1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/usb.h> 12 #include <linux/pci.h> 13 #include <linux/slab.h> 14 #include <linux/dmapool.h> 15 #include <linux/dma-mapping.h> 16 17 #include "xhci.h" 18 #include "xhci-trace.h" 19 #include "xhci-debugfs.h" 20 21 /* 22 * Allocates a generic ring segment from the ring pool, sets the dma address, 23 * initializes the segment to zero, and sets the private next pointer to NULL. 24 * 25 * Section 4.11.1.1: 26 * "All components of all Command and Transfer TRBs shall be initialized to '0'" 27 */ 28 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, 29 unsigned int cycle_state, 30 unsigned int max_packet, 31 gfp_t flags) 32 { 33 struct xhci_segment *seg; 34 dma_addr_t dma; 35 int i; 36 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 37 38 seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev)); 39 if (!seg) 40 return NULL; 41 42 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma); 43 if (!seg->trbs) { 44 kfree(seg); 45 return NULL; 46 } 47 48 if (max_packet) { 49 seg->bounce_buf = kzalloc_node(max_packet, flags, 50 dev_to_node(dev)); 51 if (!seg->bounce_buf) { 52 dma_pool_free(xhci->segment_pool, seg->trbs, dma); 53 kfree(seg); 54 return NULL; 55 } 56 } 57 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */ 58 if (cycle_state == 0) { 59 for (i = 0; i < TRBS_PER_SEGMENT; i++) 60 seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE); 61 } 62 seg->dma = dma; 63 seg->next = NULL; 64 65 return seg; 66 } 67 68 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg) 69 { 70 if (seg->trbs) { 71 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma); 72 seg->trbs = NULL; 73 } 74 kfree(seg->bounce_buf); 75 kfree(seg); 76 } 77 78 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci, 79 struct xhci_segment *first) 80 { 81 struct xhci_segment *seg; 82 83 seg = first->next; 84 while (seg != first) { 85 struct xhci_segment *next = seg->next; 86 xhci_segment_free(xhci, seg); 87 seg = next; 88 } 89 xhci_segment_free(xhci, first); 90 } 91 92 /* 93 * Make the prev segment point to the next segment. 94 * 95 * Change the last TRB in the prev segment to be a Link TRB which points to the 96 * DMA address of the next segment. The caller needs to set any Link TRB 97 * related flags, such as End TRB, Toggle Cycle, and no snoop. 98 */ 99 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev, 100 struct xhci_segment *next, enum xhci_ring_type type) 101 { 102 u32 val; 103 104 if (!prev || !next) 105 return; 106 prev->next = next; 107 if (type != TYPE_EVENT) { 108 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = 109 cpu_to_le64(next->dma); 110 111 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */ 112 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control); 113 val &= ~TRB_TYPE_BITMASK; 114 val |= TRB_TYPE(TRB_LINK); 115 /* Always set the chain bit with 0.95 hardware */ 116 /* Set chain bit for isoc rings on AMD 0.96 host */ 117 if (xhci_link_trb_quirk(xhci) || 118 (type == TYPE_ISOC && 119 (xhci->quirks & XHCI_AMD_0x96_HOST))) 120 val |= TRB_CHAIN; 121 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val); 122 } 123 } 124 125 /* 126 * Link the ring to the new segments. 127 * Set Toggle Cycle for the new ring if needed. 128 */ 129 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring, 130 struct xhci_segment *first, struct xhci_segment *last, 131 unsigned int num_segs) 132 { 133 struct xhci_segment *next; 134 135 if (!ring || !first || !last) 136 return; 137 138 next = ring->enq_seg->next; 139 xhci_link_segments(xhci, ring->enq_seg, first, ring->type); 140 xhci_link_segments(xhci, last, next, ring->type); 141 ring->num_segs += num_segs; 142 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs; 143 144 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) { 145 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control 146 &= ~cpu_to_le32(LINK_TOGGLE); 147 last->trbs[TRBS_PER_SEGMENT-1].link.control 148 |= cpu_to_le32(LINK_TOGGLE); 149 ring->last_seg = last; 150 } 151 } 152 153 /* 154 * We need a radix tree for mapping physical addresses of TRBs to which stream 155 * ID they belong to. We need to do this because the host controller won't tell 156 * us which stream ring the TRB came from. We could store the stream ID in an 157 * event data TRB, but that doesn't help us for the cancellation case, since the 158 * endpoint may stop before it reaches that event data TRB. 159 * 160 * The radix tree maps the upper portion of the TRB DMA address to a ring 161 * segment that has the same upper portion of DMA addresses. For example, say I 162 * have segments of size 1KB, that are always 1KB aligned. A segment may 163 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the 164 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to 165 * pass the radix tree a key to get the right stream ID: 166 * 167 * 0x10c90fff >> 10 = 0x43243 168 * 0x10c912c0 >> 10 = 0x43244 169 * 0x10c91400 >> 10 = 0x43245 170 * 171 * Obviously, only those TRBs with DMA addresses that are within the segment 172 * will make the radix tree return the stream ID for that ring. 173 * 174 * Caveats for the radix tree: 175 * 176 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an 177 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be 178 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the 179 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit 180 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit 181 * extended systems (where the DMA address can be bigger than 32-bits), 182 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that. 183 */ 184 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map, 185 struct xhci_ring *ring, 186 struct xhci_segment *seg, 187 gfp_t mem_flags) 188 { 189 unsigned long key; 190 int ret; 191 192 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); 193 /* Skip any segments that were already added. */ 194 if (radix_tree_lookup(trb_address_map, key)) 195 return 0; 196 197 ret = radix_tree_maybe_preload(mem_flags); 198 if (ret) 199 return ret; 200 ret = radix_tree_insert(trb_address_map, 201 key, ring); 202 radix_tree_preload_end(); 203 return ret; 204 } 205 206 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map, 207 struct xhci_segment *seg) 208 { 209 unsigned long key; 210 211 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); 212 if (radix_tree_lookup(trb_address_map, key)) 213 radix_tree_delete(trb_address_map, key); 214 } 215 216 static int xhci_update_stream_segment_mapping( 217 struct radix_tree_root *trb_address_map, 218 struct xhci_ring *ring, 219 struct xhci_segment *first_seg, 220 struct xhci_segment *last_seg, 221 gfp_t mem_flags) 222 { 223 struct xhci_segment *seg; 224 struct xhci_segment *failed_seg; 225 int ret; 226 227 if (WARN_ON_ONCE(trb_address_map == NULL)) 228 return 0; 229 230 seg = first_seg; 231 do { 232 ret = xhci_insert_segment_mapping(trb_address_map, 233 ring, seg, mem_flags); 234 if (ret) 235 goto remove_streams; 236 if (seg == last_seg) 237 return 0; 238 seg = seg->next; 239 } while (seg != first_seg); 240 241 return 0; 242 243 remove_streams: 244 failed_seg = seg; 245 seg = first_seg; 246 do { 247 xhci_remove_segment_mapping(trb_address_map, seg); 248 if (seg == failed_seg) 249 return ret; 250 seg = seg->next; 251 } while (seg != first_seg); 252 253 return ret; 254 } 255 256 static void xhci_remove_stream_mapping(struct xhci_ring *ring) 257 { 258 struct xhci_segment *seg; 259 260 if (WARN_ON_ONCE(ring->trb_address_map == NULL)) 261 return; 262 263 seg = ring->first_seg; 264 do { 265 xhci_remove_segment_mapping(ring->trb_address_map, seg); 266 seg = seg->next; 267 } while (seg != ring->first_seg); 268 } 269 270 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags) 271 { 272 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring, 273 ring->first_seg, ring->last_seg, mem_flags); 274 } 275 276 /* XXX: Do we need the hcd structure in all these functions? */ 277 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring) 278 { 279 if (!ring) 280 return; 281 282 trace_xhci_ring_free(ring); 283 284 if (ring->first_seg) { 285 if (ring->type == TYPE_STREAM) 286 xhci_remove_stream_mapping(ring); 287 xhci_free_segments_for_ring(xhci, ring->first_seg); 288 } 289 290 kfree(ring); 291 } 292 293 static void xhci_initialize_ring_info(struct xhci_ring *ring, 294 unsigned int cycle_state) 295 { 296 /* The ring is empty, so the enqueue pointer == dequeue pointer */ 297 ring->enqueue = ring->first_seg->trbs; 298 ring->enq_seg = ring->first_seg; 299 ring->dequeue = ring->enqueue; 300 ring->deq_seg = ring->first_seg; 301 /* The ring is initialized to 0. The producer must write 1 to the cycle 302 * bit to handover ownership of the TRB, so PCS = 1. The consumer must 303 * compare CCS to the cycle bit to check ownership, so CCS = 1. 304 * 305 * New rings are initialized with cycle state equal to 1; if we are 306 * handling ring expansion, set the cycle state equal to the old ring. 307 */ 308 ring->cycle_state = cycle_state; 309 310 /* 311 * Each segment has a link TRB, and leave an extra TRB for SW 312 * accounting purpose 313 */ 314 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 315 } 316 317 /* Allocate segments and link them for a ring */ 318 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci, 319 struct xhci_segment **first, struct xhci_segment **last, 320 unsigned int num_segs, unsigned int cycle_state, 321 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags) 322 { 323 struct xhci_segment *prev; 324 325 prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags); 326 if (!prev) 327 return -ENOMEM; 328 num_segs--; 329 330 *first = prev; 331 while (num_segs > 0) { 332 struct xhci_segment *next; 333 334 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags); 335 if (!next) { 336 prev = *first; 337 while (prev) { 338 next = prev->next; 339 xhci_segment_free(xhci, prev); 340 prev = next; 341 } 342 return -ENOMEM; 343 } 344 xhci_link_segments(xhci, prev, next, type); 345 346 prev = next; 347 num_segs--; 348 } 349 xhci_link_segments(xhci, prev, *first, type); 350 *last = prev; 351 352 return 0; 353 } 354 355 /** 356 * Create a new ring with zero or more segments. 357 * 358 * Link each segment together into a ring. 359 * Set the end flag and the cycle toggle bit on the last segment. 360 * See section 4.9.1 and figures 15 and 16. 