xref: /linux/drivers/usb/host/xhci-mem.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/usb.h>
12 #include <linux/overflow.h>
13 #include <linux/pci.h>
14 #include <linux/slab.h>
15 #include <linux/dmapool.h>
16 #include <linux/dma-mapping.h>
17 
18 #include "xhci.h"
19 #include "xhci-trace.h"
20 #include "xhci-debugfs.h"
21 
22 /*
23  * Allocates a generic ring segment from the ring pool, sets the dma address,
24  * initializes the segment to zero, and sets the private next pointer to NULL.
25  *
26  * Section 4.11.1.1:
27  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
28  */
29 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
30 					       unsigned int max_packet,
31 					       unsigned int num,
32 					       gfp_t flags)
33 {
34 	struct xhci_segment *seg;
35 	dma_addr_t	dma;
36 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
37 
38 	seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
39 	if (!seg)
40 		return NULL;
41 
42 	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
43 	if (!seg->trbs) {
44 		kfree(seg);
45 		return NULL;
46 	}
47 
48 	if (max_packet) {
49 		seg->bounce_buf = kzalloc_node(max_packet, flags,
50 					dev_to_node(dev));
51 		if (!seg->bounce_buf) {
52 			dma_pool_free(xhci->segment_pool, seg->trbs, dma);
53 			kfree(seg);
54 			return NULL;
55 		}
56 	}
57 	seg->num = num;
58 	seg->dma = dma;
59 	seg->next = NULL;
60 
61 	return seg;
62 }
63 
64 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
65 {
66 	if (seg->trbs) {
67 		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
68 		seg->trbs = NULL;
69 	}
70 	kfree(seg->bounce_buf);
71 	kfree(seg);
72 }
73 
74 static void xhci_ring_segments_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
75 {
76 	struct xhci_segment *seg, *next;
77 
78 	ring->last_seg->next = NULL;
79 	seg = ring->first_seg;
80 
81 	while (seg) {
82 		next = seg->next;
83 		xhci_segment_free(xhci, seg);
84 		seg = next;
85 	}
86 }
87 
88 /*
89  * Only for transfer and command rings where driver is the producer, not for
90  * event rings.
91  *
92  * Change the last TRB in the segment to be a Link TRB which points to the
93  * DMA address of the next segment.  The caller needs to set any Link TRB
94  * related flags, such as End TRB, Toggle Cycle, and no snoop.
95  */
96 static void xhci_set_link_trb(struct xhci_segment *seg, bool chain_links)
97 {
98 	union xhci_trb *trb;
99 	u32 val;
100 
101 	if (!seg || !seg->next)
102 		return;
103 
104 	trb = &seg->trbs[TRBS_PER_SEGMENT - 1];
105 
106 	/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
107 	val = le32_to_cpu(trb->link.control);
108 	val &= ~TRB_TYPE_BITMASK;
109 	val |= TRB_TYPE(TRB_LINK);
110 	if (chain_links)
111 		val |= TRB_CHAIN;
112 	trb->link.control = cpu_to_le32(val);
113 	trb->link.segment_ptr = cpu_to_le64(seg->next->dma);
114 }
115 
116 static void xhci_initialize_ring_segments(struct xhci_hcd *xhci, struct xhci_ring *ring)
117 {
118 	struct xhci_segment *seg;
119 	bool chain_links;
120 
121 	if (ring->type == TYPE_EVENT)
122 		return;
123 
124 	chain_links = xhci_link_chain_quirk(xhci, ring->type);
125 	xhci_for_each_ring_seg(ring->first_seg, seg)
126 		xhci_set_link_trb(seg, chain_links);
127 
128 	/* See section 4.9.2.1 and 6.4.4.1 */
129 	ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |= cpu_to_le32(LINK_TOGGLE);
130 }
131 
132 /*
133  * Link the src ring segments to the dst ring.
134  * Set Toggle Cycle for the new ring if needed.
135  */
136 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *src, struct xhci_ring *dst)
137 {
138 	struct xhci_segment *seg;
139 	bool chain_links;
140 
141 	if (!src || !dst)
142 		return;
143 
144 	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
145 	if (dst->cycle_state == 0) {
146 		xhci_for_each_ring_seg(src->first_seg, seg) {
147 			for (int i = 0; i < TRBS_PER_SEGMENT; i++)
148 				seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
149 		}
150 	}
151 
152 	src->last_seg->next = dst->enq_seg->next;
153 	dst->enq_seg->next = src->first_seg;
154 	if (dst->type != TYPE_EVENT) {
155 		chain_links = xhci_link_chain_quirk(xhci, dst->type);
156 		xhci_set_link_trb(dst->enq_seg, chain_links);
157 		xhci_set_link_trb(src->last_seg, chain_links);
158 	}
159 	dst->num_segs += src->num_segs;
160 
161 	if (dst->enq_seg == dst->last_seg) {
162 		if (dst->type != TYPE_EVENT)
163 			dst->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
164 				&= ~cpu_to_le32(LINK_TOGGLE);
165 
166 		dst->last_seg = src->last_seg;
167 	} else if (dst->type != TYPE_EVENT) {
168 		src->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control &= ~cpu_to_le32(LINK_TOGGLE);
169 	}
170 
171 	for (seg = dst->enq_seg; seg != dst->last_seg; seg = seg->next)
172 		seg->next->num = seg->num + 1;
173 }
174 
175 /*
176  * We need a radix tree for mapping physical addresses of TRBs to which stream
177  * ID they belong to.  We need to do this because the host controller won't tell
178  * us which stream ring the TRB came from.  We could store the stream ID in an
179  * event data TRB, but that doesn't help us for the cancellation case, since the
180  * endpoint may stop before it reaches that event data TRB.
181  *
182  * The radix tree maps the upper portion of the TRB DMA address to a ring
183  * segment that has the same upper portion of DMA addresses.  For example, say I
184  * have segments of size 1KB, that are always 1KB aligned.  A segment may
185  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
186  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
187  * pass the radix tree a key to get the right stream ID:
188  *
189  *	0x10c90fff >> 10 = 0x43243
190  *	0x10c912c0 >> 10 = 0x43244
191  *	0x10c91400 >> 10 = 0x43245
192  *
193  * Obviously, only those TRBs with DMA addresses that are within the segment
194  * will make the radix tree return the stream ID for that ring.
195  *
196  * Caveats for the radix tree:
197  *
198  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
199  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
200  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
201  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
202  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
203  * extended systems (where the DMA address can be bigger than 32-bits),
204  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
205  */
206 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
207 		struct xhci_ring *ring,
208 		struct xhci_segment *seg,
209 		gfp_t mem_flags)
210 {
211 	unsigned long key;
212 	int ret;
213 
214 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
215 	/* Skip any segments that were already added. */
216 	if (radix_tree_lookup(trb_address_map, key))
217 		return 0;
218 
219 	ret = radix_tree_maybe_preload(mem_flags);
220 	if (ret)
221 		return ret;
222 	ret = radix_tree_insert(trb_address_map,
223 			key, ring);
224 	radix_tree_preload_end();
225 	return ret;
226 }
227 
228 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
229 		struct xhci_segment *seg)
230 {
231 	unsigned long key;
232 
233 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
234 	if (radix_tree_lookup(trb_address_map, key))
235 		radix_tree_delete(trb_address_map, key);
236 }
237 
238 static int xhci_update_stream_segment_mapping(
239 		struct radix_tree_root *trb_address_map,
240 		struct xhci_ring *ring,
241 		struct xhci_segment *first_seg,
242 		gfp_t mem_flags)
243 {
244 	struct xhci_segment *seg;
245 	struct xhci_segment *failed_seg;
246 	int ret;
247 
248 	if (WARN_ON_ONCE(trb_address_map == NULL))
249 		return 0;
250 
251 	xhci_for_each_ring_seg(first_seg, seg) {
252 		ret = xhci_insert_segment_mapping(trb_address_map,
253 				ring, seg, mem_flags);
254 		if (ret)
255 			goto remove_streams;
256 	}
257 
258 	return 0;
259 
260 remove_streams:
261 	failed_seg = seg;
262 	xhci_for_each_ring_seg(first_seg, seg) {
263 		xhci_remove_segment_mapping(trb_address_map, seg);
264 		if (seg == failed_seg)
265 			return ret;
266 	}
267 
268 	return ret;
269 }
270 
271 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
272 {
273 	struct xhci_segment *seg;
274 
275 	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
276 		return;
277 
278 	xhci_for_each_ring_seg(ring->first_seg, seg)
279 		xhci_remove_segment_mapping(ring->trb_address_map, seg);
280 }
281 
282 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
283 {
284 	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
285 			ring->first_seg, mem_flags);
286 }
287 
288 /* XXX: Do we need the hcd structure in all these functions? */
289 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
290 {
291 	if (!ring)
292 		return;
293 
294 	trace_xhci_ring_free(ring);
295 
296 	if (ring->first_seg) {
297 		if (ring->type == TYPE_STREAM)
298 			xhci_remove_stream_mapping(ring);
299 		xhci_ring_segments_free(xhci, ring);
300 	}
301 
302 	kfree(ring);
303 }
304 
305 void xhci_initialize_ring_info(struct xhci_ring *ring)
306 {
307 	/* The ring is empty, so the enqueue pointer == dequeue pointer */
308 	ring->enqueue = ring->first_seg->trbs;
309 	ring->enq_seg = ring->first_seg;
310 	ring->dequeue = ring->enqueue;
311 	ring->deq_seg = ring->first_seg;
312 	/* The ring is initialized to 0. The producer must write 1 to the cycle
313 	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
314 	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
315 	 *
316 	 * New rings are initialized with cycle state equal to 1; if we are
317 	 * handling ring expansion, set the cycle state equal to the old ring.
318 	 */
319 	ring->cycle_state = 1;
320 
321 	/*
322 	 * Each segment has a link TRB, and leave an extra TRB for SW
323 	 * accounting purpose
324 	 */
325 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
326 }
327 EXPORT_SYMBOL_GPL(xhci_initialize_ring_info);
328 
329 /* Allocate segments and link them for a ring */
330 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, gfp_t flags)
331 {
332 	struct xhci_segment *prev;
333 	unsigned int num = 0;
334 
335 	prev = xhci_segment_alloc(xhci, ring->bounce_buf_len, num, flags);
336 	if (!prev)
337 		return -ENOMEM;
338 	num++;
339 
340 	ring->first_seg = prev;
341 	while (num < ring->num_segs) {
342 		struct xhci_segment	*next;
343 
344 		next = xhci_segment_alloc(xhci, ring->bounce_buf_len, num, flags);
345 		if (!next)
346 			goto free_segments;
347 
348 		prev->next = next;
349 		prev = next;
350 		num++;
351 	}
352 	ring->last_seg = prev;
353 
354 	ring->last_seg->next = ring->first_seg;
355 	return 0;
356 
357 free_segments:
358 	ring->last_seg = prev;
359 	xhci_ring_segments_free(xhci, ring);
360 	return -ENOMEM;
361 }
362 
363 /*
364  * Create a new ring with zero or more segments.
