 		struct usb_host_endpoint *ep)
1403 {
1404 	int max_burst;
1405 	int max_packet;
1406 
1407 	/* Only applies for interrupt or isochronous endpoints */
1408 	if (usb_endpoint_xfer_control(&ep->desc) ||
1409 			usb_endpoint_xfer_bulk(&ep->desc))
1410 		return 0;
1411 
1412 	/* SuperSpeedPlus Isoc ep sending over 48k per esit */
1413 	if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1414 	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1415 		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1416 	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1417 	else if (udev->speed >= USB_SPEED_SUPER)
1418 		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1419 
1420 	max_packet = usb_endpoint_maxp(&ep->desc);
1421 	max_burst = usb_endpoint_maxp_mult(&ep->desc);
1422 	/* A 0 in max burst means 1 transfer per ESIT */
1423 	return max_packet * max_burst;
1424 }
1425 
1426 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1427  * Drivers will have to call usb_alloc_streams() to do that.
1428  */
1429 int xhci_endpoint_init(struct xhci_hcd *xhci,
1430 		struct xhci_virt_device *virt_dev,
1431 		struct usb_device *udev,
1432 		struct usb_host_endpoint *ep,
1433 		gfp_t mem_flags)
1434 {
1435 	unsigned int ep_index;
1436 	struct xhci_ep_ctx *ep_ctx;
1437 	struct xhci_ring *ep_ring;
1438 	unsigned int max_packet;
1439 	enum xhci_ring_type ring_type;
1440 	u32 max_esit_payload;
1441 	u32 endpoint_type;
1442 	unsigned int max_burst;
1443 	unsigned int interval;
1444 	unsigned int mult;
1445 	unsigned int avg_trb_len;
1446 	unsigned int err_count = 0;
1447 
1448 	ep_index = xhci_get_endpoint_index(&ep->desc);
1449 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1450 
1451 	endpoint_type = xhci_get_endpoint_type(ep);
1452 	if (!endpoint_type)
1453 		return -EINVAL;
1454 
1455 	ring_type = usb_endpoint_type(&ep->desc);
1456 
1457 	/*
1458 	 * Get values to fill the endpoint context, mostly from ep descriptor.
1459 	 * The average TRB buffer lengt for bulk endpoints is unclear as we
1460 	 * have no clue on scatter gather list entry size. For Isoc and Int,
1461 	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1462 	 */
1463 	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1464 	interval = xhci_get_endpoint_interval(udev, ep);
1465 
1466 	/* Periodic endpoint bInterval limit quirk */
1467 	if (usb_endpoint_xfer_int(&ep->desc) ||
1468 	    usb_endpoint_xfer_isoc(&ep->desc)) {
1469 		if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1470 		    udev->speed >= USB_SPEED_HIGH &&
1471 		    interval >= 7) {
1472 			interval = 6;
1473 		}
1474 	}
1475 
1476 	mult = xhci_get_endpoint_mult(udev, ep);
1477 	max_packet = usb_endpoint_maxp(&ep->desc);
1478 	max_burst = xhci_get_endpoint_max_burst(udev, ep);
1479 	avg_trb_len = max_esit_payload;
1480 
1481 	/* FIXME dig Mult and streams info out of ep companion desc */
1482 
1483 	/* Allow 3 retries for everything but isoc, set CErr = 3 */
1484 	if (!usb_endpoint_xfer_isoc(&ep->desc))
1485 		err_count = 3;
1486 	/* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1487 	if (usb_endpoint_xfer_bulk(&ep->desc)) {
1488 		if (udev->speed == USB_SPEED_HIGH)
1489 			max_packet = 512;
1490 		if (udev->speed == USB_SPEED_FULL) {
1491 			max_packet = rounddown_pow_of_two(max_packet);
1492 			max_packet = clamp_val(max_packet, 8, 64);
1493 		}
1494 	}
1495 	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1496 	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1497 		avg_trb_len = 8;
1498 	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1499 	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1500 		mult = 0;
1501 
1502 	/* Set up the endpoint ring */
1503 	virt_dev->eps[ep_index].new_ring =
1504 		xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1505 	if (!virt_dev->eps[ep_index].new_ring)
1506 		return -ENOMEM;
1507 
1508 	virt_dev->eps[ep_index].skip = false;
1509 	ep_ring = virt_dev->eps[ep_index].new_ring;
1510 
1511 	/* Fill the endpoint context */
1512 	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1513 				      EP_INTERVAL(interval) |
1514 				      EP_MULT(mult));
1515 	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1516 				       MAX_PACKET(max_packet) |
1517 				       MAX_BURST(max_burst) |
1518 				       ERROR_COUNT(err_count));
1519 	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1520 				  ep_ring->cycle_state);
1521 
1522 	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1523 				      EP_AVG_TRB_LENGTH(avg_trb_len));
1524 
1525 	return 0;
1526 }
1527 
1528 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1529 		struct xhci_virt_device *virt_dev,
1530 		struct usb_host_endpoint *ep)
1531 {
1532 	unsigned int ep_index;
1533 	struct xhci_ep_ctx *ep_ctx;
1534 
1535 	ep_index = xhci_get_endpoint_index(&ep->desc);
1536 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1537 
1538 	ep_ctx->ep_info = 0;
1539 	ep_ctx->ep_info2 = 0;
1540 	ep_ctx->deq = 0;
1541 	ep_ctx->tx_info = 0;
1542 	/* Don't free the endpoint ring until the set interface or configuration
1543 	 * request succeeds.
