1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/usb.h> 12 #include <linux/overflow.h> 13 #include <linux/pci.h> 14 #include <linux/slab.h> 15 #include <linux/dmapool.h> 16 #include <linux/dma-mapping.h> 17 18 #include "xhci.h" 19 #include "xhci-trace.h" 20 #include "xhci-debugfs.h" 21 22 /* 23 * Allocates a generic ring segment from the ring pool, sets the dma address, 24 * initializes the segment to zero, and sets the private next pointer to NULL. 25 * 26 * Section 4.11.1.1: 27 * "All components of all Command and Transfer TRBs shall be initialized to '0'" 28 */ 29 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, 30 unsigned int cycle_state, 31 unsigned int max_packet, 32 unsigned int num, 33 gfp_t flags) 34 { 35 struct xhci_segment *seg; 36 dma_addr_t dma; 37 int i; 38 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 39 40 seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev)); 41 if (!seg) 42 return NULL; 43 44 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma); 45 if (!seg->trbs) { 46 kfree(seg); 47 return NULL; 48 } 49 50 if (max_packet) { 51 seg->bounce_buf = kzalloc_node(max_packet, flags, 52 dev_to_node(dev)); 53 if (!seg->bounce_buf) { 54 dma_pool_free(xhci->segment_pool, seg->trbs, dma); 55 kfree(seg); 56 return NULL; 57 } 58 } 59 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */ 60 if (cycle_state == 0) { 61 for (i = 0; i < TRBS_PER_SEGMENT; i++) 62 seg->trbs[i].link.control = cpu_to_le32(TRB_CYCLE); 63 } 64 seg->num = num; 65 seg->dma = dma; 66 seg->next = NULL; 67 68 return seg; 69 } 70 71 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg) 72 { 73 if (seg->trbs) { 74 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma); 75 seg->trbs = NULL; 76 } 77 kfree(seg->bounce_buf); 78 kfree(seg); 79 } 80 81 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci, 82 struct xhci_segment *first) 83 { 84 struct xhci_segment *seg; 85 86 seg = first->next; 87 while (seg && seg != first) { 88 struct xhci_segment *next = seg->next; 89 xhci_segment_free(xhci, seg); 90 seg = next; 91 } 92 xhci_segment_free(xhci, first); 93 } 94 95 /* 96 * Make the prev segment point to the next segment. 97 * 98 * Change the last TRB in the prev segment to be a Link TRB which points to the 99 * DMA address of the next segment. The caller needs to set any Link TRB 100 * related flags, such as End TRB, Toggle Cycle, and no snoop. 101 */ 102 static void xhci_link_segments(struct xhci_segment *prev, 103 struct xhci_segment *next, 104 enum xhci_ring_type type, bool chain_links) 105 { 106 u32 val; 107 108 if (!prev || !next) 109 return; 110 prev->next = next; 111 if (type != TYPE_EVENT) { 112 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = 113 cpu_to_le64(next->dma); 114 115 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */ 116 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control); 117 val &= ~TRB_TYPE_BITMASK; 118 val |= TRB_TYPE(TRB_LINK); 119 if (chain_links) 120 val |= TRB_CHAIN; 121 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val); 122 } 123 } 124 125 /* 126 * Link the ring to the new segments. 127 * Set Toggle Cycle for the new ring if needed. 128 */ 129 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring, 130 struct xhci_segment *first, struct xhci_segment *last, 131 unsigned int num_segs) 132 { 133 struct xhci_segment *next, *seg; 134 bool chain_links; 135 136 if (!ring || !first || !last) 137 return; 138 139 chain_links = xhci_link_chain_quirk(xhci, ring->type); 140 141 next = ring->enq_seg->next; 142 xhci_link_segments(ring->enq_seg, first, ring->type, chain_links); 143 xhci_link_segments(last, next, ring->type, chain_links); 144 ring->num_segs += num_segs; 145 146 if (ring->enq_seg == ring->last_seg) { 147 if (ring->type != TYPE_EVENT) { 148 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control 149 &= ~cpu_to_le32(LINK_TOGGLE); 150 last->trbs[TRBS_PER_SEGMENT-1].link.control 151 |= cpu_to_le32(LINK_TOGGLE); 152 } 153 ring->last_seg = last; 154 } 155 156 for (seg = ring->enq_seg; seg != ring->last_seg; seg = seg->next) 157 seg->next->num = seg->num + 1; 158 } 159 160 /* 161 * We need a radix tree for mapping physical addresses of TRBs to which stream 162 * ID they belong to. We need to do this because the host controller won't tell 163 * us which stream ring the TRB came from. We could store the stream ID in an 164 * event data TRB, but that doesn't help us for the cancellation case, since the 165 * endpoint may stop before it reaches that event data TRB. 166 * 167 * The radix tree maps the upper portion of the TRB DMA address to a ring 168 * segment that has the same upper portion of DMA addresses. For example, say I 169 * have segments of size 1KB, that are always 1KB aligned. A segment may 170 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the 171 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to 172 * pass the radix tree a key to get the right stream ID: 173 * 174 * 0x10c90fff >> 10 = 0x43243 175 * 0x10c912c0 >> 10 = 0x43244 176 * 0x10c91400 >> 10 = 0x43245 177 * 178 * Obviously, only those TRBs with DMA addresses that are within the segment 179 * will make the radix tree return the stream ID for that ring. 180 * 181 * Caveats for the radix tree: 182 * 183 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an 184 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be 185 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the 186 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit 187 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit 188 * extended systems (where the DMA address can be bigger than 32-bits), 189 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that. 190 */ 191 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map, 192 struct xhci_ring *ring, 193 struct xhci_segment *seg, 194 gfp_t mem_flags) 195 { 196 unsigned long key; 197 int ret; 198 199 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); 200 /* Skip any segments that were already added. */ 201 if (radix_tree_lookup(trb_address_map, key)) 202 return 0; 203 204 ret = radix_tree_maybe_preload(mem_flags); 205 if (ret) 206 return ret; 207 ret = radix_tree_insert(trb_address_map, 208 key, ring); 209 radix_tree_preload_end(); 210 return ret; 211 } 212 213 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map, 214 struct xhci_segment *seg) 215 { 216 unsigned long key; 217 218 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); 219 if (radix_tree_lookup(trb_address_map, key)) 220 radix_tree_delete(trb_address_map, key); 221 } 222 223 static int xhci_update_stream_segment_mapping( 224 struct radix_tree_root *trb_address_map, 225 struct xhci_ring *ring, 226 struct xhci_segment *first_seg, 227 struct xhci_segment *last_seg, 228 gfp_t mem_flags) 229 { 230 struct xhci_segment *seg; 231 struct xhci_segment *failed_seg; 232 int ret; 233 234 if (WARN_ON_ONCE(trb_address_map == NULL)) 235 return 0; 236 237 seg = first_seg; 238 do { 239 ret = xhci_insert_segment_mapping(trb_address_map, 240 ring, seg, mem_flags); 241 if (ret) 242 goto remove_streams; 243 if (seg == last_seg) 244 return 0; 245 seg = seg->next; 246 } while (seg != first_seg); 247 248 return 0; 249 250 remove_streams: 251 failed_seg = seg; 252 seg = first_seg; 253 do { 254 xhci_remove_segment_mapping(trb_address_map, seg); 255 if (seg == failed_seg) 256 return ret; 257 seg = seg->next; 258 } while (seg != first_seg); 259 260 return ret; 261 } 262 263 static void xhci_remove_stream_mapping(struct xhci_ring *ring) 264 { 265 struct xhci_segment *seg; 266 267 if (WARN_ON_ONCE(ring->trb_address_map == NULL)) 268 return; 269 270 seg = ring->first_seg; 271 do { 272 xhci_remove_segment_mapping(ring->trb_address_map, seg); 273 seg = seg->next; 274 } while (seg != ring->first_seg); 275 } 276 277 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags) 278 { 279 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring, 280 ring->first_seg, ring->last_seg, mem_flags); 281 } 282 283 /* XXX: Do we need the hcd structure in all these functions? */ 284 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring) 285 { 286 if (!ring) 287 return; 288 289 trace_xhci_ring_free(ring); 290 291 if (ring->first_seg) { 292 if (ring->type == TYPE_STREAM) 293 xhci_remove_stream_mapping(ring); 294 xhci_free_segments_for_ring(xhci, ring->first_seg); 295 } 296 297 kfree(ring); 298 } 299 300 void xhci_initialize_ring_info(struct xhci_ring *ring, 301 unsigned int cycle_state) 302 { 303 /* The ring is empty, so the enqueue pointer == dequeue pointer */ 304 ring->enqueue = ring->first_seg->trbs; 305 ring->enq_seg = ring->first_seg; 306 ring->dequeue = ring->enqueue; 307 ring->deq_seg = ring->first_seg; 308 /* The ring is initialized to 0. The producer must write 1 to the cycle 309 * bit to handover ownership of the TRB, so PCS = 1. The consumer must 310 * compare CCS to the cycle bit to check ownership, so CCS = 1. 311 * 312 * New rings are initialized with cycle state equal to 1; if we are 313 * handling ring expansion, set the cycle state equal to the old ring. 314 */ 315 ring->cycle_state = cycle_state; 316 317 /* 318 * Each segment has a link TRB, and leave an extra TRB for SW 319 * accounting purpose 320 */ 321 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 322 } 323 EXPORT_SYMBOL_GPL(xhci_initialize_ring_info); 324 325 /* Allocate segments and link them for a ring */ 326 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci, 327 struct xhci_segment **first, 328 struct xhci_segment **last, 329 unsigned int num_segs, 330 unsigned int cycle_state, 331 enum xhci_ring_type type, 332 unsigned int max_packet, 333 gfp_t flags) 334 { 335 struct xhci_segment *prev; 336 unsigned int num = 0; 337 bool chain_links; 338 339 chain_links = xhci_link_chain_quirk(xhci, type); 340 341 prev = xhci_segment_alloc(xhci, cycle_state, max_packet, num, flags); 342 if (!prev) 343 return -ENOMEM; 344 num++; 345 346 *first = prev; 347 while (num < num_segs) { 348 struct xhci_segment *next; 349 350 next = xhci_segment_alloc(xhci, cycle_state, max_packet, num, 351 flags); 352 if (!next) 353 goto free_segments; 354 355 xhci_link_segments(prev, next, type, chain_links); 356 prev = next; 357 num++; 358 } 359 xhci_link_segments(prev, *first, type, chain_links); 360 *last = prev; 361 362 return 0; 363 364 free_segments: 365 xhci_free_segments_for_ring(xhci, *first); 366 return -ENOMEM; 367 } 368 369 /* 370 * Create a new ring with zero or more segments. 