xref: /linux/drivers/usb/host/xhci-mem.c (revision 4e73826089ce899357580bbf6e0afe4e6f9900b7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/usb.h>
12 #include <linux/overflow.h>
13 #include <linux/pci.h>
14 #include <linux/slab.h>
15 #include <linux/dmapool.h>
16 #include <linux/dma-mapping.h>
17 
18 #include "xhci.h"
19 #include "xhci-trace.h"
20 #include "xhci-debugfs.h"
21 
22 /*
23  * Allocates a generic ring segment from the ring pool, sets the dma address,
24  * initializes the segment to zero, and sets the private next pointer to NULL.
25  *
26  * Section 4.11.1.1:
27  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
28  */
29 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
30 					       unsigned int cycle_state,
31 					       unsigned int max_packet,
32 					       unsigned int num,
33 					       gfp_t flags)
34 {
35 	struct xhci_segment *seg;
36 	dma_addr_t	dma;
37 	int		i;
38 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
39 
40 	seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
41 	if (!seg)
42 		return NULL;
43 
44 	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
45 	if (!seg->trbs) {
46 		kfree(seg);
47 		return NULL;
48 	}
49 
50 	if (max_packet) {
51 		seg->bounce_buf = kzalloc_node(max_packet, flags,
52 					dev_to_node(dev));
53 		if (!seg->bounce_buf) {
54 			dma_pool_free(xhci->segment_pool, seg->trbs, dma);
55 			kfree(seg);
56 			return NULL;
57 		}
58 	}
59 	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
60 	if (cycle_state == 0) {
61 		for (i = 0; i < TRBS_PER_SEGMENT; i++)
62 			seg->trbs[i].link.control = cpu_to_le32(TRB_CYCLE);
63 	}
64 	seg->num = num;
65 	seg->dma = dma;
66 	seg->next = NULL;
67 
68 	return seg;
69 }
70 
71 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
72 {
73 	if (seg->trbs) {
74 		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
75 		seg->trbs = NULL;
76 	}
77 	kfree(seg->bounce_buf);
78 	kfree(seg);
79 }
80 
81 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
82 				struct xhci_segment *first)
83 {
84 	struct xhci_segment *seg;
85 
86 	seg = first->next;
87 	while (seg != first) {
88 		struct xhci_segment *next = seg->next;
89 		xhci_segment_free(xhci, seg);
90 		seg = next;
91 	}
92 	xhci_segment_free(xhci, first);
93 }
94 
95 /*
96  * Make the prev segment point to the next segment.
97  *
98  * Change the last TRB in the prev segment to be a Link TRB which points to the
99  * DMA address of the next segment.  The caller needs to set any Link TRB
100  * related flags, such as End TRB, Toggle Cycle, and no snoop.
101  */
102 static void xhci_link_segments(struct xhci_segment *prev,
103 			       struct xhci_segment *next,
104 			       enum xhci_ring_type type, bool chain_links)
105 {
106 	u32 val;
107 
108 	if (!prev || !next)
109 		return;
110 	prev->next = next;
111 	if (type != TYPE_EVENT) {
112 		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
113 			cpu_to_le64(next->dma);
114 
115 		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
116 		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
117 		val &= ~TRB_TYPE_BITMASK;
118 		val |= TRB_TYPE(TRB_LINK);
119 		if (chain_links)
120 			val |= TRB_CHAIN;
121 		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
122 	}
123 }
124 
125 /*
126  * Link the ring to the new segments.
127  * Set Toggle Cycle for the new ring if needed.
128  */
129 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
130 		struct xhci_segment *first, struct xhci_segment *last,
131 		unsigned int num_segs)
132 {
133 	struct xhci_segment *next, *seg;
134 	bool chain_links;
135 
136 	if (!ring || !first || !last)
137 		return;
138 
139 	/* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
140 	chain_links = !!(xhci_link_trb_quirk(xhci) ||
141 			 (ring->type == TYPE_ISOC &&
142 			  (xhci->quirks & XHCI_AMD_0x96_HOST)));
143 
144 	next = ring->enq_seg->next;
145 	xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
146 	xhci_link_segments(last, next, ring->type, chain_links);
147 	ring->num_segs += num_segs;
148 
149 	if (ring->enq_seg == ring->last_seg) {
150 		if (ring->type != TYPE_EVENT) {
151 			ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
152 				&= ~cpu_to_le32(LINK_TOGGLE);
153 			last->trbs[TRBS_PER_SEGMENT-1].link.control
154 				|= cpu_to_le32(LINK_TOGGLE);
155 		}
156 		ring->last_seg = last;
157 	}
158 
159 	for (seg = last; seg != ring->last_seg; seg = seg->next)
160 		seg->next->num = seg->num + 1;
161 }
162 
163 /*
164  * We need a radix tree for mapping physical addresses of TRBs to which stream
165  * ID they belong to.  We need to do this because the host controller won't tell
166  * us which stream ring the TRB came from.  We could store the stream ID in an
167  * event data TRB, but that doesn't help us for the cancellation case, since the
168  * endpoint may stop before it reaches that event data TRB.
169  *
170  * The radix tree maps the upper portion of the TRB DMA address to a ring
171  * segment that has the same upper portion of DMA addresses.  For example, say I
172  * have segments of size 1KB, that are always 1KB aligned.  A segment may
173  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
174  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
175  * pass the radix tree a key to get the right stream ID:
176  *
177  *	0x10c90fff >> 10 = 0x43243
178  *	0x10c912c0 >> 10 = 0x43244
179  *	0x10c91400 >> 10 = 0x43245
180  *
181  * Obviously, only those TRBs with DMA addresses that are within the segment
182  * will make the radix tree return the stream ID for that ring.
183  *
184  * Caveats for the radix tree:
185  *
186  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
187  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
188  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
189  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
190  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
191  * extended systems (where the DMA address can be bigger than 32-bits),
192  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
193  */
194 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
195 		struct xhci_ring *ring,
196 		struct xhci_segment *seg,
197 		gfp_t mem_flags)
198 {
199 	unsigned long key;
200 	int ret;
201 
202 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
203 	/* Skip any segments that were already added. */
204 	if (radix_tree_lookup(trb_address_map, key))
205 		return 0;
206 
207 	ret = radix_tree_maybe_preload(mem_flags);
208 	if (ret)
209 		return ret;
210 	ret = radix_tree_insert(trb_address_map,
211 			key, ring);
212 	radix_tree_preload_end();
213 	return ret;
214 }
215 
216 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
217 		struct xhci_segment *seg)
218 {
219 	unsigned long key;
220 
221 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
222 	if (radix_tree_lookup(trb_address_map, key))
223 		radix_tree_delete(trb_address_map, key);
224 }
225 
226 static int xhci_update_stream_segment_mapping(
227 		struct radix_tree_root *trb_address_map,
228 		struct xhci_ring *ring,
229 		struct xhci_segment *first_seg,
230 		struct xhci_segment *last_seg,
231 		gfp_t mem_flags)
232 {
233 	struct xhci_segment *seg;
234 	struct xhci_segment *failed_seg;
235 	int ret;
236 
237 	if (WARN_ON_ONCE(trb_address_map == NULL))
238 		return 0;
239 
240 	seg = first_seg;
241 	do {
242 		ret = xhci_insert_segment_mapping(trb_address_map,
243 				ring, seg, mem_flags);
244 		if (ret)
245 			goto remove_streams;
246 		if (seg == last_seg)
247 			return 0;
248 		seg = seg->next;
249 	} while (seg != first_seg);
250 
251 	return 0;
252 
253 remove_streams:
254 	failed_seg = seg;
255 	seg = first_seg;
256 	do {
257 		xhci_remove_segment_mapping(trb_address_map, seg);
258 		if (seg == failed_seg)
259 			return ret;
260 		seg = seg->next;
261 	} while (seg != first_seg);
262 
263 	return ret;
264 }
265 
266 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
267 {
268 	struct xhci_segment *seg;
269 
270 	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
271 		return;
272 
273 	seg = ring->first_seg;
274 	do {
275 		xhci_remove_segment_mapping(ring->trb_address_map, seg);
276 		seg = seg->next;
277 	} while (seg != ring->first_seg);
278 }
279 
280 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
281 {
282 	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
283 			ring->first_seg, ring->last_seg, mem_flags);
284 }
285 
286 /* XXX: Do we need the hcd structure in all these functions? */
287 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
288 {
289 	if (!ring)
290 		return;
291 
292 	trace_xhci_ring_free(ring);
293 
294 	if (ring->first_seg) {
295 		if (ring->type == TYPE_STREAM)
296 			xhci_remove_stream_mapping(ring);
297 		xhci_free_segments_for_ring(xhci, ring->first_seg);
298 	}
299 
300 	kfree(ring);
301 }
302 
303 void xhci_initialize_ring_info(struct xhci_ring *ring,
304 			       unsigned int cycle_state)
305 {
306 	/* The ring is empty, so the enqueue pointer == dequeue pointer */
307 	ring->enqueue = ring->first_seg->trbs;
308 	ring->enq_seg = ring->first_seg;
309 	ring->dequeue = ring->enqueue;
310 	ring->deq_seg = ring->first_seg;
311 	/* The ring is initialized to 0. The producer must write 1 to the cycle
312 	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
313 	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
314 	 *
315 	 * New rings are initialized with cycle state equal to 1; if we are
316 	 * handling ring expansion, set the cycle state equal to the old ring.
317 	 */
318 	ring->cycle_state = cycle_state;
319 
320 	/*
321 	 * Each segment has a link TRB, and leave an extra TRB for SW
322 	 * accounting purpose
323 	 */
324 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
325 }
326 EXPORT_SYMBOL_GPL(xhci_initialize_ring_info);
327 
328 /* Allocate segments and link them for a ring */
329 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
330 		struct xhci_segment **first, struct xhci_segment **last,
331 		unsigned int num_segs, unsigned int num,
332 		unsigned int cycle_state, enum xhci_ring_type type,
333 		unsigned int max_packet, gfp_t flags)
334 {
335 	struct xhci_segment *prev;
336 	bool chain_links;
337 
338 	/* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
339 	chain_links = !!(xhci_link_trb_quirk(xhci) ||
340 			 (type == TYPE_ISOC &&
341 			  (xhci->quirks & XHCI_AMD_0x96_HOST)));
342 
343 	prev = xhci_segment_alloc(xhci, cycle_state, max_packet, num, flags);
344 	if (!prev)
345 		return -ENOMEM;
346 	num++;
347 
348 	*first = prev;
349 	while (num < num_segs) {
350 		struct xhci_segment	*next;
351 
352 		next = xhci_segment_alloc(xhci, cycle_state, max_packet, num,
353 					  flags);
354 		if (!next) {
355 			prev = *first;
356 			while (prev) {
357 				next = prev->next;
358 				xhci_segment_free(xhci, prev);
359 				prev = next;
360 			}
361 			return -ENOMEM;
362 		}
363 		xhci_link_segments(prev, next, type, chain_links);
364 
365 		prev = next;
366 		num++;
367 	}
368 	xhci_link_segments(prev, *first, type, chain_links);
369 	*last = prev;
370 
371 	return 0;
372 }
373 
374 /*
375  * Create a new ring with zero or more segments.