1544 	 */
1545 }
1546 
1547 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1548 {
1549 	bw_info->ep_interval = 0;
1550 	bw_info->mult = 0;
1551 	bw_info->num_packets = 0;
1552 	bw_info->max_packet_size = 0;
1553 	bw_info->type = 0;
1554 	bw_info->max_esit_payload = 0;
1555 }
1556 
1557 void xhci_update_bw_info(struct xhci_hcd *xhci,
1558 		struct xhci_container_ctx *in_ctx,
1559 		struct xhci_input_control_ctx *ctrl_ctx,
1560 		struct xhci_virt_device *virt_dev)
1561 {
1562 	struct xhci_bw_info *bw_info;
1563 	struct xhci_ep_ctx *ep_ctx;
1564 	unsigned int ep_type;
1565 	int i;
1566 
1567 	for (i = 1; i < 31; i++) {
1568 		bw_info = &virt_dev->eps[i].bw_info;
1569 
1570 		/* We can't tell what endpoint type is being dropped, but
1571 		 * unconditionally clearing the bandwidth info for non-periodic
1572 		 * endpoints should be harmless because the info will never be
1573 		 * set in the first place.
1574 		 */
1575 		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1576 			/* Dropped endpoint */
1577 			xhci_clear_endpoint_bw_info(bw_info);
1578 			continue;
1579 		}
1580 
1581 		if (EP_IS_ADDED(ctrl_ctx, i)) {
1582 			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1583 			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1584 
1585 			/* Ignore non-periodic endpoints */
1586 			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1587 					ep_type != ISOC_IN_EP &&
1588 					ep_type != INT_IN_EP)
1589 				continue;
1590 
1591 			/* Added or changed endpoint */
1592 			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1593 					le32_to_cpu(ep_ctx->ep_info));
1594 			/* Number of packets and mult are zero-based in the
1595 			 * input context, but we want one-based for the
1596 			 * interval table.
1597 			 */
1598 			bw_info->mult = CTX_TO_EP_MULT(
1599 					le32_to_cpu(ep_ctx->ep_info)) + 1;
1600 			bw_info->num_packets = CTX_TO_MAX_BURST(
1601 					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1602 			bw_info->max_packet_size = MAX_PACKET_DECODED(
1603 					le32_to_cpu(ep_ctx->ep_info2));
1604 			bw_info->type = ep_type;
1605 			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1606 					le32_to_cpu(ep_ctx->tx_info));
1607 		}
1608 	}
1609 }
1610 
1611 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1612  * Useful when you want to change one particular aspect of the endpoint and then
1613  * issue a configure endpoint command.
1614  */
1615 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1616 		struct xhci_container_ctx *in_ctx,
1617 		struct xhci_container_ctx *out_ctx,
1618 		unsigned int ep_index)
1619 {
1620 	struct xhci_ep_ctx *out_ep_ctx;
1621 	struct xhci_ep_ctx *in_ep_ctx;
1622 
1623 	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1624 	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1625 
1626 	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1627 	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1628 	in_ep_ctx->deq = out_ep_ctx->deq;
1629 	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1630 	if (xhci->quirks & XHCI_MTK_HOST) {
1631 		in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1632 		in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1633 	}
1634 }
1635 
1636 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1637  * Useful when you want to change one particular aspect of the endpoint and then
1638  * issue a configure endpoint command.  Only the context entries field matters,
1639  * but we'll copy the whole thing anyway.
