1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/usb.h> 12 #include <linux/overflow.h> 13 #include <linux/pci.h> 14 #include <linux/slab.h> 15 #include <linux/dmapool.h> 16 #include <linux/dma-mapping.h> 17 18 #include "xhci.h" 19 #include "xhci-trace.h" 20 #include "xhci-debugfs.h" 21 22 /* 23 * Allocates a generic ring segment from the ring pool, sets the dma address, 24 * initializes the segment to zero, and sets the private next pointer to NULL. 25 * 26 * Section 4.11.1.1: 27 * "All components of all Command and Transfer TRBs shall be initialized to '0'" 28 */ 29 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, 30 unsigned int max_packet, 31 unsigned int num, 32 gfp_t flags) 33 { 34 struct xhci_segment *seg; 35 dma_addr_t dma; 36 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 37 38 seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev)); 39 if (!seg) 40 return NULL; 41 42 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma); 43 if (!seg->trbs) { 44 kfree(seg); 45 return NULL; 46 } 47 48 if (max_packet) { 49 seg->bounce_buf = kzalloc_node(max_packet, flags, 50 dev_to_node(dev)); 51 if (!seg->bounce_buf) { 52 dma_pool_free(xhci->segment_pool, seg->trbs, dma); 53 kfree(seg); 54 return NULL; 55 } 56 } 57 seg->num = num; 58 seg->dma = dma; 59 seg->next = NULL; 60 61 return seg; 62 } 63 64 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg) 65 { 66 if (seg->trbs) { 67 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma); 68 seg->trbs = NULL; 69 } 70 kfree(seg->bounce_buf); 71 kfree(seg); 72 } 73 74 static void xhci_ring_segments_free(struct xhci_hcd *xhci, struct xhci_ring *ring) 75 { 76 struct xhci_segment *seg, *next; 77 78 ring->last_seg->next = NULL; 79 seg = ring->first_seg; 80 81 while (seg) { 82 next = seg->next; 83 xhci_segment_free(xhci, seg); 84 seg = next; 85 } 86 } 87 88 /* 89 * Only for transfer and command rings where driver is the producer, not for 90 * event rings. 91 * 92 * Change the last TRB in the segment to be a Link TRB which points to the 93 * DMA address of the next segment. The caller needs to set any Link TRB 94 * related flags, such as End TRB, Toggle Cycle, and no snoop. 95 */ 96 static void xhci_set_link_trb(struct xhci_segment *seg, bool chain_links) 97 { 98 union xhci_trb *trb; 99 u32 val; 100 101 if (!seg || !seg->next) 102 return; 103 104 trb = &seg->trbs[TRBS_PER_SEGMENT - 1]; 105 106 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */ 107 val = le32_to_cpu(trb->link.control); 108 val &= ~TRB_TYPE_BITMASK; 109 val |= TRB_TYPE(TRB_LINK); 110 if (chain_links) 111 val |= TRB_CHAIN; 112 trb->link.control = cpu_to_le32(val); 113 trb->link.segment_ptr = cpu_to_le64(seg->next->dma); 114 } 115 116 static void xhci_initialize_ring_segments(struct xhci_hcd *xhci, struct xhci_ring *ring) 117 { 118 struct xhci_segment *seg; 119 bool chain_links; 120 121 if (ring->type == TYPE_EVENT) 122 return; 123 124 chain_links = xhci_link_chain_quirk(xhci, ring->type); 125 xhci_for_each_ring_seg(ring->first_seg, seg) 126 xhci_set_link_trb(seg, chain_links); 127 128 /* See section 4.9.2.1 and 6.4.4.1 */ 129 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |= cpu_to_le32(LINK_TOGGLE); 130 } 131 132 /* 133 * Link the src ring segments to the dst ring. 134 * Set Toggle Cycle for the new ring if needed. 135 */ 136 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *src, struct xhci_ring *dst) 137 { 138 struct xhci_segment *seg; 139 bool chain_links; 140 141 if (!src || !dst) 142 return; 143 144 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */ 145 if (dst->cycle_state == 0) { 146 xhci_for_each_ring_seg(src->first_seg, seg) { 147 for (int i = 0; i < TRBS_PER_SEGMENT; i++) 148 seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE); 149 } 150 } 151 152 src->last_seg->next = dst->enq_seg->next; 153 dst->enq_seg->next = src->first_seg; 154 if (dst->type != TYPE_EVENT) { 155 chain_links = xhci_link_chain_quirk(xhci, dst->type); 156 xhci_set_link_trb(dst->enq_seg, chain_links); 157 xhci_set_link_trb(src->last_seg, chain_links); 158 } 159 dst->num_segs += src->num_segs; 160 161 if (dst->enq_seg == dst->last_seg) { 162 if (dst->type != TYPE_EVENT) 163 dst->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control 164 &= ~cpu_to_le32(LINK_TOGGLE); 165 166 dst->last_seg = src->last_seg; 167 } else if (dst->type != TYPE_EVENT) { 168 src->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control &= ~cpu_to_le32(LINK_TOGGLE); 169 } 170 171 for (seg = dst->enq_seg; seg != dst->last_seg; seg = seg->next) 172 seg->next->num = seg->num + 1; 173 } 174 175 /* 176 * We need a radix tree for mapping physical addresses of TRBs to which stream 177 * ID they belong to. We need to do this because the host controller won't tell 178 * us which stream ring the TRB came from. We could store the stream ID in an 179 * event data TRB, but that doesn't help us for the cancellation case, since the 180 * endpoint may stop before it reaches that event data TRB. 181 * 182 * The radix tree maps the upper portion of the TRB DMA address to a ring 183 * segment that has the same upper portion of DMA addresses. For example, say I 184 * have segments of size 1KB, that are always 1KB aligned. A segment may 185 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the 186 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to 187 * pass the radix tree a key to get the right stream ID: 188 * 189 * 0x10c90fff >> 10 = 0x43243 190 * 0x10c912c0 >> 10 = 0x43244 191 * 0x10c91400 >> 10 = 0x43245 192 * 193 * Obviously, only those TRBs with DMA addresses that are within the segment 194 * will make the radix tree return the stream ID for that ring. 