xref: /linux/drivers/usb/host/xhci-mem.c (revision a674fefd17324fc467f043568e738b80ca22f2b4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/usb.h>
12 #include <linux/overflow.h>
13 #include <linux/pci.h>
14 #include <linux/slab.h>
15 #include <linux/dmapool.h>
16 #include <linux/dma-mapping.h>
17 
18 #include "xhci.h"
19 #include "xhci-trace.h"
20 #include "xhci-debugfs.h"
21 
22 /*
23  * Allocates a generic ring segment from the ring pool, sets the dma address,
24  * initializes the segment to zero, and sets the private next pointer to NULL.
25  *
26  * Section 4.11.1.1:
27  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
28  */
29 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
30 					       unsigned int cycle_state,
31 					       unsigned int max_packet,
32 					       unsigned int num,
33 					       gfp_t flags)
34 {
35 	struct xhci_segment *seg;
36 	dma_addr_t	dma;
37 	int		i;
38 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
39 
40 	seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
41 	if (!seg)
42 		return NULL;
43 
44 	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
45 	if (!seg->trbs) {
46 		kfree(seg);
47 		return NULL;
48 	}
49 
50 	if (max_packet) {
51 		seg->bounce_buf = kzalloc_node(max_packet, flags,
52 					dev_to_node(dev));
53 		if (!seg->bounce_buf) {
54 			dma_pool_free(xhci->segment_pool, seg->trbs, dma);
55 			kfree(seg);
56 			return NULL;
57 		}
58 	}
59 	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
60 	if (cycle_state == 0) {
61 		for (i = 0; i < TRBS_PER_SEGMENT; i++)
62 			seg->trbs[i].link.control = cpu_to_le32(TRB_CYCLE);
63 	}
64 	seg->num = num;
65 	seg->dma = dma;
66 	seg->next = NULL;
67 
68 	return seg;
69 }
70 
71 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
72 {
73 	if (seg->trbs) {
74 		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
75 		seg->trbs = NULL;
76 	}
77 	kfree(seg->bounce_buf);
78 	kfree(seg);
79 }
80 
81 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
82 				struct xhci_segment *first)
83 {
84 	struct xhci_segment *seg;
85 
86 	seg = first->next;
87 	while (seg && seg != first) {
88 		struct xhci_segment *next = seg->next;
89 		xhci_segment_free(xhci, seg);
90 		seg = next;
91 	}
92 	xhci_segment_free(xhci, first);
93 }
94 
95 /*
96  * Make the prev segment point to the next segment.
97  *
98  * Change the last TRB in the prev segment to be a Link TRB which points to the
99  * DMA address of the next segment.  The caller needs to set any Link TRB
100  * related flags, such as End TRB, Toggle Cycle, and no snoop.
101  */
102 static void xhci_link_segments(struct xhci_segment *prev,
103 			       struct xhci_segment *next,
104 			       enum xhci_ring_type type, bool chain_links)
105 {
106 	u32 val;
107 
108 	if (!prev || !next)
109 		return;
110 	prev->next = next;
111 	if (type != TYPE_EVENT) {
112 		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
113 			cpu_to_le64(next->dma);
114 
115 		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
116 		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
117 		val &= ~TRB_TYPE_BITMASK;
118 		val |= TRB_TYPE(TRB_LINK);
119 		if (chain_links)
120 			val |= TRB_CHAIN;
121 		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
122 	}
123 }
124 
125 /*
126  * Link the ring to the new segments.
127  * Set Toggle Cycle for the new ring if needed.
128  */
129 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
130 		struct xhci_segment *first, struct xhci_segment *last,
131 		unsigned int num_segs)
132 {
133 	struct xhci_segment *next, *seg;
134 	bool chain_links;
135 
136 	if (!ring || !first || !last)
137 		return;
138 
139 	/* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
140 	chain_links = !!(xhci_link_trb_quirk(xhci) ||
141 			 (ring->type == TYPE_ISOC &&
142 			  (xhci->quirks & XHCI_AMD_0x96_HOST)));
143 
144 	next = ring->enq_seg->next;
145 	xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
146 	xhci_link_segments(last, next, ring->type, chain_links);
147 	ring->num_segs += num_segs;
148 
149 	if (ring->enq_seg == ring->last_seg) {
150 		if (ring->type != TYPE_EVENT) {
151 			ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
152 				&= ~cpu_to_le32(LINK_TOGGLE);
153 			last->trbs[TRBS_PER_SEGMENT-1].link.control
154 				|= cpu_to_le32(LINK_TOGGLE);
155 		}
156 		ring->last_seg = last;
157 	}
158 
159 	for (seg = last; seg != ring->last_seg; seg = seg->next)
160 		seg->next->num = seg->num + 1;
161 }
162 
163 /*
164  * We need a radix tree for mapping physical addresses of TRBs to which stream
165  * ID they belong to.  We need to do this because the host controller won't tell
166  * us which stream ring the TRB came from.  We could store the stream ID in an
167  * event data TRB, but that doesn't help us for the cancellation case, since the
168  * endpoint may stop before it reaches that event data TRB.
169  *
170  * The radix tree maps the upper portion of the TRB DMA address to a ring
171  * segment that has the same upper portion of DMA addresses.  For example, say I
172  * have segments of size 1KB, that are always 1KB aligned.  A segment may
173  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
174  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
175  * pass the radix tree a key to get the right stream ID:
176  *
177  *	0x10c90fff >> 10 = 0x43243
178  *	0x10c912c0 >> 10 = 0x43244
179  *	0x10c91400 >> 10 = 0x43245
180  *
181  * Obviously, only those TRBs with DMA addresses that are within the segment
182  * will make the radix tree return the stream ID for that ring.
183  *
184  * Caveats for the radix tree:
185  *
186  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
187  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
188  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
189  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
190  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
191  * extended systems (where the DMA address can be bigger than 32-bits),
192  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
193  */
194 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
195 		struct xhci_ring *ring,
196 		struct xhci_segment *seg,
197 		gfp_t mem_flags)
198 {
199 	unsigned long key;
200 	int ret;
201 
202 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
203 	/* Skip any segments that were already added. */
204 	if (radix_tree_lookup(trb_address_map, key))
205 		return 0;
206 
207 	ret = radix_tree_maybe_preload(mem_flags);
208 	if (ret)
209 		return ret;
210 	ret = radix_tree_insert(trb_address_map,
211 			key, ring);
212 	radix_tree_preload_end();
213 	return ret;
214 }
215 
216 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
217 		struct xhci_segment *seg)
218 {
219 	unsigned long key;
220 
221 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
222 	if (radix_tree_lookup(trb_address_map, key))
223 		radix_tree_delete(trb_address_map, key);
224 }
225 
226 static int xhci_update_stream_segment_mapping(
227 		struct radix_tree_root *trb_address_map,
228 		struct xhci_ring *ring,
229 		struct xhci_segment *first_seg,
230 		struct xhci_segment *last_seg,
231 		gfp_t mem_flags)
232 {
233 	struct xhci_segment *seg;
234 	struct xhci_segment *failed_seg;
235 	int ret;
236 
237 	if (WARN_ON_ONCE(trb_address_map == NULL))
238 		return 0;
239 
240 	seg = first_seg;
241 	do {
242 		ret = xhci_insert_segment_mapping(trb_address_map,
243 				ring, seg, mem_flags);
244 		if (ret)
245 			goto remove_streams;
246 		if (seg == last_seg)
247 			return 0;
248 		seg = seg->next;
249 	} while (seg != first_seg);
250 
251 	return 0;
252 
253 remove_streams:
254 	failed_seg = seg;
255 	seg = first_seg;
256 	do {
257 		xhci_remove_segment_mapping(trb_address_map, seg);
258 		if (seg == failed_seg)
259 			return ret;
260 		seg = seg->next;
261 	} while (seg != first_seg);
262 
263 	return ret;
264 }
265 
266 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
267 {
268 	struct xhci_segment *seg;
269 
270 	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
271 		return;
272 
273 	seg = ring->first_seg;
274 	do {
275 		xhci_remove_segment_mapping(ring->trb_address_map, seg);
276 		seg = seg->next;
277 	} while (seg != ring->first_seg);
278 }
279 
280 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
281 {
282 	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
283 			ring->first_seg, ring->last_seg, mem_flags);
284 }
285 
286 /* XXX: Do we need the hcd structure in all these functions? */
287 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
288 {
289 	if (!ring)
290 		return;
291 
292 	trace_xhci_ring_free(ring);
293 
294 	if (ring->first_seg) {
295 		if (ring->type == TYPE_STREAM)
296 			xhci_remove_stream_mapping(ring);
297 		xhci_free_segments_for_ring(xhci, ring->first_seg);
298 	}
299 
300 	kfree(ring);
301 }
302 
303 void xhci_initialize_ring_info(struct xhci_ring *ring,
304 			       unsigned int cycle_state)
305 {
306 	/* The ring is empty, so the enqueue pointer == dequeue pointer */
307 	ring->enqueue = ring->first_seg->trbs;
308 	ring->enq_seg = ring->first_seg;
309 	ring->dequeue = ring->enqueue;
310 	ring->deq_seg = ring->first_seg;
311 	/* The ring is initialized to 0. The producer must write 1 to the cycle
312 	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
313 	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
314 	 *
315 	 * New rings are initialized with cycle state equal to 1; if we are
316 	 * handling ring expansion, set the cycle state equal to the old ring.
317 	 */
318 	ring->cycle_state = cycle_state;
319 
320 	/*
321 	 * Each segment has a link TRB, and leave an extra TRB for SW
322 	 * accounting purpose
323 	 */
324 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
325 }
326 EXPORT_SYMBOL_GPL(xhci_initialize_ring_info);
327 
328 /* Allocate segments and link them for a ring */
329 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
330 		struct xhci_segment **first, struct xhci_segment **last,
331 		unsigned int num_segs, unsigned int num,
332 		unsigned int cycle_state, enum xhci_ring_type type,
333 		unsigned int max_packet, gfp_t flags)
334 {
335 	struct xhci_segment *prev;
336 	bool chain_links;
337 
338 	/* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
339 	chain_links = !!(xhci_link_trb_quirk(xhci) ||
340 			 (type == TYPE_ISOC &&
341 			  (xhci->quirks & XHCI_AMD_0x96_HOST)));
342 
343 	prev = xhci_segment_alloc(xhci, cycle_state, max_packet, num, flags);
344 	if (!prev)
345 		return -ENOMEM;
346 	num++;
347 
348 	*first = prev;
349 	while (num < num_segs) {
350 		struct xhci_segment	*next;
351 
352 		next = xhci_segment_alloc(xhci, cycle_state, max_packet, num,
353 					  flags);
354 		if (!next)
355 			goto free_segments;
356 
357 		xhci_link_segments(prev, next, type, chain_links);
358 		prev = next;
359 		num++;
360 	}
361 	xhci_link_segments(prev, *first, type, chain_links);
362 	*last = prev;
363 
364 	return 0;
365 
366 free_segments:
367 	xhci_free_segments_for_ring(xhci, *first);
368 	return -ENOMEM;
369 }
370 
371 /*
372  * Create a new ring with zero or more segments.