365  *
366  * Link each segment together into a ring.
367  * Set the end flag and the cycle toggle bit on the last segment.
368  * See section 4.9.1 and figures 15 and 16.
369  */
370 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, unsigned int num_segs,
371 				  enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
372 {
373 	struct xhci_ring	*ring;
374 	int ret;
375 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
376 
377 	ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
378 	if (!ring)
379 		return NULL;
380 
381 	ring->num_segs = num_segs;
382 	ring->bounce_buf_len = max_packet;
383 	INIT_LIST_HEAD(&ring->td_list);
384 	ring->type = type;
385 	if (num_segs == 0)
386 		return ring;
387 
388 	ret = xhci_alloc_segments_for_ring(xhci, ring, flags);
389 	if (ret)
390 		goto fail;
391 
392 	xhci_initialize_ring_segments(xhci, ring);
393 	xhci_initialize_ring_info(ring);
394 	trace_xhci_ring_alloc(ring);
395 	return ring;
396 
397 fail:
398 	kfree(ring);
399 	return NULL;
400 }
401 
402 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
403 		struct xhci_virt_device *virt_dev,
404 		unsigned int ep_index)
405 {
406 	xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
407 	virt_dev->eps[ep_index].ring = NULL;
408 }
409 
410 /*
411  * Expand an existing ring.
412  * Allocate a new ring which has same segment numbers and link the two rings.
413  */
414 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
415 				unsigned int num_new_segs, gfp_t flags)
416 {
417 	struct xhci_ring new_ring;
418 	int ret;
419 
420 	if (num_new_segs == 0)
421 		return 0;
422 
423 	new_ring.num_segs = num_new_segs;
424 	new_ring.bounce_buf_len = ring->bounce_buf_len;
425 	new_ring.type = ring->type;
426 	ret = xhci_alloc_segments_for_ring(xhci, &new_ring, flags);
427 	if (ret)
428 		return -ENOMEM;
429 
430 	xhci_initialize_ring_segments(xhci, &new_ring);
431 
432 	if (ring->type == TYPE_STREAM) {
433 		ret = xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
434 							 new_ring.first_seg, flags);
435 		if (ret)
436 			goto free_segments;
437 	}
438 
439 	xhci_link_rings(xhci, ring, &new_ring);
440 	trace_xhci_ring_expansion(ring);
441 	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
442 			"ring expansion succeed, now has %d segments",
443 			ring->num_segs);
444 
445 	return 0;
446 
447 free_segments:
448 	xhci_ring_segments_free(xhci, &new_ring);
449 	return ret;
450 }
451 
452 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
453 						    int type, gfp_t flags)
454 {
455 	struct xhci_container_ctx *ctx;
456 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
457 
458 	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
459 		return NULL;
460 
461 	ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
462 	if (!ctx)
463 		return NULL;
464 
465 	ctx->type = type;
466 	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
467 	if (type == XHCI_CTX_TYPE_INPUT)
468 		ctx->size += CTX_SIZE(xhci->hcc_params);
469 
470 	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
471 	if (!ctx->bytes) {
472 		kfree(ctx);
473 		return NULL;
474 	}
475 	return ctx;
476 }
477 
478 void xhci_free_container_ctx(struct xhci_hcd *xhci,
479 			     struct xhci_container_ctx *ctx)
480 {
481 	if (!ctx)
482 		return;
483 	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
484 	kfree(ctx);
485 }
486 
487 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
488 					      struct xhci_container_ctx *ctx)
489 {
490 	if (ctx->type != XHCI_CTX_TYPE_INPUT)
491 		return NULL;
492 
493 	return (struct xhci_input_control_ctx *)ctx->bytes;
494 }
495 
496 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
497 					struct xhci_container_ctx *ctx)
498 {
499 	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
500 		return (struct xhci_slot_ctx *)ctx->bytes;
501 
502 	return (struct xhci_slot_ctx *)
503 		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
504 }
505 
506 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
507 				    struct xhci_container_ctx *ctx,
508 				    unsigned int ep_index)
509 {
510 	/* increment ep index by offset of start of ep ctx array */
511 	ep_index++;
512 	if (ctx->type == XHCI_CTX_TYPE_INPUT)
513 		ep_index++;
514 
515 	return (struct xhci_ep_ctx *)
516 		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
517 }
518 EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
519 
520 /***************** Streams structures manipulation *************************/
521 
522 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
523 		unsigned int num_stream_ctxs,
524 		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
525 {
526 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
527 	size_t size = array_size(sizeof(struct xhci_stream_ctx), num_stream_ctxs);
528 
529 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
530 		dma_free_coherent(dev, size, stream_ctx, dma);
531 	else if (size > SMALL_STREAM_ARRAY_SIZE)
532 		dma_pool_free(xhci->medium_streams_pool, stream_ctx, dma);
533 	else
534 		dma_pool_free(xhci->small_streams_pool, stream_ctx, dma);
535 }
536 
537 /*
538  * The stream context array for each endpoint with bulk streams enabled can
539  * vary in size, based on:
540  *  - how many streams the endpoint supports,
541  *  - the maximum primary stream array size the host controller supports,
542  *  - and how many streams the device driver asks for.
543  *
544  * The stream context array must be a power of 2, and can be as small as
545  * 64 bytes or as large as 1MB.
546  */
547 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
548 		unsigned int num_stream_ctxs, dma_addr_t *dma,
549 		gfp_t mem_flags)
550 {
551 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
552 	size_t size = array_size(sizeof(struct xhci_stream_ctx), num_stream_ctxs);
553 
554 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
555 		return dma_alloc_coherent(dev, size, dma, mem_flags);
556 	if (size > SMALL_STREAM_ARRAY_SIZE)
557 		return dma_pool_zalloc(xhci->medium_streams_pool, mem_flags, dma);
558 	else
559 		return dma_pool_zalloc(xhci->small_streams_pool, mem_flags, dma);
560 }
561 
562 struct xhci_ring *xhci_dma_to_transfer_ring(
563 		struct xhci_virt_ep *ep,
564 		u64 address)
565 {
566 	if (ep->ep_state & EP_HAS_STREAMS)
567 		return radix_tree_lookup(&ep->stream_info->trb_address_map,
568 				address >> TRB_SEGMENT_SHIFT);
569 	return ep->ring;
570 }
571 
572 /*
573  * Change an endpoint's internal structure so it supports stream IDs.  The
574  * number of requested streams includes stream 0, which cannot be used by device
575  * drivers.
576  *
577  * The number of stream contexts in the stream context array may be bigger than
578  * the number of streams the driver wants to use.  This is because the number of
579  * stream context array entries must be a power of two.
580  */
581 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
582 		unsigned int num_stream_ctxs,
583 		unsigned int num_streams,
584 		unsigned int max_packet, gfp_t mem_flags)
585 {
586 	struct xhci_stream_info *stream_info;
587 	u32 cur_stream;
588 	struct xhci_ring *cur_ring;
589 	u64 addr;
590 	int ret;
591 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
592 
593 	xhci_dbg(xhci, "Allocating %u streams and %u stream context array entries.\n",
594 			num_streams, num_stream_ctxs);
595 	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
596 		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
597 		return NULL;
598 	}
599 	xhci->cmd_ring_reserved_trbs++;
600 
601 	stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
602 			dev_to_node(dev));
603 	if (!stream_info)
604 		goto cleanup_trbs;
605 
606 	stream_info->num_streams = num_streams;
607 	stream_info->num_stream_ctxs = num_stream_ctxs;
608 
609 	/* Initialize the array of virtual pointers to stream rings. */
610 	stream_info->stream_rings = kcalloc_node(
611 			num_streams, sizeof(struct xhci_ring *), mem_flags,
612 			dev_to_node(dev));
613 	if (!stream_info->stream_rings)
614 		goto cleanup_info;
615 
616 	/* Initialize the array of DMA addresses for stream rings for the HW. */
617 	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
618 			num_stream_ctxs, &stream_info->ctx_array_dma,
619 			mem_flags);
620 	if (!stream_info->stream_ctx_array)
621 		goto cleanup_ring_array;
622 
623 	/* Allocate everything needed to free the stream rings later */
624 	stream_info->free_streams_command =
625 		xhci_alloc_command_with_ctx(xhci, true, mem_flags);
626 	if (!stream_info->free_streams_command)
627 		goto cleanup_ctx;
628 
629 	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
630 
631 	/* Allocate rings for all the streams that the driver will use,
632 	 * and add their segment DMA addresses to the radix tree.
633 	 * Stream 0 is reserved.
634 	 */
635 
636 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
637 		stream_info->stream_rings[cur_stream] =
638 			xhci_ring_alloc(xhci, 2, TYPE_STREAM, max_packet, mem_flags);
639 		cur_ring = stream_info->stream_rings[cur_stream];
640 		if (!cur_ring)
641 			goto cleanup_rings;
642 		cur_ring->stream_id = cur_stream;
643 		cur_ring->trb_address_map = &stream_info->trb_address_map;
644 		/* Set deq ptr, cycle bit, and stream context type */
645 		addr = cur_ring->first_seg->dma |
646 			SCT_FOR_CTX(SCT_PRI_TR) |
647 			cur_ring->cycle_state;
648 		stream_info->stream_ctx_array[cur_stream].stream_ring =
649 			cpu_to_le64(addr);
650 		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", cur_stream, addr);
651 
652 		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
653 
654 		trace_xhci_alloc_stream_info_ctx(stream_info, cur_stream);
655 		if (ret) {
656 			xhci_ring_free(xhci, cur_ring);
657 			stream_info->stream_rings[cur_stream] = NULL;
658 			goto cleanup_rings;
659 		}
660 	}
661 	/* Leave the other unused stream ring pointers in the stream context
662 	 * array initialized to zero.  This will cause the xHC to give us an
663 	 * error if the device asks for a stream ID we don't have setup (if it
664 	 * was any other way, the host controller would assume the ring is
665 	 * "empty" and wait forever for data to be queued to that stream ID).
666 	 */
667 
668 	return stream_info;
669 
670 cleanup_rings:
671 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
672 		cur_ring = stream_info->stream_rings[cur_stream];
673 		if (cur_ring) {
674 			xhci_ring_free(xhci, cur_ring);
675 			stream_info->stream_rings[cur_stream] = NULL;
676 		}
677 	}
678 	xhci_free_command(xhci, stream_info->free_streams_command);
679 cleanup_ctx:
680 	xhci_free_stream_ctx(xhci,
681 		stream_info->num_stream_ctxs,
682 		stream_info->stream_ctx_array,
683 		stream_info->ctx_array_dma);
684 cleanup_ring_array:
685 	kfree(stream_info->stream_rings);
686 cleanup_info:
687 	kfree(stream_info);
688 cleanup_trbs:
689 	xhci->cmd_ring_reserved_trbs--;
690 	return NULL;
691 }
692 /*
693  * Sets the MaxPStreams field and the Linear Stream Array field.