195 * 196 * Caveats for the radix tree: 197 * 198 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an 199 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be 200 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the 201 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit 202 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit 203 * extended systems (where the DMA address can be bigger than 32-bits), 204 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that. 205 */ 206 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map, 207 struct xhci_ring *ring, 208 struct xhci_segment *seg, 209 gfp_t mem_flags) 210 { 211 unsigned long key; 212 int ret; 213 214 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); 215 /* Skip any segments that were already added. */ 216 if (radix_tree_lookup(trb_address_map, key)) 217 return 0; 218 219 ret = radix_tree_maybe_preload(mem_flags); 220 if (ret) 221 return ret; 222 ret = radix_tree_insert(trb_address_map, 223 key, ring); 224 radix_tree_preload_end(); 225 return ret; 226 } 227 228 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map, 229 struct xhci_segment *seg) 230 { 231 unsigned long key; 232 233 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); 234 if (radix_tree_lookup(trb_address_map, key)) 235 radix_tree_delete(trb_address_map, key); 236 } 237 238 static int xhci_update_stream_segment_mapping( 239 struct radix_tree_root *trb_address_map, 240 struct xhci_ring *ring, 241 struct xhci_segment *first_seg, 242 gfp_t mem_flags) 243 { 244 struct xhci_segment *seg; 245 struct xhci_segment *failed_seg; 246 int ret; 247 248 if (WARN_ON_ONCE(trb_address_map == NULL)) 249 return 0; 250 251 xhci_for_each_ring_seg(first_seg, seg) { 252 ret = xhci_insert_segment_mapping(trb_address_map, 253 ring, seg, mem_flags); 254 if (ret) 255 goto remove_streams; 256 } 257 258 return 0; 259 260 remove_streams: 261 failed_seg = seg; 262 xhci_for_each_ring_seg(first_seg, seg) { 263 xhci_remove_segment_mapping(trb_address_map, seg); 264 if (seg == failed_seg) 265 return ret; 266 } 267 268 return ret; 269 } 270 271 static void xhci_remove_stream_mapping(struct xhci_ring *ring) 272 { 273 struct xhci_segment *seg; 274 275 if (WARN_ON_ONCE(ring->trb_address_map == NULL)) 276 return; 277 278 xhci_for_each_ring_seg(ring->first_seg, seg) 279 xhci_remove_segment_mapping(ring->trb_address_map, seg); 280 } 281 282 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags) 283 { 284 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring, 285 ring->first_seg, mem_flags); 286 } 287 288 /* XXX: Do we need the hcd structure in all these functions? */ 289 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring) 290 { 291 if (!ring) 292 return; 293 294 trace_xhci_ring_free(ring); 295 296 if (ring->first_seg) { 297 if (ring->type == TYPE_STREAM) 298 xhci_remove_stream_mapping(ring); 299 xhci_ring_segments_free(xhci, ring); 300 } 301 302 kfree(ring); 303 } 304 305 void xhci_initialize_ring_info(struct xhci_ring *ring) 306 { 307 /* The ring is empty, so the enqueue pointer == dequeue pointer */ 308 ring->enqueue = ring->first_seg->trbs; 309 ring->enq_seg = ring->first_seg; 310 ring->dequeue = ring->enqueue; 311 ring->deq_seg = ring->first_seg; 312 /* The ring is initialized to 0. The producer must write 1 to the cycle 313 * bit to handover ownership of the TRB, so PCS = 1. The consumer must 314 * compare CCS to the cycle bit to check ownership, so CCS = 1. 315 * 316 * New rings are initialized with cycle state equal to 1; if we are 317 * handling ring expansion, set the cycle state equal to the old ring. 318 */ 319 ring->cycle_state = 1; 320 321 /* 322 * Each segment has a link TRB, and leave an extra TRB for SW 323 * accounting purpose 324 */ 325 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 326 } 327 EXPORT_SYMBOL_GPL(xhci_initialize_ring_info); 328 329 /* Allocate segments and link them for a ring */ 330 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, gfp_t flags) 331 { 332 struct xhci_segment *prev; 333 unsigned int num = 0; 334 335 prev = xhci_segment_alloc(xhci, ring->bounce_buf_len, num, flags); 336 if (!prev) 337 return -ENOMEM; 338 num++; 339 340 ring->first_seg = prev; 341 while (num < ring->num_segs) { 342 struct xhci_segment *next; 343 344 next = xhci_segment_alloc(xhci, ring->bounce_buf_len, num, flags); 345 if (!next) 346 goto free_segments; 347 348 prev->next = next; 349 prev = next; 350 num++; 351 } 352 ring->last_seg = prev; 353 354 ring->last_seg->next = ring->first_seg; 355 return 0; 356 357 free_segments: 358 ring->last_seg = prev; 359 xhci_ring_segments_free(xhci, ring); 360 return -ENOMEM; 361 } 362 363 /* 364 * Create a new ring with zero or more segments. 365 * 366 * Link each segment together into a ring. 367 * Set the end flag and the cycle toggle bit on the last segment. 368 * See section 4.9.1 and figures 15 and 16. 369 */ 370 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, unsigned int num_segs, 371 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags) 372 { 373 struct xhci_ring *ring; 374 int ret; 375 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 376 377 ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev)); 378 if (!ring) 379 return NULL; 380 381 ring->num_segs = num_segs; 382 ring->bounce_buf_len = max_packet; 383 INIT_LIST_HEAD(&ring->td_list); 384 ring->type = type; 385 if (num_segs == 0) 386 return ring; 387 388 ret = xhci_alloc_segments_for_ring(xhci, ring, flags); 389 if (ret) 390 goto fail; 391 392 xhci_initialize_ring_segments(xhci, ring); 393 xhci_initialize_ring_info(ring); 394 trace_xhci_ring_alloc(ring); 395 return ring; 396 397 fail: 398 kfree(ring); 399 return NULL; 400 } 401 402 void xhci_free_endpoint_ring(struct xhci_hcd *xhci, 403 struct xhci_virt_device *virt_dev, 404 unsigned int ep_index) 405 { 406 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring); 407 virt_dev->eps[ep_index].ring = NULL; 408 } 409 410 /* 411 * Expand an existing ring. 412 * Allocate a new ring which has same segment numbers and link the two rings. 