373  *
374  * Link each segment together into a ring.
375  * Set the end flag and the cycle toggle bit on the last segment.
376  * See section 4.9.1 and figures 15 and 16.
377  */
378 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
379 		unsigned int num_segs, unsigned int cycle_state,
380 		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
381 {
382 	struct xhci_ring	*ring;
383 	int ret;
384 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
385 
386 	ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
387 	if (!ring)
388 		return NULL;
389 
390 	ring->num_segs = num_segs;
391 	ring->bounce_buf_len = max_packet;
392 	INIT_LIST_HEAD(&ring->td_list);
393 	ring->type = type;
394 	if (num_segs == 0)
395 		return ring;
396 
397 	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
398 			&ring->last_seg, num_segs, 0, cycle_state, type,
399 			max_packet, flags);
400 	if (ret)
401 		goto fail;
402 
403 	/* Only event ring does not use link TRB */
404 	if (type != TYPE_EVENT) {
405 		/* See section 4.9.2.1 and 6.4.4.1 */
406 		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
407 			cpu_to_le32(LINK_TOGGLE);
408 	}
409 	xhci_initialize_ring_info(ring, cycle_state);
410 	trace_xhci_ring_alloc(ring);
411 	return ring;
412 
413 fail:
414 	kfree(ring);
415 	return NULL;
416 }
417 
418 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
419 		struct xhci_virt_device *virt_dev,
420 		unsigned int ep_index)
421 {
422 	xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
423 	virt_dev->eps[ep_index].ring = NULL;
424 }
425 
426 /*
427  * Expand an existing ring.
428  * Allocate a new ring which has same segment numbers and link the two rings.
429  */
430 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
431 				unsigned int num_new_segs, gfp_t flags)
432 {
433 	struct xhci_segment	*first;
434 	struct xhci_segment	*last;
435 	int			ret;
436 
437 	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
438 			num_new_segs, ring->enq_seg->num + 1,
439 			ring->cycle_state, ring->type,
440 			ring->bounce_buf_len, flags);
441 	if (ret)
442 		return -ENOMEM;
443 
444 	if (ring->type == TYPE_STREAM) {
445 		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
446 						ring, first, last, flags);
447 		if (ret)
448 			goto free_segments;
449 	}
450 
451 	xhci_link_rings(xhci, ring, first, last, num_new_segs);
452 	trace_xhci_ring_expansion(ring);
453 	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
454 			"ring expansion succeed, now has %d segments",
455 			ring->num_segs);
456 
457 	return 0;
458 
459 free_segments:
460 	xhci_free_segments_for_ring(xhci, first);
461 	return ret;
462 }
463 
464 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
465 						    int type, gfp_t flags)
466 {
467 	struct xhci_container_ctx *ctx;
468 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
469 
470 	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
471 		return NULL;
472 
473 	ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
474 	if (!ctx)
475 		return NULL;
476 
477 	ctx->type = type;
478 	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
479 	if (type == XHCI_CTX_TYPE_INPUT)
480 		ctx->size += CTX_SIZE(xhci->hcc_params);
481 
482 	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
483 	if (!ctx->bytes) {
484 		kfree(ctx);
485 		return NULL;
486 	}
487 	return ctx;
488 }
489 
490 void xhci_free_container_ctx(struct xhci_hcd *xhci,
491 			     struct xhci_container_ctx *ctx)
492 {
493 	if (!ctx)
494 		return;
495 	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
496 	kfree(ctx);
497 }
498 
499 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
500 					      struct xhci_container_ctx *ctx)
501 {
502 	if (ctx->type != XHCI_CTX_TYPE_INPUT)
503 		return NULL;
504 
505 	return (struct xhci_input_control_ctx *)ctx->bytes;
506 }
507 
508 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
509 					struct xhci_container_ctx *ctx)
510 {
511 	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
512 		return (struct xhci_slot_ctx *)ctx->bytes;
513 
514 	return (struct xhci_slot_ctx *)
515 		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
516 }
517 
518 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
519 				    struct xhci_container_ctx *ctx,
520 				    unsigned int ep_index)
521 {
522 	/* increment ep index by offset of start of ep ctx array */
523 	ep_index++;
524 	if (ctx->type == XHCI_CTX_TYPE_INPUT)
525 		ep_index++;
526 
527 	return (struct xhci_ep_ctx *)
528 		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
529 }
530 EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
531 
532 /***************** Streams structures manipulation *************************/
533 
534 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
535 		unsigned int num_stream_ctxs,
536 		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
537 {
538 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
539 	size_t size = array_size(sizeof(struct xhci_stream_ctx), num_stream_ctxs);
540 
541 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
542 		dma_free_coherent(dev, size, stream_ctx, dma);
543 	else if (size > SMALL_STREAM_ARRAY_SIZE)
544 		dma_pool_free(xhci->medium_streams_pool, stream_ctx, dma);
545 	else
546 		dma_pool_free(xhci->small_streams_pool, stream_ctx, dma);
547 }
548 
549 /*
550  * The stream context array for each endpoint with bulk streams enabled can
551  * vary in size, based on:
552  *  - how many streams the endpoint supports,
553  *  - the maximum primary stream array size the host controller supports,
554  *  - and how many streams the device driver asks for.
555  *
556  * The stream context array must be a power of 2, and can be as small as
557  * 64 bytes or as large as 1MB.
558  */
559 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
560 		unsigned int num_stream_ctxs, dma_addr_t *dma,
561 		gfp_t mem_flags)
562 {
563 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
564 	size_t size = array_size(sizeof(struct xhci_stream_ctx), num_stream_ctxs);
565 
566 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
567 		return dma_alloc_coherent(dev, size, dma, mem_flags);
568 	if (size > SMALL_STREAM_ARRAY_SIZE)
569 		return dma_pool_zalloc(xhci->medium_streams_pool, mem_flags, dma);
570 	else
571 		return dma_pool_zalloc(xhci->small_streams_pool, mem_flags, dma);
572 }
573 
574 struct xhci_ring *xhci_dma_to_transfer_ring(
575 		struct xhci_virt_ep *ep,
576 		u64 address)
577 {
578 	if (ep->ep_state & EP_HAS_STREAMS)
579 		return radix_tree_lookup(&ep->stream_info->trb_address_map,
580 				address >> TRB_SEGMENT_SHIFT);
581 	return ep->ring;
582 }
583 
584 /*
585  * Change an endpoint's internal structure so it supports stream IDs.  The
586  * number of requested streams includes stream 0, which cannot be used by device
587  * drivers.
588  *
589  * The number of stream contexts in the stream context array may be bigger than
590  * the number of streams the driver wants to use.  This is because the number of
591  * stream context array entries must be a power of two.
592  */
593 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
594 		unsigned int num_stream_ctxs,
595 		unsigned int num_streams,
596 		unsigned int max_packet, gfp_t mem_flags)
597 {
598 	struct xhci_stream_info *stream_info;
599 	u32 cur_stream;
600 	struct xhci_ring *cur_ring;
601 	u64 addr;
602 	int ret;
603 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
604 
605 	xhci_dbg(xhci, "Allocating %u streams and %u stream context array entries.\n",
606 			num_streams, num_stream_ctxs);
607 	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
608 		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
609 		return NULL;
610 	}
611 	xhci->cmd_ring_reserved_trbs++;
612 
613 	stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
614 			dev_to_node(dev));
615 	if (!stream_info)
616 		goto cleanup_trbs;
617 
618 	stream_info->num_streams = num_streams;
619 	stream_info->num_stream_ctxs = num_stream_ctxs;
620 
621 	/* Initialize the array of virtual pointers to stream rings. */
622 	stream_info->stream_rings = kcalloc_node(
623 			num_streams, sizeof(struct xhci_ring *), mem_flags,
624 			dev_to_node(dev));
625 	if (!stream_info->stream_rings)
626 		goto cleanup_info;
627 
628 	/* Initialize the array of DMA addresses for stream rings for the HW. */
629 	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
630 			num_stream_ctxs, &stream_info->ctx_array_dma,
631 			mem_flags);
632 	if (!stream_info->stream_ctx_array)
633 		goto cleanup_ring_array;
634 
635 	/* Allocate everything needed to free the stream rings later */
636 	stream_info->free_streams_command =
637 		xhci_alloc_command_with_ctx(xhci, true, mem_flags);
638 	if (!stream_info->free_streams_command)
639 		goto cleanup_ctx;
640 
641 	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
642 
643 	/* Allocate rings for all the streams that the driver will use,
644 	 * and add their segment DMA addresses to the radix tree.
645 	 * Stream 0 is reserved.
646 	 */
647 
648 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
649 		stream_info->stream_rings[cur_stream] =
650 			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
651 					mem_flags);
652 		cur_ring = stream_info->stream_rings[cur_stream];
653 		if (!cur_ring)
654 			goto cleanup_rings;
655 		cur_ring->stream_id = cur_stream;
656 		cur_ring->trb_address_map = &stream_info->trb_address_map;
657 		/* Set deq ptr, cycle bit, and stream context type */
658 		addr = cur_ring->first_seg->dma |
659 			SCT_FOR_CTX(SCT_PRI_TR) |
660 			cur_ring->cycle_state;
661 		stream_info->stream_ctx_array[cur_stream].stream_ring =
662 			cpu_to_le64(addr);
663 		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", cur_stream, addr);
664 
665 		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
666 		if (ret) {
667 			xhci_ring_free(xhci, cur_ring);
668 			stream_info->stream_rings[cur_stream] = NULL;
669 			goto cleanup_rings;
670 		}
671 	}
672 	/* Leave the other unused stream ring pointers in the stream context
673 	 * array initialized to zero.  This will cause the xHC to give us an
674 	 * error if the device asks for a stream ID we don't have setup (if it
675 	 * was any other way, the host controller would assume the ring is
676 	 * "empty" and wait forever for data to be queued to that stream ID).
677 	 */
678 
679 	return stream_info;
680 
681 cleanup_rings:
682 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
683 		cur_ring = stream_info->stream_rings[cur_stream];
684 		if (cur_ring) {
685 			xhci_ring_free(xhci, cur_ring);
686 			stream_info->stream_rings[cur_stream] = NULL;
687 		}
688 	}
689 	xhci_free_command(xhci, stream_info->free_streams_command);
690 cleanup_ctx:
691 	xhci_free_stream_ctx(xhci,
692 		stream_info->num_stream_ctxs,
693 		stream_info->stream_ctx_array,
694 		stream_info->ctx_array_dma);
695 cleanup_ring_array:
696 	kfree(stream_info->stream_rings);
697 cleanup_info:
698 	kfree(stream_info);
699 cleanup_trbs:
700 	xhci->cmd_ring_reserved_trbs--;
701 	return NULL;
702 }
703 /*
704  * Sets the MaxPStreams field and the Linear Stream Array field.
