xref: /linux/drivers/usb/host/xhci-mem.c (revision 0a422f2b1d213f6abeecde88fb45c4b7fa1fd358)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27 
28 #include "xhci.h"
29 
30 /*
31  * Allocates a generic ring segment from the ring pool, sets the dma address,
32  * initializes the segment to zero, and sets the private next pointer to NULL.
33  *
34  * Section 4.11.1.1:
35  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
36  */
37 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
38 {
39 	struct xhci_segment *seg;
40 	dma_addr_t	dma;
41 
42 	seg = kzalloc(sizeof *seg, flags);
43 	if (!seg)
44 		return NULL;
45 	xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
46 
47 	seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
48 	if (!seg->trbs) {
49 		kfree(seg);
50 		return NULL;
51 	}
52 	xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
53 			seg->trbs, (unsigned long long)dma);
54 
55 	memset(seg->trbs, 0, SEGMENT_SIZE);
56 	seg->dma = dma;
57 	seg->next = NULL;
58 
59 	return seg;
60 }
61 
62 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
63 {
64 	if (seg->trbs) {
65 		xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
66 				seg->trbs, (unsigned long long)seg->dma);
67 		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
68 		seg->trbs = NULL;
69 	}
70 	xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
71 	kfree(seg);
72 }
73 
74 /*
75  * Make the prev segment point to the next segment.
76  *
77  * Change the last TRB in the prev segment to be a Link TRB which points to the
78  * DMA address of the next segment.  The caller needs to set any Link TRB
79  * related flags, such as End TRB, Toggle Cycle, and no snoop.
80  */
81 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
82 		struct xhci_segment *next, bool link_trbs, bool isoc)
83 {
84 	u32 val;
85 
86 	if (!prev || !next)
87 		return;
88 	prev->next = next;
89 	if (link_trbs) {
90 		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
91 			cpu_to_le64(next->dma);
92 
93 		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
94 		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
95 		val &= ~TRB_TYPE_BITMASK;
96 		val |= TRB_TYPE(TRB_LINK);
97 		/* Always set the chain bit with 0.95 hardware */
98 		/* Set chain bit for isoc rings on AMD 0.96 host */
99 		if (xhci_link_trb_quirk(xhci) ||
100 				(isoc && (xhci->quirks & XHCI_AMD_0x96_HOST)))
101 			val |= TRB_CHAIN;
102 		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
103 	}
104 	xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
105 			(unsigned long long)prev->dma,
106 			(unsigned long long)next->dma);
107 }
108 
109 /* XXX: Do we need the hcd structure in all these functions? */
110 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
111 {
112 	struct xhci_segment *seg;
113 	struct xhci_segment *first_seg;
114 
115 	if (!ring)
116 		return;
117 	if (ring->first_seg) {
118 		first_seg = ring->first_seg;
119 		seg = first_seg->next;
120 		xhci_dbg(xhci, "Freeing ring at %p\n", ring);
121 		while (seg != first_seg) {
122 			struct xhci_segment *next = seg->next;
123 			xhci_segment_free(xhci, seg);
124 			seg = next;
125 		}
126 		xhci_segment_free(xhci, first_seg);
127 		ring->first_seg = NULL;
128 	}
129 	kfree(ring);
130 }
131 
132 static void xhci_initialize_ring_info(struct xhci_ring *ring)
133 {
134 	/* The ring is empty, so the enqueue pointer == dequeue pointer */
135 	ring->enqueue = ring->first_seg->trbs;
136 	ring->enq_seg = ring->first_seg;
137 	ring->dequeue = ring->enqueue;
138 	ring->deq_seg = ring->first_seg;
139 	/* The ring is initialized to 0. The producer must write 1 to the cycle
140 	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
141 	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
142 	 */
143 	ring->cycle_state = 1;
144 	/* Not necessary for new rings, but needed for re-initialized rings */
145 	ring->enq_updates = 0;
146 	ring->deq_updates = 0;
147 }
148 
149 /**
150  * Create a new ring with zero or more segments.
151  *
152  * Link each segment together into a ring.
153  * Set the end flag and the cycle toggle bit on the last segment.
154  * See section 4.9.1 and figures 15 and 16.
155  */
156 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
157 		unsigned int num_segs, bool link_trbs, bool isoc, gfp_t flags)
158 {
159 	struct xhci_ring	*ring;
160 	struct xhci_segment	*prev;
161 
162 	ring = kzalloc(sizeof *(ring), flags);
163 	xhci_dbg(xhci, "Allocating ring at %p\n", ring);
164 	if (!ring)
165 		return NULL;
166 
167 	INIT_LIST_HEAD(&ring->td_list);
168 	if (num_segs == 0)
169 		return ring;
170 
171 	ring->first_seg = xhci_segment_alloc(xhci, flags);
172 	if (!ring->first_seg)
173 		goto fail;
174 	num_segs--;
175 
176 	prev = ring->first_seg;
177 	while (num_segs > 0) {
178 		struct xhci_segment	*next;
179 
180 		next = xhci_segment_alloc(xhci, flags);
181 		if (!next)
182 			goto fail;
183 		xhci_link_segments(xhci, prev, next, link_trbs, isoc);
184 
185 		prev = next;
186 		num_segs--;
187 	}
188 	xhci_link_segments(xhci, prev, ring->first_seg, link_trbs, isoc);
189 
190 	if (link_trbs) {
191 		/* See section 4.9.2.1 and 6.4.4.1 */
192 		prev->trbs[TRBS_PER_SEGMENT-1].link.control |=
193 			cpu_to_le32(LINK_TOGGLE);
194 		xhci_dbg(xhci, "Wrote link toggle flag to"
195 				" segment %p (virtual), 0x%llx (DMA)\n",
196 				prev, (unsigned long long)prev->dma);
197 	}
198 	xhci_initialize_ring_info(ring);
199 	return ring;
200 
201 fail:
202 	xhci_ring_free(xhci, ring);
203 	return NULL;
204 }
205 
206 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
207 		struct xhci_virt_device *virt_dev,
208 		unsigned int ep_index)
209 {
210 	int rings_cached;
211 
212 	rings_cached = virt_dev->num_rings_cached;
213 	if (rings_cached < XHCI_MAX_RINGS_CACHED) {
214 		virt_dev->ring_cache[rings_cached] =
215 			virt_dev->eps[ep_index].ring;
216 		virt_dev->num_rings_cached++;
217 		xhci_dbg(xhci, "Cached old ring, "
218 				"%d ring%s cached\n",
219 				virt_dev->num_rings_cached,
220 				(virt_dev->num_rings_cached > 1) ? "s" : "");
221 	} else {
222 		xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
223 		xhci_dbg(xhci, "Ring cache full (%d rings), "
224 				"freeing ring\n",
225 				virt_dev->num_rings_cached);
226 	}
227 	virt_dev->eps[ep_index].ring = NULL;
228 }
229 
230 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
231  * pointers to the beginning of the ring.
232  */
233 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
234 		struct xhci_ring *ring, bool isoc)
235 {
236 	struct xhci_segment	*seg = ring->first_seg;
237 	do {
238 		memset(seg->trbs, 0,
239 				sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
240 		/* All endpoint rings have link TRBs */
241 		xhci_link_segments(xhci, seg, seg->next, 1, isoc);
242 		seg = seg->next;
243 	} while (seg != ring->first_seg);
244 	xhci_initialize_ring_info(ring);
245 	/* td list should be empty since all URBs have been cancelled,
246 	 * but just in case...
247 	 */
248 	INIT_LIST_HEAD(&ring->td_list);
249 }
250 
251 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
252 
253 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
254 						    int type, gfp_t flags)
255 {
256 	struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
257 	if (!ctx)
258 		return NULL;
259 
260 	BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
261 	ctx->type = type;
262 	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
263 	if (type == XHCI_CTX_TYPE_INPUT)
264 		ctx->size += CTX_SIZE(xhci->hcc_params);
265 
266 	ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
267 	memset(ctx->bytes, 0, ctx->size);
268 	return ctx;
269 }
270 
271 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
272 			     struct xhci_container_ctx *ctx)
273 {
274 	if (!ctx)
275 		return;
276 	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
277 	kfree(ctx);
278 }
279 
280 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
281 					      struct xhci_container_ctx *ctx)
282 {
283 	BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
284 	return (struct xhci_input_control_ctx *)ctx->bytes;
285 }
286 
287 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
288 					struct xhci_container_ctx *ctx)
289 {
290 	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
291 		return (struct xhci_slot_ctx *)ctx->bytes;
292 
293 	return (struct xhci_slot_ctx *)
294 		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
295 }
296 
297 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
298 				    struct xhci_container_ctx *ctx,
299 				    unsigned int ep_index)
300 {
301 	/* increment ep index by offset of start of ep ctx array */
302 	ep_index++;
303 	if (ctx->type == XHCI_CTX_TYPE_INPUT)
304 		ep_index++;
305 
306 	return (struct xhci_ep_ctx *)
307 		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
308 }
309 
310 
311 /***************** Streams structures manipulation *************************/
312 
313 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
314 		unsigned int num_stream_ctxs,
315 		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
316 {
317 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
318 
319 	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
320 		dma_free_coherent(&pdev->dev,
321 				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
322 				stream_ctx, dma);
323 	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
324 		return dma_pool_free(xhci->small_streams_pool,
325 				stream_ctx, dma);
326 	else
327 		return dma_pool_free(xhci->medium_streams_pool,
328 				stream_ctx, dma);
329 }
330 
331 /*
332  * The stream context array for each endpoint with bulk streams enabled can
333  * vary in size, based on:
334  *  - how many streams the endpoint supports,
335  *  - the maximum primary stream array size the host controller supports,
336  *  - and how many streams the device driver asks for.
337  *
338  * The stream context array must be a power of 2, and can be as small as
339  * 64 bytes or as large as 1MB.
