xref: /linux/drivers/usb/host/xhci-mem.c (revision 4e4d9c72c946b77f0278988d0bf1207fa1b2cd0f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/usb.h>
12 #include <linux/overflow.h>
13 #include <linux/pci.h>
14 #include <linux/slab.h>
15 #include <linux/dmapool.h>
16 #include <linux/dma-mapping.h>
17 
18 #include "xhci.h"
19 #include "xhci-trace.h"
20 #include "xhci-debugfs.h"
21 
22 /*
23  * Allocates a generic ring segment from the ring pool, sets the dma address,
24  * initializes the segment to zero, and sets the private next pointer to NULL.
25  *
26  * Section 4.11.1.1:
27  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
28  */
29 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
30 					       unsigned int cycle_state,
31 					       unsigned int max_packet,
32 					       unsigned int num,
33 					       gfp_t flags)
34 {
35 	struct xhci_segment *seg;
36 	dma_addr_t	dma;
37 	int		i;
38 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
39 
40 	seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
41 	if (!seg)
42 		return NULL;
43 
44 	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
45 	if (!seg->trbs) {
46 		kfree(seg);
47 		return NULL;
48 	}
49 
50 	if (max_packet) {
51 		seg->bounce_buf = kzalloc_node(max_packet, flags,
52 					dev_to_node(dev));
53 		if (!seg->bounce_buf) {
54 			dma_pool_free(xhci->segment_pool, seg->trbs, dma);
55 			kfree(seg);
56 			return NULL;
57 		}
58 	}
59 	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
60 	if (cycle_state == 0) {
61 		for (i = 0; i < TRBS_PER_SEGMENT; i++)
62 			seg->trbs[i].link.control = cpu_to_le32(TRB_CYCLE);
63 	}
64 	seg->num = num;
65 	seg->dma = dma;
66 	seg->next = NULL;
67 
68 	return seg;
69 }
70 
71 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
72 {
73 	if (seg->trbs) {
74 		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
75 		seg->trbs = NULL;
76 	}
77 	kfree(seg->bounce_buf);
78 	kfree(seg);
79 }
80 
81 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
82 				struct xhci_segment *first)
83 {
84 	struct xhci_segment *seg;
85 
86 	seg = first->next;
87 	while (seg && seg != first) {
88 		struct xhci_segment *next = seg->next;
89 		xhci_segment_free(xhci, seg);
90 		seg = next;
91 	}
92 	xhci_segment_free(xhci, first);
93 }
94 
95 /*
96  * Make the prev segment point to the next segment.
97  *
98  * Change the last TRB in the prev segment to be a Link TRB which points to the
99  * DMA address of the next segment.  The caller needs to set any Link TRB
100  * related flags, such as End TRB, Toggle Cycle, and no snoop.
101  */
102 static void xhci_link_segments(struct xhci_segment *prev,
103 			       struct xhci_segment *next,
104 			       enum xhci_ring_type type, bool chain_links)
105 {
106 	u32 val;
107 
108 	if (!prev || !next)
109 		return;
110 	prev->next = next;
111 	if (type != TYPE_EVENT) {
112 		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
113 			cpu_to_le64(next->dma);
114 
115 		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
116 		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
117 		val &= ~TRB_TYPE_BITMASK;
118 		val |= TRB_TYPE(TRB_LINK);
119 		if (chain_links)
120 			val |= TRB_CHAIN;
121 		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
122 	}
123 }
124 
125 /*
126  * Link the ring to the new segments.
127  * Set Toggle Cycle for the new ring if needed.
128  */
129 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
130 		struct xhci_segment *first, struct xhci_segment *last,
131 		unsigned int num_segs)
132 {
133 	struct xhci_segment *next, *seg;
134 	bool chain_links;
135 
136 	if (!ring || !first || !last)
137 		return;
138 
139 	chain_links = xhci_link_chain_quirk(xhci, ring->type);
140 
141 	next = ring->enq_seg->next;
142 	xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
143 	xhci_link_segments(last, next, ring->type, chain_links);
144 	ring->num_segs += num_segs;
145 
146 	if (ring->enq_seg == ring->last_seg) {
147 		if (ring->type != TYPE_EVENT) {
148 			ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
149 				&= ~cpu_to_le32(LINK_TOGGLE);
150 			last->trbs[TRBS_PER_SEGMENT-1].link.control
151 				|= cpu_to_le32(LINK_TOGGLE);
152 		}
153 		ring->last_seg = last;
154 	}
155 
156 	for (seg = ring->enq_seg; seg != ring->last_seg; seg = seg->next)
157 		seg->next->num = seg->num + 1;
158 }
159 
160 /*
161  * We need a radix tree for mapping physical addresses of TRBs to which stream
162  * ID they belong to.  We need to do this because the host controller won't tell
163  * us which stream ring the TRB came from.  We could store the stream ID in an
164  * event data TRB, but that doesn't help us for the cancellation case, since the
165  * endpoint may stop before it reaches that event data TRB.
166  *
167  * The radix tree maps the upper portion of the TRB DMA address to a ring
168  * segment that has the same upper portion of DMA addresses.  For example, say I
169  * have segments of size 1KB, that are always 1KB aligned.  A segment may
170  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
171  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
172  * pass the radix tree a key to get the right stream ID:
173  *
174  *	0x10c90fff >> 10 = 0x43243
175  *	0x10c912c0 >> 10 = 0x43244
176  *	0x10c91400 >> 10 = 0x43245
177  *
178  * Obviously, only those TRBs with DMA addresses that are within the segment
179  * will make the radix tree return the stream ID for that ring.
180  *
181  * Caveats for the radix tree:
182  *
183  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
184  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
185  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
186  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
187  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
188  * extended systems (where the DMA address can be bigger than 32-bits),
189  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
190  */
191 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
192 		struct xhci_ring *ring,
193 		struct xhci_segment *seg,
194 		gfp_t mem_flags)
195 {
196 	unsigned long key;
197 	int ret;
198 
199 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
200 	/* Skip any segments that were already added. */
201 	if (radix_tree_lookup(trb_address_map, key))
202 		return 0;
203 
204 	ret = radix_tree_maybe_preload(mem_flags);
205 	if (ret)
206 		return ret;
207 	ret = radix_tree_insert(trb_address_map,
208 			key, ring);
209 	radix_tree_preload_end();
210 	return ret;
211 }
212 
213 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
214 		struct xhci_segment *seg)
215 {
216 	unsigned long key;
217 
218 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
219 	if (radix_tree_lookup(trb_address_map, key))
220 		radix_tree_delete(trb_address_map, key);
221 }
222 
223 static int xhci_update_stream_segment_mapping(
224 		struct radix_tree_root *trb_address_map,
225 		struct xhci_ring *ring,
226 		struct xhci_segment *first_seg,
227 		struct xhci_segment *last_seg,
228 		gfp_t mem_flags)
229 {
230 	struct xhci_segment *seg;
231 	struct xhci_segment *failed_seg;
232 	int ret;
233 
234 	if (WARN_ON_ONCE(trb_address_map == NULL))
235 		return 0;
236 
237 	seg = first_seg;
238 	do {
239 		ret = xhci_insert_segment_mapping(trb_address_map,
240 				ring, seg, mem_flags);
241 		if (ret)
242 			goto remove_streams;
243 		if (seg == last_seg)
244 			return 0;
245 		seg = seg->next;
246 	} while (seg != first_seg);
247 
248 	return 0;
249 
250 remove_streams:
251 	failed_seg = seg;
252 	seg = first_seg;
253 	do {
254 		xhci_remove_segment_mapping(trb_address_map, seg);
255 		if (seg == failed_seg)
256 			return ret;
257 		seg = seg->next;
258 	} while (seg != first_seg);
259 
260 	return ret;
261 }
262 
263 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
264 {
265 	struct xhci_segment *seg;
266 
267 	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
268 		return;
269 
270 	seg = ring->first_seg;
271 	do {
272 		xhci_remove_segment_mapping(ring->trb_address_map, seg);
273 		seg = seg->next;
274 	} while (seg != ring->first_seg);
275 }
276 
277 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
278 {
279 	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
280 			ring->first_seg, ring->last_seg, mem_flags);
281 }
282 
283 /* XXX: Do we need the hcd structure in all these functions? */
284 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
285 {
286 	if (!ring)
287 		return;
288 
289 	trace_xhci_ring_free(ring);
290 
291 	if (ring->first_seg) {
292 		if (ring->type == TYPE_STREAM)
293 			xhci_remove_stream_mapping(ring);
294 		xhci_free_segments_for_ring(xhci, ring->first_seg);
295 	}
296 
297 	kfree(ring);
298 }
299 
300 void xhci_initialize_ring_info(struct xhci_ring *ring,
301 			       unsigned int cycle_state)
302 {
303 	/* The ring is empty, so the enqueue pointer == dequeue pointer */
304 	ring->enqueue = ring->first_seg->trbs;
305 	ring->enq_seg = ring->first_seg;
306 	ring->dequeue = ring->enqueue;
307 	ring->deq_seg = ring->first_seg;
308 	/* The ring is initialized to 0. The producer must write 1 to the cycle
309 	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
310 	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
311 	 *
312 	 * New rings are initialized with cycle state equal to 1; if we are
313 	 * handling ring expansion, set the cycle state equal to the old ring.
314 	 */
315 	ring->cycle_state = cycle_state;
316 
317 	/*
318 	 * Each segment has a link TRB, and leave an extra TRB for SW
319 	 * accounting purpose
320 	 */
321 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
322 }
323 EXPORT_SYMBOL_GPL(xhci_initialize_ring_info);
324 
325 /* Allocate segments and link them for a ring */
326 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
327 					struct xhci_segment **first,
328 					struct xhci_segment **last,
329 					unsigned int num_segs,
330 					unsigned int cycle_state,
331 					enum xhci_ring_type type,
332 					unsigned int max_packet,
333 					gfp_t flags)
334 {
335 	struct xhci_segment *prev;
336 	unsigned int num = 0;
337 	bool chain_links;
338 
339 	chain_links = xhci_link_chain_quirk(xhci, type);
340 
341 	prev = xhci_segment_alloc(xhci, cycle_state, max_packet, num, flags);
342 	if (!prev)
343 		return -ENOMEM;
344 	num++;
345 
346 	*first = prev;
347 	while (num < num_segs) {
348 		struct xhci_segment	*next;
349 
350 		next = xhci_segment_alloc(xhci, cycle_state, max_packet, num,
351 					  flags);
352 		if (!next)
353 			goto free_segments;
354 
355 		xhci_link_segments(prev, next, type, chain_links);
356 		prev = next;
357 		num++;
358 	}
359 	xhci_link_segments(prev, *first, type, chain_links);
360 	*last = prev;
361 
362 	return 0;
363 
364 free_segments:
365 	xhci_free_segments_for_ring(xhci, *first);
366 	return -ENOMEM;
367 }
368 
369 /*
370  * Create a new ring with zero or more segments.
