1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/usb.h> 12 #include <linux/overflow.h> 13 #include <linux/pci.h> 14 #include <linux/slab.h> 15 #include <linux/dmapool.h> 16 #include <linux/dma-mapping.h> 17 18 #include "xhci.h" 19 #include "xhci-trace.h" 20 #include "xhci-debugfs.h" 21 22 /* 23 * Allocates a generic ring segment from the ring pool, sets the dma address, 24 * initializes the segment to zero, and sets the private next pointer to NULL. 25 * 26 * Section 4.11.1.1: 27 * "All components of all Command and Transfer TRBs shall be initialized to '0'" 28 */ 29 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, 30 unsigned int cycle_state, 31 unsigned int max_packet, 32 unsigned int num, 33 gfp_t flags) 34 { 35 struct xhci_segment *seg; 36 dma_addr_t dma; 37 int i; 38 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 39 40 seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev)); 41 if (!seg) 42 return NULL; 43 44 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma); 45 if (!seg->trbs) { 46 kfree(seg); 47 return NULL; 48 } 49 50 if (max_packet) { 51 seg->bounce_buf = kzalloc_node(max_packet, flags, 52 dev_to_node(dev)); 53 if (!seg->bounce_buf) { 54 dma_pool_free(xhci->segment_pool, seg->trbs, dma); 55 kfree(seg); 56 return NULL; 57 } 58 } 59 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */ 60 if (cycle_state == 0) { 61 for (i = 0; i < TRBS_PER_SEGMENT; i++) 62 seg->trbs[i].link.control = cpu_to_le32(TRB_CYCLE); 63 } 64 seg->num = num; 65 seg->dma = dma; 66 seg->next = NULL; 67 68 return seg; 69 } 70 71 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg) 72 { 73 if (seg->trbs) { 74 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma); 75 seg->trbs = NULL; 76 } 77 kfree(seg->bounce_buf); 78 kfree(seg); 79 } 80 81 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci, 82 struct xhci_segment *first) 83 { 84 struct xhci_segment *seg; 85 86 seg = first->next; 87 while (seg != first) { 88 struct xhci_segment *next = seg->next; 89 xhci_segment_free(xhci, seg); 90 seg = next; 91 } 92 xhci_segment_free(xhci, first); 93 } 94 95 /* 96 * Make the prev segment point to the next segment. 97 * 98 * Change the last TRB in the prev segment to be a Link TRB which points to the 99 * DMA address of the next segment. The caller needs to set any Link TRB 100 * related flags, such as End TRB, Toggle Cycle, and no snoop. 101 */ 102 static void xhci_link_segments(struct xhci_segment *prev, 103 struct xhci_segment *next, 104 enum xhci_ring_type type, bool chain_links) 105 { 106 u32 val; 107 108 if (!prev || !next) 109 return; 110 prev->next = next; 111 if (type != TYPE_EVENT) { 112 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = 113 cpu_to_le64(next->dma); 114 115 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */ 116 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control); 117 val &= ~TRB_TYPE_BITMASK; 118 val |= TRB_TYPE(TRB_LINK); 119 if (chain_links) 120 val |= TRB_CHAIN; 121 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val); 122 } 123 } 124 125 /* 126 * Link the ring to the new segments. 127 * Set Toggle Cycle for the new ring if needed. 128 */ 129 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring, 130 struct xhci_segment *first, struct xhci_segment *last, 131 unsigned int num_segs) 132 { 133 struct xhci_segment *next, *seg; 134 bool chain_links; 135 136 if (!ring || !first || !last) 137 return; 138 139 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */ 140 chain_links = !!(xhci_link_trb_quirk(xhci) || 141 (ring->type == TYPE_ISOC && 142 (xhci->quirks & XHCI_AMD_0x96_HOST))); 143 144 next = ring->enq_seg->next; 145 xhci_link_segments(ring->enq_seg, first, ring->type, chain_links); 146 xhci_link_segments(last, next, ring->type, chain_links); 147 ring->num_segs += num_segs; 148 149 if (ring->enq_seg == ring->last_seg) { 150 if (ring->type != TYPE_EVENT) { 151 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control 152 &= ~cpu_to_le32(LINK_TOGGLE); 153 last->trbs[TRBS_PER_SEGMENT-1].link.control 154 |= cpu_to_le32(LINK_TOGGLE); 155 } 156 ring->last_seg = last; 157 } 158 159 for (seg = last; seg != ring->last_seg; seg = seg->next) 160 seg->next->num = seg->num + 1; 161 } 162 163 /* 164 * We need a radix tree for mapping physical addresses of TRBs to which stream 165 * ID they belong to. We need to do this because the host controller won't tell 166 * us which stream ring the TRB came from. We could store the stream ID in an 167 * event data TRB, but that doesn't help us for the cancellation case, since the 168 * endpoint may stop before it reaches that event data TRB. 169 * 170 * The radix tree maps the upper portion of the TRB DMA address to a ring 171 * segment that has the same upper portion of DMA addresses. For example, say I 172 * have segments of size 1KB, that are always 1KB aligned. A segment may 173 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the 174 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to 175 * pass the radix tree a key to get the right stream ID: 176 * 177 * 0x10c90fff >> 10 = 0x43243 178 * 0x10c912c0 >> 10 = 0x43244 179 * 0x10c91400 >> 10 = 0x43245 180 * 181 * Obviously, only those TRBs with DMA addresses that are within the segment 182 * will make the radix tree return the stream ID for that ring. 183 * 184 * Caveats for the radix tree: 185 * 186 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an 187 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be 188 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the 189 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit 190 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit 191 * extended systems (where the DMA address can be bigger than 32-bits), 192 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that. 193 */ 194 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map, 195 struct xhci_ring *ring, 196 struct xhci_segment *seg, 197 gfp_t mem_flags) 198 { 199 unsigned long key; 200 int ret; 201 202 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); 203 /* Skip any segments that were already added. */ 204 if (radix_tree_lookup(trb_address_map, key)) 205 return 0; 206 207 ret = radix_tree_maybe_preload(mem_flags); 208 if (ret) 209 return ret; 210 ret = radix_tree_insert(trb_address_map, 211 key, ring); 212 radix_tree_preload_end(); 213 return ret; 214 } 215 216 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map, 217 struct xhci_segment *seg) 218 { 219 unsigned long key; 220 221 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); 222 if (radix_tree_lookup(trb_address_map, key)) 223 radix_tree_delete(trb_address_map, key); 224 } 225 226 static int xhci_update_stream_segment_mapping( 227 struct radix_tree_root *trb_address_map, 228 struct xhci_ring *ring, 229 struct xhci_segment *first_seg, 230 struct xhci_segment *last_seg, 231 gfp_t mem_flags) 232 { 233 struct xhci_segment *seg; 234 struct xhci_segment *failed_seg; 235 int ret; 236 237 if (WARN_ON_ONCE(trb_address_map == NULL)) 238 return 0; 239 240 seg = first_seg; 241 do { 242 ret = xhci_insert_segment_mapping(trb_address_map, 243 ring, seg, mem_flags); 244 if (ret) 245 goto remove_streams; 246 if (seg == last_seg) 247 return 0; 248 seg = seg->next; 249 } while (seg != first_seg); 250 251 return 0; 252 253 remove_streams: 254 failed_seg = seg; 255 seg = first_seg; 256 do { 257 xhci_remove_segment_mapping(trb_address_map, seg); 258 if (seg == failed_seg) 259 return ret; 260 seg = seg->next; 261 } while (seg != first_seg); 262 263 return ret; 264 } 265 266 static void xhci_remove_stream_mapping(struct xhci_ring *ring) 267 { 268 struct xhci_segment *seg; 269 270 if (WARN_ON_ONCE(ring->trb_address_map == NULL)) 271 return; 272 273 seg = ring->first_seg; 274 do { 275 xhci_remove_segment_mapping(ring->trb_address_map, seg); 276 seg = seg->next; 277 } while (seg != ring->first_seg); 278 } 279 280 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags) 281 { 282 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring, 283 ring->first_seg, ring->last_seg, mem_flags); 284 } 285 286 /* XXX: Do we need the hcd structure in all these functions? */ 287 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring) 288 { 289 if (!ring) 290 return; 291 292 trace_xhci_ring_free(ring); 293 294 if (ring->first_seg) { 295 if (ring->type == TYPE_STREAM) 296 xhci_remove_stream_mapping(ring); 297 xhci_free_segments_for_ring(xhci, ring->first_seg); 298 } 299 300 kfree(ring); 301 } 302 303 void xhci_initialize_ring_info(struct xhci_ring *ring, 304 unsigned int cycle_state) 305 { 306 /* The ring is empty, so the enqueue pointer == dequeue pointer */ 307 ring->enqueue = ring->first_seg->trbs; 308 ring->enq_seg = ring->first_seg; 309 ring->dequeue = ring->enqueue; 310 ring->deq_seg = ring->first_seg; 311 /* The ring is initialized to 0. The producer must write 1 to the cycle 312 * bit to handover ownership of the TRB, so PCS = 1. The consumer must 313 * compare CCS to the cycle bit to check ownership, so CCS = 1. 314 * 315 * New rings are initialized with cycle state equal to 1; if we are 316 * handling ring expansion, set the cycle state equal to the old ring. 317 */ 318 ring->cycle_state = cycle_state; 319 320 /* 321 * Each segment has a link TRB, and leave an extra TRB for SW 322 * accounting purpose 323 */ 324 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 325 } 326 327 /* Allocate segments and link them for a ring */ 328 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci, 329 struct xhci_segment **first, struct xhci_segment **last, 330 unsigned int num_segs, unsigned int num, 331 unsigned int cycle_state, enum xhci_ring_type type, 332 unsigned int max_packet, gfp_t flags) 333 { 334 struct xhci_segment *prev; 335 bool chain_links; 336 337 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */ 338 chain_links = !!