376  *
377  * Link each segment together into a ring.
378  * Set the end flag and the cycle toggle bit on the last segment.
379  * See section 4.9.1 and figures 15 and 16.
380  */
381 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
382 		unsigned int num_segs, unsigned int cycle_state,
383 		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
384 {
385 	struct xhci_ring	*ring;
386 	int ret;
387 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
388 
389 	ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
390 	if (!ring)
391 		return NULL;
392 
393 	ring->num_segs = num_segs;
394 	ring->bounce_buf_len = max_packet;
395 	INIT_LIST_HEAD(&ring->td_list);
396 	ring->type = type;
397 	if (num_segs == 0)
398 		return ring;
399 
400 	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
401 			&ring->last_seg, num_segs, 0, cycle_state, type,
402 			max_packet, flags);
403 	if (ret)
404 		goto fail;
405 
406 	/* Only event ring does not use link TRB */
407 	if (type != TYPE_EVENT) {
408 		/* See section 4.9.2.1 and 6.4.4.1 */
409 		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
410 			cpu_to_le32(LINK_TOGGLE);
411 	}
412 	xhci_initialize_ring_info(ring, cycle_state);
413 	trace_xhci_ring_alloc(ring);
414 	return ring;
415 
416 fail:
417 	kfree(ring);
418 	return NULL;
419 }
420 
421 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
422 		struct xhci_virt_device *virt_dev,
423 		unsigned int ep_index)
424 {
425 	xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
426 	virt_dev->eps[ep_index].ring = NULL;
427 }
428 
429 /*
430  * Expand an existing ring.
431  * Allocate a new ring which has same segment numbers and link the two rings.
432  */
433 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
434 				unsigned int num_new_segs, gfp_t flags)
435 {
436 	struct xhci_segment	*first;
437 	struct xhci_segment	*last;
438 	int			ret;
439 
440 	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
441 			num_new_segs, ring->enq_seg->num + 1,
442 			ring->cycle_state, ring->type,
443 			ring->bounce_buf_len, flags);
444 	if (ret)
445 		return -ENOMEM;
446 
447 	if (ring->type == TYPE_STREAM)
448 		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
449 						ring, first, last, flags);
450 	if (ret) {
451 		struct xhci_segment *next;
452 		do {
453 			next = first->next;
454 			xhci_segment_free(xhci, first);
455 			if (first == last)
456 				break;
457 			first = next;
458 		} while (true);
459 		return ret;
460 	}
461 
462 	xhci_link_rings(xhci, ring, first, last, num_new_segs);
463 	trace_xhci_ring_expansion(ring);
464 	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
465 			"ring expansion succeed, now has %d segments",
466 			ring->num_segs);
467 
468 	return 0;
469 }
470 
471 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
472 						    int type, gfp_t flags)
473 {
474 	struct xhci_container_ctx *ctx;
475 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
476 
477 	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
478 		return NULL;
479 
480 	ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
481 	if (!ctx)
482 		return NULL;
483 
484 	ctx->type = type;
485 	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
486 	if (type == XHCI_CTX_TYPE_INPUT)
487 		ctx->size += CTX_SIZE(xhci->hcc_params);
488 
489 	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
490 	if (!ctx->bytes) {
491 		kfree(ctx);
492 		return NULL;
493 	}
494 	return ctx;
495 }
496 
497 void xhci_free_container_ctx(struct xhci_hcd *xhci,
498 			     struct xhci_container_ctx *ctx)
499 {
500 	if (!ctx)
501 		return;
502 	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
503 	kfree(ctx);
504 }
505 
506 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
507 					      struct xhci_container_ctx *ctx)
508 {
509 	if (ctx->type != XHCI_CTX_TYPE_INPUT)
510 		return NULL;
511 
512 	return (struct xhci_input_control_ctx *)ctx->bytes;
513 }
514 
515 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
516 					struct xhci_container_ctx *ctx)
517 {
518 	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
519 		return (struct xhci_slot_ctx *)ctx->bytes;
520 
521 	return (struct xhci_slot_ctx *)
522 		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
523 }
524 
525 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
526 				    struct xhci_container_ctx *ctx,
527 				    unsigned int ep_index)
528 {
529 	/* increment ep index by offset of start of ep ctx array */
530 	ep_index++;
531 	if (ctx->type == XHCI_CTX_TYPE_INPUT)
532 		ep_index++;
533 
534 	return (struct xhci_ep_ctx *)
535 		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
536 }
537 EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
538 
539 /***************** Streams structures manipulation *************************/
540 
541 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
542 		unsigned int num_stream_ctxs,
543 		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
544 {
545 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
546 	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
547 
548 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
549 		dma_free_coherent(dev, size, stream_ctx, dma);
550 	else if (size > SMALL_STREAM_ARRAY_SIZE)
551 		dma_pool_free(xhci->medium_streams_pool, stream_ctx, dma);
552 	else
553 		dma_pool_free(xhci->small_streams_pool, stream_ctx, dma);
554 }
555 
556 /*
557  * The stream context array for each endpoint with bulk streams enabled can
558  * vary in size, based on:
559  *  - how many streams the endpoint supports,
560  *  - the maximum primary stream array size the host controller supports,
561  *  - and how many streams the device driver asks for.
562  *
563  * The stream context array must be a power of 2, and can be as small as
564  * 64 bytes or as large as 1MB.
565  */
566 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
567 		unsigned int num_stream_ctxs, dma_addr_t *dma,
568 		gfp_t mem_flags)
569 {
570 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
571 	size_t size = size_mul(sizeof(struct xhci_stream_ctx), num_stream_ctxs);
572 
573 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
574 		return dma_alloc_coherent(dev, size, dma, mem_flags);
575 	if (size > SMALL_STREAM_ARRAY_SIZE)
576 		return dma_pool_zalloc(xhci->medium_streams_pool, mem_flags, dma);
577 	else
578 		return dma_pool_zalloc(xhci->small_streams_pool, mem_flags, dma);
579 }
580 
581 struct xhci_ring *xhci_dma_to_transfer_ring(
582 		struct xhci_virt_ep *ep,
583 		u64 address)
584 {
585 	if (ep->ep_state & EP_HAS_STREAMS)
586 		return radix_tree_lookup(&ep->stream_info->trb_address_map,
587 				address >> TRB_SEGMENT_SHIFT);
588 	return ep->ring;
589 }
590 
591 /*
592  * Change an endpoint's internal structure so it supports stream IDs.  The
593  * number of requested streams includes stream 0, which cannot be used by device
594  * drivers.
595  *
596  * The number of stream contexts in the stream context array may be bigger than
597  * the number of streams the driver wants to use.  This is because the number of
598  * stream context array entries must be a power of two.
599  */
600 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
601 		unsigned int num_stream_ctxs,
602 		unsigned int num_streams,
603 		unsigned int max_packet, gfp_t mem_flags)
604 {
605 	struct xhci_stream_info *stream_info;
606 	u32 cur_stream;
607 	struct xhci_ring *cur_ring;
608 	u64 addr;
609 	int ret;
610 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
611 
612 	xhci_dbg(xhci, "Allocating %u streams and %u stream context array entries.\n",
613 			num_streams, num_stream_ctxs);
614 	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
615 		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
616 		return NULL;
617 	}
618 	xhci->cmd_ring_reserved_trbs++;
619 
620 	stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
621 			dev_to_node(dev));
622 	if (!stream_info)
623 		goto cleanup_trbs;
624 
625 	stream_info->num_streams = num_streams;
626 	stream_info->num_stream_ctxs = num_stream_ctxs;
627 
628 	/* Initialize the array of virtual pointers to stream rings. */
629 	stream_info->stream_rings = kcalloc_node(
630 			num_streams, sizeof(struct xhci_ring *), mem_flags,
631 			dev_to_node(dev));
632 	if (!stream_info->stream_rings)
633 		goto cleanup_info;
634 
635 	/* Initialize the array of DMA addresses for stream rings for the HW. */
636 	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
637 			num_stream_ctxs, &stream_info->ctx_array_dma,
638 			mem_flags);
639 	if (!stream_info->stream_ctx_array)
640 		goto cleanup_ring_array;
641 
642 	/* Allocate everything needed to free the stream rings later */
643 	stream_info->free_streams_command =
644 		xhci_alloc_command_with_ctx(xhci, true, mem_flags);
645 	if (!stream_info->free_streams_command)
646 		goto cleanup_ctx;
647 
648 	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
649 
650 	/* Allocate rings for all the streams that the driver will use,
651 	 * and add their segment DMA addresses to the radix tree.
652 	 * Stream 0 is reserved.
653 	 */
654 
655 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
656 		stream_info->stream_rings[cur_stream] =
657 			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
658 					mem_flags);
659 		cur_ring = stream_info->stream_rings[cur_stream];
660 		if (!cur_ring)
661 			goto cleanup_rings;
662 		cur_ring->stream_id = cur_stream;
663 		cur_ring->trb_address_map = &stream_info->trb_address_map;
664 		/* Set deq ptr, cycle bit, and stream context type */
665 		addr = cur_ring->first_seg->dma |
666 			SCT_FOR_CTX(SCT_PRI_TR) |
667 			cur_ring->cycle_state;
668 		stream_info->stream_ctx_array[cur_stream].stream_ring =
669 			cpu_to_le64(addr);
670 		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", cur_stream, addr);
671 
672 		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
673 		if (ret) {
674 			xhci_ring_free(xhci, cur_ring);
675 			stream_info->stream_rings[cur_stream] = NULL;
676 			goto cleanup_rings;
677 		}
678 	}
679 	/* Leave the other unused stream ring pointers in the stream context
680 	 * array initialized to zero.  This will cause the xHC to give us an
681 	 * error if the device asks for a stream ID we don't have setup (if it
682 	 * was any other way, the host controller would assume the ring is
683 	 * "empty" and wait forever for data to be queued to that stream ID).