371  *
372  * Link each segment together into a ring.
373  * Set the end flag and the cycle toggle bit on the last segment.
374  * See section 4.9.1 and figures 15 and 16.
375  */
376 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
377 		unsigned int num_segs, unsigned int cycle_state,
378 		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
379 {
380 	struct xhci_ring	*ring;
381 	int ret;
382 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
383 
384 	ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
385 	if (!ring)
386 		return NULL;
387 
388 	ring->num_segs = num_segs;
389 	ring->bounce_buf_len = max_packet;
390 	INIT_LIST_HEAD(&ring->td_list);
391 	ring->type = type;
392 	if (num_segs == 0)
393 		return ring;
394 
395 	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg, &ring->last_seg, num_segs,
396 					   cycle_state, type, max_packet, flags);
397 	if (ret)
398 		goto fail;
399 
400 	/* Only event ring does not use link TRB */
401 	if (type != TYPE_EVENT) {
402 		/* See section 4.9.2.1 and 6.4.4.1 */
403 		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
404 			cpu_to_le32(LINK_TOGGLE);
405 	}
406 	xhci_initialize_ring_info(ring, cycle_state);
407 	trace_xhci_ring_alloc(ring);
408 	return ring;
409 
410 fail:
411 	kfree(ring);
412 	return NULL;
413 }
414 
415 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
416 		struct xhci_virt_device *virt_dev,
417 		unsigned int ep_index)
418 {
419 	xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
420 	virt_dev->eps[ep_index].ring = NULL;
421 }
422 
423 /*
424  * Expand an existing ring.
425  * Allocate a new ring which has same segment numbers and link the two rings.
426  */
427 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
428 				unsigned int num_new_segs, gfp_t flags)
429 {
430 	struct xhci_segment	*first;
431 	struct xhci_segment	*last;
432 	int			ret;
433 
434 	ret = xhci_alloc_segments_for_ring(xhci, &first, &last, num_new_segs, ring->cycle_state,
435 					   ring->type, ring->bounce_buf_len, flags);
436 	if (ret)
437 		return -ENOMEM;
438 
439 	if (ring->type == TYPE_STREAM) {
440 		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
441 						ring, first, last, flags);
442 		if (ret)
443 			goto free_segments;
444 	}
445 
446 	xhci_link_rings(xhci, ring, first, last, num_new_segs);
447 	trace_xhci_ring_expansion(ring);
448 	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
449 			"ring expansion succeed, now has %d segments",
450 			ring->num_segs);
451 
452 	return 0;
453 
454 free_segments:
455 	xhci_free_segments_for_ring(xhci, first);
456 	return ret;
457 }
458 
459 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
460 						    int type, gfp_t flags)
461 {
462 	struct xhci_container_ctx *ctx;
463 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
464 
465 	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
466 		return NULL;
467 
468 	ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
469 	if (!ctx)
470 		return NULL;
471 
472 	ctx->type = type;
473 	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
474 	if (type == XHCI_CTX_TYPE_INPUT)
475 		ctx->size += CTX_SIZE(xhci->hcc_params);
476 
477 	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
478 	if (!ctx->bytes) {
479 		kfree(ctx);
480 		return NULL;
481 	}
482 	return ctx;
483 }
484 
485 void xhci_free_container_ctx(struct xhci_hcd *xhci,
486 			     struct xhci_container_ctx *ctx)
487 {
488 	if (!ctx)
489 		return;
490 	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
491 	kfree(ctx);
492 }
493 
494 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
495 					      struct xhci_container_ctx *ctx)
496 {
497 	if (ctx->type != XHCI_CTX_TYPE_INPUT)
498 		return NULL;
499 
500 	return (struct xhci_input_control_ctx *)ctx->bytes;
501 }
502 
503 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
504 					struct xhci_container_ctx *ctx)
505 {
506 	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
507 		return (struct xhci_slot_ctx *)ctx->bytes;
508 
509 	return (struct xhci_slot_ctx *)
510 		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
511 }
512 
513 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
514 				    struct xhci_container_ctx *ctx,
515 				    unsigned int ep_index)
516 {
517 	/* increment ep index by offset of start of ep ctx array */
518 	ep_index++;
519 	if (ctx->type == XHCI_CTX_TYPE_INPUT)
520 		ep_index++;
521 
522 	return (struct xhci_ep_ctx *)
523 		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
524 }
525 EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
526 
527 /***************** Streams structures manipulation *************************/
528 
529 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
530 		unsigned int num_stream_ctxs,
531 		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
532 {
533 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
534 	size_t size = array_size(sizeof(struct xhci_stream_ctx), num_stream_ctxs);
535 
536 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
537 		dma_free_coherent(dev, size, stream_ctx, dma);
538 	else if (size > SMALL_STREAM_ARRAY_SIZE)
539 		dma_pool_free(xhci->medium_streams_pool, stream_ctx, dma);
540 	else
541 		dma_pool_free(xhci->small_streams_pool, stream_ctx, dma);
542 }
543 
544 /*
545  * The stream context array for each endpoint with bulk streams enabled can
546  * vary in size, based on:
547  *  - how many streams the endpoint supports,
548  *  - the maximum primary stream array size the host controller supports,
549  *  - and how many streams the device driver asks for.
550  *
551  * The stream context array must be a power of 2, and can be as small as
552  * 64 bytes or as large as 1MB.
553  */
554 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
555 		unsigned int num_stream_ctxs, dma_addr_t *dma,
556 		gfp_t mem_flags)
557 {
558 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
559 	size_t size = array_size(sizeof(struct xhci_stream_ctx), num_stream_ctxs);
560 
561 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
562 		return dma_alloc_coherent(dev, size, dma, mem_flags);
563 	if (size > SMALL_STREAM_ARRAY_SIZE)
564 		return dma_pool_zalloc(xhci->medium_streams_pool, mem_flags, dma);
565 	else
566 		return dma_pool_zalloc(xhci->small_streams_pool, mem_flags, dma);
567 }
568 
569 struct xhci_ring *xhci_dma_to_transfer_ring(
570 		struct xhci_virt_ep *ep,
571 		u64 address)
572 {
573 	if (ep->ep_state & EP_HAS_STREAMS)
574 		return radix_tree_lookup(&ep->stream_info->trb_address_map,
575 				address >> TRB_SEGMENT_SHIFT);
576 	return ep->ring;
577 }
578 
579 /*
580  * Change an endpoint's internal structure so it supports stream IDs.  The
581  * number of requested streams includes stream 0, which cannot be used by device
582  * drivers.
583  *
584  * The number of stream contexts in the stream context array may be bigger than
585  * the number of streams the driver wants to use.  This is because the number of
586  * stream context array entries must be a power of two.
587  */
588 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
589 		unsigned int num_stream_ctxs,
590 		unsigned int num_streams,
591 		unsigned int max_packet, gfp_t mem_flags)
592 {
593 	struct xhci_stream_info *stream_info;
594 	u32 cur_stream;
595 	struct xhci_ring *cur_ring;
596 	u64 addr;
597 	int ret;
598 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
599 
600 	xhci_dbg(xhci, "Allocating %u streams and %u stream context array entries.\n",
601 			num_streams, num_stream_ctxs);
602 	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
603 		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
604 		return NULL;
605 	}
606 	xhci->cmd_ring_reserved_trbs++;
607 
608 	stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
609 			dev_to_node(dev));
610 	if (!stream_info)
611 		goto cleanup_trbs;
612 
613 	stream_info->num_streams = num_streams;
614 	stream_info->num_stream_ctxs = num_stream_ctxs;
615 
616 	/* Initialize the array of virtual pointers to stream rings. */
617 	stream_info->stream_rings = kcalloc_node(
618 			num_streams, sizeof(struct xhci_ring *), mem_flags,
619 			dev_to_node(dev));
620 	if (!stream_info->stream_rings)
621 		goto cleanup_info;
622 
623 	/* Initialize the array of DMA addresses for stream rings for the HW. */
624 	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
625 			num_stream_ctxs, &stream_info->ctx_array_dma,
626 			mem_flags);
627 	if (!stream_info->stream_ctx_array)
628 		goto cleanup_ring_array;
629 
630 	/* Allocate everything needed to free the stream rings later */
631 	stream_info->free_streams_command =
632 		xhci_alloc_command_with_ctx(xhci, true, mem_flags);
633 	if (!stream_info->free_streams_command)
634 		goto cleanup_ctx;
635 
636 	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
637 
638 	/* Allocate rings for all the streams that the driver will use,
639 	 * and add their segment DMA addresses to the radix tree.
640 	 * Stream 0 is reserved.
641 	 */
642 
643 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
644 		stream_info->stream_rings[cur_stream] =
645 			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
646 					mem_flags);
647 		cur_ring = stream_info->stream_rings[cur_stream];
648 		if (!cur_ring)
649 			goto cleanup_rings;
650 		cur_ring->stream_id = cur_stream;
651 		cur_ring->trb_address_map = &stream_info->trb_address_map;
652 		/* Set deq ptr, cycle bit, and stream context type */
653 		addr = cur_ring->first_seg->dma |
654 			SCT_FOR_CTX(SCT_PRI_TR) |
655 			cur_ring->cycle_state;
656 		stream_info->stream_ctx_array[cur_stream].stream_ring =
657 			cpu_to_le64(addr);
658 		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", cur_stream, addr);
659 
660 		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
661 		if (ret) {
662 			xhci_ring_free(xhci, cur_ring);
663 			stream_info->stream_rings[cur_stream] = NULL;
664 			goto cleanup_rings;
665 		}
666 	}
667 	/* Leave the other unused stream ring pointers in the stream context
668 	 * array initialized to zero.  This will cause the xHC to give us an
669 	 * error if the device asks for a stream ID we don't have setup (if it
670 	 * was any other way, the host controller would assume the ring is
671 	 * "empty" and wait forever for data to be queued to that stream ID).
672 	 */
673 
674 	return stream_info;
675 
676 cleanup_rings:
677 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
678 		cur_ring = stream_info->stream_rings[cur_stream];
679 		if (cur_ring) {
680 			xhci_ring_free(xhci, cur_ring);
681 			stream_info->stream_rings[cur_stream] = NULL;
682 		}
683 	}
684 	xhci_free_command(xhci, stream_info->free_streams_command);
685 cleanup_ctx:
686 	xhci_free_stream_ctx(xhci,
687 		stream_info->num_stream_ctxs,
688 		stream_info->stream_ctx_array,
689 		stream_info->ctx_array_dma);
690 cleanup_ring_array:
691 	kfree(stream_info->stream_rings);
692 cleanup_info:
693 	kfree(stream_info);
694 cleanup_trbs:
695 	xhci->cmd_ring_reserved_trbs--;
696 	return NULL;
697 }
698 /*
699  * Sets the MaxPStreams field and the Linear Stream Array field.