694  * Sets the dequeue pointer to the stream context array.
695  */
696 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
697 		struct xhci_ep_ctx *ep_ctx,
698 		struct xhci_stream_info *stream_info)
699 {
700 	u32 max_primary_streams;
701 	/* MaxPStreams is the number of stream context array entries, not the
702 	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
703 	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
704 	 */
705 	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
706 	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
707 			"Setting number of stream ctx array entries to %u",
708 			1 << (max_primary_streams + 1));
709 	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
710 	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
711 				       | EP_HAS_LSA);
712 	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
713 }
714 
715 /*
716  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
717  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
718  * not at the beginning of the ring).
719  */
720 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
721 		struct xhci_virt_ep *ep)
722 {
723 	dma_addr_t addr;
724 	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
725 	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
726 	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
727 }
728 
729 /* Frees all stream contexts associated with the endpoint,
730  *
731  * Caller should fix the endpoint context streams fields.
732  */
733 void xhci_free_stream_info(struct xhci_hcd *xhci,
734 		struct xhci_stream_info *stream_info)
735 {
736 	int cur_stream;
737 	struct xhci_ring *cur_ring;
738 
739 	if (!stream_info)
740 		return;
741 
742 	for (cur_stream = 1; cur_stream < stream_info->num_streams;
743 			cur_stream++) {
744 		cur_ring = stream_info->stream_rings[cur_stream];
745 		if (cur_ring) {
746 			xhci_ring_free(xhci, cur_ring);
747 			stream_info->stream_rings[cur_stream] = NULL;
748 		}
749 	}
750 	xhci_free_command(xhci, stream_info->free_streams_command);
751 	xhci->cmd_ring_reserved_trbs--;
752 	if (stream_info->stream_ctx_array)
753 		xhci_free_stream_ctx(xhci,
754 				stream_info->num_stream_ctxs,
755 				stream_info->stream_ctx_array,
756 				stream_info->ctx_array_dma);
757 
758 	kfree(stream_info->stream_rings);
759 	kfree(stream_info);
760 }
761 
762 
763 /***************** Device context manipulation *************************/
764 
765 static void xhci_free_tt_info(struct xhci_hcd *xhci,
766 		struct xhci_virt_device *virt_dev,
767 		int slot_id)
768 {
769 	struct list_head *tt_list_head;
770 	struct xhci_tt_bw_info *tt_info, *next;
771 	bool slot_found = false;
772 
773 	/* If the device never made it past the Set Address stage,
774 	 * it may not have the root hub port pointer set correctly.
775 	 */
776 	if (!virt_dev->rhub_port) {
777 		xhci_dbg(xhci, "Bad rhub port.\n");
778 		return;
779 	}
780 
781 	tt_list_head = &(xhci->rh_bw[virt_dev->rhub_port->hw_portnum].tts);
782 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
783 		/* Multi-TT hubs will have more than one entry */
784 		if (tt_info->slot_id == slot_id) {
785 			slot_found = true;
786 			list_del(&tt_info->tt_list);
787 			kfree(tt_info);
788 		} else if (slot_found) {
789 			break;
790 		}
791 	}
792 }
793 
794 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
795 		struct xhci_virt_device *virt_dev,
796 		struct usb_device *hdev,
797 		struct usb_tt *tt, gfp_t mem_flags)
798 {
799 	struct xhci_tt_bw_info		*tt_info;
800 	unsigned int			num_ports;
801 	int				i, j;
802 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
803 
804 	if (!tt->multi)
805 		num_ports = 1;
806 	else
807 		num_ports = hdev->maxchild;
808 
809 	for (i = 0; i < num_ports; i++, tt_info++) {
810 		struct xhci_interval_bw_table *bw_table;
811 
812 		tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
813 				dev_to_node(dev));
814 		if (!tt_info)
815 			goto free_tts;
816 		INIT_LIST_HEAD(&tt_info->tt_list);
817 		list_add(&tt_info->tt_list,
818 				&xhci->rh_bw[virt_dev->rhub_port->hw_portnum].tts);
819 		tt_info->slot_id = virt_dev->udev->slot_id;
820 		if (tt->multi)
821 			tt_info->ttport = i+1;
822 		bw_table = &tt_info->bw_table;
823 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
824 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
825 	}
826 	return 0;
827 
828 free_tts:
829 	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
830 	return -ENOMEM;
831 }
832 
833 
834 /* All the xhci_tds in the ring's TD list should be freed at this point.
835  * Should be called with xhci->lock held if there is any chance the TT lists
836  * will be manipulated by the configure endpoint, allocate device, or update
837  * hub functions while this function is removing the TT entries from the list.
838  */
839 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
840 {
841 	struct xhci_virt_device *dev;
842 	int i;
843 	int old_active_eps = 0;
844 
845 	/* Slot ID 0 is reserved */
846 	if (slot_id == 0 || !xhci->devs[slot_id])
847 		return;
848 
849 	dev = xhci->devs[slot_id];
850 
851 	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
852 	if (!dev)
853 		return;
854 
855 	trace_xhci_free_virt_device(dev);
856 
857 	if (dev->tt_info)
858 		old_active_eps = dev->tt_info->active_eps;
859 
860 	for (i = 0; i < 31; i++) {
861 		if (dev->eps[i].ring)
862 			xhci_ring_free(xhci, dev->eps[i].ring);
863 		if (dev->eps[i].stream_info)
864 			xhci_free_stream_info(xhci,
865 					dev->eps[i].stream_info);
866 		/*
867 		 * Endpoints are normally deleted from the bandwidth list when
868 		 * endpoints are dropped, before device is freed.
869 		 * If host is dying or being removed then endpoints aren't
870 		 * dropped cleanly, so delete the endpoint from list here.
871 		 * Only applicable for hosts with software bandwidth checking.
872 		 */
873 
874 		if (!list_empty(&dev->eps[i].bw_endpoint_list)) {
875 			list_del_init(&dev->eps[i].bw_endpoint_list);
876 			xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n",
877 				 slot_id, i);
878 		}
879 	}
880 	/* If this is a hub, free the TT(s) from the TT list */
881 	xhci_free_tt_info(xhci, dev, slot_id);
882 	/* If necessary, update the number of active TTs on this root port */
883 	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
884 
885 	if (dev->in_ctx)
886 		xhci_free_container_ctx(xhci, dev->in_ctx);
887 	if (dev->out_ctx)
888 		xhci_free_container_ctx(xhci, dev->out_ctx);
889 
890 	if (dev->udev && dev->udev->slot_id)
891 		dev->udev->slot_id = 0;
892 	if (dev->rhub_port && dev->rhub_port->slot_id == slot_id)
893 		dev->rhub_port->slot_id = 0;
894 	kfree(xhci->devs[slot_id]);
895 	xhci->devs[slot_id] = NULL;
896 }
897 
898 /*
899  * Free a virt_device structure.
900  * If the virt_device added a tt_info (a hub) and has children pointing to
901  * that tt_info, then free the child first. Recursive.
902  * We can't rely on udev at this point to find child-parent relationships.
903  */
904 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
905 {
906 	struct xhci_virt_device *vdev;
907 	struct list_head *tt_list_head;
908 	struct xhci_tt_bw_info *tt_info, *next;
909 	int i;
910 
911 	vdev = xhci->devs[slot_id];
912 	if (!vdev)
913 		return;
914 
915 	if (!vdev->rhub_port) {
916 		xhci_dbg(xhci, "Bad rhub port.\n");
917 		goto out;
918 	}
919 
920 	tt_list_head = &(xhci->rh_bw[vdev->rhub_port->hw_portnum].tts);
921 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
922 		/* is this a hub device that added a tt_info to the tts list */
923 		if (tt_info->slot_id == slot_id) {
924 			/* are any devices using this tt_info? */
925 			for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
926 				vdev = xhci->devs[i];
927 				if (vdev && (vdev->tt_info == tt_info))
928 					xhci_free_virt_devices_depth_first(
929 						xhci, i);
930 			}
931 		}
932 	}
933 out:
934 	/* we are now at a leaf device */
935 	xhci_debugfs_remove_slot(xhci, slot_id);
936 	xhci_free_virt_device(xhci, slot_id);
937 }
938 
939 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
940 		struct usb_device *udev, gfp_t flags)
941 {
942 	struct xhci_virt_device *dev;
943 	int i;
944 
945 	/* Slot ID 0 is reserved */
946 	if (slot_id == 0 || xhci->devs[slot_id]) {
947 		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
948 		return 0;
949 	}
950 
951 	dev = kzalloc(sizeof(*dev), flags);
952 	if (!dev)
953 		return 0;
954 
955 	dev->slot_id = slot_id;
956 
957 	/* Allocate the (output) device context that will be used in the HC. */
958 	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
959 	if (!dev->out_ctx)
960 		goto fail;
961 
962 	xhci_dbg(xhci, "Slot %d output ctx = 0x%pad (dma)\n", slot_id, &dev->out_ctx->dma);
963 
964 	/* Allocate the (input) device context for address device command */
965 	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
966 	if (!dev->in_ctx)
967 		goto fail;
968 
969 	xhci_dbg(xhci, "Slot %d input ctx = 0x%pad (dma)\n", slot_id, &dev->in_ctx->dma);
970 
971 	/* Initialize the cancellation and bandwidth list for each ep */
972 	for (i = 0; i < 31; i++) {
973 		dev->eps[i].ep_index = i;
974 		dev->eps[i].vdev = dev;
975 		dev->eps[i].xhci = xhci;
976 		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
977 		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
978 	}
979 
980 	/* Allocate endpoint 0 ring */
981 	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, TYPE_CTRL, 0, flags);
982 	if (!dev->eps[0].ring)
983 		goto fail;
984 
985 	dev->udev = udev;
986 
987 	/* Point to output device context in dcbaa. */
988 	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
989 	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
990 		 slot_id,
991 		 &xhci->dcbaa->dev_context_ptrs[slot_id],
992 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
993 
994 	trace_xhci_alloc_virt_device(dev);
995 
996 	xhci->devs[slot_id] = dev;
997 
998 	return 1;
999 fail:
1000 
1001 	if (dev->in_ctx)
1002 		xhci_free_container_ctx(xhci, dev->in_ctx);
1003 	if (dev->out_ctx)
1004 		xhci_free_container_ctx(xhci, dev->out_ctx);
1005 	kfree(dev);
1006 
1007 	return 0;
1008 }
1009 
1010 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1011 		struct usb_device *udev)
1012 {
1013 	struct xhci_virt_device *virt_dev;
1014 	struct xhci_ep_ctx	*ep0_ctx;
1015 	struct xhci_ring	*ep_ring;
1016 
1017 	virt_dev = xhci->devs[udev->slot_id];
1018 	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1019 	ep_ring = virt_dev->eps[0].ring;
1020 	/*
1021 	 * FIXME we don't keep track of the dequeue pointer very well after a
1022 	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1023 	 * host to our enqueue pointer.  This should only be called after a
1024 	 * configured device has reset, so all control transfers should have
1025 	 * been completed or cancelled before the reset.