413 */ 414 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring, 415 unsigned int num_new_segs, gfp_t flags) 416 { 417 struct xhci_ring new_ring; 418 int ret; 419 420 if (num_new_segs == 0) 421 return 0; 422 423 new_ring.num_segs = num_new_segs; 424 new_ring.bounce_buf_len = ring->bounce_buf_len; 425 new_ring.type = ring->type; 426 ret = xhci_alloc_segments_for_ring(xhci, &new_ring, flags); 427 if (ret) 428 return -ENOMEM; 429 430 xhci_initialize_ring_segments(xhci, &new_ring); 431 432 if (ring->type == TYPE_STREAM) { 433 ret = xhci_update_stream_segment_mapping(ring->trb_address_map, ring, 434 new_ring.first_seg, flags); 435 if (ret) 436 goto free_segments; 437 } 438 439 xhci_link_rings(xhci, &new_ring, ring); 440 trace_xhci_ring_expansion(ring); 441 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 442 "ring expansion succeed, now has %d segments", 443 ring->num_segs); 444 445 return 0; 446 447 free_segments: 448 xhci_ring_segments_free(xhci, &new_ring); 449 return ret; 450 } 451 452 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci, 453 int type, gfp_t flags) 454 { 455 struct xhci_container_ctx *ctx; 456 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 457 458 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT)) 459 return NULL; 460 461 ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev)); 462 if (!ctx) 463 return NULL; 464 465 ctx->type = type; 466 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024; 467 if (type == XHCI_CTX_TYPE_INPUT) 468 ctx->size += CTX_SIZE(xhci->hcc_params); 469 470 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma); 471 if (!ctx->bytes) { 472 kfree(ctx); 473 return NULL; 474 } 475 return ctx; 476 } 477 478 void xhci_free_container_ctx(struct xhci_hcd *xhci, 479 struct xhci_container_ctx *ctx) 480 { 481 if (!ctx) 482 return; 483 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma); 484 kfree(ctx); 485 } 486 487 struct xhci_container_ctx *xhci_alloc_port_bw_ctx(struct xhci_hcd *xhci, 488 gfp_t flags) 489 { 490 struct xhci_container_ctx *ctx; 491 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 492 493 ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev)); 494 if (!ctx) 495 return NULL; 496 497 ctx->size = GET_PORT_BW_ARRAY_SIZE; 498 499 ctx->bytes = dma_pool_zalloc(xhci->port_bw_pool, flags, &ctx->dma); 500 if (!ctx->bytes) { 501 kfree(ctx); 502 return NULL; 503 } 504 return ctx; 505 } 506 507 void xhci_free_port_bw_ctx(struct xhci_hcd *xhci, 508 struct xhci_container_ctx *ctx) 509 { 510 if (!ctx) 511 return; 512 dma_pool_free(xhci->port_bw_pool, ctx->bytes, ctx->dma); 513 kfree(ctx); 514 } 515 516 struct xhci_input_control_ctx *xhci_get_input_control_ctx( 517 struct xhci_container_ctx *ctx) 518 { 519 if (ctx->type != XHCI_CTX_TYPE_INPUT) 520 return NULL; 521 522 return (struct xhci_input_control_ctx *)ctx->bytes; 523 } 524 525 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci, 526 struct xhci_container_ctx *ctx) 527 { 528 if (ctx->type == XHCI_CTX_TYPE_DEVICE) 529 return (struct xhci_slot_ctx *)ctx->bytes; 530 531 return (struct xhci_slot_ctx *) 532 (ctx->bytes + CTX_SIZE(xhci->hcc_params)); 533 } 534 535 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci, 536 struct xhci_container_ctx *ctx, 537 unsigned int ep_index) 538 { 539 /* increment ep index by offset of start of ep ctx array */ 540 ep_index++; 541 if (ctx->type == XHCI_CTX_TYPE_INPUT) 542 ep_index++; 543 544 return (struct xhci_ep_ctx *) 545 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params))); 546 } 547 EXPORT_SYMBOL_GPL(xhci_get_ep_ctx); 548 549 /***************** Streams structures manipulation *************************/ 550 551 static void xhci_free_stream_ctx(struct xhci_hcd *xhci, 552 unsigned int num_stream_ctxs, 553 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma) 554 { 555 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 556 size_t size = array_size(sizeof(struct xhci_stream_ctx), num_stream_ctxs); 557 558 if (size > MEDIUM_STREAM_ARRAY_SIZE) 559 dma_free_coherent(dev, size, stream_ctx, dma); 560 else if (size > SMALL_STREAM_ARRAY_SIZE) 561 dma_pool_free(xhci->medium_streams_pool, stream_ctx, dma); 562 else 563 dma_pool_free(xhci->small_streams_pool, stream_ctx, dma); 564 } 565 566 /* 567 * The stream context array for each endpoint with bulk streams enabled can 568 * vary in size, based on: 569 * - how many streams the endpoint supports, 570 * - the maximum primary stream array size the host controller supports, 571 * - and how many streams the device driver asks for. 572 * 573 * The stream context array must be a power of 2, and can be as small as 574 * 64 bytes or as large as 1MB. 575 */ 576 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci, 577 unsigned int num_stream_ctxs, dma_addr_t *dma, 578 gfp_t mem_flags) 579 { 580 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 581 size_t size = array_size(sizeof(struct xhci_stream_ctx), num_stream_ctxs); 582 583 if (size > MEDIUM_STREAM_ARRAY_SIZE) 584 return dma_alloc_coherent(dev, size, dma, mem_flags); 585 if (size > SMALL_STREAM_ARRAY_SIZE) 586 return dma_pool_zalloc(xhci->medium_streams_pool, mem_flags, dma); 587 else 588 return dma_pool_zalloc(xhci->small_streams_pool, mem_flags, dma); 589 } 590 591 struct xhci_ring *xhci_dma_to_transfer_ring( 592 struct xhci_virt_ep *ep, 593 u64 address) 594 { 595 if (ep->ep_state & EP_HAS_STREAMS) 596 return radix_tree_lookup(&ep->stream_info->trb_address_map, 597 address >> TRB_SEGMENT_SHIFT); 598 return ep->ring; 599 } 600 601 /* 602 * Change an endpoint's internal structure so it supports stream IDs. The 603 * number of requested streams includes stream 0, which cannot be used by device 604 * drivers. 