361 */ 362 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, 363 unsigned int num_segs, unsigned int cycle_state, 364 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags) 365 { 366 struct xhci_ring *ring; 367 int ret; 368 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 369 370 ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev)); 371 if (!ring) 372 return NULL; 373 374 ring->num_segs = num_segs; 375 ring->bounce_buf_len = max_packet; 376 INIT_LIST_HEAD(&ring->td_list); 377 ring->type = type; 378 if (num_segs == 0) 379 return ring; 380 381 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg, 382 &ring->last_seg, num_segs, cycle_state, type, 383 max_packet, flags); 384 if (ret) 385 goto fail; 386 387 /* Only event ring does not use link TRB */ 388 if (type != TYPE_EVENT) { 389 /* See section 4.9.2.1 and 6.4.4.1 */ 390 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |= 391 cpu_to_le32(LINK_TOGGLE); 392 } 393 xhci_initialize_ring_info(ring, cycle_state); 394 trace_xhci_ring_alloc(ring); 395 return ring; 396 397 fail: 398 kfree(ring); 399 return NULL; 400 } 401 402 void xhci_free_endpoint_ring(struct xhci_hcd *xhci, 403 struct xhci_virt_device *virt_dev, 404 unsigned int ep_index) 405 { 406 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring); 407 virt_dev->eps[ep_index].ring = NULL; 408 } 409 410 /* 411 * Expand an existing ring. 412 * Allocate a new ring which has same segment numbers and link the two rings. 413 */ 414 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring, 415 unsigned int num_trbs, gfp_t flags) 416 { 417 struct xhci_segment *first; 418 struct xhci_segment *last; 419 unsigned int num_segs; 420 unsigned int num_segs_needed; 421 int ret; 422 423 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) / 424 (TRBS_PER_SEGMENT - 1); 425 426 /* Allocate number of segments we needed, or double the ring size */ 427 num_segs = ring->num_segs > num_segs_needed ? 428 ring->num_segs : num_segs_needed; 429 430 ret = xhci_alloc_segments_for_ring(xhci, &first, &last, 431 num_segs, ring->cycle_state, ring->type, 432 ring->bounce_buf_len, flags); 433 if (ret) 434 return -ENOMEM; 435 436 if (ring->type == TYPE_STREAM) 437 ret = xhci_update_stream_segment_mapping(ring->trb_address_map, 438 ring, first, last, flags); 439 if (ret) { 440 struct xhci_segment *next; 441 do { 442 next = first->next; 443 xhci_segment_free(xhci, first); 444 if (first == last) 445 break; 446 first = next; 447 } while (true); 448 return ret; 449 } 450 451 xhci_link_rings(xhci, ring, first, last, num_segs); 452 trace_xhci_ring_expansion(ring); 453 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 454 "ring expansion succeed, now has %d segments", 455 ring->num_segs); 456 457 return 0; 458 } 459 460 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci, 461 int type, gfp_t flags) 462 { 463 struct xhci_container_ctx *ctx; 464 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 465 466 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT)) 467 return NULL; 468 469 ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev)); 470 if (!ctx) 471 return NULL; 472 473 ctx->type = type; 474 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024; 475 if (type == XHCI_CTX_TYPE_INPUT) 476 ctx->size += CTX_SIZE(xhci->hcc_params); 477 478 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma); 479 if (!ctx->bytes) { 480 kfree(ctx); 481 return NULL; 482 } 483 return ctx; 484 } 485 486 void xhci_free_container_ctx(struct xhci_hcd *xhci, 487 struct xhci_container_ctx *ctx) 488 { 489 if (!ctx) 490 return; 491 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma); 492 kfree(ctx); 493 } 494 495 struct xhci_input_control_ctx *xhci_get_input_control_ctx( 496 struct xhci_container_ctx *ctx) 497 { 498 if (ctx->type != XHCI_CTX_TYPE_INPUT) 499 return NULL; 500 501 return (struct xhci_input_control_ctx *)ctx->bytes; 502 } 503 504 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci, 505 struct xhci_container_ctx *ctx) 506 { 507 if (ctx->type == XHCI_CTX_TYPE_DEVICE) 508 return (struct xhci_slot_ctx *)ctx->bytes; 509 510 return (struct xhci_slot_ctx *) 511 (ctx->bytes + CTX_SIZE(xhci->hcc_params)); 512 } 513 514 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci, 515 struct xhci_container_ctx *ctx, 516 unsigned int ep_index) 517 { 518 /* increment ep index by offset of start of ep ctx array */ 519 ep_index++; 520 if (ctx->type == XHCI_CTX_TYPE_INPUT) 521 ep_index++; 522 523 return (struct xhci_ep_ctx *) 524 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params))); 525 } 526 527 528 /***************** Streams structures manipulation *************************/ 529 530 static void xhci_free_stream_ctx(struct xhci_hcd *xhci, 531 unsigned int num_stream_ctxs, 532 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma) 533 { 534 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 535 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs; 536 537 if (size > MEDIUM_STREAM_ARRAY_SIZE) 538 dma_free_coherent(dev, size, 539 stream_ctx, dma); 540 else if (size <= SMALL_STREAM_ARRAY_SIZE) 541 return dma_pool_free(xhci->small_streams_pool, 542 stream_ctx, dma); 543 else 544 return dma_pool_free(xhci->medium_streams_pool, 545 stream_ctx, dma); 546 } 547 548 /* 549 * The stream context array for each endpoint with bulk streams enabled can 550 * vary in size, based on: 551 * - how many streams the endpoint supports, 552 * - the maximum primary stream array size the host controller supports, 553 * - and how many streams the device driver asks for. 554 * 555 * The stream context array must be a power of 2, and can be as small as 556 * 64 bytes or as large as 1MB. 557 */ 558 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci, 559 unsigned int num_stream_ctxs, dma_addr_t *dma, 560 gfp_t mem_flags) 561 { 562 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 563 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs; 564 565 if (size > MEDIUM_STREAM_ARRAY_SIZE) 566 return dma_alloc_coherent(dev, size, 567 dma, mem_flags); 568 else if (size <= SMALL_STREAM_ARRAY_SIZE) 569 return dma_pool_alloc(xhci->small_streams_pool, 570 mem_flags, dma); 571 else 572 return dma_pool_alloc(xhci->medium_streams_pool, 573 mem_flags, dma); 574 } 575 576 struct xhci_ring *xhci_dma_to_transfer_ring( 577 struct xhci_virt_ep *ep, 578 u64 address) 579 { 580 if (ep->ep_state & EP_HAS_STREAMS) 581 return radix_tree_lookup(&ep->stream_info->trb_address_map, 582 address >> TRB_SEGMENT_SHIFT); 583 return ep->ring; 584 } 585 586 struct xhci_ring *xhci_stream_id_to_ring( 587 struct xhci_virt_device *dev, 588 unsigned int ep_index, 589 unsigned int stream_id) 590 { 591 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 592 593 if (stream_id == 0) 594 return ep->ring; 595 if (!ep->stream_info) 596 return NULL; 597 598 if (stream_id >= ep->stream_info->num_streams) 599 return NULL; 600 return ep->stream_info->stream_rings[stream_id]; 601 } 602 603 /* 604 * Change an endpoint's internal structure so it supports stream IDs. The 605 * number of requested streams includes stream 0, which cannot be used by device 606 * drivers. 607 * 608 * The number of stream contexts in the stream context array may be bigger than 609 * the number of streams the driver wants to use. This is because the number of 610 * stream context array entries must be a power of two. 611 */ 612 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci, 613 unsigned int num_stream_ctxs, 614 unsigned int num_streams, 615 unsigned int max_packet, gfp_t mem_flags) 616 { 617 struct xhci_stream_info *stream_info; 618 u32 cur_stream; 619 struct xhci_ring *cur_ring; 620 u64 addr; 621 int ret; 622 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 623 624 xhci_dbg(xhci, "Allocating %u streams and %u " 625 "stream context array entries.\n", 626 num_streams, num_stream_ctxs); 627 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) { 628 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n"); 629 return NULL; 630 } 631 xhci->cmd_ring_reserved_trbs++; 632 633 stream_info = kzalloc_node(sizeof(*stream_info), mem_flags, 634 dev_to_node(dev)); 635 if (!stream_info) 636 goto cleanup_trbs; 637 638 stream_info->num_streams = num_streams; 639 stream_info->num_stream_ctxs = num_stream_ctxs; 640 641 /* Initialize the array of virtual pointers to stream rings. */ 642 stream_info->stream_rings = kcalloc_node( 643 num_streams, sizeof(struct xhci_ring *), mem_flags, 644 dev_to_node(dev)); 645 if (!stream_info->stream_rings) 646 goto cleanup_info; 647 648 /* Initialize the array of DMA addresses for stream rings for the HW. */ 649 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci, 650 num_stream_ctxs, &stream_info->ctx_array_dma, 651 mem_flags); 652 if (!stream_info->stream_ctx_array) 653 goto cleanup_ctx; 654 memset(stream_info->stream_ctx_array, 0, 655 sizeof(struct xhci_stream_ctx)*num_stream_ctxs); 656 657 /* Allocate everything needed to free the stream rings later */ 658 stream_info->free_streams_command = 659 xhci_alloc_command_with_ctx(xhci, true, mem_flags); 660 if (!stream_info->free_streams_command) 661 goto cleanup_ctx; 662 663 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC); 664 665 /* Allocate rings for all the streams that the driver will use, 666 * and add their segment DMA addresses to the radix tree. 667 * Stream 0 is reserved. 668 */ 669 670 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 671 stream_info->stream_rings[cur_stream] = 672 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet, 673 mem_flags); 674 cur_ring = stream_info->stream_rings[cur_stream]; 675 if (!cur_ring) 676 goto cleanup_rings; 677 cur_ring->stream_id = cur_stream; 678 cur_ring->trb_address_map = &stream_info->trb_address_map; 679 /* Set deq ptr, cycle bit, and stream context type */ 680 addr = cur_ring->first_seg->dma | 681 SCT_FOR_CTX(SCT_PRI_TR) | 682 cur_ring->cycle_state; 683 stream_info->stream_ctx_array[cur_stream].stream_ring = 684 cpu_to_le64(addr); 685 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", 686 cur_stream, (unsigned long long) addr); 687 688 ret = xhci_update_stream_mapping(cur_ring, mem_flags); 689 if (ret) { 690 xhci_ring_free(xhci, cur_ring); 691 stream_info->stream_rings[cur_stream] = NULL; 692 goto cleanup_rings; 693 } 694 } 695 /* Leave the other unused stream ring pointers in the stream context 696 * array initialized to zero. This will cause the xHC to give us an 697 * error if the device asks for a stream ID we don't have setup (if it 698 * was any other way, the host controller would assume the ring is 699 * "empty" and wait forever for data to be queued to that stream ID). 