700  * Sets the dequeue pointer to the stream context array.
701  */
702 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
703 		struct xhci_ep_ctx *ep_ctx,
704 		struct xhci_stream_info *stream_info)
705 {
706 	u32 max_primary_streams;
707 	/* MaxPStreams is the number of stream context array entries, not the
708 	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
709 	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
710 	 */
711 	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
712 	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
713 			"Setting number of stream ctx array entries to %u",
714 			1 << (max_primary_streams + 1));
715 	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
716 	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
717 				       | EP_HAS_LSA);
718 	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
719 }
720 
721 /*
722  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
723  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
724  * not at the beginning of the ring).
725  */
726 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
727 		struct xhci_virt_ep *ep)
728 {
729 	dma_addr_t addr;
730 	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
731 	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
732 	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
733 }
734 
735 /* Frees all stream contexts associated with the endpoint,
736  *
737  * Caller should fix the endpoint context streams fields.
738  */
739 void xhci_free_stream_info(struct xhci_hcd *xhci,
740 		struct xhci_stream_info *stream_info)
741 {
742 	int cur_stream;
743 	struct xhci_ring *cur_ring;
744 
745 	if (!stream_info)
746 		return;
747 
748 	for (cur_stream = 1; cur_stream < stream_info->num_streams;
749 			cur_stream++) {
750 		cur_ring = stream_info->stream_rings[cur_stream];
751 		if (cur_ring) {
752 			xhci_ring_free(xhci, cur_ring);
753 			stream_info->stream_rings[cur_stream] = NULL;
754 		}
755 	}
756 	xhci_free_command(xhci, stream_info->free_streams_command);
757 	xhci->cmd_ring_reserved_trbs--;
758 	if (stream_info->stream_ctx_array)
759 		xhci_free_stream_ctx(xhci,
760 				stream_info->num_stream_ctxs,
761 				stream_info->stream_ctx_array,
762 				stream_info->ctx_array_dma);
763 
764 	kfree(stream_info->stream_rings);
765 	kfree(stream_info);
766 }
767 
768 
769 /***************** Device context manipulation *************************/
770 
771 static void xhci_free_tt_info(struct xhci_hcd *xhci,
772 		struct xhci_virt_device *virt_dev,
773 		int slot_id)
774 {
775 	struct list_head *tt_list_head;
776 	struct xhci_tt_bw_info *tt_info, *next;
777 	bool slot_found = false;
778 
779 	/* If the device never made it past the Set Address stage,
780 	 * it may not have the root hub port pointer set correctly.
781 	 */
782 	if (!virt_dev->rhub_port) {
783 		xhci_dbg(xhci, "Bad rhub port.\n");
784 		return;
785 	}
786 
787 	tt_list_head = &(xhci->rh_bw[virt_dev->rhub_port->hw_portnum].tts);
788 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
789 		/* Multi-TT hubs will have more than one entry */
790 		if (tt_info->slot_id == slot_id) {
791 			slot_found = true;
792 			list_del(&tt_info->tt_list);
793 			kfree(tt_info);
794 		} else if (slot_found) {
795 			break;
796 		}
797 	}
798 }
799 
800 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
801 		struct xhci_virt_device *virt_dev,
802 		struct usb_device *hdev,
803 		struct usb_tt *tt, gfp_t mem_flags)
804 {
805 	struct xhci_tt_bw_info		*tt_info;
806 	unsigned int			num_ports;
807 	int				i, j;
808 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
809 
810 	if (!tt->multi)
811 		num_ports = 1;
812 	else
813 		num_ports = hdev->maxchild;
814 
815 	for (i = 0; i < num_ports; i++, tt_info++) {
816 		struct xhci_interval_bw_table *bw_table;
817 
818 		tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
819 				dev_to_node(dev));
820 		if (!tt_info)
821 			goto free_tts;
822 		INIT_LIST_HEAD(&tt_info->tt_list);
823 		list_add(&tt_info->tt_list,
824 				&xhci->rh_bw[virt_dev->rhub_port->hw_portnum].tts);
825 		tt_info->slot_id = virt_dev->udev->slot_id;
826 		if (tt->multi)
827 			tt_info->ttport = i+1;
828 		bw_table = &tt_info->bw_table;
829 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
830 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
831 	}
832 	return 0;
833 
834 free_tts:
835 	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
836 	return -ENOMEM;
837 }
838 
839 
840 /* All the xhci_tds in the ring's TD list should be freed at this point.
841  * Should be called with xhci->lock held if there is any chance the TT lists
842  * will be manipulated by the configure endpoint, allocate device, or update
843  * hub functions while this function is removing the TT entries from the list.
844  */
845 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
846 {
847 	struct xhci_virt_device *dev;
848 	int i;
849 	int old_active_eps = 0;
850 
851 	/* Slot ID 0 is reserved */
852 	if (slot_id == 0 || !xhci->devs[slot_id])
853 		return;
854 
855 	dev = xhci->devs[slot_id];
856 
857 	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
858 	if (!dev)
859 		return;
860 
861 	trace_xhci_free_virt_device(dev);
862 
863 	if (dev->tt_info)
864 		old_active_eps = dev->tt_info->active_eps;
865 
866 	for (i = 0; i < 31; i++) {
867 		if (dev->eps[i].ring)
868 			xhci_ring_free(xhci, dev->eps[i].ring);
869 		if (dev->eps[i].stream_info)
870 			xhci_free_stream_info(xhci,
871 					dev->eps[i].stream_info);
872 		/*
873 		 * Endpoints are normally deleted from the bandwidth list when
874 		 * endpoints are dropped, before device is freed.
875 		 * If host is dying or being removed then endpoints aren't
876 		 * dropped cleanly, so delete the endpoint from list here.
877 		 * Only applicable for hosts with software bandwidth checking.
878 		 */
879 
880 		if (!list_empty(&dev->eps[i].bw_endpoint_list)) {
881 			list_del_init(&dev->eps[i].bw_endpoint_list);
882 			xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n",
883 				 slot_id, i);
884 		}
885 	}
886 	/* If this is a hub, free the TT(s) from the TT list */
887 	xhci_free_tt_info(xhci, dev, slot_id);
888 	/* If necessary, update the number of active TTs on this root port */
889 	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
890 
891 	if (dev->in_ctx)
892 		xhci_free_container_ctx(xhci, dev->in_ctx);
893 	if (dev->out_ctx)
894 		xhci_free_container_ctx(xhci, dev->out_ctx);
895 
896 	if (dev->udev && dev->udev->slot_id)
897 		dev->udev->slot_id = 0;
898 	if (dev->rhub_port && dev->rhub_port->slot_id == slot_id)
899 		dev->rhub_port->slot_id = 0;
900 	kfree(xhci->devs[slot_id]);
901 	xhci->devs[slot_id] = NULL;
902 }
903 
904 /*
905  * Free a virt_device structure.
906  * If the virt_device added a tt_info (a hub) and has children pointing to
907  * that tt_info, then free the child first. Recursive.
908  * We can't rely on udev at this point to find child-parent relationships.
909  */
910 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
911 {
912 	struct xhci_virt_device *vdev;
913 	struct list_head *tt_list_head;
914 	struct xhci_tt_bw_info *tt_info, *next;
915 	int i;
916 
917 	vdev = xhci->devs[slot_id];
918 	if (!vdev)
919 		return;
920 
921 	if (!vdev->rhub_port) {
922 		xhci_dbg(xhci, "Bad rhub port.\n");
923 		goto out;
924 	}
925 
926 	tt_list_head = &(xhci->rh_bw[vdev->rhub_port->hw_portnum].tts);
927 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
928 		/* is this a hub device that added a tt_info to the tts list */
929 		if (tt_info->slot_id == slot_id) {
930 			/* are any devices using this tt_info? */
931 			for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
932 				vdev = xhci->devs[i];
933 				if (vdev && (vdev->tt_info == tt_info))
934 					xhci_free_virt_devices_depth_first(
935 						xhci, i);
936 			}
937 		}
938 	}
939 out:
940 	/* we are now at a leaf device */
941 	xhci_debugfs_remove_slot(xhci, slot_id);
942 	xhci_free_virt_device(xhci, slot_id);
943 }
944 
945 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
946 		struct usb_device *udev, gfp_t flags)
947 {
948 	struct xhci_virt_device *dev;
949 	int i;
950 
951 	/* Slot ID 0 is reserved */
952 	if (slot_id == 0 || xhci->devs[slot_id]) {
953 		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
954 		return 0;
955 	}
956 
957 	dev = kzalloc(sizeof(*dev), flags);
958 	if (!dev)
959 		return 0;
960 
961 	dev->slot_id = slot_id;
962 
963 	/* Allocate the (output) device context that will be used in the HC. */
964 	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
965 	if (!dev->out_ctx)
966 		goto fail;
967 
968 	xhci_dbg(xhci, "Slot %d output ctx = 0x%pad (dma)\n", slot_id, &dev->out_ctx->dma);
969 
970 	/* Allocate the (input) device context for address device command */
971 	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
972 	if (!dev->in_ctx)
973 		goto fail;
974 
975 	xhci_dbg(xhci, "Slot %d input ctx = 0x%pad (dma)\n", slot_id, &dev->in_ctx->dma);
976 
977 	/* Initialize the cancellation and bandwidth list for each ep */
978 	for (i = 0; i < 31; i++) {
979 		dev->eps[i].ep_index = i;
980 		dev->eps[i].vdev = dev;
981 		dev->eps[i].xhci = xhci;
982 		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
983 		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
984 	}
985 
986 	/* Allocate endpoint 0 ring */
987 	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
988 	if (!dev->eps[0].ring)
989 		goto fail;
990 
991 	dev->udev = udev;
992 
993 	/* Point to output device context in dcbaa. */
994 	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
995 	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
996 		 slot_id,
997 		 &xhci->dcbaa->dev_context_ptrs[slot_id],
998 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
999 
1000 	trace_xhci_alloc_virt_device(dev);
1001 
1002 	xhci->devs[slot_id] = dev;
1003 
1004 	return 1;
1005 fail:
1006 
1007 	if (dev->in_ctx)
1008 		xhci_free_container_ctx(xhci, dev->in_ctx);
1009 	if (dev->out_ctx)
1010 		xhci_free_container_ctx(xhci, dev->out_ctx);
1011 	kfree(dev);
1012 
1013 	return 0;
1014 }
1015 
1016 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1017 		struct usb_device *udev)
1018 {
1019 	struct xhci_virt_device *virt_dev;
1020 	struct xhci_ep_ctx	*ep0_ctx;
1021 	struct xhci_ring	*ep_ring;
1022 
1023 	virt_dev = xhci->devs[udev->slot_id];
1024 	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1025 	ep_ring = virt_dev->eps[0].ring;
1026 	/*
1027 	 * FIXME we don't keep track of the dequeue pointer very well after a
1028 	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1029 	 * host to our enqueue pointer.  This should only be called after a
1030 	 * configured device has reset, so all control transfers should have
1031 	 * been completed or cancelled before the reset.