605 * 606 * The number of stream contexts in the stream context array may be bigger than 607 * the number of streams the driver wants to use. This is because the number of 608 * stream context array entries must be a power of two. 609 */ 610 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci, 611 unsigned int num_stream_ctxs, 612 unsigned int num_streams, 613 unsigned int max_packet, gfp_t mem_flags) 614 { 615 struct xhci_stream_info *stream_info; 616 u32 cur_stream; 617 struct xhci_ring *cur_ring; 618 u64 addr; 619 int ret; 620 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 621 622 xhci_dbg(xhci, "Allocating %u streams and %u stream context array entries.\n", 623 num_streams, num_stream_ctxs); 624 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) { 625 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n"); 626 return NULL; 627 } 628 xhci->cmd_ring_reserved_trbs++; 629 630 stream_info = kzalloc_node(sizeof(*stream_info), mem_flags, 631 dev_to_node(dev)); 632 if (!stream_info) 633 goto cleanup_trbs; 634 635 stream_info->num_streams = num_streams; 636 stream_info->num_stream_ctxs = num_stream_ctxs; 637 638 /* Initialize the array of virtual pointers to stream rings. */ 639 stream_info->stream_rings = kcalloc_node( 640 num_streams, sizeof(struct xhci_ring *), mem_flags, 641 dev_to_node(dev)); 642 if (!stream_info->stream_rings) 643 goto cleanup_info; 644 645 /* Initialize the array of DMA addresses for stream rings for the HW. */ 646 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci, 647 num_stream_ctxs, &stream_info->ctx_array_dma, 648 mem_flags); 649 if (!stream_info->stream_ctx_array) 650 goto cleanup_ring_array; 651 652 /* Allocate everything needed to free the stream rings later */ 653 stream_info->free_streams_command = 654 xhci_alloc_command_with_ctx(xhci, true, mem_flags); 655 if (!stream_info->free_streams_command) 656 goto cleanup_ctx; 657 658 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC); 659 660 /* Allocate rings for all the streams that the driver will use, 661 * and add their segment DMA addresses to the radix tree. 662 * Stream 0 is reserved. 663 */ 664 665 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 666 stream_info->stream_rings[cur_stream] = 667 xhci_ring_alloc(xhci, 2, TYPE_STREAM, max_packet, mem_flags); 668 cur_ring = stream_info->stream_rings[cur_stream]; 669 if (!cur_ring) 670 goto cleanup_rings; 671 cur_ring->stream_id = cur_stream; 672 cur_ring->trb_address_map = &stream_info->trb_address_map; 673 /* Set deq ptr, cycle bit, and stream context type */ 674 addr = cur_ring->first_seg->dma | 675 SCT_FOR_CTX(SCT_PRI_TR) | 676 cur_ring->cycle_state; 677 stream_info->stream_ctx_array[cur_stream].stream_ring = 678 cpu_to_le64(addr); 679 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", cur_stream, addr); 680 681 ret = xhci_update_stream_mapping(cur_ring, mem_flags); 682 683 trace_xhci_alloc_stream_info_ctx(stream_info, cur_stream); 684 if (ret) { 685 xhci_ring_free(xhci, cur_ring); 686 stream_info->stream_rings[cur_stream] = NULL; 687 goto cleanup_rings; 688 } 689 } 690 /* Leave the other unused stream ring pointers in the stream context 691 * array initialized to zero. This will cause the xHC to give us an 692 * error if the device asks for a stream ID we don't have setup (if it 693 * was any other way, the host controller would assume the ring is 694 * "empty" and wait forever for data to be queued to that stream ID). 695 */ 696 697 return stream_info; 698 699 cleanup_rings: 700 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 701 cur_ring = stream_info->stream_rings[cur_stream]; 702 if (cur_ring) { 703 xhci_ring_free(xhci, cur_ring); 704 stream_info->stream_rings[cur_stream] = NULL; 705 } 706 } 707 xhci_free_command(xhci, stream_info->free_streams_command); 708 cleanup_ctx: 709 xhci_free_stream_ctx(xhci, 710 stream_info->num_stream_ctxs, 711 stream_info->stream_ctx_array, 712 stream_info->ctx_array_dma); 713 cleanup_ring_array: 714 kfree(stream_info->stream_rings); 715 cleanup_info: 716 kfree(stream_info); 717 cleanup_trbs: 718 xhci->cmd_ring_reserved_trbs--; 719 return NULL; 720 } 721 /* 722 * Sets the MaxPStreams field and the Linear Stream Array field. 723 * Sets the dequeue pointer to the stream context array. 724 */ 725 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci, 726 struct xhci_ep_ctx *ep_ctx, 727 struct xhci_stream_info *stream_info) 728 { 729 u32 max_primary_streams; 730 /* MaxPStreams is the number of stream context array entries, not the 731 * number we're actually using. Must be in 2^(MaxPstreams + 1) format. 732 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc. 733 */ 734 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2; 735 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 736 "Setting number of stream ctx array entries to %u", 737 1 << (max_primary_streams + 1)); 738 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK); 739 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams) 740 | EP_HAS_LSA); 741 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma); 742 } 743 744 /* 745 * Sets the MaxPStreams field and the Linear Stream Array field to 0. 746 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark, 747 * not at the beginning of the ring). 