1026 	 */
1027 	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1028 							ep_ring->enqueue)
1029 				   | ep_ring->cycle_state);
1030 }
1031 
1032 /*
1033  * The xHCI roothub may have ports of differing speeds in any order in the port
1034  * status registers.
1035  *
1036  * The xHCI hardware wants to know the roothub port that the USB device
1037  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1038  * know is the index of that port under either the USB 2.0 or the USB 3.0
1039  * roothub, but that doesn't give us the real index into the HW port status
1040  * registers.
1041  */
1042 static struct xhci_port *xhci_find_rhub_port(struct xhci_hcd *xhci, struct usb_device *udev)
1043 {
1044 	struct usb_device *top_dev;
1045 	struct xhci_hub *rhub;
1046 	struct usb_hcd *hcd;
1047 
1048 	if (udev->speed >= USB_SPEED_SUPER)
1049 		hcd = xhci_get_usb3_hcd(xhci);
1050 	else
1051 		hcd = xhci->main_hcd;
1052 
1053 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1054 			top_dev = top_dev->parent)
1055 		/* Found device below root hub */;
1056 
1057 	rhub = xhci_get_rhub(hcd);
1058 	return rhub->ports[top_dev->portnum - 1];
1059 }
1060 
1061 /* Setup an xHCI virtual device for a Set Address command */
1062 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1063 {
1064 	struct xhci_virt_device *dev;
1065 	struct xhci_ep_ctx	*ep0_ctx;
1066 	struct xhci_slot_ctx    *slot_ctx;
1067 	u32			max_packets;
1068 
1069 	dev = xhci->devs[udev->slot_id];
1070 	/* Slot ID 0 is reserved */
1071 	if (udev->slot_id == 0 || !dev) {
1072 		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1073 				udev->slot_id);
1074 		return -EINVAL;
1075 	}
1076 	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1077 	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1078 
1079 	/* 3) Only the control endpoint is valid - one endpoint context */
1080 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1081 	switch (udev->speed) {
1082 	case USB_SPEED_SUPER_PLUS:
1083 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1084 		max_packets = MAX_PACKET(512);
1085 		break;
1086 	case USB_SPEED_SUPER:
1087 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1088 		max_packets = MAX_PACKET(512);
1089 		break;
1090 	case USB_SPEED_HIGH:
1091 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1092 		max_packets = MAX_PACKET(64);
1093 		break;
1094 	/* USB core guesses at a 64-byte max packet first for FS devices */
1095 	case USB_SPEED_FULL:
1096 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1097 		max_packets = MAX_PACKET(64);
1098 		break;
1099 	case USB_SPEED_LOW:
1100 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1101 		max_packets = MAX_PACKET(8);
1102 		break;
1103 	default:
1104 		/* Speed was set earlier, this shouldn't happen. */
1105 		return -EINVAL;
1106 	}
1107 	/* Find the root hub port this device is under */
1108 	dev->rhub_port = xhci_find_rhub_port(xhci, udev);
1109 	if (!dev->rhub_port)
1110 		return -EINVAL;
1111 	/* Slot ID is set to the device directly below the root hub */
1112 	if (!udev->parent->parent)
1113 		dev->rhub_port->slot_id = udev->slot_id;
1114 	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(dev->rhub_port->hw_portnum + 1));
1115 	xhci_dbg(xhci, "Slot ID %d: HW portnum %d, hcd portnum %d\n",
1116 		 udev->slot_id, dev->rhub_port->hw_portnum, dev->rhub_port->hcd_portnum);
1117 
1118 	/* Find the right bandwidth table that this device will be a part of.
1119 	 * If this is a full speed device attached directly to a root port (or a
1120 	 * decendent of one), it counts as a primary bandwidth domain, not a
1121 	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1122 	 * will never be created for the HS root hub.
1123 	 */
1124 	if (!udev->tt || !udev->tt->hub->parent) {
1125 		dev->bw_table = &xhci->rh_bw[dev->rhub_port->hw_portnum].bw_table;
1126 	} else {
1127 		struct xhci_root_port_bw_info *rh_bw;
1128 		struct xhci_tt_bw_info *tt_bw;
1129 
1130 		rh_bw = &xhci->rh_bw[dev->rhub_port->hw_portnum];
1131 		/* Find the right TT. */
1132 		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1133 			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1134 				continue;
1135 
1136 			if (!dev->udev->tt->multi ||
1137 					(udev->tt->multi &&
1138 					 tt_bw->ttport == dev->udev->ttport)) {
1139 				dev->bw_table = &tt_bw->bw_table;
1140 				dev->tt_info = tt_bw;
1141 				break;
1142 			}
1143 		}
1144 		if (!dev->tt_info)
1145 			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1146 	}
1147 
1148 	/* Is this a LS/FS device under an external HS hub? */
1149 	if (udev->tt && udev->tt->hub->parent) {
1150 		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1151 						(udev->ttport << 8));
1152 		if (udev->tt->multi)
1153 			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1154 	}
1155 	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1156 	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1157 
1158 	/* Step 4 - ring already allocated */
1159 	/* Step 5 */
1160 	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1161 
1162 	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1163 	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1164 					 max_packets);
1165 
1166 	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1167 				   dev->eps[0].ring->cycle_state);
1168 
1169 	trace_xhci_setup_addressable_virt_device(dev);
1170 
1171 	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1172 
1173 	return 0;
1174 }
1175 
1176 /*
1177  * Convert interval expressed as 2^(bInterval - 1) == interval into
1178  * straight exponent value 2^n == interval.
1179  *
1180  */
1181 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1182 		struct usb_host_endpoint *ep)
1183 {
1184 	unsigned int interval;
1185 
1186 	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1187 	if (interval != ep->desc.bInterval - 1)
1188 		dev_warn(&udev->dev,
1189 			 "ep %#x - rounding interval to %d %sframes\n",
1190 			 ep->desc.bEndpointAddress,
1191 			 1 << interval,
1192 			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1193 
1194 	if (udev->speed == USB_SPEED_FULL) {
1195 		/*
1196 		 * Full speed isoc endpoints specify interval in frames,
1197 		 * not microframes. We are using microframes everywhere,
1198 		 * so adjust accordingly.
1199 		 */
1200 		interval += 3;	/* 1 frame = 2^3 uframes */
1201 	}
1202 
1203 	return interval;
1204 }
1205 
1206 /*
1207  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1208  * microframes, rounded down to nearest power of 2.
1209  */
1210 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1211 		struct usb_host_endpoint *ep, unsigned int desc_interval,
1212 		unsigned int min_exponent, unsigned int max_exponent)
1213 {
1214 	unsigned int interval;
1215 
1216 	interval = fls(desc_interval) - 1;
1217 	interval = clamp_val(interval, min_exponent, max_exponent);
1218 	if ((1 << interval) != desc_interval)
1219 		dev_dbg(&udev->dev,
1220 			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1221 			 ep->desc.bEndpointAddress,
1222 			 1 << interval,
1223 			 desc_interval);
1224 
1225 	return interval;
1226 }
1227 
1228 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1229 		struct usb_host_endpoint *ep)
1230 {
1231 	if (ep->desc.bInterval == 0)
1232 		return 0;
1233 	return xhci_microframes_to_exponent(udev, ep,
1234 			ep->desc.bInterval, 0, 15);
1235 }
1236 
1237 
1238 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1239 		struct usb_host_endpoint *ep)
1240 {
1241 	return xhci_microframes_to_exponent(udev, ep,
1242 			ep->desc.bInterval * 8, 3, 10);
1243 }
1244 
1245 /* Return the polling or NAK interval.
1246  *
1247  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1248  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1249  *
1250  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1251  * is set to 0.
1252  */
1253 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1254 		struct usb_host_endpoint *ep)
1255 {
1256 	unsigned int interval = 0;
1257 
1258 	switch (udev->speed) {
1259 	case USB_SPEED_HIGH:
1260 		/* Max NAK rate */
1261 		if (usb_endpoint_xfer_control(&ep->desc) ||
1262 		    usb_endpoint_xfer_bulk(&ep->desc)) {
1263 			interval = xhci_parse_microframe_interval(udev, ep);
1264 			break;
1265 		}
1266 		fallthrough;	/* SS and HS isoc/int have same decoding */
1267 
1268 	case USB_SPEED_SUPER_PLUS:
1269 	case USB_SPEED_SUPER:
1270 		if (usb_endpoint_xfer_int(&ep->desc) ||
1271 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1272 			interval = xhci_parse_exponent_interval(udev, ep);
1273 		}
1274 		break;
1275 
1276 	case USB_SPEED_FULL:
1277 		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1278 			interval = xhci_parse_exponent_interval(udev, ep);
1279 			break;
1280 		}
1281 		/*
1282 		 * Fall through for interrupt endpoint interval decoding
1283 		 * since it uses the same rules as low speed interrupt
1284 		 * endpoints.
1285 		 */
1286 		fallthrough;
1287 
1288 	case USB_SPEED_LOW:
1289 		if (usb_endpoint_xfer_int(&ep->desc) ||
1290 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1291 
1292 			interval = xhci_parse_frame_interval(udev, ep);
1293 		}
1294 		break;
1295 
1296 	default:
1297 		BUG();
1298 	}
1299 	return interval;
1300 }
1301 
1302 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1303  * High speed endpoint descriptors can define "the number of additional
1304  * transaction opportunities per microframe", but that goes in the Max Burst
1305  * endpoint context field.