1032 	 */
1033 	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1034 							ep_ring->enqueue)
1035 				   | ep_ring->cycle_state);
1036 }
1037 
1038 /*
1039  * The xHCI roothub may have ports of differing speeds in any order in the port
1040  * status registers.
1041  *
1042  * The xHCI hardware wants to know the roothub port that the USB device
1043  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1044  * know is the index of that port under either the USB 2.0 or the USB 3.0
1045  * roothub, but that doesn't give us the real index into the HW port status
1046  * registers.
1047  */
1048 static struct xhci_port *xhci_find_rhub_port(struct xhci_hcd *xhci, struct usb_device *udev)
1049 {
1050 	struct usb_device *top_dev;
1051 	struct xhci_hub *rhub;
1052 	struct usb_hcd *hcd;
1053 
1054 	if (udev->speed >= USB_SPEED_SUPER)
1055 		hcd = xhci_get_usb3_hcd(xhci);
1056 	else
1057 		hcd = xhci->main_hcd;
1058 
1059 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1060 			top_dev = top_dev->parent)
1061 		/* Found device below root hub */;
1062 
1063 	rhub = xhci_get_rhub(hcd);
1064 	return rhub->ports[top_dev->portnum - 1];
1065 }
1066 
1067 /* Setup an xHCI virtual device for a Set Address command */
1068 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1069 {
1070 	struct xhci_virt_device *dev;
1071 	struct xhci_ep_ctx	*ep0_ctx;
1072 	struct xhci_slot_ctx    *slot_ctx;
1073 	u32			max_packets;
1074 
1075 	dev = xhci->devs[udev->slot_id];
1076 	/* Slot ID 0 is reserved */
1077 	if (udev->slot_id == 0 || !dev) {
1078 		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1079 				udev->slot_id);
1080 		return -EINVAL;
1081 	}
1082 	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1083 	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1084 
1085 	/* 3) Only the control endpoint is valid - one endpoint context */
1086 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1087 	switch (udev->speed) {
1088 	case USB_SPEED_SUPER_PLUS:
1089 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1090 		max_packets = MAX_PACKET(512);
1091 		break;
1092 	case USB_SPEED_SUPER:
1093 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1094 		max_packets = MAX_PACKET(512);
1095 		break;
1096 	case USB_SPEED_HIGH:
1097 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1098 		max_packets = MAX_PACKET(64);
1099 		break;
1100 	/* USB core guesses at a 64-byte max packet first for FS devices */
1101 	case USB_SPEED_FULL:
1102 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1103 		max_packets = MAX_PACKET(64);
1104 		break;
1105 	case USB_SPEED_LOW:
1106 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1107 		max_packets = MAX_PACKET(8);
1108 		break;
1109 	default:
1110 		/* Speed was set earlier, this shouldn't happen. */
1111 		return -EINVAL;
1112 	}
1113 	/* Find the root hub port this device is under */
1114 	dev->rhub_port = xhci_find_rhub_port(xhci, udev);
1115 	if (!dev->rhub_port)
1116 		return -EINVAL;
1117 	/* Slot ID is set to the device directly below the root hub */
1118 	if (!udev->parent->parent)
1119 		dev->rhub_port->slot_id = udev->slot_id;
1120 	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(dev->rhub_port->hw_portnum + 1));
1121 	xhci_dbg(xhci, "Slot ID %d: HW portnum %d, hcd portnum %d\n",
1122 		 udev->slot_id, dev->rhub_port->hw_portnum, dev->rhub_port->hcd_portnum);
1123 
1124 	/* Find the right bandwidth table that this device will be a part of.
1125 	 * If this is a full speed device attached directly to a root port (or a
1126 	 * decendent of one), it counts as a primary bandwidth domain, not a
1127 	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1128 	 * will never be created for the HS root hub.
1129 	 */
1130 	if (!udev->tt || !udev->tt->hub->parent) {
1131 		dev->bw_table = &xhci->rh_bw[dev->rhub_port->hw_portnum].bw_table;
1132 	} else {
1133 		struct xhci_root_port_bw_info *rh_bw;
1134 		struct xhci_tt_bw_info *tt_bw;
1135 
1136 		rh_bw = &xhci->rh_bw[dev->rhub_port->hw_portnum];
1137 		/* Find the right TT. */
1138 		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1139 			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1140 				continue;
1141 
1142 			if (!dev->udev->tt->multi ||
1143 					(udev->tt->multi &&
1144 					 tt_bw->ttport == dev->udev->ttport)) {
1145 				dev->bw_table = &tt_bw->bw_table;
1146 				dev->tt_info = tt_bw;
1147 				break;
1148 			}
1149 		}
1150 		if (!dev->tt_info)
1151 			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1152 	}
1153 
1154 	/* Is this a LS/FS device under an external HS hub? */
1155 	if (udev->tt && udev->tt->hub->parent) {
1156 		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1157 						(udev->ttport << 8));
1158 		if (udev->tt->multi)
1159 			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1160 	}
1161 	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1162 	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1163 
1164 	/* Step 4 - ring already allocated */
1165 	/* Step 5 */
1166 	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1167 
1168 	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1169 	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1170 					 max_packets);
1171 
1172 	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1173 				   dev->eps[0].ring->cycle_state);
1174 
1175 	trace_xhci_setup_addressable_virt_device(dev);
1176 
1177 	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1178 
1179 	return 0;
1180 }
1181 
1182 /*
1183  * Convert interval expressed as 2^(bInterval - 1) == interval into
1184  * straight exponent value 2^n == interval.
1185  *
1186  */
1187 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1188 		struct usb_host_endpoint *ep)
1189 {
1190 	unsigned int interval;
1191 
1192 	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1193 	if (interval != ep->desc.bInterval - 1)
1194 		dev_warn(&udev->dev,
1195 			 "ep %#x - rounding interval to %d %sframes\n",
1196 			 ep->desc.bEndpointAddress,
1197 			 1 << interval,
1198 			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1199 
1200 	if (udev->speed == USB_SPEED_FULL) {
1201 		/*
1202 		 * Full speed isoc endpoints specify interval in frames,
1203 		 * not microframes. We are using microframes everywhere,
1204 		 * so adjust accordingly.
1205 		 */
1206 		interval += 3;	/* 1 frame = 2^3 uframes */
1207 	}
1208 
1209 	return interval;
1210 }
1211 
1212 /*
1213  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1214  * microframes, rounded down to nearest power of 2.
1215  */
1216 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1217 		struct usb_host_endpoint *ep, unsigned int desc_interval,
1218 		unsigned int min_exponent, unsigned int max_exponent)
1219 {
1220 	unsigned int interval;
1221 
1222 	interval = fls(desc_interval) - 1;
1223 	interval = clamp_val(interval, min_exponent, max_exponent);
1224 	if ((1 << interval) != desc_interval)
1225 		dev_dbg(&udev->dev,
1226 			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1227 			 ep->desc.bEndpointAddress,
1228 			 1 << interval,
1229 			 desc_interval);
1230 
1231 	return interval;
1232 }
1233 
1234 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1235 		struct usb_host_endpoint *ep)
1236 {
1237 	if (ep->desc.bInterval == 0)
1238 		return 0;
1239 	return xhci_microframes_to_exponent(udev, ep,
1240 			ep->desc.bInterval, 0, 15);
1241 }
1242 
1243 
1244 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1245 		struct usb_host_endpoint *ep)
1246 {
1247 	return xhci_microframes_to_exponent(udev, ep,
1248 			ep->desc.bInterval * 8, 3, 10);
1249 }
1250 
1251 /* Return the polling or NAK interval.
1252  *
1253  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1254  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1255  *
1256  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1257  * is set to 0.
1258  */
1259 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1260 		struct usb_host_endpoint *ep)
1261 {
1262 	unsigned int interval = 0;
1263 
1264 	switch (udev->speed) {
1265 	case USB_SPEED_HIGH:
1266 		/* Max NAK rate */
1267 		if (usb_endpoint_xfer_control(&ep->desc) ||
1268 		    usb_endpoint_xfer_bulk(&ep->desc)) {
1269 			interval = xhci_parse_microframe_interval(udev, ep);
1270 			break;
1271 		}
1272 		fallthrough;	/* SS and HS isoc/int have same decoding */
1273 
1274 	case USB_SPEED_SUPER_PLUS:
1275 	case USB_SPEED_SUPER:
1276 		if (usb_endpoint_xfer_int(&ep->desc) ||
1277 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1278 			interval = xhci_parse_exponent_interval(udev, ep);
1279 		}
1280 		break;
1281 
1282 	case USB_SPEED_FULL:
1283 		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1284 			interval = xhci_parse_exponent_interval(udev, ep);
1285 			break;
1286 		}
1287 		/*
1288 		 * Fall through for interrupt endpoint interval decoding
1289 		 * since it uses the same rules as low speed interrupt
1290 		 * endpoints.
1291 		 */
1292 		fallthrough;
1293 
1294 	case USB_SPEED_LOW:
1295 		if (usb_endpoint_xfer_int(&ep->desc) ||
1296 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1297 
1298 			interval = xhci_parse_frame_interval(udev, ep);
1299 		}
1300 		break;
1301 
1302 	default:
1303 		BUG();
1304 	}
1305 	return interval;
1306 }
1307 
1308 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1309  * High speed endpoint descriptors can define "the number of additional
1310  * transaction opportunities per microframe", but that goes in the Max Burst
1311  * endpoint context field.
1312  */
1313 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1314 		struct usb_host_endpoint *ep)
1315 {
1316 	if (udev->speed < USB_SPEED_SUPER ||
1317 			!usb_endpoint_xfer_isoc(&ep->desc))
1318 		return 0;
1319 	return ep->ss_ep_comp.bmAttributes;
1320 }
1321 
1322 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1323 				       struct usb_host_endpoint *ep)
1324 {
1325 	/* Super speed and Plus have max burst in ep companion desc */
1326 	if (udev->speed >= USB_SPEED_SUPER)
1327 		return ep->ss_ep_comp.bMaxBurst;
1328 
1329 	if (udev->speed == USB_SPEED_HIGH &&
1330 	    (usb_endpoint_xfer_isoc(&ep->desc) ||
1331 	     usb_endpoint_xfer_int(&ep->desc)))
1332 		return usb_endpoint_maxp_mult(&ep->desc) - 1;
1333 
1334 	return 0;
1335 }
1336 
1337 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1338 {
1339 	int in;
1340 
1341 	in = usb_endpoint_dir_in(&ep->desc);
1342 
1343 	switch (usb_endpoint_type(&ep->desc)) {
1344 	case USB_ENDPOINT_XFER_CONTROL:
1345 		return CTRL_EP;
1346 	case USB_ENDPOINT_XFER_BULK:
1347 		return in ? BULK_IN_EP : BULK_OUT_EP;
1348 	case USB_ENDPOINT_XFER_ISOC:
1349 		return in ? ISOC_IN_EP : ISOC_OUT_EP;
1350 	case USB_ENDPOINT_XFER_INT:
1351 		return in ? INT_IN_EP : INT_OUT_EP;
1352 	}
1353 	return 0;
1354 }
1355 
1356 /* Return the maximum endpoint service interval time (ESIT) payload.