1640  */
1641 void xhci_slot_copy(struct xhci_hcd *xhci,
1642 		struct xhci_container_ctx *in_ctx,
1643 		struct xhci_container_ctx *out_ctx)
1644 {
1645 	struct xhci_slot_ctx *in_slot_ctx;
1646 	struct xhci_slot_ctx *out_slot_ctx;
1647 
1648 	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1649 	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1650 
1651 	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1652 	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1653 	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1654 	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1655 }
1656 
1657 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1658 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1659 {
1660 	int i;
1661 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1662 	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1663 
1664 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1665 			"Allocating %d scratchpad buffers", num_sp);
1666 
1667 	if (!num_sp)
1668 		return 0;
1669 
1670 	xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1671 				dev_to_node(dev));
1672 	if (!xhci->scratchpad)
1673 		goto fail_sp;
1674 
1675 	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1676 				     num_sp * sizeof(u64),
1677 				     &xhci->scratchpad->sp_dma, flags);
1678 	if (!xhci->scratchpad->sp_array)
1679 		goto fail_sp2;
1680 
1681 	xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1682 					flags, dev_to_node(dev));
1683 	if (!xhci->scratchpad->sp_buffers)
1684 		goto fail_sp3;
1685 
1686 	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1687 	for (i = 0; i < num_sp; i++) {
1688 		dma_addr_t dma;
1689 		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1690 					       flags);
1691 		if (!buf)
1692 			goto fail_sp4;
1693 
1694 		xhci->scratchpad->sp_array[i] = dma;
1695 		xhci->scratchpad->sp_buffers[i] = buf;
1696 	}
1697 
1698 	return 0;
1699 
1700  fail_sp4:
1701 	for (i = i - 1; i >= 0; i--) {
1702 		dma_free_coherent(dev, xhci->page_size,
1703 				    xhci->scratchpad->sp_buffers[i],
1704 				    xhci->scratchpad->sp_array[i]);
1705 	}
1706 
1707 	kfree(xhci->scratchpad->sp_buffers);
1708 
1709  fail_sp3:
1710 	dma_free_coherent(dev, num_sp * sizeof(u64),
1711 			    xhci->scratchpad->sp_array,
1712 			    xhci->scratchpad->sp_dma);
1713 
1714  fail_sp2:
1715 	kfree(xhci->scratchpad);
1716 	xhci->scratchpad = NULL;
1717 
1718  fail_sp:
1719 	return -ENOMEM;
1720 }
1721 
1722 static void scratchpad_free(struct xhci_hcd *xhci)
1723 {
1724 	int num_sp;
1725 	int i;
1726 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1727 
1728 	if (!xhci->scratchpad)
1729 		return;
1730 
1731 	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1732 
1733 	for (i = 0; i < num_sp; i++) {
1734 		dma_free_coherent(dev, xhci->page_size,
1735 				    xhci->scratchpad->sp_buffers[i],
1736 				    xhci->scratchpad->sp_array[i]);
1737 	}
1738 	kfree(xhci->scratchpad->sp_buffers);
1739 	dma_free_coherent(dev, num_sp * sizeof(u64),
1740 			    xhci->scratchpad->sp_array,
1741 			    xhci->scratchpad->sp_dma);
1742 	kfree(xhci->scratchpad);
1743 	xhci->scratchpad = NULL;
1744 }
1745 
1746 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1747 		bool allocate_completion, gfp_t mem_flags)
1748 {
1749 	struct xhci_command *command;
1750 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1751 
1752 	command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1753 	if (!command)
1754 		return NULL;
1755 
1756 	if (allocate_completion) {
1757 		command->completion =
1758 			kzalloc_node(sizeof(struct completion), mem_flags,
1759 				dev_to_node(dev));
1760 		if (!command->completion) {
1761 			kfree(command);
1762 			return NULL;
1763 		}
1764 		init_completion(command->completion);
1765 	}
1766 
1767 	command->status = 0;
1768 	INIT_LIST_HEAD(&command->cmd_list);
1769 	return command;
1770 }
1771 
1772 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1773 		bool allocate_completion, gfp_t mem_flags)
1774 {
1775 	struct xhci_command *command;
1776 
1777 	command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1778 	if (!command)
1779 		return NULL;
1780 
1781 	command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1782 						   mem_flags);
1783 	if (!command->in_ctx) {
1784 		kfree(command->completion);
1785 		kfree(command);
1786 		return NULL;
1787 	}
1788 	return command;
1789 }
1790 
1791 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1792 {
1793 	kfree(urb_priv);
1794 }
1795 
1796 void xhci_free_command(struct xhci_hcd *xhci,
1797 		struct xhci_command *command)
1798 {
1799 	xhci_free_container_ctx(xhci,
1800 			command->in_ctx);
1801 	kfree(command->completion);
1802 	kfree(command);
1803 }
1804 
1805 int xhci_alloc_erst(struct xhci_hcd *xhci,
1806 		    struct xhci_ring *evt_ring,
1807 		    struct xhci_erst *erst,
1808 		    gfp_t flags)
1809 {
1810 	size_t size;
1811 	unsigned int val;
1812 	struct xhci_segment *seg;
1813 	struct xhci_erst_entry *entry;
1814 
1815 	size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs;
1816 	erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1817 					   size, &erst->erst_dma_addr, flags);
1818 	if (!erst->entries)
1819 		return -ENOMEM;
1820 
1821 	erst->num_entries = evt_ring->num_segs;