1306  */
1307 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1308 		struct usb_host_endpoint *ep)
1309 {
1310 	if (udev->speed < USB_SPEED_SUPER ||
1311 			!usb_endpoint_xfer_isoc(&ep->desc))
1312 		return 0;
1313 	return ep->ss_ep_comp.bmAttributes;
1314 }
1315 
1316 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1317 				       struct usb_host_endpoint *ep)
1318 {
1319 	/* Super speed and Plus have max burst in ep companion desc */
1320 	if (udev->speed >= USB_SPEED_SUPER)
1321 		return ep->ss_ep_comp.bMaxBurst;
1322 
1323 	if (udev->speed == USB_SPEED_HIGH &&
1324 	    (usb_endpoint_xfer_isoc(&ep->desc) ||
1325 	     usb_endpoint_xfer_int(&ep->desc)))
1326 		return usb_endpoint_maxp_mult(&ep->desc) - 1;
1327 
1328 	return 0;
1329 }
1330 
1331 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1332 {
1333 	int in;
1334 
1335 	in = usb_endpoint_dir_in(&ep->desc);
1336 
1337 	switch (usb_endpoint_type(&ep->desc)) {
1338 	case USB_ENDPOINT_XFER_CONTROL:
1339 		return CTRL_EP;
1340 	case USB_ENDPOINT_XFER_BULK:
1341 		return in ? BULK_IN_EP : BULK_OUT_EP;
1342 	case USB_ENDPOINT_XFER_ISOC:
1343 		return in ? ISOC_IN_EP : ISOC_OUT_EP;
1344 	case USB_ENDPOINT_XFER_INT:
1345 		return in ? INT_IN_EP : INT_OUT_EP;
1346 	}
1347 	return 0;
1348 }
1349 
1350 /* Return the maximum endpoint service interval time (ESIT) payload.
1351  * Basically, this is the maxpacket size, multiplied by the burst size
1352  * and mult size.
1353  */
1354 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1355 		struct usb_host_endpoint *ep)
1356 {
1357 	int max_burst;
1358 	int max_packet;
1359 
1360 	/* Only applies for interrupt or isochronous endpoints */
1361 	if (usb_endpoint_xfer_control(&ep->desc) ||
1362 			usb_endpoint_xfer_bulk(&ep->desc))
1363 		return 0;
1364 
1365 	/* SuperSpeedPlus Isoc ep sending over 48k per esit */
1366 	if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1367 	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1368 		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1369 
1370 	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1371 	if (udev->speed >= USB_SPEED_SUPER)
1372 		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1373 
1374 	max_packet = usb_endpoint_maxp(&ep->desc);
1375 	max_burst = usb_endpoint_maxp_mult(&ep->desc);
1376 	/* A 0 in max burst means 1 transfer per ESIT */
1377 	return max_packet * max_burst;
1378 }
1379 
1380 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1381  * Drivers will have to call usb_alloc_streams() to do that.
1382  */
1383 int xhci_endpoint_init(struct xhci_hcd *xhci,
1384 		struct xhci_virt_device *virt_dev,
1385 		struct usb_device *udev,
1386 		struct usb_host_endpoint *ep,
1387 		gfp_t mem_flags)
1388 {
1389 	unsigned int ep_index;
1390 	struct xhci_ep_ctx *ep_ctx;
1391 	struct xhci_ring *ep_ring;
1392 	unsigned int max_packet;
1393 	enum xhci_ring_type ring_type;
1394 	u32 max_esit_payload;
1395 	u32 endpoint_type;
1396 	unsigned int max_burst;
1397 	unsigned int interval;
1398 	unsigned int mult;
1399 	unsigned int avg_trb_len;
1400 	unsigned int err_count = 0;
1401 
1402 	ep_index = xhci_get_endpoint_index(&ep->desc);
1403 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1404 
1405 	endpoint_type = xhci_get_endpoint_type(ep);
1406 	if (!endpoint_type)
1407 		return -EINVAL;
1408 
1409 	ring_type = usb_endpoint_type(&ep->desc);
1410 
1411 	/*
1412 	 * Get values to fill the endpoint context, mostly from ep descriptor.
1413 	 * The average TRB buffer lengt for bulk endpoints is unclear as we
1414 	 * have no clue on scatter gather list entry size. For Isoc and Int,
1415 	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1416 	 */
1417 	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1418 	interval = xhci_get_endpoint_interval(udev, ep);
1419 
1420 	/* Periodic endpoint bInterval limit quirk */
1421 	if (usb_endpoint_xfer_int(&ep->desc) ||
1422 	    usb_endpoint_xfer_isoc(&ep->desc)) {
1423 		if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1424 		    udev->speed >= USB_SPEED_HIGH &&
1425 		    interval >= 7) {
1426 			interval = 6;
1427 		}
1428 	}
1429 
1430 	mult = xhci_get_endpoint_mult(udev, ep);
1431 	max_packet = usb_endpoint_maxp(&ep->desc);
1432 	max_burst = xhci_get_endpoint_max_burst(udev, ep);
1433 	avg_trb_len = max_esit_payload;
1434 
1435 	/* FIXME dig Mult and streams info out of ep companion desc */
1436 
1437 	/* Allow 3 retries for everything but isoc, set CErr = 3 */
1438 	if (!usb_endpoint_xfer_isoc(&ep->desc))
1439 		err_count = 3;
1440 	/* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1441 	if (usb_endpoint_xfer_bulk(&ep->desc)) {
1442 		if (udev->speed == USB_SPEED_HIGH)
1443 			max_packet = 512;
1444 		if (udev->speed == USB_SPEED_FULL) {
1445 			max_packet = rounddown_pow_of_two(max_packet);
1446 			max_packet = clamp_val(max_packet, 8, 64);
1447 		}
1448 	}
1449 	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1450 	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1451 		avg_trb_len = 8;
1452 	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1453 	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1454 		mult = 0;
1455 
1456 	/* Set up the endpoint ring */
1457 	virt_dev->eps[ep_index].new_ring =
1458 		xhci_ring_alloc(xhci, 2, ring_type, max_packet, mem_flags);
1459 	if (!virt_dev->eps[ep_index].new_ring)
1460 		return -ENOMEM;
1461 
1462 	virt_dev->eps[ep_index].skip = false;
1463 	ep_ring = virt_dev->eps[ep_index].new_ring;
1464 
1465 	/* Fill the endpoint context */
1466 	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1467 				      EP_INTERVAL(interval) |
1468 				      EP_MULT(mult));
1469 	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1470 				       MAX_PACKET(max_packet) |
1471 				       MAX_BURST(max_burst) |
1472 				       ERROR_COUNT(err_count));
1473 	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1474 				  ep_ring->cycle_state);
1475 
1476 	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1477 				      EP_AVG_TRB_LENGTH(avg_trb_len));
1478 
1479 	return 0;
1480 }
1481 
1482 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1483 		struct xhci_virt_device *virt_dev,
1484 		struct usb_host_endpoint *ep)
1485 {
1486 	unsigned int ep_index;
1487 	struct xhci_ep_ctx *ep_ctx;
1488 
1489 	ep_index = xhci_get_endpoint_index(&ep->desc);
1490 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1491 
1492 	ep_ctx->ep_info = 0;
1493 	ep_ctx->ep_info2 = 0;
1494 	ep_ctx->deq = 0;
1495 	ep_ctx->tx_info = 0;
1496 	/* Don't free the endpoint ring until the set interface or configuration
1497 	 * request succeeds.
1498 	 */
1499 }
1500 
1501 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1502 {
1503 	bw_info->ep_interval = 0;
1504 	bw_info->mult = 0;
1505 	bw_info->num_packets = 0;
1506 	bw_info->max_packet_size = 0;
1507 	bw_info->type = 0;
1508 	bw_info->max_esit_payload = 0;
1509 }
1510 
1511 void xhci_update_bw_info(struct xhci_hcd *xhci,
1512 		struct xhci_container_ctx *in_ctx,
1513 		struct xhci_input_control_ctx *ctrl_ctx,
1514 		struct xhci_virt_device *virt_dev)
1515 {
1516 	struct xhci_bw_info *bw_info;
1517 	struct xhci_ep_ctx *ep_ctx;
1518 	unsigned int ep_type;
1519 	int i;
1520 
1521 	for (i = 1; i < 31; i++) {
1522 		bw_info = &virt_dev->eps[i].bw_info;
1523 
1524 		/* We can't tell what endpoint type is being dropped, but
1525 		 * unconditionally clearing the bandwidth info for non-periodic
1526 		 * endpoints should be harmless because the info will never be
1527 		 * set in the first place.
1528 		 */
1529 		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1530 			/* Dropped endpoint */
1531 			xhci_clear_endpoint_bw_info(bw_info);
1532 			continue;
1533 		}
1534 
1535 		if (EP_IS_ADDED(ctrl_ctx, i)) {
1536 			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1537 			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1538 
1539 			/* Ignore non-periodic endpoints */
1540 			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1541 					ep_type != ISOC_IN_EP &&
1542 					ep_type != INT_IN_EP)
1543 				continue;
1544 
1545 			/* Added or changed endpoint */
1546 			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1547 					le32_to_cpu(ep_ctx->ep_info));
1548 			/* Number of packets and mult are zero-based in the
1549 			 * input context, but we want one-based for the
1550 			 * interval table.
1551 			 */
1552 			bw_info->mult = CTX_TO_EP_MULT(
1553 					le32_to_cpu(ep_ctx->ep_info)) + 1;
1554 			bw_info->num_packets = CTX_TO_MAX_BURST(
1555 					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1556 			bw_info->max_packet_size = MAX_PACKET_DECODED(
1557 					le32_to_cpu(ep_ctx->ep_info2));
1558 			bw_info->type = ep_type;
1559 			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1560 					le32_to_cpu(ep_ctx->tx_info));
1561 		}
1562 	}
1563 }
1564 
1565 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1566  * Useful when you want to change one particular aspect of the endpoint and then
1567  * issue a configure endpoint command.
1568  */
1569 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1570 		struct xhci_container_ctx *in_ctx,
1571 		struct xhci_container_ctx *out_ctx,
1572 		unsigned int ep_index)
1573 {
1574 	struct xhci_ep_ctx *out_ep_ctx;
1575 	struct xhci_ep_ctx *in_ep_ctx;
1576 
1577 	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1578 	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1579 
1580 	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1581 	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1582 	in_ep_ctx->deq = out_ep_ctx->deq;
1583 	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1584 	if (xhci->quirks & XHCI_MTK_HOST) {
1585 		in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1586 		in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1587 	}
1588 }
1589 
1590 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1591  * Useful when you want to change one particular aspect of the endpoint and then
1592  * issue a configure endpoint command.  Only the context entries field matters,
1593  * but we'll copy the whole thing anyway.