1357  * Basically, this is the maxpacket size, multiplied by the burst size
1358  * and mult size.
1359  */
1360 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1361 		struct usb_host_endpoint *ep)
1362 {
1363 	int max_burst;
1364 	int max_packet;
1365 
1366 	/* Only applies for interrupt or isochronous endpoints */
1367 	if (usb_endpoint_xfer_control(&ep->desc) ||
1368 			usb_endpoint_xfer_bulk(&ep->desc))
1369 		return 0;
1370 
1371 	/* SuperSpeedPlus Isoc ep sending over 48k per esit */
1372 	if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1373 	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1374 		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1375 
1376 	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1377 	if (udev->speed >= USB_SPEED_SUPER)
1378 		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1379 
1380 	max_packet = usb_endpoint_maxp(&ep->desc);
1381 	max_burst = usb_endpoint_maxp_mult(&ep->desc);
1382 	/* A 0 in max burst means 1 transfer per ESIT */
1383 	return max_packet * max_burst;
1384 }
1385 
1386 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1387  * Drivers will have to call usb_alloc_streams() to do that.
1388  */
1389 int xhci_endpoint_init(struct xhci_hcd *xhci,
1390 		struct xhci_virt_device *virt_dev,
1391 		struct usb_device *udev,
1392 		struct usb_host_endpoint *ep,
1393 		gfp_t mem_flags)
1394 {
1395 	unsigned int ep_index;
1396 	struct xhci_ep_ctx *ep_ctx;
1397 	struct xhci_ring *ep_ring;
1398 	unsigned int max_packet;
1399 	enum xhci_ring_type ring_type;
1400 	u32 max_esit_payload;
1401 	u32 endpoint_type;
1402 	unsigned int max_burst;
1403 	unsigned int interval;
1404 	unsigned int mult;
1405 	unsigned int avg_trb_len;
1406 	unsigned int err_count = 0;
1407 
1408 	ep_index = xhci_get_endpoint_index(&ep->desc);
1409 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1410 
1411 	endpoint_type = xhci_get_endpoint_type(ep);
1412 	if (!endpoint_type)
1413 		return -EINVAL;
1414 
1415 	ring_type = usb_endpoint_type(&ep->desc);
1416 
1417 	/*
1418 	 * Get values to fill the endpoint context, mostly from ep descriptor.
1419 	 * The average TRB buffer lengt for bulk endpoints is unclear as we
1420 	 * have no clue on scatter gather list entry size. For Isoc and Int,
1421 	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1422 	 */
1423 	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1424 	interval = xhci_get_endpoint_interval(udev, ep);
1425 
1426 	/* Periodic endpoint bInterval limit quirk */
1427 	if (usb_endpoint_xfer_int(&ep->desc) ||
1428 	    usb_endpoint_xfer_isoc(&ep->desc)) {
1429 		if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1430 		    udev->speed >= USB_SPEED_HIGH &&
1431 		    interval >= 7) {
1432 			interval = 6;
1433 		}
1434 	}
1435 
1436 	mult = xhci_get_endpoint_mult(udev, ep);
1437 	max_packet = usb_endpoint_maxp(&ep->desc);
1438 	max_burst = xhci_get_endpoint_max_burst(udev, ep);
1439 	avg_trb_len = max_esit_payload;
1440 
1441 	/* FIXME dig Mult and streams info out of ep companion desc */
1442 
1443 	/* Allow 3 retries for everything but isoc, set CErr = 3 */
1444 	if (!usb_endpoint_xfer_isoc(&ep->desc))
1445 		err_count = 3;
1446 	/* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1447 	if (usb_endpoint_xfer_bulk(&ep->desc)) {
1448 		if (udev->speed == USB_SPEED_HIGH)
1449 			max_packet = 512;
1450 		if (udev->speed == USB_SPEED_FULL) {
1451 			max_packet = rounddown_pow_of_two(max_packet);
1452 			max_packet = clamp_val(max_packet, 8, 64);
1453 		}
1454 	}
1455 	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1456 	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1457 		avg_trb_len = 8;
1458 	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1459 	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1460 		mult = 0;
1461 
1462 	/* Set up the endpoint ring */
1463 	virt_dev->eps[ep_index].new_ring =
1464 		xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1465 	if (!virt_dev->eps[ep_index].new_ring)
1466 		return -ENOMEM;
1467 
1468 	virt_dev->eps[ep_index].skip = false;
1469 	ep_ring = virt_dev->eps[ep_index].new_ring;
1470 
1471 	/* Fill the endpoint context */
1472 	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1473 				      EP_INTERVAL(interval) |
1474 				      EP_MULT(mult));
1475 	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1476 				       MAX_PACKET(max_packet) |
1477 				       MAX_BURST(max_burst) |
1478 				       ERROR_COUNT(err_count));
1479 	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1480 				  ep_ring->cycle_state);
1481 
1482 	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1483 				      EP_AVG_TRB_LENGTH(avg_trb_len));
1484 
1485 	return 0;
1486 }
1487 
1488 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1489 		struct xhci_virt_device *virt_dev,
1490 		struct usb_host_endpoint *ep)
1491 {
1492 	unsigned int ep_index;
1493 	struct xhci_ep_ctx *ep_ctx;
1494 
1495 	ep_index = xhci_get_endpoint_index(&ep->desc);
1496 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1497 
1498 	ep_ctx->ep_info = 0;
1499 	ep_ctx->ep_info2 = 0;
1500 	ep_ctx->deq = 0;
1501 	ep_ctx->tx_info = 0;
1502 	/* Don't free the endpoint ring until the set interface or configuration
1503 	 * request succeeds.
1504 	 */
1505 }
1506 
1507 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1508 {
1509 	bw_info->ep_interval = 0;
1510 	bw_info->mult = 0;
1511 	bw_info->num_packets = 0;
1512 	bw_info->max_packet_size = 0;
1513 	bw_info->type = 0;
1514 	bw_info->max_esit_payload = 0;
1515 }
1516 
1517 void xhci_update_bw_info(struct xhci_hcd *xhci,
1518 		struct xhci_container_ctx *in_ctx,
1519 		struct xhci_input_control_ctx *ctrl_ctx,
1520 		struct xhci_virt_device *virt_dev)
1521 {
1522 	struct xhci_bw_info *bw_info;
1523 	struct xhci_ep_ctx *ep_ctx;
1524 	unsigned int ep_type;
1525 	int i;
1526 
1527 	for (i = 1; i < 31; i++) {
1528 		bw_info = &virt_dev->eps[i].bw_info;
1529 
1530 		/* We can't tell what endpoint type is being dropped, but
1531 		 * unconditionally clearing the bandwidth info for non-periodic
1532 		 * endpoints should be harmless because the info will never be
1533 		 * set in the first place.
1534 		 */
1535 		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1536 			/* Dropped endpoint */
1537 			xhci_clear_endpoint_bw_info(bw_info);
1538 			continue;
1539 		}
1540 
1541 		if (EP_IS_ADDED(ctrl_ctx, i)) {
1542 			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1543 			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1544 
1545 			/* Ignore non-periodic endpoints */
1546 			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1547 					ep_type != ISOC_IN_EP &&
1548 					ep_type != INT_IN_EP)
1549 				continue;
1550 
1551 			/* Added or changed endpoint */
1552 			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1553 					le32_to_cpu(ep_ctx->ep_info));
1554 			/* Number of packets and mult are zero-based in the
1555 			 * input context, but we want one-based for the
1556 			 * interval table.
1557 			 */
1558 			bw_info->mult = CTX_TO_EP_MULT(
1559 					le32_to_cpu(ep_ctx->ep_info)) + 1;
1560 			bw_info->num_packets = CTX_TO_MAX_BURST(
1561 					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1562 			bw_info->max_packet_size = MAX_PACKET_DECODED(
1563 					le32_to_cpu(ep_ctx->ep_info2));
1564 			bw_info->type = ep_type;
1565 			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1566 					le32_to_cpu(ep_ctx->tx_info));
1567 		}
1568 	}
1569 }
1570 
1571 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1572  * Useful when you want to change one particular aspect of the endpoint and then
1573  * issue a configure endpoint command.
1574  */
1575 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1576 		struct xhci_container_ctx *in_ctx,
1577 		struct xhci_container_ctx *out_ctx,
1578 		unsigned int ep_index)
1579 {
1580 	struct xhci_ep_ctx *out_ep_ctx;
1581 	struct xhci_ep_ctx *in_ep_ctx;
1582 
1583 	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1584 	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1585 
1586 	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1587 	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1588 	in_ep_ctx->deq = out_ep_ctx->deq;
1589 	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1590 	if (xhci->quirks & XHCI_MTK_HOST) {
1591 		in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1592 		in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1593 	}
1594 }
1595 
1596 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1597  * Useful when you want to change one particular aspect of the endpoint and then
1598  * issue a configure endpoint command.  Only the context entries field matters,
1599  * but we'll copy the whole thing anyway.