1822 
1823 	seg = evt_ring->first_seg;
1824 	for (val = 0; val < evt_ring->num_segs; val++) {
1825 		entry = &erst->entries[val];
1826 		entry->seg_addr = cpu_to_le64(seg->dma);
1827 		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1828 		entry->rsvd = 0;
1829 		seg = seg->next;
1830 	}
1831 
1832 	return 0;
1833 }
1834 
1835 void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
1836 {
1837 	size_t size;
1838 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1839 
1840 	size = sizeof(struct xhci_erst_entry) * (erst->num_entries);
1841 	if (erst->entries)
1842 		dma_free_coherent(dev, size,
1843 				erst->entries,
1844 				erst->erst_dma_addr);
1845 	erst->entries = NULL;
1846 }
1847 
1848 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1849 {
1850 	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
1851 	int i, j, num_ports;
1852 
1853 	cancel_delayed_work_sync(&xhci->cmd_timer);
1854 
1855 	xhci_free_erst(xhci, &xhci->erst);
1856 
1857 	if (xhci->event_ring)
1858 		xhci_ring_free(xhci, xhci->event_ring);
1859 	xhci->event_ring = NULL;
1860 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1861 
1862 	if (xhci->lpm_command)
1863 		xhci_free_command(xhci, xhci->lpm_command);
1864 	xhci->lpm_command = NULL;
1865 	if (xhci->cmd_ring)
1866 		xhci_ring_free(xhci, xhci->cmd_ring);
1867 	xhci->cmd_ring = NULL;
1868 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1869 	xhci_cleanup_command_queue(xhci);
1870 
1871 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1872 	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1873 		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1874 		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1875 			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1876 			while (!list_empty(ep))
1877 				list_del_init(ep->next);
1878 		}
1879 	}
1880 
1881 	for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1882 		xhci_free_virt_devices_depth_first(xhci, i);
1883 
1884 	dma_pool_destroy(xhci->segment_pool);
1885 	xhci->segment_pool = NULL;
1886 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1887 
1888 	dma_pool_destroy(xhci->device_pool);
1889 	xhci->device_pool = NULL;
1890 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1891 
1892 	dma_pool_destroy(xhci->small_streams_pool);
1893 	xhci->small_streams_pool = NULL;
1894 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1895 			"Freed small stream array pool");
1896 
1897 	dma_pool_destroy(xhci->medium_streams_pool);
1898 	xhci->medium_streams_pool = NULL;
1899 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1900 			"Freed medium stream array pool");
1901 
1902 	if (xhci->dcbaa)
1903 		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1904 				xhci->dcbaa, xhci->dcbaa->dma);
1905 	xhci->dcbaa = NULL;
1906 
1907 	scratchpad_free(xhci);
1908 
1909 	if (!xhci->rh_bw)
1910 		goto no_bw;
1911 
1912 	for (i = 0; i < num_ports; i++) {
1913 		struct xhci_tt_bw_info *tt, *n;
1914 		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1915 			list_del(&tt->tt_list);
1916 			kfree(tt);
1917 		}
1918 	}
1919 
1920 no_bw:
1921 	xhci->cmd_ring_reserved_trbs = 0;
1922 	xhci->usb2_rhub.num_ports = 0;
1923 	xhci->usb3_rhub.num_ports = 0;
1924 	xhci->num_active_eps = 0;
1925 	kfree(xhci->usb2_rhub.ports);
1926 	kfree(xhci->usb3_rhub.ports);
1927 	kfree(xhci->hw_ports);
1928 	kfree(xhci->rh_bw);
1929 	kfree(xhci->ext_caps);
1930 	for (i = 0; i < xhci->num_port_caps; i++)
1931 		kfree(xhci->port_caps[i].psi);
1932 	kfree(xhci->port_caps);
1933 	xhci->num_port_caps = 0;
1934 
1935 	xhci->usb2_rhub.ports = NULL;
1936 	xhci->usb3_rhub.ports = NULL;
1937 	xhci->hw_ports = NULL;
1938 	xhci->rh_bw = NULL;
1939 	xhci->ext_caps = NULL;
1940 
1941 	xhci->page_size = 0;
1942 	xhci->page_shift = 0;
1943 	xhci->usb2_rhub.bus_state.bus_suspended = 0;
1944 	xhci->usb3_rhub.bus_state.bus_suspended = 0;
1945 }
1946 
1947 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1948 		struct xhci_segment *input_seg,
1949 		union xhci_trb *start_trb,
1950 		union xhci_trb *end_trb,
1951 		dma_addr_t input_dma,
1952 		struct xhci_segment *result_seg,
1953 		char *test_name, int test_number)
1954 {
1955 	unsigned long long start_dma;
1956 	unsigned long long end_dma;
1957 	struct xhci_segment *seg;
1958 
1959 	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1960 	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1961 
1962 	seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1963 	if (seg != result_seg) {
1964 		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1965 				test_name, test_number);
1966 		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1967 				"input DMA 0x%llx\n",
1968 				input_seg,
1969 				(unsigned long long) input_dma);
1970 		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1971 				"ending TRB %p (0x%llx DMA)\n",
1972 				start_trb, start_dma,
1973 				end_trb, end_dma);
1974 		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1975 				result_seg, seg);
1976 		trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1977 			  true);
1978 		return -1;
1979 	}
1980 	return 0;
1981 }
1982 
1983 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1984 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1985 {
1986 	struct {
1987 		dma_addr_t		input_dma;