684 	 */
685 
686 	return stream_info;
687 
688 cleanup_rings:
689 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
690 		cur_ring = stream_info->stream_rings[cur_stream];
691 		if (cur_ring) {
692 			xhci_ring_free(xhci, cur_ring);
693 			stream_info->stream_rings[cur_stream] = NULL;
694 		}
695 	}
696 	xhci_free_command(xhci, stream_info->free_streams_command);
697 cleanup_ctx:
698 	xhci_free_stream_ctx(xhci,
699 		stream_info->num_stream_ctxs,
700 		stream_info->stream_ctx_array,
701 		stream_info->ctx_array_dma);
702 cleanup_ring_array:
703 	kfree(stream_info->stream_rings);
704 cleanup_info:
705 	kfree(stream_info);
706 cleanup_trbs:
707 	xhci->cmd_ring_reserved_trbs--;
708 	return NULL;
709 }
710 /*
711  * Sets the MaxPStreams field and the Linear Stream Array field.
712  * Sets the dequeue pointer to the stream context array.
713  */
714 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
715 		struct xhci_ep_ctx *ep_ctx,
716 		struct xhci_stream_info *stream_info)
717 {
718 	u32 max_primary_streams;
719 	/* MaxPStreams is the number of stream context array entries, not the
720 	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
721 	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
722 	 */
723 	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
724 	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
725 			"Setting number of stream ctx array entries to %u",
726 			1 << (max_primary_streams + 1));
727 	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
728 	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
729 				       | EP_HAS_LSA);
730 	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
731 }
732 
733 /*
734  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
735  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
736  * not at the beginning of the ring).
737  */
738 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
739 		struct xhci_virt_ep *ep)
740 {
741 	dma_addr_t addr;
742 	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
743 	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
744 	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
745 }
746 
747 /* Frees all stream contexts associated with the endpoint,
748  *
749  * Caller should fix the endpoint context streams fields.
750  */
751 void xhci_free_stream_info(struct xhci_hcd *xhci,
752 		struct xhci_stream_info *stream_info)
753 {
754 	int cur_stream;
755 	struct xhci_ring *cur_ring;
756 
757 	if (!stream_info)
758 		return;
759 
760 	for (cur_stream = 1; cur_stream < stream_info->num_streams;
761 			cur_stream++) {
762 		cur_ring = stream_info->stream_rings[cur_stream];
763 		if (cur_ring) {
764 			xhci_ring_free(xhci, cur_ring);
765 			stream_info->stream_rings[cur_stream] = NULL;
766 		}
767 	}
768 	xhci_free_command(xhci, stream_info->free_streams_command);
769 	xhci->cmd_ring_reserved_trbs--;
770 	if (stream_info->stream_ctx_array)
771 		xhci_free_stream_ctx(xhci,
772 				stream_info->num_stream_ctxs,
773 				stream_info->stream_ctx_array,
774 				stream_info->ctx_array_dma);
775 
776 	kfree(stream_info->stream_rings);
777 	kfree(stream_info);
778 }
779 
780 
781 /***************** Device context manipulation *************************/
782 
783 static void xhci_free_tt_info(struct xhci_hcd *xhci,
784 		struct xhci_virt_device *virt_dev,
785 		int slot_id)
786 {
787 	struct list_head *tt_list_head;
788 	struct xhci_tt_bw_info *tt_info, *next;
789 	bool slot_found = false;
790 
791 	/* If the device never made it past the Set Address stage,
792 	 * it may not have the real_port set correctly.
793 	 */
794 	if (virt_dev->real_port == 0 ||
795 			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
796 		xhci_dbg(xhci, "Bad real port.\n");
797 		return;
798 	}
799 
800 	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
801 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
802 		/* Multi-TT hubs will have more than one entry */
803 		if (tt_info->slot_id == slot_id) {
804 			slot_found = true;
805 			list_del(&tt_info->tt_list);
806 			kfree(tt_info);
807 		} else if (slot_found) {
808 			break;
809 		}
810 	}
811 }
812 
813 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
814 		struct xhci_virt_device *virt_dev,
815 		struct usb_device *hdev,
816 		struct usb_tt *tt, gfp_t mem_flags)
817 {
818 	struct xhci_tt_bw_info		*tt_info;
819 	unsigned int			num_ports;
820 	int				i, j;
821 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
822 
823 	if (!tt->multi)
824 		num_ports = 1;
825 	else
826 		num_ports = hdev->maxchild;
827 
828 	for (i = 0; i < num_ports; i++, tt_info++) {
829 		struct xhci_interval_bw_table *bw_table;
830 
831 		tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
832 				dev_to_node(dev));
833 		if (!tt_info)
834 			goto free_tts;
835 		INIT_LIST_HEAD(&tt_info->tt_list);
836 		list_add(&tt_info->tt_list,
837 				&xhci->rh_bw[virt_dev->real_port - 1].tts);
838 		tt_info->slot_id = virt_dev->udev->slot_id;
839 		if (tt->multi)
840 			tt_info->ttport = i+1;
841 		bw_table = &tt_info->bw_table;
842 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
843 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
844 	}
845 	return 0;
846 
847 free_tts:
848 	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
849 	return -ENOMEM;
850 }
851 
852 
853 /* All the xhci_tds in the ring's TD list should be freed at this point.
854  * Should be called with xhci->lock held if there is any chance the TT lists
855  * will be manipulated by the configure endpoint, allocate device, or update
856  * hub functions while this function is removing the TT entries from the list.
857  */
858 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
859 {
860 	struct xhci_virt_device *dev;
861 	int i;
862 	int old_active_eps = 0;
863 
864 	/* Slot ID 0 is reserved */
865 	if (slot_id == 0 || !xhci->devs[slot_id])
866 		return;
867 
868 	dev = xhci->devs[slot_id];
869 
870 	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
871 	if (!dev)
872 		return;
873 
874 	trace_xhci_free_virt_device(dev);
875 
876 	if (dev->tt_info)
877 		old_active_eps = dev->tt_info->active_eps;
878 
879 	for (i = 0; i < 31; i++) {
880 		if (dev->eps[i].ring)
881 			xhci_ring_free(xhci, dev->eps[i].ring);
882 		if (dev->eps[i].stream_info)
883 			xhci_free_stream_info(xhci,
884 					dev->eps[i].stream_info);
885 		/*
886 		 * Endpoints are normally deleted from the bandwidth list when
887 		 * endpoints are dropped, before device is freed.
888 		 * If host is dying or being removed then endpoints aren't
889 		 * dropped cleanly, so delete the endpoint from list here.
890 		 * Only applicable for hosts with software bandwidth checking.
891 		 */
892 
893 		if (!list_empty(&dev->eps[i].bw_endpoint_list)) {
894 			list_del_init(&dev->eps[i].bw_endpoint_list);
895 			xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n",
896 				 slot_id, i);
897 		}
898 	}
899 	/* If this is a hub, free the TT(s) from the TT list */
900 	xhci_free_tt_info(xhci, dev, slot_id);
901 	/* If necessary, update the number of active TTs on this root port */
902 	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
903 
904 	if (dev->in_ctx)
905 		xhci_free_container_ctx(xhci, dev->in_ctx);
906 	if (dev->out_ctx)
907 		xhci_free_container_ctx(xhci, dev->out_ctx);
908 
909 	if (dev->udev && dev->udev->slot_id)
910 		dev->udev->slot_id = 0;
911 	kfree(xhci->devs[slot_id]);
912 	xhci->devs[slot_id] = NULL;
913 }
914 
915 /*
916  * Free a virt_device structure.
917  * If the virt_device added a tt_info (a hub) and has children pointing to
918  * that tt_info, then free the child first. Recursive.
919  * We can't rely on udev at this point to find child-parent relationships.
920  */
921 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
922 {
923 	struct xhci_virt_device *vdev;
924 	struct list_head *tt_list_head;
925 	struct xhci_tt_bw_info *tt_info, *next;
926 	int i;
927 
928 	vdev = xhci->devs[slot_id];
929 	if (!vdev)
930 		return;
931 
932 	if (vdev->real_port == 0 ||
933 			vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
934 		xhci_dbg(xhci, "Bad vdev->real_port.\n");
935 		goto out;
936 	}
937 
938 	tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
939 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
940 		/* is this a hub device that added a tt_info to the tts list */
941 		if (tt_info->slot_id == slot_id) {
942 			/* are any devices using this tt_info? */
943 			for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
944 				vdev = xhci->devs[i];
945 				if (vdev && (vdev->tt_info == tt_info))
946 					xhci_free_virt_devices_depth_first(
947 						xhci, i);
948 			}
949 		}
950 	}
951 out:
952 	/* we are now at a leaf device */
953 	xhci_debugfs_remove_slot(xhci, slot_id);
954 	xhci_free_virt_device(xhci, slot_id);
955 }
956 
957 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
958 		struct usb_device *udev, gfp_t flags)
959 {
960 	struct xhci_virt_device *dev;
961 	int i;
962 
963 	/* Slot ID 0 is reserved */
964 	if (slot_id == 0 || xhci->devs[slot_id]) {
965 		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
966 		return 0;
967 	}
968 
969 	dev = kzalloc(sizeof(*dev), flags);
970 	if (!dev)
971 		return 0;
972 
973 	dev->slot_id = slot_id;
974 
975 	/* Allocate the (output) device context that will be used in the HC. */
976 	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
977 	if (!dev->out_ctx)
978 		goto fail;
979 
980 	xhci_dbg(xhci, "Slot %d output ctx = 0x%pad (dma)\n", slot_id, &dev->out_ctx->dma);
981 
982 	/* Allocate the (input) device context for address device command */
983 	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
984 	if (!dev->in_ctx)
985 		goto fail;
986 
987 	xhci_dbg(xhci, "Slot %d input ctx = 0x%pad (dma)\n", slot_id, &dev->in_ctx->dma);
988 
989 	/* Initialize the cancellation and bandwidth list for each ep */
990 	for (i = 0; i < 31; i++) {
991 		dev->eps[i].ep_index = i;
992 		dev->eps[i].vdev = dev;
993 		dev->eps[i].xhci = xhci;
994 		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
995 		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
996 	}
997 
998 	/* Allocate endpoint 0 ring */
999 	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1000 	if (!dev->eps[0].ring)
1001 		goto fail;
1002 
1003 	dev->udev = udev;
1004 
1005 	/* Point to output device context in dcbaa. */
1006 	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1007 	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1008 		 slot_id,
1009 		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1010 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1011 
1012 	trace_xhci_alloc_virt_device(dev);
1013 
1014 	xhci->devs[slot_id] = dev;
1015 
1016 	return 1;
1017 fail:
1018 
1019 	if (dev->in_ctx)
1020 		xhci_free_container_ctx(xhci, dev->in_ctx);
1021 	if (dev->out_ctx)
1022 		xhci_free_container_ctx(xhci, dev->out_ctx);
1023 	kfree(dev);
1024 
1025 	return 0;
1026 }
1027 
1028 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1029 		struct usb_device *udev)
1030 {
1031 	struct xhci_virt_device *virt_dev;
1032 	struct xhci_ep_ctx	*ep0_ctx;
1033 	struct xhci_ring	*ep_ring;
1034 
1035 	virt_dev = xhci->devs[udev->slot_id];
1036 	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1037 	ep_ring = virt_dev->eps[0].ring;
1038 	/*
1039 	 * FIXME we don't keep track of the dequeue pointer very well after a
1040 	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1041 	 * host to our enqueue pointer.  This should only be called after a
1042 	 * configured device has reset, so all control transfers should have
1043 	 * been completed or cancelled before the reset.