1600  */
1601 void xhci_slot_copy(struct xhci_hcd *xhci,
1602 		struct xhci_container_ctx *in_ctx,
1603 		struct xhci_container_ctx *out_ctx)
1604 {
1605 	struct xhci_slot_ctx *in_slot_ctx;
1606 	struct xhci_slot_ctx *out_slot_ctx;
1607 
1608 	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1609 	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1610 
1611 	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1612 	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1613 	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1614 	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1615 }
1616 
1617 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1618 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1619 {
1620 	int i;
1621 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1622 	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1623 
1624 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1625 			"Allocating %d scratchpad buffers", num_sp);
1626 
1627 	if (!num_sp)
1628 		return 0;
1629 
1630 	xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1631 				dev_to_node(dev));
1632 	if (!xhci->scratchpad)
1633 		goto fail_sp;
1634 
1635 	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1636 				     array_size(sizeof(u64), num_sp),
1637 				     &xhci->scratchpad->sp_dma, flags);
1638 	if (!xhci->scratchpad->sp_array)
1639 		goto fail_sp2;
1640 
1641 	xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1642 					flags, dev_to_node(dev));
1643 	if (!xhci->scratchpad->sp_buffers)
1644 		goto fail_sp3;
1645 
1646 	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1647 	for (i = 0; i < num_sp; i++) {
1648 		dma_addr_t dma;
1649 		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1650 					       flags);
1651 		if (!buf)
1652 			goto fail_sp4;
1653 
1654 		xhci->scratchpad->sp_array[i] = dma;
1655 		xhci->scratchpad->sp_buffers[i] = buf;
1656 	}
1657 
1658 	return 0;
1659 
1660  fail_sp4:
1661 	while (i--)
1662 		dma_free_coherent(dev, xhci->page_size,
1663 				    xhci->scratchpad->sp_buffers[i],
1664 				    xhci->scratchpad->sp_array[i]);
1665 
1666 	kfree(xhci->scratchpad->sp_buffers);
1667 
1668  fail_sp3:
1669 	dma_free_coherent(dev, array_size(sizeof(u64), num_sp),
1670 			    xhci->scratchpad->sp_array,
1671 			    xhci->scratchpad->sp_dma);
1672 
1673  fail_sp2:
1674 	kfree(xhci->scratchpad);
1675 	xhci->scratchpad = NULL;
1676 
1677  fail_sp:
1678 	return -ENOMEM;
1679 }
1680 
1681 static void scratchpad_free(struct xhci_hcd *xhci)
1682 {
1683 	int num_sp;
1684 	int i;
1685 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1686 
1687 	if (!xhci->scratchpad)
1688 		return;
1689 
1690 	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1691 
1692 	for (i = 0; i < num_sp; i++) {
1693 		dma_free_coherent(dev, xhci->page_size,
1694 				    xhci->scratchpad->sp_buffers[i],
1695 				    xhci->scratchpad->sp_array[i]);
1696 	}
1697 	kfree(xhci->scratchpad->sp_buffers);
1698 	dma_free_coherent(dev, array_size(sizeof(u64), num_sp),
1699 			    xhci->scratchpad->sp_array,
1700 			    xhci->scratchpad->sp_dma);
1701 	kfree(xhci->scratchpad);
1702 	xhci->scratchpad = NULL;
1703 }
1704 
1705 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1706 		bool allocate_completion, gfp_t mem_flags)
1707 {
1708 	struct xhci_command *command;
1709 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1710 
1711 	command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1712 	if (!command)
1713 		return NULL;
1714 
1715 	if (allocate_completion) {
1716 		command->completion =
1717 			kzalloc_node(sizeof(struct completion), mem_flags,
1718 				dev_to_node(dev));
1719 		if (!command->completion) {
1720 			kfree(command);
1721 			return NULL;
1722 		}
1723 		init_completion(command->completion);
1724 	}
1725 
1726 	command->status = 0;
1727 	/* set default timeout to 5000 ms */
1728 	command->timeout_ms = XHCI_CMD_DEFAULT_TIMEOUT;
1729 	INIT_LIST_HEAD(&command->cmd_list);
1730 	return command;
1731 }
1732 
1733 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1734 		bool allocate_completion, gfp_t mem_flags)
1735 {
1736 	struct xhci_command *command;
1737 
1738 	command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1739 	if (!command)
1740 		return NULL;
1741 
1742 	command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1743 						   mem_flags);
1744 	if (!command->in_ctx) {
1745 		kfree(command->completion);
1746 		kfree(command);
1747 		return NULL;
1748 	}
1749 	return command;
1750 }
1751 
1752 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1753 {
1754 	kfree(urb_priv);
1755 }
1756 
1757 void xhci_free_command(struct xhci_hcd *xhci,
1758 		struct xhci_command *command)
1759 {
1760 	xhci_free_container_ctx(xhci,
1761 			command->in_ctx);
1762 	kfree(command->completion);
1763 	kfree(command);
1764 }
1765 
1766 static int xhci_alloc_erst(struct xhci_hcd *xhci,
1767 		    struct xhci_ring *evt_ring,
1768 		    struct xhci_erst *erst,
1769 		    gfp_t flags)
1770 {
1771 	size_t size;
1772 	unsigned int val;
1773 	struct xhci_segment *seg;
1774 	struct xhci_erst_entry *entry;
1775 
1776 	size = array_size(sizeof(struct xhci_erst_entry), evt_ring->num_segs);
1777 	erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1778 					   size, &erst->erst_dma_addr, flags);
1779 	if (!erst->entries)
1780 		return -ENOMEM;
1781 
1782 	erst->num_entries = evt_ring->num_segs;
1783 
1784 	seg = evt_ring->first_seg;
1785 	for (val = 0; val < evt_ring->num_segs; val++) {
1786 		entry = &erst->entries[val];
1787 		entry->seg_addr = cpu_to_le64(seg->dma);
1788 		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1789 		entry->rsvd = 0;
1790 		seg = seg->next;
1791 	}
1792 
1793 	return 0;
1794 }
1795 
1796 static void
1797 xhci_remove_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1798 {
1799 	u32 tmp;
1800 
1801 	if (!ir)
1802 		return;
1803 
1804 	/*
1805 	 * Clean out interrupter registers except ERSTBA. Clearing either the
1806 	 * low or high 32 bits of ERSTBA immediately causes the controller to
1807 	 * dereference the partially cleared 64 bit address, causing IOMMU error.
1808 	 */
1809 	if (ir->ir_set) {
1810 		tmp = readl(&ir->ir_set->erst_size);
1811 		tmp &= ERST_SIZE_MASK;
1812 		writel(tmp, &ir->ir_set->erst_size);
1813 
1814 		xhci_write_64(xhci, ERST_EHB, &ir->ir_set->erst_dequeue);
1815 	}
1816 }
1817 
1818 static void
1819 xhci_free_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1820 {
1821 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1822 	size_t erst_size;
1823 
1824 	if (!ir)
1825 		return;
1826 
1827 	erst_size = array_size(sizeof(struct xhci_erst_entry), ir->erst.num_entries);
1828 	if (ir->erst.entries)
1829 		dma_free_coherent(dev, erst_size,
1830 				  ir->erst.entries,
1831 				  ir->erst.erst_dma_addr);
1832 	ir->erst.entries = NULL;
1833 
1834 	/* free interrupter event ring */
1835 	if (ir->event_ring)
1836 		xhci_ring_free(xhci, ir->event_ring);
1837 
1838 	ir->event_ring = NULL;
1839 
1840 	kfree(ir);
1841 }
1842 
1843 void xhci_remove_secondary_interrupter(struct usb_hcd *hcd, struct xhci_interrupter *ir)
1844 {
1845 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1846 	unsigned int intr_num;
1847 
1848 	spin_lock_irq(&xhci->lock);
1849 
1850 	/* interrupter 0 is primary interrupter, don't touch it */
1851 	if (!ir || !ir->intr_num || ir->intr_num >= xhci->max_interrupters) {
1852 		xhci_dbg(xhci, "Invalid secondary interrupter, can't remove\n");
1853 		spin_unlock_irq(&xhci->lock);
1854 		return;
1855 	}
1856 
1857 	intr_num = ir->intr_num;
1858 
1859 	xhci_remove_interrupter(xhci, ir);
1860 	xhci->interrupters[intr_num] = NULL;
1861 
1862 	spin_unlock_irq(&xhci->lock);
1863 
1864 	xhci_free_interrupter(xhci, ir);
1865 }
1866 EXPORT_SYMBOL_GPL(xhci_remove_secondary_interrupter);
1867 
1868 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1869 {
1870 	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
1871 	int i, j, num_ports;
1872 
1873 	cancel_delayed_work_sync(&xhci->cmd_timer);
1874 
1875 	for (i = 0; xhci->interrupters && i < xhci->max_interrupters; i++) {
1876 		if (xhci->interrupters[i]) {
1877 			xhci_remove_interrupter(xhci, xhci->interrupters[i]);
1878 			xhci_free_interrupter(xhci, xhci->interrupters[i]);
1879 			xhci->interrupters[i] = NULL;
1880 		}
1881 	}
1882 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed interrupters");
1883 
1884 	if (xhci->cmd_ring)
1885 		xhci_ring_free(xhci, xhci->cmd_ring);
1886 	xhci->cmd_ring = NULL;
1887 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1888 	xhci_cleanup_command_queue(xhci);
1889 
1890 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1891 	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1892 		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1893 		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1894 			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1895 			while (!list_empty(ep))
1896 				list_del_init(ep->next);
1897 		}
1898 	}
1899 
1900 	for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1901 		xhci_free_virt_devices_depth_first(xhci, i);
1902 
1903 	dma_pool_destroy(xhci->segment_pool);
1904 	xhci->segment_pool = NULL;
1905 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1906 
1907 	dma_pool_destroy(xhci->device_pool);
1908 	xhci->device_pool = NULL;
1909 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1910 
1911 	dma_pool_destroy(xhci->small_streams_pool);
1912 	xhci->small_streams_pool = NULL;
1913 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1914 			"Freed small stream array pool");
1915 
1916 	dma_pool_destroy(xhci->medium_streams_pool);
1917 	xhci->medium_streams_pool = NULL;
1918 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1919 			"Freed medium stream array pool");
1920 
1921 	if (xhci->dcbaa)
1922 		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1923 				xhci->dcbaa, xhci->dcbaa->dma);
1924 	xhci->dcbaa = NULL;
1925 
1926 	scratchpad_free(xhci);
1927 
1928 	if (!xhci->rh_bw)
1929 		goto no_bw;
1930 
1931 	for (i = 0; i < num_ports; i++) {
1932 		struct xhci_tt_bw_info *tt, *n;
1933 		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1934 			list_del(&tt->tt_list);
1935 			kfree(tt);
1936 		}
1937 	}
1938 
1939 no_bw:
1940 	xhci->cmd_ring_reserved_trbs = 0;
1941 	xhci->usb2_rhub.num_ports = 0;
1942 	xhci->usb3_rhub.num_ports = 0;
1943 	xhci->num_active_eps = 0;
1944 	kfree(xhci->usb2_rhub.ports);
1945 	kfree(xhci->usb3_rhub.ports);
1946 	kfree(xhci->hw_ports);
1947 	kfree(xhci->rh_bw);
1948 	for (i = 0; i < xhci->num_port_caps; i++)
1949 		kfree(xhci->port_caps[i].psi);
1950 	kfree(xhci->port_caps);
1951 	kfree(xhci->interrupters);
1952 	xhci->num_port_caps = 0;
1953 
1954 	xhci->usb2_rhub.ports = NULL;
1955 	xhci->usb3_rhub.ports = NULL;
1956 	xhci->hw_ports = NULL;
1957 	xhci->rh_bw = NULL;
1958 	xhci->port_caps = NULL;
1959 	xhci->interrupters = NULL;
1960 
1961 	xhci->page_size = 0;
1962 	xhci->page_shift = 0;
1963 	xhci->usb2_rhub.bus_state.bus_suspended = 0;
1964 	xhci->usb3_rhub.bus_state.bus_suspended = 0;
1965 }
1966 
1967 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1968 {
1969 	dma_addr_t deq;
1970 
1971 	deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg,
1972 			ir->event_ring->dequeue);
1973 	if (!deq)
1974 		xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr.\n");
1975 	/* Update HC event ring dequeue pointer */
1976 	/* Don't clear the EHB bit (which is RW1C) because
1977 	 * there might be more events to service.