340  */
341 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
342 		unsigned int num_stream_ctxs, dma_addr_t *dma,
343 		gfp_t mem_flags)
344 {
345 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
346 
347 	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
348 		return dma_alloc_coherent(&pdev->dev,
349 				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
350 				dma, mem_flags);
351 	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
352 		return dma_pool_alloc(xhci->small_streams_pool,
353 				mem_flags, dma);
354 	else
355 		return dma_pool_alloc(xhci->medium_streams_pool,
356 				mem_flags, dma);
357 }
358 
359 struct xhci_ring *xhci_dma_to_transfer_ring(
360 		struct xhci_virt_ep *ep,
361 		u64 address)
362 {
363 	if (ep->ep_state & EP_HAS_STREAMS)
364 		return radix_tree_lookup(&ep->stream_info->trb_address_map,
365 				address >> SEGMENT_SHIFT);
366 	return ep->ring;
367 }
368 
369 /* Only use this when you know stream_info is valid */
370 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
371 static struct xhci_ring *dma_to_stream_ring(
372 		struct xhci_stream_info *stream_info,
373 		u64 address)
374 {
375 	return radix_tree_lookup(&stream_info->trb_address_map,
376 			address >> SEGMENT_SHIFT);
377 }
378 #endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */
379 
380 struct xhci_ring *xhci_stream_id_to_ring(
381 		struct xhci_virt_device *dev,
382 		unsigned int ep_index,
383 		unsigned int stream_id)
384 {
385 	struct xhci_virt_ep *ep = &dev->eps[ep_index];
386 
387 	if (stream_id == 0)
388 		return ep->ring;
389 	if (!ep->stream_info)
390 		return NULL;
391 
392 	if (stream_id > ep->stream_info->num_streams)
393 		return NULL;
394 	return ep->stream_info->stream_rings[stream_id];
395 }
396 
397 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
398 static int xhci_test_radix_tree(struct xhci_hcd *xhci,
399 		unsigned int num_streams,
400 		struct xhci_stream_info *stream_info)
401 {
402 	u32 cur_stream;
403 	struct xhci_ring *cur_ring;
404 	u64 addr;
405 
406 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
407 		struct xhci_ring *mapped_ring;
408 		int trb_size = sizeof(union xhci_trb);
409 
410 		cur_ring = stream_info->stream_rings[cur_stream];
411 		for (addr = cur_ring->first_seg->dma;
412 				addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
413 				addr += trb_size) {
414 			mapped_ring = dma_to_stream_ring(stream_info, addr);
415 			if (cur_ring != mapped_ring) {
416 				xhci_warn(xhci, "WARN: DMA address 0x%08llx "
417 						"didn't map to stream ID %u; "
418 						"mapped to ring %p\n",
419 						(unsigned long long) addr,
420 						cur_stream,
421 						mapped_ring);
422 				return -EINVAL;
423 			}
424 		}
425 		/* One TRB after the end of the ring segment shouldn't return a
426 		 * pointer to the current ring (although it may be a part of a
427 		 * different ring).
428 		 */
429 		mapped_ring = dma_to_stream_ring(stream_info, addr);
430 		if (mapped_ring != cur_ring) {
431 			/* One TRB before should also fail */
432 			addr = cur_ring->first_seg->dma - trb_size;
433 			mapped_ring = dma_to_stream_ring(stream_info, addr);
434 		}
435 		if (mapped_ring == cur_ring) {
436 			xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
437 					"mapped to valid stream ID %u; "
438 					"mapped ring = %p\n",
439 					(unsigned long long) addr,
440 					cur_stream,
441 					mapped_ring);
442 			return -EINVAL;
443 		}
444 	}
445 	return 0;
446 }
447 #endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */
448 
449 /*
450  * Change an endpoint's internal structure so it supports stream IDs.  The
451  * number of requested streams includes stream 0, which cannot be used by device
452  * drivers.
453  *
454  * The number of stream contexts in the stream context array may be bigger than
455  * the number of streams the driver wants to use.  This is because the number of
456  * stream context array entries must be a power of two.
457  *
458  * We need a radix tree for mapping physical addresses of TRBs to which stream
459  * ID they belong to.  We need to do this because the host controller won't tell
460  * us which stream ring the TRB came from.  We could store the stream ID in an
461  * event data TRB, but that doesn't help us for the cancellation case, since the
462  * endpoint may stop before it reaches that event data TRB.
463  *
464  * The radix tree maps the upper portion of the TRB DMA address to a ring
465  * segment that has the same upper portion of DMA addresses.  For example, say I
466  * have segments of size 1KB, that are always 64-byte aligned.  A segment may
467  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
468  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
469  * pass the radix tree a key to get the right stream ID:
470  *
471  * 	0x10c90fff >> 10 = 0x43243
472  * 	0x10c912c0 >> 10 = 0x43244
473  * 	0x10c91400 >> 10 = 0x43245
474  *
475  * Obviously, only those TRBs with DMA addresses that are within the segment
476  * will make the radix tree return the stream ID for that ring.
477  *
478  * Caveats for the radix tree:
479  *
480  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
481  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
482  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
483  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
484  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
485  * extended systems (where the DMA address can be bigger than 32-bits),
486  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
487  */
488 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
489 		unsigned int num_stream_ctxs,
490 		unsigned int num_streams, gfp_t mem_flags)
491 {
492 	struct xhci_stream_info *stream_info;
493 	u32 cur_stream;
494 	struct xhci_ring *cur_ring;
495 	unsigned long key;
496 	u64 addr;
497 	int ret;
498 
499 	xhci_dbg(xhci, "Allocating %u streams and %u "
500 			"stream context array entries.\n",
501 			num_streams, num_stream_ctxs);
502 	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
503 		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
504 		return NULL;
505 	}
506 	xhci->cmd_ring_reserved_trbs++;
507 
508 	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
509 	if (!stream_info)
510 		goto cleanup_trbs;
511 
512 	stream_info->num_streams = num_streams;
513 	stream_info->num_stream_ctxs = num_stream_ctxs;
514 
515 	/* Initialize the array of virtual pointers to stream rings. */
516 	stream_info->stream_rings = kzalloc(
517 			sizeof(struct xhci_ring *)*num_streams,
518 			mem_flags);
519 	if (!stream_info->stream_rings)
520 		goto cleanup_info;
521 
522 	/* Initialize the array of DMA addresses for stream rings for the HW. */
523 	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
524 			num_stream_ctxs, &stream_info->ctx_array_dma,
525 			mem_flags);
526 	if (!stream_info->stream_ctx_array)
527 		goto cleanup_ctx;
528 	memset(stream_info->stream_ctx_array, 0,
529 			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
530 
531 	/* Allocate everything needed to free the stream rings later */
532 	stream_info->free_streams_command =
533 		xhci_alloc_command(xhci, true, true, mem_flags);
534 	if (!stream_info->free_streams_command)
535 		goto cleanup_ctx;
536 
537 	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
538 
539 	/* Allocate rings for all the streams that the driver will use,
540 	 * and add their segment DMA addresses to the radix tree.
541 	 * Stream 0 is reserved.
542 	 */
543 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
544 		stream_info->stream_rings[cur_stream] =
545 			xhci_ring_alloc(xhci, 1, true, false, mem_flags);
546 		cur_ring = stream_info->stream_rings[cur_stream];
547 		if (!cur_ring)
548 			goto cleanup_rings;
549 		cur_ring->stream_id = cur_stream;
550 		/* Set deq ptr, cycle bit, and stream context type */
551 		addr = cur_ring->first_seg->dma |
552 			SCT_FOR_CTX(SCT_PRI_TR) |
553 			cur_ring->cycle_state;
554 		stream_info->stream_ctx_array[cur_stream].stream_ring =
555 			cpu_to_le64(addr);
556 		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
557 				cur_stream, (unsigned long long) addr);
558 
559 		key = (unsigned long)
560 			(cur_ring->first_seg->dma >> SEGMENT_SHIFT);
561 		ret = radix_tree_insert(&stream_info->trb_address_map,
562 				key, cur_ring);
563 		if (ret) {
564 			xhci_ring_free(xhci, cur_ring);
565 			stream_info->stream_rings[cur_stream] = NULL;
566 			goto cleanup_rings;
567 		}
568 	}
569 	/* Leave the other unused stream ring pointers in the stream context
570 	 * array initialized to zero.  This will cause the xHC to give us an
571 	 * error if the device asks for a stream ID we don't have setup (if it
572 	 * was any other way, the host controller would assume the ring is
573 	 * "empty" and wait forever for data to be queued to that stream ID).
574 	 */
575 #if XHCI_DEBUG
576 	/* Do a little test on the radix tree to make sure it returns the
577 	 * correct values.
578 	 */
579 	if (xhci_test_radix_tree(xhci, num_streams, stream_info))
580 		goto cleanup_rings;
581 #endif
582 
583 	return stream_info;
584 
585 cleanup_rings:
586 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
587 		cur_ring = stream_info->stream_rings[cur_stream];
588 		if (cur_ring) {
589 			addr = cur_ring->first_seg->dma;
590 			radix_tree_delete(&stream_info->trb_address_map,
591 					addr >> SEGMENT_SHIFT);
592 			xhci_ring_free(xhci, cur_ring);
593 			stream_info->stream_rings[cur_stream] = NULL;
594 		}
595 	}
596 	xhci_free_command(xhci, stream_info->free_streams_command);
597 cleanup_ctx:
598 	kfree(stream_info->stream_rings);
599 cleanup_info:
600 	kfree(stream_info);
601 cleanup_trbs:
602 	xhci->cmd_ring_reserved_trbs--;
603 	return NULL;
604 }
605 /*
606  * Sets the MaxPStreams field and the Linear Stream Array field.
607  * Sets the dequeue pointer to the stream context array.
608  */
609 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
610 		struct xhci_ep_ctx *ep_ctx,
611 		struct xhci_stream_info *stream_info)
612 {
613 	u32 max_primary_streams;
614 	/* MaxPStreams is the number of stream context array entries, not the
615 	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
616 	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
617 	 */
618 	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
619 	xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
620 			1 << (max_primary_streams + 1));
621 	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
622 	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
623 				       | EP_HAS_LSA);
624 	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
625 }
626 
627 /*
628  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
629  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
630  * not at the beginning of the ring).