705  * Sets the dequeue pointer to the stream context array.
706  */
707 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
708 		struct xhci_ep_ctx *ep_ctx,
709 		struct xhci_stream_info *stream_info)
710 {
711 	u32 max_primary_streams;
712 	/* MaxPStreams is the number of stream context array entries, not the
713 	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
714 	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
715 	 */
716 	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
717 	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
718 			"Setting number of stream ctx array entries to %u",
719 			1 << (max_primary_streams + 1));
720 	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
721 	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
722 				       | EP_HAS_LSA);
723 	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
724 }
725 
726 /*
727  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
728  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
729  * not at the beginning of the ring).
730  */
731 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
732 		struct xhci_virt_ep *ep)
733 {
734 	dma_addr_t addr;
735 	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
736 	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
737 	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
738 }
739 
740 /* Frees all stream contexts associated with the endpoint,
741  *
742  * Caller should fix the endpoint context streams fields.
743  */
744 void xhci_free_stream_info(struct xhci_hcd *xhci,
745 		struct xhci_stream_info *stream_info)
746 {
747 	int cur_stream;
748 	struct xhci_ring *cur_ring;
749 
750 	if (!stream_info)
751 		return;
752 
753 	for (cur_stream = 1; cur_stream < stream_info->num_streams;
754 			cur_stream++) {
755 		cur_ring = stream_info->stream_rings[cur_stream];
756 		if (cur_ring) {
757 			xhci_ring_free(xhci, cur_ring);
758 			stream_info->stream_rings[cur_stream] = NULL;
759 		}
760 	}
761 	xhci_free_command(xhci, stream_info->free_streams_command);
762 	xhci->cmd_ring_reserved_trbs--;
763 	if (stream_info->stream_ctx_array)
764 		xhci_free_stream_ctx(xhci,
765 				stream_info->num_stream_ctxs,
766 				stream_info->stream_ctx_array,
767 				stream_info->ctx_array_dma);
768 
769 	kfree(stream_info->stream_rings);
770 	kfree(stream_info);
771 }
772 
773 
774 /***************** Device context manipulation *************************/
775 
776 static void xhci_free_tt_info(struct xhci_hcd *xhci,
777 		struct xhci_virt_device *virt_dev,
778 		int slot_id)
779 {
780 	struct list_head *tt_list_head;
781 	struct xhci_tt_bw_info *tt_info, *next;
782 	bool slot_found = false;
783 
784 	/* If the device never made it past the Set Address stage,
785 	 * it may not have the root hub port pointer set correctly.
786 	 */
787 	if (!virt_dev->rhub_port) {
788 		xhci_dbg(xhci, "Bad rhub port.\n");
789 		return;
790 	}
791 
792 	tt_list_head = &(xhci->rh_bw[virt_dev->rhub_port->hw_portnum].tts);
793 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
794 		/* Multi-TT hubs will have more than one entry */
795 		if (tt_info->slot_id == slot_id) {
796 			slot_found = true;
797 			list_del(&tt_info->tt_list);
798 			kfree(tt_info);
799 		} else if (slot_found) {
800 			break;
801 		}
802 	}
803 }
804 
805 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
806 		struct xhci_virt_device *virt_dev,
807 		struct usb_device *hdev,
808 		struct usb_tt *tt, gfp_t mem_flags)
809 {
810 	struct xhci_tt_bw_info		*tt_info;
811 	unsigned int			num_ports;
812 	int				i, j;
813 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
814 
815 	if (!tt->multi)
816 		num_ports = 1;
817 	else
818 		num_ports = hdev->maxchild;
819 
820 	for (i = 0; i < num_ports; i++, tt_info++) {
821 		struct xhci_interval_bw_table *bw_table;
822 
823 		tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
824 				dev_to_node(dev));
825 		if (!tt_info)
826 			goto free_tts;
827 		INIT_LIST_HEAD(&tt_info->tt_list);
828 		list_add(&tt_info->tt_list,
829 				&xhci->rh_bw[virt_dev->rhub_port->hw_portnum].tts);
830 		tt_info->slot_id = virt_dev->udev->slot_id;
831 		if (tt->multi)
832 			tt_info->ttport = i+1;
833 		bw_table = &tt_info->bw_table;
834 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
835 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
836 	}
837 	return 0;
838 
839 free_tts:
840 	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
841 	return -ENOMEM;
842 }
843 
844 
845 /* All the xhci_tds in the ring's TD list should be freed at this point.
846  * Should be called with xhci->lock held if there is any chance the TT lists
847  * will be manipulated by the configure endpoint, allocate device, or update
848  * hub functions while this function is removing the TT entries from the list.
849  */
850 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
851 {
852 	struct xhci_virt_device *dev;
853 	int i;
854 	int old_active_eps = 0;
855 
856 	/* Slot ID 0 is reserved */
857 	if (slot_id == 0 || !xhci->devs[slot_id])
858 		return;
859 
860 	dev = xhci->devs[slot_id];
861 
862 	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
863 	if (!dev)
864 		return;
865 
866 	trace_xhci_free_virt_device(dev);
867 
868 	if (dev->tt_info)
869 		old_active_eps = dev->tt_info->active_eps;
870 
871 	for (i = 0; i < 31; i++) {
872 		if (dev->eps[i].ring)
873 			xhci_ring_free(xhci, dev->eps[i].ring);
874 		if (dev->eps[i].stream_info)
875 			xhci_free_stream_info(xhci,
876 					dev->eps[i].stream_info);
877 		/*
878 		 * Endpoints are normally deleted from the bandwidth list when
879 		 * endpoints are dropped, before device is freed.
880 		 * If host is dying or being removed then endpoints aren't
881 		 * dropped cleanly, so delete the endpoint from list here.
882 		 * Only applicable for hosts with software bandwidth checking.
883 		 */
884 
885 		if (!list_empty(&dev->eps[i].bw_endpoint_list)) {
886 			list_del_init(&dev->eps[i].bw_endpoint_list);
887 			xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n",
888 				 slot_id, i);
889 		}
890 	}
891 	/* If this is a hub, free the TT(s) from the TT list */
892 	xhci_free_tt_info(xhci, dev, slot_id);
893 	/* If necessary, update the number of active TTs on this root port */
894 	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
895 
896 	if (dev->in_ctx)
897 		xhci_free_container_ctx(xhci, dev->in_ctx);
898 	if (dev->out_ctx)
899 		xhci_free_container_ctx(xhci, dev->out_ctx);
900 
901 	if (dev->udev && dev->udev->slot_id)
902 		dev->udev->slot_id = 0;
903 	if (dev->rhub_port && dev->rhub_port->slot_id == slot_id)
904 		dev->rhub_port->slot_id = 0;
905 	kfree(xhci->devs[slot_id]);
906 	xhci->devs[slot_id] = NULL;
907 }
908 
909 /*
910  * Free a virt_device structure.
911  * If the virt_device added a tt_info (a hub) and has children pointing to
912  * that tt_info, then free the child first. Recursive.
913  * We can't rely on udev at this point to find child-parent relationships.
914  */
915 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
916 {
917 	struct xhci_virt_device *vdev;
918 	struct list_head *tt_list_head;
919 	struct xhci_tt_bw_info *tt_info, *next;
920 	int i;
921 
922 	vdev = xhci->devs[slot_id];
923 	if (!vdev)
924 		return;
925 
926 	if (!vdev->rhub_port) {
927 		xhci_dbg(xhci, "Bad rhub port.\n");
928 		goto out;
929 	}
930 
931 	tt_list_head = &(xhci->rh_bw[vdev->rhub_port->hw_portnum].tts);
932 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
933 		/* is this a hub device that added a tt_info to the tts list */
934 		if (tt_info->slot_id == slot_id) {
935 			/* are any devices using this tt_info? */
936 			for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
937 				vdev = xhci->devs[i];
938 				if (vdev && (vdev->tt_info == tt_info))
939 					xhci_free_virt_devices_depth_first(
940 						xhci, i);
941 			}
942 		}
943 	}
944 out:
945 	/* we are now at a leaf device */
946 	xhci_debugfs_remove_slot(xhci, slot_id);
947 	xhci_free_virt_device(xhci, slot_id);
948 }
949 
950 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
951 		struct usb_device *udev, gfp_t flags)
952 {
953 	struct xhci_virt_device *dev;
954 	int i;
955 
956 	/* Slot ID 0 is reserved */
957 	if (slot_id == 0 || xhci->devs[slot_id]) {
958 		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
959 		return 0;
960 	}
961 
962 	dev = kzalloc(sizeof(*dev), flags);
963 	if (!dev)
964 		return 0;
965 
966 	dev->slot_id = slot_id;
967 
968 	/* Allocate the (output) device context that will be used in the HC. */
969 	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
970 	if (!dev->out_ctx)
971 		goto fail;
972 
973 	xhci_dbg(xhci, "Slot %d output ctx = 0x%pad (dma)\n", slot_id, &dev->out_ctx->dma);
974 
975 	/* Allocate the (input) device context for address device command */
976 	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
977 	if (!dev->in_ctx)
978 		goto fail;
979 
980 	xhci_dbg(xhci, "Slot %d input ctx = 0x%pad (dma)\n", slot_id, &dev->in_ctx->dma);
981 
982 	/* Initialize the cancellation and bandwidth list for each ep */
983 	for (i = 0; i < 31; i++) {
984 		dev->eps[i].ep_index = i;
985 		dev->eps[i].vdev = dev;
986 		dev->eps[i].xhci = xhci;
987 		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
988 		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
989 	}
990 
991 	/* Allocate endpoint 0 ring */
992 	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
993 	if (!dev->eps[0].ring)
994 		goto fail;
995 
996 	dev->udev = udev;
997 
998 	/* Point to output device context in dcbaa. */
999 	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1000 	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1001 		 slot_id,
1002 		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1003 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1004 
1005 	trace_xhci_alloc_virt_device(dev);
1006 
1007 	xhci->devs[slot_id] = dev;
1008 
1009 	return 1;
1010 fail:
1011 
1012 	if (dev->in_ctx)
1013 		xhci_free_container_ctx(xhci, dev->in_ctx);
1014 	if (dev->out_ctx)
1015 		xhci_free_container_ctx(xhci, dev->out_ctx);
1016 	kfree(dev);
1017 
1018 	return 0;
1019 }
1020 
1021 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1022 		struct usb_device *udev)
1023 {
1024 	struct xhci_virt_device *virt_dev;
1025 	struct xhci_ep_ctx	*ep0_ctx;
1026 	struct xhci_ring	*ep_ring;
1027 
1028 	virt_dev = xhci->devs[udev->slot_id];
1029 	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1030 	ep_ring = virt_dev->eps[0].ring;
1031 	/*
1032 	 * FIXME we don't keep track of the dequeue pointer very well after a
1033 	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1034 	 * host to our enqueue pointer.  This should only be called after a
1035 	 * configured device has reset, so all control transfers should have
1036 	 * been completed or cancelled before the reset.