1978 	 */
1979 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1980 		       "// Write event ring dequeue pointer, preserving EHB bit");
1981 	xhci_write_64(xhci, deq & ERST_PTR_MASK, &ir->ir_set->erst_dequeue);
1982 }
1983 
1984 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1985 		__le32 __iomem *addr, int max_caps)
1986 {
1987 	u32 temp, port_offset, port_count;
1988 	int i;
1989 	u8 major_revision, minor_revision, tmp_minor_revision;
1990 	struct xhci_hub *rhub;
1991 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1992 	struct xhci_port_cap *port_cap;
1993 
1994 	temp = readl(addr);
1995 	major_revision = XHCI_EXT_PORT_MAJOR(temp);
1996 	minor_revision = XHCI_EXT_PORT_MINOR(temp);
1997 
1998 	if (major_revision == 0x03) {
1999 		rhub = &xhci->usb3_rhub;
2000 		/*
2001 		 * Some hosts incorrectly use sub-minor version for minor
2002 		 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
2003 		 * for bcdUSB 0x310). Since there is no USB release with sub
2004 		 * minor version 0x301 to 0x309, we can assume that they are
2005 		 * incorrect and fix it here.
2006 		 */
2007 		if (minor_revision > 0x00 && minor_revision < 0x10)
2008 			minor_revision <<= 4;
2009 		/*
2010 		 * Some zhaoxin's xHCI controller that follow usb3.1 spec
2011 		 * but only support Gen1.
2012 		 */
2013 		if (xhci->quirks & XHCI_ZHAOXIN_HOST) {
2014 			tmp_minor_revision = minor_revision;
2015 			minor_revision = 0;
2016 		}
2017 
2018 	} else if (major_revision <= 0x02) {
2019 		rhub = &xhci->usb2_rhub;
2020 	} else {
2021 		xhci_warn(xhci, "Ignoring unknown port speed, Ext Cap %p, revision = 0x%x\n",
2022 				addr, major_revision);
2023 		/* Ignoring port protocol we can't understand. FIXME */
2024 		return;
2025 	}
2026 
2027 	/* Port offset and count in the third dword, see section 7.2 */
2028 	temp = readl(addr + 2);
2029 	port_offset = XHCI_EXT_PORT_OFF(temp);
2030 	port_count = XHCI_EXT_PORT_COUNT(temp);
2031 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2032 		       "Ext Cap %p, port offset = %u, count = %u, revision = 0x%x",
2033 		       addr, port_offset, port_count, major_revision);
2034 	/* Port count includes the current port offset */
2035 	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2036 		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2037 		return;
2038 
2039 	port_cap = &xhci->port_caps[xhci->num_port_caps++];
2040 	if (xhci->num_port_caps > max_caps)
2041 		return;
2042 
2043 	port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2044 
2045 	if (port_cap->psi_count) {
2046 		port_cap->psi = kcalloc_node(port_cap->psi_count,
2047 					     sizeof(*port_cap->psi),
2048 					     GFP_KERNEL, dev_to_node(dev));
2049 		if (!port_cap->psi)
2050 			port_cap->psi_count = 0;
2051 
2052 		port_cap->psi_uid_count++;
2053 		for (i = 0; i < port_cap->psi_count; i++) {
2054 			port_cap->psi[i] = readl(addr + 4 + i);
2055 
2056 			/* count unique ID values, two consecutive entries can
2057 			 * have the same ID if link is assymetric
2058 			 */
2059 			if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2060 				  XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2061 				port_cap->psi_uid_count++;
2062 
2063 			if (xhci->quirks & XHCI_ZHAOXIN_HOST &&
2064 			    major_revision == 0x03 &&
2065 			    XHCI_EXT_PORT_PSIV(port_cap->psi[i]) >= 5)
2066 				minor_revision = tmp_minor_revision;
2067 
2068 			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2069 				  XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2070 				  XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2071 				  XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2072 				  XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2073 				  XHCI_EXT_PORT_LP(port_cap->psi[i]),
2074 				  XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2075 		}
2076 	}
2077 
2078 	rhub->maj_rev = major_revision;
2079 
2080 	if (rhub->min_rev < minor_revision)
2081 		rhub->min_rev = minor_revision;
2082 
2083 	port_cap->maj_rev = major_revision;
2084 	port_cap->min_rev = minor_revision;
2085 	port_cap->protocol_caps = temp;
2086 
2087 	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2088 		 (temp & XHCI_HLC)) {
2089 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2090 			       "xHCI 1.0: support USB2 hardware lpm");
2091 		xhci->hw_lpm_support = 1;
2092 	}
2093 
2094 	port_offset--;
2095 	for (i = port_offset; i < (port_offset + port_count); i++) {
2096 		struct xhci_port *hw_port = &xhci->hw_ports[i];
2097 		/* Duplicate entry.  Ignore the port if the revisions differ. */
2098 		if (hw_port->rhub) {
2099 			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p, port %u\n", addr, i);
2100 			xhci_warn(xhci, "Port was marked as USB %u, duplicated as USB %u\n",
2101 					hw_port->rhub->maj_rev, major_revision);
2102 			/* Only adjust the roothub port counts if we haven't
2103 			 * found a similar duplicate.
2104 			 */
2105 			if (hw_port->rhub != rhub &&
2106 				 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2107 				hw_port->rhub->num_ports--;
2108 				hw_port->hcd_portnum = DUPLICATE_ENTRY;
2109 			}
2110 			continue;
2111 		}
2112 		hw_port->rhub = rhub;
2113 		hw_port->port_cap = port_cap;
2114 		rhub->num_ports++;
2115 	}
2116 	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2117 }
2118 
2119 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2120 					struct xhci_hub *rhub, gfp_t flags)
2121 {
2122 	int port_index = 0;
2123 	int i;
2124 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2125 
2126 	if (!rhub->num_ports)
2127 		return;
2128 	rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2129 			flags, dev_to_node(dev));
2130 	if (!rhub->ports)
2131 		return;
2132 
2133 	for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2134 		if (xhci->hw_ports[i].rhub != rhub ||
2135 		    xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2136 			continue;
2137 		xhci->hw_ports[i].hcd_portnum = port_index;
2138 		rhub->ports[port_index] = &xhci->hw_ports[i];
2139 		port_index++;
2140 		if (port_index == rhub->num_ports)
2141 			break;
2142 	}
2143 }
2144 
2145 /*
2146  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2147  * specify what speeds each port is supposed to be.  We can't count on the port
2148  * speed bits in the PORTSC register being correct until a device is connected,
2149  * but we need to set up the two fake roothubs with the correct number of USB
2150  * 3.0 and USB 2.0 ports at host controller initialization time.
2151  */
2152 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2153 {
2154 	void __iomem *base;
2155 	u32 offset;
2156 	unsigned int num_ports;
2157 	int i, j;
2158 	int cap_count = 0;
2159 	u32 cap_start;
2160 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2161 
2162 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2163 	xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2164 				flags, dev_to_node(dev));
2165 	if (!xhci->hw_ports)
2166 		return -ENOMEM;
2167 
2168 	for (i = 0; i < num_ports; i++) {
2169 		xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2170 			NUM_PORT_REGS * i;
2171 		xhci->hw_ports[i].hw_portnum = i;
2172 
2173 		init_completion(&xhci->hw_ports[i].rexit_done);
2174 		init_completion(&xhci->hw_ports[i].u3exit_done);
2175 	}
2176 
2177 	xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2178 				   dev_to_node(dev));
2179 	if (!xhci->rh_bw)
2180 		return -ENOMEM;
2181 	for (i = 0; i < num_ports; i++) {
2182 		struct xhci_interval_bw_table *bw_table;
2183 
2184 		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2185 		bw_table = &xhci->rh_bw[i].bw_table;
2186 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2187 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2188 	}
2189 	base = &xhci->cap_regs->hc_capbase;
2190 
2191 	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2192 	if (!cap_start) {
2193 		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2194 		return -ENODEV;
2195 	}
2196 
2197 	offset = cap_start;
2198 	/* count extended protocol capability entries for later caching */
2199 	while (offset) {
2200 		cap_count++;
2201 		offset = xhci_find_next_ext_cap(base, offset,
2202 						      XHCI_EXT_CAPS_PROTOCOL);
2203 	}
2204 
2205 	xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2206 				flags, dev_to_node(dev));
2207 	if (!xhci->port_caps)
2208 		return -ENOMEM;
2209 
2210 	offset = cap_start;
2211 
2212 	while (offset) {
2213 		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2214 		if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2215 		    num_ports)
2216 			break;
2217 		offset = xhci_find_next_ext_cap(base, offset,
2218 						XHCI_EXT_CAPS_PROTOCOL);
2219 	}
2220 	if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2221 		xhci_warn(xhci, "No ports on the roothubs?\n");
2222 		return -ENODEV;
2223 	}
2224 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2225 		       "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2226 		       xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2227 
2228 	/* Place limits on the number of roothub ports so that the hub
2229 	 * descriptors aren't longer than the USB core will allocate.