631  */
632 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
633 		struct xhci_ep_ctx *ep_ctx,
634 		struct xhci_virt_ep *ep)
635 {
636 	dma_addr_t addr;
637 	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
638 	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
639 	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
640 }
641 
642 /* Frees all stream contexts associated with the endpoint,
643  *
644  * Caller should fix the endpoint context streams fields.
645  */
646 void xhci_free_stream_info(struct xhci_hcd *xhci,
647 		struct xhci_stream_info *stream_info)
648 {
649 	int cur_stream;
650 	struct xhci_ring *cur_ring;
651 	dma_addr_t addr;
652 
653 	if (!stream_info)
654 		return;
655 
656 	for (cur_stream = 1; cur_stream < stream_info->num_streams;
657 			cur_stream++) {
658 		cur_ring = stream_info->stream_rings[cur_stream];
659 		if (cur_ring) {
660 			addr = cur_ring->first_seg->dma;
661 			radix_tree_delete(&stream_info->trb_address_map,
662 					addr >> SEGMENT_SHIFT);
663 			xhci_ring_free(xhci, cur_ring);
664 			stream_info->stream_rings[cur_stream] = NULL;
665 		}
666 	}
667 	xhci_free_command(xhci, stream_info->free_streams_command);
668 	xhci->cmd_ring_reserved_trbs--;
669 	if (stream_info->stream_ctx_array)
670 		xhci_free_stream_ctx(xhci,
671 				stream_info->num_stream_ctxs,
672 				stream_info->stream_ctx_array,
673 				stream_info->ctx_array_dma);
674 
675 	if (stream_info)
676 		kfree(stream_info->stream_rings);
677 	kfree(stream_info);
678 }
679 
680 
681 /***************** Device context manipulation *************************/
682 
683 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
684 		struct xhci_virt_ep *ep)
685 {
686 	init_timer(&ep->stop_cmd_timer);
687 	ep->stop_cmd_timer.data = (unsigned long) ep;
688 	ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
689 	ep->xhci = xhci;
690 }
691 
692 static void xhci_free_tt_info(struct xhci_hcd *xhci,
693 		struct xhci_virt_device *virt_dev,
694 		int slot_id)
695 {
696 	struct list_head *tt;
697 	struct list_head *tt_list_head;
698 	struct list_head *tt_next;
699 	struct xhci_tt_bw_info *tt_info;
700 
701 	/* If the device never made it past the Set Address stage,
702 	 * it may not have the real_port set correctly.
703 	 */
704 	if (virt_dev->real_port == 0 ||
705 			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
706 		xhci_dbg(xhci, "Bad real port.\n");
707 		return;
708 	}
709 
710 	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
711 	if (list_empty(tt_list_head))
712 		return;
713 
714 	list_for_each(tt, tt_list_head) {
715 		tt_info = list_entry(tt, struct xhci_tt_bw_info, tt_list);
716 		if (tt_info->slot_id == slot_id)
717 			break;
718 	}
719 	/* Cautionary measure in case the hub was disconnected before we
720 	 * stored the TT information.
721 	 */
722 	if (tt_info->slot_id != slot_id)
723 		return;
724 
725 	tt_next = tt->next;
726 	tt_info = list_entry(tt, struct xhci_tt_bw_info,
727 			tt_list);
728 	/* Multi-TT hubs will have more than one entry */
729 	do {
730 		list_del(tt);
731 		kfree(tt_info);
732 		tt = tt_next;
733 		if (list_empty(tt_list_head))
734 			break;
735 		tt_next = tt->next;
736 		tt_info = list_entry(tt, struct xhci_tt_bw_info,
737 				tt_list);
738 	} while (tt_info->slot_id == slot_id);
739 }
740 
741 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
742 		struct xhci_virt_device *virt_dev,
743 		struct usb_device *hdev,
744 		struct usb_tt *tt, gfp_t mem_flags)
745 {
746 	struct xhci_tt_bw_info		*tt_info;
747 	unsigned int			num_ports;
748 	int				i, j;
749 
750 	if (!tt->multi)
751 		num_ports = 1;
752 	else
753 		num_ports = hdev->maxchild;
754 
755 	for (i = 0; i < num_ports; i++, tt_info++) {
756 		struct xhci_interval_bw_table *bw_table;
757 
758 		tt_info = kzalloc(sizeof(*tt_info), mem_flags);
759 		if (!tt_info)
760 			goto free_tts;
761 		INIT_LIST_HEAD(&tt_info->tt_list);
762 		list_add(&tt_info->tt_list,
763 				&xhci->rh_bw[virt_dev->real_port - 1].tts);
764 		tt_info->slot_id = virt_dev->udev->slot_id;
765 		if (tt->multi)
766 			tt_info->ttport = i+1;
767 		bw_table = &tt_info->bw_table;
768 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
769 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
770 	}
771 	return 0;
772 
773 free_tts:
774 	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
775 	return -ENOMEM;
776 }
777 
778 
779 /* All the xhci_tds in the ring's TD list should be freed at this point.
780  * Should be called with xhci->lock held if there is any chance the TT lists
781  * will be manipulated by the configure endpoint, allocate device, or update
782  * hub functions while this function is removing the TT entries from the list.
783  */
784 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
785 {
786 	struct xhci_virt_device *dev;
787 	int i;
788 	int old_active_eps = 0;
789 
790 	/* Slot ID 0 is reserved */
791 	if (slot_id == 0 || !xhci->devs[slot_id])
792 		return;
793 
794 	dev = xhci->devs[slot_id];
795 	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
796 	if (!dev)
797 		return;
798 
799 	if (dev->tt_info)
800 		old_active_eps = dev->tt_info->active_eps;
801 
802 	for (i = 0; i < 31; ++i) {
803 		if (dev->eps[i].ring)
804 			xhci_ring_free(xhci, dev->eps[i].ring);
805 		if (dev->eps[i].stream_info)
806 			xhci_free_stream_info(xhci,
807 					dev->eps[i].stream_info);
808 		/* Endpoints on the TT/root port lists should have been removed
809 		 * when usb_disable_device() was called for the device.
810 		 * We can't drop them anyway, because the udev might have gone
811 		 * away by this point, and we can't tell what speed it was.
812 		 */
813 		if (!list_empty(&dev->eps[i].bw_endpoint_list))
814 			xhci_warn(xhci, "Slot %u endpoint %u "
815 					"not removed from BW list!\n",
816 					slot_id, i);
817 	}
818 	/* If this is a hub, free the TT(s) from the TT list */
819 	xhci_free_tt_info(xhci, dev, slot_id);
820 	/* If necessary, update the number of active TTs on this root port */
821 	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
822 
823 	if (dev->ring_cache) {
824 		for (i = 0; i < dev->num_rings_cached; i++)
825 			xhci_ring_free(xhci, dev->ring_cache[i]);
826 		kfree(dev->ring_cache);
827 	}
828 
829 	if (dev->in_ctx)
830 		xhci_free_container_ctx(xhci, dev->in_ctx);
831 	if (dev->out_ctx)
832 		xhci_free_container_ctx(xhci, dev->out_ctx);
833 
834 	kfree(xhci->devs[slot_id]);
835 	xhci->devs[slot_id] = NULL;
836 }
837 
838 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
839 		struct usb_device *udev, gfp_t flags)
840 {
841 	struct xhci_virt_device *dev;
842 	int i;
843 
844 	/* Slot ID 0 is reserved */
845 	if (slot_id == 0 || xhci->devs[slot_id]) {
846 		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
847 		return 0;
848 	}
849 
850 	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
851 	if (!xhci->devs[slot_id])
852 		return 0;
853 	dev = xhci->devs[slot_id];
854 
855 	/* Allocate the (output) device context that will be used in the HC. */
856 	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
857 	if (!dev->out_ctx)
858 		goto fail;
859 
860 	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
861 			(unsigned long long)dev->out_ctx->dma);
862 
863 	/* Allocate the (input) device context for address device command */
864 	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
865 	if (!dev->in_ctx)
866 		goto fail;
867 
868 	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
869 			(unsigned long long)dev->in_ctx->dma);
870 
871 	/* Initialize the cancellation list and watchdog timers for each ep */
872 	for (i = 0; i < 31; i++) {
873 		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
874 		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
875 		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
876 	}
877 
878 	/* Allocate endpoint 0 ring */
879 	dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, false, flags);
880 	if (!dev->eps[0].ring)
881 		goto fail;
882 
883 	/* Allocate pointers to the ring cache */
884 	dev->ring_cache = kzalloc(
885 			sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
886 			flags);
887 	if (!dev->ring_cache)
888 		goto fail;
889 	dev->num_rings_cached = 0;
890 
891 	init_completion(&dev->cmd_completion);
892 	INIT_LIST_HEAD(&dev->cmd_list);
893 	dev->udev = udev;
894 
895 	/* Point to output device context in dcbaa. */
896 	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
897 	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
898 		 slot_id,
899 		 &xhci->dcbaa->dev_context_ptrs[slot_id],
900 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
901 
902 	return 1;
903 fail:
904 	xhci_free_virt_device(xhci, slot_id);
905 	return 0;
906 }
907 
908 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
909 		struct usb_device *udev)
910 {
911 	struct xhci_virt_device *virt_dev;
912 	struct xhci_ep_ctx	*ep0_ctx;
913 	struct xhci_ring	*ep_ring;
914 
915 	virt_dev = xhci->devs[udev->slot_id];
916 	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
917 	ep_ring = virt_dev->eps[0].ring;
918 	/*
919 	 * FIXME we don't keep track of the dequeue pointer very well after a
920 	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
921 	 * host to our enqueue pointer.  This should only be called after a
922 	 * configured device has reset, so all control transfers should have
923 	 * been completed or cancelled before the reset.
924 	 */
925 	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
926 							ep_ring->enqueue)
927 				   | ep_ring->cycle_state);
928 }
929 
930 /*
931  * The xHCI roothub may have ports of differing speeds in any order in the port
932  * status registers.  xhci->port_array provides an array of the port speed for
933  * each offset into the port status registers.