1988 		struct xhci_segment	*result_seg;
1989 	} simple_test_vector [] = {
1990 		/* A zeroed DMA field should fail */
1991 		{ 0, NULL },
1992 		/* One TRB before the ring start should fail */
1993 		{ xhci->event_ring->first_seg->dma - 16, NULL },
1994 		/* One byte before the ring start should fail */
1995 		{ xhci->event_ring->first_seg->dma - 1, NULL },
1996 		/* Starting TRB should succeed */
1997 		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1998 		/* Ending TRB should succeed */
1999 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
2000 			xhci->event_ring->first_seg },
2001 		/* One byte after the ring end should fail */
2002 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
2003 		/* One TRB after the ring end should fail */
2004 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
2005 		/* An address of all ones should fail */
2006 		{ (dma_addr_t) (~0), NULL },
2007 	};
2008 	struct {
2009 		struct xhci_segment	*input_seg;
2010 		union xhci_trb		*start_trb;
2011 		union xhci_trb		*end_trb;
2012 		dma_addr_t		input_dma;
2013 		struct xhci_segment	*result_seg;
2014 	} complex_test_vector [] = {
2015 		/* Test feeding a valid DMA address from a different ring */
2016 		{	.input_seg = xhci->event_ring->first_seg,
2017 			.start_trb = xhci->event_ring->first_seg->trbs,
2018 			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2019 			.input_dma = xhci->cmd_ring->first_seg->dma,
2020 			.result_seg = NULL,
2021 		},
2022 		/* Test feeding a valid end TRB from a different ring */
2023 		{	.input_seg = xhci->event_ring->first_seg,
2024 			.start_trb = xhci->event_ring->first_seg->trbs,
2025 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2026 			.input_dma = xhci->cmd_ring->first_seg->dma,
2027 			.result_seg = NULL,
2028 		},
2029 		/* Test feeding a valid start and end TRB from a different ring */
2030 		{	.input_seg = xhci->event_ring->first_seg,
2031 			.start_trb = xhci->cmd_ring->first_seg->trbs,
2032 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2033 			.input_dma = xhci->cmd_ring->first_seg->dma,
2034 			.result_seg = NULL,
2035 		},
2036 		/* TRB in this ring, but after this TD */
2037 		{	.input_seg = xhci->event_ring->first_seg,
2038 			.start_trb = &xhci->event_ring->first_seg->trbs[0],
2039 			.end_trb = &xhci->event_ring->first_seg->trbs[3],
2040 			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
2041 			.result_seg = NULL,
2042 		},
2043 		/* TRB in this ring, but before this TD */
2044 		{	.input_seg = xhci->event_ring->first_seg,
2045 			.start_trb = &xhci->event_ring->first_seg->trbs[3],
2046 			.end_trb = &xhci->event_ring->first_seg->trbs[6],
2047 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
2048 			.result_seg = NULL,
2049 		},
2050 		/* TRB in this ring, but after this wrapped TD */
2051 		{	.input_seg = xhci->event_ring->first_seg,
2052 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2053 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2054 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
2055 			.result_seg = NULL,
2056 		},
2057 		/* TRB in this ring, but before this wrapped TD */
2058 		{	.input_seg = xhci->event_ring->first_seg,
2059 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2060 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2061 			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2062 			.result_seg = NULL,
2063 		},
2064 		/* TRB not in this ring, and we have a wrapped TD */
2065 		{	.input_seg = xhci->event_ring->first_seg,
2066 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2067 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2068 			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2069 			.result_seg = NULL,
2070 		},
2071 	};
2072 
2073 	unsigned int num_tests;
2074 	int i, ret;
2075 
2076 	num_tests = ARRAY_SIZE(simple_test_vector);
2077 	for (i = 0; i < num_tests; i++) {
2078 		ret = xhci_test_trb_in_td(xhci,
2079 				xhci->event_ring->first_seg,
2080 				xhci->event_ring->first_seg->trbs,
2081 				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2082 				simple_test_vector[i].input_dma,
2083 				simple_test_vector[i].result_seg,
2084 				"Simple", i);
2085 		if (ret < 0)
2086 			return ret;
2087 	}
2088 
2089 	num_tests = ARRAY_SIZE(complex_test_vector);
2090 	for (i = 0; i < num_tests; i++) {
2091 		ret = xhci_test_trb_in_td(xhci,
2092 				complex_test_vector[i].input_seg,
2093 				complex_test_vector[i].start_trb,
2094 				complex_test_vector[i].end_trb,
2095 				complex_test_vector[i].input_dma,
2096 				complex_test_vector[i].result_seg,
2097 				"Complex", i);
2098 		if (ret < 0)
2099 			return ret;
2100 	}
2101 	xhci_dbg(xhci, "TRB math tests passed.\n");
2102 	return 0;
2103 }
2104 
2105 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2106 {
2107 	u64 temp;
2108 	dma_addr_t deq;
2109 
2110 	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2111 			xhci->event_ring->dequeue);
2112 	if (!deq)
2113 		xhci_warn(xhci, "WARN something wrong with SW event ring "
2114 				"dequeue ptr.\n");
2115 	/* Update HC event ring dequeue pointer */
2116 	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2117 	temp &= ERST_PTR_MASK;
2118 	/* Don't clear the EHB bit (which is RW1C) because
2119 	 * there might be more events to service.