(xhci_link_trb_quirk(xhci) || 339 (type == TYPE_ISOC && 340 (xhci->quirks & XHCI_AMD_0x96_HOST))); 341 342 prev = xhci_segment_alloc(xhci, cycle_state, max_packet, num, flags); 343 if (!prev) 344 return -ENOMEM; 345 num++; 346 347 *first = prev; 348 while (num < num_segs) { 349 struct xhci_segment *next; 350 351 next = xhci_segment_alloc(xhci, cycle_state, max_packet, num, 352 flags); 353 if (!next) { 354 prev = *first; 355 while (prev) { 356 next = prev->next; 357 xhci_segment_free(xhci, prev); 358 prev = next; 359 } 360 return -ENOMEM; 361 } 362 xhci_link_segments(prev, next, type, chain_links); 363 364 prev = next; 365 num++; 366 } 367 xhci_link_segments(prev, *first, type, chain_links); 368 *last = prev; 369 370 return 0; 371 } 372 373 /* 374 * Create a new ring with zero or more segments. 375 * 376 * Link each segment together into a ring. 377 * Set the end flag and the cycle toggle bit on the last segment. 378 * See section 4.9.1 and figures 15 and 16. 379 */ 380 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, 381 unsigned int num_segs, unsigned int cycle_state, 382 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags) 383 { 384 struct xhci_ring *ring; 385 int ret; 386 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 387 388 ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev)); 389 if (!ring) 390 return NULL; 391 392 ring->num_segs = num_segs; 393 ring->bounce_buf_len = max_packet; 394 INIT_LIST_HEAD(&ring->td_list); 395 ring->type = type; 396 if (num_segs == 0) 397 return ring; 398 399 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg, 400 &ring->last_seg, num_segs, 0, cycle_state, type, 401 max_packet, flags); 402 if (ret) 403 goto fail; 404 405 /* Only event ring does not use link TRB */ 406 if (type != TYPE_EVENT) { 407 /* See section 4.9.2.1 and 6.4.4.1 */ 408 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |= 409 cpu_to_le32(LINK_TOGGLE); 410 } 411 xhci_initialize_ring_info(ring, cycle_state); 412 trace_xhci_ring_alloc(ring); 413 return ring; 414 415 fail: 416 kfree(ring); 417 return NULL; 418 } 419 420 void xhci_free_endpoint_ring(struct xhci_hcd *xhci, 421 struct xhci_virt_device *virt_dev, 422 unsigned int ep_index) 423 { 424 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring); 425 virt_dev->eps[ep_index].ring = NULL; 426 } 427 428 /* 429 * Expand an existing ring. 430 * Allocate a new ring which has same segment numbers and link the two rings. 431 */ 432 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring, 433 unsigned int num_new_segs, gfp_t flags) 434 { 435 struct xhci_segment *first; 436 struct xhci_segment *last; 437 int ret; 438 439 ret = xhci_alloc_segments_for_ring(xhci, &first, &last, 440 num_new_segs, ring->enq_seg->num + 1, 441 ring->cycle_state, ring->type, 442 ring->bounce_buf_len, flags); 443 if (ret) 444 return -ENOMEM; 445 446 if (ring->type == TYPE_STREAM) 447 ret = xhci_update_stream_segment_mapping(ring->trb_address_map, 448 ring, first, last, flags); 449 if (ret) { 450 struct xhci_segment *next; 451 do { 452 next = first->next; 453 xhci_segment_free(xhci, first); 454 if (first == last) 455 break; 456 first = next; 457 } while (true); 458 return ret; 459 } 460 461 xhci_link_rings(xhci, ring, first, last, num_new_segs); 462 trace_xhci_ring_expansion(ring); 463 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 464 "ring expansion succeed, now has %d segments", 465 ring->num_segs); 466 467 return 0; 468 } 469 470 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci, 471 int type, gfp_t flags) 472 { 473 struct xhci_container_ctx *ctx; 474 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 475 476 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT)) 477 return NULL; 478 479 ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev)); 480 if (!ctx) 481 return NULL; 482 483 ctx->type = type; 484 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024; 485 if (type == XHCI_CTX_TYPE_INPUT) 486 ctx->size += CTX_SIZE(xhci->hcc_params); 487 488 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma); 489 if (!ctx->bytes) { 490 kfree(ctx); 491 return NULL; 492 } 493 return ctx; 494 } 495 496 void xhci_free_container_ctx(struct xhci_hcd *xhci, 497 struct xhci_container_ctx *ctx) 498 { 499 if (!ctx) 500 return; 501 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma); 502 kfree(ctx); 503 } 504 505 struct xhci_input_control_ctx *xhci_get_input_control_ctx( 506 struct xhci_container_ctx *ctx) 507 { 508 if (ctx->type != XHCI_CTX_TYPE_INPUT) 509 return NULL; 510 511 return (struct xhci_input_control_ctx *)ctx->bytes; 512 } 513 514 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci, 515 struct xhci_container_ctx *ctx) 516 { 517 if (ctx->type == XHCI_CTX_TYPE_DEVICE) 518 return (struct xhci_slot_ctx *)ctx->bytes; 519 520 return (struct xhci_slot_ctx *) 521 (ctx->bytes + CTX_SIZE(xhci->hcc_params)); 522 } 523 524 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci, 525 struct xhci_container_ctx *ctx, 526 unsigned int ep_index) 527 { 528 /* increment ep index by offset of start of ep ctx array */ 529 ep_index++; 530 if (ctx->type == XHCI_CTX_TYPE_INPUT) 531 ep_index++; 532 533 return (struct xhci_ep_ctx *) 534 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params))); 535 } 536 EXPORT_SYMBOL_GPL(xhci_get_ep_ctx); 537 538 /***************** Streams structures manipulation *************************/ 539 540 static void xhci_free_stream_ctx(struct xhci_hcd *xhci, 541 unsigned int num_stream_ctxs, 542 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma) 543 { 544 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 545 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs; 546 547 if (size > MEDIUM_STREAM_ARRAY_SIZE) 548 dma_free_coherent(dev, size, stream_ctx, dma); 549 else if (size > SMALL_STREAM_ARRAY_SIZE) 550 dma_pool_free(xhci->medium_streams_pool, stream_ctx, dma); 551 else 552 dma_pool_free(xhci->small_streams_pool, stream_ctx, dma); 553 } 554 555 /* 556 * The stream context array for each endpoint with bulk streams enabled can 557 * vary in size, based on: 558 * - how many streams the endpoint supports, 559 * - the maximum primary stream array size the host controller supports, 560 * - and how many streams the device driver asks for. 561 * 562 * The stream context array must be a power of 2, and can be as small as 563 * 64 bytes or as large as 1MB. 564 */ 565 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci, 566 unsigned int num_stream_ctxs, dma_addr_t *dma, 567 gfp_t mem_flags) 568 { 569 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 570 size_t size = size_mul(sizeof(struct xhci_stream_ctx), num_stream_ctxs); 571 572 if (size > MEDIUM_STREAM_ARRAY_SIZE) 573 return dma_alloc_coherent(dev, size, dma, mem_flags); 574 if (size > SMALL_STREAM_ARRAY_SIZE) 575 return dma_pool_zalloc(xhci->medium_streams_pool, mem_flags, dma); 576 else 577 return dma_pool_zalloc(xhci->small_streams_pool, mem_flags, dma); 578 } 579 580 struct xhci_ring *xhci_dma_to_transfer_ring( 581 struct xhci_virt_ep *ep, 582 u64 address) 583 { 584 if (ep->ep_state & EP_HAS_STREAMS) 585 return radix_tree_lookup(&ep->stream_info->trb_address_map, 586 address >> TRB_SEGMENT_SHIFT); 587 return ep->ring; 588 } 589 590 /* 591 * Change an endpoint's internal structure so it supports stream IDs. The 592 * number of requested streams includes stream 0, which cannot be used by device 593 * drivers. 594 * 595 * The number of stream contexts in the stream context array may be bigger than 596 * the number of streams the driver wants to use. This is because the number of 597 * stream context array entries must be a power of two. 598 */ 599 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci, 600 unsigned int num_stream_ctxs, 601 unsigned int num_streams, 602 unsigned int max_packet, gfp_t mem_flags) 603 { 604 struct xhci_stream_info *stream_info; 605 u32 cur_stream; 606 struct xhci_ring *cur_ring; 607 u64 addr; 608 int ret; 609 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 610 611 xhci_dbg(xhci, "Allocating %u streams and %u stream context array entries.\n", 612 num_streams, num_stream_ctxs); 613 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) { 614 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n"); 615 return NULL; 616 } 617 xhci->cmd_ring_reserved_trbs++; 618 619 stream_info = kzalloc_node(sizeof(*stream_info), mem_flags, 620 dev_to_node(dev)); 621 if (!stream_info) 622 goto cleanup_trbs; 623 624 stream_info->num_streams = num_streams; 625 stream_info->num_stream_ctxs = num_stream_ctxs; 626 627 /* Initialize the array of virtual pointers to stream rings. */ 628 stream_info->stream_rings = kcalloc_node( 629 num_streams, sizeof(struct xhci_ring *), mem_flags, 630 dev_to_node(dev)); 631 if (!stream_info->stream_rings) 632 goto cleanup_info; 633 634 /* Initialize the array of DMA addresses for stream rings for the HW. */ 635 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci, 636 num_stream_ctxs, &stream_info->ctx_array_dma, 637 mem_flags); 638 if (!stream_info->stream_ctx_array) 639 goto cleanup_ring_array; 640 641 /* Allocate everything needed to free the stream rings later */ 642 stream_info->free_streams_command = 643 xhci_alloc_command_with_ctx(xhci, true, mem_flags); 644 if (!stream_info->free_streams_command) 645 goto cleanup_ctx; 646 647 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC); 648 649 /* Allocate rings for all the streams that the driver will use, 650 * and add their segment DMA addresses to the radix tree. 651 * Stream 0 is reserved. 