371 * 372 * Link each segment together into a ring. 373 * Set the end flag and the cycle toggle bit on the last segment. 374 * See section 4.9.1 and figures 15 and 16. 375 */ 376 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, 377 unsigned int num_segs, unsigned int cycle_state, 378 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags) 379 { 380 struct xhci_ring *ring; 381 int ret; 382 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 383 384 ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev)); 385 if (!ring) 386 return NULL; 387 388 ring->num_segs = num_segs; 389 ring->bounce_buf_len = max_packet; 390 INIT_LIST_HEAD(&ring->td_list); 391 ring->type = type; 392 if (num_segs == 0) 393 return ring; 394 395 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg, &ring->last_seg, num_segs, 396 cycle_state, type, max_packet, flags); 397 if (ret) 398 goto fail; 399 400 /* Only event ring does not use link TRB */ 401 if (type != TYPE_EVENT) { 402 /* See section 4.9.2.1 and 6.4.4.1 */ 403 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |= 404 cpu_to_le32(LINK_TOGGLE); 405 } 406 xhci_initialize_ring_info(ring, cycle_state); 407 trace_xhci_ring_alloc(ring); 408 return ring; 409 410 fail: 411 kfree(ring); 412 return NULL; 413 } 414 415 void xhci_free_endpoint_ring(struct xhci_hcd *xhci, 416 struct xhci_virt_device *virt_dev, 417 unsigned int ep_index) 418 { 419 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring); 420 virt_dev->eps[ep_index].ring = NULL; 421 } 422 423 /* 424 * Expand an existing ring. 425 * Allocate a new ring which has same segment numbers and link the two rings. 426 */ 427 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring, 428 unsigned int num_new_segs, gfp_t flags) 429 { 430 struct xhci_segment *first; 431 struct xhci_segment *last; 432 int ret; 433 434 ret = xhci_alloc_segments_for_ring(xhci, &first, &last, num_new_segs, ring->cycle_state, 435 ring->type, ring->bounce_buf_len, flags); 436 if (ret) 437 return -ENOMEM; 438 439 if (ring->type == TYPE_STREAM) { 440 ret = xhci_update_stream_segment_mapping(ring->trb_address_map, 441 ring, first, last, flags); 442 if (ret) 443 goto free_segments; 444 } 445 446 xhci_link_rings(xhci, ring, first, last, num_new_segs); 447 trace_xhci_ring_expansion(ring); 448 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 449 "ring expansion succeed, now has %d segments", 450 ring->num_segs); 451 452 return 0; 453 454 free_segments: 455 xhci_free_segments_for_ring(xhci, first); 456 return ret; 457 } 458 459 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci, 460 int type, gfp_t flags) 461 { 462 struct xhci_container_ctx *ctx; 463 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 464 465 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT)) 466 return NULL; 467 468 ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev)); 469 if (!ctx) 470 return NULL; 471 472 ctx->type = type; 473 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024; 474 if (type == XHCI_CTX_TYPE_INPUT) 475 ctx->size += CTX_SIZE(xhci->hcc_params); 476 477 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma); 478 if (!ctx->bytes) { 479 kfree(ctx); 480 return NULL; 481 } 482 return ctx; 483 } 484 485 void xhci_free_container_ctx(struct xhci_hcd *xhci, 486 struct xhci_container_ctx *ctx) 487 { 488 if (!ctx) 489 return; 490 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma); 491 kfree(ctx); 492 } 493 494 struct xhci_input_control_ctx *xhci_get_input_control_ctx( 495 struct xhci_container_ctx *ctx) 496 { 497 if (ctx->type != XHCI_CTX_TYPE_INPUT) 498 return NULL; 499 500 return (struct xhci_input_control_ctx *)ctx->bytes; 501 } 502 503 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci, 504 struct xhci_container_ctx *ctx) 505 { 506 if (ctx->type == XHCI_CTX_TYPE_DEVICE) 507 return (struct xhci_slot_ctx *)ctx->bytes; 508 509 return (struct xhci_slot_ctx *) 510 (ctx->bytes + CTX_SIZE(xhci->hcc_params)); 511 } 512 513 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci, 514 struct xhci_container_ctx *ctx, 515 unsigned int ep_index) 516 { 517 /* increment ep index by offset of start of ep ctx array */ 518 ep_index++; 519 if (ctx->type == XHCI_CTX_TYPE_INPUT) 520 ep_index++; 521 522 return (struct xhci_ep_ctx *) 523 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params))); 524 } 525 EXPORT_SYMBOL_GPL(xhci_get_ep_ctx); 526 527 /***************** Streams structures manipulation *************************/ 528 529 static void xhci_free_stream_ctx(struct xhci_hcd *xhci, 530 unsigned int num_stream_ctxs, 531 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma) 532 { 533 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 534 size_t size = array_size(sizeof(struct xhci_stream_ctx), num_stream_ctxs); 535 536 if (size > MEDIUM_STREAM_ARRAY_SIZE) 537 dma_free_coherent(dev, size, stream_ctx, dma); 538 else if (size > SMALL_STREAM_ARRAY_SIZE) 539 dma_pool_free(xhci->medium_streams_pool, stream_ctx, dma); 540 else 541 dma_pool_free(xhci->small_streams_pool, stream_ctx, dma); 542 } 543 544 /* 545 * The stream context array for each endpoint with bulk streams enabled can 546 * vary in size, based on: 547 * - how many streams the endpoint supports, 548 * - the maximum primary stream array size the host controller supports, 549 * - and how many streams the device driver asks for. 550 * 551 * The stream context array must be a power of 2, and can be as small as 552 * 64 bytes or as large as 1MB. 553 */ 554 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci, 555 unsigned int num_stream_ctxs, dma_addr_t *dma, 556 gfp_t mem_flags) 557 { 558 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 559 size_t size = array_size(sizeof(struct xhci_stream_ctx), num_stream_ctxs); 560 561 if (size > MEDIUM_STREAM_ARRAY_SIZE) 562 return dma_alloc_coherent(dev, size, dma, mem_flags); 563 if (size > SMALL_STREAM_ARRAY_SIZE) 564 return dma_pool_zalloc(xhci->medium_streams_pool, mem_flags, dma); 565 else 566 return dma_pool_zalloc(xhci->small_streams_pool, mem_flags, dma); 567 } 568 569 struct xhci_ring *xhci_dma_to_transfer_ring( 570 struct xhci_virt_ep *ep, 571 u64 address) 572 { 573 if (ep->ep_state & EP_HAS_STREAMS) 574 return radix_tree_lookup(&ep->stream_info->trb_address_map, 575 address >> TRB_SEGMENT_SHIFT); 576 return ep->ring; 577 } 578 579 /* 580 * Change an endpoint's internal structure so it supports stream IDs. The 581 * number of requested streams includes stream 0, which cannot be used by device 582 * drivers. 583 * 584 * The number of stream contexts in the stream context array may be bigger than 585 * the number of streams the driver wants to use. This is because the number of 586 * stream context array entries must be a power of two. 587 */ 588 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci, 589 unsigned int num_stream_ctxs, 590 unsigned int num_streams, 591 unsigned int max_packet, gfp_t mem_flags) 592 { 593 struct xhci_stream_info *stream_info; 594 u32 cur_stream; 595 struct xhci_ring *cur_ring; 596 u64 addr; 597 int ret; 598 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 599 600 xhci_dbg(xhci, "Allocating %u streams and %u stream context array entries.\n", 601 num_streams, num_stream_ctxs); 602 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) { 603 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n"); 604 return NULL; 605 } 606 xhci->cmd_ring_reserved_trbs++; 607 608 stream_info = kzalloc_node(sizeof(*stream_info), mem_flags, 609 dev_to_node(dev)); 610 if (!stream_info) 611 goto cleanup_trbs; 612 613 stream_info->num_streams = num_streams; 614 stream_info->num_stream_ctxs = num_stream_ctxs; 615 616 /* Initialize the array of virtual pointers to stream rings. */ 617 stream_info->stream_rings = kcalloc_node( 618 num_streams, sizeof(struct xhci_ring *), mem_flags, 619 dev_to_node(dev)); 620 if (!stream_info->stream_rings) 621 goto cleanup_info; 622 623 /* Initialize the array of DMA addresses for stream rings for the HW. */ 624 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci, 625 num_stream_ctxs, &stream_info->ctx_array_dma, 626 mem_flags); 627 if (!stream_info->stream_ctx_array) 628 goto cleanup_ring_array; 629 630 /* Allocate everything needed to free the stream rings later */ 631 stream_info->free_streams_command = 632 xhci_alloc_command_with_ctx(xhci, true, mem_flags); 633 if (!stream_info->free_streams_command) 634 goto cleanup_ctx; 635 636 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC); 637 638 /* Allocate rings for all the streams that the driver will use, 639 * and add their segment DMA addresses to the radix tree. 640 * Stream 0 is reserved. 641 */ 642 643 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 644 stream_info->stream_rings[cur_stream] = 645 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet, 646 mem_flags); 647 cur_ring = stream_info->stream_rings[cur_stream]; 648 if (!cur_ring) 649 goto cleanup_rings; 650 cur_ring->stream_id = cur_stream; 651 cur_ring->trb_address_map = &stream_info->trb_address_map; 652 /* Set deq ptr, cycle bit, and stream context type */ 653 addr = cur_ring->first_seg->dma | 654 SCT_FOR_CTX(SCT_PRI_TR) | 655 cur_ring->cycle_state; 656 stream_info->stream_ctx_array[cur_stream].stream_ring = 657 cpu_to_le64(addr); 658 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", cur_stream, addr); 659 660 ret = xhci_update_stream_mapping(cur_ring, mem_flags); 661 if (ret) { 662 xhci_ring_free(xhci, cur_ring); 663 stream_info->stream_rings[cur_stream] = NULL; 664 goto cleanup_rings; 665 } 666 } 667 /* Leave the other unused stream ring pointers in the stream context 668 * array initialized to zero. This will cause the xHC to give us an 669 * error if the device asks for a stream ID we don't have setup (if it 670 * was any other way, the host controller would assume the ring is 671 * "empty" and wait forever for data to be queued to that stream ID). 