2120 	 */
2121 	temp &= ~ERST_EHB;
2122 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2123 			"// Write event ring dequeue pointer, "
2124 			"preserving EHB bit");
2125 	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2126 			&xhci->ir_set->erst_dequeue);
2127 }
2128 
2129 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2130 		__le32 __iomem *addr, int max_caps)
2131 {
2132 	u32 temp, port_offset, port_count;
2133 	int i;
2134 	u8 major_revision, minor_revision;
2135 	struct xhci_hub *rhub;
2136 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2137 	struct xhci_port_cap *port_cap;
2138 
2139 	temp = readl(addr);
2140 	major_revision = XHCI_EXT_PORT_MAJOR(temp);
2141 	minor_revision = XHCI_EXT_PORT_MINOR(temp);
2142 
2143 	if (major_revision == 0x03) {
2144 		rhub = &xhci->usb3_rhub;
2145 	} else if (major_revision <= 0x02) {
2146 		rhub = &xhci->usb2_rhub;
2147 	} else {
2148 		xhci_warn(xhci, "Ignoring unknown port speed, "
2149 				"Ext Cap %p, revision = 0x%x\n",
2150 				addr, major_revision);
2151 		/* Ignoring port protocol we can't understand. FIXME */
2152 		return;
2153 	}
2154 	rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2155 
2156 	if (rhub->min_rev < minor_revision)
2157 		rhub->min_rev = minor_revision;
2158 
2159 	/* Port offset and count in the third dword, see section 7.2 */
2160 	temp = readl(addr + 2);
2161 	port_offset = XHCI_EXT_PORT_OFF(temp);
2162 	port_count = XHCI_EXT_PORT_COUNT(temp);
2163 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2164 			"Ext Cap %p, port offset = %u, "
2165 			"count = %u, revision = 0x%x",
2166 			addr, port_offset, port_count, major_revision);
2167 	/* Port count includes the current port offset */
2168 	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2169 		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2170 		return;
2171 
2172 	port_cap = &xhci->port_caps[xhci->num_port_caps++];
2173 	if (xhci->num_port_caps > max_caps)
2174 		return;
2175 
2176 	port_cap->maj_rev = major_revision;
2177 	port_cap->min_rev = minor_revision;
2178 	port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2179 
2180 	if (port_cap->psi_count) {
2181 		port_cap->psi = kcalloc_node(port_cap->psi_count,
2182 					     sizeof(*port_cap->psi),
2183 					     GFP_KERNEL, dev_to_node(dev));
2184 		if (!port_cap->psi)
2185 			port_cap->psi_count = 0;
2186 
2187 		port_cap->psi_uid_count++;
2188 		for (i = 0; i < port_cap->psi_count; i++) {
2189 			port_cap->psi[i] = readl(addr + 4 + i);
2190 
2191 			/* count unique ID values, two consecutive entries can
2192 			 * have the same ID if link is assymetric
2193 			 */
2194 			if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2195 				  XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2196 				port_cap->psi_uid_count++;
2197 
2198 			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2199 				  XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2200 				  XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2201 				  XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2202 				  XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2203 				  XHCI_EXT_PORT_LP(port_cap->psi[i]),
2204 				  XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2205 		}
2206 	}
2207 	/* cache usb2 port capabilities */
2208 	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2209 		xhci->ext_caps[xhci->num_ext_caps++] = temp;
2210 
2211 	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2212 		 (temp & XHCI_HLC)) {
2213 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2214 			       "xHCI 1.0: support USB2 hardware lpm");
2215 		xhci->hw_lpm_support = 1;
2216 	}
2217 
2218 	port_offset--;
2219 	for (i = port_offset; i < (port_offset + port_count); i++) {
2220 		struct xhci_port *hw_port = &xhci->hw_ports[i];
2221 		/* Duplicate entry.  Ignore the port if the revisions differ. */
2222 		if (hw_port->rhub) {
2223 			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2224 					" port %u\n", addr, i);
2225 			xhci_warn(xhci, "Port was marked as USB %u, "
2226 					"duplicated as USB %u\n",
2227 					hw_port->rhub->maj_rev, major_revision);
2228 			/* Only adjust the roothub port counts if we haven't
2229 			 * found a similar duplicate.
2230 			 */
2231 			if (hw_port->rhub != rhub &&
2232 				 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2233 				hw_port->rhub->num_ports--;
2234 				hw_port->hcd_portnum = DUPLICATE_ENTRY;
2235 			}
2236 			continue;
2237 		}
2238 		hw_port->rhub = rhub;
2239 		hw_port->port_cap = port_cap;
2240 		rhub->num_ports++;
2241 	}
2242 	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2243 }
2244 
2245 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2246 					struct xhci_hub *rhub, gfp_t flags)
2247 {
2248 	int port_index = 0;
2249 	int i;
2250 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2251 
2252 	if (!rhub->num_ports)
2253 		return;
2254 	rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2255 			flags, dev_to_node(dev));
2256 	for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2257 		if (xhci->hw_ports[i].rhub != rhub ||
2258 		    xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2259 			continue;
2260 		xhci->hw_ports[i].hcd_portnum = port_index;
2261 		rhub->ports[port_index] = &xhci->hw_ports[i];
2262 		port_index++;
2263 		if (port_index == rhub->num_ports)
2264 			break;
2265 	}
2266 }
2267 
2268 /*
2269  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2270  * specify what speeds each port is supposed to be.  We can't count on the port
2271  * speed bits in the PORTSC register being correct until a device is connected,
2272  * but we need to set up the two fake roothubs with the correct number of USB
2273  * 3.0 and USB 2.0 ports at host controller initialization time.