700 */ 701 702 return stream_info; 703 704 cleanup_rings: 705 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 706 cur_ring = stream_info->stream_rings[cur_stream]; 707 if (cur_ring) { 708 xhci_ring_free(xhci, cur_ring); 709 stream_info->stream_rings[cur_stream] = NULL; 710 } 711 } 712 xhci_free_command(xhci, stream_info->free_streams_command); 713 cleanup_ctx: 714 kfree(stream_info->stream_rings); 715 cleanup_info: 716 kfree(stream_info); 717 cleanup_trbs: 718 xhci->cmd_ring_reserved_trbs--; 719 return NULL; 720 } 721 /* 722 * Sets the MaxPStreams field and the Linear Stream Array field. 723 * Sets the dequeue pointer to the stream context array. 724 */ 725 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci, 726 struct xhci_ep_ctx *ep_ctx, 727 struct xhci_stream_info *stream_info) 728 { 729 u32 max_primary_streams; 730 /* MaxPStreams is the number of stream context array entries, not the 731 * number we're actually using. Must be in 2^(MaxPstreams + 1) format. 732 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc. 733 */ 734 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2; 735 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 736 "Setting number of stream ctx array entries to %u", 737 1 << (max_primary_streams + 1)); 738 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK); 739 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams) 740 | EP_HAS_LSA); 741 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma); 742 } 743 744 /* 745 * Sets the MaxPStreams field and the Linear Stream Array field to 0. 746 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark, 747 * not at the beginning of the ring). 748 */ 749 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx, 750 struct xhci_virt_ep *ep) 751 { 752 dma_addr_t addr; 753 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA)); 754 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue); 755 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state); 756 } 757 758 /* Frees all stream contexts associated with the endpoint, 759 * 760 * Caller should fix the endpoint context streams fields. 761 */ 762 void xhci_free_stream_info(struct xhci_hcd *xhci, 763 struct xhci_stream_info *stream_info) 764 { 765 int cur_stream; 766 struct xhci_ring *cur_ring; 767 768 if (!stream_info) 769 return; 770 771 for (cur_stream = 1; cur_stream < stream_info->num_streams; 772 cur_stream++) { 773 cur_ring = stream_info->stream_rings[cur_stream]; 774 if (cur_ring) { 775 xhci_ring_free(xhci, cur_ring); 776 stream_info->stream_rings[cur_stream] = NULL; 777 } 778 } 779 xhci_free_command(xhci, stream_info->free_streams_command); 780 xhci->cmd_ring_reserved_trbs--; 781 if (stream_info->stream_ctx_array) 782 xhci_free_stream_ctx(xhci, 783 stream_info->num_stream_ctxs, 784 stream_info->stream_ctx_array, 785 stream_info->ctx_array_dma); 786 787 kfree(stream_info->stream_rings); 788 kfree(stream_info); 789 } 790 791 792 /***************** Device context manipulation *************************/ 793 794 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci, 795 struct xhci_virt_ep *ep) 796 { 797 timer_setup(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog, 798 0); 799 ep->xhci = xhci; 800 } 801 802 static void xhci_free_tt_info(struct xhci_hcd *xhci, 803 struct xhci_virt_device *virt_dev, 804 int slot_id) 805 { 806 struct list_head *tt_list_head; 807 struct xhci_tt_bw_info *tt_info, *next; 808 bool slot_found = false; 809 810 /* If the device never made it past the Set Address stage, 811 * it may not have the real_port set correctly. 812 */ 813 if (virt_dev->real_port == 0 || 814 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) { 815 xhci_dbg(xhci, "Bad real port.\n"); 816 return; 817 } 818 819 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts); 820 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { 821 /* Multi-TT hubs will have more than one entry */ 822 if (tt_info->slot_id == slot_id) { 823 slot_found = true; 824 list_del(&tt_info->tt_list); 825 kfree(tt_info); 826 } else if (slot_found) { 827 break; 828 } 829 } 830 } 831 832 int xhci_alloc_tt_info(struct xhci_hcd *xhci, 833 struct xhci_virt_device *virt_dev, 834 struct usb_device *hdev, 835 struct usb_tt *tt, gfp_t mem_flags) 836 { 837 struct xhci_tt_bw_info *tt_info; 838 unsigned int num_ports; 839 int i, j; 840 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 841 842 if (!tt->multi) 843 num_ports = 1; 844 else 845 num_ports = hdev->maxchild; 846 847 for (i = 0; i < num_ports; i++, tt_info++) { 848 struct xhci_interval_bw_table *bw_table; 849 850 tt_info = kzalloc_node(sizeof(*tt_info), mem_flags, 851 dev_to_node(dev)); 852 if (!tt_info) 853 goto free_tts; 854 INIT_LIST_HEAD(&tt_info->tt_list); 855 list_add(&tt_info->tt_list, 856 &xhci->rh_bw[virt_dev->real_port - 1].tts); 857 tt_info->slot_id = virt_dev->udev->slot_id; 858 if (tt->multi) 859 tt_info->ttport = i+1; 860 bw_table = &tt_info->bw_table; 861 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 862 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 863 } 864 return 0; 865 866 free_tts: 867 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id); 868 return -ENOMEM; 869 } 870 871 872 /* All the xhci_tds in the ring's TD list should be freed at this point. 873 * Should be called with xhci->lock held if there is any chance the TT lists 874 * will be manipulated by the configure endpoint, allocate device, or update 875 * hub functions while this function is removing the TT entries from the list. 876 */ 877 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id) 878 { 879 struct xhci_virt_device *dev; 880 int i; 881 int old_active_eps = 0; 882 883 /* Slot ID 0 is reserved */ 884 if (slot_id == 0 || !xhci->devs[slot_id]) 885 return; 886 887 dev = xhci->devs[slot_id]; 888 889 xhci->dcbaa->dev_context_ptrs[slot_id] = 0; 890 if (!dev) 891 return; 892 893 trace_xhci_free_virt_device(dev); 894 895 if (dev->tt_info) 896 old_active_eps = dev->tt_info->active_eps; 897 898 for (i = 0; i < 31; i++) { 899 if (dev->eps[i].ring) 900 xhci_ring_free(xhci, dev->eps[i].ring); 901 if (dev->eps[i].stream_info) 902 xhci_free_stream_info(xhci, 903 dev->eps[i].stream_info); 904 /* Endpoints on the TT/root port lists should have been removed 905 * when usb_disable_device() was called for the device. 906 * We can't drop them anyway, because the udev might have gone 907 * away by this point, and we can't tell what speed it was. 908 */ 909 if (!list_empty(&dev->eps[i].bw_endpoint_list)) 910 xhci_warn(xhci, "Slot %u endpoint %u " 911 "not removed from BW list!\n", 912 slot_id, i); 913 } 914 /* If this is a hub, free the TT(s) from the TT list */ 915 xhci_free_tt_info(xhci, dev, slot_id); 916 /* If necessary, update the number of active TTs on this root port */ 917 xhci_update_tt_active_eps(xhci, dev, old_active_eps); 918 919 if (dev->in_ctx) 920 xhci_free_container_ctx(xhci, dev->in_ctx); 921 if (dev->out_ctx) 922 xhci_free_container_ctx(xhci, dev->out_ctx); 923 924 if (dev->udev && dev->udev->slot_id) 925 dev->udev->slot_id = 0; 926 kfree(xhci->devs[slot_id]); 927 xhci->devs[slot_id] = NULL; 928 } 929 930 /* 931 * Free a virt_device structure. 932 * If the virt_device added a tt_info (a hub) and has children pointing to 933 * that tt_info, then free the child first. Recursive. 934 * We can't rely on udev at this point to find child-parent relationships. 935 */ 936 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id) 937 { 938 struct xhci_virt_device *vdev; 939 struct list_head *tt_list_head; 940 struct xhci_tt_bw_info *tt_info, *next; 941 int i; 942 943 vdev = xhci->devs[slot_id]; 944 if (!vdev) 945 return; 946 947 if (vdev->real_port == 0 || 948 vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) { 949 xhci_dbg(xhci, "Bad vdev->real_port.\n"); 950 goto out; 951 } 952 953 tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts); 954 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { 955 /* is this a hub device that added a tt_info to the tts list */ 956 if (tt_info->slot_id == slot_id) { 957 /* are any devices using this tt_info? */ 958 for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 959 vdev = xhci->devs[i]; 960 if (vdev && (vdev->tt_info == tt_info)) 961 xhci_free_virt_devices_depth_first( 962 xhci, i); 963 } 964 } 965 } 966 out: 967 /* we are now at a leaf device */ 968 xhci_debugfs_remove_slot(xhci, slot_id); 969 xhci_free_virt_device(xhci, slot_id); 970 } 971 972 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id, 973 struct usb_device *udev, gfp_t flags) 974 { 975 struct xhci_virt_device *dev; 976 int i; 977 978 /* Slot ID 0 is reserved */ 979 if (slot_id == 0 || xhci->devs[slot_id]) { 980 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id); 981 return 0; 982 } 983 984 dev = kzalloc(sizeof(*dev), flags); 985 if (!dev) 986 return 0; 987 988 /* Allocate the (output) device context that will be used in the HC. */ 989 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags); 990 if (!dev->out_ctx) 991 goto fail; 992 993 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id, 994 (unsigned long long)dev->out_ctx->dma); 995 996 /* Allocate the (input) device context for address device command */ 997 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags); 998 if (!dev->in_ctx) 999 goto fail; 1000 1001 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id, 1002 (unsigned long long)dev->in_ctx->dma); 1003 1004 /* Initialize the cancellation list and watchdog timers for each ep */ 1005 for (i = 0; i < 31; i++) { 1006 xhci_init_endpoint_timer(xhci, &dev->eps[i]); 1007 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list); 1008 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list); 1009 } 1010 1011 /* Allocate endpoint 0 ring */ 1012 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags); 1013 if (!dev->eps[0].ring) 1014 goto fail; 1015 1016 dev->udev = udev; 1017 1018 /* Point to output device context in dcbaa. */ 1019 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma); 1020 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n", 1021 slot_id, 1022 &xhci->dcbaa->dev_context_ptrs[slot_id], 1023 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id])); 1024 1025 trace_xhci_alloc_virt_device(dev); 1026 1027 xhci->devs[slot_id] = dev; 1028 1029 return 1; 1030 fail: 1031 1032 if (dev->in_ctx) 1033 xhci_free_container_ctx(xhci, dev->in_ctx); 1034 if (dev->out_ctx) 1035 xhci_free_container_ctx(xhci, dev->out_ctx); 1036 kfree(dev); 1037 1038 return 0; 1039 } 1040 1041 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci, 1042 struct usb_device *udev) 1043 { 1044 struct xhci_virt_device *virt_dev; 1045 struct xhci_ep_ctx *ep0_ctx; 1046 struct xhci_ring *ep_ring; 1047 1048 virt_dev = xhci->devs[udev->slot_id]; 1049 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0); 1050 ep_ring = virt_dev->eps[0].ring; 1051 /* 1052 * FIXME we don't keep track of the dequeue pointer very well after a 1053 * Set TR dequeue pointer, so we're setting the dequeue pointer of the 1054 * host to our enqueue pointer. This should only be called after a 1055 * configured device has reset, so all control transfers should have 1056 * been completed or cancelled before the reset. 