748 */ 749 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx, 750 struct xhci_virt_ep *ep) 751 { 752 dma_addr_t addr; 753 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA)); 754 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue); 755 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state); 756 } 757 758 /* Frees all stream contexts associated with the endpoint, 759 * 760 * Caller should fix the endpoint context streams fields. 761 */ 762 void xhci_free_stream_info(struct xhci_hcd *xhci, 763 struct xhci_stream_info *stream_info) 764 { 765 int cur_stream; 766 struct xhci_ring *cur_ring; 767 768 if (!stream_info) 769 return; 770 771 for (cur_stream = 1; cur_stream < stream_info->num_streams; 772 cur_stream++) { 773 cur_ring = stream_info->stream_rings[cur_stream]; 774 if (cur_ring) { 775 xhci_ring_free(xhci, cur_ring); 776 stream_info->stream_rings[cur_stream] = NULL; 777 } 778 } 779 xhci_free_command(xhci, stream_info->free_streams_command); 780 xhci->cmd_ring_reserved_trbs--; 781 if (stream_info->stream_ctx_array) 782 xhci_free_stream_ctx(xhci, 783 stream_info->num_stream_ctxs, 784 stream_info->stream_ctx_array, 785 stream_info->ctx_array_dma); 786 787 kfree(stream_info->stream_rings); 788 kfree(stream_info); 789 } 790 791 792 /***************** Device context manipulation *************************/ 793 794 static void xhci_free_tt_info(struct xhci_hcd *xhci, 795 struct xhci_virt_device *virt_dev, 796 int slot_id) 797 { 798 struct list_head *tt_list_head; 799 struct xhci_tt_bw_info *tt_info, *next; 800 bool slot_found = false; 801 802 /* If the device never made it past the Set Address stage, 803 * it may not have the root hub port pointer set correctly. 804 */ 805 if (!virt_dev->rhub_port) { 806 xhci_dbg(xhci, "Bad rhub port.\n"); 807 return; 808 } 809 810 tt_list_head = &(xhci->rh_bw[virt_dev->rhub_port->hw_portnum].tts); 811 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { 812 /* Multi-TT hubs will have more than one entry */ 813 if (tt_info->slot_id == slot_id) { 814 slot_found = true; 815 list_del(&tt_info->tt_list); 816 kfree(tt_info); 817 } else if (slot_found) { 818 break; 819 } 820 } 821 } 822 823 int xhci_alloc_tt_info(struct xhci_hcd *xhci, 824 struct xhci_virt_device *virt_dev, 825 struct usb_device *hdev, 826 struct usb_tt *tt, gfp_t mem_flags) 827 { 828 struct xhci_tt_bw_info *tt_info; 829 unsigned int num_ports; 830 int i, j; 831 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 832 833 if (!tt->multi) 834 num_ports = 1; 835 else 836 num_ports = hdev->maxchild; 837 838 for (i = 0; i < num_ports; i++, tt_info++) { 839 struct xhci_interval_bw_table *bw_table; 840 841 tt_info = kzalloc_node(sizeof(*tt_info), mem_flags, 842 dev_to_node(dev)); 843 if (!tt_info) 844 goto free_tts; 845 INIT_LIST_HEAD(&tt_info->tt_list); 846 list_add(&tt_info->tt_list, 847 &xhci->rh_bw[virt_dev->rhub_port->hw_portnum].tts); 848 tt_info->slot_id = virt_dev->udev->slot_id; 849 if (tt->multi) 850 tt_info->ttport = i+1; 851 bw_table = &tt_info->bw_table; 852 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 853 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 854 } 855 return 0; 856 857 free_tts: 858 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id); 859 return -ENOMEM; 860 } 861 862 863 /* All the xhci_tds in the ring's TD list should be freed at this point. 864 * Should be called with xhci->lock held if there is any chance the TT lists 865 * will be manipulated by the configure endpoint, allocate device, or update 866 * hub functions while this function is removing the TT entries from the list. 867 */ 868 void xhci_free_virt_device(struct xhci_hcd *xhci, struct xhci_virt_device *dev, 869 int slot_id) 870 { 871 int i; 872 int old_active_eps = 0; 873 874 /* Slot ID 0 is reserved */ 875 if (slot_id == 0 || !dev) 876 return; 877 878 /* If device ctx array still points to _this_ device, clear it */ 879 if (dev->out_ctx && 880 xhci->dcbaa->dev_context_ptrs[slot_id] == cpu_to_le64(dev->out_ctx->dma)) 881 xhci->dcbaa->dev_context_ptrs[slot_id] = 0; 882 883 trace_xhci_free_virt_device(dev); 884 885 if (dev->tt_info) 886 old_active_eps = dev->tt_info->active_eps; 887 888 for (i = 0; i < 31; i++) { 889 if (dev->eps[i].ring) 890 xhci_ring_free(xhci, dev->eps[i].ring); 891 if (dev->eps[i].stream_info) 892 xhci_free_stream_info(xhci, 893 dev->eps[i].stream_info); 894 /* 895 * Endpoints are normally deleted from the bandwidth list when 896 * endpoints are dropped, before device is freed. 897 * If host is dying or being removed then endpoints aren't 898 * dropped cleanly, so delete the endpoint from list here. 899 * Only applicable for hosts with software bandwidth checking. 900 */ 901 902 if (!list_empty(&dev->eps[i].bw_endpoint_list)) { 903 list_del_init(&dev->eps[i].bw_endpoint_list); 904 xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n", 905 slot_id, i); 906 } 907 } 908 /* If this is a hub, free the TT(s) from the TT list */ 909 xhci_free_tt_info(xhci, dev, slot_id); 910 /* If necessary, update the number of active TTs on this root port */ 911 xhci_update_tt_active_eps(xhci, dev, old_active_eps); 912 913 if (dev->in_ctx) 914 xhci_free_container_ctx(xhci, dev->in_ctx); 915 if (dev->out_ctx) 916 xhci_free_container_ctx(xhci, dev->out_ctx); 917 918 if (dev->udev && dev->udev->slot_id) 919 dev->udev->slot_id = 0; 920 if (dev->rhub_port && dev->rhub_port->slot_id == slot_id) 921 dev->rhub_port->slot_id = 0; 922 if (xhci->devs[slot_id] == dev) 923 xhci->devs[slot_id] = NULL; 924 kfree(dev); 925 } 926 927 /* 928 * Free a virt_device structure. 