1037 	 */
1038 	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1039 							ep_ring->enqueue)
1040 				   | ep_ring->cycle_state);
1041 }
1042 
1043 /*
1044  * The xHCI roothub may have ports of differing speeds in any order in the port
1045  * status registers.
1046  *
1047  * The xHCI hardware wants to know the roothub port that the USB device
1048  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1049  * know is the index of that port under either the USB 2.0 or the USB 3.0
1050  * roothub, but that doesn't give us the real index into the HW port status
1051  * registers.
1052  */
1053 static struct xhci_port *xhci_find_rhub_port(struct xhci_hcd *xhci, struct usb_device *udev)
1054 {
1055 	struct usb_device *top_dev;
1056 	struct xhci_hub *rhub;
1057 	struct usb_hcd *hcd;
1058 
1059 	if (udev->speed >= USB_SPEED_SUPER)
1060 		hcd = xhci_get_usb3_hcd(xhci);
1061 	else
1062 		hcd = xhci->main_hcd;
1063 
1064 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1065 			top_dev = top_dev->parent)
1066 		/* Found device below root hub */;
1067 
1068 	rhub = xhci_get_rhub(hcd);
1069 	return rhub->ports[top_dev->portnum - 1];
1070 }
1071 
1072 /* Setup an xHCI virtual device for a Set Address command */
1073 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1074 {
1075 	struct xhci_virt_device *dev;
1076 	struct xhci_ep_ctx	*ep0_ctx;
1077 	struct xhci_slot_ctx    *slot_ctx;
1078 	u32			max_packets;
1079 
1080 	dev = xhci->devs[udev->slot_id];
1081 	/* Slot ID 0 is reserved */
1082 	if (udev->slot_id == 0 || !dev) {
1083 		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1084 				udev->slot_id);
1085 		return -EINVAL;
1086 	}
1087 	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1088 	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1089 
1090 	/* 3) Only the control endpoint is valid - one endpoint context */
1091 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1092 	switch (udev->speed) {
1093 	case USB_SPEED_SUPER_PLUS:
1094 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1095 		max_packets = MAX_PACKET(512);
1096 		break;
1097 	case USB_SPEED_SUPER:
1098 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1099 		max_packets = MAX_PACKET(512);
1100 		break;
1101 	case USB_SPEED_HIGH:
1102 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1103 		max_packets = MAX_PACKET(64);
1104 		break;
1105 	/* USB core guesses at a 64-byte max packet first for FS devices */
1106 	case USB_SPEED_FULL:
1107 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1108 		max_packets = MAX_PACKET(64);
1109 		break;
1110 	case USB_SPEED_LOW:
1111 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1112 		max_packets = MAX_PACKET(8);
1113 		break;
1114 	default:
1115 		/* Speed was set earlier, this shouldn't happen. */
1116 		return -EINVAL;
1117 	}
1118 	/* Find the root hub port this device is under */
1119 	dev->rhub_port = xhci_find_rhub_port(xhci, udev);
1120 	if (!dev->rhub_port)
1121 		return -EINVAL;
1122 	/* Slot ID is set to the device directly below the root hub */
1123 	if (!udev->parent->parent)
1124 		dev->rhub_port->slot_id = udev->slot_id;
1125 	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(dev->rhub_port->hw_portnum + 1));
1126 	xhci_dbg(xhci, "Slot ID %d: HW portnum %d, hcd portnum %d\n",
1127 		 udev->slot_id, dev->rhub_port->hw_portnum, dev->rhub_port->hcd_portnum);
1128 
1129 	/* Find the right bandwidth table that this device will be a part of.
1130 	 * If this is a full speed device attached directly to a root port (or a
1131 	 * decendent of one), it counts as a primary bandwidth domain, not a
1132 	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1133 	 * will never be created for the HS root hub.
1134 	 */
1135 	if (!udev->tt || !udev->tt->hub->parent) {
1136 		dev->bw_table = &xhci->rh_bw[dev->rhub_port->hw_portnum].bw_table;
1137 	} else {
1138 		struct xhci_root_port_bw_info *rh_bw;
1139 		struct xhci_tt_bw_info *tt_bw;
1140 
1141 		rh_bw = &xhci->rh_bw[dev->rhub_port->hw_portnum];
1142 		/* Find the right TT. */
1143 		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1144 			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1145 				continue;
1146 
1147 			if (!dev->udev->tt->multi ||
1148 					(udev->tt->multi &&
1149 					 tt_bw->ttport == dev->udev->ttport)) {
1150 				dev->bw_table = &tt_bw->bw_table;
1151 				dev->tt_info = tt_bw;
1152 				break;
1153 			}
1154 		}
1155 		if (!dev->tt_info)
1156 			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1157 	}
1158 
1159 	/* Is this a LS/FS device under an external HS hub? */
1160 	if (udev->tt && udev->tt->hub->parent) {
1161 		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1162 						(udev->ttport << 8));
1163 		if (udev->tt->multi)
1164 			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1165 	}
1166 	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1167 	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1168 
1169 	/* Step 4 - ring already allocated */
1170 	/* Step 5 */
1171 	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1172 
1173 	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1174 	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1175 					 max_packets);
1176 
1177 	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1178 				   dev->eps[0].ring->cycle_state);
1179 
1180 	trace_xhci_setup_addressable_virt_device(dev);
1181 
1182 	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1183 
1184 	return 0;
1185 }
1186 
1187 /*
1188  * Convert interval expressed as 2^(bInterval - 1) == interval into
1189  * straight exponent value 2^n == interval.
1190  *
1191  */
1192 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1193 		struct usb_host_endpoint *ep)
1194 {
1195 	unsigned int interval;
1196 
1197 	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1198 	if (interval != ep->desc.bInterval - 1)
1199 		dev_warn(&udev->dev,
1200 			 "ep %#x - rounding interval to %d %sframes\n",
1201 			 ep->desc.bEndpointAddress,
1202 			 1 << interval,
1203 			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1204 
1205 	if (udev->speed == USB_SPEED_FULL) {
1206 		/*
1207 		 * Full speed isoc endpoints specify interval in frames,
1208 		 * not microframes. We are using microframes everywhere,
1209 		 * so adjust accordingly.
1210 		 */
1211 		interval += 3;	/* 1 frame = 2^3 uframes */
1212 	}
1213 
1214 	return interval;
1215 }
1216 
1217 /*
1218  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1219  * microframes, rounded down to nearest power of 2.
1220  */
1221 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1222 		struct usb_host_endpoint *ep, unsigned int desc_interval,
1223 		unsigned int min_exponent, unsigned int max_exponent)
1224 {
1225 	unsigned int interval;
1226 
1227 	interval = fls(desc_interval) - 1;
1228 	interval = clamp_val(interval, min_exponent, max_exponent);
1229 	if ((1 << interval) != desc_interval)
1230 		dev_dbg(&udev->dev,
1231 			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1232 			 ep->desc.bEndpointAddress,
1233 			 1 << interval,
1234 			 desc_interval);
1235 
1236 	return interval;
1237 }
1238 
1239 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1240 		struct usb_host_endpoint *ep)
1241 {
1242 	if (ep->desc.bInterval == 0)
1243 		return 0;
1244 	return xhci_microframes_to_exponent(udev, ep,
1245 			ep->desc.bInterval, 0, 15);
1246 }
1247 
1248 
1249 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1250 		struct usb_host_endpoint *ep)
1251 {
1252 	return xhci_microframes_to_exponent(udev, ep,
1253 			ep->desc.bInterval * 8, 3, 10);
1254 }
1255 
1256 /* Return the polling or NAK interval.
1257  *
1258  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1259  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1260  *
1261  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1262  * is set to 0.
1263  */
1264 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1265 		struct usb_host_endpoint *ep)
1266 {
1267 	unsigned int interval = 0;
1268 
1269 	switch (udev->speed) {
1270 	case USB_SPEED_HIGH:
1271 		/* Max NAK rate */
1272 		if (usb_endpoint_xfer_control(&ep->desc) ||
1273 		    usb_endpoint_xfer_bulk(&ep->desc)) {
1274 			interval = xhci_parse_microframe_interval(udev, ep);
1275 			break;
1276 		}
1277 		fallthrough;	/* SS and HS isoc/int have same decoding */
1278 
1279 	case USB_SPEED_SUPER_PLUS:
1280 	case USB_SPEED_SUPER:
1281 		if (usb_endpoint_xfer_int(&ep->desc) ||
1282 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1283 			interval = xhci_parse_exponent_interval(udev, ep);
1284 		}
1285 		break;
1286 
1287 	case USB_SPEED_FULL:
1288 		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1289 			interval = xhci_parse_exponent_interval(udev, ep);
1290 			break;
1291 		}
1292 		/*
1293 		 * Fall through for interrupt endpoint interval decoding
1294 		 * since it uses the same rules as low speed interrupt
1295 		 * endpoints.
1296 		 */
1297 		fallthrough;
1298 
1299 	case USB_SPEED_LOW:
1300 		if (usb_endpoint_xfer_int(&ep->desc) ||
1301 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1302 
1303 			interval = xhci_parse_frame_interval(udev, ep);
1304 		}
1305 		break;
1306 
1307 	default:
1308 		BUG();
1309 	}
1310 	return interval;
1311 }
1312 
1313 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1314  * High speed endpoint descriptors can define "the number of additional
1315  * transaction opportunities per microframe", but that goes in the Max Burst
1316  * endpoint context field.