1057 */ 1058 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg, 1059 ep_ring->enqueue) 1060 | ep_ring->cycle_state); 1061 } 1062 1063 /* 1064 * The xHCI roothub may have ports of differing speeds in any order in the port 1065 * status registers. 1066 * 1067 * The xHCI hardware wants to know the roothub port number that the USB device 1068 * is attached to (or the roothub port its ancestor hub is attached to). All we 1069 * know is the index of that port under either the USB 2.0 or the USB 3.0 1070 * roothub, but that doesn't give us the real index into the HW port status 1071 * registers. Call xhci_find_raw_port_number() to get real index. 1072 */ 1073 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci, 1074 struct usb_device *udev) 1075 { 1076 struct usb_device *top_dev; 1077 struct usb_hcd *hcd; 1078 1079 if (udev->speed >= USB_SPEED_SUPER) 1080 hcd = xhci->shared_hcd; 1081 else 1082 hcd = xhci->main_hcd; 1083 1084 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 1085 top_dev = top_dev->parent) 1086 /* Found device below root hub */; 1087 1088 return xhci_find_raw_port_number(hcd, top_dev->portnum); 1089 } 1090 1091 /* Setup an xHCI virtual device for a Set Address command */ 1092 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev) 1093 { 1094 struct xhci_virt_device *dev; 1095 struct xhci_ep_ctx *ep0_ctx; 1096 struct xhci_slot_ctx *slot_ctx; 1097 u32 port_num; 1098 u32 max_packets; 1099 struct usb_device *top_dev; 1100 1101 dev = xhci->devs[udev->slot_id]; 1102 /* Slot ID 0 is reserved */ 1103 if (udev->slot_id == 0 || !dev) { 1104 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n", 1105 udev->slot_id); 1106 return -EINVAL; 1107 } 1108 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0); 1109 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx); 1110 1111 /* 3) Only the control endpoint is valid - one endpoint context */ 1112 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route); 1113 switch (udev->speed) { 1114 case USB_SPEED_SUPER_PLUS: 1115 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP); 1116 max_packets = MAX_PACKET(512); 1117 break; 1118 case USB_SPEED_SUPER: 1119 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS); 1120 max_packets = MAX_PACKET(512); 1121 break; 1122 case USB_SPEED_HIGH: 1123 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS); 1124 max_packets = MAX_PACKET(64); 1125 break; 1126 /* USB core guesses at a 64-byte max packet first for FS devices */ 1127 case USB_SPEED_FULL: 1128 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS); 1129 max_packets = MAX_PACKET(64); 1130 break; 1131 case USB_SPEED_LOW: 1132 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS); 1133 max_packets = MAX_PACKET(8); 1134 break; 1135 case USB_SPEED_WIRELESS: 1136 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n"); 1137 return -EINVAL; 1138 break; 1139 default: 1140 /* Speed was set earlier, this shouldn't happen. */ 1141 return -EINVAL; 1142 } 1143 /* Find the root hub port this device is under */ 1144 port_num = xhci_find_real_port_number(xhci, udev); 1145 if (!port_num) 1146 return -EINVAL; 1147 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num)); 1148 /* Set the port number in the virtual_device to the faked port number */ 1149 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 1150 top_dev = top_dev->parent) 1151 /* Found device below root hub */; 1152 dev->fake_port = top_dev->portnum; 1153 dev->real_port = port_num; 1154 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num); 1155 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port); 1156 1157 /* Find the right bandwidth table that this device will be a part of. 1158 * If this is a full speed device attached directly to a root port (or a 1159 * decendent of one), it counts as a primary bandwidth domain, not a 1160 * secondary bandwidth domain under a TT. An xhci_tt_info structure 1161 * will never be created for the HS root hub. 1162 */ 1163 if (!udev->tt || !udev->tt->hub->parent) { 1164 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table; 1165 } else { 1166 struct xhci_root_port_bw_info *rh_bw; 1167 struct xhci_tt_bw_info *tt_bw; 1168 1169 rh_bw = &xhci->rh_bw[port_num - 1]; 1170 /* Find the right TT. */ 1171 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) { 1172 if (tt_bw->slot_id != udev->tt->hub->slot_id) 1173 continue; 1174 1175 if (!dev->udev->tt->multi || 1176 (udev->tt->multi && 1177 tt_bw->ttport == dev->udev->ttport)) { 1178 dev->bw_table = &tt_bw->bw_table; 1179 dev->tt_info = tt_bw; 1180 break; 1181 } 1182 } 1183 if (!dev->tt_info) 1184 xhci_warn(xhci, "WARN: Didn't find a matching TT\n"); 1185 } 1186 1187 /* Is this a LS/FS device under an external HS hub? */ 1188 if (udev->tt && udev->tt->hub->parent) { 1189 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id | 1190 (udev->ttport << 8)); 1191 if (udev->tt->multi) 1192 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 1193 } 1194 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt); 1195 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport); 1196 1197 /* Step 4 - ring already allocated */ 1198 /* Step 5 */ 1199 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP)); 1200 1201 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */ 1202 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) | 1203 max_packets); 1204 1205 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma | 1206 dev->eps[0].ring->cycle_state); 1207 1208 trace_xhci_setup_addressable_virt_device(dev); 1209 1210 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */ 1211 1212 return 0; 1213 } 1214 1215 /* 1216 * Convert interval expressed as 2^(bInterval - 1) == interval into 1217 * straight exponent value 2^n == interval. 1218 * 1219 */ 1220 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev, 1221 struct usb_host_endpoint *ep) 1222 { 1223 unsigned int interval; 1224 1225 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1; 1226 if (interval != ep->desc.bInterval - 1) 1227 dev_warn(&udev->dev, 1228 "ep %#x - rounding interval to %d %sframes\n", 1229 ep->desc.bEndpointAddress, 1230 1 << interval, 1231 udev->speed == USB_SPEED_FULL ? "" : "micro"); 1232 1233 if (udev->speed == USB_SPEED_FULL) { 1234 /* 1235 * Full speed isoc endpoints specify interval in frames, 1236 * not microframes. We are using microframes everywhere, 1237 * so adjust accordingly. 1238 */ 1239 interval += 3; /* 1 frame = 2^3 uframes */ 1240 } 1241 1242 return interval; 1243 } 1244 1245 /* 1246 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of 1247 * microframes, rounded down to nearest power of 2. 1248 */ 1249 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev, 1250 struct usb_host_endpoint *ep, unsigned int desc_interval, 1251 unsigned int min_exponent, unsigned int max_exponent) 1252 { 1253 unsigned int interval; 1254 1255 interval = fls(desc_interval) - 1; 1256 interval = clamp_val(interval, min_exponent, max_exponent); 1257 if ((1 << interval) != desc_interval) 1258 dev_dbg(&udev->dev, 1259 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n", 1260 ep->desc.bEndpointAddress, 1261 1 << interval, 1262 desc_interval); 1263 1264 return interval; 1265 } 1266 1267 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev, 1268 struct usb_host_endpoint *ep) 1269 { 1270 if (ep->desc.bInterval == 0) 1271 return 0; 1272 return xhci_microframes_to_exponent(udev, ep, 1273 ep->desc.bInterval, 0, 15); 1274 } 1275 1276 1277 static unsigned int xhci_parse_frame_interval(struct usb_device *udev, 1278 struct usb_host_endpoint *ep) 1279 { 1280 return xhci_microframes_to_exponent(udev, ep, 1281 ep->desc.bInterval * 8, 3, 10); 1282 } 1283 1284 /* Return the polling or NAK interval. 1285 * 1286 * The polling interval is expressed in "microframes". If xHCI's Interval field 1287 * is set to N, it will service the endpoint every 2^(Interval)*125us. 1288 * 1289 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval 1290 * is set to 0. 1291 */ 1292 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev, 1293 struct usb_host_endpoint *ep) 1294 { 1295 unsigned int interval = 0; 1296 1297 switch (udev->speed) { 1298 case USB_SPEED_HIGH: 1299 /* Max NAK rate */ 1300 if (usb_endpoint_xfer_control(&ep->desc) || 1301 usb_endpoint_xfer_bulk(&ep->desc)) { 1302 interval = xhci_parse_microframe_interval(udev, ep); 1303 break; 1304 } 1305 /* Fall through - SS and HS isoc/int have same decoding */ 1306 1307 case USB_SPEED_SUPER_PLUS: 1308 case USB_SPEED_SUPER: 1309 if (usb_endpoint_xfer_int(&ep->desc) || 1310 usb_endpoint_xfer_isoc(&ep->desc)) { 1311 interval = xhci_parse_exponent_interval(udev, ep); 1312 } 1313 break; 1314 1315 case USB_SPEED_FULL: 1316 if (usb_endpoint_xfer_isoc(&ep->desc)) { 1317 interval = xhci_parse_exponent_interval(udev, ep); 1318 break; 1319 } 1320 /* 1321 * Fall through for interrupt endpoint interval decoding 1322 * since it uses the same rules as low speed interrupt 1323 * endpoints. 1324 */ 1325 /* fall through */ 1326 1327 case USB_SPEED_LOW: 1328 if (usb_endpoint_xfer_int(&ep->desc) || 1329 usb_endpoint_xfer_isoc(&ep->desc)) { 1330 1331 interval = xhci_parse_frame_interval(udev, ep); 1332 } 1333 break; 1334 1335 default: 1336 BUG(); 1337 } 1338 return interval; 1339 } 1340 1341 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps. 1342 * High speed endpoint descriptors can define "the number of additional 1343 * transaction opportunities per microframe", but that goes in the Max Burst 1344 * endpoint context field. 