672 */ 673 674 return stream_info; 675 676 cleanup_rings: 677 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 678 cur_ring = stream_info->stream_rings[cur_stream]; 679 if (cur_ring) { 680 xhci_ring_free(xhci, cur_ring); 681 stream_info->stream_rings[cur_stream] = NULL; 682 } 683 } 684 xhci_free_command(xhci, stream_info->free_streams_command); 685 cleanup_ctx: 686 xhci_free_stream_ctx(xhci, 687 stream_info->num_stream_ctxs, 688 stream_info->stream_ctx_array, 689 stream_info->ctx_array_dma); 690 cleanup_ring_array: 691 kfree(stream_info->stream_rings); 692 cleanup_info: 693 kfree(stream_info); 694 cleanup_trbs: 695 xhci->cmd_ring_reserved_trbs--; 696 return NULL; 697 } 698 /* 699 * Sets the MaxPStreams field and the Linear Stream Array field. 700 * Sets the dequeue pointer to the stream context array. 701 */ 702 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci, 703 struct xhci_ep_ctx *ep_ctx, 704 struct xhci_stream_info *stream_info) 705 { 706 u32 max_primary_streams; 707 /* MaxPStreams is the number of stream context array entries, not the 708 * number we're actually using. Must be in 2^(MaxPstreams + 1) format. 709 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc. 710 */ 711 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2; 712 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 713 "Setting number of stream ctx array entries to %u", 714 1 << (max_primary_streams + 1)); 715 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK); 716 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams) 717 | EP_HAS_LSA); 718 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma); 719 } 720 721 /* 722 * Sets the MaxPStreams field and the Linear Stream Array field to 0. 723 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark, 724 * not at the beginning of the ring). 725 */ 726 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx, 727 struct xhci_virt_ep *ep) 728 { 729 dma_addr_t addr; 730 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA)); 731 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue); 732 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state); 733 } 734 735 /* Frees all stream contexts associated with the endpoint, 736 * 737 * Caller should fix the endpoint context streams fields. 738 */ 739 void xhci_free_stream_info(struct xhci_hcd *xhci, 740 struct xhci_stream_info *stream_info) 741 { 742 int cur_stream; 743 struct xhci_ring *cur_ring; 744 745 if (!stream_info) 746 return; 747 748 for (cur_stream = 1; cur_stream < stream_info->num_streams; 749 cur_stream++) { 750 cur_ring = stream_info->stream_rings[cur_stream]; 751 if (cur_ring) { 752 xhci_ring_free(xhci, cur_ring); 753 stream_info->stream_rings[cur_stream] = NULL; 754 } 755 } 756 xhci_free_command(xhci, stream_info->free_streams_command); 757 xhci->cmd_ring_reserved_trbs--; 758 if (stream_info->stream_ctx_array) 759 xhci_free_stream_ctx(xhci, 760 stream_info->num_stream_ctxs, 761 stream_info->stream_ctx_array, 762 stream_info->ctx_array_dma); 763 764 kfree(stream_info->stream_rings); 765 kfree(stream_info); 766 } 767 768 769 /***************** Device context manipulation *************************/ 770 771 static void xhci_free_tt_info(struct xhci_hcd *xhci, 772 struct xhci_virt_device *virt_dev, 773 int slot_id) 774 { 775 struct list_head *tt_list_head; 776 struct xhci_tt_bw_info *tt_info, *next; 777 bool slot_found = false; 778 779 /* If the device never made it past the Set Address stage, 780 * it may not have the root hub port pointer set correctly. 781 */ 782 if (!virt_dev->rhub_port) { 783 xhci_dbg(xhci, "Bad rhub port.\n"); 784 return; 785 } 786 787 tt_list_head = &(xhci->rh_bw[virt_dev->rhub_port->hw_portnum].tts); 788 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { 789 /* Multi-TT hubs will have more than one entry */ 790 if (tt_info->slot_id == slot_id) { 791 slot_found = true; 792 list_del(&tt_info->tt_list); 793 kfree(tt_info); 794 } else if (slot_found) { 795 break; 796 } 797 } 798 } 799 800 int xhci_alloc_tt_info(struct xhci_hcd *xhci, 801 struct xhci_virt_device *virt_dev, 802 struct usb_device *hdev, 803 struct usb_tt *tt, gfp_t mem_flags) 804 { 805 struct xhci_tt_bw_info *tt_info; 806 unsigned int num_ports; 807 int i, j; 808 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 809 810 if (!tt->multi) 811 num_ports = 1; 812 else 813 num_ports = hdev->maxchild; 814 815 for (i = 0; i < num_ports; i++, tt_info++) { 816 struct xhci_interval_bw_table *bw_table; 817 818 tt_info = kzalloc_node(sizeof(*tt_info), mem_flags, 819 dev_to_node(dev)); 820 if (!tt_info) 821 goto free_tts; 822 INIT_LIST_HEAD(&tt_info->tt_list); 823 list_add(&tt_info->tt_list, 824 &xhci->rh_bw[virt_dev->rhub_port->hw_portnum].tts); 825 tt_info->slot_id = virt_dev->udev->slot_id; 826 if (tt->multi) 827 tt_info->ttport = i+1; 828 bw_table = &tt_info->bw_table; 829 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 830 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 831 } 832 return 0; 833 834 free_tts: 835 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id); 836 return -ENOMEM; 837 } 838 839 840 /* All the xhci_tds in the ring's TD list should be freed at this point. 841 * Should be called with xhci->lock held if there is any chance the TT lists 842 * will be manipulated by the configure endpoint, allocate device, or update 843 * hub functions while this function is removing the TT entries from the list. 844 */ 845 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id) 846 { 847 struct xhci_virt_device *dev; 848 int i; 849 int old_active_eps = 0; 850 851 /* Slot ID 0 is reserved */ 852 if (slot_id == 0 || !xhci->devs[slot_id]) 853 return; 854 855 dev = xhci->devs[slot_id]; 856 857 xhci->dcbaa->dev_context_ptrs[slot_id] = 0; 858 if (!dev) 859 return; 860 861 trace_xhci_free_virt_device(dev); 862 863 if (dev->tt_info) 864 old_active_eps = dev->tt_info->active_eps; 865 866 for (i = 0; i < 31; i++) { 867 if (dev->eps[i].ring) 868 xhci_ring_free(xhci, dev->eps[i].ring); 869 if (dev->eps[i].stream_info) 870 xhci_free_stream_info(xhci, 871 dev->eps[i].stream_info); 872 /* 873 * Endpoints are normally deleted from the bandwidth list when 874 * endpoints are dropped, before device is freed. 875 * If host is dying or being removed then endpoints aren't 876 * dropped cleanly, so delete the endpoint from list here. 877 * Only applicable for hosts with software bandwidth checking. 878 */ 879 880 if (!list_empty(&dev->eps[i].bw_endpoint_list)) { 881 list_del_init(&dev->eps[i].bw_endpoint_list); 882 xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n", 883 slot_id, i); 884 } 885 } 886 /* If this is a hub, free the TT(s) from the TT list */ 887 xhci_free_tt_info(xhci, dev, slot_id); 888 /* If necessary, update the number of active TTs on this root port */ 889 xhci_update_tt_active_eps(xhci, dev, old_active_eps); 890 891 if (dev->in_ctx) 892 xhci_free_container_ctx(xhci, dev->in_ctx); 893 if (dev->out_ctx) 894 xhci_free_container_ctx(xhci, dev->out_ctx); 895 896 if (dev->udev && dev->udev->slot_id) 897 dev->udev->slot_id = 0; 898 if (dev->rhub_port && dev->rhub_port->slot_id == slot_id) 899 dev->rhub_port->slot_id = 0; 900 kfree(xhci->devs[slot_id]); 901 xhci->devs[slot_id] = NULL; 902 } 903 904 /* 905 * Free a virt_device structure. 906 * If the virt_device added a tt_info (a hub) and has children pointing to 907 * that tt_info, then free the child first. Recursive. 908 * We can't rely on udev at this point to find child-parent relationships. 909 */ 910 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id) 911 { 912 struct xhci_virt_device *vdev; 913 struct list_head *tt_list_head; 914 struct xhci_tt_bw_info *tt_info, *next; 915 int i; 916 917 vdev = xhci->devs[slot_id]; 918 if (!vdev) 919 return; 920 921 if (!vdev->rhub_port) { 922 xhci_dbg(xhci, "Bad rhub port.\n"); 923 goto out; 924 } 925 926 tt_list_head = &(xhci->rh_bw[vdev->rhub_port->hw_portnum].tts); 927 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { 928 /* is this a hub device that added a tt_info to the tts list */ 929 if (tt_info->slot_id == slot_id) { 930 /* are any devices using this tt_info? */ 931 for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 932 vdev = xhci->devs[i]; 933 if (vdev && (vdev->tt_info == tt_info)) 934 xhci_free_virt_devices_depth_first( 935 xhci, i); 936 } 937 } 938 } 939 out: 940 /* we are now at a leaf device */ 941 xhci_debugfs_remove_slot(xhci, slot_id); 942 xhci_free_virt_device(xhci, slot_id); 943 } 944 945 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id, 946 struct usb_device *udev, gfp_t flags) 947 { 948 struct xhci_virt_device *dev; 949 int i; 950 951 /* Slot ID 0 is reserved */ 952 if (slot_id == 0 || xhci->devs[slot_id]) { 953 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id); 954 return 0; 955 } 956 957 dev = kzalloc(sizeof(*dev), flags); 958 if (!dev) 959 return 0; 960 961 dev->slot_id = slot_id; 962 963 /* Allocate the (output) device context that will be used in the HC. */ 964 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags); 965 if (!dev->out_ctx) 966 goto fail; 967 968 xhci_dbg(xhci, "Slot %d output ctx = 0x%pad (dma)\n", slot_id, &dev->out_ctx->dma); 969 970 /* Allocate the (input) device context for address device command */ 971 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags); 972 if (!dev->in_ctx) 973 goto fail; 974 975 xhci_dbg(xhci, "Slot %d input ctx = 0x%pad (dma)\n", slot_id, &dev->in_ctx->dma); 976 977 /* Initialize the cancellation and bandwidth list for each ep */ 978 for (i = 0; i < 31; i++) { 979 dev->eps[i].ep_index = i; 980 dev->eps[i].vdev = dev; 981 dev->eps[i].xhci = xhci; 982 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list); 983 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list); 984 } 985 986 /* Allocate endpoint 0 ring */ 987 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags); 988 if (!dev->eps[0].ring) 989 goto fail; 990 991 dev->udev = udev; 992 993 /* Point to output device context in dcbaa. */ 994 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma); 995 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n", 996 slot_id, 997 &xhci->dcbaa->dev_context_ptrs[slot_id], 998 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id])); 999 1000 trace_xhci_alloc_virt_device(dev); 1001 1002 xhci->devs[slot_id] = dev; 1003 1004 return 1; 1005 fail: 1006 1007 if (dev->in_ctx) 1008 xhci_free_container_ctx(xhci, dev->in_ctx); 1009 if (dev->out_ctx) 1010 xhci_free_container_ctx(xhci, dev->out_ctx); 1011 kfree(dev); 1012 1013 return 0; 1014 } 1015 1016 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci, 1017 struct usb_device *udev) 1018 { 1019 struct xhci_virt_device *virt_dev; 1020 struct xhci_ep_ctx *ep0_ctx; 1021 struct xhci_ring *ep_ring; 1022 1023 virt_dev = xhci->devs[udev->slot_id]; 1024 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0); 1025 ep_ring = virt_dev->eps[0].ring; 1026 /* 1027 * FIXME we don't keep track of the dequeue pointer very well after a 1028 * Set TR dequeue pointer, so we're setting the dequeue pointer of the 1029 * host to our enqueue pointer. This should only be called after a 1030 * configured device has reset, so all control transfers should have 1031 * been completed or cancelled before the reset. 