934  *
935  * The xHCI hardware wants to know the roothub port number that the USB device
936  * is attached to (or the roothub port its ancestor hub is attached to).  All we
937  * know is the index of that port under either the USB 2.0 or the USB 3.0
938  * roothub, but that doesn't give us the real index into the HW port status
939  * registers.  Scan through the xHCI roothub port array, looking for the Nth
940  * entry of the correct port speed.  Return the port number of that entry.
941  */
942 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
943 		struct usb_device *udev)
944 {
945 	struct usb_device *top_dev;
946 	unsigned int num_similar_speed_ports;
947 	unsigned int faked_port_num;
948 	int i;
949 
950 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
951 			top_dev = top_dev->parent)
952 		/* Found device below root hub */;
953 	faked_port_num = top_dev->portnum;
954 	for (i = 0, num_similar_speed_ports = 0;
955 			i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
956 		u8 port_speed = xhci->port_array[i];
957 
958 		/*
959 		 * Skip ports that don't have known speeds, or have duplicate
960 		 * Extended Capabilities port speed entries.
961 		 */
962 		if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
963 			continue;
964 
965 		/*
966 		 * USB 3.0 ports are always under a USB 3.0 hub.  USB 2.0 and
967 		 * 1.1 ports are under the USB 2.0 hub.  If the port speed
968 		 * matches the device speed, it's a similar speed port.
969 		 */
970 		if ((port_speed == 0x03) == (udev->speed == USB_SPEED_SUPER))
971 			num_similar_speed_ports++;
972 		if (num_similar_speed_ports == faked_port_num)
973 			/* Roothub ports are numbered from 1 to N */
974 			return i+1;
975 	}
976 	return 0;
977 }
978 
979 /* Setup an xHCI virtual device for a Set Address command */
980 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
981 {
982 	struct xhci_virt_device *dev;
983 	struct xhci_ep_ctx	*ep0_ctx;
984 	struct xhci_slot_ctx    *slot_ctx;
985 	struct xhci_input_control_ctx *ctrl_ctx;
986 	u32			port_num;
987 	struct usb_device *top_dev;
988 
989 	dev = xhci->devs[udev->slot_id];
990 	/* Slot ID 0 is reserved */
991 	if (udev->slot_id == 0 || !dev) {
992 		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
993 				udev->slot_id);
994 		return -EINVAL;
995 	}
996 	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
997 	ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
998 	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
999 
1000 	/* 2) New slot context and endpoint 0 context are valid*/
1001 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
1002 
1003 	/* 3) Only the control endpoint is valid - one endpoint context */
1004 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1005 	switch (udev->speed) {
1006 	case USB_SPEED_SUPER:
1007 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1008 		break;
1009 	case USB_SPEED_HIGH:
1010 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1011 		break;
1012 	case USB_SPEED_FULL:
1013 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1014 		break;
1015 	case USB_SPEED_LOW:
1016 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1017 		break;
1018 	case USB_SPEED_WIRELESS:
1019 		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1020 		return -EINVAL;
1021 		break;
1022 	default:
1023 		/* Speed was set earlier, this shouldn't happen. */
1024 		BUG();
1025 	}
1026 	/* Find the root hub port this device is under */
1027 	port_num = xhci_find_real_port_number(xhci, udev);
1028 	if (!port_num)
1029 		return -EINVAL;
1030 	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1031 	/* Set the port number in the virtual_device to the faked port number */
1032 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1033 			top_dev = top_dev->parent)
1034 		/* Found device below root hub */;
1035 	dev->fake_port = top_dev->portnum;
1036 	dev->real_port = port_num;
1037 	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1038 	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1039 
1040 	/* Find the right bandwidth table that this device will be a part of.
1041 	 * If this is a full speed device attached directly to a root port (or a
1042 	 * decendent of one), it counts as a primary bandwidth domain, not a
1043 	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1044 	 * will never be created for the HS root hub.
1045 	 */
1046 	if (!udev->tt || !udev->tt->hub->parent) {
1047 		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1048 	} else {
1049 		struct xhci_root_port_bw_info *rh_bw;
1050 		struct xhci_tt_bw_info *tt_bw;
1051 
1052 		rh_bw = &xhci->rh_bw[port_num - 1];
1053 		/* Find the right TT. */
1054 		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1055 			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1056 				continue;
1057 
1058 			if (!dev->udev->tt->multi ||
1059 					(udev->tt->multi &&
1060 					 tt_bw->ttport == dev->udev->ttport)) {
1061 				dev->bw_table = &tt_bw->bw_table;
1062 				dev->tt_info = tt_bw;
1063 				break;
1064 			}
1065 		}
1066 		if (!dev->tt_info)
1067 			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1068 	}
1069 
1070 	/* Is this a LS/FS device under an external HS hub? */
1071 	if (udev->tt && udev->tt->hub->parent) {
1072 		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1073 						(udev->ttport << 8));
1074 		if (udev->tt->multi)
1075 			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1076 	}
1077 	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1078 	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1079 
1080 	/* Step 4 - ring already allocated */
1081 	/* Step 5 */
1082 	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1083 	/*
1084 	 * XXX: Not sure about wireless USB devices.
1085 	 */
1086 	switch (udev->speed) {
1087 	case USB_SPEED_SUPER:
1088 		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512));
1089 		break;
1090 	case USB_SPEED_HIGH:
1091 	/* USB core guesses at a 64-byte max packet first for FS devices */
1092 	case USB_SPEED_FULL:
1093 		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64));
1094 		break;
1095 	case USB_SPEED_LOW:
1096 		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8));
1097 		break;
1098 	case USB_SPEED_WIRELESS:
1099 		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1100 		return -EINVAL;
1101 		break;
1102 	default:
1103 		/* New speed? */
1104 		BUG();
1105 	}
1106 	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1107 	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
1108 
1109 	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1110 				   dev->eps[0].ring->cycle_state);
1111 
1112 	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1113 
1114 	return 0;
1115 }
1116 
1117 /*
1118  * Convert interval expressed as 2^(bInterval - 1) == interval into
1119  * straight exponent value 2^n == interval.
1120  *
1121  */
1122 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1123 		struct usb_host_endpoint *ep)
1124 {
1125 	unsigned int interval;
1126 
1127 	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1128 	if (interval != ep->desc.bInterval - 1)
1129 		dev_warn(&udev->dev,
1130 			 "ep %#x - rounding interval to %d %sframes\n",
1131 			 ep->desc.bEndpointAddress,
1132 			 1 << interval,
1133 			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1134 
1135 	if (udev->speed == USB_SPEED_FULL) {
1136 		/*
1137 		 * Full speed isoc endpoints specify interval in frames,
1138 		 * not microframes. We are using microframes everywhere,
1139 		 * so adjust accordingly.
1140 		 */
1141 		interval += 3;	/* 1 frame = 2^3 uframes */
1142 	}
1143 
1144 	return interval;
1145 }
1146 
1147 /*
1148  * Convert bInterval expressed in frames (in 1-255 range) to exponent of
1149  * microframes, rounded down to nearest power of 2.
1150  */
1151 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1152 		struct usb_host_endpoint *ep)
1153 {
1154 	unsigned int interval;
1155 
1156 	interval = fls(8 * ep->desc.bInterval) - 1;
1157 	interval = clamp_val(interval, 3, 10);
1158 	if ((1 << interval) != 8 * ep->desc.bInterval)
1159 		dev_warn(&udev->dev,
1160 			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1161 			 ep->desc.bEndpointAddress,
1162 			 1 << interval,
1163 			 8 * ep->desc.bInterval);
1164 
1165 	return interval;
1166 }
1167 
1168 /* Return the polling or NAK interval.
1169  *
1170  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1171  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1172  *
1173  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1174  * is set to 0.
1175  */
1176 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1177 		struct usb_host_endpoint *ep)
1178 {
1179 	unsigned int interval = 0;
1180 
1181 	switch (udev->speed) {
1182 	case USB_SPEED_HIGH:
1183 		/* Max NAK rate */
1184 		if (usb_endpoint_xfer_control(&ep->desc) ||
1185 		    usb_endpoint_xfer_bulk(&ep->desc)) {
1186 			interval = ep->desc.bInterval;
1187 			break;
1188 		}
1189 		/* Fall through - SS and HS isoc/int have same decoding */
1190 
1191 	case USB_SPEED_SUPER:
1192 		if (usb_endpoint_xfer_int(&ep->desc) ||
1193 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1194 			interval = xhci_parse_exponent_interval(udev, ep);
1195 		}
1196 		break;
1197 
1198 	case USB_SPEED_FULL:
1199 		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1200 			interval = xhci_parse_exponent_interval(udev, ep);
1201 			break;
1202 		}
1203 		/*
1204 		 * Fall through for interrupt endpoint interval decoding
1205 		 * since it uses the same rules as low speed interrupt
1206 		 * endpoints.
1207 		 */
1208 
1209 	case USB_SPEED_LOW:
1210 		if (usb_endpoint_xfer_int(&ep->desc) ||
1211 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1212 
1213 			interval = xhci_parse_frame_interval(udev, ep);
1214 		}
1215 		break;
1216 
1217 	default:
1218 		BUG();
1219 	}
1220 	return EP_INTERVAL(interval);
1221 }
1222 
1223 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1224  * High speed endpoint descriptors can define "the number of additional
1225  * transaction opportunities per microframe", but that goes in the Max Burst
1226  * endpoint context field.