1345 */ 1346 static u32 xhci_get_endpoint_mult(struct usb_device *udev, 1347 struct usb_host_endpoint *ep) 1348 { 1349 if (udev->speed < USB_SPEED_SUPER || 1350 !usb_endpoint_xfer_isoc(&ep->desc)) 1351 return 0; 1352 return ep->ss_ep_comp.bmAttributes; 1353 } 1354 1355 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev, 1356 struct usb_host_endpoint *ep) 1357 { 1358 /* Super speed and Plus have max burst in ep companion desc */ 1359 if (udev->speed >= USB_SPEED_SUPER) 1360 return ep->ss_ep_comp.bMaxBurst; 1361 1362 if (udev->speed == USB_SPEED_HIGH && 1363 (usb_endpoint_xfer_isoc(&ep->desc) || 1364 usb_endpoint_xfer_int(&ep->desc))) 1365 return usb_endpoint_maxp_mult(&ep->desc) - 1; 1366 1367 return 0; 1368 } 1369 1370 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep) 1371 { 1372 int in; 1373 1374 in = usb_endpoint_dir_in(&ep->desc); 1375 1376 switch (usb_endpoint_type(&ep->desc)) { 1377 case USB_ENDPOINT_XFER_CONTROL: 1378 return CTRL_EP; 1379 case USB_ENDPOINT_XFER_BULK: 1380 return in ? BULK_IN_EP : BULK_OUT_EP; 1381 case USB_ENDPOINT_XFER_ISOC: 1382 return in ? ISOC_IN_EP : ISOC_OUT_EP; 1383 case USB_ENDPOINT_XFER_INT: 1384 return in ? INT_IN_EP : INT_OUT_EP; 1385 } 1386 return 0; 1387 } 1388 1389 /* Return the maximum endpoint service interval time (ESIT) payload. 1390 * Basically, this is the maxpacket size, multiplied by the burst size 1391 * and mult size. 1392 */ 1393 static u32 xhci_get_max_esit_payload(struct usb_device *udev, 1394 struct usb_host_endpoint *ep) 1395 { 1396 int max_burst; 1397 int max_packet; 1398 1399 /* Only applies for interrupt or isochronous endpoints */ 1400 if (usb_endpoint_xfer_control(&ep->desc) || 1401 usb_endpoint_xfer_bulk(&ep->desc)) 1402 return 0; 1403 1404 /* SuperSpeedPlus Isoc ep sending over 48k per esit */ 1405 if ((udev->speed >= USB_SPEED_SUPER_PLUS) && 1406 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes)) 1407 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval); 1408 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */ 1409 else if (udev->speed >= USB_SPEED_SUPER) 1410 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); 1411 1412 max_packet = usb_endpoint_maxp(&ep->desc); 1413 max_burst = usb_endpoint_maxp_mult(&ep->desc); 1414 /* A 0 in max burst means 1 transfer per ESIT */ 1415 return max_packet * max_burst; 1416 } 1417 1418 /* Set up an endpoint with one ring segment. Do not allocate stream rings. 1419 * Drivers will have to call usb_alloc_streams() to do that. 1420 */ 1421 int xhci_endpoint_init(struct xhci_hcd *xhci, 1422 struct xhci_virt_device *virt_dev, 1423 struct usb_device *udev, 1424 struct usb_host_endpoint *ep, 1425 gfp_t mem_flags) 1426 { 1427 unsigned int ep_index; 1428 struct xhci_ep_ctx *ep_ctx; 1429 struct xhci_ring *ep_ring; 1430 unsigned int max_packet; 1431 enum xhci_ring_type ring_type; 1432 u32 max_esit_payload; 1433 u32 endpoint_type; 1434 unsigned int max_burst; 1435 unsigned int interval; 1436 unsigned int mult; 1437 unsigned int avg_trb_len; 1438 unsigned int err_count = 0; 1439 1440 ep_index = xhci_get_endpoint_index(&ep->desc); 1441 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1442 1443 endpoint_type = xhci_get_endpoint_type(ep); 1444 if (!endpoint_type) 1445 return -EINVAL; 1446 1447 ring_type = usb_endpoint_type(&ep->desc); 1448 1449 /* 1450 * Get values to fill the endpoint context, mostly from ep descriptor. 1451 * The average TRB buffer lengt for bulk endpoints is unclear as we 1452 * have no clue on scatter gather list entry size. For Isoc and Int, 1453 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details. 1454 */ 1455 max_esit_payload = xhci_get_max_esit_payload(udev, ep); 1456 interval = xhci_get_endpoint_interval(udev, ep); 1457 1458 /* Periodic endpoint bInterval limit quirk */ 1459 if (usb_endpoint_xfer_int(&ep->desc) || 1460 usb_endpoint_xfer_isoc(&ep->desc)) { 1461 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) && 1462 udev->speed >= USB_SPEED_HIGH && 1463 interval >= 7) { 1464 interval = 6; 1465 } 1466 } 1467 1468 mult = xhci_get_endpoint_mult(udev, ep); 1469 max_packet = usb_endpoint_maxp(&ep->desc); 1470 max_burst = xhci_get_endpoint_max_burst(udev, ep); 1471 avg_trb_len = max_esit_payload; 1472 1473 /* FIXME dig Mult and streams info out of ep companion desc */ 1474 1475 /* Allow 3 retries for everything but isoc, set CErr = 3 */ 1476 if (!usb_endpoint_xfer_isoc(&ep->desc)) 1477 err_count = 3; 1478 /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */ 1479 if (usb_endpoint_xfer_bulk(&ep->desc)) { 1480 if (udev->speed == USB_SPEED_HIGH) 1481 max_packet = 512; 1482 if (udev->speed == USB_SPEED_FULL) { 1483 max_packet = rounddown_pow_of_two(max_packet); 1484 max_packet = clamp_val(max_packet, 8, 64); 1485 } 1486 } 1487 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */ 1488 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100) 1489 avg_trb_len = 8; 1490 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */ 1491 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2)) 1492 mult = 0; 1493 1494 /* Set up the endpoint ring */ 1495 virt_dev->eps[ep_index].new_ring = 1496 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags); 1497 if (!virt_dev->eps[ep_index].new_ring) 1498 return -ENOMEM; 1499 1500 virt_dev->eps[ep_index].skip = false; 1501 ep_ring = virt_dev->eps[ep_index].new_ring; 1502 1503 /* Fill the endpoint context */ 1504 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) | 1505 EP_INTERVAL(interval) | 1506 EP_MULT(mult)); 1507 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) | 1508 MAX_PACKET(max_packet) | 1509 MAX_BURST(max_burst) | 1510 ERROR_COUNT(err_count)); 1511 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | 1512 ep_ring->cycle_state); 1513 1514 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) | 1515 EP_AVG_TRB_LENGTH(avg_trb_len)); 1516 1517 return 0; 1518 } 1519 1520 void xhci_endpoint_zero(struct xhci_hcd *xhci, 1521 struct xhci_virt_device *virt_dev, 1522 struct usb_host_endpoint *ep) 1523 { 1524 unsigned int ep_index; 1525 struct xhci_ep_ctx *ep_ctx; 1526 1527 ep_index = xhci_get_endpoint_index(&ep->desc); 1528 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1529 1530 ep_ctx->ep_info = 0; 1531 ep_ctx->ep_info2 = 0; 1532 ep_ctx->deq = 0; 1533 ep_ctx->tx_info = 0; 1534 /* Don't free the endpoint ring until the set interface or configuration 1535 * request succeeds. 1536 */ 1537 } 1538 1539 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info) 1540 { 1541 bw_info->ep_interval = 0; 1542 bw_info->mult = 0; 1543 bw_info->num_packets = 0; 1544 bw_info->max_packet_size = 0; 1545 bw_info->type = 0; 1546 bw_info->max_esit_payload = 0; 1547 } 1548 1549 void xhci_update_bw_info(struct xhci_hcd *xhci, 1550 struct xhci_container_ctx *in_ctx, 1551 struct xhci_input_control_ctx *ctrl_ctx, 1552 struct xhci_virt_device *virt_dev) 1553 { 1554 struct xhci_bw_info *bw_info; 1555 struct xhci_ep_ctx *ep_ctx; 1556 unsigned int ep_type; 1557 int i; 1558 1559 for (i = 1; i < 31; i++) { 1560 bw_info = &virt_dev->eps[i].bw_info; 1561 1562 /* We can't tell what endpoint type is being dropped, but 1563 * unconditionally clearing the bandwidth info for non-periodic 1564 * endpoints should be harmless because the info will never be 1565 * set in the first place. 1566 */ 1567 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) { 1568 /* Dropped endpoint */ 1569 xhci_clear_endpoint_bw_info(bw_info); 1570 continue; 1571 } 1572 1573 if (EP_IS_ADDED(ctrl_ctx, i)) { 1574 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i); 1575 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2)); 1576 1577 /* Ignore non-periodic endpoints */ 1578 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 1579 ep_type != ISOC_IN_EP && 1580 ep_type != INT_IN_EP) 1581 continue; 1582 1583 /* Added or changed endpoint */ 1584 bw_info->ep_interval = CTX_TO_EP_INTERVAL( 1585 le32_to_cpu(ep_ctx->ep_info)); 1586 /* Number of packets and mult are zero-based in the 1587 * input context, but we want one-based for the 1588 * interval table. 1589 */ 1590 bw_info->mult = CTX_TO_EP_MULT( 1591 le32_to_cpu(ep_ctx->ep_info)) + 1; 1592 bw_info->num_packets = CTX_TO_MAX_BURST( 1593 le32_to_cpu(ep_ctx->ep_info2)) + 1; 1594 bw_info->max_packet_size = MAX_PACKET_DECODED( 1595 le32_to_cpu(ep_ctx->ep_info2)); 1596 bw_info->type = ep_type; 1597 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD( 1598 le32_to_cpu(ep_ctx->tx_info)); 1599 } 1600 } 1601 } 1602 1603 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy. 1604 * Useful when you want to change one particular aspect of the endpoint and then 1605 * issue a configure endpoint command. 1606 */ 1607 void xhci_endpoint_copy(struct xhci_hcd *xhci, 1608 struct xhci_container_ctx *in_ctx, 1609 struct xhci_container_ctx *out_ctx, 1610 unsigned int ep_index) 1611 { 1612 struct xhci_ep_ctx *out_ep_ctx; 1613 struct xhci_ep_ctx *in_ep_ctx; 1614 1615 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1616 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 1617 1618 in_ep_ctx->ep_info = out_ep_ctx->ep_info; 1619 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2; 1620 in_ep_ctx->deq = out_ep_ctx->deq; 1621 in_ep_ctx->tx_info = out_ep_ctx->tx_info; 1622 if (xhci->quirks & XHCI_MTK_HOST) { 1623 in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0]; 1624 in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1]; 1625 } 1626 } 1627 1628 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx. 1629 * Useful when you want to change one particular aspect of the endpoint and then 1630 * issue a configure endpoint command. Only the context entries field matters, 1631 * but we'll copy the whole thing anyway. 