1594  */
1595 void xhci_slot_copy(struct xhci_hcd *xhci,
1596 		struct xhci_container_ctx *in_ctx,
1597 		struct xhci_container_ctx *out_ctx)
1598 {
1599 	struct xhci_slot_ctx *in_slot_ctx;
1600 	struct xhci_slot_ctx *out_slot_ctx;
1601 
1602 	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1603 	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1604 
1605 	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1606 	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1607 	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1608 	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1609 }
1610 
1611 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1612 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1613 {
1614 	int i;
1615 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1616 	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1617 
1618 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1619 			"Allocating %d scratchpad buffers", num_sp);
1620 
1621 	if (!num_sp)
1622 		return 0;
1623 
1624 	xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1625 				dev_to_node(dev));
1626 	if (!xhci->scratchpad)
1627 		goto fail_sp;
1628 
1629 	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1630 				     array_size(sizeof(u64), num_sp),
1631 				     &xhci->scratchpad->sp_dma, flags);
1632 	if (!xhci->scratchpad->sp_array)
1633 		goto fail_sp2;
1634 
1635 	xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1636 					flags, dev_to_node(dev));
1637 	if (!xhci->scratchpad->sp_buffers)
1638 		goto fail_sp3;
1639 
1640 	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1641 	for (i = 0; i < num_sp; i++) {
1642 		dma_addr_t dma;
1643 		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1644 					       flags);
1645 		if (!buf)
1646 			goto fail_sp4;
1647 
1648 		xhci->scratchpad->sp_array[i] = dma;
1649 		xhci->scratchpad->sp_buffers[i] = buf;
1650 	}
1651 
1652 	return 0;
1653 
1654  fail_sp4:
1655 	while (i--)
1656 		dma_free_coherent(dev, xhci->page_size,
1657 				    xhci->scratchpad->sp_buffers[i],
1658 				    xhci->scratchpad->sp_array[i]);
1659 
1660 	kfree(xhci->scratchpad->sp_buffers);
1661 
1662  fail_sp3:
1663 	dma_free_coherent(dev, array_size(sizeof(u64), num_sp),
1664 			    xhci->scratchpad->sp_array,
1665 			    xhci->scratchpad->sp_dma);
1666 
1667  fail_sp2:
1668 	kfree(xhci->scratchpad);
1669 	xhci->scratchpad = NULL;
1670 
1671  fail_sp:
1672 	return -ENOMEM;
1673 }
1674 
1675 static void scratchpad_free(struct xhci_hcd *xhci)
1676 {
1677 	int num_sp;
1678 	int i;
1679 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1680 
1681 	if (!xhci->scratchpad)
1682 		return;
1683 
1684 	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1685 
1686 	for (i = 0; i < num_sp; i++) {
1687 		dma_free_coherent(dev, xhci->page_size,
1688 				    xhci->scratchpad->sp_buffers[i],
1689 				    xhci->scratchpad->sp_array[i]);
1690 	}
1691 	kfree(xhci->scratchpad->sp_buffers);
1692 	dma_free_coherent(dev, array_size(sizeof(u64), num_sp),
1693 			    xhci->scratchpad->sp_array,
1694 			    xhci->scratchpad->sp_dma);
1695 	kfree(xhci->scratchpad);
1696 	xhci->scratchpad = NULL;
1697 }
1698 
1699 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1700 		bool allocate_completion, gfp_t mem_flags)
1701 {
1702 	struct xhci_command *command;
1703 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1704 
1705 	command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1706 	if (!command)
1707 		return NULL;
1708 
1709 	if (allocate_completion) {
1710 		command->completion =
1711 			kzalloc_node(sizeof(struct completion), mem_flags,
1712 				dev_to_node(dev));
1713 		if (!command->completion) {
1714 			kfree(command);
1715 			return NULL;
1716 		}
1717 		init_completion(command->completion);
1718 	}
1719 
1720 	command->status = 0;
1721 	/* set default timeout to 5000 ms */
1722 	command->timeout_ms = XHCI_CMD_DEFAULT_TIMEOUT;
1723 	INIT_LIST_HEAD(&command->cmd_list);
1724 	return command;
1725 }
1726 
1727 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1728 		bool allocate_completion, gfp_t mem_flags)
1729 {
1730 	struct xhci_command *command;
1731 
1732 	command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1733 	if (!command)
1734 		return NULL;
1735 
1736 	command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1737 						   mem_flags);
1738 	if (!command->in_ctx) {
1739 		kfree(command->completion);
1740 		kfree(command);
1741 		return NULL;
1742 	}
1743 	return command;
1744 }
1745 
1746 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1747 {
1748 	kfree(urb_priv);
1749 }
1750 
1751 void xhci_free_command(struct xhci_hcd *xhci,
1752 		struct xhci_command *command)
1753 {
1754 	xhci_free_container_ctx(xhci,
1755 			command->in_ctx);
1756 	kfree(command->completion);
1757 	kfree(command);
1758 }
1759 
1760 static int xhci_alloc_erst(struct xhci_hcd *xhci,
1761 		    struct xhci_ring *evt_ring,
1762 		    struct xhci_erst *erst,
1763 		    gfp_t flags)
1764 {
1765 	size_t size;
1766 	unsigned int val;
1767 	struct xhci_segment *seg;
1768 	struct xhci_erst_entry *entry;
1769 
1770 	size = array_size(sizeof(struct xhci_erst_entry), evt_ring->num_segs);
1771 	erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1772 					   size, &erst->erst_dma_addr, flags);
1773 	if (!erst->entries)
1774 		return -ENOMEM;
1775 
1776 	erst->num_entries = evt_ring->num_segs;
1777 
1778 	seg = evt_ring->first_seg;
1779 	for (val = 0; val < evt_ring->num_segs; val++) {
1780 		entry = &erst->entries[val];
1781 		entry->seg_addr = cpu_to_le64(seg->dma);
1782 		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1783 		entry->rsvd = 0;
1784 		seg = seg->next;
1785 	}
1786 
1787 	return 0;
1788 }
1789 
1790 static void
1791 xhci_remove_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1792 {
1793 	u32 tmp;
1794 
1795 	if (!ir)
1796 		return;
1797 
1798 	/*
1799 	 * Clean out interrupter registers except ERSTBA. Clearing either the
1800 	 * low or high 32 bits of ERSTBA immediately causes the controller to
1801 	 * dereference the partially cleared 64 bit address, causing IOMMU error.
1802 	 */
1803 	if (ir->ir_set) {
1804 		tmp = readl(&ir->ir_set->erst_size);
1805 		tmp &= ERST_SIZE_MASK;
1806 		writel(tmp, &ir->ir_set->erst_size);
1807 
1808 		xhci_write_64(xhci, ERST_EHB, &ir->ir_set->erst_dequeue);
1809 	}
1810 }
1811 
1812 static void
1813 xhci_free_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1814 {
1815 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1816 	size_t erst_size;
1817 
1818 	if (!ir)
1819 		return;
1820 
1821 	erst_size = array_size(sizeof(struct xhci_erst_entry), ir->erst.num_entries);
1822 	if (ir->erst.entries)
1823 		dma_free_coherent(dev, erst_size,
1824 				  ir->erst.entries,
1825 				  ir->erst.erst_dma_addr);
1826 	ir->erst.entries = NULL;
1827 
1828 	/* free interrupter event ring */
1829 	if (ir->event_ring)
1830 		xhci_ring_free(xhci, ir->event_ring);
1831 
1832 	ir->event_ring = NULL;
1833 
1834 	kfree(ir);
1835 }
1836 
1837 void xhci_remove_secondary_interrupter(struct usb_hcd *hcd, struct xhci_interrupter *ir)
1838 {
1839 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1840 	unsigned int intr_num;
1841 
1842 	spin_lock_irq(&xhci->lock);
1843 
1844 	/* interrupter 0 is primary interrupter, don't touch it */
1845 	if (!ir || !ir->intr_num || ir->intr_num >= xhci->max_interrupters) {
1846 		xhci_dbg(xhci, "Invalid secondary interrupter, can't remove\n");
1847 		spin_unlock_irq(&xhci->lock);
1848 		return;
1849 	}
1850 
1851 	intr_num = ir->intr_num;
1852 
1853 	xhci_remove_interrupter(xhci, ir);
1854 	xhci->interrupters[intr_num] = NULL;
1855 
1856 	spin_unlock_irq(&xhci->lock);
1857 
1858 	xhci_free_interrupter(xhci, ir);
1859 }
1860 EXPORT_SYMBOL_GPL(xhci_remove_secondary_interrupter);
1861 
1862 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1863 {
1864 	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
1865 	int i, j, num_ports;
1866 
1867 	cancel_delayed_work_sync(&xhci->cmd_timer);
1868 
1869 	for (i = 0; xhci->interrupters && i < xhci->max_interrupters; i++) {
1870 		if (xhci->interrupters[i]) {
1871 			xhci_remove_interrupter(xhci, xhci->interrupters[i]);
1872 			xhci_free_interrupter(xhci, xhci->interrupters[i]);
1873 			xhci->interrupters[i] = NULL;
1874 		}
1875 	}
1876 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed interrupters");
1877 
1878 	if (xhci->cmd_ring)
1879 		xhci_ring_free(xhci, xhci->cmd_ring);
1880 	xhci->cmd_ring = NULL;
1881 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1882 	xhci_cleanup_command_queue(xhci);
1883 
1884 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1885 	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1886 		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1887 		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1888 			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1889 			while (!list_empty(ep))
1890 				list_del_init(ep->next);
1891 		}
1892 	}
1893 
1894 	for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1895 		xhci_free_virt_devices_depth_first(xhci, i);
1896 
1897 	dma_pool_destroy(xhci->segment_pool);
1898 	xhci->segment_pool = NULL;
1899 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1900 
1901 	dma_pool_destroy(xhci->device_pool);
1902 	xhci->device_pool = NULL;
1903 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1904 
1905 	dma_pool_destroy(xhci->small_streams_pool);
1906 	xhci->small_streams_pool = NULL;
1907 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1908 			"Freed small stream array pool");
1909 
1910 	dma_pool_destroy(xhci->medium_streams_pool);
1911 	xhci->medium_streams_pool = NULL;
1912 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1913 			"Freed medium stream array pool");
1914 
1915 	if (xhci->dcbaa)
1916 		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1917 				xhci->dcbaa, xhci->dcbaa->dma);
1918 	xhci->dcbaa = NULL;
1919 
1920 	scratchpad_free(xhci);
1921 
1922 	if (!xhci->rh_bw)
1923 		goto no_bw;
1924 
1925 	for (i = 0; i < num_ports; i++) {
1926 		struct xhci_tt_bw_info *tt, *n;
1927 		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1928 			list_del(&tt->tt_list);
1929 			kfree(tt);
1930 		}
1931 	}
1932 
1933 no_bw:
1934 	xhci->cmd_ring_reserved_trbs = 0;
1935 	xhci->usb2_rhub.num_ports = 0;
1936 	xhci->usb3_rhub.num_ports = 0;
1937 	xhci->num_active_eps = 0;
1938 	kfree(xhci->usb2_rhub.ports);
1939 	kfree(xhci->usb3_rhub.ports);
1940 	kfree(xhci->hw_ports);
1941 	kfree(xhci->rh_bw);
1942 	for (i = 0; i < xhci->num_port_caps; i++)
1943 		kfree(xhci->port_caps[i].psi);
1944 	kfree(xhci->port_caps);
1945 	kfree(xhci->interrupters);
1946 	xhci->num_port_caps = 0;
1947 
1948 	xhci->usb2_rhub.ports = NULL;
1949 	xhci->usb3_rhub.ports = NULL;
1950 	xhci->hw_ports = NULL;
1951 	xhci->rh_bw = NULL;
1952 	xhci->port_caps = NULL;
1953 	xhci->interrupters = NULL;
1954 
1955 	xhci->page_size = 0;
1956 	xhci->page_shift = 0;
1957 	xhci->usb2_rhub.bus_state.bus_suspended = 0;
1958 	xhci->usb3_rhub.bus_state.bus_suspended = 0;
1959 }
1960 
1961 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1962 {
1963 	dma_addr_t deq;
1964 
1965 	deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg,
1966 			ir->event_ring->dequeue);
1967 	if (!deq)
1968 		xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr.\n");
1969 	/* Update HC event ring dequeue pointer */
1970 	/* Don't clear the EHB bit (which is RW1C) because
1971 	 * there might be more events to service.