929 * If the virt_device added a tt_info (a hub) and has children pointing to 930 * that tt_info, then free the child first. Recursive. 931 * We can't rely on udev at this point to find child-parent relationships. 932 */ 933 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id) 934 { 935 struct xhci_virt_device *vdev; 936 struct list_head *tt_list_head; 937 struct xhci_tt_bw_info *tt_info, *next; 938 int i; 939 940 vdev = xhci->devs[slot_id]; 941 if (!vdev) 942 return; 943 944 if (!vdev->rhub_port) { 945 xhci_dbg(xhci, "Bad rhub port.\n"); 946 goto out; 947 } 948 949 tt_list_head = &(xhci->rh_bw[vdev->rhub_port->hw_portnum].tts); 950 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { 951 /* is this a hub device that added a tt_info to the tts list */ 952 if (tt_info->slot_id == slot_id) { 953 /* are any devices using this tt_info? */ 954 for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 955 vdev = xhci->devs[i]; 956 if (vdev && (vdev->tt_info == tt_info)) 957 xhci_free_virt_devices_depth_first( 958 xhci, i); 959 } 960 } 961 } 962 out: 963 /* we are now at a leaf device */ 964 xhci_debugfs_remove_slot(xhci, slot_id); 965 xhci_free_virt_device(xhci, vdev, slot_id); 966 } 967 968 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id, 969 struct usb_device *udev, gfp_t flags) 970 { 971 struct xhci_virt_device *dev; 972 int i; 973 974 /* Slot ID 0 is reserved */ 975 if (slot_id == 0 || xhci->devs[slot_id]) { 976 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id); 977 return 0; 978 } 979 980 dev = kzalloc(sizeof(*dev), flags); 981 if (!dev) 982 return 0; 983 984 dev->slot_id = slot_id; 985 986 /* Allocate the (output) device context that will be used in the HC. */ 987 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags); 988 if (!dev->out_ctx) 989 goto fail; 990 991 xhci_dbg(xhci, "Slot %d output ctx = 0x%pad (dma)\n", slot_id, &dev->out_ctx->dma); 992 993 /* Allocate the (input) device context for address device command */ 994 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags); 995 if (!dev->in_ctx) 996 goto fail; 997 998 xhci_dbg(xhci, "Slot %d input ctx = 0x%pad (dma)\n", slot_id, &dev->in_ctx->dma); 999 1000 /* Initialize the cancellation and bandwidth list for each ep */ 1001 for (i = 0; i < 31; i++) { 1002 dev->eps[i].ep_index = i; 1003 dev->eps[i].vdev = dev; 1004 dev->eps[i].xhci = xhci; 1005 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list); 1006 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list); 1007 } 1008 1009 /* Allocate endpoint 0 ring */ 1010 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, TYPE_CTRL, 0, flags); 1011 if (!dev->eps[0].ring) 1012 goto fail; 1013 1014 dev->udev = udev; 1015 1016 /* Point to output device context in dcbaa. */ 1017 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma); 1018 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n", 1019 slot_id, 1020 &xhci->dcbaa->dev_context_ptrs[slot_id], 1021 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id])); 1022 1023 trace_xhci_alloc_virt_device(dev); 1024 1025 xhci->devs[slot_id] = dev; 1026 1027 return 1; 1028 fail: 1029 1030 if (dev->in_ctx) 1031 xhci_free_container_ctx(xhci, dev->in_ctx); 1032 if (dev->out_ctx) 1033 xhci_free_container_ctx(xhci, dev->out_ctx); 1034 kfree(dev); 1035 1036 return 0; 1037 } 1038 1039 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci, 1040 struct usb_device *udev) 1041 { 1042 struct xhci_virt_device *virt_dev; 1043 struct xhci_ep_ctx *ep0_ctx; 1044 struct xhci_ring *ep_ring; 1045 1046 virt_dev = xhci->devs[udev->slot_id]; 1047 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0); 1048 ep_ring = virt_dev->eps[0].ring; 1049 /* 1050 * FIXME we don't keep track of the dequeue pointer very well after a 1051 * Set TR dequeue pointer, so we're setting the dequeue pointer of the 1052 * host to our enqueue pointer. This should only be called after a 1053 * configured device has reset, so all control transfers should have 1054 * been completed or cancelled before the reset. 1055 */ 1056 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg, 1057 ep_ring->enqueue) 1058 | ep_ring->cycle_state); 1059 } 1060 1061 /* 1062 * The xHCI roothub may have ports of differing speeds in any order in the port 1063 * status registers. 1064 * 1065 * The xHCI hardware wants to know the roothub port that the USB device 1066 * is attached to (or the roothub port its ancestor hub is attached to). All we 1067 * know is the index of that port under either the USB 2.0 or the USB 3.0 1068 * roothub, but that doesn't give us the real index into the HW port status 1069 * registers. 1070 */ 1071 static struct xhci_port *xhci_find_rhub_port(struct xhci_hcd *xhci, struct usb_device *udev) 1072 { 1073 struct usb_device *top_dev; 1074 struct xhci_hub *rhub; 1075 struct usb_hcd *hcd; 1076 1077 if (udev->speed >= USB_SPEED_SUPER) 1078 hcd = xhci_get_usb3_hcd(xhci); 1079 else 1080 hcd = xhci->main_hcd; 1081 1082 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 1083 top_dev = top_dev->parent) 1084 /* Found device below root hub */; 1085 1086 rhub = xhci_get_rhub(hcd); 1087 return rhub->ports[top_dev->portnum - 1]; 1088 } 1089 1090 /* Setup an xHCI virtual device for a Set Address command */ 1091 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev) 1092 { 1093 struct xhci_virt_device *dev; 1094 struct xhci_ep_ctx *ep0_ctx; 1095 struct xhci_slot_ctx *slot_ctx; 1096 u32 max_packets; 1097 1098 dev = xhci->devs[udev->slot_id]; 1099 /* Slot ID 0 is reserved */ 1100 if (udev->slot_id == 0 || !dev) { 1101 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n", 1102 udev->slot_id); 1103 return -EINVAL; 1104 } 1105 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0); 1106 