1632 */ 1633 void xhci_slot_copy(struct xhci_hcd *xhci, 1634 struct xhci_container_ctx *in_ctx, 1635 struct xhci_container_ctx *out_ctx) 1636 { 1637 struct xhci_slot_ctx *in_slot_ctx; 1638 struct xhci_slot_ctx *out_slot_ctx; 1639 1640 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1641 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx); 1642 1643 in_slot_ctx->dev_info = out_slot_ctx->dev_info; 1644 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2; 1645 in_slot_ctx->tt_info = out_slot_ctx->tt_info; 1646 in_slot_ctx->dev_state = out_slot_ctx->dev_state; 1647 } 1648 1649 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */ 1650 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags) 1651 { 1652 int i; 1653 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1654 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1655 1656 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1657 "Allocating %d scratchpad buffers", num_sp); 1658 1659 if (!num_sp) 1660 return 0; 1661 1662 xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags, 1663 dev_to_node(dev)); 1664 if (!xhci->scratchpad) 1665 goto fail_sp; 1666 1667 xhci->scratchpad->sp_array = dma_alloc_coherent(dev, 1668 num_sp * sizeof(u64), 1669 &xhci->scratchpad->sp_dma, flags); 1670 if (!xhci->scratchpad->sp_array) 1671 goto fail_sp2; 1672 1673 xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *), 1674 flags, dev_to_node(dev)); 1675 if (!xhci->scratchpad->sp_buffers) 1676 goto fail_sp3; 1677 1678 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma); 1679 for (i = 0; i < num_sp; i++) { 1680 dma_addr_t dma; 1681 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma, 1682 flags); 1683 if (!buf) 1684 goto fail_sp4; 1685 1686 xhci->scratchpad->sp_array[i] = dma; 1687 xhci->scratchpad->sp_buffers[i] = buf; 1688 } 1689 1690 return 0; 1691 1692 fail_sp4: 1693 for (i = i - 1; i >= 0; i--) { 1694 dma_free_coherent(dev, xhci->page_size, 1695 xhci->scratchpad->sp_buffers[i], 1696 xhci->scratchpad->sp_array[i]); 1697 } 1698 1699 kfree(xhci->scratchpad->sp_buffers); 1700 1701 fail_sp3: 1702 dma_free_coherent(dev, num_sp * sizeof(u64), 1703 xhci->scratchpad->sp_array, 1704 xhci->scratchpad->sp_dma); 1705 1706 fail_sp2: 1707 kfree(xhci->scratchpad); 1708 xhci->scratchpad = NULL; 1709 1710 fail_sp: 1711 return -ENOMEM; 1712 } 1713 1714 static void scratchpad_free(struct xhci_hcd *xhci) 1715 { 1716 int num_sp; 1717 int i; 1718 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1719 1720 if (!xhci->scratchpad) 1721 return; 1722 1723 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1724 1725 for (i = 0; i < num_sp; i++) { 1726 dma_free_coherent(dev, xhci->page_size, 1727 xhci->scratchpad->sp_buffers[i], 1728 xhci->scratchpad->sp_array[i]); 1729 } 1730 kfree(xhci->scratchpad->sp_buffers); 1731 dma_free_coherent(dev, num_sp * sizeof(u64), 1732 xhci->scratchpad->sp_array, 1733 xhci->scratchpad->sp_dma); 1734 kfree(xhci->scratchpad); 1735 xhci->scratchpad = NULL; 1736 } 1737 1738 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci, 1739 bool allocate_completion, gfp_t mem_flags) 1740 { 1741 struct xhci_command *command; 1742 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1743 1744 command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev)); 1745 if (!command) 1746 return NULL; 1747 1748 if (allocate_completion) { 1749 command->completion = 1750 kzalloc_node(sizeof(struct completion), mem_flags, 1751 dev_to_node(dev)); 1752 if (!command->completion) { 1753 kfree(command); 1754 return NULL; 1755 } 1756 init_completion(command->completion); 1757 } 1758 1759 command->status = 0; 1760 INIT_LIST_HEAD(&command->cmd_list); 1761 return command; 1762 } 1763 1764 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci, 1765 bool allocate_completion, gfp_t mem_flags) 1766 { 1767 struct xhci_command *command; 1768 1769 command = xhci_alloc_command(xhci, allocate_completion, mem_flags); 1770 if (!command) 1771 return NULL; 1772 1773 command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, 1774 mem_flags); 1775 if (!command->in_ctx) { 1776 kfree(command->completion); 1777 kfree(command); 1778 return NULL; 1779 } 1780 return command; 1781 } 1782 1783 void xhci_urb_free_priv(struct urb_priv *urb_priv) 1784 { 1785 kfree(urb_priv); 1786 } 1787 1788 void xhci_free_command(struct xhci_hcd *xhci, 1789 struct xhci_command *command) 1790 { 1791 xhci_free_container_ctx(xhci, 1792 command->in_ctx); 1793 kfree(command->completion); 1794 kfree(command); 1795 } 1796 1797 int xhci_alloc_erst(struct xhci_hcd *xhci, 1798 struct xhci_ring *evt_ring, 1799 struct xhci_erst *erst, 1800 gfp_t flags) 1801 { 1802 size_t size; 1803 unsigned int val; 1804 struct xhci_segment *seg; 1805 struct xhci_erst_entry *entry; 1806 1807 size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs; 1808 erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev, 1809 size, &erst->erst_dma_addr, flags); 1810 if (!erst->entries) 1811 return -ENOMEM; 1812 1813 erst->num_entries = evt_ring->num_segs; 1814 1815 seg = evt_ring->first_seg; 1816 for (val = 0; val < evt_ring->num_segs; val++) { 1817 entry = &erst->entries[val]; 1818 entry->seg_addr = cpu_to_le64(seg->dma); 1819 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT); 1820 entry->rsvd = 0; 1821 seg = seg->next; 1822 } 1823 1824 return 0; 1825 } 1826 1827 void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst) 1828 { 1829 size_t size; 1830 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1831 1832 size = sizeof(struct xhci_erst_entry) * (erst->num_entries); 1833 if (erst->entries) 1834 dma_free_coherent(dev, size, 1835 erst->entries, 1836 erst->erst_dma_addr); 1837 erst->entries = NULL; 1838 } 1839 1840 void xhci_mem_cleanup(struct xhci_hcd *xhci) 1841 { 1842 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1843 int i, j, num_ports; 1844 1845 cancel_delayed_work_sync(&xhci->cmd_timer); 1846 1847 xhci_free_erst(xhci, &xhci->erst); 1848 1849 if (xhci->event_ring) 1850 xhci_ring_free(xhci, xhci->event_ring); 1851 xhci->event_ring = NULL; 1852 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring"); 1853 1854 if (xhci->lpm_command) 1855 xhci_free_command(xhci, xhci->lpm_command); 1856 xhci->lpm_command = NULL; 1857 if (xhci->cmd_ring) 1858 xhci_ring_free(xhci, xhci->cmd_ring); 1859 xhci->cmd_ring = NULL; 1860 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring"); 1861 xhci_cleanup_command_queue(xhci); 1862 1863 num_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1864 for (i = 0; i < num_ports && xhci->rh_bw; i++) { 1865 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table; 1866 for (j = 0; j < XHCI_MAX_INTERVAL; j++) { 1867 struct list_head *ep = &bwt->interval_bw[j].endpoints; 1868 while (!list_empty(ep)) 1869 list_del_init(ep->next); 1870 } 1871 } 1872 1873 for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--) 1874 xhci_free_virt_devices_depth_first(xhci, i); 1875 1876 dma_pool_destroy(xhci->segment_pool); 1877 xhci->segment_pool = NULL; 1878 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool"); 1879 1880 dma_pool_destroy(xhci->device_pool); 1881 xhci->device_pool = NULL; 1882 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool"); 1883 1884 dma_pool_destroy(xhci->small_streams_pool); 1885 xhci->small_streams_pool = NULL; 1886 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1887 "Freed small stream array pool"); 1888 1889 dma_pool_destroy(xhci->medium_streams_pool); 1890 xhci->medium_streams_pool = NULL; 1891 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1892 "Freed medium stream array pool"); 1893 1894 if (xhci->dcbaa) 1895 dma_free_coherent(dev, sizeof(*xhci->dcbaa), 1896 xhci->dcbaa, xhci->dcbaa->dma); 1897 xhci->dcbaa = NULL; 1898 1899 scratchpad_free(xhci); 1900 1901 if (!xhci->rh_bw) 1902 goto no_bw; 1903 1904 for (i = 0; i < num_ports; i++) { 1905 struct xhci_tt_bw_info *tt, *n; 1906 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) { 1907 list_del(&tt->tt_list); 1908 kfree(tt); 1909 } 1910 } 1911 1912 no_bw: 1913 xhci->cmd_ring_reserved_trbs = 0; 1914 xhci->usb2_rhub.num_ports = 0; 1915 xhci->usb3_rhub.num_ports = 0; 1916 xhci->num_active_eps = 0; 1917 kfree(xhci->usb2_rhub.ports); 1918 kfree(xhci->usb3_rhub.ports); 1919 kfree(xhci->hw_ports); 1920 kfree(xhci->rh_bw); 1921 kfree(xhci->ext_caps); 1922 for (i = 0; i < xhci->num_port_caps; i++) 1923 kfree(xhci->port_caps[i].psi); 1924 kfree(xhci->port_caps); 1925 xhci->num_port_caps = 0; 1926 1927 xhci->usb2_rhub.ports = NULL; 1928 xhci->usb3_rhub.ports = NULL; 1929 xhci->hw_ports = NULL; 1930 xhci->rh_bw = NULL; 1931 xhci->ext_caps = NULL; 1932 1933 xhci->page_size = 0; 1934 xhci->page_shift = 0; 1935 xhci->usb2_rhub.bus_state.bus_suspended = 0; 1936 xhci->usb3_rhub.bus_state.bus_suspended = 0; 1937 } 1938 1939 static int xhci_test_trb_in_td(struct xhci_hcd *xhci, 1940 struct xhci_segment *input_seg, 1941 union xhci_trb *start_trb, 1942 union xhci_trb *end_trb, 1943 dma_addr_t input_dma, 1944 struct xhci_segment *result_seg, 1945 char *test_name, int test_number) 1946 { 1947 unsigned long long start_dma; 1948 unsigned long long end_dma; 1949 struct xhci_segment *seg; 1950 1951 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb); 1952 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb); 1953 1954 seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false); 1955 if (seg != result_seg) { 1956 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n", 1957 test_name, test_number); 1958 xhci_warn(xhci, "Tested TRB math w/ seg %p and " 1959 "input DMA 0x%llx\n", 1960 input_seg, 1961 (unsigned long long) input_dma); 1962 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), " 1963 "ending TRB %p (0x%llx DMA)\n", 1964 start_trb, start_dma, 1965 end_trb, end_dma); 1966 xhci_warn(xhci, "Expected seg %p, got seg %p\n", 1967 result_seg, seg); 1968 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, 1969 true); 1970 return -1; 1971 } 1972 return 0; 1973 } 1974 1975 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */ 1976 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci) 1977 { 1978 struct { 1979 dma_addr_t input_dma; 1980 struct xhci_segment *result_seg; 1981 } simple_test_vector [] = { 1982 /* A zeroed DMA field should fail */ 1983 { 0, NULL }, 1984 /* One TRB before the ring start should fail */ 1985 { xhci->event_ring->first_seg->dma - 16, NULL }, 1986 /* One byte before the ring start should fail */ 1987 { xhci->event_ring->first_seg->dma - 1, NULL }, 1988 /* Starting TRB should succeed */ 1989 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg }, 1990 /* Ending TRB should succeed */ 1991 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16, 1992 xhci->event_ring->first_seg }, 1993 /* One byte after the ring end should fail */ 1994 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL }, 1995 /* One TRB after the ring end should fail */ 1996 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL }, 1997 /* An address of all ones should fail */ 1998 { (dma_addr_t) (~0), NULL }, 1999 }; 2000 struct { 2001 struct xhci_segment *input_seg; 2002 union xhci_trb *start_trb; 2003 union xhci_trb *end_trb; 2004 dma_addr_t input_dma; 2005 struct xhci_segment *result_seg; 2006 } complex_test_vector [] = { 2007 /* Test feeding a valid DMA address from