1317  */
1318 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1319 		struct usb_host_endpoint *ep)
1320 {
1321 	if (udev->speed < USB_SPEED_SUPER ||
1322 			!usb_endpoint_xfer_isoc(&ep->desc))
1323 		return 0;
1324 	return ep->ss_ep_comp.bmAttributes;
1325 }
1326 
1327 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1328 				       struct usb_host_endpoint *ep)
1329 {
1330 	/* Super speed and Plus have max burst in ep companion desc */
1331 	if (udev->speed >= USB_SPEED_SUPER)
1332 		return ep->ss_ep_comp.bMaxBurst;
1333 
1334 	if (udev->speed == USB_SPEED_HIGH &&
1335 	    (usb_endpoint_xfer_isoc(&ep->desc) ||
1336 	     usb_endpoint_xfer_int(&ep->desc)))
1337 		return usb_endpoint_maxp_mult(&ep->desc) - 1;
1338 
1339 	return 0;
1340 }
1341 
1342 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1343 {
1344 	int in;
1345 
1346 	in = usb_endpoint_dir_in(&ep->desc);
1347 
1348 	switch (usb_endpoint_type(&ep->desc)) {
1349 	case USB_ENDPOINT_XFER_CONTROL:
1350 		return CTRL_EP;
1351 	case USB_ENDPOINT_XFER_BULK:
1352 		return in ? BULK_IN_EP : BULK_OUT_EP;
1353 	case USB_ENDPOINT_XFER_ISOC:
1354 		return in ? ISOC_IN_EP : ISOC_OUT_EP;
1355 	case USB_ENDPOINT_XFER_INT:
1356 		return in ? INT_IN_EP : INT_OUT_EP;
1357 	}
1358 	return 0;
1359 }
1360 
1361 /* Return the maximum endpoint service interval time (ESIT) payload.
1362  * Basically, this is the maxpacket size, multiplied by the burst size
1363  * and mult size.
1364  */
1365 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1366 		struct usb_host_endpoint *ep)
1367 {
1368 	int max_burst;
1369 	int max_packet;
1370 
1371 	/* Only applies for interrupt or isochronous endpoints */
1372 	if (usb_endpoint_xfer_control(&ep->desc) ||
1373 			usb_endpoint_xfer_bulk(&ep->desc))
1374 		return 0;
1375 
1376 	/* SuperSpeedPlus Isoc ep sending over 48k per esit */
1377 	if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1378 	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1379 		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1380 
1381 	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1382 	if (udev->speed >= USB_SPEED_SUPER)
1383 		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1384 
1385 	max_packet = usb_endpoint_maxp(&ep->desc);
1386 	max_burst = usb_endpoint_maxp_mult(&ep->desc);
1387 	/* A 0 in max burst means 1 transfer per ESIT */
1388 	return max_packet * max_burst;
1389 }
1390 
1391 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1392  * Drivers will have to call usb_alloc_streams() to do that.
1393  */
1394 int xhci_endpoint_init(struct xhci_hcd *xhci,
1395 		struct xhci_virt_device *virt_dev,
1396 		struct usb_device *udev,
1397 		struct usb_host_endpoint *ep,
1398 		gfp_t mem_flags)
1399 {
1400 	unsigned int ep_index;
1401 	struct xhci_ep_ctx *ep_ctx;
1402 	struct xhci_ring *ep_ring;
1403 	unsigned int max_packet;
1404 	enum xhci_ring_type ring_type;
1405 	u32 max_esit_payload;
1406 	u32 endpoint_type;
1407 	unsigned int max_burst;
1408 	unsigned int interval;
1409 	unsigned int mult;
1410 	unsigned int avg_trb_len;
1411 	unsigned int err_count = 0;
1412 
1413 	ep_index = xhci_get_endpoint_index(&ep->desc);
1414 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1415 
1416 	endpoint_type = xhci_get_endpoint_type(ep);
1417 	if (!endpoint_type)
1418 		return -EINVAL;
1419 
1420 	ring_type = usb_endpoint_type(&ep->desc);
1421 
1422 	/*
1423 	 * Get values to fill the endpoint context, mostly from ep descriptor.
1424 	 * The average TRB buffer lengt for bulk endpoints is unclear as we
1425 	 * have no clue on scatter gather list entry size. For Isoc and Int,
1426 	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1427 	 */
1428 	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1429 	interval = xhci_get_endpoint_interval(udev, ep);
1430 
1431 	/* Periodic endpoint bInterval limit quirk */
1432 	if (usb_endpoint_xfer_int(&ep->desc) ||
1433 	    usb_endpoint_xfer_isoc(&ep->desc)) {
1434 		if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1435 		    udev->speed >= USB_SPEED_HIGH &&
1436 		    interval >= 7) {
1437 			interval = 6;
1438 		}
1439 	}
1440 
1441 	mult = xhci_get_endpoint_mult(udev, ep);
1442 	max_packet = usb_endpoint_maxp(&ep->desc);
1443 	max_burst = xhci_get_endpoint_max_burst(udev, ep);
1444 	avg_trb_len = max_esit_payload;
1445 
1446 	/* FIXME dig Mult and streams info out of ep companion desc */
1447 
1448 	/* Allow 3 retries for everything but isoc, set CErr = 3 */
1449 	if (!usb_endpoint_xfer_isoc(&ep->desc))
1450 		err_count = 3;
1451 	/* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1452 	if (usb_endpoint_xfer_bulk(&ep->desc)) {
1453 		if (udev->speed == USB_SPEED_HIGH)
1454 			max_packet = 512;
1455 		if (udev->speed == USB_SPEED_FULL) {
1456 			max_packet = rounddown_pow_of_two(max_packet);
1457 			max_packet = clamp_val(max_packet, 8, 64);
1458 		}
1459 	}
1460 	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1461 	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1462 		avg_trb_len = 8;
1463 	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1464 	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1465 		mult = 0;
1466 
1467 	/* Set up the endpoint ring */
1468 	virt_dev->eps[ep_index].new_ring =
1469 		xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1470 	if (!virt_dev->eps[ep_index].new_ring)
1471 		return -ENOMEM;
1472 
1473 	virt_dev->eps[ep_index].skip = false;
1474 	ep_ring = virt_dev->eps[ep_index].new_ring;
1475 
1476 	/* Fill the endpoint context */
1477 	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1478 				      EP_INTERVAL(interval) |
1479 				      EP_MULT(mult));
1480 	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1481 				       MAX_PACKET(max_packet) |
1482 				       MAX_BURST(max_burst) |
1483 				       ERROR_COUNT(err_count));
1484 	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1485 				  ep_ring->cycle_state);
1486 
1487 	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1488 				      EP_AVG_TRB_LENGTH(avg_trb_len));
1489 
1490 	return 0;
1491 }
1492 
1493 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1494 		struct xhci_virt_device *virt_dev,
1495 		struct usb_host_endpoint *ep)
1496 {
1497 	unsigned int ep_index;
1498 	struct xhci_ep_ctx *ep_ctx;
1499 
1500 	ep_index = xhci_get_endpoint_index(&ep->desc);
1501 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1502 
1503 	ep_ctx->ep_info = 0;
1504 	ep_ctx->ep_info2 = 0;
1505 	ep_ctx->deq = 0;
1506 	ep_ctx->tx_info = 0;
1507 	/* Don't free the endpoint ring until the set interface or configuration
1508 	 * request succeeds.
1509 	 */
1510 }
1511 
1512 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1513 {
1514 	bw_info->ep_interval = 0;
1515 	bw_info->mult = 0;
1516 	bw_info->num_packets = 0;
1517 	bw_info->max_packet_size = 0;
1518 	bw_info->type = 0;
1519 	bw_info->max_esit_payload = 0;
1520 }
1521 
1522 void xhci_update_bw_info(struct xhci_hcd *xhci,
1523 		struct xhci_container_ctx *in_ctx,
1524 		struct xhci_input_control_ctx *ctrl_ctx,
1525 		struct xhci_virt_device *virt_dev)
1526 {
1527 	struct xhci_bw_info *bw_info;
1528 	struct xhci_ep_ctx *ep_ctx;
1529 	unsigned int ep_type;
1530 	int i;
1531 
1532 	for (i = 1; i < 31; i++) {
1533 		bw_info = &virt_dev->eps[i].bw_info;
1534 
1535 		/* We can't tell what endpoint type is being dropped, but
1536 		 * unconditionally clearing the bandwidth info for non-periodic
1537 		 * endpoints should be harmless because the info will never be
1538 		 * set in the first place.
1539 		 */
1540 		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1541 			/* Dropped endpoint */
1542 			xhci_clear_endpoint_bw_info(bw_info);
1543 			continue;
1544 		}
1545 
1546 		if (EP_IS_ADDED(ctrl_ctx, i)) {
1547 			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1548 			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1549 
1550 			/* Ignore non-periodic endpoints */
1551 			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1552 					ep_type != ISOC_IN_EP &&
1553 					ep_type != INT_IN_EP)
1554 				continue;
1555 
1556 			/* Added or changed endpoint */
1557 			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1558 					le32_to_cpu(ep_ctx->ep_info));
1559 			/* Number of packets and mult are zero-based in the
1560 			 * input context, but we want one-based for the
1561 			 * interval table.
1562 			 */
1563 			bw_info->mult = CTX_TO_EP_MULT(
1564 					le32_to_cpu(ep_ctx->ep_info)) + 1;
1565 			bw_info->num_packets = CTX_TO_MAX_BURST(
1566 					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1567 			bw_info->max_packet_size = MAX_PACKET_DECODED(
1568 					le32_to_cpu(ep_ctx->ep_info2));
1569 			bw_info->type = ep_type;
1570 			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1571 					le32_to_cpu(ep_ctx->tx_info));
1572 		}
1573 	}
1574 }
1575 
1576 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1577  * Useful when you want to change one particular aspect of the endpoint and then
1578  * issue a configure endpoint command.
1579  */
1580 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1581 		struct xhci_container_ctx *in_ctx,
1582 		struct xhci_container_ctx *out_ctx,
1583 		unsigned int ep_index)
1584 {
1585 	struct xhci_ep_ctx *out_ep_ctx;
1586 	struct xhci_ep_ctx *in_ep_ctx;
1587 
1588 	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1589 	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1590 
1591 	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1592 	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1593 	in_ep_ctx->deq = out_ep_ctx->deq;
1594 	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1595 	if (xhci->quirks & XHCI_MTK_HOST) {
1596 		in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1597 		in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1598 	}
1599 }
1600 
1601 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1602  * Useful when you want to change one particular aspect of the endpoint and then
1603  * issue a configure endpoint command.  Only the context entries field matters,
1604  * but we'll copy the whole thing anyway.