1044 	 */
1045 	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1046 							ep_ring->enqueue)
1047 				   | ep_ring->cycle_state);
1048 }
1049 
1050 /*
1051  * The xHCI roothub may have ports of differing speeds in any order in the port
1052  * status registers.
1053  *
1054  * The xHCI hardware wants to know the roothub port number that the USB device
1055  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1056  * know is the index of that port under either the USB 2.0 or the USB 3.0
1057  * roothub, but that doesn't give us the real index into the HW port status
1058  * registers. Call xhci_find_raw_port_number() to get real index.
1059  */
1060 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1061 		struct usb_device *udev)
1062 {
1063 	struct usb_device *top_dev;
1064 	struct usb_hcd *hcd;
1065 
1066 	if (udev->speed >= USB_SPEED_SUPER)
1067 		hcd = xhci_get_usb3_hcd(xhci);
1068 	else
1069 		hcd = xhci->main_hcd;
1070 
1071 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1072 			top_dev = top_dev->parent)
1073 		/* Found device below root hub */;
1074 
1075 	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
1076 }
1077 
1078 /* Setup an xHCI virtual device for a Set Address command */
1079 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1080 {
1081 	struct xhci_virt_device *dev;
1082 	struct xhci_ep_ctx	*ep0_ctx;
1083 	struct xhci_slot_ctx    *slot_ctx;
1084 	u32			port_num;
1085 	u32			max_packets;
1086 	struct usb_device *top_dev;
1087 
1088 	dev = xhci->devs[udev->slot_id];
1089 	/* Slot ID 0 is reserved */
1090 	if (udev->slot_id == 0 || !dev) {
1091 		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1092 				udev->slot_id);
1093 		return -EINVAL;
1094 	}
1095 	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1096 	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1097 
1098 	/* 3) Only the control endpoint is valid - one endpoint context */
1099 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1100 	switch (udev->speed) {
1101 	case USB_SPEED_SUPER_PLUS:
1102 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1103 		max_packets = MAX_PACKET(512);
1104 		break;
1105 	case USB_SPEED_SUPER:
1106 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1107 		max_packets = MAX_PACKET(512);
1108 		break;
1109 	case USB_SPEED_HIGH:
1110 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1111 		max_packets = MAX_PACKET(64);
1112 		break;
1113 	/* USB core guesses at a 64-byte max packet first for FS devices */
1114 	case USB_SPEED_FULL:
1115 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1116 		max_packets = MAX_PACKET(64);
1117 		break;
1118 	case USB_SPEED_LOW:
1119 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1120 		max_packets = MAX_PACKET(8);
1121 		break;
1122 	default:
1123 		/* Speed was set earlier, this shouldn't happen. */
1124 		return -EINVAL;
1125 	}
1126 	/* Find the root hub port this device is under */
1127 	port_num = xhci_find_real_port_number(xhci, udev);
1128 	if (!port_num)
1129 		return -EINVAL;
1130 	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1131 	/* Set the port number in the virtual_device to the faked port number */
1132 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1133 			top_dev = top_dev->parent)
1134 		/* Found device below root hub */;
1135 	dev->fake_port = top_dev->portnum;
1136 	dev->real_port = port_num;
1137 	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1138 	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1139 
1140 	/* Find the right bandwidth table that this device will be a part of.
1141 	 * If this is a full speed device attached directly to a root port (or a
1142 	 * decendent of one), it counts as a primary bandwidth domain, not a
1143 	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1144 	 * will never be created for the HS root hub.
1145 	 */
1146 	if (!udev->tt || !udev->tt->hub->parent) {
1147 		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1148 	} else {
1149 		struct xhci_root_port_bw_info *rh_bw;
1150 		struct xhci_tt_bw_info *tt_bw;
1151 
1152 		rh_bw = &xhci->rh_bw[port_num - 1];
1153 		/* Find the right TT. */
1154 		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1155 			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1156 				continue;
1157 
1158 			if (!dev->udev->tt->multi ||
1159 					(udev->tt->multi &&
1160 					 tt_bw->ttport == dev->udev->ttport)) {
1161 				dev->bw_table = &tt_bw->bw_table;
1162 				dev->tt_info = tt_bw;
1163 				break;
1164 			}
1165 		}
1166 		if (!dev->tt_info)
1167 			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1168 	}
1169 
1170 	/* Is this a LS/FS device under an external HS hub? */
1171 	if (udev->tt && udev->tt->hub->parent) {
1172 		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1173 						(udev->ttport << 8));
1174 		if (udev->tt->multi)
1175 			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1176 	}
1177 	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1178 	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1179 
1180 	/* Step 4 - ring already allocated */
1181 	/* Step 5 */
1182 	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1183 
1184 	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1185 	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1186 					 max_packets);
1187 
1188 	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1189 				   dev->eps[0].ring->cycle_state);
1190 
1191 	trace_xhci_setup_addressable_virt_device(dev);
1192 
1193 	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1194 
1195 	return 0;
1196 }
1197 
1198 /*
1199  * Convert interval expressed as 2^(bInterval - 1) == interval into
1200  * straight exponent value 2^n == interval.
1201  *
1202  */
1203 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1204 		struct usb_host_endpoint *ep)
1205 {
1206 	unsigned int interval;
1207 
1208 	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1209 	if (interval != ep->desc.bInterval - 1)
1210 		dev_warn(&udev->dev,
1211 			 "ep %#x - rounding interval to %d %sframes\n",
1212 			 ep->desc.bEndpointAddress,
1213 			 1 << interval,
1214 			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1215 
1216 	if (udev->speed == USB_SPEED_FULL) {
1217 		/*
1218 		 * Full speed isoc endpoints specify interval in frames,
1219 		 * not microframes. We are using microframes everywhere,
1220 		 * so adjust accordingly.
1221 		 */
1222 		interval += 3;	/* 1 frame = 2^3 uframes */
1223 	}
1224 
1225 	return interval;
1226 }
1227 
1228 /*
1229  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1230  * microframes, rounded down to nearest power of 2.
1231  */
1232 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1233 		struct usb_host_endpoint *ep, unsigned int desc_interval,
1234 		unsigned int min_exponent, unsigned int max_exponent)
1235 {
1236 	unsigned int interval;
1237 
1238 	interval = fls(desc_interval) - 1;
1239 	interval = clamp_val(interval, min_exponent, max_exponent);
1240 	if ((1 << interval) != desc_interval)
1241 		dev_dbg(&udev->dev,
1242 			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1243 			 ep->desc.bEndpointAddress,
1244 			 1 << interval,
1245 			 desc_interval);
1246 
1247 	return interval;
1248 }
1249 
1250 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1251 		struct usb_host_endpoint *ep)
1252 {
1253 	if (ep->desc.bInterval == 0)
1254 		return 0;
1255 	return xhci_microframes_to_exponent(udev, ep,
1256 			ep->desc.bInterval, 0, 15);
1257 }
1258 
1259 
1260 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1261 		struct usb_host_endpoint *ep)
1262 {
1263 	return xhci_microframes_to_exponent(udev, ep,
1264 			ep->desc.bInterval * 8, 3, 10);
1265 }
1266 
1267 /* Return the polling or NAK interval.
1268  *
1269  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1270  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1271  *
1272  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1273  * is set to 0.
1274  */
1275 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1276 		struct usb_host_endpoint *ep)
1277 {
1278 	unsigned int interval = 0;
1279 
1280 	switch (udev->speed) {
1281 	case USB_SPEED_HIGH:
1282 		/* Max NAK rate */
1283 		if (usb_endpoint_xfer_control(&ep->desc) ||
1284 		    usb_endpoint_xfer_bulk(&ep->desc)) {
1285 			interval = xhci_parse_microframe_interval(udev, ep);
1286 			break;
1287 		}
1288 		fallthrough;	/* SS and HS isoc/int have same decoding */
1289 
1290 	case USB_SPEED_SUPER_PLUS:
1291 	case USB_SPEED_SUPER:
1292 		if (usb_endpoint_xfer_int(&ep->desc) ||
1293 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1294 			interval = xhci_parse_exponent_interval(udev, ep);
1295 		}
1296 		break;
1297 
1298 	case USB_SPEED_FULL:
1299 		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1300 			interval = xhci_parse_exponent_interval(udev, ep);
1301 			break;
1302 		}
1303 		/*
1304 		 * Fall through for interrupt endpoint interval decoding
1305 		 * since it uses the same rules as low speed interrupt
1306 		 * endpoints.
1307 		 */
1308 		fallthrough;
1309 
1310 	case USB_SPEED_LOW:
1311 		if (usb_endpoint_xfer_int(&ep->desc) ||
1312 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1313 
1314 			interval = xhci_parse_frame_interval(udev, ep);
1315 		}
1316 		break;
1317 
1318 	default:
1319 		BUG();
1320 	}
1321 	return interval;
1322 }
1323 
1324 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1325  * High speed endpoint descriptors can define "the number of additional
1326  * transaction opportunities per microframe", but that goes in the Max Burst
1327  * endpoint context field.
1328  */
1329 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1330 		struct usb_host_endpoint *ep)
1331 {
1332 	if (udev->speed < USB_SPEED_SUPER ||
1333 			!usb_endpoint_xfer_isoc(&ep->desc))
1334 		return 0;
1335 	return ep->ss_ep_comp.bmAttributes;
1336 }
1337 
1338 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1339 				       struct usb_host_endpoint *ep)
1340 {
1341 	/* Super speed and Plus have max burst in ep companion desc */
1342 	if (udev->speed >= USB_SPEED_SUPER)
1343 		return ep->ss_ep_comp.bMaxBurst;
1344 
1345 	if (udev->speed == USB_SPEED_HIGH &&
1346 	    (usb_endpoint_xfer_isoc(&ep->desc) ||
1347 	     usb_endpoint_xfer_int(&ep->desc)))
1348 		return usb_endpoint_maxp_mult(&ep->desc) - 1;
1349 
1350 	return 0;
1351 }
1352 
1353 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1354 {
1355 	int in;
1356 
1357 	in = usb_endpoint_dir_in(&ep->desc);
1358 
1359 	switch (usb_endpoint_type(&ep->desc)) {
1360 	case USB_ENDPOINT_XFER_CONTROL:
1361 		return CTRL_EP;
1362 	case USB_ENDPOINT_XFER_BULK:
1363 		return in ? BULK_IN_EP : BULK_OUT_EP;
1364 	case USB_ENDPOINT_XFER_ISOC:
1365 		return in ? ISOC_IN_EP : ISOC_OUT_EP;
1366 	case USB_ENDPOINT_XFER_INT:
1367 		return in ? INT_IN_EP : INT_OUT_EP;
1368 	}
1369 	return 0;
1370 }
1371 
1372 /* Return the maximum endpoint service interval time (ESIT) payload.