652 */ 653 654 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 655 stream_info->stream_rings[cur_stream] = 656 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet, 657 mem_flags); 658 cur_ring = stream_info->stream_rings[cur_stream]; 659 if (!cur_ring) 660 goto cleanup_rings; 661 cur_ring->stream_id = cur_stream; 662 cur_ring->trb_address_map = &stream_info->trb_address_map; 663 /* Set deq ptr, cycle bit, and stream context type */ 664 addr = cur_ring->first_seg->dma | 665 SCT_FOR_CTX(SCT_PRI_TR) | 666 cur_ring->cycle_state; 667 stream_info->stream_ctx_array[cur_stream].stream_ring = 668 cpu_to_le64(addr); 669 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", cur_stream, addr); 670 671 ret = xhci_update_stream_mapping(cur_ring, mem_flags); 672 if (ret) { 673 xhci_ring_free(xhci, cur_ring); 674 stream_info->stream_rings[cur_stream] = NULL; 675 goto cleanup_rings; 676 } 677 } 678 /* Leave the other unused stream ring pointers in the stream context 679 * array initialized to zero. This will cause the xHC to give us an 680 * error if the device asks for a stream ID we don't have setup (if it 681 * was any other way, the host controller would assume the ring is 682 * "empty" and wait forever for data to be queued to that stream ID). 683 */ 684 685 return stream_info; 686 687 cleanup_rings: 688 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 689 cur_ring = stream_info->stream_rings[cur_stream]; 690 if (cur_ring) { 691 xhci_ring_free(xhci, cur_ring); 692 stream_info->stream_rings[cur_stream] = NULL; 693 } 694 } 695 xhci_free_command(xhci, stream_info->free_streams_command); 696 cleanup_ctx: 697 xhci_free_stream_ctx(xhci, 698 stream_info->num_stream_ctxs, 699 stream_info->stream_ctx_array, 700 stream_info->ctx_array_dma); 701 cleanup_ring_array: 702 kfree(stream_info->stream_rings); 703 cleanup_info: 704 kfree(stream_info); 705 cleanup_trbs: 706 xhci->cmd_ring_reserved_trbs--; 707 return NULL; 708 } 709 /* 710 * Sets the MaxPStreams field and the Linear Stream Array field. 711 * Sets the dequeue pointer to the stream context array. 712 */ 713 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci, 714 struct xhci_ep_ctx *ep_ctx, 715 struct xhci_stream_info *stream_info) 716 { 717 u32 max_primary_streams; 718 /* MaxPStreams is the number of stream context array entries, not the 719 * number we're actually using. Must be in 2^(MaxPstreams + 1) format. 720 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc. 721 */ 722 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2; 723 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 724 "Setting number of stream ctx array entries to %u", 725 1 << (max_primary_streams + 1)); 726 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK); 727 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams) 728 | EP_HAS_LSA); 729 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma); 730 } 731 732 /* 733 * Sets the MaxPStreams field and the Linear Stream Array field to 0. 734 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark, 735 * not at the beginning of the ring). 736 */ 737 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx, 738 struct xhci_virt_ep *ep) 739 { 740 dma_addr_t addr; 741 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA)); 742 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue); 743 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state); 744 } 745 746 /* Frees all stream contexts associated with the endpoint, 747 * 748 * Caller should fix the endpoint context streams fields. 749 */ 750 void xhci_free_stream_info(struct xhci_hcd *xhci, 751 struct xhci_stream_info *stream_info) 752 { 753 int cur_stream; 754 struct xhci_ring *cur_ring; 755 756 if (!stream_info) 757 return; 758 759 for (cur_stream = 1; cur_stream < stream_info->num_streams; 760 cur_stream++) { 761 cur_ring = stream_info->stream_rings[cur_stream]; 762 if (cur_ring) { 763 xhci_ring_free(xhci, cur_ring); 764 stream_info->stream_rings[cur_stream] = NULL; 765 } 766 } 767 xhci_free_command(xhci, stream_info->free_streams_command); 768 xhci->cmd_ring_reserved_trbs--; 769 if (stream_info->stream_ctx_array) 770 xhci_free_stream_ctx(xhci, 771 stream_info->num_stream_ctxs, 772 stream_info->stream_ctx_array, 773 stream_info->ctx_array_dma); 774 775 kfree(stream_info->stream_rings); 776 kfree(stream_info); 777 } 778 779 780 /***************** Device context manipulation *************************/ 781 782 static void xhci_free_tt_info(struct xhci_hcd *xhci, 783 struct xhci_virt_device *virt_dev, 784 int slot_id) 785 { 786 struct list_head *tt_list_head; 787 struct xhci_tt_bw_info *tt_info, *next; 788 bool slot_found = false; 789 790 /* If the device never made it past the Set Address stage, 791 * it may not have the real_port set correctly. 792 */ 793 if (virt_dev->real_port == 0 || 794 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) { 795 xhci_dbg(xhci, "Bad real port.\n"); 796 return; 797 } 798 799 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts); 800 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { 801 /* Multi-TT hubs will have more than one entry */ 802 if (tt_info->slot_id == slot_id) { 803 slot_found = true; 804 list_del(&tt_info->tt_list); 805 kfree(tt_info); 806 } else if (slot_found) { 807 break; 808 } 809 } 810 } 811 812 int xhci_alloc_tt_info(struct xhci_hcd *xhci, 813 struct xhci_virt_device *virt_dev, 814 struct usb_device *hdev, 815 struct usb_tt *tt, gfp_t mem_flags) 816 { 817 struct xhci_tt_bw_info *tt_info; 818 unsigned int num_ports; 819 int i, j; 820 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 821 822 if (!tt->multi) 823 num_ports = 1; 824 else 825 num_ports = hdev->maxchild; 826 827 for (i = 0; i < num_ports; i++, tt_info++) { 828 struct xhci_interval_bw_table *bw_table; 829 830 tt_info = kzalloc_node(sizeof(*tt_info), mem_flags, 831 dev_to_node(dev)); 832 if (!tt_info) 833 goto free_tts; 834 INIT_LIST_HEAD(&tt_info->tt_list); 835 list_add(&tt_info->tt_list, 836 &xhci->rh_bw[virt_dev->real_port - 1].tts); 837 tt_info->slot_id = virt_dev->udev->slot_id; 838 if (tt->multi) 839 tt_info->ttport = i+1; 840 bw_table = &tt_info->bw_table; 841 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 842 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 843 } 844 return 0; 845 846 free_tts: 847 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id); 848 return -ENOMEM; 849 } 850 851 852 /* All the xhci_tds in the ring's TD list should be freed at this point. 853 * Should be called with xhci->lock held if there is any chance the TT lists 854 * will be manipulated by the configure endpoint, allocate device, or update 855 * hub functions while this function is removing the TT entries from the list. 856 */ 857 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id) 858 { 859 struct xhci_virt_device *dev; 860 int i; 861 int old_active_eps = 0; 862 863 /* Slot ID 0 is reserved */ 864 if (slot_id == 0 || !xhci->devs[slot_id]) 865 return; 866 867 dev = xhci->devs[slot_id]; 868 869 xhci->dcbaa->dev_context_ptrs[slot_id] = 0; 870 if (!dev) 871 return; 872 873 trace_xhci_free_virt_device(dev); 874 875 if (dev->tt_info) 876 old_active_eps = dev->tt_info->active_eps; 877 878 for (i = 0; i < 31; i++) { 879 if (dev->eps[i].ring) 880 xhci_ring_free(xhci, dev->eps[i].ring); 881 if (dev->eps[i].stream_info) 882 xhci_free_stream_info(xhci, 883 dev->eps[i].stream_info); 884 /* 885 * Endpoints are normally deleted from the bandwidth list when 886 * endpoints are dropped, before device is freed. 887 * If host is dying or being removed then endpoints aren't 888 * dropped cleanly, so delete the endpoint from list here. 889 * Only applicable for hosts with software bandwidth checking. 890 */ 891 892 if (!list_empty(&dev->eps[i].bw_endpoint_list)) { 893 list_del_init(&dev->eps[i].bw_endpoint_list); 894 xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n", 895 slot_id, i); 896 } 897 } 898 /* If this is a hub, free the TT(s) from the TT list */ 899 xhci_free_tt_info(xhci, dev, slot_id); 900 /* If necessary, update the number of active TTs on this root port */ 901 xhci_update_tt_active_eps(xhci, dev, old_active_eps); 902 903 if (dev->in_ctx) 904 xhci_free_container_ctx(xhci, dev->in_ctx); 905 if (dev->out_ctx) 906 xhci_free_container_ctx(xhci, dev->out_ctx); 907 908 if (dev->udev && dev->udev->slot_id) 909 dev->udev->slot_id = 0; 910 kfree(xhci->devs[slot_id]); 911 xhci->devs[slot_id] = NULL; 912 } 913 914 /* 915 * Free a virt_device structure. 916 * If the virt_device added a tt_info (a hub) and has children pointing to 917 * that tt_info, then free the child first. Recursive. 918 * We can't rely on udev at this point to find child-parent relationships. 919 */ 920 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id) 921 { 922 struct xhci_virt_device *vdev; 923 struct list_head *tt_list_head; 924 struct xhci_tt_bw_info *tt_info, *next; 925 int i; 926 927 vdev = xhci->devs[slot_id]; 928 if (!vdev) 929 return; 930 931 if (vdev->real_port == 0 || 932 vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) { 933 xhci_dbg(xhci, "Bad vdev->real_port.