1972 	 */
1973 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1974 		       "// Write event ring dequeue pointer, preserving EHB bit");
1975 	xhci_write_64(xhci, deq & ERST_PTR_MASK, &ir->ir_set->erst_dequeue);
1976 }
1977 
1978 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1979 		__le32 __iomem *addr, int max_caps)
1980 {
1981 	u32 temp, port_offset, port_count;
1982 	int i;
1983 	u8 major_revision, minor_revision, tmp_minor_revision;
1984 	struct xhci_hub *rhub;
1985 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1986 	struct xhci_port_cap *port_cap;
1987 
1988 	temp = readl(addr);
1989 	major_revision = XHCI_EXT_PORT_MAJOR(temp);
1990 	minor_revision = XHCI_EXT_PORT_MINOR(temp);
1991 
1992 	if (major_revision == 0x03) {
1993 		rhub = &xhci->usb3_rhub;
1994 		/*
1995 		 * Some hosts incorrectly use sub-minor version for minor
1996 		 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
1997 		 * for bcdUSB 0x310). Since there is no USB release with sub
1998 		 * minor version 0x301 to 0x309, we can assume that they are
1999 		 * incorrect and fix it here.
2000 		 */
2001 		if (minor_revision > 0x00 && minor_revision < 0x10)
2002 			minor_revision <<= 4;
2003 		/*
2004 		 * Some zhaoxin's xHCI controller that follow usb3.1 spec
2005 		 * but only support Gen1.
2006 		 */
2007 		if (xhci->quirks & XHCI_ZHAOXIN_HOST) {
2008 			tmp_minor_revision = minor_revision;
2009 			minor_revision = 0;
2010 		}
2011 
2012 	} else if (major_revision <= 0x02) {
2013 		rhub = &xhci->usb2_rhub;
2014 	} else {
2015 		xhci_warn(xhci, "Ignoring unknown port speed, Ext Cap %p, revision = 0x%x\n",
2016 				addr, major_revision);
2017 		/* Ignoring port protocol we can't understand. FIXME */
2018 		return;
2019 	}
2020 
2021 	/* Port offset and count in the third dword, see section 7.2 */
2022 	temp = readl(addr + 2);
2023 	port_offset = XHCI_EXT_PORT_OFF(temp);
2024 	port_count = XHCI_EXT_PORT_COUNT(temp);
2025 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2026 		       "Ext Cap %p, port offset = %u, count = %u, revision = 0x%x",
2027 		       addr, port_offset, port_count, major_revision);
2028 	/* Port count includes the current port offset */
2029 	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2030 		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2031 		return;
2032 
2033 	port_cap = &xhci->port_caps[xhci->num_port_caps++];
2034 	if (xhci->num_port_caps > max_caps)
2035 		return;
2036 
2037 	port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2038 
2039 	if (port_cap->psi_count) {
2040 		port_cap->psi = kcalloc_node(port_cap->psi_count,
2041 					     sizeof(*port_cap->psi),
2042 					     GFP_KERNEL, dev_to_node(dev));
2043 		if (!port_cap->psi)
2044 			port_cap->psi_count = 0;
2045 
2046 		port_cap->psi_uid_count++;
2047 		for (i = 0; i < port_cap->psi_count; i++) {
2048 			port_cap->psi[i] = readl(addr + 4 + i);
2049 
2050 			/* count unique ID values, two consecutive entries can
2051 			 * have the same ID if link is assymetric
2052 			 */
2053 			if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2054 				  XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2055 				port_cap->psi_uid_count++;
2056 
2057 			if (xhci->quirks & XHCI_ZHAOXIN_HOST &&
2058 			    major_revision == 0x03 &&
2059 			    XHCI_EXT_PORT_PSIV(port_cap->psi[i]) >= 5)
2060 				minor_revision = tmp_minor_revision;
2061 
2062 			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2063 				  XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2064 				  XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2065 				  XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2066 				  XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2067 				  XHCI_EXT_PORT_LP(port_cap->psi[i]),
2068 				  XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2069 		}
2070 	}
2071 
2072 	rhub->maj_rev = major_revision;
2073 
2074 	if (rhub->min_rev < minor_revision)
2075 		rhub->min_rev = minor_revision;
2076 
2077 	port_cap->maj_rev = major_revision;
2078 	port_cap->min_rev = minor_revision;
2079 	port_cap->protocol_caps = temp;
2080 
2081 	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2082 		 (temp & XHCI_HLC)) {
2083 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2084 			       "xHCI 1.0: support USB2 hardware lpm");
2085 		xhci->hw_lpm_support = 1;
2086 	}
2087 
2088 	port_offset--;
2089 	for (i = port_offset; i < (port_offset + port_count); i++) {
2090 		struct xhci_port *hw_port = &xhci->hw_ports[i];
2091 		/* Duplicate entry.  Ignore the port if the revisions differ. */
2092 		if (hw_port->rhub) {
2093 			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p, port %u\n", addr, i);
2094 			xhci_warn(xhci, "Port was marked as USB %u, duplicated as USB %u\n",
2095 					hw_port->rhub->maj_rev, major_revision);
2096 			/* Only adjust the roothub port counts if we haven't
2097 			 * found a similar duplicate.
2098 			 */
2099 			if (hw_port->rhub != rhub &&
2100 				 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2101 				hw_port->rhub->num_ports--;
2102 				hw_port->hcd_portnum = DUPLICATE_ENTRY;
2103 			}
2104 			continue;
2105 		}
2106 		hw_port->rhub = rhub;
2107 		hw_port->port_cap = port_cap;
2108 		rhub->num_ports++;
2109 	}
2110 	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2111 }
2112 
2113 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2114 					struct xhci_hub *rhub, gfp_t flags)
2115 {
2116 	int port_index = 0;
2117 	int i;
2118 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2119 
2120 	if (!rhub->num_ports)
2121 		return;
2122 	rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2123 			flags, dev_to_node(dev));
2124 	if (!rhub->ports)
2125 		return;
2126 
2127 	for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2128 		if (xhci->hw_ports[i].rhub != rhub ||
2129 		    xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2130 			continue;
2131 		xhci->hw_ports[i].hcd_portnum = port_index;
2132 		rhub->ports[port_index] = &xhci->hw_ports[i];
2133 		port_index++;
2134 		if (port_index == rhub->num_ports)
2135 			break;
2136 	}
2137 }
2138 
2139 /*
2140  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2141  * specify what speeds each port is supposed to be.  We can't count on the port
2142  * speed bits in the PORTSC register being correct until a device is connected,
2143  * but we need to set up the two fake roothubs with the correct number of USB
2144  * 3.0 and USB 2.0 ports at host controller initialization time.
2145  */
2146 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2147 {
2148 	void __iomem *base;
2149 	u32 offset;
2150 	unsigned int num_ports;
2151 	int i, j;
2152 	int cap_count = 0;
2153 	u32 cap_start;
2154 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2155 
2156 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2157 	xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2158 				flags, dev_to_node(dev));
2159 	if (!xhci->hw_ports)
2160 		return -ENOMEM;
2161 
2162 	for (i = 0; i < num_ports; i++) {
2163 		xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2164 			NUM_PORT_REGS * i;
2165 		xhci->hw_ports[i].hw_portnum = i;
2166 
2167 		init_completion(&xhci->hw_ports[i].rexit_done);
2168 		init_completion(&xhci->hw_ports[i].u3exit_done);
2169 	}
2170 
2171 	xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2172 				   dev_to_node(dev));
2173 	if (!xhci->rh_bw)
2174 		return -ENOMEM;
2175 	for (i = 0; i < num_ports; i++) {
2176 		struct xhci_interval_bw_table *bw_table;
2177 
2178 		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2179 		bw_table = &xhci->rh_bw[i].bw_table;
2180 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2181 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2182 	}
2183 	base = &xhci->cap_regs->hc_capbase;
2184 
2185 	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2186 	if (!cap_start) {
2187 		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2188 		return -ENODEV;
2189 	}
2190 
2191 	offset = cap_start;
2192 	/* count extended protocol capability entries for later caching */
2193 	while (offset) {
2194 		cap_count++;
2195 		offset = xhci_find_next_ext_cap(base, offset,
2196 						      XHCI_EXT_CAPS_PROTOCOL);
2197 	}
2198 
2199 	xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2200 				flags, dev_to_node(dev));
2201 	if (!xhci->port_caps)
2202 		return -ENOMEM;
2203 
2204 	offset = cap_start;
2205 
2206 	while (offset) {
2207 		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2208 		if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2209 		    num_ports)
2210 			break;
2211 		offset = xhci_find_next_ext_cap(base, offset,
2212 						XHCI_EXT_CAPS_PROTOCOL);
2213 	}
2214 	if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2215 		xhci_warn(xhci, "No ports on the roothubs?\n");
2216 		return -ENODEV;
2217 	}
2218 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2219 		       "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2220 		       xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2221 
2222 	/* Place limits on the number of roothub ports so that the hub
2223 	 * descriptors aren't longer than the USB core will allocate.