1227  */
1228 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1229 		struct usb_host_endpoint *ep)
1230 {
1231 	if (udev->speed != USB_SPEED_SUPER ||
1232 			!usb_endpoint_xfer_isoc(&ep->desc))
1233 		return 0;
1234 	return ep->ss_ep_comp.bmAttributes;
1235 }
1236 
1237 static u32 xhci_get_endpoint_type(struct usb_device *udev,
1238 		struct usb_host_endpoint *ep)
1239 {
1240 	int in;
1241 	u32 type;
1242 
1243 	in = usb_endpoint_dir_in(&ep->desc);
1244 	if (usb_endpoint_xfer_control(&ep->desc)) {
1245 		type = EP_TYPE(CTRL_EP);
1246 	} else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1247 		if (in)
1248 			type = EP_TYPE(BULK_IN_EP);
1249 		else
1250 			type = EP_TYPE(BULK_OUT_EP);
1251 	} else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1252 		if (in)
1253 			type = EP_TYPE(ISOC_IN_EP);
1254 		else
1255 			type = EP_TYPE(ISOC_OUT_EP);
1256 	} else if (usb_endpoint_xfer_int(&ep->desc)) {
1257 		if (in)
1258 			type = EP_TYPE(INT_IN_EP);
1259 		else
1260 			type = EP_TYPE(INT_OUT_EP);
1261 	} else {
1262 		BUG();
1263 	}
1264 	return type;
1265 }
1266 
1267 /* Return the maximum endpoint service interval time (ESIT) payload.
1268  * Basically, this is the maxpacket size, multiplied by the burst size
1269  * and mult size.
1270  */
1271 static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1272 		struct usb_device *udev,
1273 		struct usb_host_endpoint *ep)
1274 {
1275 	int max_burst;
1276 	int max_packet;
1277 
1278 	/* Only applies for interrupt or isochronous endpoints */
1279 	if (usb_endpoint_xfer_control(&ep->desc) ||
1280 			usb_endpoint_xfer_bulk(&ep->desc))
1281 		return 0;
1282 
1283 	if (udev->speed == USB_SPEED_SUPER)
1284 		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1285 
1286 	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1287 	max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1288 	/* A 0 in max burst means 1 transfer per ESIT */
1289 	return max_packet * (max_burst + 1);
1290 }
1291 
1292 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1293  * Drivers will have to call usb_alloc_streams() to do that.
1294  */
1295 int xhci_endpoint_init(struct xhci_hcd *xhci,
1296 		struct xhci_virt_device *virt_dev,
1297 		struct usb_device *udev,
1298 		struct usb_host_endpoint *ep,
1299 		gfp_t mem_flags)
1300 {
1301 	unsigned int ep_index;
1302 	struct xhci_ep_ctx *ep_ctx;
1303 	struct xhci_ring *ep_ring;
1304 	unsigned int max_packet;
1305 	unsigned int max_burst;
1306 	u32 max_esit_payload;
1307 
1308 	ep_index = xhci_get_endpoint_index(&ep->desc);
1309 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1310 
1311 	/* Set up the endpoint ring */
1312 	/*
1313 	 * Isochronous endpoint ring needs bigger size because one isoc URB
1314 	 * carries multiple packets and it will insert multiple tds to the
1315 	 * ring.
1316 	 * This should be replaced with dynamic ring resizing in the future.
1317 	 */
1318 	if (usb_endpoint_xfer_isoc(&ep->desc))
1319 		virt_dev->eps[ep_index].new_ring =
1320 			xhci_ring_alloc(xhci, 8, true, true, mem_flags);
1321 	else
1322 		virt_dev->eps[ep_index].new_ring =
1323 			xhci_ring_alloc(xhci, 1, true, false, mem_flags);
1324 	if (!virt_dev->eps[ep_index].new_ring) {
1325 		/* Attempt to use the ring cache */
1326 		if (virt_dev->num_rings_cached == 0)
1327 			return -ENOMEM;
1328 		virt_dev->eps[ep_index].new_ring =
1329 			virt_dev->ring_cache[virt_dev->num_rings_cached];
1330 		virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1331 		virt_dev->num_rings_cached--;
1332 		xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1333 			usb_endpoint_xfer_isoc(&ep->desc) ? true : false);
1334 	}
1335 	virt_dev->eps[ep_index].skip = false;
1336 	ep_ring = virt_dev->eps[ep_index].new_ring;
1337 	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1338 
1339 	ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1340 				      | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1341 
1342 	/* FIXME dig Mult and streams info out of ep companion desc */
1343 
1344 	/* Allow 3 retries for everything but isoc;
1345 	 * CErr shall be set to 0 for Isoch endpoints.
1346 	 */
1347 	if (!usb_endpoint_xfer_isoc(&ep->desc))
1348 		ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3));
1349 	else
1350 		ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(0));
1351 
1352 	ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep));
1353 
1354 	/* Set the max packet size and max burst */
1355 	switch (udev->speed) {
1356 	case USB_SPEED_SUPER:
1357 		max_packet = usb_endpoint_maxp(&ep->desc);
1358 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1359 		/* dig out max burst from ep companion desc */
1360 		max_packet = ep->ss_ep_comp.bMaxBurst;
1361 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_packet));
1362 		break;
1363 	case USB_SPEED_HIGH:
1364 		/* bits 11:12 specify the number of additional transaction
1365 		 * opportunities per microframe (USB 2.0, section 9.6.6)
1366 		 */
1367 		if (usb_endpoint_xfer_isoc(&ep->desc) ||
1368 				usb_endpoint_xfer_int(&ep->desc)) {
1369 			max_burst = (usb_endpoint_maxp(&ep->desc)
1370 				     & 0x1800) >> 11;
1371 			ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_burst));
1372 		}
1373 		/* Fall through */
1374 	case USB_SPEED_FULL:
1375 	case USB_SPEED_LOW:
1376 		max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1377 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1378 		break;
1379 	default:
1380 		BUG();
1381 	}
1382 	max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1383 	ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1384 
1385 	/*
1386 	 * XXX no idea how to calculate the average TRB buffer length for bulk
1387 	 * endpoints, as the driver gives us no clue how big each scatter gather
1388 	 * list entry (or buffer) is going to be.
1389 	 *
1390 	 * For isochronous and interrupt endpoints, we set it to the max
1391 	 * available, until we have new API in the USB core to allow drivers to
1392 	 * declare how much bandwidth they actually need.
1393 	 *
1394 	 * Normally, it would be calculated by taking the total of the buffer
1395 	 * lengths in the TD and then dividing by the number of TRBs in a TD,
1396 	 * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
1397 	 * use Event Data TRBs, and we don't chain in a link TRB on short
1398 	 * transfers, we're basically dividing by 1.
1399 	 *
1400 	 * xHCI 1.0 specification indicates that the Average TRB Length should
1401 	 * be set to 8 for control endpoints.
1402 	 */
1403 	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1404 		ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1405 	else
1406 		ep_ctx->tx_info |=
1407 			 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1408 
1409 	/* FIXME Debug endpoint context */
1410 	return 0;
1411 }
1412 
1413 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1414 		struct xhci_virt_device *virt_dev,
1415 		struct usb_host_endpoint *ep)
1416 {
1417 	unsigned int ep_index;
1418 	struct xhci_ep_ctx *ep_ctx;
1419 
1420 	ep_index = xhci_get_endpoint_index(&ep->desc);
1421 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1422 
1423 	ep_ctx->ep_info = 0;
1424 	ep_ctx->ep_info2 = 0;
1425 	ep_ctx->deq = 0;
1426 	ep_ctx->tx_info = 0;
1427 	/* Don't free the endpoint ring until the set interface or configuration
1428 	 * request succeeds.
1429 	 */
1430 }
1431 
1432 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1433 {
1434 	bw_info->ep_interval = 0;
1435 	bw_info->mult = 0;
1436 	bw_info->num_packets = 0;
1437 	bw_info->max_packet_size = 0;
1438 	bw_info->type = 0;
1439 	bw_info->max_esit_payload = 0;
1440 }
1441 
1442 void xhci_update_bw_info(struct xhci_hcd *xhci,
1443 		struct xhci_container_ctx *in_ctx,
1444 		struct xhci_input_control_ctx *ctrl_ctx,
1445 		struct xhci_virt_device *virt_dev)
1446 {
1447 	struct xhci_bw_info *bw_info;
1448 	struct xhci_ep_ctx *ep_ctx;
1449 	unsigned int ep_type;
1450 	int i;
1451 
1452 	for (i = 1; i < 31; ++i) {
1453 		bw_info = &virt_dev->eps[i].bw_info;
1454 
1455 		/* We can't tell what endpoint type is being dropped, but
1456 		 * unconditionally clearing the bandwidth info for non-periodic
1457 		 * endpoints should be harmless because the info will never be
1458 		 * set in the first place.
1459 		 */
1460 		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1461 			/* Dropped endpoint */
1462 			xhci_clear_endpoint_bw_info(bw_info);
1463 			continue;
1464 		}
1465 
1466 		if (EP_IS_ADDED(ctrl_ctx, i)) {
1467 			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1468 			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1469 
1470 			/* Ignore non-periodic endpoints */
1471 			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1472 					ep_type != ISOC_IN_EP &&
1473 					ep_type != INT_IN_EP)
1474 				continue;
1475 
1476 			/* Added or changed endpoint */
1477 			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1478 					le32_to_cpu(ep_ctx->ep_info));
1479 			/* Number of packets and mult are zero-based in the
1480 			 * input context, but we want one-based for the
1481 			 * interval table.
1482 			 */
1483 			bw_info->mult = CTX_TO_EP_MULT(
1484 					le32_to_cpu(ep_ctx->ep_info)) + 1;
1485 			bw_info->num_packets = CTX_TO_MAX_BURST(
1486 					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1487 			bw_info->max_packet_size = MAX_PACKET_DECODED(
1488 					le32_to_cpu(ep_ctx->ep_info2));
1489 			bw_info->type = ep_type;
1490 			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1491 					le32_to_cpu(ep_ctx->tx_info));
1492 		}
1493 	}
1494 }
1495 
1496 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1497  * Useful when you want to change one particular aspect of the endpoint and then
1498  * issue a configure endpoint command.
1499  */
1500 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1501 		struct xhci_container_ctx *in_ctx,
1502 		struct xhci_container_ctx *out_ctx,
1503 		unsigned int ep_index)
1504 {
1505 	struct xhci_ep_ctx *out_ep_ctx;
1506 	struct xhci_ep_ctx *in_ep_ctx;
1507 
1508 	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1509 	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1510 
1511 	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1512 	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1513 	in_ep_ctx->deq = out_ep_ctx->deq;
1514 	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1515 }
1516 
1517 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1518  * Useful when you want to change one particular aspect of the endpoint and then
1519  * issue a configure endpoint command.  Only the context entries field matters,
1520  * but we'll copy the whole thing anyway.