\n"); 934 goto out; 935 } 936 937 tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts); 938 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { 939 /* is this a hub device that added a tt_info to the tts list */ 940 if (tt_info->slot_id == slot_id) { 941 /* are any devices using this tt_info? */ 942 for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 943 vdev = xhci->devs[i]; 944 if (vdev && (vdev->tt_info == tt_info)) 945 xhci_free_virt_devices_depth_first( 946 xhci, i); 947 } 948 } 949 } 950 out: 951 /* we are now at a leaf device */ 952 xhci_debugfs_remove_slot(xhci, slot_id); 953 xhci_free_virt_device(xhci, slot_id); 954 } 955 956 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id, 957 struct usb_device *udev, gfp_t flags) 958 { 959 struct xhci_virt_device *dev; 960 int i; 961 962 /* Slot ID 0 is reserved */ 963 if (slot_id == 0 || xhci->devs[slot_id]) { 964 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id); 965 return 0; 966 } 967 968 dev = kzalloc(sizeof(*dev), flags); 969 if (!dev) 970 return 0; 971 972 dev->slot_id = slot_id; 973 974 /* Allocate the (output) device context that will be used in the HC. */ 975 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags); 976 if (!dev->out_ctx) 977 goto fail; 978 979 xhci_dbg(xhci, "Slot %d output ctx = 0x%pad (dma)\n", slot_id, &dev->out_ctx->dma); 980 981 /* Allocate the (input) device context for address device command */ 982 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags); 983 if (!dev->in_ctx) 984 goto fail; 985 986 xhci_dbg(xhci, "Slot %d input ctx = 0x%pad (dma)\n", slot_id, &dev->in_ctx->dma); 987 988 /* Initialize the cancellation and bandwidth list for each ep */ 989 for (i = 0; i < 31; i++) { 990 dev->eps[i].ep_index = i; 991 dev->eps[i].vdev = dev; 992 dev->eps[i].xhci = xhci; 993 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list); 994 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list); 995 } 996 997 /* Allocate endpoint 0 ring */ 998 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags); 999 if (!dev->eps[0].ring) 1000 goto fail; 1001 1002 dev->udev = udev; 1003 1004 /* Point to output device context in dcbaa. */ 1005 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma); 1006 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n", 1007 slot_id, 1008 &xhci->dcbaa->dev_context_ptrs[slot_id], 1009 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id])); 1010 1011 trace_xhci_alloc_virt_device(dev); 1012 1013 xhci->devs[slot_id] = dev; 1014 1015 return 1; 1016 fail: 1017 1018 if (dev->in_ctx) 1019 xhci_free_container_ctx(xhci, dev->in_ctx); 1020 if (dev->out_ctx) 1021 xhci_free_container_ctx(xhci, dev->out_ctx); 1022 kfree(dev); 1023 1024 return 0; 1025 } 1026 1027 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci, 1028 struct usb_device *udev) 1029 { 1030 struct xhci_virt_device *virt_dev; 1031 struct xhci_ep_ctx *ep0_ctx; 1032 struct xhci_ring *ep_ring; 1033 1034 virt_dev = xhci->devs[udev->slot_id]; 1035 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0); 1036 ep_ring = virt_dev->eps[0].ring; 1037 /* 1038 * FIXME we don't keep track of the dequeue pointer very well after a 1039 * Set TR dequeue pointer, so we're setting the dequeue pointer of the 1040 * host to our enqueue pointer. This should only be called after a 1041 * configured device has reset, so all control transfers should have 1042 * been completed or cancelled before the reset. 1043 */ 1044 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg, 1045 ep_ring->enqueue) 1046 | ep_ring->cycle_state); 1047 } 1048 1049 /* 1050 * The xHCI roothub may have ports of differing speeds in any order in the port 1051 * status registers. 1052 * 1053 * The xHCI hardware wants to know the roothub port number that the USB device 1054 * is attached to (or the roothub port its ancestor hub is attached to). All we 1055 * know is the index of that port under either the USB 2.0 or the USB 3.0 1056 * roothub, but that doesn't give us the real index into the HW port status 1057 * registers. Call xhci_find_raw_port_number() to get real index. 1058 */ 1059 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci, 1060 struct usb_device *udev) 1061 { 1062 struct usb_device *top_dev; 1063 struct usb_hcd *hcd; 1064 1065 if (udev->speed >= USB_SPEED_SUPER) 1066 hcd = xhci_get_usb3_hcd(xhci); 1067 else 1068 hcd = xhci->main_hcd; 1069 1070 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 1071 top_dev = top_dev->parent) 1072 /* Found device below root hub */; 1073 1074 return xhci_find_raw_port_number(hcd, top_dev->portnum); 1075 } 1076 1077 /* Setup an xHCI virtual device for a Set Address command */ 1078 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev) 1079 { 1080 struct xhci_virt_device *dev; 1081 struct xhci_ep_ctx *ep0_ctx; 1082 struct xhci_slot_ctx *slot_ctx; 1083 u32 port_num; 1084 u32 max_packets; 1085 struct usb_device *top_dev; 1086 1087 dev = xhci->devs[udev->slot_id]; 1088 /* Slot ID 0 is reserved */ 1089 if (udev->slot_id == 0 || !dev) { 1090 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n", 1091 udev->slot_id); 1092 return -EINVAL; 1093 } 1094 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0); 1095 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx); 1096 1097 /* 3) Only the control endpoint is valid - one endpoint context */ 1098 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route); 1099 switch (udev->speed) { 1100 case USB_SPEED_SUPER_PLUS: 1101 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP); 1102 max_packets = MAX_PACKET(512); 1103 break; 1104 case USB_SPEED_SUPER: 1105 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS); 1106 max_packets = MAX_PACKET(512); 1107 break; 1108 case USB_SPEED_HIGH: 1109 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS); 1110 max_packets = MAX_PACKET(64); 1111 break; 1112 /* USB core guesses at a 64-byte max packet first for FS devices */ 1113 case USB_SPEED_FULL: 1114 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS); 1115 max_packets = MAX_PACKET(64); 1116 break; 1117 case USB_SPEED_LOW: 1118 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS); 1119 max_packets = MAX_PACKET(8); 1120 break; 1121 default: 1122 /* Speed was set earlier, this shouldn't happen. */ 1123 return -EINVAL; 1124 } 1125 /* Find the root hub port this device is under */ 1126 port_num = xhci_find_real_port_number(xhci, udev); 1127 if (!port_num) 1128 return -EINVAL; 1129 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num)); 1130 /* Set the port number in the virtual_device to the faked port number */ 1131 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 1132 top_dev = top_dev->parent) 1133 /* Found device below root hub */; 1134 dev->fake_port = top_dev->portnum; 1135 dev->real_port = port_num; 1136 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num); 1137 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port); 1138 1139 /* Find the right bandwidth table that this device will be a part of. 1140 * If this is a full speed device attached directly to a root port (or a 1141 * decendent of one), it counts as a primary bandwidth domain, not a 1142 * secondary bandwidth domain under a TT. An xhci_tt_info structure 1143 * will never be created for the HS root hub. 1144 */ 1145 if (!udev->tt || !udev->tt->hub->parent) { 1146 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table; 1147 } else { 1148 struct xhci_root_port_bw_info *rh_bw; 1149 struct xhci_tt_bw_info *tt_bw; 1150 1151 rh_bw = &xhci->rh_bw[port_num - 1]; 1152 /* Find the right TT. */ 1153 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) { 1154 if (tt_bw->slot_id != udev->tt->hub->slot_id) 1155 continue; 1156 1157 if (!dev->udev->tt->multi || 1158 (udev->tt->multi && 1159 tt_bw->ttport == dev->udev->ttport)) { 1160 dev->bw_table = &tt_bw->bw_table; 1161 dev->tt_info = tt_bw; 1162 break; 1163 } 1164 } 1165 if (!dev->tt_info) 1166 xhci_warn(xhci, "WARN: Didn't find a matching TT\n"); 1167 } 1168 1169 /* Is this a LS/FS device under an external HS hub? */ 1170 if (udev->tt && udev->tt->hub->parent) { 1171 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id | 1172 (udev->ttport << 8)); 1173 if (udev->tt->multi) 1174 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 1175 } 1176 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt); 1177 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport); 1178 1179 /* Step 4 - ring already allocated */ 1180 /* Step 5 */ 1181 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP)); 1182 1183 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */ 1184 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) | 1185 max_packets); 1186 1187 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma | 1188 dev->eps[0].ring->cycle_state); 1189 1190 trace_xhci_setup_addressable_virt_device(dev); 1191 1192 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */ 1193 1194 return 0; 1195 } 1196 1197 /* 1198 * Convert interval expressed as 2^(bInterval - 1) == interval into 1199 * straight exponent value 2^n == interval. 1200 * 1201 */ 1202 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev, 1203 struct usb_host_endpoint *ep) 1204 { 1205 unsigned int interval; 1206 1207 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1; 1208 if (interval != ep->desc.bInterval - 1) 1209 dev_warn(&udev->dev, 1210 "ep %#x - rounding interval to %d %sframes\n", 1211 ep->desc.bEndpointAddress, 1212 1 << interval, 1213 udev->speed == USB_SPEED_FULL ? "" : "micro"); 1214 1215 if (udev->speed == USB_SPEED_FULL) { 1216 /* 1217 * Full speed isoc endpoints specify interval in frames, 1218 * not microframes. We are using microframes everywhere, 1219 * so adjust accordingly. 1220 */ 1221 interval += 3; /* 1 frame = 2^3 uframes */ 1222 } 1223 1224 return interval; 1225 } 1226 1227 /* 1228 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of 1229 * microframes, rounded down to nearest power of 2. 1230 */ 1231 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev, 1232 struct usb_host_endpoint *ep, unsigned int desc_interval, 1233 unsigned int min_exponent, unsigned int max_exponent) 1234 { 1235 unsigned int interval; 1236 1237 interval = fls(desc_interval) - 1; 1238 interval = clamp_val(interval, min_exponent, max_exponent); 1239 if ((1 << interval) != desc_interval) 1240 dev_dbg(&udev->dev, 1241 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n", 1242 ep->desc.bEndpointAddress, 1243 1 << interval, 1244 desc_interval); 1245 1246 return interval; 1247 } 1248 1249 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev, 1250 struct usb_host_endpoint *ep) 1251 { 1252 if (ep->desc.bInterval == 0) 1253 return 0; 1254 return xhci_microframes_to_exponent(udev, ep, 1255 ep->desc.bInterval, 0, 15); 1256 } 1257 1258 1259 static unsigned int xhci_parse_frame_interval(struct usb_device *udev, 1260 struct usb_host_endpoint *ep) 1261 { 1262 return xhci_microframes_to_exponent(udev, ep, 1263 ep->desc.bInterval * 8, 3, 10); 1264 } 1265 1266 /* Return the polling or NAK interval. 