1605  */
1606 void xhci_slot_copy(struct xhci_hcd *xhci,
1607 		struct xhci_container_ctx *in_ctx,
1608 		struct xhci_container_ctx *out_ctx)
1609 {
1610 	struct xhci_slot_ctx *in_slot_ctx;
1611 	struct xhci_slot_ctx *out_slot_ctx;
1612 
1613 	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1614 	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1615 
1616 	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1617 	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1618 	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1619 	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1620 }
1621 
1622 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1623 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1624 {
1625 	int i;
1626 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1627 	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1628 
1629 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1630 			"Allocating %d scratchpad buffers", num_sp);
1631 
1632 	if (!num_sp)
1633 		return 0;
1634 
1635 	xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1636 				dev_to_node(dev));
1637 	if (!xhci->scratchpad)
1638 		goto fail_sp;
1639 
1640 	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1641 				     array_size(sizeof(u64), num_sp),
1642 				     &xhci->scratchpad->sp_dma, flags);
1643 	if (!xhci->scratchpad->sp_array)
1644 		goto fail_sp2;
1645 
1646 	xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1647 					flags, dev_to_node(dev));
1648 	if (!xhci->scratchpad->sp_buffers)
1649 		goto fail_sp3;
1650 
1651 	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1652 	for (i = 0; i < num_sp; i++) {
1653 		dma_addr_t dma;
1654 		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1655 					       flags);
1656 		if (!buf)
1657 			goto fail_sp4;
1658 
1659 		xhci->scratchpad->sp_array[i] = dma;
1660 		xhci->scratchpad->sp_buffers[i] = buf;
1661 	}
1662 
1663 	return 0;
1664 
1665  fail_sp4:
1666 	while (i--)
1667 		dma_free_coherent(dev, xhci->page_size,
1668 				    xhci->scratchpad->sp_buffers[i],
1669 				    xhci->scratchpad->sp_array[i]);
1670 
1671 	kfree(xhci->scratchpad->sp_buffers);
1672 
1673  fail_sp3:
1674 	dma_free_coherent(dev, array_size(sizeof(u64), num_sp),
1675 			    xhci->scratchpad->sp_array,
1676 			    xhci->scratchpad->sp_dma);
1677 
1678  fail_sp2:
1679 	kfree(xhci->scratchpad);
1680 	xhci->scratchpad = NULL;
1681 
1682  fail_sp:
1683 	return -ENOMEM;
1684 }
1685 
1686 static void scratchpad_free(struct xhci_hcd *xhci)
1687 {
1688 	int num_sp;
1689 	int i;
1690 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1691 
1692 	if (!xhci->scratchpad)
1693 		return;
1694 
1695 	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1696 
1697 	for (i = 0; i < num_sp; i++) {
1698 		dma_free_coherent(dev, xhci->page_size,
1699 				    xhci->scratchpad->sp_buffers[i],
1700 				    xhci->scratchpad->sp_array[i]);
1701 	}
1702 	kfree(xhci->scratchpad->sp_buffers);
1703 	dma_free_coherent(dev, array_size(sizeof(u64), num_sp),
1704 			    xhci->scratchpad->sp_array,
1705 			    xhci->scratchpad->sp_dma);
1706 	kfree(xhci->scratchpad);
1707 	xhci->scratchpad = NULL;
1708 }
1709 
1710 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1711 		bool allocate_completion, gfp_t mem_flags)
1712 {
1713 	struct xhci_command *command;
1714 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1715 
1716 	command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1717 	if (!command)
1718 		return NULL;
1719 
1720 	if (allocate_completion) {
1721 		command->completion =
1722 			kzalloc_node(sizeof(struct completion), mem_flags,
1723 				dev_to_node(dev));
1724 		if (!command->completion) {
1725 			kfree(command);
1726 			return NULL;
1727 		}
1728 		init_completion(command->completion);
1729 	}
1730 
1731 	command->status = 0;
1732 	/* set default timeout to 5000 ms */
1733 	command->timeout_ms = XHCI_CMD_DEFAULT_TIMEOUT;
1734 	INIT_LIST_HEAD(&command->cmd_list);
1735 	return command;
1736 }
1737 
1738 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1739 		bool allocate_completion, gfp_t mem_flags)
1740 {
1741 	struct xhci_command *command;
1742 
1743 	command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1744 	if (!command)
1745 		return NULL;
1746 
1747 	command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1748 						   mem_flags);
1749 	if (!command->in_ctx) {
1750 		kfree(command->completion);
1751 		kfree(command);
1752 		return NULL;
1753 	}
1754 	return command;
1755 }
1756 
1757 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1758 {
1759 	kfree(urb_priv);
1760 }
1761 
1762 void xhci_free_command(struct xhci_hcd *xhci,
1763 		struct xhci_command *command)
1764 {
1765 	xhci_free_container_ctx(xhci,
1766 			command->in_ctx);
1767 	kfree(command->completion);
1768 	kfree(command);
1769 }
1770 
1771 static int xhci_alloc_erst(struct xhci_hcd *xhci,
1772 		    struct xhci_ring *evt_ring,
1773 		    struct xhci_erst *erst,
1774 		    gfp_t flags)
1775 {
1776 	size_t size;
1777 	unsigned int val;
1778 	struct xhci_segment *seg;
1779 	struct xhci_erst_entry *entry;
1780 
1781 	size = array_size(sizeof(struct xhci_erst_entry), evt_ring->num_segs);
1782 	erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1783 					   size, &erst->erst_dma_addr, flags);
1784 	if (!erst->entries)
1785 		return -ENOMEM;
1786 
1787 	erst->num_entries = evt_ring->num_segs;
1788 
1789 	seg = evt_ring->first_seg;
1790 	for (val = 0; val < evt_ring->num_segs; val++) {
1791 		entry = &erst->entries[val];
1792 		entry->seg_addr = cpu_to_le64(seg->dma);
1793 		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1794 		entry->rsvd = 0;
1795 		seg = seg->next;
1796 	}
1797 
1798 	return 0;
1799 }
1800 
1801 static void
1802 xhci_remove_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1803 {
1804 	u32 tmp;
1805 
1806 	if (!ir)
1807 		return;
1808 
1809 	/*
1810 	 * Clean out interrupter registers except ERSTBA. Clearing either the
1811 	 * low or high 32 bits of ERSTBA immediately causes the controller to
1812 	 * dereference the partially cleared 64 bit address, causing IOMMU error.
1813 	 */
1814 	if (ir->ir_set) {
1815 		tmp = readl(&ir->ir_set->erst_size);
1816 		tmp &= ERST_SIZE_MASK;
1817 		writel(tmp, &ir->ir_set->erst_size);
1818 
1819 		xhci_write_64(xhci, ERST_EHB, &ir->ir_set->erst_dequeue);
1820 	}
1821 }
1822 
1823 static void
1824 xhci_free_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1825 {
1826 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1827 	size_t erst_size;
1828 
1829 	if (!ir)
1830 		return;
1831 
1832 	erst_size = array_size(sizeof(struct xhci_erst_entry), ir->erst.num_entries);
1833 	if (ir->erst.entries)
1834 		dma_free_coherent(dev, erst_size,
1835 				  ir->erst.entries,
1836 				  ir->erst.erst_dma_addr);
1837 	ir->erst.entries = NULL;
1838 
1839 	/* free interrupter event ring */
1840 	if (ir->event_ring)
1841 		xhci_ring_free(xhci, ir->event_ring);
1842 
1843 	ir->event_ring = NULL;
1844 
1845 	kfree(ir);
1846 }
1847 
1848 void xhci_remove_secondary_interrupter(struct usb_hcd *hcd, struct xhci_interrupter *ir)
1849 {
1850 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1851 	unsigned int intr_num;
1852 
1853 	spin_lock_irq(&xhci->lock);
1854 
1855 	/* interrupter 0 is primary interrupter, don't touch it */
1856 	if (!ir || !ir->intr_num || ir->intr_num >= xhci->max_interrupters) {
1857 		xhci_dbg(xhci, "Invalid secondary interrupter, can't remove\n");
1858 		spin_unlock_irq(&xhci->lock);
1859 		return;
1860 	}
1861 
1862 	intr_num = ir->intr_num;
1863 
1864 	xhci_remove_interrupter(xhci, ir);
1865 	xhci->interrupters[intr_num] = NULL;
1866 
1867 	spin_unlock_irq(&xhci->lock);
1868 
1869 	xhci_free_interrupter(xhci, ir);
1870 }
1871 EXPORT_SYMBOL_GPL(xhci_remove_secondary_interrupter);
1872 
1873 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1874 {
1875 	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
1876 	int i, j, num_ports;
1877 
1878 	cancel_delayed_work_sync(&xhci->cmd_timer);
1879 
1880 	for (i = 0; i < xhci->max_interrupters; i++) {
1881 		if (xhci->interrupters[i]) {
1882 			xhci_remove_interrupter(xhci, xhci->interrupters[i]);
1883 			xhci_free_interrupter(xhci, xhci->interrupters[i]);
1884 			xhci->interrupters[i] = NULL;
1885 		}
1886 	}
1887 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed interrupters");
1888 
1889 	if (xhci->cmd_ring)
1890 		xhci_ring_free(xhci, xhci->cmd_ring);
1891 	xhci->cmd_ring = NULL;
1892 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1893 	xhci_cleanup_command_queue(xhci);
1894 
1895 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1896 	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1897 		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1898 		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1899 			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1900 			while (!list_empty(ep))
1901 				list_del_init(ep->next);
1902 		}
1903 	}
1904 
1905 	for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1906 		xhci_free_virt_devices_depth_first(xhci, i);
1907 
1908 	dma_pool_destroy(xhci->segment_pool);
1909 	xhci->segment_pool = NULL;
1910 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1911 
1912 	dma_pool_destroy(xhci->device_pool);
1913 	xhci->device_pool = NULL;
1914 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1915 
1916 	dma_pool_destroy(xhci->small_streams_pool);
1917 	xhci->small_streams_pool = NULL;
1918 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1919 			"Freed small stream array pool");
1920 
1921 	dma_pool_destroy(xhci->medium_streams_pool);
1922 	xhci->medium_streams_pool = NULL;
1923 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1924 			"Freed medium stream array pool");
1925 
1926 	if (xhci->dcbaa)
1927 		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1928 				xhci->dcbaa, xhci->dcbaa->dma);
1929 	xhci->dcbaa = NULL;
1930 
1931 	scratchpad_free(xhci);
1932 
1933 	if (!xhci->rh_bw)
1934 		goto no_bw;
1935 
1936 	for (i = 0; i < num_ports; i++) {
1937 		struct xhci_tt_bw_info *tt, *n;
1938 		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1939 			list_del(&tt->tt_list);
1940 			kfree(tt);
1941 		}
1942 	}
1943 
1944 no_bw:
1945 	xhci->cmd_ring_reserved_trbs = 0;
1946 	xhci->usb2_rhub.num_ports = 0;
1947 	xhci->usb3_rhub.num_ports = 0;
1948 	xhci->num_active_eps = 0;
1949 	kfree(xhci->usb2_rhub.ports);
1950 	kfree(xhci->usb3_rhub.ports);
1951 	kfree(xhci->hw_ports);
1952 	kfree(xhci->rh_bw);
1953 	for (i = 0; i < xhci->num_port_caps; i++)
1954 		kfree(xhci->port_caps[i].psi);
1955 	kfree(xhci->port_caps);
1956 	kfree(xhci->interrupters);
1957 	xhci->num_port_caps = 0;
1958 
1959 	xhci->usb2_rhub.ports = NULL;
1960 	xhci->usb3_rhub.ports = NULL;
1961 	xhci->hw_ports = NULL;
1962 	xhci->rh_bw = NULL;
1963 	xhci->port_caps = NULL;
1964 	xhci->interrupters = NULL;
1965 
1966 	xhci->page_size = 0;
1967 	xhci->page_shift = 0;
1968 	xhci->usb2_rhub.bus_state.bus_suspended = 0;
1969 	xhci->usb3_rhub.bus_state.bus_suspended = 0;
1970 }
1971 
1972 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1973 {
1974 	dma_addr_t deq;
1975 
1976 	deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg,
1977 			ir->event_ring->dequeue);
1978 	if (!deq)
1979 		xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr.\n");
1980 	/* Update HC event ring dequeue pointer */
1981 	/* Don't clear the EHB bit (which is RW1C) because
1982 	 * there might be more events to service.