1521  */
1522 void xhci_slot_copy(struct xhci_hcd *xhci,
1523 		struct xhci_container_ctx *in_ctx,
1524 		struct xhci_container_ctx *out_ctx)
1525 {
1526 	struct xhci_slot_ctx *in_slot_ctx;
1527 	struct xhci_slot_ctx *out_slot_ctx;
1528 
1529 	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1530 	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1531 
1532 	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1533 	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1534 	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1535 	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1536 }
1537 
1538 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1539 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1540 {
1541 	int i;
1542 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1543 	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1544 
1545 	xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1546 
1547 	if (!num_sp)
1548 		return 0;
1549 
1550 	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1551 	if (!xhci->scratchpad)
1552 		goto fail_sp;
1553 
1554 	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1555 				     num_sp * sizeof(u64),
1556 				     &xhci->scratchpad->sp_dma, flags);
1557 	if (!xhci->scratchpad->sp_array)
1558 		goto fail_sp2;
1559 
1560 	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1561 	if (!xhci->scratchpad->sp_buffers)
1562 		goto fail_sp3;
1563 
1564 	xhci->scratchpad->sp_dma_buffers =
1565 		kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1566 
1567 	if (!xhci->scratchpad->sp_dma_buffers)
1568 		goto fail_sp4;
1569 
1570 	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1571 	for (i = 0; i < num_sp; i++) {
1572 		dma_addr_t dma;
1573 		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1574 				flags);
1575 		if (!buf)
1576 			goto fail_sp5;
1577 
1578 		xhci->scratchpad->sp_array[i] = dma;
1579 		xhci->scratchpad->sp_buffers[i] = buf;
1580 		xhci->scratchpad->sp_dma_buffers[i] = dma;
1581 	}
1582 
1583 	return 0;
1584 
1585  fail_sp5:
1586 	for (i = i - 1; i >= 0; i--) {
1587 		dma_free_coherent(dev, xhci->page_size,
1588 				    xhci->scratchpad->sp_buffers[i],
1589 				    xhci->scratchpad->sp_dma_buffers[i]);
1590 	}
1591 	kfree(xhci->scratchpad->sp_dma_buffers);
1592 
1593  fail_sp4:
1594 	kfree(xhci->scratchpad->sp_buffers);
1595 
1596  fail_sp3:
1597 	dma_free_coherent(dev, num_sp * sizeof(u64),
1598 			    xhci->scratchpad->sp_array,
1599 			    xhci->scratchpad->sp_dma);
1600 
1601  fail_sp2:
1602 	kfree(xhci->scratchpad);
1603 	xhci->scratchpad = NULL;
1604 
1605  fail_sp:
1606 	return -ENOMEM;
1607 }
1608 
1609 static void scratchpad_free(struct xhci_hcd *xhci)
1610 {
1611 	int num_sp;
1612 	int i;
1613 	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1614 
1615 	if (!xhci->scratchpad)
1616 		return;
1617 
1618 	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1619 
1620 	for (i = 0; i < num_sp; i++) {
1621 		dma_free_coherent(&pdev->dev, xhci->page_size,
1622 				    xhci->scratchpad->sp_buffers[i],
1623 				    xhci->scratchpad->sp_dma_buffers[i]);
1624 	}
1625 	kfree(xhci->scratchpad->sp_dma_buffers);
1626 	kfree(xhci->scratchpad->sp_buffers);
1627 	dma_free_coherent(&pdev->dev, num_sp * sizeof(u64),
1628 			    xhci->scratchpad->sp_array,
1629 			    xhci->scratchpad->sp_dma);
1630 	kfree(xhci->scratchpad);
1631 	xhci->scratchpad = NULL;
1632 }
1633 
1634 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1635 		bool allocate_in_ctx, bool allocate_completion,
1636 		gfp_t mem_flags)
1637 {
1638 	struct xhci_command *command;
1639 
1640 	command = kzalloc(sizeof(*command), mem_flags);
1641 	if (!command)
1642 		return NULL;
1643 
1644 	if (allocate_in_ctx) {
1645 		command->in_ctx =
1646 			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1647 					mem_flags);
1648 		if (!command->in_ctx) {
1649 			kfree(command);
1650 			return NULL;
1651 		}
1652 	}
1653 
1654 	if (allocate_completion) {
1655 		command->completion =
1656 			kzalloc(sizeof(struct completion), mem_flags);
1657 		if (!command->completion) {
1658 			xhci_free_container_ctx(xhci, command->in_ctx);
1659 			kfree(command);
1660 			return NULL;
1661 		}
1662 		init_completion(command->completion);
1663 	}
1664 
1665 	command->status = 0;
1666 	INIT_LIST_HEAD(&command->cmd_list);
1667 	return command;
1668 }
1669 
1670 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1671 {
1672 	if (urb_priv) {
1673 		kfree(urb_priv->td[0]);
1674 		kfree(urb_priv);
1675 	}
1676 }
1677 
1678 void xhci_free_command(struct xhci_hcd *xhci,
1679 		struct xhci_command *command)
1680 {
1681 	xhci_free_container_ctx(xhci,
1682 			command->in_ctx);
1683 	kfree(command->completion);
1684 	kfree(command);
1685 }
1686 
1687 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1688 {
1689 	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1690 	struct dev_info	*dev_info, *next;
1691 	unsigned long	flags;
1692 	int size;
1693 	int i;
1694 
1695 	/* Free the Event Ring Segment Table and the actual Event Ring */
1696 	if (xhci->ir_set) {
1697 		xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
1698 		xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
1699 		xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
1700 	}
1701 	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1702 	if (xhci->erst.entries)
1703 		dma_free_coherent(&pdev->dev, size,
1704 				xhci->erst.entries, xhci->erst.erst_dma_addr);
1705 	xhci->erst.entries = NULL;
1706 	xhci_dbg(xhci, "Freed ERST\n");
1707 	if (xhci->event_ring)
1708 		xhci_ring_free(xhci, xhci->event_ring);
1709 	xhci->event_ring = NULL;
1710 	xhci_dbg(xhci, "Freed event ring\n");
1711 
1712 	xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
1713 	if (xhci->cmd_ring)
1714 		xhci_ring_free(xhci, xhci->cmd_ring);
1715 	xhci->cmd_ring = NULL;
1716 	xhci_dbg(xhci, "Freed command ring\n");
1717 
1718 	for (i = 1; i < MAX_HC_SLOTS; ++i)
1719 		xhci_free_virt_device(xhci, i);
1720 
1721 	if (xhci->segment_pool)
1722 		dma_pool_destroy(xhci->segment_pool);
1723 	xhci->segment_pool = NULL;
1724 	xhci_dbg(xhci, "Freed segment pool\n");
1725 
1726 	if (xhci->device_pool)
1727 		dma_pool_destroy(xhci->device_pool);
1728 	xhci->device_pool = NULL;
1729 	xhci_dbg(xhci, "Freed device context pool\n");
1730 
1731 	if (xhci->small_streams_pool)
1732 		dma_pool_destroy(xhci->small_streams_pool);
1733 	xhci->small_streams_pool = NULL;
1734 	xhci_dbg(xhci, "Freed small stream array pool\n");
1735 
1736 	if (xhci->medium_streams_pool)
1737 		dma_pool_destroy(xhci->medium_streams_pool);
1738 	xhci->medium_streams_pool = NULL;
1739 	xhci_dbg(xhci, "Freed medium stream array pool\n");
1740 
1741 	xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
1742 	if (xhci->dcbaa)
1743 		dma_free_coherent(&pdev->dev, sizeof(*xhci->dcbaa),
1744 				xhci->dcbaa, xhci->dcbaa->dma);
1745 	xhci->dcbaa = NULL;
1746 
1747 	scratchpad_free(xhci);
1748 
1749 	spin_lock_irqsave(&xhci->lock, flags);
1750 	list_for_each_entry_safe(dev_info, next, &xhci->lpm_failed_devs, list) {
1751 		list_del(&dev_info->list);
1752 		kfree(dev_info);
1753 	}
1754 	spin_unlock_irqrestore(&xhci->lock, flags);
1755 
1756 	xhci->num_usb2_ports = 0;
1757 	xhci->num_usb3_ports = 0;
1758 	kfree(xhci->usb2_ports);
1759 	kfree(xhci->usb3_ports);
1760 	kfree(xhci->port_array);
1761 	kfree(xhci->rh_bw);
1762 
1763 	xhci->page_size = 0;
1764 	xhci->page_shift = 0;
1765 	xhci->bus_state[0].bus_suspended = 0;
1766 	xhci->bus_state[1].bus_suspended = 0;
1767 }
1768 
1769 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1770 		struct xhci_segment *input_seg,
1771 		union xhci_trb *start_trb,
1772 		union xhci_trb *end_trb,
1773 		dma_addr_t input_dma,
1774 		struct xhci_segment *result_seg,
1775 		char *test_name, int test_number)
1776 {
1777 	unsigned long long start_dma;
1778 	unsigned long long end_dma;
1779 	struct xhci_segment *seg;
1780 
1781 	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1782 	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1783 
1784 	seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1785 	if (seg != result_seg) {
1786 		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1787 				test_name, test_number);
1788 		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1789 				"input DMA 0x%llx\n",
1790 				input_seg,
1791 				(unsigned long long) input_dma);
1792 		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1793 				"ending TRB %p (0x%llx DMA)\n",
1794 				start_trb, start_dma,
1795 				end_trb, end_dma);
1796 		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1797 				result_seg, seg);
1798 		return -1;
1799 	}
1800 	return 0;
1801 }
1802 
1803 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1804 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1805 {
1806 	struct {
1807 		dma_addr_t		input_dma;
1808 		struct xhci_segment	*result_seg;
1809 	} simple_test_vector [] = {
1810 		/* A zeroed DMA field should fail */
1811 		{ 0, NULL },
1812 		/* One TRB before the ring start should fail */
1813 		{ xhci->event_ring->first_seg->dma - 16, NULL },
1814 		/* One byte before the ring start should fail */
1815 		{ xhci->event_ring->first_seg->dma - 1, NULL },
1816 		/* Starting TRB should succeed */
1817 		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1818 		/* Ending TRB should succeed */