1267 * 1268 * The polling interval is expressed in "microframes". If xHCI's Interval field 1269 * is set to N, it will service the endpoint every 2^(Interval)*125us. 1270 * 1271 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval 1272 * is set to 0. 1273 */ 1274 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev, 1275 struct usb_host_endpoint *ep) 1276 { 1277 unsigned int interval = 0; 1278 1279 switch (udev->speed) { 1280 case USB_SPEED_HIGH: 1281 /* Max NAK rate */ 1282 if (usb_endpoint_xfer_control(&ep->desc) || 1283 usb_endpoint_xfer_bulk(&ep->desc)) { 1284 interval = xhci_parse_microframe_interval(udev, ep); 1285 break; 1286 } 1287 fallthrough; /* SS and HS isoc/int have same decoding */ 1288 1289 case USB_SPEED_SUPER_PLUS: 1290 case USB_SPEED_SUPER: 1291 if (usb_endpoint_xfer_int(&ep->desc) || 1292 usb_endpoint_xfer_isoc(&ep->desc)) { 1293 interval = xhci_parse_exponent_interval(udev, ep); 1294 } 1295 break; 1296 1297 case USB_SPEED_FULL: 1298 if (usb_endpoint_xfer_isoc(&ep->desc)) { 1299 interval = xhci_parse_exponent_interval(udev, ep); 1300 break; 1301 } 1302 /* 1303 * Fall through for interrupt endpoint interval decoding 1304 * since it uses the same rules as low speed interrupt 1305 * endpoints. 1306 */ 1307 fallthrough; 1308 1309 case USB_SPEED_LOW: 1310 if (usb_endpoint_xfer_int(&ep->desc) || 1311 usb_endpoint_xfer_isoc(&ep->desc)) { 1312 1313 interval = xhci_parse_frame_interval(udev, ep); 1314 } 1315 break; 1316 1317 default: 1318 BUG(); 1319 } 1320 return interval; 1321 } 1322 1323 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps. 1324 * High speed endpoint descriptors can define "the number of additional 1325 * transaction opportunities per microframe", but that goes in the Max Burst 1326 * endpoint context field. 1327 */ 1328 static u32 xhci_get_endpoint_mult(struct usb_device *udev, 1329 struct usb_host_endpoint *ep) 1330 { 1331 if (udev->speed < USB_SPEED_SUPER || 1332 !usb_endpoint_xfer_isoc(&ep->desc)) 1333 return 0; 1334 return ep->ss_ep_comp.bmAttributes; 1335 } 1336 1337 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev, 1338 struct usb_host_endpoint *ep) 1339 { 1340 /* Super speed and Plus have max burst in ep companion desc */ 1341 if (udev->speed >= USB_SPEED_SUPER) 1342 return ep->ss_ep_comp.bMaxBurst; 1343 1344 if (udev->speed == USB_SPEED_HIGH && 1345 (usb_endpoint_xfer_isoc(&ep->desc) || 1346 usb_endpoint_xfer_int(&ep->desc))) 1347 return usb_endpoint_maxp_mult(&ep->desc) - 1; 1348 1349 return 0; 1350 } 1351 1352 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep) 1353 { 1354 int in; 1355 1356 in = usb_endpoint_dir_in(&ep->desc); 1357 1358 switch (usb_endpoint_type(&ep->desc)) { 1359 case USB_ENDPOINT_XFER_CONTROL: 1360 return CTRL_EP; 1361 case USB_ENDPOINT_XFER_BULK: 1362 return in ? BULK_IN_EP : BULK_OUT_EP; 1363 case USB_ENDPOINT_XFER_ISOC: 1364 return in ? ISOC_IN_EP : ISOC_OUT_EP; 1365 case USB_ENDPOINT_XFER_INT: 1366 return in ? INT_IN_EP : INT_OUT_EP; 1367 } 1368 return 0; 1369 } 1370 1371 /* Return the maximum endpoint service interval time (ESIT) payload. 1372 * Basically, this is the maxpacket size, multiplied by the burst size 1373 * and mult size. 1374 */ 1375 static u32 xhci_get_max_esit_payload(struct usb_device *udev, 1376 struct usb_host_endpoint *ep) 1377 { 1378 int max_burst; 1379 int max_packet; 1380 1381 /* Only applies for interrupt or isochronous endpoints */ 1382 if (usb_endpoint_xfer_control(&ep->desc) || 1383 usb_endpoint_xfer_bulk(&ep->desc)) 1384 return 0; 1385 1386 /* SuperSpeedPlus Isoc ep sending over 48k per esit */ 1387 if ((udev->speed >= USB_SPEED_SUPER_PLUS) && 1388 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes)) 1389 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval); 1390 1391 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */ 1392 if (udev->speed >= USB_SPEED_SUPER) 1393 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); 1394 1395 max_packet = usb_endpoint_maxp(&ep->desc); 1396 max_burst = usb_endpoint_maxp_mult(&ep->desc); 1397 /* A 0 in max burst means 1 transfer per ESIT */ 1398 return max_packet * max_burst; 1399 } 1400 1401 /* Set up an endpoint with one ring segment. Do not allocate stream rings. 1402 * Drivers will have to call usb_alloc_streams() to do that. 1403 */ 1404 int xhci_endpoint_init(struct xhci_hcd *xhci, 1405 struct xhci_virt_device *virt_dev, 1406 struct usb_device *udev, 1407 struct usb_host_endpoint *ep, 1408 gfp_t mem_flags) 1409 { 1410 unsigned int ep_index; 1411 struct xhci_ep_ctx *ep_ctx; 1412 struct xhci_ring *ep_ring; 1413 unsigned int max_packet; 1414 enum xhci_ring_type ring_type; 1415 u32 max_esit_payload; 1416 u32 endpoint_type; 1417 unsigned int max_burst; 1418 unsigned int interval; 1419 unsigned int mult; 1420 unsigned int avg_trb_len; 1421 unsigned int err_count = 0; 1422 1423 ep_index = xhci_get_endpoint_index(&ep->desc); 1424 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1425 1426 endpoint_type = xhci_get_endpoint_type(ep); 1427 if (!endpoint_type) 1428 return -EINVAL; 1429 1430 ring_type = usb_endpoint_type(&ep->desc); 1431 1432 /* 1433 * Get values to fill the endpoint context, mostly from ep descriptor. 1434 * The average TRB buffer lengt for bulk endpoints is unclear as we 1435 * have no clue on scatter gather list entry size. For Isoc and Int, 1436 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details. 1437 */ 1438 max_esit_payload = xhci_get_max_esit_payload(udev, ep); 1439 interval = xhci_get_endpoint_interval(udev, ep); 1440 1441 /* Periodic endpoint bInterval limit quirk */ 1442 if (usb_endpoint_xfer_int(&ep->desc) || 1443 usb_endpoint_xfer_isoc(&ep->desc)) { 1444 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) && 1445 udev->speed >= USB_SPEED_HIGH && 1446 interval >= 7) { 1447 interval = 6; 1448 } 1449 } 1450 1451 mult = xhci_get_endpoint_mult(udev, ep); 1452 max_packet = usb_endpoint_maxp(&ep->desc); 1453 max_burst = xhci_get_endpoint_max_burst(udev, ep); 1454 avg_trb_len = max_esit_payload; 1455 1456 /* FIXME dig Mult and streams info out of ep companion desc */ 1457 1458 /* Allow 3 retries for everything but isoc, set CErr = 3 */ 1459 if (!usb_endpoint_xfer_isoc(&ep->desc)) 1460 err_count = 3; 1461 /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */ 1462 if (usb_endpoint_xfer_bulk(&ep->desc)) { 1463 if (udev->speed == USB_SPEED_HIGH) 1464 max_packet = 512; 1465 if (udev->speed == USB_SPEED_FULL) { 1466 max_packet = rounddown_pow_of_two(max_packet); 1467 max_packet = clamp_val(max_packet, 8, 64); 1468 } 1469 } 1470 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */ 1471 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100) 1472 avg_trb_len = 8; 1473 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */ 1474 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2)) 1475 mult = 0; 1476 1477 /* Set up the endpoint ring */ 1478 virt_dev->eps[ep_index].new_ring = 1479 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags); 1480 if (!virt_dev->eps[ep_index].new_ring) 1481 return -ENOMEM; 1482 1483 virt_dev->eps[ep_index].skip = false; 1484 ep_ring = virt_dev->eps[ep_index].new_ring; 1485 1486 /* Fill the endpoint context */ 1487 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) | 1488 EP_INTERVAL(interval) | 1489 EP_MULT(mult)); 1490 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) | 1491 MAX_PACKET(max_packet) | 1492 MAX_BURST(max_burst) | 1493 ERROR_COUNT(err_count)); 1494 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | 1495 ep_ring->cycle_state); 1496 1497 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) | 1498 EP_AVG_TRB_LENGTH(avg_trb_len)); 1499 1500 return 0; 1501 } 1502 1503 void xhci_endpoint_zero(struct xhci_hcd *xhci, 1504 struct xhci_virt_device *virt_dev, 1505 struct usb_host_endpoint *ep) 1506 { 1507 unsigned int ep_index; 1508 struct xhci_ep_ctx *ep_ctx; 1509 1510 ep_index = xhci_get_endpoint_index(&ep->desc); 1511 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1512 1513 ep_ctx->ep_info = 0; 1514 ep_ctx->ep_info2 = 0; 1515 ep_ctx->deq = 0; 1516 ep_ctx->tx_info = 0; 1517 /* Don't free the endpoint ring until the set interface or configuration 1518 * request succeeds. 1519 */ 1520 } 1521 1522 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info) 1523 { 1524 bw_info->ep_interval = 0; 1525 bw_info->mult = 0; 1526 bw_info->num_packets = 0; 1527 bw_info->max_packet_size = 0; 1528 bw_info->type = 0; 1529 bw_info->max_esit_payload = 0; 1530 } 1531 1532 void xhci_update_bw_info(struct xhci_hcd *xhci, 1533 struct xhci_container_ctx *in_ctx, 1534 struct xhci_input_control_ctx *ctrl_ctx, 1535 struct xhci_virt_device *virt_dev) 1536 { 1537 struct xhci_bw_info *bw_info; 1538 struct xhci_ep_ctx *ep_ctx; 1539 unsigned int ep_type; 1540 int i; 1541 1542 for (i = 1; i < 31; i++) { 1543 bw_info = &virt_dev->eps[i].bw_info; 1544 1545 /* We can't tell what endpoint type is being dropped, but 1546 * unconditionally clearing the bandwidth info for non-periodic 1547 * endpoints should be harmless because the info will never be 1548 * set in the first place. 1549 */ 1550 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) { 1551 /* Dropped endpoint */ 1552 xhci_clear_endpoint_bw_info(bw_info); 1553 continue; 1554 } 1555 1556 if (EP_IS_ADDED(ctrl_ctx, i)) { 1557 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i); 1558 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2)); 1559 1560 /* Ignore non-periodic endpoints */ 1561 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 1562 ep_type != ISOC_IN_EP && 1563 ep_type != INT_IN_EP) 1564 continue; 1565 1566 /* Added or changed endpoint */ 1567 bw_info->ep_interval = CTX_TO_EP_INTERVAL( 1568 le32_to_cpu(ep_ctx->ep_info)); 1569 /* Number of packets and mult are zero-based in the 1570 * input context, but we want one-based for the 1571 * interval table. 