2230 	 */
2231 	if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2232 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2233 				"Limiting USB 3.0 roothub ports to %u.",
2234 				USB_SS_MAXPORTS);
2235 		xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2236 	}
2237 	if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2238 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2239 				"Limiting USB 2.0 roothub ports to %u.",
2240 				USB_MAXCHILDREN);
2241 		xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2242 	}
2243 
2244 	if (!xhci->usb2_rhub.num_ports)
2245 		xhci_info(xhci, "USB2 root hub has no ports\n");
2246 
2247 	if (!xhci->usb3_rhub.num_ports)
2248 		xhci_info(xhci, "USB3 root hub has no ports\n");
2249 
2250 	xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2251 	xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2252 
2253 	return 0;
2254 }
2255 
2256 static struct xhci_interrupter *
2257 xhci_alloc_interrupter(struct xhci_hcd *xhci, unsigned int segs, gfp_t flags)
2258 {
2259 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2260 	struct xhci_interrupter *ir;
2261 	unsigned int max_segs;
2262 	int ret;
2263 
2264 	if (!segs)
2265 		segs = ERST_DEFAULT_SEGS;
2266 
2267 	max_segs = BIT(HCS_ERST_MAX(xhci->hcs_params2));
2268 	segs = min(segs, max_segs);
2269 
2270 	ir = kzalloc_node(sizeof(*ir), flags, dev_to_node(dev));
2271 	if (!ir)
2272 		return NULL;
2273 
2274 	ir->event_ring = xhci_ring_alloc(xhci, segs, 1, TYPE_EVENT, 0, flags);
2275 	if (!ir->event_ring) {
2276 		xhci_warn(xhci, "Failed to allocate interrupter event ring\n");
2277 		kfree(ir);
2278 		return NULL;
2279 	}
2280 
2281 	ret = xhci_alloc_erst(xhci, ir->event_ring, &ir->erst, flags);
2282 	if (ret) {
2283 		xhci_warn(xhci, "Failed to allocate interrupter erst\n");
2284 		xhci_ring_free(xhci, ir->event_ring);
2285 		kfree(ir);
2286 		return NULL;
2287 	}
2288 
2289 	return ir;
2290 }
2291 
2292 static int
2293 xhci_add_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir,
2294 		     unsigned int intr_num)
2295 {
2296 	u64 erst_base;
2297 	u32 erst_size;
2298 
2299 	if (intr_num >= xhci->max_interrupters) {
2300 		xhci_warn(xhci, "Can't add interrupter %d, max interrupters %d\n",
2301 			  intr_num, xhci->max_interrupters);
2302 		return -EINVAL;
2303 	}
2304 
2305 	if (xhci->interrupters[intr_num]) {
2306 		xhci_warn(xhci, "Interrupter %d\n already set up", intr_num);
2307 		return -EINVAL;
2308 	}
2309 
2310 	xhci->interrupters[intr_num] = ir;
2311 	ir->intr_num = intr_num;
2312 	ir->ir_set = &xhci->run_regs->ir_set[intr_num];
2313 
2314 	/* set ERST count with the number of entries in the segment table */
2315 	erst_size = readl(&ir->ir_set->erst_size);
2316 	erst_size &= ERST_SIZE_MASK;
2317 	erst_size |= ir->event_ring->num_segs;
2318 	writel(erst_size, &ir->ir_set->erst_size);
2319 
2320 	erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
2321 	erst_base &= ERST_BASE_RSVDP;
2322 	erst_base |= ir->erst.erst_dma_addr & ~ERST_BASE_RSVDP;
2323 	if (xhci->quirks & XHCI_WRITE_64_HI_LO)
2324 		hi_lo_writeq(erst_base, &ir->ir_set->erst_base);
2325 	else
2326 		xhci_write_64(xhci, erst_base, &ir->ir_set->erst_base);
2327 
2328 	/* Set the event ring dequeue address of this interrupter */
2329 	xhci_set_hc_event_deq(xhci, ir);
2330 
2331 	return 0;
2332 }
2333 
2334 struct xhci_interrupter *
2335 xhci_create_secondary_interrupter(struct usb_hcd *hcd, unsigned int segs,
2336 				  u32 imod_interval)
2337 {
2338 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2339 	struct xhci_interrupter *ir;
2340 	unsigned int i;
2341 	int err = -ENOSPC;
2342 
2343 	if (!xhci->interrupters || xhci->max_interrupters <= 1)
2344 		return NULL;
2345 
2346 	ir = xhci_alloc_interrupter(xhci, segs, GFP_KERNEL);
2347 	if (!ir)
2348 		return NULL;
2349 
2350 	spin_lock_irq(&xhci->lock);
2351 
2352 	/* Find available secondary interrupter, interrupter 0 is reserved for primary */
2353 	for (i = 1; i < xhci->max_interrupters; i++) {
2354 		if (xhci->interrupters[i] == NULL) {
2355 			err = xhci_add_interrupter(xhci, ir, i);
2356 			break;
2357 		}
2358 	}
2359 
2360 	spin_unlock_irq(&xhci->lock);
2361 
2362 	if (err) {
2363 		xhci_warn(xhci, "Failed to add secondary interrupter, max interrupters %d\n",
2364 			  xhci->max_interrupters);
2365 		xhci_free_interrupter(xhci, ir);
2366 		return NULL;
2367 	}
2368 
2369 	err = xhci_set_interrupter_moderation(ir, imod_interval);
2370 	if (err)
2371 		xhci_warn(xhci, "Failed to set interrupter %d moderation to %uns\n",
2372 			  i, imod_interval);
2373 
2374 	xhci_dbg(xhci, "Add secondary interrupter %d, max interrupters %d\n",
2375 		 i, xhci->max_interrupters);
2376 
2377 	return ir;
2378 }
2379 EXPORT_SYMBOL_GPL(xhci_create_secondary_interrupter);
2380 
2381 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2382 {
2383 	struct xhci_interrupter *ir;
2384 	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
2385 	dma_addr_t	dma;
2386 	unsigned int	val, val2;
2387 	u64		val_64;
2388 	u32		page_size, temp;
2389 	int		i;
2390 
2391 	INIT_LIST_HEAD(&xhci->cmd_list);
2392 
2393 	/* init command timeout work */
2394 	INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2395 	init_completion(&xhci->cmd_ring_stop_completion);
2396 
2397 	page_size = readl(&xhci->op_regs->page_size);
2398 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2399 			"Supported page size register = 0x%x", page_size);
2400 	i = ffs(page_size);
2401 	if (i < 16)
2402 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2403 			"Supported page size of %iK", (1 << (i+12)) / 1024);
2404 	else
2405 		xhci_warn(xhci, "WARN: no supported page size\n");
2406 	/* Use 4K pages, since that's common and the minimum the HC supports */
2407 	xhci->page_shift = 12;
2408 	xhci->page_size = 1 << xhci->page_shift;
2409 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2410 			"HCD page size set to %iK", xhci->page_size / 1024);
2411 
2412 	/*
2413 	 * Program the Number of Device Slots Enabled field in the CONFIG
2414 	 * register with the max value of slots the HC can handle.
2415 	 */
2416 	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2417 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2418 			"// xHC can handle at most %d device slots.", val);
2419 	val2 = readl(&xhci->op_regs->config_reg);
2420 	val |= (val2 & ~HCS_SLOTS_MASK);
2421 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2422 			"// Setting Max device slots reg = 0x%x.", val);
2423 	writel(val, &xhci->op_regs->config_reg);
2424 
2425 	/*
2426 	 * xHCI section 5.4.6 - Device Context array must be
2427 	 * "physically contiguous and 64-byte (cache line) aligned".
2428 	 */
2429 	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2430 			flags);
2431 	if (!xhci->dcbaa)
2432 		goto fail;
2433 	xhci->dcbaa->dma = dma;
2434 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2435 			"// Device context base array address = 0x%pad (DMA), %p (virt)",
2436 			&xhci->dcbaa->dma, xhci->dcbaa);
2437 	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2438 
2439 	/*
2440 	 * Initialize the ring segment pool.  The ring must be a contiguous
2441 	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2442 	 * however, the command ring segment needs 64-byte aligned segments
2443 	 * and our use of dma addresses in the trb_address_map radix tree needs
2444 	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2445 	 */
2446 	if (xhci->quirks & XHCI_ZHAOXIN_TRB_FETCH)
2447 		xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2448 				TRB_SEGMENT_SIZE * 2, TRB_SEGMENT_SIZE * 2, xhci->page_size * 2);
2449 	else
2450 		xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2451 				TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2452 
2453 	/* See Table 46 and Note on Figure 55 */
2454 	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2455 			2112, 64, xhci->page_size);
2456 	if (!xhci->segment_pool || !xhci->device_pool)
2457 		goto fail;
2458 
2459 	/* Linear stream context arrays don't have any boundary restrictions,
2460 	 * and only need to be 16-byte aligned.
2461 	 */
2462 	xhci->small_streams_pool =
2463 		dma_pool_create("xHCI 256 byte stream ctx arrays",
2464 			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2465 	xhci->medium_streams_pool =
2466 		dma_pool_create("xHCI 1KB stream ctx arrays",
2467 			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2468 	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2469 	 * will be allocated with dma_alloc_coherent()
2470 	 */
2471 
2472 	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2473 		goto fail;
2474 
2475 	/* Set up the command ring to have one segments for now. */
2476 	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2477 	if (!xhci->cmd_ring)
2478 		goto fail;
2479 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2480 			"Allocated command ring at %p", xhci->cmd_ring);
2481 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%pad",
2482 			&xhci->cmd_ring->first_seg->dma);
2483 
2484 	/* Set the address in the Command Ring Control register */
2485 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2486 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2487 		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2488 		xhci->cmd_ring->cycle_state;
2489 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2490 			"// Setting command ring address to 0x%016llx", val_64);
2491 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2492 
2493 	/* Reserve one command ring TRB for disabling LPM.
2494 	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2495 	 * disabling LPM, we only need to reserve one TRB for all devices.
2496 	 */
2497 	xhci->cmd_ring_reserved_trbs++;
2498 
2499 	val = readl(&xhci->cap_regs->db_off);
2500 	val &= DBOFF_MASK;
2501 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2502 		       "// Doorbell array is located at offset 0x%x from cap regs base addr",
2503 		       val);
2504 	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2505 
2506 	/* Allocate and set up primary interrupter 0 with an event ring. */
2507 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2508 		       "Allocating primary event ring");
2509 	xhci->interrupters = kcalloc_node(xhci->max_interrupters, sizeof(*xhci->interrupters),
2510 					  flags, dev_to_node(dev));
2511 
2512 	ir = xhci_alloc_interrupter(xhci, 0, flags);
2513 	if (!ir)
2514 		goto fail;
2515 
2516 	if (xhci_add_interrupter(xhci, ir, 0))
2517 		goto fail;
2518 
2519 	ir->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
2520 
2521 	/*
2522 	 * XXX: Might need to set the Interrupter Moderation Register to
2523 	 * something other than the default (~1ms minimum between interrupts).
2524 	 * See section 5.5.1.2.
2525 	 */
2526 	for (i = 0; i < MAX_HC_SLOTS; i++)
2527 		xhci->devs[i] = NULL;
2528 
2529 	if (scratchpad_alloc(xhci, flags))
2530 		goto fail;
2531 	if (xhci_setup_port_arrays(xhci, flags))
2532 		goto fail;
2533 
2534 	/* Enable USB 3.0 device notifications for function remote wake, which
2535 	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2536 	 * U3 (device suspend).
2537 	 */
2538 	temp = readl(&xhci->op_regs->dev_notification);
2539 	temp &= ~DEV_NOTE_MASK;
2540 	temp |= DEV_NOTE_FWAKE;
2541 	writel(temp, &xhci->op_regs->dev_notification);
2542 
2543 	return 0;
2544 
2545 fail:
2546 	xhci_halt(xhci);
2547 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2548 	xhci_mem_cleanup(xhci);
2549 	return -ENOMEM;
2550 }
2551