1819 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1820 			xhci->event_ring->first_seg },
1821 		/* One byte after the ring end should fail */
1822 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1823 		/* One TRB after the ring end should fail */
1824 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1825 		/* An address of all ones should fail */
1826 		{ (dma_addr_t) (~0), NULL },
1827 	};
1828 	struct {
1829 		struct xhci_segment	*input_seg;
1830 		union xhci_trb		*start_trb;
1831 		union xhci_trb		*end_trb;
1832 		dma_addr_t		input_dma;
1833 		struct xhci_segment	*result_seg;
1834 	} complex_test_vector [] = {
1835 		/* Test feeding a valid DMA address from a different ring */
1836 		{	.input_seg = xhci->event_ring->first_seg,
1837 			.start_trb = xhci->event_ring->first_seg->trbs,
1838 			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1839 			.input_dma = xhci->cmd_ring->first_seg->dma,
1840 			.result_seg = NULL,
1841 		},
1842 		/* Test feeding a valid end TRB from a different ring */
1843 		{	.input_seg = xhci->event_ring->first_seg,
1844 			.start_trb = xhci->event_ring->first_seg->trbs,
1845 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1846 			.input_dma = xhci->cmd_ring->first_seg->dma,
1847 			.result_seg = NULL,
1848 		},
1849 		/* Test feeding a valid start and end TRB from a different ring */
1850 		{	.input_seg = xhci->event_ring->first_seg,
1851 			.start_trb = xhci->cmd_ring->first_seg->trbs,
1852 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1853 			.input_dma = xhci->cmd_ring->first_seg->dma,
1854 			.result_seg = NULL,
1855 		},
1856 		/* TRB in this ring, but after this TD */
1857 		{	.input_seg = xhci->event_ring->first_seg,
1858 			.start_trb = &xhci->event_ring->first_seg->trbs[0],
1859 			.end_trb = &xhci->event_ring->first_seg->trbs[3],
1860 			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
1861 			.result_seg = NULL,
1862 		},
1863 		/* TRB in this ring, but before this TD */
1864 		{	.input_seg = xhci->event_ring->first_seg,
1865 			.start_trb = &xhci->event_ring->first_seg->trbs[3],
1866 			.end_trb = &xhci->event_ring->first_seg->trbs[6],
1867 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1868 			.result_seg = NULL,
1869 		},
1870 		/* TRB in this ring, but after this wrapped TD */
1871 		{	.input_seg = xhci->event_ring->first_seg,
1872 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1873 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1874 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1875 			.result_seg = NULL,
1876 		},
1877 		/* TRB in this ring, but before this wrapped TD */
1878 		{	.input_seg = xhci->event_ring->first_seg,
1879 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1880 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1881 			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1882 			.result_seg = NULL,
1883 		},
1884 		/* TRB not in this ring, and we have a wrapped TD */
1885 		{	.input_seg = xhci->event_ring->first_seg,
1886 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1887 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1888 			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1889 			.result_seg = NULL,
1890 		},
1891 	};
1892 
1893 	unsigned int num_tests;
1894 	int i, ret;
1895 
1896 	num_tests = ARRAY_SIZE(simple_test_vector);
1897 	for (i = 0; i < num_tests; i++) {
1898 		ret = xhci_test_trb_in_td(xhci,
1899 				xhci->event_ring->first_seg,
1900 				xhci->event_ring->first_seg->trbs,
1901 				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1902 				simple_test_vector[i].input_dma,
1903 				simple_test_vector[i].result_seg,
1904 				"Simple", i);
1905 		if (ret < 0)
1906 			return ret;
1907 	}
1908 
1909 	num_tests = ARRAY_SIZE(complex_test_vector);
1910 	for (i = 0; i < num_tests; i++) {
1911 		ret = xhci_test_trb_in_td(xhci,
1912 				complex_test_vector[i].input_seg,
1913 				complex_test_vector[i].start_trb,
1914 				complex_test_vector[i].end_trb,
1915 				complex_test_vector[i].input_dma,
1916 				complex_test_vector[i].result_seg,
1917 				"Complex", i);
1918 		if (ret < 0)
1919 			return ret;
1920 	}
1921 	xhci_dbg(xhci, "TRB math tests passed.\n");
1922 	return 0;
1923 }
1924 
1925 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
1926 {
1927 	u64 temp;
1928 	dma_addr_t deq;
1929 
1930 	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
1931 			xhci->event_ring->dequeue);
1932 	if (deq == 0 && !in_interrupt())
1933 		xhci_warn(xhci, "WARN something wrong with SW event ring "
1934 				"dequeue ptr.\n");
1935 	/* Update HC event ring dequeue pointer */
1936 	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
1937 	temp &= ERST_PTR_MASK;
1938 	/* Don't clear the EHB bit (which is RW1C) because
1939 	 * there might be more events to service.
1940 	 */
1941 	temp &= ~ERST_EHB;
1942 	xhci_dbg(xhci, "// Write event ring dequeue pointer, "
1943 			"preserving EHB bit\n");
1944 	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
1945 			&xhci->ir_set->erst_dequeue);
1946 }
1947 
1948 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1949 		__le32 __iomem *addr, u8 major_revision)
1950 {
1951 	u32 temp, port_offset, port_count;
1952 	int i;
1953 
1954 	if (major_revision > 0x03) {
1955 		xhci_warn(xhci, "Ignoring unknown port speed, "
1956 				"Ext Cap %p, revision = 0x%x\n",
1957 				addr, major_revision);
1958 		/* Ignoring port protocol we can't understand. FIXME */
1959 		return;
1960 	}
1961 
1962 	/* Port offset and count in the third dword, see section 7.2 */
1963 	temp = xhci_readl(xhci, addr + 2);
1964 	port_offset = XHCI_EXT_PORT_OFF(temp);
1965 	port_count = XHCI_EXT_PORT_COUNT(temp);
1966 	xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
1967 			"count = %u, revision = 0x%x\n",
1968 			addr, port_offset, port_count, major_revision);
1969 	/* Port count includes the current port offset */
1970 	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
1971 		/* WTF? "Valid values are ‘1’ to MaxPorts" */
1972 		return;
1973 
1974 	/* Check the host's USB2 LPM capability */
1975 	if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
1976 			(temp & XHCI_L1C)) {
1977 		xhci_dbg(xhci, "xHCI 0.96: support USB2 software lpm\n");
1978 		xhci->sw_lpm_support = 1;
1979 	}
1980 
1981 	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
1982 		xhci_dbg(xhci, "xHCI 1.0: support USB2 software lpm\n");
1983 		xhci->sw_lpm_support = 1;
1984 		if (temp & XHCI_HLC) {
1985 			xhci_dbg(xhci, "xHCI 1.0: support USB2 hardware lpm\n");
1986 			xhci->hw_lpm_support = 1;
1987 		}
1988 	}
1989 
1990 	port_offset--;
1991 	for (i = port_offset; i < (port_offset + port_count); i++) {
1992 		/* Duplicate entry.  Ignore the port if the revisions differ. */
1993 		if (xhci->port_array[i] != 0) {
1994 			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
1995 					" port %u\n", addr, i);
1996 			xhci_warn(xhci, "Port was marked as USB %u, "
1997 					"duplicated as USB %u\n",
1998 					xhci->port_array[i], major_revision);
1999 			/* Only adjust the roothub port counts if we haven't
2000 			 * found a similar duplicate.
2001 			 */
2002 			if (xhci->port_array[i] != major_revision &&
2003 				xhci->port_array[i] != DUPLICATE_ENTRY) {
2004 				if (xhci->port_array[i] == 0x03)
2005 					xhci->num_usb3_ports--;
2006 				else
2007 					xhci->num_usb2_ports--;
2008 				xhci->port_array[i] = DUPLICATE_ENTRY;
2009 			}
2010 			/* FIXME: Should we disable the port? */
2011 			continue;
2012 		}
2013 		xhci->port_array[i] = major_revision;
2014 		if (major_revision == 0x03)
2015 			xhci->num_usb3_ports++;
2016 		else
2017 			xhci->num_usb2_ports++;
2018 	}
2019 	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2020 }
2021 
2022 /*
2023  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2024  * specify what speeds each port is supposed to be.  We can't count on the port
2025  * speed bits in the PORTSC register being correct until a device is connected,
2026  * but we need to set up the two fake roothubs with the correct number of USB
2027  * 3.0 and USB 2.0 ports at host controller initialization time.
2028  */
2029 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2030 {
2031 	__le32 __iomem *addr;
2032 	u32 offset;
2033 	unsigned int num_ports;
2034 	int i, j, port_index;
2035 
2036 	addr = &xhci->cap_regs->hcc_params;
2037 	offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
2038 	if (offset == 0) {
2039 		xhci_err(xhci, "No Extended Capability registers, "
2040 				"unable to set up roothub.\n");
2041 		return -ENODEV;
2042 	}
2043 
2044 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2045 	xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2046 	if (!xhci->port_array)
2047 		return -ENOMEM;
2048 
2049 	xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2050 	if (!xhci->rh_bw)
2051 		return -ENOMEM;
2052 	for (i = 0; i < num_ports; i++) {
2053 		struct xhci_interval_bw_table *bw_table;
2054 
2055 		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2056 		bw_table = &xhci->rh_bw[i].bw_table;
2057 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2058 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2059 	}
2060 
2061 	/*
2062 	 * For whatever reason, the first capability offset is from the
2063 	 * capability register base, not from the HCCPARAMS register.
2064 	 * See section 5.3.6 for offset calculation.