a different ring */ 2008 { .input_seg = xhci->event_ring->first_seg, 2009 .start_trb = xhci->event_ring->first_seg->trbs, 2010 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 2011 .input_dma = xhci->cmd_ring->first_seg->dma, 2012 .result_seg = NULL, 2013 }, 2014 /* Test feeding a valid end TRB from a different ring */ 2015 { .input_seg = xhci->event_ring->first_seg, 2016 .start_trb = xhci->event_ring->first_seg->trbs, 2017 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 2018 .input_dma = xhci->cmd_ring->first_seg->dma, 2019 .result_seg = NULL, 2020 }, 2021 /* Test feeding a valid start and end TRB from a different ring */ 2022 { .input_seg = xhci->event_ring->first_seg, 2023 .start_trb = xhci->cmd_ring->first_seg->trbs, 2024 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 2025 .input_dma = xhci->cmd_ring->first_seg->dma, 2026 .result_seg = NULL, 2027 }, 2028 /* TRB in this ring, but after this TD */ 2029 { .input_seg = xhci->event_ring->first_seg, 2030 .start_trb = &xhci->event_ring->first_seg->trbs[0], 2031 .end_trb = &xhci->event_ring->first_seg->trbs[3], 2032 .input_dma = xhci->event_ring->first_seg->dma + 4*16, 2033 .result_seg = NULL, 2034 }, 2035 /* TRB in this ring, but before this TD */ 2036 { .input_seg = xhci->event_ring->first_seg, 2037 .start_trb = &xhci->event_ring->first_seg->trbs[3], 2038 .end_trb = &xhci->event_ring->first_seg->trbs[6], 2039 .input_dma = xhci->event_ring->first_seg->dma + 2*16, 2040 .result_seg = NULL, 2041 }, 2042 /* TRB in this ring, but after this wrapped TD */ 2043 { .input_seg = xhci->event_ring->first_seg, 2044 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 2045 .end_trb = &xhci->event_ring->first_seg->trbs[1], 2046 .input_dma = xhci->event_ring->first_seg->dma + 2*16, 2047 .result_seg = NULL, 2048 }, 2049 /* TRB in this ring, but before this wrapped TD */ 2050 { .input_seg = xhci->event_ring->first_seg, 2051 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 2052 .end_trb = &xhci->event_ring->first_seg->trbs[1], 2053 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16, 2054 .result_seg = NULL, 2055 }, 2056 /* TRB not in this ring, and we have a wrapped TD */ 2057 { .input_seg = xhci->event_ring->first_seg, 2058 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 2059 .end_trb = &xhci->event_ring->first_seg->trbs[1], 2060 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16, 2061 .result_seg = NULL, 2062 }, 2063 }; 2064 2065 unsigned int num_tests; 2066 int i, ret; 2067 2068 num_tests = ARRAY_SIZE(simple_test_vector); 2069 for (i = 0; i < num_tests; i++) { 2070 ret = xhci_test_trb_in_td(xhci, 2071 xhci->event_ring->first_seg, 2072 xhci->event_ring->first_seg->trbs, 2073 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 2074 simple_test_vector[i].input_dma, 2075 simple_test_vector[i].result_seg, 2076 "Simple", i); 2077 if (ret < 0) 2078 return ret; 2079 } 2080 2081 num_tests = ARRAY_SIZE(complex_test_vector); 2082 for (i = 0; i < num_tests; i++) { 2083 ret = xhci_test_trb_in_td(xhci, 2084 complex_test_vector[i].input_seg, 2085 complex_test_vector[i].start_trb, 2086 complex_test_vector[i].end_trb, 2087 complex_test_vector[i].input_dma, 2088 complex_test_vector[i].result_seg, 2089 "Complex", i); 2090 if (ret < 0) 2091 return ret; 2092 } 2093 xhci_dbg(xhci, "TRB math tests passed.\n"); 2094 return 0; 2095 } 2096 2097 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci) 2098 { 2099 u64 temp; 2100 dma_addr_t deq; 2101 2102 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2103 xhci->event_ring->dequeue); 2104 if (deq == 0 && !in_interrupt()) 2105 xhci_warn(xhci, "WARN something wrong with SW event ring " 2106 "dequeue ptr.\n"); 2107 /* Update HC event ring dequeue pointer */ 2108 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2109 temp &= ERST_PTR_MASK; 2110 /* Don't clear the EHB bit (which is RW1C) because 2111 * there might be more events to service. 2112 */ 2113 temp &= ~ERST_EHB; 2114 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2115 "// Write event ring dequeue pointer, " 2116 "preserving EHB bit"); 2117 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp, 2118 &xhci->ir_set->erst_dequeue); 2119 } 2120 2121 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports, 2122 __le32 __iomem *addr, int max_caps) 2123 { 2124 u32 temp, port_offset, port_count; 2125 int i; 2126 u8 major_revision, minor_revision; 2127 struct xhci_hub *rhub; 2128 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2129 struct xhci_port_cap *port_cap; 2130 2131 temp = readl(addr); 2132 major_revision = XHCI_EXT_PORT_MAJOR(temp); 2133 minor_revision = XHCI_EXT_PORT_MINOR(temp); 2134 2135 if (major_revision == 0x03) { 2136 rhub = &xhci->usb3_rhub; 2137 } else if (major_revision <= 0x02) { 2138 rhub = &xhci->usb2_rhub; 2139 } else { 2140 xhci_warn(xhci, "Ignoring unknown port speed, " 2141 "Ext Cap %p, revision = 0x%x\n", 2142 addr, major_revision); 2143 /* Ignoring port protocol we can't understand. FIXME */ 2144 return; 2145 } 2146 rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp); 2147 2148 if (rhub->min_rev < minor_revision) 2149 rhub->min_rev = minor_revision; 2150 2151 /* Port offset and count in the third dword, see section 7.2 */ 2152 temp = readl(addr + 2); 2153 port_offset = XHCI_EXT_PORT_OFF(temp); 2154 port_count = XHCI_EXT_PORT_COUNT(temp); 2155 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2156 "Ext Cap %p, port offset = %u, " 2157 "count = %u, revision = 0x%x", 2158 addr, port_offset, port_count, major_revision); 2159 /* Port count includes the current port offset */ 2160 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports) 2161 /* WTF? "Valid values are ‘1’ to MaxPorts" */ 2162 return; 2163 2164 port_cap = &xhci->port_caps[xhci->num_port_caps++]; 2165 if (xhci->num_port_caps > max_caps) 2166 return; 2167 2168 port_cap->maj_rev = major_revision; 2169 port_cap->min_rev = minor_revision; 2170 port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp); 2171 2172 if (port_cap->psi_count) { 2173 port_cap->psi = kcalloc_node(port_cap->psi_count, 2174 sizeof(*port_cap->psi), 2175 GFP_KERNEL, dev_to_node(dev)); 2176 if (!port_cap->psi) 2177 port_cap->psi_count = 0; 2178 2179 port_cap->psi_uid_count++; 2180 for (i = 0; i < port_cap->psi_count; i++) { 2181 port_cap->psi[i] = readl(addr + 4 + i); 2182 2183 /* count unique ID values, two consecutive entries can 2184 * have the same ID if link is assymetric 2185 */ 2186 if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) != 2187 XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1]))) 2188 port_cap->psi_uid_count++; 2189 2190 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n", 2191 XHCI_EXT_PORT_PSIV(port_cap->psi[i]), 2192 XHCI_EXT_PORT_PSIE(port_cap->psi[i]), 2193 XHCI_EXT_PORT_PLT(port_cap->psi[i]), 2194 XHCI_EXT_PORT_PFD(port_cap->psi[i]), 2195 XHCI_EXT_PORT_LP(port_cap->psi[i]), 2196 XHCI_EXT_PORT_PSIM(port_cap->psi[i])); 2197 } 2198 } 2199 /* cache usb2 port capabilities */ 2200 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps) 2201 xhci->ext_caps[xhci->num_ext_caps++] = temp; 2202 2203 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) && 2204 (temp & XHCI_HLC)) { 2205 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2206 "xHCI 1.0: support USB2 hardware lpm"); 2207 xhci->hw_lpm_support = 1; 2208 } 2209 2210 port_offset--; 2211 for (i = port_offset; i < (port_offset + port_count); i++) { 2212 struct xhci_port *hw_port = &xhci->hw_ports[i]; 2213 /* Duplicate entry. Ignore the port if the revisions differ. */ 2214 if (hw_port->rhub) { 2215 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p," 2216 " port %u\n", addr, i); 2217 xhci_warn(xhci, "Port was marked as USB %u, " 2218 "duplicated as USB %u\n", 2219 hw_port->rhub->maj_rev, major_revision); 2220 /* Only adjust the roothub port counts if we haven't 2221 * found a similar duplicate. 2222 */ 2223 if (hw_port->rhub != rhub && 2224 hw_port->hcd_portnum != DUPLICATE_ENTRY) { 2225 hw_port->rhub->num_ports--; 2226 hw_port->hcd_portnum = DUPLICATE_ENTRY; 2227 } 2228 continue; 2229 } 2230 hw_port->rhub = rhub; 2231 hw_port->port_cap = port_cap; 2232 rhub->num_ports++; 2233 } 2234 /* FIXME: Should we disable ports not in the Extended Capabilities? */ 2235 } 2236 2237 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci, 2238 struct xhci_hub *rhub, gfp_t flags) 2239 { 2240 int port_index = 0; 2241 int i; 2242 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2243 2244 if (!rhub->num_ports) 2245 return; 2246 rhub->ports = kcalloc_node(rhub->num_ports, sizeof(rhub->ports), flags, 2247 dev_to_node(dev)); 2248 for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) { 2249 if (xhci->hw_ports[i].rhub != rhub || 2250 xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY) 2251 continue; 2252 xhci->hw_ports[i].hcd_portnum = port_index; 2253 rhub->ports[port_index] = &xhci->hw_ports[i]; 2254 port_index++; 2255 if (port_index == rhub->num_ports) 2256 break; 2257 } 2258 } 2259 2260 /* 2261 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that 2262 * specify what speeds each port is supposed to be. We can't count on the port 2263 * speed bits in the PORTSC register being correct until a device is connected, 2264 * but we need to set up the two fake roothubs with the correct number of USB 2265 * 3.0 and USB 2.0 ports at host controller initialization time. 2266 */ 2267 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags) 2268 { 2269 void __iomem *base; 2270 u32 offset; 2271 unsigned int num_ports; 2272 int i, j; 2273 int cap_count = 0; 2274 u32 cap_start; 2275 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2276 2277 num_ports = HCS_MAX_PORTS(xhci->hcs_params1); 2278 xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports), 2279 flags, dev_to_node(dev)); 2280 if (!xhci->hw_ports) 2281 return -ENOMEM; 2282 2283 for (i = 0; i < num_ports; i++) { 2284 xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base + 2285 NUM_PORT_REGS * i; 2286 xhci->hw_ports[i].hw_portnum = i; 2287 } 2288 2289 xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags, 2290 dev_to_node(dev)); 2291 if (!xhci->rh_bw) 2292 return -ENOMEM; 2293 for (i = 0; i < num_ports; i++) { 2294 struct xhci_interval_bw_table *bw_table; 2295 2296 INIT_LIST_HEAD(&xhci->rh_bw[i].tts); 2297 bw_table = &xhci->rh_bw[i].bw_table; 2298 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 2299 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 2300 } 2301 base = &xhci->cap_regs->hc_capbase; 2302 2303 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL); 2304 if (!cap_start) { 2305 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n"); 2306 return -ENODEV; 2307 } 2308 2309 offset = cap_start; 2310 /* count extended protocol capability entries for later caching */ 2311 while (offset) { 2312 cap_count++; 2313 offset = xhci_find_next_ext_cap(base, offset, 2314 XHCI_EXT_CAPS_PROTOCOL); 2315 } 2316 2317 xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps), 2318 flags, dev_to_node(dev)); 2319 if (!xhci->ext_caps) 2320 return -ENOMEM; 2321 2322 xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps), 2323 flags, dev_to_node(dev)); 2324 if (!xhci->port_caps) 2325 return -ENOMEM; 2326 2327 offset = cap_start; 2328 2329 while (offset) { 2330 xhci_add_in_port(xhci, num_ports, base + offset, cap_count); 2331 if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports == 2332 num_ports) 2333 break; 2334 offset = xhci_find_next_ext_cap(base, offset, 2335 XHCI_EXT_CAPS_PROTOCOL); 2336 } 2337 if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) { 2338 xhci_warn(xhci, "No ports on the roothubs?