2224 	 */
2225 	if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2226 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2227 				"Limiting USB 3.0 roothub ports to %u.",
2228 				USB_SS_MAXPORTS);
2229 		xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2230 	}
2231 	if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2232 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2233 				"Limiting USB 2.0 roothub ports to %u.",
2234 				USB_MAXCHILDREN);
2235 		xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2236 	}
2237 
2238 	if (!xhci->usb2_rhub.num_ports)
2239 		xhci_info(xhci, "USB2 root hub has no ports\n");
2240 
2241 	if (!xhci->usb3_rhub.num_ports)
2242 		xhci_info(xhci, "USB3 root hub has no ports\n");
2243 
2244 	xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2245 	xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2246 
2247 	return 0;
2248 }
2249 
2250 static struct xhci_interrupter *
2251 xhci_alloc_interrupter(struct xhci_hcd *xhci, unsigned int segs, gfp_t flags)
2252 {
2253 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2254 	struct xhci_interrupter *ir;
2255 	unsigned int max_segs;
2256 	int ret;
2257 
2258 	if (!segs)
2259 		segs = ERST_DEFAULT_SEGS;
2260 
2261 	max_segs = BIT(HCS_ERST_MAX(xhci->hcs_params2));
2262 	segs = min(segs, max_segs);
2263 
2264 	ir = kzalloc_node(sizeof(*ir), flags, dev_to_node(dev));
2265 	if (!ir)
2266 		return NULL;
2267 
2268 	ir->event_ring = xhci_ring_alloc(xhci, segs, TYPE_EVENT, 0, flags);
2269 	if (!ir->event_ring) {
2270 		xhci_warn(xhci, "Failed to allocate interrupter event ring\n");
2271 		kfree(ir);
2272 		return NULL;
2273 	}
2274 
2275 	ret = xhci_alloc_erst(xhci, ir->event_ring, &ir->erst, flags);
2276 	if (ret) {
2277 		xhci_warn(xhci, "Failed to allocate interrupter erst\n");
2278 		xhci_ring_free(xhci, ir->event_ring);
2279 		kfree(ir);
2280 		return NULL;
2281 	}
2282 
2283 	return ir;
2284 }
2285 
2286 static int
2287 xhci_add_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir,
2288 		     unsigned int intr_num)
2289 {
2290 	u64 erst_base;
2291 	u32 erst_size;
2292 
2293 	if (intr_num >= xhci->max_interrupters) {
2294 		xhci_warn(xhci, "Can't add interrupter %d, max interrupters %d\n",
2295 			  intr_num, xhci->max_interrupters);
2296 		return -EINVAL;
2297 	}
2298 
2299 	if (xhci->interrupters[intr_num]) {
2300 		xhci_warn(xhci, "Interrupter %d\n already set up", intr_num);
2301 		return -EINVAL;
2302 	}
2303 
2304 	xhci->interrupters[intr_num] = ir;
2305 	ir->intr_num = intr_num;
2306 	ir->ir_set = &xhci->run_regs->ir_set[intr_num];
2307 
2308 	/* set ERST count with the number of entries in the segment table */
2309 	erst_size = readl(&ir->ir_set->erst_size);
2310 	erst_size &= ERST_SIZE_MASK;
2311 	erst_size |= ir->event_ring->num_segs;
2312 	writel(erst_size, &ir->ir_set->erst_size);
2313 
2314 	erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
2315 	erst_base &= ERST_BASE_RSVDP;
2316 	erst_base |= ir->erst.erst_dma_addr & ~ERST_BASE_RSVDP;
2317 	if (xhci->quirks & XHCI_WRITE_64_HI_LO)
2318 		hi_lo_writeq(erst_base, &ir->ir_set->erst_base);
2319 	else
2320 		xhci_write_64(xhci, erst_base, &ir->ir_set->erst_base);
2321 
2322 	/* Set the event ring dequeue address of this interrupter */
2323 	xhci_set_hc_event_deq(xhci, ir);
2324 
2325 	return 0;
2326 }
2327 
2328 struct xhci_interrupter *
2329 xhci_create_secondary_interrupter(struct usb_hcd *hcd, unsigned int segs,
2330 				  u32 imod_interval)
2331 {
2332 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2333 	struct xhci_interrupter *ir;
2334 	unsigned int i;
2335 	int err = -ENOSPC;
2336 
2337 	if (!xhci->interrupters || xhci->max_interrupters <= 1)
2338 		return NULL;
2339 
2340 	ir = xhci_alloc_interrupter(xhci, segs, GFP_KERNEL);
2341 	if (!ir)
2342 		return NULL;
2343 
2344 	spin_lock_irq(&xhci->lock);
2345 
2346 	/* Find available secondary interrupter, interrupter 0 is reserved for primary */
2347 	for (i = 1; i < xhci->max_interrupters; i++) {
2348 		if (xhci->interrupters[i] == NULL) {
2349 			err = xhci_add_interrupter(xhci, ir, i);
2350 			break;
2351 		}
2352 	}
2353 
2354 	spin_unlock_irq(&xhci->lock);
2355 
2356 	if (err) {
2357 		xhci_warn(xhci, "Failed to add secondary interrupter, max interrupters %d\n",
2358 			  xhci->max_interrupters);
2359 		xhci_free_interrupter(xhci, ir);
2360 		return NULL;
2361 	}
2362 
2363 	err = xhci_set_interrupter_moderation(ir, imod_interval);
2364 	if (err)
2365 		xhci_warn(xhci, "Failed to set interrupter %d moderation to %uns\n",
2366 			  i, imod_interval);
2367 
2368 	xhci_dbg(xhci, "Add secondary interrupter %d, max interrupters %d\n",
2369 		 i, xhci->max_interrupters);
2370 
2371 	return ir;
2372 }
2373 EXPORT_SYMBOL_GPL(xhci_create_secondary_interrupter);
2374 
2375 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2376 {
2377 	struct xhci_interrupter *ir;
2378 	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
2379 	dma_addr_t	dma;
2380 	unsigned int	val, val2;
2381 	u64		val_64;
2382 	u32		page_size, temp;
2383 	int		i;
2384 
2385 	INIT_LIST_HEAD(&xhci->cmd_list);
2386 
2387 	/* init command timeout work */
2388 	INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2389 	init_completion(&xhci->cmd_ring_stop_completion);
2390 
2391 	page_size = readl(&xhci->op_regs->page_size);
2392 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2393 			"Supported page size register = 0x%x", page_size);
2394 	i = ffs(page_size);
2395 	if (i < 16)
2396 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2397 			"Supported page size of %iK", (1 << (i+12)) / 1024);
2398 	else
2399 		xhci_warn(xhci, "WARN: no supported page size\n");
2400 	/* Use 4K pages, since that's common and the minimum the HC supports */
2401 	xhci->page_shift = 12;
2402 	xhci->page_size = 1 << xhci->page_shift;
2403 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2404 			"HCD page size set to %iK", xhci->page_size / 1024);
2405 
2406 	/*
2407 	 * Program the Number of Device Slots Enabled field in the CONFIG
2408 	 * register with the max value of slots the HC can handle.
2409 	 */
2410 	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2411 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2412 			"// xHC can handle at most %d device slots.", val);
2413 	val2 = readl(&xhci->op_regs->config_reg);
2414 	val |= (val2 & ~HCS_SLOTS_MASK);
2415 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2416 			"// Setting Max device slots reg = 0x%x.", val);
2417 	writel(val, &xhci->op_regs->config_reg);
2418 
2419 	/*
2420 	 * xHCI section 5.4.6 - Device Context array must be
2421 	 * "physically contiguous and 64-byte (cache line) aligned".
2422 	 */
2423 	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2424 			flags);
2425 	if (!xhci->dcbaa)
2426 		goto fail;
2427 	xhci->dcbaa->dma = dma;
2428 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2429 			"// Device context base array address = 0x%pad (DMA), %p (virt)",
2430 			&xhci->dcbaa->dma, xhci->dcbaa);
2431 	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2432 
2433 	/*
2434 	 * Initialize the ring segment pool.  The ring must be a contiguous
2435 	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2436 	 * however, the command ring segment needs 64-byte aligned segments
2437 	 * and our use of dma addresses in the trb_address_map radix tree needs
2438 	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2439 	 */
2440 	if (xhci->quirks & XHCI_ZHAOXIN_TRB_FETCH)
2441 		xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2442 				TRB_SEGMENT_SIZE * 2, TRB_SEGMENT_SIZE * 2, xhci->page_size * 2);
2443 	else
2444 		xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2445 				TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2446 
2447 	/* See Table 46 and Note on Figure 55 */
2448 	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2449 			2112, 64, xhci->page_size);
2450 	if (!xhci->segment_pool || !xhci->device_pool)
2451 		goto fail;
2452 
2453 	/* Linear stream context arrays don't have any boundary restrictions,
2454 	 * and only need to be 16-byte aligned.
2455 	 */
2456 	xhci->small_streams_pool =
2457 		dma_pool_create("xHCI 256 byte stream ctx arrays",
2458 			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2459 	xhci->medium_streams_pool =
2460 		dma_pool_create("xHCI 1KB stream ctx arrays",
2461 			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2462 	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2463 	 * will be allocated with dma_alloc_coherent()
2464 	 */
2465 
2466 	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2467 		goto fail;
2468 
2469 	/* Set up the command ring to have one segments for now. */
2470 	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, TYPE_COMMAND, 0, flags);
2471 	if (!xhci->cmd_ring)
2472 		goto fail;
2473 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2474 			"Allocated command ring at %p", xhci->cmd_ring);
2475 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%pad",
2476 			&xhci->cmd_ring->first_seg->dma);
2477 
2478 	/* Set the address in the Command Ring Control register */
2479 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2480 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2481 		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2482 		xhci->cmd_ring->cycle_state;
2483 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2484 			"// Setting command ring address to 0x%016llx", val_64);
2485 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2486 
2487 	/* Reserve one command ring TRB for disabling LPM.
2488 	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2489 	 * disabling LPM, we only need to reserve one TRB for all devices.
2490 	 */
2491 	xhci->cmd_ring_reserved_trbs++;
2492 
2493 	val = readl(&xhci->cap_regs->db_off);
2494 	val &= DBOFF_MASK;
2495 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2496 		       "// Doorbell array is located at offset 0x%x from cap regs base addr",
2497 		       val);
2498 	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2499 
2500 	/* Allocate and set up primary interrupter 0 with an event ring. */
2501 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2502 		       "Allocating primary event ring");
2503 	xhci->interrupters = kcalloc_node(xhci->max_interrupters, sizeof(*xhci->interrupters),
2504 					  flags, dev_to_node(dev));
2505 
2506 	ir = xhci_alloc_interrupter(xhci, 0, flags);
2507 	if (!ir)
2508 		goto fail;
2509 
2510 	if (xhci_add_interrupter(xhci, ir, 0))
2511 		goto fail;
2512 
2513 	ir->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
2514 
2515 	for (i = 0; i < MAX_HC_SLOTS; i++)
2516 		xhci->devs[i] = NULL;
2517 
2518 	if (scratchpad_alloc(xhci, flags))
2519 		goto fail;
2520 	if (xhci_setup_port_arrays(xhci, flags))
2521 		goto fail;
2522 
2523 	/* Enable USB 3.0 device notifications for function remote wake, which
2524 	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2525 	 * U3 (device suspend).
2526 	 */
2527 	temp = readl(&xhci->op_regs->dev_notification);
2528 	temp &= ~DEV_NOTE_MASK;
2529 	temp |= DEV_NOTE_FWAKE;
2530 	writel(temp, &xhci->op_regs->dev_notification);
2531 
2532 	return 0;
2533 
2534 fail:
2535 	xhci_halt(xhci);
2536 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2537 	xhci_mem_cleanup(xhci);
2538 	return -ENOMEM;
2539 }
2540