1373  * Basically, this is the maxpacket size, multiplied by the burst size
1374  * and mult size.
1375  */
1376 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1377 		struct usb_host_endpoint *ep)
1378 {
1379 	int max_burst;
1380 	int max_packet;
1381 
1382 	/* Only applies for interrupt or isochronous endpoints */
1383 	if (usb_endpoint_xfer_control(&ep->desc) ||
1384 			usb_endpoint_xfer_bulk(&ep->desc))
1385 		return 0;
1386 
1387 	/* SuperSpeedPlus Isoc ep sending over 48k per esit */
1388 	if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1389 	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1390 		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1391 
1392 	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1393 	if (udev->speed >= USB_SPEED_SUPER)
1394 		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1395 
1396 	max_packet = usb_endpoint_maxp(&ep->desc);
1397 	max_burst = usb_endpoint_maxp_mult(&ep->desc);
1398 	/* A 0 in max burst means 1 transfer per ESIT */
1399 	return max_packet * max_burst;
1400 }
1401 
1402 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1403  * Drivers will have to call usb_alloc_streams() to do that.
1404  */
1405 int xhci_endpoint_init(struct xhci_hcd *xhci,
1406 		struct xhci_virt_device *virt_dev,
1407 		struct usb_device *udev,
1408 		struct usb_host_endpoint *ep,
1409 		gfp_t mem_flags)
1410 {
1411 	unsigned int ep_index;
1412 	struct xhci_ep_ctx *ep_ctx;
1413 	struct xhci_ring *ep_ring;
1414 	unsigned int max_packet;
1415 	enum xhci_ring_type ring_type;
1416 	u32 max_esit_payload;
1417 	u32 endpoint_type;
1418 	unsigned int max_burst;
1419 	unsigned int interval;
1420 	unsigned int mult;
1421 	unsigned int avg_trb_len;
1422 	unsigned int err_count = 0;
1423 
1424 	ep_index = xhci_get_endpoint_index(&ep->desc);
1425 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1426 
1427 	endpoint_type = xhci_get_endpoint_type(ep);
1428 	if (!endpoint_type)
1429 		return -EINVAL;
1430 
1431 	ring_type = usb_endpoint_type(&ep->desc);
1432 
1433 	/*
1434 	 * Get values to fill the endpoint context, mostly from ep descriptor.
1435 	 * The average TRB buffer lengt for bulk endpoints is unclear as we
1436 	 * have no clue on scatter gather list entry size. For Isoc and Int,
1437 	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1438 	 */
1439 	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1440 	interval = xhci_get_endpoint_interval(udev, ep);
1441 
1442 	/* Periodic endpoint bInterval limit quirk */
1443 	if (usb_endpoint_xfer_int(&ep->desc) ||
1444 	    usb_endpoint_xfer_isoc(&ep->desc)) {
1445 		if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1446 		    udev->speed >= USB_SPEED_HIGH &&
1447 		    interval >= 7) {
1448 			interval = 6;
1449 		}
1450 	}
1451 
1452 	mult = xhci_get_endpoint_mult(udev, ep);
1453 	max_packet = usb_endpoint_maxp(&ep->desc);
1454 	max_burst = xhci_get_endpoint_max_burst(udev, ep);
1455 	avg_trb_len = max_esit_payload;
1456 
1457 	/* FIXME dig Mult and streams info out of ep companion desc */
1458 
1459 	/* Allow 3 retries for everything but isoc, set CErr = 3 */
1460 	if (!usb_endpoint_xfer_isoc(&ep->desc))
1461 		err_count = 3;
1462 	/* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1463 	if (usb_endpoint_xfer_bulk(&ep->desc)) {
1464 		if (udev->speed == USB_SPEED_HIGH)
1465 			max_packet = 512;
1466 		if (udev->speed == USB_SPEED_FULL) {
1467 			max_packet = rounddown_pow_of_two(max_packet);
1468 			max_packet = clamp_val(max_packet, 8, 64);
1469 		}
1470 	}
1471 	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1472 	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1473 		avg_trb_len = 8;
1474 	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1475 	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1476 		mult = 0;
1477 
1478 	/* Set up the endpoint ring */
1479 	virt_dev->eps[ep_index].new_ring =
1480 		xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1481 	if (!virt_dev->eps[ep_index].new_ring)
1482 		return -ENOMEM;
1483 
1484 	virt_dev->eps[ep_index].skip = false;
1485 	ep_ring = virt_dev->eps[ep_index].new_ring;
1486 
1487 	/* Fill the endpoint context */
1488 	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1489 				      EP_INTERVAL(interval) |
1490 				      EP_MULT(mult));
1491 	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1492 				       MAX_PACKET(max_packet) |
1493 				       MAX_BURST(max_burst) |
1494 				       ERROR_COUNT(err_count));
1495 	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1496 				  ep_ring->cycle_state);
1497 
1498 	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1499 				      EP_AVG_TRB_LENGTH(avg_trb_len));
1500 
1501 	return 0;
1502 }
1503 
1504 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1505 		struct xhci_virt_device *virt_dev,
1506 		struct usb_host_endpoint *ep)
1507 {
1508 	unsigned int ep_index;
1509 	struct xhci_ep_ctx *ep_ctx;
1510 
1511 	ep_index = xhci_get_endpoint_index(&ep->desc);
1512 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1513 
1514 	ep_ctx->ep_info = 0;
1515 	ep_ctx->ep_info2 = 0;
1516 	ep_ctx->deq = 0;
1517 	ep_ctx->tx_info = 0;
1518 	/* Don't free the endpoint ring until the set interface or configuration
1519 	 * request succeeds.
1520 	 */
1521 }
1522 
1523 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1524 {
1525 	bw_info->ep_interval = 0;
1526 	bw_info->mult = 0;
1527 	bw_info->num_packets = 0;
1528 	bw_info->max_packet_size = 0;
1529 	bw_info->type = 0;
1530 	bw_info->max_esit_payload = 0;
1531 }
1532 
1533 void xhci_update_bw_info(struct xhci_hcd *xhci,
1534 		struct xhci_container_ctx *in_ctx,
1535 		struct xhci_input_control_ctx *ctrl_ctx,
1536 		struct xhci_virt_device *virt_dev)
1537 {
1538 	struct xhci_bw_info *bw_info;
1539 	struct xhci_ep_ctx *ep_ctx;
1540 	unsigned int ep_type;
1541 	int i;
1542 
1543 	for (i = 1; i < 31; i++) {
1544 		bw_info = &virt_dev->eps[i].bw_info;
1545 
1546 		/* We can't tell what endpoint type is being dropped, but
1547 		 * unconditionally clearing the bandwidth info for non-periodic
1548 		 * endpoints should be harmless because the info will never be
1549 		 * set in the first place.
1550 		 */
1551 		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1552 			/* Dropped endpoint */
1553 			xhci_clear_endpoint_bw_info(bw_info);
1554 			continue;
1555 		}
1556 
1557 		if (EP_IS_ADDED(ctrl_ctx, i)) {
1558 			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1559 			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1560 
1561 			/* Ignore non-periodic endpoints */
1562 			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1563 					ep_type != ISOC_IN_EP &&
1564 					ep_type != INT_IN_EP)
1565 				continue;
1566 
1567 			/* Added or changed endpoint */
1568 			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1569 					le32_to_cpu(ep_ctx->ep_info));
1570 			/* Number of packets and mult are zero-based in the
1571 			 * input context, but we want one-based for the
1572 			 * interval table.
1573 			 */
1574 			bw_info->mult = CTX_TO_EP_MULT(
1575 					le32_to_cpu(ep_ctx->ep_info)) + 1;
1576 			bw_info->num_packets = CTX_TO_MAX_BURST(
1577 					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1578 			bw_info->max_packet_size = MAX_PACKET_DECODED(
1579 					le32_to_cpu(ep_ctx->ep_info2));
1580 			bw_info->type = ep_type;
1581 			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1582 					le32_to_cpu(ep_ctx->tx_info));
1583 		}
1584 	}
1585 }
1586 
1587 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1588  * Useful when you want to change one particular aspect of the endpoint and then
1589  * issue a configure endpoint command.
1590  */
1591 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1592 		struct xhci_container_ctx *in_ctx,
1593 		struct xhci_container_ctx *out_ctx,
1594 		unsigned int ep_index)
1595 {
1596 	struct xhci_ep_ctx *out_ep_ctx;
1597 	struct xhci_ep_ctx *in_ep_ctx;
1598 
1599 	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1600 	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1601 
1602 	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1603 	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1604 	in_ep_ctx->deq = out_ep_ctx->deq;
1605 	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1606 	if (xhci->quirks & XHCI_MTK_HOST) {
1607 		in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1608 		in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1609 	}
1610 }
1611 
1612 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1613  * Useful when you want to change one particular aspect of the endpoint and then
1614  * issue a configure endpoint command.  Only the context entries field matters,
1615  * but we'll copy the whole thing anyway.