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx); 1107 1108 /* 3) Only the control endpoint is valid - one endpoint context */ 1109 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route); 1110 switch (udev->speed) { 1111 case USB_SPEED_SUPER_PLUS: 1112 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP); 1113 max_packets = MAX_PACKET(512); 1114 break; 1115 case USB_SPEED_SUPER: 1116 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS); 1117 max_packets = MAX_PACKET(512); 1118 break; 1119 case USB_SPEED_HIGH: 1120 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS); 1121 max_packets = MAX_PACKET(64); 1122 break; 1123 /* USB core guesses at a 64-byte max packet first for FS devices */ 1124 case USB_SPEED_FULL: 1125 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS); 1126 max_packets = MAX_PACKET(64); 1127 break; 1128 case USB_SPEED_LOW: 1129 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS); 1130 max_packets = MAX_PACKET(8); 1131 break; 1132 default: 1133 /* Speed was set earlier, this shouldn't happen. */ 1134 return -EINVAL; 1135 } 1136 /* Find the root hub port this device is under */ 1137 dev->rhub_port = xhci_find_rhub_port(xhci, udev); 1138 if (!dev->rhub_port) 1139 return -EINVAL; 1140 /* Slot ID is set to the device directly below the root hub */ 1141 if (!udev->parent->parent) 1142 dev->rhub_port->slot_id = udev->slot_id; 1143 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(dev->rhub_port->hw_portnum + 1)); 1144 xhci_dbg(xhci, "Slot ID %d: HW portnum %d, hcd portnum %d\n", 1145 udev->slot_id, dev->rhub_port->hw_portnum, dev->rhub_port->hcd_portnum); 1146 1147 /* Find the right bandwidth table that this device will be a part of. 1148 * If this is a full speed device attached directly to a root port (or a 1149 * decendent of one), it counts as a primary bandwidth domain, not a 1150 * secondary bandwidth domain under a TT. An xhci_tt_info structure 1151 * will never be created for the HS root hub. 1152 */ 1153 if (!udev->tt || !udev->tt->hub->parent) { 1154 dev->bw_table = &xhci->rh_bw[dev->rhub_port->hw_portnum].bw_table; 1155 } else { 1156 struct xhci_root_port_bw_info *rh_bw; 1157 struct xhci_tt_bw_info *tt_bw; 1158 1159 rh_bw = &xhci->rh_bw[dev->rhub_port->hw_portnum]; 1160 /* Find the right TT. */ 1161 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) { 1162 if (tt_bw->slot_id != udev->tt->hub->slot_id) 1163 continue; 1164 1165 if (!dev->udev->tt->multi || 1166 (udev->tt->multi && 1167 tt_bw->ttport == dev->udev->ttport)) { 1168 dev->bw_table = &tt_bw->bw_table; 1169 dev->tt_info = tt_bw; 1170 break; 1171 } 1172 } 1173 if (!dev->tt_info) 1174 xhci_warn(xhci, "WARN: Didn't find a matching TT\n"); 1175 } 1176 1177 /* Is this a LS/FS device under an external HS hub? */ 1178 if (udev->tt && udev->tt->hub->parent) { 1179 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id | 1180 (udev->ttport << 8)); 1181 if (udev->tt->multi) 1182 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 1183 } 1184 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt); 1185 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport); 1186 1187 /* Step 4 - ring already allocated */ 1188 /* Step 5 */ 1189 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP)); 1190 1191 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */ 1192 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) | 1193 max_packets); 1194 1195 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma | 1196 dev->eps[0].ring->cycle_state); 1197 1198 ep0_ctx->tx_info = cpu_to_le32(EP_AVG_TRB_LENGTH(8)); 1199 1200 trace_xhci_setup_addressable_virt_device(dev); 1201 1202 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */ 1203 1204 return 0; 1205 } 1206 1207 /* 1208 * Convert interval expressed as 2^(bInterval - 1) == interval into 1209 * straight exponent value 2^n == interval. 1210 * 1211 */ 1212 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev, 1213 struct usb_host_endpoint *ep) 1214 { 1215 unsigned int interval; 1216 1217 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1; 1218 if (interval != ep->desc.bInterval - 1) 1219 dev_warn(&udev->dev, 1220 "ep %#x - rounding interval to %d %sframes\n", 1221 ep->desc.bEndpointAddress, 1222 1 << interval, 1223 udev->speed == USB_SPEED_FULL ? "" : "micro"); 1224 1225 if (udev->speed == USB_SPEED_FULL) { 1226 /* 1227 * Full speed isoc endpoints specify interval in frames, 1228 * not microframes. We are using microframes everywhere, 1229 * so adjust accordingly. 1230 */ 1231 interval += 3; /* 1 frame = 2^3 uframes */ 1232 } 1233 1234 return interval; 1235 } 1236 1237 /* 1238 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of 1239 * microframes, rounded down to nearest power of 2. 1240 */ 1241 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev, 1242 struct usb_host_endpoint *ep, unsigned int desc_interval, 1243 unsigned int min_exponent, unsigned int max_exponent) 1244 { 1245 unsigned int interval; 1246 1247 interval = fls(desc_interval) - 1; 1248 interval = clamp_val(interval, min_exponent, max_exponent); 1249 if ((1 << interval) != desc_interval) 1250 dev_dbg(&udev->dev, 1251 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n", 1252 ep->desc.bEndpointAddress, 1253 1 << interval, 1254 desc_interval); 1255 1256 return interval; 1257 } 1258 1259 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev, 1260 struct usb_host_endpoint *ep) 1261 { 1262 if (ep->desc.bInterval == 0) 1263 return 0; 1264 return xhci_microframes_to_exponent(udev, ep, 1265 ep->desc.bInterval, 0, 15); 1266 } 1267 1268 1269 static unsigned int xhci_parse_frame_interval(struct usb_device *udev, 1270 struct usb_host_endpoint *ep) 1271 { 1272 return xhci_microframes_to_exponent(udev, ep, 1273 ep->desc.bInterval * 8, 3, 10); 1274 } 1275 1276 /* Return the polling or NAK interval. 