2274  */
2275 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2276 {
2277 	void __iomem *base;
2278 	u32 offset;
2279 	unsigned int num_ports;
2280 	int i, j;
2281 	int cap_count = 0;
2282 	u32 cap_start;
2283 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2284 
2285 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2286 	xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2287 				flags, dev_to_node(dev));
2288 	if (!xhci->hw_ports)
2289 		return -ENOMEM;
2290 
2291 	for (i = 0; i < num_ports; i++) {
2292 		xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2293 			NUM_PORT_REGS * i;
2294 		xhci->hw_ports[i].hw_portnum = i;
2295 	}
2296 
2297 	xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2298 				   dev_to_node(dev));
2299 	if (!xhci->rh_bw)
2300 		return -ENOMEM;
2301 	for (i = 0; i < num_ports; i++) {
2302 		struct xhci_interval_bw_table *bw_table;
2303 
2304 		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2305 		bw_table = &xhci->rh_bw[i].bw_table;
2306 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2307 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2308 	}
2309 	base = &xhci->cap_regs->hc_capbase;
2310 
2311 	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2312 	if (!cap_start) {
2313 		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2314 		return -ENODEV;
2315 	}
2316 
2317 	offset = cap_start;
2318 	/* count extended protocol capability entries for later caching */
2319 	while (offset) {
2320 		cap_count++;
2321 		offset = xhci_find_next_ext_cap(base, offset,
2322 						      XHCI_EXT_CAPS_PROTOCOL);
2323 	}
2324 
2325 	xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2326 				flags, dev_to_node(dev));
2327 	if (!xhci->ext_caps)
2328 		return -ENOMEM;
2329 
2330 	xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2331 				flags, dev_to_node(dev));
2332 	if (!xhci->port_caps)
2333 		return -ENOMEM;
2334 
2335 	offset = cap_start;
2336 
2337 	while (offset) {
2338 		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2339 		if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2340 		    num_ports)
2341 			break;
2342 		offset = xhci_find_next_ext_cap(base, offset,
2343 						XHCI_EXT_CAPS_PROTOCOL);
2344 	}
2345 	if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2346 		xhci_warn(xhci, "No ports on the roothubs?\n");
2347 		return -ENODEV;
2348 	}
2349 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2350 		       "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2351 		       xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2352 
2353 	/* Place limits on the number of roothub ports so that the hub
2354 	 * descriptors aren't longer than the USB core will allocate.
2355 	 */
2356 	if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2357 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2358 				"Limiting USB 3.0 roothub ports to %u.",
2359 				USB_SS_MAXPORTS);
2360 		xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2361 	}
2362 	if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2363 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2364 				"Limiting USB 2.0 roothub ports to %u.",
2365 				USB_MAXCHILDREN);
2366 		xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2367 	}
2368 
2369 	/*
2370 	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2371 	 * Not sure how the USB core will handle a hub with no ports...
2372 	 */
2373 
2374 	xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2375 	xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2376 
2377 	return 0;
2378 }
2379 
2380 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2381 {
2382 	dma_addr_t	dma;
2383 	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
2384 	unsigned int	val, val2;
2385 	u64		val_64;
2386 	u32		page_size, temp;
2387 	int		i, ret;
2388 
2389 	INIT_LIST_HEAD(&xhci->cmd_list);
2390 
2391 	/* init command timeout work */
2392 	INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2393 	init_completion(&xhci->cmd_ring_stop_completion);
2394 
2395 	page_size = readl(&xhci->op_regs->page_size);
2396 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2397 			"Supported page size register = 0x%x", page_size);
2398 	for (i = 0; i < 16; i++) {
2399 		if ((0x1 & page_size) != 0)
2400 			break;
2401 		page_size = page_size >> 1;
2402 	}
2403 	if (i < 16)
2404 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2405 			"Supported page size of %iK", (1 << (i+12)) / 1024);
2406 	else
2407 		xhci_warn(xhci, "WARN: no supported page size\n");
2408 	/* Use 4K pages, since that's common and the minimum the HC supports */
2409 	xhci->page_shift = 12;
2410 	xhci->page_size = 1 << xhci->page_shift;
2411 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2412 			"HCD page size set to %iK", xhci->page_size / 1024);
2413 
2414 	/*
2415 	 * Program the Number of Device Slots Enabled field in the CONFIG
2416 	 * register with the max value of slots the HC can handle.
2417 	 */
2418 	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2419 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2420 			"// xHC can handle at most %d device slots.", val);
2421 	val2 = readl(&xhci->op_regs->config_reg);
2422 	val |= (val2 & ~HCS_SLOTS_MASK);
2423 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2424 			"// Setting Max device slots reg = 0x%x.", val);
2425 	writel(val, &xhci->op_regs->config_reg);
2426 
2427 	/*
2428 	 * xHCI section 5.4.6 - doorbell array must be
2429 	 * "physically contiguous and 64-byte (cache line) aligned".
2430 	 */
2431 	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2432 			flags);
2433 	if (!xhci->dcbaa)
2434 		goto fail;
2435 	xhci->dcbaa->dma = dma;
2436 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2437 			"// Device context base array address = 0x%llx (DMA), %p (virt)",
2438 			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2439 	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2440 
2441 	/*
2442 	 * Initialize the ring segment pool.  The ring must be a contiguous
2443 	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2444 	 * however, the command ring segment needs 64-byte aligned segments
2445 	 * and our use of dma addresses in the trb_address_map radix tree needs
2446 	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2447 	 */
2448 	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2449 			TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2450 
2451 	/* See Table 46 and Note on Figure 55 */
2452 	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2453 			2112, 64, xhci->page_size);
2454 	if (!xhci->segment_pool || !xhci->device_pool)
2455 		goto fail;
2456 
2457 	/* Linear stream context arrays don't have any boundary restrictions,
2458 	 * and only need to be 16-byte aligned.