1032 */ 1033 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg, 1034 ep_ring->enqueue) 1035 | ep_ring->cycle_state); 1036 } 1037 1038 /* 1039 * The xHCI roothub may have ports of differing speeds in any order in the port 1040 * status registers. 1041 * 1042 * The xHCI hardware wants to know the roothub port that the USB device 1043 * is attached to (or the roothub port its ancestor hub is attached to). All we 1044 * know is the index of that port under either the USB 2.0 or the USB 3.0 1045 * roothub, but that doesn't give us the real index into the HW port status 1046 * registers. 1047 */ 1048 static struct xhci_port *xhci_find_rhub_port(struct xhci_hcd *xhci, struct usb_device *udev) 1049 { 1050 struct usb_device *top_dev; 1051 struct xhci_hub *rhub; 1052 struct usb_hcd *hcd; 1053 1054 if (udev->speed >= USB_SPEED_SUPER) 1055 hcd = xhci_get_usb3_hcd(xhci); 1056 else 1057 hcd = xhci->main_hcd; 1058 1059 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 1060 top_dev = top_dev->parent) 1061 /* Found device below root hub */; 1062 1063 rhub = xhci_get_rhub(hcd); 1064 return rhub->ports[top_dev->portnum - 1]; 1065 } 1066 1067 /* Setup an xHCI virtual device for a Set Address command */ 1068 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev) 1069 { 1070 struct xhci_virt_device *dev; 1071 struct xhci_ep_ctx *ep0_ctx; 1072 struct xhci_slot_ctx *slot_ctx; 1073 u32 max_packets; 1074 1075 dev = xhci->devs[udev->slot_id]; 1076 /* Slot ID 0 is reserved */ 1077 if (udev->slot_id == 0 || !dev) { 1078 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n", 1079 udev->slot_id); 1080 return -EINVAL; 1081 } 1082 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0); 1083 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx); 1084 1085 /* 3) Only the control endpoint is valid - one endpoint context */ 1086 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route); 1087 switch (udev->speed) { 1088 case USB_SPEED_SUPER_PLUS: 1089 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP); 1090 max_packets = MAX_PACKET(512); 1091 break; 1092 case USB_SPEED_SUPER: 1093 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS); 1094 max_packets = MAX_PACKET(512); 1095 break; 1096 case USB_SPEED_HIGH: 1097 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS); 1098 max_packets = MAX_PACKET(64); 1099 break; 1100 /* USB core guesses at a 64-byte max packet first for FS devices */ 1101 case USB_SPEED_FULL: 1102 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS); 1103 max_packets = MAX_PACKET(64); 1104 break; 1105 case USB_SPEED_LOW: 1106 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS); 1107 max_packets = MAX_PACKET(8); 1108 break; 1109 default: 1110 /* Speed was set earlier, this shouldn't happen. */ 1111 return -EINVAL; 1112 } 1113 /* Find the root hub port this device is under */ 1114 dev->rhub_port = xhci_find_rhub_port(xhci, udev); 1115 if (!dev->rhub_port) 1116 return -EINVAL; 1117 /* Slot ID is set to the device directly below the root hub */ 1118 if (!udev->parent->parent) 1119 dev->rhub_port->slot_id = udev->slot_id; 1120 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(dev->rhub_port->hw_portnum + 1)); 1121 xhci_dbg(xhci, "Slot ID %d: HW portnum %d, hcd portnum %d\n", 1122 udev->slot_id, dev->rhub_port->hw_portnum, dev->rhub_port->hcd_portnum); 1123 1124 /* Find the right bandwidth table that this device will be a part of. 1125 * If this is a full speed device attached directly to a root port (or a 1126 * decendent of one), it counts as a primary bandwidth domain, not a 1127 * secondary bandwidth domain under a TT. An xhci_tt_info structure 1128 * will never be created for the HS root hub. 1129 */ 1130 if (!udev->tt || !udev->tt->hub->parent) { 1131 dev->bw_table = &xhci->rh_bw[dev->rhub_port->hw_portnum].bw_table; 1132 } else { 1133 struct xhci_root_port_bw_info *rh_bw; 1134 struct xhci_tt_bw_info *tt_bw; 1135 1136 rh_bw = &xhci->rh_bw[dev->rhub_port->hw_portnum]; 1137 /* Find the right TT. */ 1138 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) { 1139 if (tt_bw->slot_id != udev->tt->hub->slot_id) 1140 continue; 1141 1142 if (!dev->udev->tt->multi || 1143 (udev->tt->multi && 1144 tt_bw->ttport == dev->udev->ttport)) { 1145 dev->bw_table = &tt_bw->bw_table; 1146 dev->tt_info = tt_bw; 1147 break; 1148 } 1149 } 1150 if (!dev->tt_info) 1151 xhci_warn(xhci, "WARN: Didn't find a matching TT\n"); 1152 } 1153 1154 /* Is this a LS/FS device under an external HS hub? */ 1155 if (udev->tt && udev->tt->hub->parent) { 1156 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id | 1157 (udev->ttport << 8)); 1158 if (udev->tt->multi) 1159 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 1160 } 1161 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt); 1162 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport); 1163 1164 /* Step 4 - ring already allocated */ 1165 /* Step 5 */ 1166 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP)); 1167 1168 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */ 1169 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) | 1170 max_packets); 1171 1172 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma | 1173 dev->eps[0].ring->cycle_state); 1174 1175 trace_xhci_setup_addressable_virt_device(dev); 1176 1177 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */ 1178 1179 return 0; 1180 } 1181 1182 /* 1183 * Convert interval expressed as 2^(bInterval - 1) == interval into 1184 * straight exponent value 2^n == interval. 1185 * 1186 */ 1187 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev, 1188 struct usb_host_endpoint *ep) 1189 { 1190 unsigned int interval; 1191 1192 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1; 1193 if (interval != ep->desc.bInterval - 1) 1194 dev_warn(&udev->dev, 1195 "ep %#x - rounding interval to %d %sframes\n", 1196 ep->desc.bEndpointAddress, 1197 1 << interval, 1198 udev->speed == USB_SPEED_FULL ? "" : "micro"); 1199 1200 if (udev->speed == USB_SPEED_FULL) { 1201 /* 1202 * Full speed isoc endpoints specify interval in frames, 1203 * not microframes. We are using microframes everywhere, 1204 * so adjust accordingly. 1205 */ 1206 interval += 3; /* 1 frame = 2^3 uframes */ 1207 } 1208 1209 return interval; 1210 } 1211 1212 /* 1213 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of 1214 * microframes, rounded down to nearest power of 2. 1215 */ 1216 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev, 1217 struct usb_host_endpoint *ep, unsigned int desc_interval, 1218 unsigned int min_exponent, unsigned int max_exponent) 1219 { 1220 unsigned int interval; 1221 1222 interval = fls(desc_interval) - 1; 1223 interval = clamp_val(interval, min_exponent, max_exponent); 1224 if ((1 << interval) != desc_interval) 1225 dev_dbg(&udev->dev, 1226 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n", 1227 ep->desc.bEndpointAddress, 1228 1 << interval, 1229 desc_interval); 1230 1231 return interval; 1232 } 1233 1234 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev, 1235 struct usb_host_endpoint *ep) 1236 { 1237 if (ep->desc.bInterval == 0) 1238 return 0; 1239 return xhci_microframes_to_exponent(udev, ep, 1240 ep->desc.bInterval, 0, 15); 1241 } 1242 1243 1244 static unsigned int xhci_parse_frame_interval(struct usb_device *udev, 1245 struct usb_host_endpoint *ep) 1246 { 1247 return xhci_microframes_to_exponent(udev, ep, 1248 ep->desc.bInterval * 8, 3, 10); 1249 } 1250 1251 /* Return the polling or NAK interval. 1252 * 1253 * The polling interval is expressed in "microframes". If xHCI's Interval field 1254 * is set to N, it will service the endpoint every 2^(Interval)*125us. 1255 * 1256 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval 1257 * is set to 0. 1258 */ 1259 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev, 1260 struct usb_host_endpoint *ep) 1261 { 1262 unsigned int interval = 0; 1263 1264 switch (udev->speed) { 1265 case USB_SPEED_HIGH: 1266 /* Max NAK rate */ 1267 if (usb_endpoint_xfer_control(&ep->desc) || 1268 usb_endpoint_xfer_bulk(&ep->desc)) { 1269 interval = xhci_parse_microframe_interval(udev, ep); 1270 break; 1271 } 1272 fallthrough; /* SS and HS isoc/int have same decoding */ 1273 1274 case USB_SPEED_SUPER_PLUS: 1275 case USB_SPEED_SUPER: 1276 if (usb_endpoint_xfer_int(&ep->desc) || 1277 usb_endpoint_xfer_isoc(&ep->desc)) { 1278 interval = xhci_parse_exponent_interval(udev, ep); 1279 } 1280 break; 1281 1282 case USB_SPEED_FULL: 1283 if (usb_endpoint_xfer_isoc(&ep->desc)) { 1284 interval = xhci_parse_exponent_interval(udev, ep); 1285 break; 1286 } 1287 /* 1288 * Fall through for interrupt endpoint interval decoding 1289 * since it uses the same rules as low speed interrupt 1290 * endpoints. 1291 */ 1292 fallthrough; 1293 1294 case USB_SPEED_LOW: 1295 if (usb_endpoint_xfer_int(&ep->desc) || 1296 usb_endpoint_xfer_isoc(&ep->desc)) { 1297 1298 interval = xhci_parse_frame_interval(udev, ep); 1299 } 1300 break; 1301 1302 default: 1303 BUG(); 1304 } 1305 return interval; 1306 } 1307 1308 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps. 1309 * High speed endpoint descriptors can define "the number of additional 1310 * transaction opportunities per microframe", but that goes in the Max Burst 1311 * endpoint context field. 