1983 	 */
1984 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1985 		       "// Write event ring dequeue pointer, preserving EHB bit");
1986 	xhci_write_64(xhci, deq & ERST_PTR_MASK, &ir->ir_set->erst_dequeue);
1987 }
1988 
1989 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1990 		__le32 __iomem *addr, int max_caps)
1991 {
1992 	u32 temp, port_offset, port_count;
1993 	int i;
1994 	u8 major_revision, minor_revision, tmp_minor_revision;
1995 	struct xhci_hub *rhub;
1996 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1997 	struct xhci_port_cap *port_cap;
1998 
1999 	temp = readl(addr);
2000 	major_revision = XHCI_EXT_PORT_MAJOR(temp);
2001 	minor_revision = XHCI_EXT_PORT_MINOR(temp);
2002 
2003 	if (major_revision == 0x03) {
2004 		rhub = &xhci->usb3_rhub;
2005 		/*
2006 		 * Some hosts incorrectly use sub-minor version for minor
2007 		 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
2008 		 * for bcdUSB 0x310). Since there is no USB release with sub
2009 		 * minor version 0x301 to 0x309, we can assume that they are
2010 		 * incorrect and fix it here.
2011 		 */
2012 		if (minor_revision > 0x00 && minor_revision < 0x10)
2013 			minor_revision <<= 4;
2014 		/*
2015 		 * Some zhaoxin's xHCI controller that follow usb3.1 spec
2016 		 * but only support Gen1.
2017 		 */
2018 		if (xhci->quirks & XHCI_ZHAOXIN_HOST) {
2019 			tmp_minor_revision = minor_revision;
2020 			minor_revision = 0;
2021 		}
2022 
2023 	} else if (major_revision <= 0x02) {
2024 		rhub = &xhci->usb2_rhub;
2025 	} else {
2026 		xhci_warn(xhci, "Ignoring unknown port speed, Ext Cap %p, revision = 0x%x\n",
2027 				addr, major_revision);
2028 		/* Ignoring port protocol we can't understand. FIXME */
2029 		return;
2030 	}
2031 
2032 	/* Port offset and count in the third dword, see section 7.2 */
2033 	temp = readl(addr + 2);
2034 	port_offset = XHCI_EXT_PORT_OFF(temp);
2035 	port_count = XHCI_EXT_PORT_COUNT(temp);
2036 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2037 		       "Ext Cap %p, port offset = %u, count = %u, revision = 0x%x",
2038 		       addr, port_offset, port_count, major_revision);
2039 	/* Port count includes the current port offset */
2040 	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2041 		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2042 		return;
2043 
2044 	port_cap = &xhci->port_caps[xhci->num_port_caps++];
2045 	if (xhci->num_port_caps > max_caps)
2046 		return;
2047 
2048 	port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2049 
2050 	if (port_cap->psi_count) {
2051 		port_cap->psi = kcalloc_node(port_cap->psi_count,
2052 					     sizeof(*port_cap->psi),
2053 					     GFP_KERNEL, dev_to_node(dev));
2054 		if (!port_cap->psi)
2055 			port_cap->psi_count = 0;
2056 
2057 		port_cap->psi_uid_count++;
2058 		for (i = 0; i < port_cap->psi_count; i++) {
2059 			port_cap->psi[i] = readl(addr + 4 + i);
2060 
2061 			/* count unique ID values, two consecutive entries can
2062 			 * have the same ID if link is assymetric
2063 			 */
2064 			if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2065 				  XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2066 				port_cap->psi_uid_count++;
2067 
2068 			if (xhci->quirks & XHCI_ZHAOXIN_HOST &&
2069 			    major_revision == 0x03 &&
2070 			    XHCI_EXT_PORT_PSIV(port_cap->psi[i]) >= 5)
2071 				minor_revision = tmp_minor_revision;
2072 
2073 			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2074 				  XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2075 				  XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2076 				  XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2077 				  XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2078 				  XHCI_EXT_PORT_LP(port_cap->psi[i]),
2079 				  XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2080 		}
2081 	}
2082 
2083 	rhub->maj_rev = major_revision;
2084 
2085 	if (rhub->min_rev < minor_revision)
2086 		rhub->min_rev = minor_revision;
2087 
2088 	port_cap->maj_rev = major_revision;
2089 	port_cap->min_rev = minor_revision;
2090 	port_cap->protocol_caps = temp;
2091 
2092 	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2093 		 (temp & XHCI_HLC)) {
2094 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2095 			       "xHCI 1.0: support USB2 hardware lpm");
2096 		xhci->hw_lpm_support = 1;
2097 	}
2098 
2099 	port_offset--;
2100 	for (i = port_offset; i < (port_offset + port_count); i++) {
2101 		struct xhci_port *hw_port = &xhci->hw_ports[i];
2102 		/* Duplicate entry.  Ignore the port if the revisions differ. */
2103 		if (hw_port->rhub) {
2104 			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p, port %u\n", addr, i);
2105 			xhci_warn(xhci, "Port was marked as USB %u, duplicated as USB %u\n",
2106 					hw_port->rhub->maj_rev, major_revision);
2107 			/* Only adjust the roothub port counts if we haven't
2108 			 * found a similar duplicate.
2109 			 */
2110 			if (hw_port->rhub != rhub &&
2111 				 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2112 				hw_port->rhub->num_ports--;
2113 				hw_port->hcd_portnum = DUPLICATE_ENTRY;
2114 			}
2115 			continue;
2116 		}
2117 		hw_port->rhub = rhub;
2118 		hw_port->port_cap = port_cap;
2119 		rhub->num_ports++;
2120 	}
2121 	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2122 }
2123 
2124 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2125 					struct xhci_hub *rhub, gfp_t flags)
2126 {
2127 	int port_index = 0;
2128 	int i;
2129 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2130 
2131 	if (!rhub->num_ports)
2132 		return;
2133 	rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2134 			flags, dev_to_node(dev));
2135 	if (!rhub->ports)
2136 		return;
2137 
2138 	for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2139 		if (xhci->hw_ports[i].rhub != rhub ||
2140 		    xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2141 			continue;
2142 		xhci->hw_ports[i].hcd_portnum = port_index;
2143 		rhub->ports[port_index] = &xhci->hw_ports[i];
2144 		port_index++;
2145 		if (port_index == rhub->num_ports)
2146 			break;
2147 	}
2148 }
2149 
2150 /*
2151  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2152  * specify what speeds each port is supposed to be.  We can't count on the port
2153  * speed bits in the PORTSC register being correct until a device is connected,
2154  * but we need to set up the two fake roothubs with the correct number of USB
2155  * 3.0 and USB 2.0 ports at host controller initialization time.
2156  */
2157 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2158 {
2159 	void __iomem *base;
2160 	u32 offset;
2161 	unsigned int num_ports;
2162 	int i, j;
2163 	int cap_count = 0;
2164 	u32 cap_start;
2165 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2166 
2167 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2168 	xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2169 				flags, dev_to_node(dev));
2170 	if (!xhci->hw_ports)
2171 		return -ENOMEM;
2172 
2173 	for (i = 0; i < num_ports; i++) {
2174 		xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2175 			NUM_PORT_REGS * i;
2176 		xhci->hw_ports[i].hw_portnum = i;
2177 
2178 		init_completion(&xhci->hw_ports[i].rexit_done);
2179 		init_completion(&xhci->hw_ports[i].u3exit_done);
2180 	}
2181 
2182 	xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2183 				   dev_to_node(dev));
2184 	if (!xhci->rh_bw)
2185 		return -ENOMEM;
2186 	for (i = 0; i < num_ports; i++) {
2187 		struct xhci_interval_bw_table *bw_table;
2188 
2189 		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2190 		bw_table = &xhci->rh_bw[i].bw_table;
2191 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2192 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2193 	}
2194 	base = &xhci->cap_regs->hc_capbase;
2195 
2196 	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2197 	if (!cap_start) {
2198 		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2199 		return -ENODEV;
2200 	}
2201 
2202 	offset = cap_start;
2203 	/* count extended protocol capability entries for later caching */
2204 	while (offset) {
2205 		cap_count++;
2206 		offset = xhci_find_next_ext_cap(base, offset,
2207 						      XHCI_EXT_CAPS_PROTOCOL);
2208 	}
2209 
2210 	xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2211 				flags, dev_to_node(dev));
2212 	if (!xhci->port_caps)
2213 		return -ENOMEM;
2214 
2215 	offset = cap_start;
2216 
2217 	while (offset) {
2218 		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2219 		if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2220 		    num_ports)
2221 			break;
2222 		offset = xhci_find_next_ext_cap(base, offset,
2223 						XHCI_EXT_CAPS_PROTOCOL);
2224 	}
2225 	if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2226 		xhci_warn(xhci, "No ports on the roothubs?\n");
2227 		return -ENODEV;
2228 	}
2229 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2230 		       "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2231 		       xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2232 
2233 	/* Place limits on the number of roothub ports so that the hub
2234 	 * descriptors aren't longer than the USB core will allocate.