2459 	 */
2460 	xhci->small_streams_pool =
2461 		dma_pool_create("xHCI 256 byte stream ctx arrays",
2462 			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2463 	xhci->medium_streams_pool =
2464 		dma_pool_create("xHCI 1KB stream ctx arrays",
2465 			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2466 	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2467 	 * will be allocated with dma_alloc_coherent()
2468 	 */
2469 
2470 	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2471 		goto fail;
2472 
2473 	/* Set up the command ring to have one segments for now. */
2474 	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2475 	if (!xhci->cmd_ring)
2476 		goto fail;
2477 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2478 			"Allocated command ring at %p", xhci->cmd_ring);
2479 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2480 			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2481 
2482 	/* Set the address in the Command Ring Control register */
2483 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2484 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2485 		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2486 		xhci->cmd_ring->cycle_state;
2487 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2488 			"// Setting command ring address to 0x%016llx", val_64);
2489 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2490 
2491 	xhci->lpm_command = xhci_alloc_command_with_ctx(xhci, true, flags);
2492 	if (!xhci->lpm_command)
2493 		goto fail;
2494 
2495 	/* Reserve one command ring TRB for disabling LPM.
2496 	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2497 	 * disabling LPM, we only need to reserve one TRB for all devices.
2498 	 */
2499 	xhci->cmd_ring_reserved_trbs++;
2500 
2501 	val = readl(&xhci->cap_regs->db_off);
2502 	val &= DBOFF_MASK;
2503 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2504 			"// Doorbell array is located at offset 0x%x"
2505 			" from cap regs base addr", val);
2506 	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2507 	/* Set ir_set to interrupt register set 0 */
2508 	xhci->ir_set = &xhci->run_regs->ir_set[0];
2509 
2510 	/*
2511 	 * Event ring setup: Allocate a normal ring, but also setup
2512 	 * the event ring segment table (ERST).  Section 4.9.3.
2513 	 */
2514 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2515 	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2516 					0, flags);
2517 	if (!xhci->event_ring)
2518 		goto fail;
2519 	if (xhci_check_trb_in_td_math(xhci) < 0)
2520 		goto fail;
2521 
2522 	ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags);
2523 	if (ret)
2524 		goto fail;
2525 
2526 	/* set ERST count with the number of entries in the segment table */
2527 	val = readl(&xhci->ir_set->erst_size);
2528 	val &= ERST_SIZE_MASK;
2529 	val |= ERST_NUM_SEGS;
2530 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2531 			"// Write ERST size = %i to ir_set 0 (some bits preserved)",
2532 			val);
2533 	writel(val, &xhci->ir_set->erst_size);
2534 
2535 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2536 			"// Set ERST entries to point to event ring.");
2537 	/* set the segment table base address */
2538 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2539 			"// Set ERST base address for ir_set 0 = 0x%llx",
2540 			(unsigned long long)xhci->erst.erst_dma_addr);
2541 	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2542 	val_64 &= ERST_PTR_MASK;
2543 	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2544 	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2545 
2546 	/* Set the event ring dequeue address */
2547 	xhci_set_hc_event_deq(xhci);
2548 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2549 			"Wrote ERST address to ir_set 0.");
2550 
2551 	/*
2552 	 * XXX: Might need to set the Interrupter Moderation Register to
2553 	 * something other than the default (~1ms minimum between interrupts).
2554 	 * See section 5.5.1.2.
2555 	 */
2556 	for (i = 0; i < MAX_HC_SLOTS; i++)
2557 		xhci->devs[i] = NULL;
2558 	for (i = 0; i < USB_MAXCHILDREN; i++) {
2559 		xhci->usb2_rhub.bus_state.resume_done[i] = 0;
2560 		xhci->usb3_rhub.bus_state.resume_done[i] = 0;
2561 		/* Only the USB 2.0 completions will ever be used. */
2562 		init_completion(&xhci->usb2_rhub.bus_state.rexit_done[i]);
2563 		init_completion(&xhci->usb3_rhub.bus_state.u3exit_done[i]);
2564 	}
2565 
2566 	if (scratchpad_alloc(xhci, flags))
2567 		goto fail;
2568 	if (xhci_setup_port_arrays(xhci, flags))
2569 		goto fail;
2570 
2571 	/* Enable USB 3.0 device notifications for function remote wake, which
2572 	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2573 	 * U3 (device suspend).
2574 	 */
2575 	temp = readl(&xhci->op_regs->dev_notification);
2576 	temp &= ~DEV_NOTE_MASK;
2577 	temp |= DEV_NOTE_FWAKE;
2578 	writel(temp, &xhci->op_regs->dev_notification);
2579 
2580 	return 0;
2581 
2582 fail:
2583 	xhci_halt(xhci);
2584 	xhci_reset(xhci);
2585 	xhci_mem_cleanup(xhci);
2586 	return -ENOMEM;
2587 }
2588