1312 */ 1313 static u32 xhci_get_endpoint_mult(struct usb_device *udev, 1314 struct usb_host_endpoint *ep) 1315 { 1316 if (udev->speed < USB_SPEED_SUPER || 1317 !usb_endpoint_xfer_isoc(&ep->desc)) 1318 return 0; 1319 return ep->ss_ep_comp.bmAttributes; 1320 } 1321 1322 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev, 1323 struct usb_host_endpoint *ep) 1324 { 1325 /* Super speed and Plus have max burst in ep companion desc */ 1326 if (udev->speed >= USB_SPEED_SUPER) 1327 return ep->ss_ep_comp.bMaxBurst; 1328 1329 if (udev->speed == USB_SPEED_HIGH && 1330 (usb_endpoint_xfer_isoc(&ep->desc) || 1331 usb_endpoint_xfer_int(&ep->desc))) 1332 return usb_endpoint_maxp_mult(&ep->desc) - 1; 1333 1334 return 0; 1335 } 1336 1337 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep) 1338 { 1339 int in; 1340 1341 in = usb_endpoint_dir_in(&ep->desc); 1342 1343 switch (usb_endpoint_type(&ep->desc)) { 1344 case USB_ENDPOINT_XFER_CONTROL: 1345 return CTRL_EP; 1346 case USB_ENDPOINT_XFER_BULK: 1347 return in ? BULK_IN_EP : BULK_OUT_EP; 1348 case USB_ENDPOINT_XFER_ISOC: 1349 return in ? ISOC_IN_EP : ISOC_OUT_EP; 1350 case USB_ENDPOINT_XFER_INT: 1351 return in ? INT_IN_EP : INT_OUT_EP; 1352 } 1353 return 0; 1354 } 1355 1356 /* Return the maximum endpoint service interval time (ESIT) payload. 1357 * Basically, this is the maxpacket size, multiplied by the burst size 1358 * and mult size. 1359 */ 1360 static u32 xhci_get_max_esit_payload(struct usb_device *udev, 1361 struct usb_host_endpoint *ep) 1362 { 1363 int max_burst; 1364 int max_packet; 1365 1366 /* Only applies for interrupt or isochronous endpoints */ 1367 if (usb_endpoint_xfer_control(&ep->desc) || 1368 usb_endpoint_xfer_bulk(&ep->desc)) 1369 return 0; 1370 1371 /* SuperSpeedPlus Isoc ep sending over 48k per esit */ 1372 if ((udev->speed >= USB_SPEED_SUPER_PLUS) && 1373 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes)) 1374 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval); 1375 1376 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */ 1377 if (udev->speed >= USB_SPEED_SUPER) 1378 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); 1379 1380 max_packet = usb_endpoint_maxp(&ep->desc); 1381 max_burst = usb_endpoint_maxp_mult(&ep->desc); 1382 /* A 0 in max burst means 1 transfer per ESIT */ 1383 return max_packet * max_burst; 1384 } 1385 1386 /* Set up an endpoint with one ring segment. Do not allocate stream rings. 1387 * Drivers will have to call usb_alloc_streams() to do that. 1388 */ 1389 int xhci_endpoint_init(struct xhci_hcd *xhci, 1390 struct xhci_virt_device *virt_dev, 1391 struct usb_device *udev, 1392 struct usb_host_endpoint *ep, 1393 gfp_t mem_flags) 1394 { 1395 unsigned int ep_index; 1396 struct xhci_ep_ctx *ep_ctx; 1397 struct xhci_ring *ep_ring; 1398 unsigned int max_packet; 1399 enum xhci_ring_type ring_type; 1400 u32 max_esit_payload; 1401 u32 endpoint_type; 1402 unsigned int max_burst; 1403 unsigned int interval; 1404 unsigned int mult; 1405 unsigned int avg_trb_len; 1406 unsigned int err_count = 0; 1407 1408 ep_index = xhci_get_endpoint_index(&ep->desc); 1409 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1410 1411 endpoint_type = xhci_get_endpoint_type(ep); 1412 if (!endpoint_type) 1413 return -EINVAL; 1414 1415 ring_type = usb_endpoint_type(&ep->desc); 1416 1417 /* 1418 * Get values to fill the endpoint context, mostly from ep descriptor. 1419 * The average TRB buffer lengt for bulk endpoints is unclear as we 1420 * have no clue on scatter gather list entry size. For Isoc and Int, 1421 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details. 1422 */ 1423 max_esit_payload = xhci_get_max_esit_payload(udev, ep); 1424 interval = xhci_get_endpoint_interval(udev, ep); 1425 1426 /* Periodic endpoint bInterval limit quirk */ 1427 if (usb_endpoint_xfer_int(&ep->desc) || 1428 usb_endpoint_xfer_isoc(&ep->desc)) { 1429 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) && 1430 udev->speed >= USB_SPEED_HIGH && 1431 interval >= 7) { 1432 interval = 6; 1433 } 1434 } 1435 1436 mult = xhci_get_endpoint_mult(udev, ep); 1437 max_packet = usb_endpoint_maxp(&ep->desc); 1438 max_burst = xhci_get_endpoint_max_burst(udev, ep); 1439 avg_trb_len = max_esit_payload; 1440 1441 /* FIXME dig Mult and streams info out of ep companion desc */ 1442 1443 /* Allow 3 retries for everything but isoc, set CErr = 3 */ 1444 if (!usb_endpoint_xfer_isoc(&ep->desc)) 1445 err_count = 3; 1446 /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */ 1447 if (usb_endpoint_xfer_bulk(&ep->desc)) { 1448 if (udev->speed == USB_SPEED_HIGH) 1449 max_packet = 512; 1450 if (udev->speed == USB_SPEED_FULL) { 1451 max_packet = rounddown_pow_of_two(max_packet); 1452 max_packet = clamp_val(max_packet, 8, 64); 1453 } 1454 } 1455 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */ 1456 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100) 1457 avg_trb_len = 8; 1458 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */ 1459 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2)) 1460 mult = 0; 1461 1462 /* Set up the endpoint ring */ 1463 virt_dev->eps[ep_index].new_ring = 1464 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags); 1465 if (!virt_dev->eps[ep_index].new_ring) 1466 return -ENOMEM; 1467 1468 virt_dev->eps[ep_index].skip = false; 1469 ep_ring = virt_dev->eps[ep_index].new_ring; 1470 1471 /* Fill the endpoint context */ 1472 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) | 1473 EP_INTERVAL(interval) | 1474 EP_MULT(mult)); 1475 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) | 1476 MAX_PACKET(max_packet) | 1477 MAX_BURST(max_burst) | 1478 ERROR_COUNT(err_count)); 1479 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | 1480 ep_ring->cycle_state); 1481 1482 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) | 1483 EP_AVG_TRB_LENGTH(avg_trb_len)); 1484 1485 return 0; 1486 } 1487 1488 void xhci_endpoint_zero(struct xhci_hcd *xhci, 1489 struct xhci_virt_device *virt_dev, 1490 struct usb_host_endpoint *ep) 1491 { 1492 unsigned int ep_index; 1493 struct xhci_ep_ctx *ep_ctx; 1494 1495 ep_index = xhci_get_endpoint_index(&ep->desc); 1496 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1497 1498 ep_ctx->ep_info = 0; 1499 ep_ctx->ep_info2 = 0; 1500 ep_ctx->deq = 0; 1501 ep_ctx->tx_info = 0; 1502 /* Don't free the endpoint ring until the set interface or configuration 1503 * request succeeds. 1504 */ 1505 } 1506 1507 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info) 1508 { 1509 bw_info->ep_interval = 0; 1510 bw_info->mult = 0; 1511 bw_info->num_packets = 0; 1512 bw_info->max_packet_size = 0; 1513 bw_info->type = 0; 1514 bw_info->max_esit_payload = 0; 1515 } 1516 1517 void xhci_update_bw_info(struct xhci_hcd *xhci, 1518 struct xhci_container_ctx *in_ctx, 1519 struct xhci_input_control_ctx *ctrl_ctx, 1520 struct xhci_virt_device *virt_dev) 1521 { 1522 struct xhci_bw_info *bw_info; 1523 struct xhci_ep_ctx *ep_ctx; 1524 unsigned int ep_type; 1525 int i; 1526 1527 for (i = 1; i < 31; i++) { 1528 bw_info = &virt_dev->eps[i].bw_info; 1529 1530 /* We can't tell what endpoint type is being dropped, but 1531 * unconditionally clearing the bandwidth info for non-periodic 1532 * endpoints should be harmless because the info will never be 1533 * set in the first place. 1534 */ 1535 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) { 1536 /* Dropped endpoint */ 1537 xhci_clear_endpoint_bw_info(bw_info); 1538 continue; 1539 } 1540 1541 if (EP_IS_ADDED(ctrl_ctx, i)) { 1542 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i); 1543 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2)); 1544 1545 /* Ignore non-periodic endpoints */ 1546 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 1547 ep_type != ISOC_IN_EP && 1548 ep_type != INT_IN_EP) 1549 continue; 1550 1551 /* Added or changed endpoint */ 1552 bw_info->ep_interval = CTX_TO_EP_INTERVAL( 1553 le32_to_cpu(ep_ctx->ep_info)); 1554 /* Number of packets and mult are zero-based in the 1555 * input context, but we want one-based for the 1556 * interval table. 1557 */ 1558 bw_info->mult = CTX_TO_EP_MULT( 1559 le32_to_cpu(ep_ctx->ep_info)) + 1; 1560 bw_info->num_packets = CTX_TO_MAX_BURST( 1561 le32_to_cpu(ep_ctx->ep_info2)) + 1; 1562 bw_info->max_packet_size = MAX_PACKET_DECODED( 1563 le32_to_cpu(ep_ctx->ep_info2)); 1564 bw_info->type = ep_type; 1565 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD( 1566 le32_to_cpu(ep_ctx->tx_info)); 1567 } 1568 } 1569 } 1570 1571 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy. 1572 * Useful when you want to change one particular aspect of the endpoint and then 1573 * issue a configure endpoint command. 1574 */ 1575 void xhci_endpoint_copy(struct xhci_hcd *xhci, 1576 struct xhci_container_ctx *in_ctx, 1577 struct xhci_container_ctx *out_ctx, 1578 unsigned int ep_index) 1579 { 1580 struct xhci_ep_ctx *out_ep_ctx; 1581 struct xhci_ep_ctx *in_ep_ctx; 1582 1583 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1584 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 1585 1586 in_ep_ctx->ep_info = out_ep_ctx->ep_info; 1587 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2; 1588 in_ep_ctx->deq = out_ep_ctx->deq; 1589 in_ep_ctx->tx_info = out_ep_ctx->tx_info; 1590 if (xhci->quirks & XHCI_MTK_HOST) { 1591 in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0]; 1592 in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1]; 1593 } 1594 } 1595 1596 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx. 1597 * Useful when you want to change one particular aspect of the endpoint and then 1598 * issue a configure endpoint command. Only the context entries field matters, 1599 * but we'll copy the whole thing anyway. 