\n"); 2339 return -ENODEV; 2340 } 2341 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2342 "Found %u USB 2.0 ports and %u USB 3.0 ports.", 2343 xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports); 2344 2345 /* Place limits on the number of roothub ports so that the hub 2346 * descriptors aren't longer than the USB core will allocate. 2347 */ 2348 if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) { 2349 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2350 "Limiting USB 3.0 roothub ports to %u.", 2351 USB_SS_MAXPORTS); 2352 xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS; 2353 } 2354 if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) { 2355 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2356 "Limiting USB 2.0 roothub ports to %u.", 2357 USB_MAXCHILDREN); 2358 xhci->usb2_rhub.num_ports = USB_MAXCHILDREN; 2359 } 2360 2361 /* 2362 * Note we could have all USB 3.0 ports, or all USB 2.0 ports. 2363 * Not sure how the USB core will handle a hub with no ports... 2364 */ 2365 2366 xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags); 2367 xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags); 2368 2369 return 0; 2370 } 2371 2372 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags) 2373 { 2374 dma_addr_t dma; 2375 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2376 unsigned int val, val2; 2377 u64 val_64; 2378 u32 page_size, temp; 2379 int i, ret; 2380 2381 INIT_LIST_HEAD(&xhci->cmd_list); 2382 2383 /* init command timeout work */ 2384 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout); 2385 init_completion(&xhci->cmd_ring_stop_completion); 2386 2387 page_size = readl(&xhci->op_regs->page_size); 2388 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2389 "Supported page size register = 0x%x", page_size); 2390 for (i = 0; i < 16; i++) { 2391 if ((0x1 & page_size) != 0) 2392 break; 2393 page_size = page_size >> 1; 2394 } 2395 if (i < 16) 2396 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2397 "Supported page size of %iK", (1 << (i+12)) / 1024); 2398 else 2399 xhci_warn(xhci, "WARN: no supported page size\n"); 2400 /* Use 4K pages, since that's common and the minimum the HC supports */ 2401 xhci->page_shift = 12; 2402 xhci->page_size = 1 << xhci->page_shift; 2403 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2404 "HCD page size set to %iK", xhci->page_size / 1024); 2405 2406 /* 2407 * Program the Number of Device Slots Enabled field in the CONFIG 2408 * register with the max value of slots the HC can handle. 2409 */ 2410 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1)); 2411 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2412 "// xHC can handle at most %d device slots.", val); 2413 val2 = readl(&xhci->op_regs->config_reg); 2414 val |= (val2 & ~HCS_SLOTS_MASK); 2415 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2416 "// Setting Max device slots reg = 0x%x.", val); 2417 writel(val, &xhci->op_regs->config_reg); 2418 2419 /* 2420 * xHCI section 5.4.6 - doorbell array must be 2421 * "physically contiguous and 64-byte (cache line) aligned". 2422 */ 2423 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma, 2424 flags); 2425 if (!xhci->dcbaa) 2426 goto fail; 2427 xhci->dcbaa->dma = dma; 2428 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2429 "// Device context base array address = 0x%llx (DMA), %p (virt)", 2430 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa); 2431 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr); 2432 2433 /* 2434 * Initialize the ring segment pool. The ring must be a contiguous 2435 * structure comprised of TRBs. The TRBs must be 16 byte aligned, 2436 * however, the command ring segment needs 64-byte aligned segments 2437 * and our use of dma addresses in the trb_address_map radix tree needs 2438 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need. 2439 */ 2440 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev, 2441 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size); 2442 2443 /* See Table 46 and Note on Figure 55 */ 2444 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev, 2445 2112, 64, xhci->page_size); 2446 if (!xhci->segment_pool || !xhci->device_pool) 2447 goto fail; 2448 2449 /* Linear stream context arrays don't have any boundary restrictions, 2450 * and only need to be 16-byte aligned. 2451 */ 2452 xhci->small_streams_pool = 2453 dma_pool_create("xHCI 256 byte stream ctx arrays", 2454 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0); 2455 xhci->medium_streams_pool = 2456 dma_pool_create("xHCI 1KB stream ctx arrays", 2457 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0); 2458 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE 2459 * will be allocated with dma_alloc_coherent() 2460 */ 2461 2462 if (!xhci->small_streams_pool || !xhci->medium_streams_pool) 2463 goto fail; 2464 2465 /* Set up the command ring to have one segments for now. */ 2466 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags); 2467 if (!xhci->cmd_ring) 2468 goto fail; 2469 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2470 "Allocated command ring at %p", xhci->cmd_ring); 2471 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx", 2472 (unsigned long long)xhci->cmd_ring->first_seg->dma); 2473 2474 /* Set the address in the Command Ring Control register */ 2475 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 2476 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 2477 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) | 2478 xhci->cmd_ring->cycle_state; 2479 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2480 "// Setting command ring address to 0x%016llx", val_64); 2481 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 2482 2483 xhci->lpm_command = xhci_alloc_command_with_ctx(xhci, true, flags); 2484 if (!xhci->lpm_command) 2485 goto fail; 2486 2487 /* Reserve one command ring TRB for disabling LPM. 2488 * Since the USB core grabs the shared usb_bus bandwidth mutex before 2489 * disabling LPM, we only need to reserve one TRB for all devices. 2490 */ 2491 xhci->cmd_ring_reserved_trbs++; 2492 2493 val = readl(&xhci->cap_regs->db_off); 2494 val &= DBOFF_MASK; 2495 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2496 "// Doorbell array is located at offset 0x%x" 2497 " from cap regs base addr", val); 2498 xhci->dba = (void __iomem *) xhci->cap_regs + val; 2499 /* Set ir_set to interrupt register set 0 */ 2500 xhci->ir_set = &xhci->run_regs->ir_set[0]; 2501 2502 /* 2503 * Event ring setup: Allocate a normal ring, but also setup 2504 * the event ring segment table (ERST). Section 4.9.3. 2505 */ 2506 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring"); 2507 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT, 2508 0, flags); 2509 if (!xhci->event_ring) 2510 goto fail; 2511 if (xhci_check_trb_in_td_math(xhci) < 0) 2512 goto fail; 2513 2514 ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags); 2515 if (ret) 2516 goto fail; 2517 2518 /* set ERST count with the number of entries in the segment table */ 2519 val = readl(&xhci->ir_set->erst_size); 2520 val &= ERST_SIZE_MASK; 2521 val |= ERST_NUM_SEGS; 2522 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2523 "// Write ERST size = %i to ir_set 0 (some bits preserved)", 2524 val); 2525 writel(val, &xhci->ir_set->erst_size); 2526 2527 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2528 "// Set ERST entries to point to event ring."); 2529 /* set the segment table base address */ 2530 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2531 "// Set ERST base address for ir_set 0 = 0x%llx", 2532 (unsigned long long)xhci->erst.erst_dma_addr); 2533 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base); 2534 val_64 &= ERST_PTR_MASK; 2535 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK); 2536 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base); 2537 2538 /* Set the event ring dequeue address */ 2539 xhci_set_hc_event_deq(xhci); 2540 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2541 "Wrote ERST address to ir_set 0."); 2542 2543 /* 2544 * XXX: Might need to set the Interrupter Moderation Register to 2545 * something other than the default (~1ms minimum between interrupts). 2546 * See section 5.5.1.2. 2547 */ 2548 for (i = 0; i < MAX_HC_SLOTS; i++) 2549 xhci->devs[i] = NULL; 2550 for (i = 0; i < USB_MAXCHILDREN; i++) { 2551 xhci->usb2_rhub.bus_state.resume_done[i] = 0; 2552 xhci->usb3_rhub.bus_state.resume_done[i] = 0; 2553 /* Only the USB 2.0 completions will ever be used. */ 2554 init_completion(&xhci->usb2_rhub.bus_state.rexit_done[i]); 2555 init_completion(&xhci->usb3_rhub.bus_state.u3exit_done[i]); 2556 } 2557 2558 if (scratchpad_alloc(xhci, flags)) 2559 goto fail; 2560 if (xhci_setup_port_arrays(xhci, flags)) 2561 goto fail; 2562 2563 /* Enable USB 3.0 device notifications for function remote wake, which 2564 * is necessary for allowing USB 3.0 devices to do remote wakeup from 2565 * U3 (device suspend). 2566 */ 2567 temp = readl(&xhci->op_regs->dev_notification); 2568 temp &= ~DEV_NOTE_MASK; 2569 temp |= DEV_NOTE_FWAKE; 2570 writel(temp, &xhci->op_regs->dev_notification); 2571 2572 return 0; 2573 2574 fail: 2575 xhci_halt(xhci); 2576 xhci_reset(xhci); 2577 xhci_mem_cleanup(xhci); 2578 return -ENOMEM; 2579 } 2580