1616  */
1617 void xhci_slot_copy(struct xhci_hcd *xhci,
1618 		struct xhci_container_ctx *in_ctx,
1619 		struct xhci_container_ctx *out_ctx)
1620 {
1621 	struct xhci_slot_ctx *in_slot_ctx;
1622 	struct xhci_slot_ctx *out_slot_ctx;
1623 
1624 	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1625 	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1626 
1627 	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1628 	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1629 	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1630 	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1631 }
1632 
1633 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1634 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1635 {
1636 	int i;
1637 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1638 	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1639 
1640 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1641 			"Allocating %d scratchpad buffers", num_sp);
1642 
1643 	if (!num_sp)
1644 		return 0;
1645 
1646 	xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1647 				dev_to_node(dev));
1648 	if (!xhci->scratchpad)
1649 		goto fail_sp;
1650 
1651 	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1652 				     size_mul(sizeof(u64), num_sp),
1653 				     &xhci->scratchpad->sp_dma, flags);
1654 	if (!xhci->scratchpad->sp_array)
1655 		goto fail_sp2;
1656 
1657 	xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1658 					flags, dev_to_node(dev));
1659 	if (!xhci->scratchpad->sp_buffers)
1660 		goto fail_sp3;
1661 
1662 	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1663 	for (i = 0; i < num_sp; i++) {
1664 		dma_addr_t dma;
1665 		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1666 					       flags);
1667 		if (!buf)
1668 			goto fail_sp4;
1669 
1670 		xhci->scratchpad->sp_array[i] = dma;
1671 		xhci->scratchpad->sp_buffers[i] = buf;
1672 	}
1673 
1674 	return 0;
1675 
1676  fail_sp4:
1677 	while (i--)
1678 		dma_free_coherent(dev, xhci->page_size,
1679 				    xhci->scratchpad->sp_buffers[i],
1680 				    xhci->scratchpad->sp_array[i]);
1681 
1682 	kfree(xhci->scratchpad->sp_buffers);
1683 
1684  fail_sp3:
1685 	dma_free_coherent(dev, num_sp * sizeof(u64),
1686 			    xhci->scratchpad->sp_array,
1687 			    xhci->scratchpad->sp_dma);
1688 
1689  fail_sp2:
1690 	kfree(xhci->scratchpad);
1691 	xhci->scratchpad = NULL;
1692 
1693  fail_sp:
1694 	return -ENOMEM;
1695 }
1696 
1697 static void scratchpad_free(struct xhci_hcd *xhci)
1698 {
1699 	int num_sp;
1700 	int i;
1701 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1702 
1703 	if (!xhci->scratchpad)
1704 		return;
1705 
1706 	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1707 
1708 	for (i = 0; i < num_sp; i++) {
1709 		dma_free_coherent(dev, xhci->page_size,
1710 				    xhci->scratchpad->sp_buffers[i],
1711 				    xhci->scratchpad->sp_array[i]);
1712 	}
1713 	kfree(xhci->scratchpad->sp_buffers);
1714 	dma_free_coherent(dev, num_sp * sizeof(u64),
1715 			    xhci->scratchpad->sp_array,
1716 			    xhci->scratchpad->sp_dma);
1717 	kfree(xhci->scratchpad);
1718 	xhci->scratchpad = NULL;
1719 }
1720 
1721 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1722 		bool allocate_completion, gfp_t mem_flags)
1723 {
1724 	struct xhci_command *command;
1725 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1726 
1727 	command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1728 	if (!command)
1729 		return NULL;
1730 
1731 	if (allocate_completion) {
1732 		command->completion =
1733 			kzalloc_node(sizeof(struct completion), mem_flags,
1734 				dev_to_node(dev));
1735 		if (!command->completion) {
1736 			kfree(command);
1737 			return NULL;
1738 		}
1739 		init_completion(command->completion);
1740 	}
1741 
1742 	command->status = 0;
1743 	/* set default timeout to 5000 ms */
1744 	command->timeout_ms = XHCI_CMD_DEFAULT_TIMEOUT;
1745 	INIT_LIST_HEAD(&command->cmd_list);
1746 	return command;
1747 }
1748 
1749 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1750 		bool allocate_completion, gfp_t mem_flags)
1751 {
1752 	struct xhci_command *command;
1753 
1754 	command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1755 	if (!command)
1756 		return NULL;
1757 
1758 	command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1759 						   mem_flags);
1760 	if (!command->in_ctx) {
1761 		kfree(command->completion);
1762 		kfree(command);
1763 		return NULL;
1764 	}
1765 	return command;
1766 }
1767 
1768 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1769 {
1770 	kfree(urb_priv);
1771 }
1772 
1773 void xhci_free_command(struct xhci_hcd *xhci,
1774 		struct xhci_command *command)
1775 {
1776 	xhci_free_container_ctx(xhci,
1777 			command->in_ctx);
1778 	kfree(command->completion);
1779 	kfree(command);
1780 }
1781 
1782 static int xhci_alloc_erst(struct xhci_hcd *xhci,
1783 		    struct xhci_ring *evt_ring,
1784 		    struct xhci_erst *erst,
1785 		    gfp_t flags)
1786 {
1787 	size_t size;
1788 	unsigned int val;
1789 	struct xhci_segment *seg;
1790 	struct xhci_erst_entry *entry;
1791 
1792 	size = size_mul(sizeof(struct xhci_erst_entry), evt_ring->num_segs);
1793 	erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1794 					   size, &erst->erst_dma_addr, flags);
1795 	if (!erst->entries)
1796 		return -ENOMEM;
1797 
1798 	erst->num_entries = evt_ring->num_segs;
1799 
1800 	seg = evt_ring->first_seg;
1801 	for (val = 0; val < evt_ring->num_segs; val++) {
1802 		entry = &erst->entries[val];
1803 		entry->seg_addr = cpu_to_le64(seg->dma);
1804 		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1805 		entry->rsvd = 0;
1806 		seg = seg->next;
1807 	}
1808 
1809 	return 0;
1810 }
1811 
1812 static void
1813 xhci_remove_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1814 {
1815 	u32 tmp;
1816 
1817 	if (!ir)
1818 		return;
1819 
1820 	/*
1821 	 * Clean out interrupter registers except ERSTBA. Clearing either the
1822 	 * low or high 32 bits of ERSTBA immediately causes the controller to
1823 	 * dereference the partially cleared 64 bit address, causing IOMMU error.
1824 	 */
1825 	if (ir->ir_set) {
1826 		tmp = readl(&ir->ir_set->erst_size);
1827 		tmp &= ERST_SIZE_MASK;
1828 		writel(tmp, &ir->ir_set->erst_size);
1829 
1830 		xhci_write_64(xhci, ERST_EHB, &ir->ir_set->erst_dequeue);
1831 	}
1832 }
1833 
1834 static void
1835 xhci_free_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1836 {
1837 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1838 	size_t erst_size;
1839 
1840 	if (!ir)
1841 		return;
1842 
1843 	erst_size = sizeof(struct xhci_erst_entry) * ir->erst.num_entries;
1844 	if (ir->erst.entries)
1845 		dma_free_coherent(dev, erst_size,
1846 				  ir->erst.entries,
1847 				  ir->erst.erst_dma_addr);
1848 	ir->erst.entries = NULL;
1849 
1850 	/* free interrupter event ring */
1851 	if (ir->event_ring)
1852 		xhci_ring_free(xhci, ir->event_ring);
1853 
1854 	ir->event_ring = NULL;
1855 
1856 	kfree(ir);
1857 }
1858 
1859 void xhci_remove_secondary_interrupter(struct usb_hcd *hcd, struct xhci_interrupter *ir)
1860 {
1861 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1862 	unsigned int intr_num;
1863 
1864 	spin_lock_irq(&xhci->lock);
1865 
1866 	/* interrupter 0 is primary interrupter, don't touch it */
1867 	if (!ir || !ir->intr_num || ir->intr_num >= xhci->max_interrupters) {
1868 		xhci_dbg(xhci, "Invalid secondary interrupter, can't remove\n");
1869 		spin_unlock_irq(&xhci->lock);
1870 		return;
1871 	}
1872 
1873 	intr_num = ir->intr_num;
1874 
1875 	xhci_remove_interrupter(xhci, ir);
1876 	xhci->interrupters[intr_num] = NULL;
1877 
1878 	spin_unlock_irq(&xhci->lock);
1879 
1880 	xhci_free_interrupter(xhci, ir);
1881 }
1882 EXPORT_SYMBOL_GPL(xhci_remove_secondary_interrupter);
1883 
1884 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1885 {
1886 	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
1887 	int i, j, num_ports;
1888 
1889 	cancel_delayed_work_sync(&xhci->cmd_timer);
1890 
1891 	for (i = 0; i < xhci->max_interrupters; i++) {
1892 		if (xhci->interrupters[i]) {
1893 			xhci_remove_interrupter(xhci, xhci->interrupters[i]);
1894 			xhci_free_interrupter(xhci, xhci->interrupters[i]);
1895 			xhci->interrupters[i] = NULL;
1896 		}
1897 	}
1898 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed interrupters");
1899 
1900 	if (xhci->cmd_ring)
1901 		xhci_ring_free(xhci, xhci->cmd_ring);
1902 	xhci->cmd_ring = NULL;
1903 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1904 	xhci_cleanup_command_queue(xhci);
1905 
1906 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1907 	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1908 		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1909 		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1910 			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1911 			while (!list_empty(ep))
1912 				list_del_init(ep->next);
1913 		}
1914 	}
1915 
1916 	for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1917 		xhci_free_virt_devices_depth_first(xhci, i);
1918 
1919 	dma_pool_destroy(xhci->segment_pool);
1920 	xhci->segment_pool = NULL;
1921 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1922 
1923 	dma_pool_destroy(xhci->device_pool);
1924 	xhci->device_pool = NULL;
1925 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1926 
1927 	dma_pool_destroy(xhci->small_streams_pool);
1928 	xhci->small_streams_pool = NULL;
1929 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1930 			"Freed small stream array pool");
1931 
1932 	dma_pool_destroy(xhci->medium_streams_pool);
1933 	xhci->medium_streams_pool = NULL;
1934 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1935 			"Freed medium stream array pool");
1936 
1937 	if (xhci->dcbaa)
1938 		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1939 				xhci->dcbaa, xhci->dcbaa->dma);
1940 	xhci->dcbaa = NULL;
1941 
1942 	scratchpad_free(xhci);
1943 
1944 	if (!xhci->rh_bw)
1945 		goto no_bw;
1946 
1947 	for (i = 0; i < num_ports; i++) {
1948 		struct xhci_tt_bw_info *tt, *n;
1949 		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1950 			list_del(&tt->tt_list);
1951 			kfree(tt);
1952 		}
1953 	}
1954 
1955 no_bw:
1956 	xhci->cmd_ring_reserved_trbs = 0;
1957 	xhci->usb2_rhub.num_ports = 0;
1958 	xhci->usb3_rhub.num_ports = 0;
1959 	xhci->num_active_eps = 0;
1960 	kfree(xhci->usb2_rhub.ports);
1961 	kfree(xhci->usb3_rhub.ports);
1962 	kfree(xhci->hw_ports);
1963 	kfree(xhci->rh_bw);
1964 	kfree(xhci->ext_caps);
1965 	for (i = 0; i < xhci->num_port_caps; i++)
1966 		kfree(xhci->port_caps[i].psi);
1967 	kfree(xhci->port_caps);
1968 	kfree(xhci->interrupters);
1969 	xhci->num_port_caps = 0;
1970 
1971 	xhci->usb2_rhub.ports = NULL;
1972 	xhci->usb3_rhub.ports = NULL;
1973 	xhci->hw_ports = NULL;
1974 	xhci->rh_bw = NULL;
1975 	xhci->ext_caps = NULL;
1976 	xhci->port_caps = NULL;
1977 	xhci->interrupters = NULL;
1978 
1979 	xhci->page_size = 0;
1980 	xhci->page_shift = 0;
1981 	xhci->usb2_rhub.bus_state.bus_suspended = 0;
1982 	xhci->usb3_rhub.bus_state.bus_suspended = 0;
1983 }
1984 
1985 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1986 {
1987 	dma_addr_t deq;
1988 
1989 	deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg,
1990 			ir->event_ring->dequeue);
1991 	if (!deq)
1992 		xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr.\n");
1993 	/* Update HC event ring dequeue pointer */
1994 	/* Don't clear the EHB bit (which is RW1C) because
1995 	 * there might be more events to service.