1600 */ 1601 void xhci_slot_copy(struct xhci_hcd *xhci, 1602 struct xhci_container_ctx *in_ctx, 1603 struct xhci_container_ctx *out_ctx) 1604 { 1605 struct xhci_slot_ctx *in_slot_ctx; 1606 struct xhci_slot_ctx *out_slot_ctx; 1607 1608 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1609 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx); 1610 1611 in_slot_ctx->dev_info = out_slot_ctx->dev_info; 1612 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2; 1613 in_slot_ctx->tt_info = out_slot_ctx->tt_info; 1614 in_slot_ctx->dev_state = out_slot_ctx->dev_state; 1615 } 1616 1617 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */ 1618 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags) 1619 { 1620 int i; 1621 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1622 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1623 1624 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1625 "Allocating %d scratchpad buffers", num_sp); 1626 1627 if (!num_sp) 1628 return 0; 1629 1630 xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags, 1631 dev_to_node(dev)); 1632 if (!xhci->scratchpad) 1633 goto fail_sp; 1634 1635 xhci->scratchpad->sp_array = dma_alloc_coherent(dev, 1636 array_size(sizeof(u64), num_sp), 1637 &xhci->scratchpad->sp_dma, flags); 1638 if (!xhci->scratchpad->sp_array) 1639 goto fail_sp2; 1640 1641 xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *), 1642 flags, dev_to_node(dev)); 1643 if (!xhci->scratchpad->sp_buffers) 1644 goto fail_sp3; 1645 1646 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma); 1647 for (i = 0; i < num_sp; i++) { 1648 dma_addr_t dma; 1649 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma, 1650 flags); 1651 if (!buf) 1652 goto fail_sp4; 1653 1654 xhci->scratchpad->sp_array[i] = dma; 1655 xhci->scratchpad->sp_buffers[i] = buf; 1656 } 1657 1658 return 0; 1659 1660 fail_sp4: 1661 while (i--) 1662 dma_free_coherent(dev, xhci->page_size, 1663 xhci->scratchpad->sp_buffers[i], 1664 xhci->scratchpad->sp_array[i]); 1665 1666 kfree(xhci->scratchpad->sp_buffers); 1667 1668 fail_sp3: 1669 dma_free_coherent(dev, array_size(sizeof(u64), num_sp), 1670 xhci->scratchpad->sp_array, 1671 xhci->scratchpad->sp_dma); 1672 1673 fail_sp2: 1674 kfree(xhci->scratchpad); 1675 xhci->scratchpad = NULL; 1676 1677 fail_sp: 1678 return -ENOMEM; 1679 } 1680 1681 static void scratchpad_free(struct xhci_hcd *xhci) 1682 { 1683 int num_sp; 1684 int i; 1685 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1686 1687 if (!xhci->scratchpad) 1688 return; 1689 1690 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1691 1692 for (i = 0; i < num_sp; i++) { 1693 dma_free_coherent(dev, xhci->page_size, 1694 xhci->scratchpad->sp_buffers[i], 1695 xhci->scratchpad->sp_array[i]); 1696 } 1697 kfree(xhci->scratchpad->sp_buffers); 1698 dma_free_coherent(dev, array_size(sizeof(u64), num_sp), 1699 xhci->scratchpad->sp_array, 1700 xhci->scratchpad->sp_dma); 1701 kfree(xhci->scratchpad); 1702 xhci->scratchpad = NULL; 1703 } 1704 1705 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci, 1706 bool allocate_completion, gfp_t mem_flags) 1707 { 1708 struct xhci_command *command; 1709 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1710 1711 command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev)); 1712 if (!command) 1713 return NULL; 1714 1715 if (allocate_completion) { 1716 command->completion = 1717 kzalloc_node(sizeof(struct completion), mem_flags, 1718 dev_to_node(dev)); 1719 if (!command->completion) { 1720 kfree(command); 1721 return NULL; 1722 } 1723 init_completion(command->completion); 1724 } 1725 1726 command->status = 0; 1727 /* set default timeout to 5000 ms */ 1728 command->timeout_ms = XHCI_CMD_DEFAULT_TIMEOUT; 1729 INIT_LIST_HEAD(&command->cmd_list); 1730 return command; 1731 } 1732 1733 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci, 1734 bool allocate_completion, gfp_t mem_flags) 1735 { 1736 struct xhci_command *command; 1737 1738 command = xhci_alloc_command(xhci, allocate_completion, mem_flags); 1739 if (!command) 1740 return NULL; 1741 1742 command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, 1743 mem_flags); 1744 if (!command->in_ctx) { 1745 kfree(command->completion); 1746 kfree(command); 1747 return NULL; 1748 } 1749 return command; 1750 } 1751 1752 void xhci_urb_free_priv(struct urb_priv *urb_priv) 1753 { 1754 kfree(urb_priv); 1755 } 1756 1757 void xhci_free_command(struct xhci_hcd *xhci, 1758 struct xhci_command *command) 1759 { 1760 xhci_free_container_ctx(xhci, 1761 command->in_ctx); 1762 kfree(command->completion); 1763 kfree(command); 1764 } 1765 1766 static int xhci_alloc_erst(struct xhci_hcd *xhci, 1767 struct xhci_ring *evt_ring, 1768 struct xhci_erst *erst, 1769 gfp_t flags) 1770 { 1771 size_t size; 1772 unsigned int val; 1773 struct xhci_segment *seg; 1774 struct xhci_erst_entry *entry; 1775 1776 size = array_size(sizeof(struct xhci_erst_entry), evt_ring->num_segs); 1777 erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev, 1778 size, &erst->erst_dma_addr, flags); 1779 if (!erst->entries) 1780 return -ENOMEM; 1781 1782 erst->num_entries = evt_ring->num_segs; 1783 1784 seg = evt_ring->first_seg; 1785 for (val = 0; val < evt_ring->num_segs; val++) { 1786 entry = &erst->entries[val]; 1787 entry->seg_addr = cpu_to_le64(seg->dma); 1788 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT); 1789 entry->rsvd = 0; 1790 seg = seg->next; 1791 } 1792 1793 return 0; 1794 } 1795 1796 static void 1797 xhci_remove_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir) 1798 { 1799 u32 tmp; 1800 1801 if (!ir) 1802 return; 1803 1804 /* 1805 * Clean out interrupter registers except ERSTBA. Clearing either the 1806 * low or high 32 bits of ERSTBA immediately causes the controller to 1807 * dereference the partially cleared 64 bit address, causing IOMMU error. 1808 */ 1809 if (ir->ir_set) { 1810 tmp = readl(&ir->ir_set->erst_size); 1811 tmp &= ERST_SIZE_MASK; 1812 writel(tmp, &ir->ir_set->erst_size); 1813 1814 xhci_write_64(xhci, ERST_EHB, &ir->ir_set->erst_dequeue); 1815 } 1816 } 1817 1818 static void 1819 xhci_free_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir) 1820 { 1821 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1822 size_t erst_size; 1823 1824 if (!ir) 1825 return; 1826 1827 erst_size = array_size(sizeof(struct xhci_erst_entry), ir->erst.num_entries); 1828 if (ir->erst.entries) 1829 dma_free_coherent(dev, erst_size, 1830 ir->erst.entries, 1831 ir->erst.erst_dma_addr); 1832 ir->erst.entries = NULL; 1833 1834 /* free interrupter event ring */ 1835 if (ir->event_ring) 1836 xhci_ring_free(xhci, ir->event_ring); 1837 1838 ir->event_ring = NULL; 1839 1840 kfree(ir); 1841 } 1842 1843 void xhci_remove_secondary_interrupter(struct usb_hcd *hcd, struct xhci_interrupter *ir) 1844 { 1845 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1846 unsigned int intr_num; 1847 1848 spin_lock_irq(&xhci->lock); 1849 1850 /* interrupter 0 is primary interrupter, don't touch it */ 1851 if (!ir || !ir->intr_num || ir->intr_num >= xhci->max_interrupters) { 1852 xhci_dbg(xhci, "Invalid secondary interrupter, can't remove\n"); 1853 spin_unlock_irq(&xhci->lock); 1854 return; 1855 } 1856 1857 intr_num = ir->intr_num; 1858 1859 xhci_remove_interrupter(xhci, ir); 1860 xhci->interrupters[intr_num] = NULL; 1861 1862 spin_unlock_irq(&xhci->lock); 1863 1864 xhci_free_interrupter(xhci, ir); 1865 } 1866 EXPORT_SYMBOL_GPL(xhci_remove_secondary_interrupter); 1867 1868 void xhci_mem_cleanup(struct xhci_hcd *xhci) 1869 { 1870 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1871 int i, j, num_ports; 1872 1873 cancel_delayed_work_sync(&xhci->cmd_timer); 1874 1875 for (i = 0; xhci->interrupters && i < xhci->max_interrupters; i++) { 1876 if (xhci->interrupters[i]) { 1877 xhci_remove_interrupter(xhci, xhci->interrupters[i]); 1878 xhci_free_interrupter(xhci, xhci->interrupters[i]); 1879 xhci->interrupters[i] = NULL; 1880 } 1881 } 1882 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed interrupters"); 1883 1884 if (xhci->cmd_ring) 1885 xhci_ring_free(xhci, xhci->cmd_ring); 1886 xhci->cmd_ring = NULL; 1887 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring"); 1888 xhci_cleanup_command_queue(xhci); 1889 1890 num_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1891 for (i = 0; i < num_ports && xhci->rh_bw; i++) { 1892 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table; 1893 for (j = 0; j < XHCI_MAX_INTERVAL; j++) { 1894 struct list_head *ep = &bwt->interval_bw[j].endpoints; 1895 while (!list_empty(ep)) 1896 list_del_init(ep->next); 1897 } 1898 } 1899 1900 for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--) 1901 xhci_free_virt_devices_depth_first(xhci, i); 1902 1903 dma_pool_destroy(xhci->segment_pool); 1904 xhci->segment_pool = NULL; 1905 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool"); 1906 1907 dma_pool_destroy(xhci->device_pool); 1908 xhci->device_pool = NULL; 1909 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool"); 1910 1911 dma_pool_destroy(xhci->small_streams_pool); 1912 xhci->small_streams_pool = NULL; 1913 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1914 "Freed small stream array pool"); 1915 1916 dma_pool_destroy(xhci->medium_streams_pool); 1917 xhci->medium_streams_pool = NULL; 1918 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1919 "Freed medium stream array pool"); 1920 1921 if (xhci->dcbaa) 1922 dma_free_coherent(dev, sizeof(*xhci->dcbaa), 1923 xhci->dcbaa, xhci->dcbaa->dma); 1924 xhci->dcbaa = NULL; 1925 1926 scratchpad_free(xhci); 1927 1928 if (!xhci->rh_bw) 1929 goto no_bw; 1930 1931 for (i = 0; i < num_ports; i++) { 1932 struct xhci_tt_bw_info *tt, *n; 1933 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) { 1934 list_del(&tt->tt_list); 1935 kfree(tt); 1936 } 1937 } 1938 1939 no_bw: 1940 xhci->cmd_ring_reserved_trbs = 0; 1941 xhci->usb2_rhub.num_ports = 0; 1942 xhci->usb3_rhub.num_ports = 0; 1943 xhci->num_active_eps = 0; 1944 kfree(xhci->usb2_rhub.ports); 1945 kfree(xhci->usb3_rhub.ports); 1946 kfree(xhci->hw_ports); 1947 kfree(xhci->rh_bw); 1948 for (i = 0; i < xhci->num_port_caps; i++) 1949 kfree(xhci->port_caps[i].psi); 1950 kfree(xhci->port_caps); 1951 kfree(xhci->interrupters); 1952 xhci->num_port_caps = 0; 1953 1954 xhci->usb2_rhub.ports = NULL; 1955 xhci->usb3_rhub.ports = NULL; 1956 xhci->hw_ports = NULL; 1957 xhci->rh_bw = NULL; 1958 xhci->port_caps = NULL; 1959 xhci->interrupters = NULL; 1960 1961 xhci->page_size = 0; 1962 xhci->page_shift = 0; 1963 xhci->usb2_rhub.bus_state.bus_suspended = 0; 1964 xhci->usb3_rhub.bus_state.bus_suspended = 0; 1965 } 1966 1967 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci, struct xhci_interrupter *ir) 1968 { 1969 dma_addr_t deq; 1970 1971 deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg, 1972 ir->event_ring->dequeue); 1973 if (!deq) 1974 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr.\n"); 1975 /* Update HC event ring dequeue pointer */ 1976 /* Don't clear the EHB bit (which is RW1C) because 1977 * there might be more events to service. 1978 */ 1979 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1980 "// Write event ring dequeue pointer, preserving EHB bit"); 1981 xhci_write_64(xhci, deq & ERST_PTR_MASK, &ir->ir_set->erst_dequeue); 1982 } 1983 1984 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports, 1985 __le32 __iomem *addr, int max_caps) 1986 { 1987 u32 temp, port_offset, port_count; 1988 int i; 1989 u8 major_revision, minor_revision, tmp_minor_revision; 1990 struct xhci_hub *rhub; 1991 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1992 struct xhci_port_cap *port_cap; 1993 1994 temp = readl(addr); 1995 major_revision = XHCI_EXT_PORT_MAJOR(temp); 1996 minor_revision = XHCI_EXT_PORT_MINOR(temp); 1997 1998 if (major_revision == 0x03) { 1999 rhub = &xhci->usb3_rhub; 2000 /* 2001 * Some hosts incorrectly use sub-minor version for minor 2002 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01 2003 * for bcdUSB 0x310). Since there is no USB release with sub 2004 * minor version 0x301 to 0x309, we can assume that they are 2005 * incorrect and fix it here. 2006 */ 2007 if (minor_revision > 0x00 && minor_revision < 0x10) 2008 minor_revision <<= 4; 2009 /* 2010 * Some zhaoxin's xHCI controller that follow usb3.1 spec 2011 * but only support Gen1. 2012 */ 2013 if (xhci->quirks & XHCI_ZHAOXIN_HOST) { 2014 tmp_minor_revision = minor_revision; 2015 minor_revision = 0; 2016 } 2017 2018 } else if (major_revision <= 0x02) { 2019 rhub = &xhci->usb2_rhub; 2020 } else { 2021 xhci_warn(xhci, "Ignoring unknown port speed, Ext Cap %p, revision = 0x%x\n", 2022 addr, major_revision); 2023 /* Ignoring port protocol we can't understand. FIXME */ 2024 return; 2025 } 2026 2027 /* Port offset and count in the third dword, see section 7.2 */ 2028 temp = readl(addr + 2); 2029 port_offset = XHCI_EXT_PORT_OFF(temp); 2030 port_count = XHCI_EXT_PORT_COUNT(temp); 2031 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2032 "Ext Cap %p, port offset = %u, count = %u, revision = 0x%x", 2033 addr, port_offset, port_count, major_revision); 2034 /* Port count includes the current port offset */ 2035 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports) 2036 /* WTF? "Valid values are ‘1’ to MaxPorts" */ 2037 return; 2038 2039 port_cap = &xhci->port_caps[xhci->num_port_caps++]; 2040 if (xhci->num_port_caps > max_caps) 2041 return; 2042 2043 port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp); 2044 2045 if (port_cap->psi_count) { 2046 port_cap->psi = kcalloc_node(port_cap->psi_count, 2047 sizeof(*port_cap->psi), 2048 GFP_KERNEL, dev_to_node(dev)); 2049 if (!port_cap->psi) 2050 port_cap->psi_count = 0; 2051 2052 port_cap->psi_uid_count++; 2053 for (i = 0; i < port_cap->psi_count; i++) { 2054 port_cap->psi[i] = readl(addr + 4 + i); 2055 2056 /* count unique ID values, two consecutive entries can 2057 * have the same ID if link is assymetric 2058 */ 2059 if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) != 2060 XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1]))) 2061 port_cap->psi_uid_count++; 2062 2063 if (xhci->quirks & XHCI_ZHAOXIN_HOST && 2064 major_revision == 0x03 && 2065 XHCI_EXT_PORT_PSIV(port_cap->psi[i]) >= 5) 2066 minor_revision = tmp_minor_revision; 2067 2068 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n", 2069 XHCI_EXT_PORT_PSIV(port_cap->psi[i]), 2070 XHCI_EXT_PORT_PSIE(port_cap->psi[i]), 2071 XHCI_EXT_PORT_PLT(port_cap->psi[i]), 2072 XHCI_EXT_PORT_PFD(port_cap->psi[i]), 2073 XHCI_EXT_PORT_LP(port_cap->psi[i]), 2074 XHCI_EXT_PORT_PSIM(port_cap->psi[i])); 2075 } 2076 } 2077 2078 rhub->maj_rev = major_revision; 2079 2080 if (rhub->min_rev < minor_revision) 2081 rhub->min_rev = minor_revision; 2082 2083 port_cap->maj_rev = major_revision; 2084 port_cap->min_rev = minor_revision; 2085 port_cap->protocol_caps = temp; 2086 2087 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) && 2088 (temp & XHCI_HLC)) { 2089 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2090 "xHCI 1.0: support USB2 hardware lpm"); 2091 xhci->hw_lpm_support = 1; 2092 } 2093 2094 port_offset--; 2095 for (i = port_offset; i < (port_offset + port_count); i++) { 2096 struct xhci_port *hw_port = &xhci->hw_ports[i]; 2097 /* Duplicate entry. Ignore the port if the revisions differ. */ 2098 if (hw_port->rhub) { 2099 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p, port %u\n", addr, i); 2100 xhci_warn(xhci, "Port was marked as USB %u, duplicated as USB %u\n", 2101 hw_port->rhub->maj_rev, major_revision); 2102 /* Only adjust the roothub port counts if we haven't 2103 * found a similar duplicate. 2104 */ 2105 if (hw_port->rhub != rhub && 2106 hw_port->hcd_portnum != DUPLICATE_ENTRY) { 2107 hw_port->rhub->num_ports--; 2108 hw_port->hcd_portnum = DUPLICATE_ENTRY; 2109 } 2110 continue; 2111 } 2112 hw_port->rhub = rhub; 2113 hw_port->port_cap = port_cap; 2114 rhub->num_ports++; 2115 } 2116 /* FIXME: Should we disable ports not in the Extended Capabilities? */ 2117 } 2118 2119 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci, 2120 struct xhci_hub *rhub, gfp_t flags) 2121 { 2122 int port_index = 0; 2123 int i; 2124 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2125 2126 if (!rhub->num_ports) 2127 return; 2128 rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports), 2129 flags, dev_to_node(dev)); 2130 if (!rhub->ports) 2131 return; 2132 2133 for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) { 2134 if (xhci->hw_ports[i].rhub != rhub || 2135 xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY) 2136 continue; 2137 xhci->hw_ports[i].hcd_portnum = port_index; 2138 rhub->ports[port_index] = &xhci->hw_ports[i]; 2139 port_index++; 2140 if (port_index == rhub->num_ports) 2141 break; 2142 } 2143 } 2144 2145 /* 2146 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that 2147 * specify what speeds each port is supposed to be. We can't count on the port 2148 * speed bits in the PORTSC register being correct until a device is connected, 2149 * but we need to set up the two fake roothubs with the correct number of USB 2150 * 3.0 and USB 2.0 ports at host controller initialization time. 2151 */ 2152 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags) 2153 { 2154 void __iomem *base; 2155 u32 offset; 2156 unsigned int num_ports; 2157 int i, j; 2158 int cap_count = 0; 2159 u32 cap_start; 2160 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2161 2162 num_ports = HCS_MAX_PORTS(xhci->hcs_params1); 2163 xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports), 2164 flags, dev_to_node(dev)); 2165 if (!xhci->hw_ports) 2166 return -ENOMEM; 2167 2168 for (i = 0; i < num_ports; i++) { 2169 xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base + 2170 NUM_PORT_REGS * i; 2171 xhci->hw_ports[i].hw_portnum = i; 2172 2173 init_completion(&xhci->hw_ports[i].rexit_done); 2174 init_completion(&xhci->hw_ports[i].u3exit_done); 2175 } 2176 2177 xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags, 2178 dev_to_node(dev)); 2179 if (!xhci->rh_bw) 2180 return -ENOMEM; 2181 for (i = 0; i < num_ports; i++) { 2182 struct xhci_interval_bw_table *bw_table; 2183 2184 INIT_LIST_HEAD(&xhci->rh_bw[i].tts); 2185 bw_table = &xhci->rh_bw[i].bw_table; 2186 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 2187 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 2188 } 2189 base = &xhci->cap_regs->hc_capbase; 2190 2191 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL); 2192 if (!cap_start) { 2193 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n"); 2194 return -ENODEV; 2195 } 2196 2197 offset = cap_start; 2198 /* count extended protocol capability entries for later caching */ 2199 while (offset) { 2200 cap_count++; 2201 offset = xhci_find_next_ext_cap(base, offset, 2202 XHCI_EXT_CAPS_PROTOCOL); 2203 } 2204 2205 xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps), 2206 flags, dev_to_node(dev)); 2207 if (!xhci->port_caps) 2208 return -ENOMEM; 2209 2210 offset = cap_start; 2211 2212 while (offset) { 2213 xhci_add_in_port(xhci, num_ports, base + offset, cap_count); 2214 if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports == 2215 num_ports) 2216 break; 2217 offset = xhci_find_next_ext_cap(base, offset, 2218 XHCI_EXT_CAPS_PROTOCOL); 2219 } 2220 if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) { 2221 xhci_warn(xhci, "No ports on the roothubs?\n"); 2222 return -ENODEV; 2223 } 2224 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2225 "Found %u USB 2.0 ports and %u USB 3.0 ports.", 2226 xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports); 2227 2228 /* Place limits on the number of roothub ports so that the hub 2229 * descriptors aren't longer than the USB core will allocate. 