1572 */ 1573 bw_info->mult = CTX_TO_EP_MULT( 1574 le32_to_cpu(ep_ctx->ep_info)) + 1; 1575 bw_info->num_packets = CTX_TO_MAX_BURST( 1576 le32_to_cpu(ep_ctx->ep_info2)) + 1; 1577 bw_info->max_packet_size = MAX_PACKET_DECODED( 1578 le32_to_cpu(ep_ctx->ep_info2)); 1579 bw_info->type = ep_type; 1580 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD( 1581 le32_to_cpu(ep_ctx->tx_info)); 1582 } 1583 } 1584 } 1585 1586 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy. 1587 * Useful when you want to change one particular aspect of the endpoint and then 1588 * issue a configure endpoint command. 1589 */ 1590 void xhci_endpoint_copy(struct xhci_hcd *xhci, 1591 struct xhci_container_ctx *in_ctx, 1592 struct xhci_container_ctx *out_ctx, 1593 unsigned int ep_index) 1594 { 1595 struct xhci_ep_ctx *out_ep_ctx; 1596 struct xhci_ep_ctx *in_ep_ctx; 1597 1598 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1599 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 1600 1601 in_ep_ctx->ep_info = out_ep_ctx->ep_info; 1602 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2; 1603 in_ep_ctx->deq = out_ep_ctx->deq; 1604 in_ep_ctx->tx_info = out_ep_ctx->tx_info; 1605 if (xhci->quirks & XHCI_MTK_HOST) { 1606 in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0]; 1607 in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1]; 1608 } 1609 } 1610 1611 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx. 1612 * Useful when you want to change one particular aspect of the endpoint and then 1613 * issue a configure endpoint command. Only the context entries field matters, 1614 * but we'll copy the whole thing anyway. 1615 */ 1616 void xhci_slot_copy(struct xhci_hcd *xhci, 1617 struct xhci_container_ctx *in_ctx, 1618 struct xhci_container_ctx *out_ctx) 1619 { 1620 struct xhci_slot_ctx *in_slot_ctx; 1621 struct xhci_slot_ctx *out_slot_ctx; 1622 1623 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1624 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx); 1625 1626 in_slot_ctx->dev_info = out_slot_ctx->dev_info; 1627 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2; 1628 in_slot_ctx->tt_info = out_slot_ctx->tt_info; 1629 in_slot_ctx->dev_state = out_slot_ctx->dev_state; 1630 } 1631 1632 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */ 1633 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags) 1634 { 1635 int i; 1636 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1637 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1638 1639 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1640 "Allocating %d scratchpad buffers", num_sp); 1641 1642 if (!num_sp) 1643 return 0; 1644 1645 xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags, 1646 dev_to_node(dev)); 1647 if (!xhci->scratchpad) 1648 goto fail_sp; 1649 1650 xhci->scratchpad->sp_array = dma_alloc_coherent(dev, 1651 size_mul(sizeof(u64), num_sp), 1652 &xhci->scratchpad->sp_dma, flags); 1653 if (!xhci->scratchpad->sp_array) 1654 goto fail_sp2; 1655 1656 xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *), 1657 flags, dev_to_node(dev)); 1658 if (!xhci->scratchpad->sp_buffers) 1659 goto fail_sp3; 1660 1661 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma); 1662 for (i = 0; i < num_sp; i++) { 1663 dma_addr_t dma; 1664 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma, 1665 flags); 1666 if (!buf) 1667 goto fail_sp4; 1668 1669 xhci->scratchpad->sp_array[i] = dma; 1670 xhci->scratchpad->sp_buffers[i] = buf; 1671 } 1672 1673 return 0; 1674 1675 fail_sp4: 1676 while (i--) 1677 dma_free_coherent(dev, xhci->page_size, 1678 xhci->scratchpad->sp_buffers[i], 1679 xhci->scratchpad->sp_array[i]); 1680 1681 kfree(xhci->scratchpad->sp_buffers); 1682 1683 fail_sp3: 1684 dma_free_coherent(dev, num_sp * sizeof(u64), 1685 xhci->scratchpad->sp_array, 1686 xhci->scratchpad->sp_dma); 1687 1688 fail_sp2: 1689 kfree(xhci->scratchpad); 1690 xhci->scratchpad = NULL; 1691 1692 fail_sp: 1693 return -ENOMEM; 1694 } 1695 1696 static void scratchpad_free(struct xhci_hcd *xhci) 1697 { 1698 int num_sp; 1699 int i; 1700 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1701 1702 if (!xhci->scratchpad) 1703 return; 1704 1705 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1706 1707 for (i = 0; i < num_sp; i++) { 1708 dma_free_coherent(dev, xhci->page_size, 1709 xhci->scratchpad->sp_buffers[i], 1710 xhci->scratchpad->sp_array[i]); 1711 } 1712 kfree(xhci->scratchpad->sp_buffers); 1713 dma_free_coherent(dev, num_sp * sizeof(u64), 1714 xhci->scratchpad->sp_array, 1715 xhci->scratchpad->sp_dma); 1716 kfree(xhci->scratchpad); 1717 xhci->scratchpad = NULL; 1718 } 1719 1720 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci, 1721 bool allocate_completion, gfp_t mem_flags) 1722 { 1723 struct xhci_command *command; 1724 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1725 1726 command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev)); 1727 if (!command) 1728 return NULL; 1729 1730 if (allocate_completion) { 1731 command->completion = 1732 kzalloc_node(sizeof(struct completion), mem_flags, 1733 dev_to_node(dev)); 1734 if (!command->completion) { 1735 kfree(command); 1736 return NULL; 1737 } 1738 init_completion(command->completion); 1739 } 1740 1741 command->status = 0; 1742 INIT_LIST_HEAD(&command->cmd_list); 1743 return command; 1744 } 1745 1746 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci, 1747 bool allocate_completion, gfp_t mem_flags) 1748 { 1749 struct xhci_command *command; 1750 1751 command = xhci_alloc_command(xhci, allocate_completion, mem_flags); 1752 if (!command) 1753 return NULL; 1754 1755 command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, 1756 mem_flags); 1757 if (!command->in_ctx) { 1758 kfree(command->completion); 1759 kfree(command); 1760 return NULL; 1761 } 1762 return command; 1763 } 1764 1765 void xhci_urb_free_priv(struct urb_priv *urb_priv) 1766 { 1767 kfree(urb_priv); 1768 } 1769 1770 void xhci_free_command(struct xhci_hcd *xhci, 1771 struct xhci_command *command) 1772 { 1773 xhci_free_container_ctx(xhci, 1774 command->in_ctx); 1775 kfree(command->completion); 1776 kfree(command); 1777 } 1778 1779 static int xhci_alloc_erst(struct xhci_hcd *xhci, 1780 struct xhci_ring *evt_ring, 1781 struct xhci_erst *erst, 1782 gfp_t flags) 1783 { 1784 size_t size; 1785 unsigned int val; 1786 struct xhci_segment *seg; 1787 struct xhci_erst_entry *entry; 1788 1789 size = size_mul(sizeof(struct xhci_erst_entry), evt_ring->num_segs); 1790 erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev, 1791 size, &erst->erst_dma_addr, flags); 1792 if (!erst->entries) 1793 return -ENOMEM; 1794 1795 erst->num_entries = evt_ring->num_segs; 1796 1797 seg = evt_ring->first_seg; 1798 for (val = 0; val < evt_ring->num_segs; val++) { 1799 entry = &erst->entries[val]; 1800 entry->seg_addr = cpu_to_le64(seg->dma); 1801 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT); 1802 entry->rsvd = 0; 1803 seg = seg->next; 1804 } 1805 1806 return 0; 1807 } 1808 1809 static void 1810 xhci_remove_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir) 1811 { 1812 u32 tmp; 1813 1814 if (!ir) 1815 return; 1816 1817 /* 1818 * Clean out interrupter registers except ERSTBA. Clearing either the 1819 * low or high 32 bits of ERSTBA immediately causes the controller to 1820 * dereference the partially cleared 64 bit address, causing IOMMU error. 1821 */ 1822 if (ir->ir_set) { 1823 tmp = readl(&ir->ir_set->erst_size); 1824 tmp &= ERST_SIZE_MASK; 1825 writel(tmp, &ir->ir_set->erst_size); 1826 1827 xhci_write_64(xhci, ERST_EHB, &ir->ir_set->erst_dequeue); 1828 } 1829 } 1830 1831 static void 1832 xhci_free_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir) 1833 { 1834 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1835 size_t erst_size; 1836 1837 if (!ir) 1838 return; 1839 1840 erst_size = sizeof(struct xhci_erst_entry) * ir->erst.num_entries; 1841 if (ir->erst.entries) 1842 dma_free_coherent(dev, erst_size, 1843 ir->erst.entries, 1844 ir->erst.erst_dma_addr); 1845 ir->erst.entries = NULL; 1846 1847 /* free interrupter event ring */ 1848 if (ir->event_ring) 1849 xhci_ring_free(xhci, ir->event_ring); 1850 1851 ir->event_ring = NULL; 1852 1853 kfree(ir); 1854 } 1855 1856 void xhci_mem_cleanup(struct xhci_hcd *xhci) 1857 { 1858 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1859 int i, j, num_ports; 1860 1861 cancel_delayed_work_sync(&xhci->cmd_timer); 1862 1863 xhci_remove_interrupter(xhci, xhci->interrupter); 1864 xhci_free_interrupter(xhci, xhci->interrupter); 1865 xhci->interrupter = NULL; 1866 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed primary event ring"); 1867 1868 if (xhci->cmd_ring) 1869 xhci_ring_free(xhci, xhci->cmd_ring); 1870 xhci->cmd_ring = NULL; 1871 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring"); 1872 xhci_cleanup_command_queue(xhci); 1873 1874 num_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1875 for (i = 0; i < num_ports && xhci->rh_bw; i++) { 1876 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table; 1877 for (j = 0; j < XHCI_MAX_INTERVAL; j++) { 1878 struct list_head *ep = &bwt->interval_bw[j].endpoints; 1879 while (!list_empty(ep)) 1880 list_del_init(ep->next); 1881 } 1882 } 1883 1884 for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--) 1885 xhci_free_virt_devices_depth_first(xhci, i); 1886 1887 dma_pool_destroy(xhci->segment_pool); 1888 xhci->segment_pool = NULL; 1889 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool"); 1890 1891 dma_pool_destroy(xhci->device_pool); 1892 xhci->device_pool = NULL; 1893 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool"); 1894 1895 dma_pool_destroy(xhci->small_streams_pool); 1896 xhci->small_streams_pool = NULL; 1897 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1898 "Freed small stream array pool"); 1899 1900 dma_pool_destroy(xhci->medium_streams_pool); 1901 xhci->medium_streams_pool = NULL; 1902 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1903 "Freed medium stream array pool"); 1904 1905 if (xhci->dcbaa) 1906 dma_free_coherent(dev, sizeof(*xhci->dcbaa), 1907 xhci->dcbaa, xhci->dcbaa->dma); 1908 xhci->dcbaa = NULL; 1909 1910 scratchpad_free(xhci); 1911 1912 if (!xhci->rh_bw) 1913 goto no_bw; 1914 1915 for (i = 0; i < num_ports; i++) { 1916 struct xhci_tt_bw_info *tt, *n; 1917 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) { 1918 list_del(&tt->tt_list); 1919 kfree(tt); 1920 } 1921 } 1922 1923 no_bw: 1924 xhci->cmd_ring_reserved_trbs = 0; 1925 xhci->usb2_rhub.num_ports = 0; 1926 xhci->usb3_rhub.num_ports = 0; 1927 xhci->num_active_eps = 0; 1928 kfree(xhci->usb2_rhub.ports); 1929 kfree(xhci->usb3_rhub.ports); 1930 kfree(xhci->hw_ports); 1931 kfree(xhci->rh_bw); 1932 kfree(xhci->ext_caps); 1933 for (i = 0; i < xhci->num_port_caps; i++) 1934 kfree(xhci->port_caps[i].psi); 1935 kfree(xhci->port_caps); 1936 xhci->num_port_caps = 0; 1937 1938 xhci->usb2_rhub.ports = NULL; 1939 xhci->usb3_rhub.ports = NULL; 1940 xhci->hw_ports = NULL; 1941 xhci->rh_bw = NULL; 1942 xhci->ext_caps = NULL; 1943 xhci->port_caps = NULL; 1944 1945 xhci->page_size = 0; 1946 xhci->page_shift = 0; 1947 xhci->usb2_rhub.bus_state.bus_suspended = 0; 1948 xhci->usb3_rhub.bus_state.bus_suspended = 0; 1949 } 1950 1951 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci, struct xhci_interrupter *ir) 1952 { 1953 dma_addr_t deq; 1954 1955 deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg, 1956 ir->event_ring->dequeue); 1957 if (!deq) 1958 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr.\n"); 1959 /* Update HC event ring dequeue pointer */ 1960 /* Don't clear the EHB bit (which is RW1C) because 1961 * there might be more events to service. 1962 */ 1963 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1964 "// Write event ring dequeue pointer, preserving EHB bit"); 1965 xhci_write_64(xhci, deq & ERST_PTR_MASK, &ir->ir_set->erst_dequeue); 1966 } 1967 1968 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports, 1969 __le32 __iomem *addr, int max_caps) 1970 { 1971 u32 temp, port_offset, port_count; 1972 int i; 1973 u8 major_revision, minor_revision, tmp_minor_revision; 1974 struct xhci_hub *rhub; 1975 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1976 struct xhci_port_cap *port_cap; 1977 1978 temp = readl(addr); 1979 major_revision = XHCI_EXT_PORT_MAJOR(temp); 1980 minor_revision = XHCI_EXT_PORT_MINOR(temp); 1981 1982 if (major_revision == 0x03) { 1983 rhub = &xhci->usb3_rhub; 1984 /* 1985 * Some hosts incorrectly use sub-minor version for minor 1986 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01 1987 * for bcdUSB 0x310). Since there is no USB release with sub 1988 * minor version 0x301 to 0x309, we can assume that they are 1989 * incorrect and fix it here. 1990 */ 1991 if (minor_revision > 0x00 && minor_revision < 0x10) 1992 minor_revision <<= 4; 1993 /* 1994 * Some zhaoxin's xHCI controller that follow usb3.1 spec 1995 * but only support Gen1. 1996 */ 1997 if (xhci->quirks & XHCI_ZHAOXIN_HOST) { 1998 tmp_minor_revision = minor_revision; 1999 minor_revision = 0; 2000 } 2001 2002 } else if (major_revision <= 0x02) { 2003 rhub = &xhci->usb2_rhub; 2004 } else { 2005 xhci_warn(xhci, "Ignoring unknown port speed, Ext Cap %p, revision = 0x%x\n", 2006 addr, major_revision); 2007 /* Ignoring port protocol we can't understand. FIXME */ 2008 return; 2009 } 2010 2011 /* Port offset and count in the third dword, see section 7.2 */ 2012 temp = readl(addr + 2); 2013 port_offset = XHCI_EXT_PORT_OFF(temp); 2014 port_count = XHCI_EXT_PORT_COUNT(temp); 2015 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2016 "Ext Cap %p, port offset = %u, count = %u, revision = 0x%x", 2017 addr, port_offset, port_count, major_revision); 2018 /* Port count includes the current port offset */ 2019 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports) 2020 /* WTF? "Valid values are ‘1’ to MaxPorts" */ 2021 return; 2022 2023 port_cap = &xhci->port_caps[xhci->num_port_caps++]; 2024 if (xhci->num_port_caps > max_caps) 2025 return; 2026 2027 port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp); 2028 2029 if (port_cap->psi_count) { 2030 port_cap->psi = kcalloc_node(port_cap->psi_count, 2031 sizeof(*port_cap->psi), 2032 GFP_KERNEL, dev_to_node(dev)); 2033 if (!port_cap->psi) 2034 port_cap->psi_count = 0; 2035 2036 port_cap->psi_uid_count++; 2037 for (i = 0; i < port_cap->psi_count; i++) { 2038 port_cap->psi[i] = readl(addr + 4 + i); 2039 2040 /* count unique ID values, two consecutive entries can 2041 * have the same ID if link is assymetric 2042 */ 2043 if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) != 2044 XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1]))) 2045 port_cap->psi_uid_count++; 2046 2047 if (xhci->quirks & XHCI_ZHAOXIN_HOST && 2048 major_revision == 0x03 && 2049 XHCI_EXT_PORT_PSIV(port_cap->psi[i]) >= 5) 2050 minor_revision = tmp_minor_revision; 2051 2052 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n", 2053 XHCI_EXT_PORT_PSIV(port_cap->psi[i]), 2054 XHCI_EXT_PORT_PSIE(port_cap->psi[i]), 2055 XHCI_EXT_PORT_PLT(port_cap->psi[i]), 2056 XHCI_EXT_PORT_PFD(port_cap->psi[i]), 2057 XHCI_EXT_PORT_LP(port_cap->psi[i]), 2058 XHCI_EXT_PORT_PSIM(port_cap->psi[i])); 2059 } 2060 } 2061 2062 rhub->maj_rev = major_revision; 2063 2064 if (rhub->min_rev < minor_revision) 2065 rhub->min_rev = minor_revision; 2066 2067 port_cap->maj_rev = major_revision; 2068 port_cap->min_rev = minor_revision; 2069 2070 /* cache usb2 port capabilities */ 2071 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps) 2072 xhci->ext_caps[xhci->num_ext_caps++] = temp; 2073 2074 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) && 2075 (temp & XHCI_HLC)) { 2076 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2077 "xHCI 1.0: support USB2 hardware lpm"); 2078 xhci->hw_lpm_support = 1; 2079 } 2080 2081 port_offset--; 2082 for (i = port_offset; i < (port_offset + port_count); i++) { 2083 struct xhci_port *hw_port = &xhci->hw_ports[i]; 2084 /* Duplicate entry. Ignore the port if the revisions differ. */ 2085 if (hw_port->rhub) { 2086 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p, port %u\n", addr, i); 2087 xhci_warn(xhci, "Port was marked as USB %u, duplicated as USB %u\n", 2088 hw_port->rhub->maj_rev, major_revision); 2089 /* Only adjust the roothub port counts if we haven't 2090 * found a similar duplicate. 2091 */ 2092 if (hw_port->rhub != rhub && 2093 hw_port->hcd_portnum != DUPLICATE_ENTRY) { 2094 hw_port->rhub->num_ports--; 2095 hw_port->hcd_portnum = DUPLICATE_ENTRY; 2096 } 2097 continue; 2098 } 2099 hw_port->rhub = rhub; 2100 hw_port->port_cap = port_cap; 2101 rhub->num_ports++; 2102 } 2103 /* FIXME: Should we disable ports not in the Extended Capabilities? */ 2104 } 2105 2106 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci, 2107 struct xhci_hub *rhub, gfp_t flags) 2108 { 2109 int port_index = 0; 2110 int i; 2111 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2112 2113 if (!rhub->num_ports) 2114 return; 2115 rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports), 2116 flags, dev_to_node(dev)); 2117 if (!rhub->ports) 2118 return; 2119 2120 for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) { 2121 if (xhci->hw_ports[i].rhub != rhub || 2122 xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY) 2123 continue; 2124 xhci->hw_ports[i].hcd_portnum = port_index; 2125 rhub->ports[port_index] = &xhci->hw_ports[i]; 2126 port_index++; 2127 if (port_index == rhub->num_ports) 2128 break; 2129 } 2130 } 2131 2132 /* 2133 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that 2134 * specify what speeds each port is supposed to be. We can't count on the port 2135 * speed bits in the PORTSC register being correct until a device is connected, 2136 * but we need to set up the two fake roothubs with the correct number of USB 2137 * 3.0 and USB 2.0 ports at host controller initialization time. 2138 */ 2139 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags) 2140 { 2141 void __iomem *base; 2142 u32 offset; 2143 unsigned int num_ports; 2144 int i, j; 2145 int cap_count = 0; 2146 u32 cap_start; 2147 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2148 2149 num_ports = HCS_MAX_PORTS(xhci->hcs_params1); 2150 xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports), 2151 flags, dev_to_node(dev)); 2152 if (!xhci->hw_ports) 2153 return -ENOMEM; 2154 2155 for (i = 0; i < num_ports; i++) { 2156 xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base + 2157 NUM_PORT_REGS * i; 2158 xhci->hw_ports[i].hw_portnum = i; 2159 2160 init_completion(&xhci->hw_ports[i].rexit_done); 2161 init_completion(&xhci->hw_ports[i].u3exit_done); 2162 } 2163 2164 xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags, 2165 dev_to_node(dev)); 2166 if (!xhci->rh_bw) 2167 return -ENOMEM; 2168 for (i = 0; i < num_ports; i++) { 2169 struct xhci_interval_bw_table *bw_table; 2170 2171 INIT_LIST_HEAD(&xhci->rh_bw[i].tts); 2172 bw_table = &xhci->rh_bw[i].bw_table; 2173 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 2174 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 2175 } 2176 base = &xhci->cap_regs->hc_capbase; 2177 2178 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL); 2179 if (!cap_start) { 2180 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n"); 2181 return -ENODEV; 2182 } 2183 2184 offset = cap_start; 2185 /* count extended protocol capability entries for later caching */ 2186 while (offset) { 2187 cap_count++; 2188 offset = xhci_find_next_ext_cap(base, offset, 2189 XHCI_EXT_CAPS_PROTOCOL); 2190 } 2191 2192 xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps), 2193 flags, dev_to_node(dev)); 2194 if (!xhci->ext_caps) 2195 return -ENOMEM; 2196 2197 xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps), 2198 flags, dev_to_node(dev)); 2199 if (!xhci->port_caps) 2200 return -ENOMEM; 2201 2202 offset = cap_start; 2203 2204 while (offset) { 2205 xhci_add_in_port(xhci, num_ports, base + offset, cap_count); 2206 if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports == 2207 num_ports) 2208 break; 2209 offset = xhci_find_next_ext_cap(base, offset, 2210 XHCI_EXT_CAPS_PROTOCOL); 2211 } 2212 if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) { 2213 xhci_warn(xhci, "No ports on the roothubs?