1996 	 */
1997 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1998 		       "// Write event ring dequeue pointer, preserving EHB bit");
1999 	xhci_write_64(xhci, deq & ERST_PTR_MASK, &ir->ir_set->erst_dequeue);
2000 }
2001 
2002 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2003 		__le32 __iomem *addr, int max_caps)
2004 {
2005 	u32 temp, port_offset, port_count;
2006 	int i;
2007 	u8 major_revision, minor_revision, tmp_minor_revision;
2008 	struct xhci_hub *rhub;
2009 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2010 	struct xhci_port_cap *port_cap;
2011 
2012 	temp = readl(addr);
2013 	major_revision = XHCI_EXT_PORT_MAJOR(temp);
2014 	minor_revision = XHCI_EXT_PORT_MINOR(temp);
2015 
2016 	if (major_revision == 0x03) {
2017 		rhub = &xhci->usb3_rhub;
2018 		/*
2019 		 * Some hosts incorrectly use sub-minor version for minor
2020 		 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
2021 		 * for bcdUSB 0x310). Since there is no USB release with sub
2022 		 * minor version 0x301 to 0x309, we can assume that they are
2023 		 * incorrect and fix it here.
2024 		 */
2025 		if (minor_revision > 0x00 && minor_revision < 0x10)
2026 			minor_revision <<= 4;
2027 		/*
2028 		 * Some zhaoxin's xHCI controller that follow usb3.1 spec
2029 		 * but only support Gen1.
2030 		 */
2031 		if (xhci->quirks & XHCI_ZHAOXIN_HOST) {
2032 			tmp_minor_revision = minor_revision;
2033 			minor_revision = 0;
2034 		}
2035 
2036 	} else if (major_revision <= 0x02) {
2037 		rhub = &xhci->usb2_rhub;
2038 	} else {
2039 		xhci_warn(xhci, "Ignoring unknown port speed, Ext Cap %p, revision = 0x%x\n",
2040 				addr, major_revision);
2041 		/* Ignoring port protocol we can't understand. FIXME */
2042 		return;
2043 	}
2044 
2045 	/* Port offset and count in the third dword, see section 7.2 */
2046 	temp = readl(addr + 2);
2047 	port_offset = XHCI_EXT_PORT_OFF(temp);
2048 	port_count = XHCI_EXT_PORT_COUNT(temp);
2049 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2050 		       "Ext Cap %p, port offset = %u, count = %u, revision = 0x%x",
2051 		       addr, port_offset, port_count, major_revision);
2052 	/* Port count includes the current port offset */
2053 	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2054 		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2055 		return;
2056 
2057 	port_cap = &xhci->port_caps[xhci->num_port_caps++];
2058 	if (xhci->num_port_caps > max_caps)
2059 		return;
2060 
2061 	port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2062 
2063 	if (port_cap->psi_count) {
2064 		port_cap->psi = kcalloc_node(port_cap->psi_count,
2065 					     sizeof(*port_cap->psi),
2066 					     GFP_KERNEL, dev_to_node(dev));
2067 		if (!port_cap->psi)
2068 			port_cap->psi_count = 0;
2069 
2070 		port_cap->psi_uid_count++;
2071 		for (i = 0; i < port_cap->psi_count; i++) {
2072 			port_cap->psi[i] = readl(addr + 4 + i);
2073 
2074 			/* count unique ID values, two consecutive entries can
2075 			 * have the same ID if link is assymetric
2076 			 */
2077 			if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2078 				  XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2079 				port_cap->psi_uid_count++;
2080 
2081 			if (xhci->quirks & XHCI_ZHAOXIN_HOST &&
2082 			    major_revision == 0x03 &&
2083 			    XHCI_EXT_PORT_PSIV(port_cap->psi[i]) >= 5)
2084 				minor_revision = tmp_minor_revision;
2085 
2086 			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2087 				  XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2088 				  XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2089 				  XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2090 				  XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2091 				  XHCI_EXT_PORT_LP(port_cap->psi[i]),
2092 				  XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2093 		}
2094 	}
2095 
2096 	rhub->maj_rev = major_revision;
2097 
2098 	if (rhub->min_rev < minor_revision)
2099 		rhub->min_rev = minor_revision;
2100 
2101 	port_cap->maj_rev = major_revision;
2102 	port_cap->min_rev = minor_revision;
2103 
2104 	/* cache usb2 port capabilities */
2105 	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2106 		xhci->ext_caps[xhci->num_ext_caps++] = temp;
2107 
2108 	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2109 		 (temp & XHCI_HLC)) {
2110 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2111 			       "xHCI 1.0: support USB2 hardware lpm");
2112 		xhci->hw_lpm_support = 1;
2113 	}
2114 
2115 	port_offset--;
2116 	for (i = port_offset; i < (port_offset + port_count); i++) {
2117 		struct xhci_port *hw_port = &xhci->hw_ports[i];
2118 		/* Duplicate entry.  Ignore the port if the revisions differ. */
2119 		if (hw_port->rhub) {
2120 			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p, port %u\n", addr, i);
2121 			xhci_warn(xhci, "Port was marked as USB %u, duplicated as USB %u\n",
2122 					hw_port->rhub->maj_rev, major_revision);
2123 			/* Only adjust the roothub port counts if we haven't
2124 			 * found a similar duplicate.
2125 			 */
2126 			if (hw_port->rhub != rhub &&
2127 				 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2128 				hw_port->rhub->num_ports--;
2129 				hw_port->hcd_portnum = DUPLICATE_ENTRY;
2130 			}
2131 			continue;
2132 		}
2133 		hw_port->rhub = rhub;
2134 		hw_port->port_cap = port_cap;
2135 		rhub->num_ports++;
2136 	}
2137 	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2138 }
2139 
2140 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2141 					struct xhci_hub *rhub, gfp_t flags)
2142 {
2143 	int port_index = 0;
2144 	int i;
2145 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2146 
2147 	if (!rhub->num_ports)
2148 		return;
2149 	rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2150 			flags, dev_to_node(dev));
2151 	if (!rhub->ports)
2152 		return;
2153 
2154 	for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2155 		if (xhci->hw_ports[i].rhub != rhub ||
2156 		    xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2157 			continue;
2158 		xhci->hw_ports[i].hcd_portnum = port_index;
2159 		rhub->ports[port_index] = &xhci->hw_ports[i];
2160 		port_index++;
2161 		if (port_index == rhub->num_ports)
2162 			break;
2163 	}
2164 }
2165 
2166 /*
2167  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2168  * specify what speeds each port is supposed to be.  We can't count on the port
2169  * speed bits in the PORTSC register being correct until a device is connected,
2170  * but we need to set up the two fake roothubs with the correct number of USB
2171  * 3.0 and USB 2.0 ports at host controller initialization time.
2172  */
2173 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2174 {
2175 	void __iomem *base;
2176 	u32 offset;
2177 	unsigned int num_ports;
2178 	int i, j;
2179 	int cap_count = 0;
2180 	u32 cap_start;
2181 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2182 
2183 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2184 	xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2185 				flags, dev_to_node(dev));
2186 	if (!xhci->hw_ports)
2187 		return -ENOMEM;
2188 
2189 	for (i = 0; i < num_ports; i++) {
2190 		xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2191 			NUM_PORT_REGS * i;
2192 		xhci->hw_ports[i].hw_portnum = i;
2193 
2194 		init_completion(&xhci->hw_ports[i].rexit_done);
2195 		init_completion(&xhci->hw_ports[i].u3exit_done);
2196 	}
2197 
2198 	xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2199 				   dev_to_node(dev));
2200 	if (!xhci->rh_bw)
2201 		return -ENOMEM;
2202 	for (i = 0; i < num_ports; i++) {
2203 		struct xhci_interval_bw_table *bw_table;
2204 
2205 		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2206 		bw_table = &xhci->rh_bw[i].bw_table;
2207 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2208 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2209 	}
2210 	base = &xhci->cap_regs->hc_capbase;
2211 
2212 	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2213 	if (!cap_start) {
2214 		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2215 		return -ENODEV;
2216 	}
2217 
2218 	offset = cap_start;
2219 	/* count extended protocol capability entries for later caching */
2220 	while (offset) {
2221 		cap_count++;
2222 		offset = xhci_find_next_ext_cap(base, offset,
2223 						      XHCI_EXT_CAPS_PROTOCOL);
2224 	}
2225 
2226 	xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2227 				flags, dev_to_node(dev));
2228 	if (!xhci->ext_caps)
2229 		return -ENOMEM;
2230 
2231 	xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2232 				flags, dev_to_node(dev));
2233 	if (!xhci->port_caps)
2234 		return -ENOMEM;
2235 
2236 	offset = cap_start;
2237 
2238 	while (offset) {
2239 		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2240 		if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2241 		    num_ports)
2242 			break;
2243 		offset = xhci_find_next_ext_cap(base, offset,
2244 						XHCI_EXT_CAPS_PROTOCOL);
2245 	}
2246 	if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2247 		xhci_warn(xhci, "No ports on the roothubs?\n");
2248 		return -ENODEV;
2249 	}
2250 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2251 		       "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2252 		       xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2253 
2254 	/* Place limits on the number of roothub ports so that the hub
2255 	 * descriptors aren't longer than the USB core will allocate.