2230 */ 2231 if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) { 2232 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2233 "Limiting USB 3.0 roothub ports to %u.", 2234 USB_SS_MAXPORTS); 2235 xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS; 2236 } 2237 if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) { 2238 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2239 "Limiting USB 2.0 roothub ports to %u.", 2240 USB_MAXCHILDREN); 2241 xhci->usb2_rhub.num_ports = USB_MAXCHILDREN; 2242 } 2243 2244 if (!xhci->usb2_rhub.num_ports) 2245 xhci_info(xhci, "USB2 root hub has no ports\n"); 2246 2247 if (!xhci->usb3_rhub.num_ports) 2248 xhci_info(xhci, "USB3 root hub has no ports\n"); 2249 2250 xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags); 2251 xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags); 2252 2253 return 0; 2254 } 2255 2256 static struct xhci_interrupter * 2257 xhci_alloc_interrupter(struct xhci_hcd *xhci, unsigned int segs, gfp_t flags) 2258 { 2259 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2260 struct xhci_interrupter *ir; 2261 unsigned int max_segs; 2262 int ret; 2263 2264 if (!segs) 2265 segs = ERST_DEFAULT_SEGS; 2266 2267 max_segs = BIT(HCS_ERST_MAX(xhci->hcs_params2)); 2268 segs = min(segs, max_segs); 2269 2270 ir = kzalloc_node(sizeof(*ir), flags, dev_to_node(dev)); 2271 if (!ir) 2272 return NULL; 2273 2274 ir->event_ring = xhci_ring_alloc(xhci, segs, 1, TYPE_EVENT, 0, flags); 2275 if (!ir->event_ring) { 2276 xhci_warn(xhci, "Failed to allocate interrupter event ring\n"); 2277 kfree(ir); 2278 return NULL; 2279 } 2280 2281 ret = xhci_alloc_erst(xhci, ir->event_ring, &ir->erst, flags); 2282 if (ret) { 2283 xhci_warn(xhci, "Failed to allocate interrupter erst\n"); 2284 xhci_ring_free(xhci, ir->event_ring); 2285 kfree(ir); 2286 return NULL; 2287 } 2288 2289 return ir; 2290 } 2291 2292 static int 2293 xhci_add_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir, 2294 unsigned int intr_num) 2295 { 2296 u64 erst_base; 2297 u32 erst_size; 2298 2299 if (intr_num >= xhci->max_interrupters) { 2300 xhci_warn(xhci, "Can't add interrupter %d, max interrupters %d\n", 2301 intr_num, xhci->max_interrupters); 2302 return -EINVAL; 2303 } 2304 2305 if (xhci->interrupters[intr_num]) { 2306 xhci_warn(xhci, "Interrupter %d\n already set up", intr_num); 2307 return -EINVAL; 2308 } 2309 2310 xhci->interrupters[intr_num] = ir; 2311 ir->intr_num = intr_num; 2312 ir->ir_set = &xhci->run_regs->ir_set[intr_num]; 2313 2314 /* set ERST count with the number of entries in the segment table */ 2315 erst_size = readl(&ir->ir_set->erst_size); 2316 erst_size &= ERST_SIZE_MASK; 2317 erst_size |= ir->event_ring->num_segs; 2318 writel(erst_size, &ir->ir_set->erst_size); 2319 2320 erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base); 2321 erst_base &= ERST_BASE_RSVDP; 2322 erst_base |= ir->erst.erst_dma_addr & ~ERST_BASE_RSVDP; 2323 if (xhci->quirks & XHCI_WRITE_64_HI_LO) 2324 hi_lo_writeq(erst_base, &ir->ir_set->erst_base); 2325 else 2326 xhci_write_64(xhci, erst_base, &ir->ir_set->erst_base); 2327 2328 /* Set the event ring dequeue address of this interrupter */ 2329 xhci_set_hc_event_deq(xhci, ir); 2330 2331 return 0; 2332 } 2333 2334 struct xhci_interrupter * 2335 xhci_create_secondary_interrupter(struct usb_hcd *hcd, unsigned int segs, 2336 u32 imod_interval) 2337 { 2338 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2339 struct xhci_interrupter *ir; 2340 unsigned int i; 2341 int err = -ENOSPC; 2342 2343 if (!xhci->interrupters || xhci->max_interrupters <= 1) 2344 return NULL; 2345 2346 ir = xhci_alloc_interrupter(xhci, segs, GFP_KERNEL); 2347 if (!ir) 2348 return NULL; 2349 2350 spin_lock_irq(&xhci->lock); 2351 2352 /* Find available secondary interrupter, interrupter 0 is reserved for primary */ 2353 for (i = 1; i < xhci->max_interrupters; i++) { 2354 if (xhci->interrupters[i] == NULL) { 2355 err = xhci_add_interrupter(xhci, ir, i); 2356 break; 2357 } 2358 } 2359 2360 spin_unlock_irq(&xhci->lock); 2361 2362 if (err) { 2363 xhci_warn(xhci, "Failed to add secondary interrupter, max interrupters %d\n", 2364 xhci->max_interrupters); 2365 xhci_free_interrupter(xhci, ir); 2366 return NULL; 2367 } 2368 2369 err = xhci_set_interrupter_moderation(ir, imod_interval); 2370 if (err) 2371 xhci_warn(xhci, "Failed to set interrupter %d moderation to %uns\n", 2372 i, imod_interval); 2373 2374 xhci_dbg(xhci, "Add secondary interrupter %d, max interrupters %d\n", 2375 i, xhci->max_interrupters); 2376 2377 return ir; 2378 } 2379 EXPORT_SYMBOL_GPL(xhci_create_secondary_interrupter); 2380 2381 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags) 2382 { 2383 struct xhci_interrupter *ir; 2384 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2385 dma_addr_t dma; 2386 unsigned int val, val2; 2387 u64 val_64; 2388 u32 page_size, temp; 2389 int i; 2390 2391 INIT_LIST_HEAD(&xhci->cmd_list); 2392 2393 /* init command timeout work */ 2394 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout); 2395 init_completion(&xhci->cmd_ring_stop_completion); 2396 2397 page_size = readl(&xhci->op_regs->page_size); 2398 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2399 "Supported page size register = 0x%x", page_size); 2400 i = ffs(page_size); 2401 if (i < 16) 2402 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2403 "Supported page size of %iK", (1 << (i+12)) / 1024); 2404 else 2405 xhci_warn(xhci, "WARN: no supported page size\n"); 2406 /* Use 4K pages, since that's common and the minimum the HC supports */ 2407 xhci->page_shift = 12; 2408 xhci->page_size = 1 << xhci->page_shift; 2409 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2410 "HCD page size set to %iK", xhci->page_size / 1024); 2411 2412 /* 2413 * Program the Number of Device Slots Enabled field in the CONFIG 2414 * register with the max value of slots the HC can handle. 2415 */ 2416 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1)); 2417 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2418 "// xHC can handle at most %d device slots.", val); 2419 val2 = readl(&xhci->op_regs->config_reg); 2420 val |= (val2 & ~HCS_SLOTS_MASK); 2421 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2422 "// Setting Max device slots reg = 0x%x.", val); 2423 writel(val, &xhci->op_regs->config_reg); 2424 2425 /* 2426 * xHCI section 5.4.6 - Device Context array must be 2427 * "physically contiguous and 64-byte (cache line) aligned". 2428 */ 2429 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma, 2430 flags); 2431 if (!xhci->dcbaa) 2432 goto fail; 2433 xhci->dcbaa->dma = dma; 2434 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2435 "// Device context base array address = 0x%pad (DMA), %p (virt)", 2436 &xhci->dcbaa->dma, xhci->dcbaa); 2437 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr); 2438 2439 /* 2440 * Initialize the ring segment pool. The ring must be a contiguous 2441 * structure comprised of TRBs. The TRBs must be 16 byte aligned, 2442 * however, the command ring segment needs 64-byte aligned segments 2443 * and our use of dma addresses in the trb_address_map radix tree needs 2444 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need. 2445 */ 2446 if (xhci->quirks & XHCI_ZHAOXIN_TRB_FETCH) 2447 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev, 2448 TRB_SEGMENT_SIZE * 2, TRB_SEGMENT_SIZE * 2, xhci->page_size * 2); 2449 else 2450 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev, 2451 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size); 2452 2453 /* See Table 46 and Note on Figure 55 */ 2454 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev, 2455 2112, 64, xhci->page_size); 2456 if (!xhci->segment_pool || !xhci->device_pool) 2457 goto fail; 2458 2459 /* Linear stream context arrays don't have any boundary restrictions, 2460 * and only need to be 16-byte aligned. 2461 */ 2462 xhci->small_streams_pool = 2463 dma_pool_create("xHCI 256 byte stream ctx arrays", 2464 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0); 2465 xhci->medium_streams_pool = 2466 dma_pool_create("xHCI 1KB stream ctx arrays", 2467 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0); 2468 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE 2469 * will be allocated with dma_alloc_coherent() 2470 */ 2471 2472 if (!xhci->small_streams_pool || !xhci->medium_streams_pool) 2473 goto fail; 2474 2475 /* Set up the command ring to have one segments for now. */ 2476 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags); 2477 if (!xhci->cmd_ring) 2478 goto fail; 2479 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2480 "Allocated command ring at %p", xhci->cmd_ring); 2481 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%pad", 2482 &xhci->cmd_ring->first_seg->dma); 2483 2484 /* Set the address in the Command Ring Control register */ 2485 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 2486 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 2487 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) | 2488 xhci->cmd_ring->cycle_state; 2489 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2490 "// Setting command ring address to 0x%016llx", val_64); 2491 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 2492 2493 /* Reserve one command ring TRB for disabling LPM. 2494 * Since the USB core grabs the shared usb_bus bandwidth mutex before 2495 * disabling LPM, we only need to reserve one TRB for all devices. 2496 */ 2497 xhci->cmd_ring_reserved_trbs++; 2498 2499 val = readl(&xhci->cap_regs->db_off); 2500 val &= DBOFF_MASK; 2501 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2502 "// Doorbell array is located at offset 0x%x from cap regs base addr", 2503 val); 2504 xhci->dba = (void __iomem *) xhci->cap_regs + val; 2505 2506 /* Allocate and set up primary interrupter 0 with an event ring. */ 2507 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2508 "Allocating primary event ring"); 2509 xhci->interrupters = kcalloc_node(xhci->max_interrupters, sizeof(*xhci->interrupters), 2510 flags, dev_to_node(dev)); 2511 2512 ir = xhci_alloc_interrupter(xhci, 0, flags); 2513 if (!ir) 2514 goto fail; 2515 2516 if (xhci_add_interrupter(xhci, ir, 0)) 2517 goto fail; 2518 2519 ir->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX; 2520 2521 /* 2522 * XXX: Might need to set the Interrupter Moderation Register to 2523 * something other than the default (~1ms minimum between interrupts). 2524 * See section 5.5.1.2. 2525 */ 2526 for (i = 0; i < MAX_HC_SLOTS; i++) 2527 xhci->devs[i] = NULL; 2528 2529 if (scratchpad_alloc(xhci, flags)) 2530 goto fail; 2531 if (xhci_setup_port_arrays(xhci, flags)) 2532 goto fail; 2533 2534 /* Enable USB 3.0 device notifications for function remote wake, which 2535 * is necessary for allowing USB 3.0 devices to do remote wakeup from 2536 * U3 (device suspend). 2537 */ 2538 temp = readl(&xhci->op_regs->dev_notification); 2539 temp &= ~DEV_NOTE_MASK; 2540 temp |= DEV_NOTE_FWAKE; 2541 writel(temp, &xhci->op_regs->dev_notification); 2542 2543 return 0; 2544 2545 fail: 2546 xhci_halt(xhci); 2547 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 2548 xhci_mem_cleanup(xhci); 2549 return -ENOMEM; 2550 } 2551