2235 	 */
2236 	if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2237 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2238 				"Limiting USB 3.0 roothub ports to %u.",
2239 				USB_SS_MAXPORTS);
2240 		xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2241 	}
2242 	if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2243 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2244 				"Limiting USB 2.0 roothub ports to %u.",
2245 				USB_MAXCHILDREN);
2246 		xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2247 	}
2248 
2249 	if (!xhci->usb2_rhub.num_ports)
2250 		xhci_info(xhci, "USB2 root hub has no ports\n");
2251 
2252 	if (!xhci->usb3_rhub.num_ports)
2253 		xhci_info(xhci, "USB3 root hub has no ports\n");
2254 
2255 	xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2256 	xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2257 
2258 	return 0;
2259 }
2260 
2261 static struct xhci_interrupter *
2262 xhci_alloc_interrupter(struct xhci_hcd *xhci, unsigned int segs, gfp_t flags)
2263 {
2264 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2265 	struct xhci_interrupter *ir;
2266 	unsigned int max_segs;
2267 	int ret;
2268 
2269 	if (!segs)
2270 		segs = ERST_DEFAULT_SEGS;
2271 
2272 	max_segs = BIT(HCS_ERST_MAX(xhci->hcs_params2));
2273 	segs = min(segs, max_segs);
2274 
2275 	ir = kzalloc_node(sizeof(*ir), flags, dev_to_node(dev));
2276 	if (!ir)
2277 		return NULL;
2278 
2279 	ir->event_ring = xhci_ring_alloc(xhci, segs, 1, TYPE_EVENT, 0, flags);
2280 	if (!ir->event_ring) {
2281 		xhci_warn(xhci, "Failed to allocate interrupter event ring\n");
2282 		kfree(ir);
2283 		return NULL;
2284 	}
2285 
2286 	ret = xhci_alloc_erst(xhci, ir->event_ring, &ir->erst, flags);
2287 	if (ret) {
2288 		xhci_warn(xhci, "Failed to allocate interrupter erst\n");
2289 		xhci_ring_free(xhci, ir->event_ring);
2290 		kfree(ir);
2291 		return NULL;
2292 	}
2293 
2294 	return ir;
2295 }
2296 
2297 static int
2298 xhci_add_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir,
2299 		     unsigned int intr_num)
2300 {
2301 	u64 erst_base;
2302 	u32 erst_size;
2303 
2304 	if (intr_num >= xhci->max_interrupters) {
2305 		xhci_warn(xhci, "Can't add interrupter %d, max interrupters %d\n",
2306 			  intr_num, xhci->max_interrupters);
2307 		return -EINVAL;
2308 	}
2309 
2310 	if (xhci->interrupters[intr_num]) {
2311 		xhci_warn(xhci, "Interrupter %d\n already set up", intr_num);
2312 		return -EINVAL;
2313 	}
2314 
2315 	xhci->interrupters[intr_num] = ir;
2316 	ir->intr_num = intr_num;
2317 	ir->ir_set = &xhci->run_regs->ir_set[intr_num];
2318 
2319 	/* set ERST count with the number of entries in the segment table */
2320 	erst_size = readl(&ir->ir_set->erst_size);
2321 	erst_size &= ERST_SIZE_MASK;
2322 	erst_size |= ir->event_ring->num_segs;
2323 	writel(erst_size, &ir->ir_set->erst_size);
2324 
2325 	erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
2326 	erst_base &= ERST_BASE_RSVDP;
2327 	erst_base |= ir->erst.erst_dma_addr & ~ERST_BASE_RSVDP;
2328 	xhci_write_64(xhci, erst_base, &ir->ir_set->erst_base);
2329 
2330 	/* Set the event ring dequeue address of this interrupter */
2331 	xhci_set_hc_event_deq(xhci, ir);
2332 
2333 	return 0;
2334 }
2335 
2336 struct xhci_interrupter *
2337 xhci_create_secondary_interrupter(struct usb_hcd *hcd, unsigned int segs)
2338 {
2339 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2340 	struct xhci_interrupter *ir;
2341 	unsigned int i;
2342 	int err = -ENOSPC;
2343 
2344 	if (!xhci->interrupters || xhci->max_interrupters <= 1)
2345 		return NULL;
2346 
2347 	ir = xhci_alloc_interrupter(xhci, segs, GFP_KERNEL);
2348 	if (!ir)
2349 		return NULL;
2350 
2351 	spin_lock_irq(&xhci->lock);
2352 
2353 	/* Find available secondary interrupter, interrupter 0 is reserved for primary */
2354 	for (i = 1; i < xhci->max_interrupters; i++) {
2355 		if (xhci->interrupters[i] == NULL) {
2356 			err = xhci_add_interrupter(xhci, ir, i);
2357 			break;
2358 		}
2359 	}
2360 
2361 	spin_unlock_irq(&xhci->lock);
2362 
2363 	if (err) {
2364 		xhci_warn(xhci, "Failed to add secondary interrupter, max interrupters %d\n",
2365 			  xhci->max_interrupters);
2366 		xhci_free_interrupter(xhci, ir);
2367 		return NULL;
2368 	}
2369 
2370 	xhci_dbg(xhci, "Add secondary interrupter %d, max interrupters %d\n",
2371 		 i, xhci->max_interrupters);
2372 
2373 	return ir;
2374 }
2375 EXPORT_SYMBOL_GPL(xhci_create_secondary_interrupter);
2376 
2377 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2378 {
2379 	struct xhci_interrupter *ir;
2380 	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
2381 	dma_addr_t	dma;
2382 	unsigned int	val, val2;
2383 	u64		val_64;
2384 	u32		page_size, temp;
2385 	int		i;
2386 
2387 	INIT_LIST_HEAD(&xhci->cmd_list);
2388 
2389 	/* init command timeout work */
2390 	INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2391 	init_completion(&xhci->cmd_ring_stop_completion);
2392 
2393 	page_size = readl(&xhci->op_regs->page_size);
2394 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2395 			"Supported page size register = 0x%x", page_size);
2396 	i = ffs(page_size);
2397 	if (i < 16)
2398 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2399 			"Supported page size of %iK", (1 << (i+12)) / 1024);
2400 	else
2401 		xhci_warn(xhci, "WARN: no supported page size\n");
2402 	/* Use 4K pages, since that's common and the minimum the HC supports */
2403 	xhci->page_shift = 12;
2404 	xhci->page_size = 1 << xhci->page_shift;
2405 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2406 			"HCD page size set to %iK", xhci->page_size / 1024);
2407 
2408 	/*
2409 	 * Program the Number of Device Slots Enabled field in the CONFIG
2410 	 * register with the max value of slots the HC can handle.
2411 	 */
2412 	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2413 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2414 			"// xHC can handle at most %d device slots.", val);
2415 	val2 = readl(&xhci->op_regs->config_reg);
2416 	val |= (val2 & ~HCS_SLOTS_MASK);
2417 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2418 			"// Setting Max device slots reg = 0x%x.", val);
2419 	writel(val, &xhci->op_regs->config_reg);
2420 
2421 	/*
2422 	 * xHCI section 5.4.6 - Device Context array must be
2423 	 * "physically contiguous and 64-byte (cache line) aligned".
2424 	 */
2425 	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2426 			flags);
2427 	if (!xhci->dcbaa)
2428 		goto fail;
2429 	xhci->dcbaa->dma = dma;
2430 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2431 			"// Device context base array address = 0x%pad (DMA), %p (virt)",
2432 			&xhci->dcbaa->dma, xhci->dcbaa);
2433 	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2434 
2435 	/*
2436 	 * Initialize the ring segment pool.  The ring must be a contiguous
2437 	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2438 	 * however, the command ring segment needs 64-byte aligned segments
2439 	 * and our use of dma addresses in the trb_address_map radix tree needs
2440 	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2441 	 */
2442 	if (xhci->quirks & XHCI_ZHAOXIN_TRB_FETCH)
2443 		xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2444 				TRB_SEGMENT_SIZE * 2, TRB_SEGMENT_SIZE * 2, xhci->page_size * 2);
2445 	else
2446 		xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2447 				TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2448 
2449 	/* See Table 46 and Note on Figure 55 */
2450 	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2451 			2112, 64, xhci->page_size);
2452 	if (!xhci->segment_pool || !xhci->device_pool)
2453 		goto fail;
2454 
2455 	/* Linear stream context arrays don't have any boundary restrictions,
2456 	 * and only need to be 16-byte aligned.
2457 	 */
2458 	xhci->small_streams_pool =
2459 		dma_pool_create("xHCI 256 byte stream ctx arrays",
2460 			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2461 	xhci->medium_streams_pool =
2462 		dma_pool_create("xHCI 1KB stream ctx arrays",
2463 			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2464 	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2465 	 * will be allocated with dma_alloc_coherent()
2466 	 */
2467 
2468 	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2469 		goto fail;
2470 
2471 	/* Set up the command ring to have one segments for now. */
2472 	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2473 	if (!xhci->cmd_ring)
2474 		goto fail;
2475 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2476 			"Allocated command ring at %p", xhci->cmd_ring);
2477 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%pad",
2478 			&xhci->cmd_ring->first_seg->dma);
2479 
2480 	/* Set the address in the Command Ring Control register */
2481 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2482 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2483 		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2484 		xhci->cmd_ring->cycle_state;
2485 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2486 			"// Setting command ring address to 0x%016llx", val_64);
2487 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2488 
2489 	/* Reserve one command ring TRB for disabling LPM.
2490 	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2491 	 * disabling LPM, we only need to reserve one TRB for all devices.
2492 	 */
2493 	xhci->cmd_ring_reserved_trbs++;
2494 
2495 	val = readl(&xhci->cap_regs->db_off);
2496 	val &= DBOFF_MASK;
2497 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2498 		       "// Doorbell array is located at offset 0x%x from cap regs base addr",
2499 		       val);
2500 	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2501 
2502 	/* Allocate and set up primary interrupter 0 with an event ring. */
2503 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2504 		       "Allocating primary event ring");
2505 	xhci->interrupters = kcalloc_node(xhci->max_interrupters, sizeof(*xhci->interrupters),
2506 					  flags, dev_to_node(dev));
2507 
2508 	ir = xhci_alloc_interrupter(xhci, 0, flags);
2509 	if (!ir)
2510 		goto fail;
2511 
2512 	if (xhci_add_interrupter(xhci, ir, 0))
2513 		goto fail;
2514 
2515 	ir->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
2516 
2517 	/*
2518 	 * XXX: Might need to set the Interrupter Moderation Register to
2519 	 * something other than the default (~1ms minimum between interrupts).
2520 	 * See section 5.5.1.2.
2521 	 */
2522 	for (i = 0; i < MAX_HC_SLOTS; i++)
2523 		xhci->devs[i] = NULL;
2524 
2525 	if (scratchpad_alloc(xhci, flags))
2526 		goto fail;
2527 	if (xhci_setup_port_arrays(xhci, flags))
2528 		goto fail;
2529 
2530 	/* Enable USB 3.0 device notifications for function remote wake, which
2531 	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2532 	 * U3 (device suspend).
2533 	 */
2534 	temp = readl(&xhci->op_regs->dev_notification);
2535 	temp &= ~DEV_NOTE_MASK;
2536 	temp |= DEV_NOTE_FWAKE;
2537 	writel(temp, &xhci->op_regs->dev_notification);
2538 
2539 	return 0;
2540 
2541 fail:
2542 	xhci_halt(xhci);
2543 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2544 	xhci_mem_cleanup(xhci);
2545 	return -ENOMEM;
2546 }
2547