2256 	 */
2257 	if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2258 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2259 				"Limiting USB 3.0 roothub ports to %u.",
2260 				USB_SS_MAXPORTS);
2261 		xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2262 	}
2263 	if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2264 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2265 				"Limiting USB 2.0 roothub ports to %u.",
2266 				USB_MAXCHILDREN);
2267 		xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2268 	}
2269 
2270 	if (!xhci->usb2_rhub.num_ports)
2271 		xhci_info(xhci, "USB2 root hub has no ports\n");
2272 
2273 	if (!xhci->usb3_rhub.num_ports)
2274 		xhci_info(xhci, "USB3 root hub has no ports\n");
2275 
2276 	xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2277 	xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2278 
2279 	return 0;
2280 }
2281 
2282 static struct xhci_interrupter *
2283 xhci_alloc_interrupter(struct xhci_hcd *xhci, int segs, gfp_t flags)
2284 {
2285 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2286 	struct xhci_interrupter *ir;
2287 	unsigned int num_segs = segs;
2288 	int ret;
2289 
2290 	ir = kzalloc_node(sizeof(*ir), flags, dev_to_node(dev));
2291 	if (!ir)
2292 		return NULL;
2293 
2294 	/* number of ring segments should be greater than 0 */
2295 	if (segs <= 0)
2296 		num_segs = min_t(unsigned int, 1 << HCS_ERST_MAX(xhci->hcs_params2),
2297 			 ERST_MAX_SEGS);
2298 
2299 	ir->event_ring = xhci_ring_alloc(xhci, num_segs, 1, TYPE_EVENT, 0,
2300 					 flags);
2301 	if (!ir->event_ring) {
2302 		xhci_warn(xhci, "Failed to allocate interrupter event ring\n");
2303 		kfree(ir);
2304 		return NULL;
2305 	}
2306 
2307 	ret = xhci_alloc_erst(xhci, ir->event_ring, &ir->erst, flags);
2308 	if (ret) {
2309 		xhci_warn(xhci, "Failed to allocate interrupter erst\n");
2310 		xhci_ring_free(xhci, ir->event_ring);
2311 		kfree(ir);
2312 		return NULL;
2313 	}
2314 
2315 	return ir;
2316 }
2317 
2318 static int
2319 xhci_add_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir,
2320 		     unsigned int intr_num)
2321 {
2322 	u64 erst_base;
2323 	u32 erst_size;
2324 
2325 	if (intr_num >= xhci->max_interrupters) {
2326 		xhci_warn(xhci, "Can't add interrupter %d, max interrupters %d\n",
2327 			  intr_num, xhci->max_interrupters);
2328 		return -EINVAL;
2329 	}
2330 
2331 	if (xhci->interrupters[intr_num]) {
2332 		xhci_warn(xhci, "Interrupter %d\n already set up", intr_num);
2333 		return -EINVAL;
2334 	}
2335 
2336 	xhci->interrupters[intr_num] = ir;
2337 	ir->intr_num = intr_num;
2338 	ir->ir_set = &xhci->run_regs->ir_set[intr_num];
2339 
2340 	/* set ERST count with the number of entries in the segment table */
2341 	erst_size = readl(&ir->ir_set->erst_size);
2342 	erst_size &= ERST_SIZE_MASK;
2343 	erst_size |= ir->event_ring->num_segs;
2344 	writel(erst_size, &ir->ir_set->erst_size);
2345 
2346 	erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
2347 	erst_base &= ERST_BASE_RSVDP;
2348 	erst_base |= ir->erst.erst_dma_addr & ~ERST_BASE_RSVDP;
2349 	xhci_write_64(xhci, erst_base, &ir->ir_set->erst_base);
2350 
2351 	/* Set the event ring dequeue address of this interrupter */
2352 	xhci_set_hc_event_deq(xhci, ir);
2353 
2354 	return 0;
2355 }
2356 
2357 struct xhci_interrupter *
2358 xhci_create_secondary_interrupter(struct usb_hcd *hcd, int num_seg)
2359 {
2360 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2361 	struct xhci_interrupter *ir;
2362 	unsigned int i;
2363 	int err = -ENOSPC;
2364 
2365 	if (!xhci->interrupters || xhci->max_interrupters <= 1)
2366 		return NULL;
2367 
2368 	ir = xhci_alloc_interrupter(xhci, num_seg, GFP_KERNEL);
2369 	if (!ir)
2370 		return NULL;
2371 
2372 	spin_lock_irq(&xhci->lock);
2373 
2374 	/* Find available secondary interrupter, interrupter 0 is reserved for primary */
2375 	for (i = 1; i < xhci->max_interrupters; i++) {
2376 		if (xhci->interrupters[i] == NULL) {
2377 			err = xhci_add_interrupter(xhci, ir, i);
2378 			break;
2379 		}
2380 	}
2381 
2382 	spin_unlock_irq(&xhci->lock);
2383 
2384 	if (err) {
2385 		xhci_warn(xhci, "Failed to add secondary interrupter, max interrupters %d\n",
2386 			  xhci->max_interrupters);
2387 		xhci_free_interrupter(xhci, ir);
2388 		return NULL;
2389 	}
2390 
2391 	xhci_dbg(xhci, "Add secondary interrupter %d, max interrupters %d\n",
2392 		 i, xhci->max_interrupters);
2393 
2394 	return ir;
2395 }
2396 EXPORT_SYMBOL_GPL(xhci_create_secondary_interrupter);
2397 
2398 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2399 {
2400 	struct xhci_interrupter *ir;
2401 	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
2402 	dma_addr_t	dma;
2403 	unsigned int	val, val2;
2404 	u64		val_64;
2405 	u32		page_size, temp;
2406 	int		i;
2407 
2408 	INIT_LIST_HEAD(&xhci->cmd_list);
2409 
2410 	/* init command timeout work */
2411 	INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2412 	init_completion(&xhci->cmd_ring_stop_completion);
2413 
2414 	page_size = readl(&xhci->op_regs->page_size);
2415 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2416 			"Supported page size register = 0x%x", page_size);
2417 	i = ffs(page_size);
2418 	if (i < 16)
2419 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2420 			"Supported page size of %iK", (1 << (i+12)) / 1024);
2421 	else
2422 		xhci_warn(xhci, "WARN: no supported page size\n");
2423 	/* Use 4K pages, since that's common and the minimum the HC supports */
2424 	xhci->page_shift = 12;
2425 	xhci->page_size = 1 << xhci->page_shift;
2426 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2427 			"HCD page size set to %iK", xhci->page_size / 1024);
2428 
2429 	/*
2430 	 * Program the Number of Device Slots Enabled field in the CONFIG
2431 	 * register with the max value of slots the HC can handle.
2432 	 */
2433 	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2434 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2435 			"// xHC can handle at most %d device slots.", val);
2436 	val2 = readl(&xhci->op_regs->config_reg);
2437 	val |= (val2 & ~HCS_SLOTS_MASK);
2438 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2439 			"// Setting Max device slots reg = 0x%x.", val);
2440 	writel(val, &xhci->op_regs->config_reg);
2441 
2442 	/*
2443 	 * xHCI section 5.4.6 - Device Context array must be
2444 	 * "physically contiguous and 64-byte (cache line) aligned".
2445 	 */
2446 	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2447 			flags);
2448 	if (!xhci->dcbaa)
2449 		goto fail;
2450 	xhci->dcbaa->dma = dma;
2451 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2452 			"// Device context base array address = 0x%pad (DMA), %p (virt)",
2453 			&xhci->dcbaa->dma, xhci->dcbaa);
2454 	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2455 
2456 	/*
2457 	 * Initialize the ring segment pool.  The ring must be a contiguous
2458 	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2459 	 * however, the command ring segment needs 64-byte aligned segments
2460 	 * and our use of dma addresses in the trb_address_map radix tree needs
2461 	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2462 	 */
2463 	if (xhci->quirks & XHCI_ZHAOXIN_TRB_FETCH)
2464 		xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2465 				TRB_SEGMENT_SIZE * 2, TRB_SEGMENT_SIZE * 2, xhci->page_size * 2);
2466 	else
2467 		xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2468 				TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2469 
2470 	/* See Table 46 and Note on Figure 55 */
2471 	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2472 			2112, 64, xhci->page_size);
2473 	if (!xhci->segment_pool || !xhci->device_pool)
2474 		goto fail;
2475 
2476 	/* Linear stream context arrays don't have any boundary restrictions,
2477 	 * and only need to be 16-byte aligned.
2478 	 */
2479 	xhci->small_streams_pool =
2480 		dma_pool_create("xHCI 256 byte stream ctx arrays",
2481 			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2482 	xhci->medium_streams_pool =
2483 		dma_pool_create("xHCI 1KB stream ctx arrays",
2484 			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2485 	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2486 	 * will be allocated with dma_alloc_coherent()
2487 	 */
2488 
2489 	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2490 		goto fail;
2491 
2492 	/* Set up the command ring to have one segments for now. */
2493 	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2494 	if (!xhci->cmd_ring)
2495 		goto fail;
2496 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2497 			"Allocated command ring at %p", xhci->cmd_ring);
2498 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%pad",
2499 			&xhci->cmd_ring->first_seg->dma);
2500 
2501 	/* Set the address in the Command Ring Control register */
2502 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2503 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2504 		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2505 		xhci->cmd_ring->cycle_state;
2506 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2507 			"// Setting command ring address to 0x%016llx", val_64);
2508 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2509 
2510 	/* Reserve one command ring TRB for disabling LPM.
2511 	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2512 	 * disabling LPM, we only need to reserve one TRB for all devices.
2513 	 */
2514 	xhci->cmd_ring_reserved_trbs++;
2515 
2516 	val = readl(&xhci->cap_regs->db_off);
2517 	val &= DBOFF_MASK;
2518 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2519 		       "// Doorbell array is located at offset 0x%x from cap regs base addr",
2520 		       val);
2521 	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2522 
2523 	/* Allocate and set up primary interrupter 0 with an event ring. */
2524 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2525 		       "Allocating primary event ring");
2526 	xhci->interrupters = kcalloc_node(xhci->max_interrupters, sizeof(*xhci->interrupters),
2527 					  flags, dev_to_node(dev));
2528 
2529 	ir = xhci_alloc_interrupter(xhci, 0, flags);
2530 	if (!ir)
2531 		goto fail;
2532 
2533 	if (xhci_add_interrupter(xhci, ir, 0))
2534 		goto fail;
2535 
2536 	xhci->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
2537 
2538 	/*
2539 	 * XXX: Might need to set the Interrupter Moderation Register to
2540 	 * something other than the default (~1ms minimum between interrupts).
2541 	 * See section 5.5.1.2.
2542 	 */
2543 	for (i = 0; i < MAX_HC_SLOTS; i++)
2544 		xhci->devs[i] = NULL;
2545 
2546 	if (scratchpad_alloc(xhci, flags))
2547 		goto fail;
2548 	if (xhci_setup_port_arrays(xhci, flags))
2549 		goto fail;
2550 
2551 	/* Enable USB 3.0 device notifications for function remote wake, which
2552 	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2553 	 * U3 (device suspend).
2554 	 */
2555 	temp = readl(&xhci->op_regs->dev_notification);
2556 	temp &= ~DEV_NOTE_MASK;
2557 	temp |= DEV_NOTE_FWAKE;
2558 	writel(temp, &xhci->op_regs->dev_notification);
2559 
2560 	return 0;
2561 
2562 fail:
2563 	xhci_halt(xhci);
2564 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2565 	xhci_mem_cleanup(xhci);
2566 	return -ENOMEM;
2567 }
2568