\n"); 2214 return -ENODEV; 2215 } 2216 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2217 "Found %u USB 2.0 ports and %u USB 3.0 ports.", 2218 xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports); 2219 2220 /* Place limits on the number of roothub ports so that the hub 2221 * descriptors aren't longer than the USB core will allocate. 2222 */ 2223 if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) { 2224 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2225 "Limiting USB 3.0 roothub ports to %u.", 2226 USB_SS_MAXPORTS); 2227 xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS; 2228 } 2229 if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) { 2230 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2231 "Limiting USB 2.0 roothub ports to %u.", 2232 USB_MAXCHILDREN); 2233 xhci->usb2_rhub.num_ports = USB_MAXCHILDREN; 2234 } 2235 2236 if (!xhci->usb2_rhub.num_ports) 2237 xhci_info(xhci, "USB2 root hub has no ports\n"); 2238 2239 if (!xhci->usb3_rhub.num_ports) 2240 xhci_info(xhci, "USB3 root hub has no ports\n"); 2241 2242 xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags); 2243 xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags); 2244 2245 return 0; 2246 } 2247 2248 static struct xhci_interrupter * 2249 xhci_alloc_interrupter(struct xhci_hcd *xhci, gfp_t flags) 2250 { 2251 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2252 struct xhci_interrupter *ir; 2253 unsigned int num_segs; 2254 int ret; 2255 2256 ir = kzalloc_node(sizeof(*ir), flags, dev_to_node(dev)); 2257 if (!ir) 2258 return NULL; 2259 2260 num_segs = min_t(unsigned int, 1 << HCS_ERST_MAX(xhci->hcs_params2), 2261 ERST_MAX_SEGS); 2262 2263 ir->event_ring = xhci_ring_alloc(xhci, num_segs, 1, TYPE_EVENT, 0, 2264 flags); 2265 if (!ir->event_ring) { 2266 xhci_warn(xhci, "Failed to allocate interrupter event ring\n"); 2267 kfree(ir); 2268 return NULL; 2269 } 2270 2271 ret = xhci_alloc_erst(xhci, ir->event_ring, &ir->erst, flags); 2272 if (ret) { 2273 xhci_warn(xhci, "Failed to allocate interrupter erst\n"); 2274 xhci_ring_free(xhci, ir->event_ring); 2275 kfree(ir); 2276 return NULL; 2277 } 2278 2279 return ir; 2280 } 2281 2282 static int 2283 xhci_add_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir, 2284 unsigned int intr_num) 2285 { 2286 u64 erst_base; 2287 u32 erst_size; 2288 2289 if (intr_num > xhci->max_interrupters) { 2290 xhci_warn(xhci, "Can't add interrupter %d, max interrupters %d\n", 2291 intr_num, xhci->max_interrupters); 2292 return -EINVAL; 2293 } 2294 2295 ir->ir_set = &xhci->run_regs->ir_set[intr_num]; 2296 2297 /* set ERST count with the number of entries in the segment table */ 2298 erst_size = readl(&ir->ir_set->erst_size); 2299 erst_size &= ERST_SIZE_MASK; 2300 erst_size |= ir->event_ring->num_segs; 2301 writel(erst_size, &ir->ir_set->erst_size); 2302 2303 erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base); 2304 erst_base &= ERST_BASE_RSVDP; 2305 erst_base |= ir->erst.erst_dma_addr & ~ERST_BASE_RSVDP; 2306 xhci_write_64(xhci, erst_base, &ir->ir_set->erst_base); 2307 2308 /* Set the event ring dequeue address of this interrupter */ 2309 xhci_set_hc_event_deq(xhci, ir); 2310 2311 return 0; 2312 } 2313 2314 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags) 2315 { 2316 dma_addr_t dma; 2317 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2318 unsigned int val, val2; 2319 u64 val_64; 2320 u32 page_size, temp; 2321 int i; 2322 2323 INIT_LIST_HEAD(&xhci->cmd_list); 2324 2325 /* init command timeout work */ 2326 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout); 2327 init_completion(&xhci->cmd_ring_stop_completion); 2328 2329 page_size = readl(&xhci->op_regs->page_size); 2330 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2331 "Supported page size register = 0x%x", page_size); 2332 i = ffs(page_size); 2333 if (i < 16) 2334 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2335 "Supported page size of %iK", (1 << (i+12)) / 1024); 2336 else 2337 xhci_warn(xhci, "WARN: no supported page size\n"); 2338 /* Use 4K pages, since that's common and the minimum the HC supports */ 2339 xhci->page_shift = 12; 2340 xhci->page_size = 1 << xhci->page_shift; 2341 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2342 "HCD page size set to %iK", xhci->page_size / 1024); 2343 2344 /* 2345 * Program the Number of Device Slots Enabled field in the CONFIG 2346 * register with the max value of slots the HC can handle. 2347 */ 2348 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1)); 2349 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2350 "// xHC can handle at most %d device slots.", val); 2351 val2 = readl(&xhci->op_regs->config_reg); 2352 val |= (val2 & ~HCS_SLOTS_MASK); 2353 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2354 "// Setting Max device slots reg = 0x%x.", val); 2355 writel(val, &xhci->op_regs->config_reg); 2356 2357 /* 2358 * xHCI section 5.4.6 - Device Context array must be 2359 * "physically contiguous and 64-byte (cache line) aligned". 2360 */ 2361 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma, 2362 flags); 2363 if (!xhci->dcbaa) 2364 goto fail; 2365 xhci->dcbaa->dma = dma; 2366 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2367 "// Device context base array address = 0x%pad (DMA), %p (virt)", 2368 &xhci->dcbaa->dma, xhci->dcbaa); 2369 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr); 2370 2371 /* 2372 * Initialize the ring segment pool. The ring must be a contiguous 2373 * structure comprised of TRBs. The TRBs must be 16 byte aligned, 2374 * however, the command ring segment needs 64-byte aligned segments 2375 * and our use of dma addresses in the trb_address_map radix tree needs 2376 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need. 2377 */ 2378 if (xhci->quirks & XHCI_ZHAOXIN_TRB_FETCH) 2379 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev, 2380 TRB_SEGMENT_SIZE * 2, TRB_SEGMENT_SIZE * 2, xhci->page_size * 2); 2381 else 2382 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev, 2383 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size); 2384 2385 /* See Table 46 and Note on Figure 55 */ 2386 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev, 2387 2112, 64, xhci->page_size); 2388 if (!xhci->segment_pool || !xhci->device_pool) 2389 goto fail; 2390 2391 /* Linear stream context arrays don't have any boundary restrictions, 2392 * and only need to be 16-byte aligned. 2393 */ 2394 xhci->small_streams_pool = 2395 dma_pool_create("xHCI 256 byte stream ctx arrays", 2396 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0); 2397 xhci->medium_streams_pool = 2398 dma_pool_create("xHCI 1KB stream ctx arrays", 2399 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0); 2400 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE 2401 * will be allocated with dma_alloc_coherent() 2402 */ 2403 2404 if (!xhci->small_streams_pool || !xhci->medium_streams_pool) 2405 goto fail; 2406 2407 /* Set up the command ring to have one segments for now. */ 2408 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags); 2409 if (!xhci->cmd_ring) 2410 goto fail; 2411 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2412 "Allocated command ring at %p", xhci->cmd_ring); 2413 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%pad", 2414 &xhci->cmd_ring->first_seg->dma); 2415 2416 /* Set the address in the Command Ring Control register */ 2417 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 2418 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 2419 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) | 2420 xhci->cmd_ring->cycle_state; 2421 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2422 "// Setting command ring address to 0x%016llx", val_64); 2423 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 2424 2425 /* Reserve one command ring TRB for disabling LPM. 2426 * Since the USB core grabs the shared usb_bus bandwidth mutex before 2427 * disabling LPM, we only need to reserve one TRB for all devices. 2428 */ 2429 xhci->cmd_ring_reserved_trbs++; 2430 2431 val = readl(&xhci->cap_regs->db_off); 2432 val &= DBOFF_MASK; 2433 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2434 "// Doorbell array is located at offset 0x%x from cap regs base addr", 2435 val); 2436 xhci->dba = (void __iomem *) xhci->cap_regs + val; 2437 2438 /* Allocate and set up primary interrupter 0 with an event ring. */ 2439 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2440 "Allocating primary event ring"); 2441 xhci->interrupter = xhci_alloc_interrupter(xhci, flags); 2442 if (!xhci->interrupter) 2443 goto fail; 2444 2445 if (xhci_add_interrupter(xhci, xhci->interrupter, 0)) 2446 goto fail; 2447 2448 xhci->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX; 2449 2450 /* 2451 * XXX: Might need to set the Interrupter Moderation Register to 2452 * something other than the default (~1ms minimum between interrupts). 2453 * See section 5.5.1.2. 2454 */ 2455 for (i = 0; i < MAX_HC_SLOTS; i++) 2456 xhci->devs[i] = NULL; 2457 2458 if (scratchpad_alloc(xhci, flags)) 2459 goto fail; 2460 if (xhci_setup_port_arrays(xhci, flags)) 2461 goto fail; 2462 2463 /* Enable USB 3.0 device notifications for function remote wake, which 2464 * is necessary for allowing USB 3.0 devices to do remote wakeup from 2465 * U3 (device suspend). 2466 */ 2467 temp = readl(&xhci->op_regs->dev_notification); 2468 temp &= ~DEV_NOTE_MASK; 2469 temp |= DEV_NOTE_FWAKE; 2470 writel(temp, &xhci->op_regs->dev_notification); 2471 2472 return 0; 2473 2474 fail: 2475 xhci_halt(xhci); 2476 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 2477 xhci_mem_cleanup(xhci); 2478 return -ENOMEM; 2479 } 2480