2065 	 */
2066 	addr = &xhci->cap_regs->hc_capbase + offset;
2067 	while (1) {
2068 		u32 cap_id;
2069 
2070 		cap_id = xhci_readl(xhci, addr);
2071 		if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2072 			xhci_add_in_port(xhci, num_ports, addr,
2073 					(u8) XHCI_EXT_PORT_MAJOR(cap_id));
2074 		offset = XHCI_EXT_CAPS_NEXT(cap_id);
2075 		if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2076 				== num_ports)
2077 			break;
2078 		/*
2079 		 * Once you're into the Extended Capabilities, the offset is
2080 		 * always relative to the register holding the offset.
2081 		 */
2082 		addr += offset;
2083 	}
2084 
2085 	if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2086 		xhci_warn(xhci, "No ports on the roothubs?\n");
2087 		return -ENODEV;
2088 	}
2089 	xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
2090 			xhci->num_usb2_ports, xhci->num_usb3_ports);
2091 
2092 	/* Place limits on the number of roothub ports so that the hub
2093 	 * descriptors aren't longer than the USB core will allocate.
2094 	 */
2095 	if (xhci->num_usb3_ports > 15) {
2096 		xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
2097 		xhci->num_usb3_ports = 15;
2098 	}
2099 	if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2100 		xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
2101 				USB_MAXCHILDREN);
2102 		xhci->num_usb2_ports = USB_MAXCHILDREN;
2103 	}
2104 
2105 	/*
2106 	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2107 	 * Not sure how the USB core will handle a hub with no ports...
2108 	 */
2109 	if (xhci->num_usb2_ports) {
2110 		xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2111 				xhci->num_usb2_ports, flags);
2112 		if (!xhci->usb2_ports)
2113 			return -ENOMEM;
2114 
2115 		port_index = 0;
2116 		for (i = 0; i < num_ports; i++) {
2117 			if (xhci->port_array[i] == 0x03 ||
2118 					xhci->port_array[i] == 0 ||
2119 					xhci->port_array[i] == DUPLICATE_ENTRY)
2120 				continue;
2121 
2122 			xhci->usb2_ports[port_index] =
2123 				&xhci->op_regs->port_status_base +
2124 				NUM_PORT_REGS*i;
2125 			xhci_dbg(xhci, "USB 2.0 port at index %u, "
2126 					"addr = %p\n", i,
2127 					xhci->usb2_ports[port_index]);
2128 			port_index++;
2129 			if (port_index == xhci->num_usb2_ports)
2130 				break;
2131 		}
2132 	}
2133 	if (xhci->num_usb3_ports) {
2134 		xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2135 				xhci->num_usb3_ports, flags);
2136 		if (!xhci->usb3_ports)
2137 			return -ENOMEM;
2138 
2139 		port_index = 0;
2140 		for (i = 0; i < num_ports; i++)
2141 			if (xhci->port_array[i] == 0x03) {
2142 				xhci->usb3_ports[port_index] =
2143 					&xhci->op_regs->port_status_base +
2144 					NUM_PORT_REGS*i;
2145 				xhci_dbg(xhci, "USB 3.0 port at index %u, "
2146 						"addr = %p\n", i,
2147 						xhci->usb3_ports[port_index]);
2148 				port_index++;
2149 				if (port_index == xhci->num_usb3_ports)
2150 					break;
2151 			}
2152 	}
2153 	return 0;
2154 }
2155 
2156 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2157 {
2158 	dma_addr_t	dma;
2159 	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
2160 	unsigned int	val, val2;
2161 	u64		val_64;
2162 	struct xhci_segment	*seg;
2163 	u32 page_size;
2164 	int i;
2165 
2166 	page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
2167 	xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
2168 	for (i = 0; i < 16; i++) {
2169 		if ((0x1 & page_size) != 0)
2170 			break;
2171 		page_size = page_size >> 1;
2172 	}
2173 	if (i < 16)
2174 		xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
2175 	else
2176 		xhci_warn(xhci, "WARN: no supported page size\n");
2177 	/* Use 4K pages, since that's common and the minimum the HC supports */
2178 	xhci->page_shift = 12;
2179 	xhci->page_size = 1 << xhci->page_shift;
2180 	xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
2181 
2182 	/*
2183 	 * Program the Number of Device Slots Enabled field in the CONFIG
2184 	 * register with the max value of slots the HC can handle.
2185 	 */
2186 	val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
2187 	xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
2188 			(unsigned int) val);
2189 	val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
2190 	val |= (val2 & ~HCS_SLOTS_MASK);
2191 	xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
2192 			(unsigned int) val);
2193 	xhci_writel(xhci, val, &xhci->op_regs->config_reg);
2194 
2195 	/*
2196 	 * Section 5.4.8 - doorbell array must be
2197 	 * "physically contiguous and 64-byte (cache line) aligned".
2198 	 */
2199 	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2200 			GFP_KERNEL);
2201 	if (!xhci->dcbaa)
2202 		goto fail;
2203 	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2204 	xhci->dcbaa->dma = dma;
2205 	xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
2206 			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2207 	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2208 
2209 	/*
2210 	 * Initialize the ring segment pool.  The ring must be a contiguous
2211 	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2212 	 * however, the command ring segment needs 64-byte aligned segments,
2213 	 * so we pick the greater alignment need.
2214 	 */
2215 	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2216 			SEGMENT_SIZE, 64, xhci->page_size);
2217 
2218 	/* See Table 46 and Note on Figure 55 */
2219 	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2220 			2112, 64, xhci->page_size);
2221 	if (!xhci->segment_pool || !xhci->device_pool)
2222 		goto fail;
2223 
2224 	/* Linear stream context arrays don't have any boundary restrictions,
2225 	 * and only need to be 16-byte aligned.
2226 	 */
2227 	xhci->small_streams_pool =
2228 		dma_pool_create("xHCI 256 byte stream ctx arrays",
2229 			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2230 	xhci->medium_streams_pool =
2231 		dma_pool_create("xHCI 1KB stream ctx arrays",
2232 			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2233 	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2234 	 * will be allocated with dma_alloc_coherent()
2235 	 */
2236 
2237 	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2238 		goto fail;
2239 
2240 	/* Set up the command ring to have one segments for now. */
2241 	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, false, flags);
2242 	if (!xhci->cmd_ring)
2243 		goto fail;
2244 	xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
2245 	xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
2246 			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2247 
2248 	/* Set the address in the Command Ring Control register */
2249 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2250 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2251 		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2252 		xhci->cmd_ring->cycle_state;
2253 	xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
2254 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2255 	xhci_dbg_cmd_ptrs(xhci);
2256 
2257 	val = xhci_readl(xhci, &xhci->cap_regs->db_off);
2258 	val &= DBOFF_MASK;
2259 	xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
2260 			" from cap regs base addr\n", val);
2261 	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2262 	xhci_dbg_regs(xhci);
2263 	xhci_print_run_regs(xhci);
2264 	/* Set ir_set to interrupt register set 0 */
2265 	xhci->ir_set = &xhci->run_regs->ir_set[0];
2266 
2267 	/*
2268 	 * Event ring setup: Allocate a normal ring, but also setup
2269 	 * the event ring segment table (ERST).  Section 4.9.3.
2270 	 */
2271 	xhci_dbg(xhci, "// Allocating event ring\n");
2272 	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, false,
2273 						flags);
2274 	if (!xhci->event_ring)
2275 		goto fail;
2276 	if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2277 		goto fail;
2278 
2279 	xhci->erst.entries = dma_alloc_coherent(dev,
2280 			sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2281 			GFP_KERNEL);
2282 	if (!xhci->erst.entries)
2283 		goto fail;
2284 	xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
2285 			(unsigned long long)dma);
2286 
2287 	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2288 	xhci->erst.num_entries = ERST_NUM_SEGS;
2289 	xhci->erst.erst_dma_addr = dma;
2290 	xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
2291 			xhci->erst.num_entries,
2292 			xhci->erst.entries,
2293 			(unsigned long long)xhci->erst.erst_dma_addr);
2294 
2295 	/* set ring base address and size for each segment table entry */
2296 	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2297 		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2298 		entry->seg_addr = cpu_to_le64(seg->dma);
2299 		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2300 		entry->rsvd = 0;
2301 		seg = seg->next;
2302 	}
2303 
2304 	/* set ERST count with the number of entries in the segment table */
2305 	val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2306 	val &= ERST_SIZE_MASK;
2307 	val |= ERST_NUM_SEGS;
2308 	xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
2309 			val);
2310 	xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2311 
2312 	xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
2313 	/* set the segment table base address */
2314 	xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
2315 			(unsigned long long)xhci->erst.erst_dma_addr);
2316 	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2317 	val_64 &= ERST_PTR_MASK;
2318 	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2319 	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2320 
2321 	/* Set the event ring dequeue address */
2322 	xhci_set_hc_event_deq(xhci);
2323 	xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
2324 	xhci_print_ir_set(xhci, 0);
2325 
2326 	/*
2327 	 * XXX: Might need to set the Interrupter Moderation Register to
2328 	 * something other than the default (~1ms minimum between interrupts).
2329 	 * See section 5.5.1.2.
2330 	 */
2331 	init_completion(&xhci->addr_dev);
2332 	for (i = 0; i < MAX_HC_SLOTS; ++i)
2333 		xhci->devs[i] = NULL;
2334 	for (i = 0; i < USB_MAXCHILDREN; ++i) {
2335 		xhci->bus_state[0].resume_done[i] = 0;
2336 		xhci->bus_state[1].resume_done[i] = 0;
2337 	}
2338 
2339 	if (scratchpad_alloc(xhci, flags))
2340 		goto fail;
2341 	if (xhci_setup_port_arrays(xhci, flags))
2342 		goto fail;
2343 
2344 	INIT_LIST_HEAD(&xhci->lpm_failed_devs);
2345 
2346 	return 0;
2347 
2348 fail:
2349 	xhci_warn(xhci, "Couldn't initialize memory\n");
2350 	xhci_mem_cleanup(xhci);
2351 	return -ENOMEM;
2352 }
2353