1277 * 1278 * The polling interval is expressed in "microframes". If xHCI's Interval field 1279 * is set to N, it will service the endpoint every 2^(Interval)*125us. 1280 * 1281 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval 1282 * is set to 0. 1283 */ 1284 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev, 1285 struct usb_host_endpoint *ep) 1286 { 1287 unsigned int interval = 0; 1288 1289 switch (udev->speed) { 1290 case USB_SPEED_HIGH: 1291 /* Max NAK rate */ 1292 if (usb_endpoint_xfer_control(&ep->desc) || 1293 usb_endpoint_xfer_bulk(&ep->desc)) { 1294 interval = xhci_parse_microframe_interval(udev, ep); 1295 break; 1296 } 1297 fallthrough; /* SS and HS isoc/int have same decoding */ 1298 1299 case USB_SPEED_SUPER_PLUS: 1300 case USB_SPEED_SUPER: 1301 if (usb_endpoint_xfer_int(&ep->desc) || 1302 usb_endpoint_xfer_isoc(&ep->desc)) { 1303 interval = xhci_parse_exponent_interval(udev, ep); 1304 } 1305 break; 1306 1307 case USB_SPEED_FULL: 1308 if (usb_endpoint_xfer_isoc(&ep->desc)) { 1309 interval = xhci_parse_exponent_interval(udev, ep); 1310 break; 1311 } 1312 /* 1313 * Fall through for interrupt endpoint interval decoding 1314 * since it uses the same rules as low speed interrupt 1315 * endpoints. 1316 */ 1317 fallthrough; 1318 1319 case USB_SPEED_LOW: 1320 if (usb_endpoint_xfer_int(&ep->desc) || 1321 usb_endpoint_xfer_isoc(&ep->desc)) { 1322 1323 interval = xhci_parse_frame_interval(udev, ep); 1324 } 1325 break; 1326 1327 default: 1328 BUG(); 1329 } 1330 return interval; 1331 } 1332 1333 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps. 1334 * High speed endpoint descriptors can define "the number of additional 1335 * transaction opportunities per microframe", but that goes in the Max Burst 1336 * endpoint context field. 1337 */ 1338 static u32 xhci_get_endpoint_mult(struct usb_device *udev, 1339 struct usb_host_endpoint *ep) 1340 { 1341 if (udev->speed < USB_SPEED_SUPER || 1342 !usb_endpoint_xfer_isoc(&ep->desc)) 1343 return 0; 1344 return ep->ss_ep_comp.bmAttributes; 1345 } 1346 1347 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev, 1348 struct usb_host_endpoint *ep) 1349 { 1350 /* Super speed and Plus have max burst in ep companion desc */ 1351 if (udev->speed >= USB_SPEED_SUPER) 1352 return ep->ss_ep_comp.bMaxBurst; 1353 1354 if (udev->speed == USB_SPEED_HIGH && 1355 (usb_endpoint_xfer_isoc(&ep->desc) || 1356 usb_endpoint_xfer_int(&ep->desc))) 1357 return usb_endpoint_maxp_mult(&ep->desc) - 1; 1358 1359 return 0; 1360 } 1361 1362 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep) 1363 { 1364 int in; 1365 1366 in = usb_endpoint_dir_in(&ep->desc); 1367 1368 switch (usb_endpoint_type(&ep->desc)) { 1369 case USB_ENDPOINT_XFER_CONTROL: 1370 return CTRL_EP; 1371 case USB_ENDPOINT_XFER_BULK: 1372 return in ? BULK_IN_EP : BULK_OUT_EP; 1373 case USB_ENDPOINT_XFER_ISOC: 1374 return in ? ISOC_IN_EP : ISOC_OUT_EP; 1375 case USB_ENDPOINT_XFER_INT: 1376 return in ? INT_IN_EP : INT_OUT_EP; 1377 } 1378 return 0; 1379 } 1380 1381 /* Return the maximum endpoint service interval time (ESIT) payload. 1382 * Basically, this is the maxpacket size, multiplied by the burst size 1383 * and mult size. 1384 */ 1385 static u32 xhci_get_max_esit_payload(struct usb_device *udev, 1386 struct usb_host_endpoint *ep) 1387 { 1388 int max_burst; 1389 int max_packet; 1390 1391 /* Only applies for interrupt or isochronous endpoints */ 1392 if (usb_endpoint_xfer_control(&ep->desc) || 1393 usb_endpoint_xfer_bulk(&ep->desc)) 1394 return 0; 1395 1396 /* SuperSpeedPlus Isoc ep sending over 48k per esit */ 1397 if ((udev->speed >= USB_SPEED_SUPER_PLUS) && 1398 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes)) 1399 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval); 1400 1401 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */ 1402 if (udev->speed >= USB_SPEED_SUPER) 1403 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); 1404 1405 max_packet = usb_endpoint_maxp(&ep->desc); 1406 max_burst = usb_endpoint_maxp_mult(&ep->desc); 1407 /* A 0 in max burst means 1 transfer per ESIT */ 1408 return max_packet * max_burst; 1409 } 1410 1411 /* Set up an endpoint with one ring segment. Do not allocate stream rings. 1412 * Drivers will have to call usb_alloc_streams() to do that. 1413 */ 1414 int xhci_endpoint_init(struct xhci_hcd *xhci, 1415 struct xhci_virt_device *virt_dev, 1416 struct usb_device *udev, 1417 struct usb_host_endpoint *ep, 1418 gfp_t mem_flags) 1419 { 1420 unsigned int ep_index; 1421 struct xhci_ep_ctx *ep_ctx; 1422 struct xhci_ring *ep_ring; 1423 unsigned int max_packet; 1424 enum xhci_ring_type ring_type; 1425 u32 max_esit_payload; 1426 u32 endpoint_type; 1427 unsigned int max_burst; 1428 unsigned int interval; 1429 unsigned int mult; 1430 unsigned int avg_trb_len; 1431 unsigned int err_count = 0; 1432 1433 ep_index = xhci_get_endpoint_index(&ep->desc); 1434 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1435 1436 endpoint_type = xhci_get_endpoint_type(ep); 1437 if (!endpoint_type) 1438 return -EINVAL; 1439 1440 ring_type = usb_endpoint_type(&ep->desc); 1441 1442 /* 1443 * Get values to fill the endpoint context, mostly from ep descriptor. 1444 * The average TRB buffer lengt for bulk endpoints is unclear as we 1445 * have no clue on scatter gather list entry size. For Isoc and Int, 1446 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details. 1447 */ 1448 max_esit_payload = xhci_get_max_esit_payload(udev, ep); 1449 interval = xhci_get_endpoint_interval(udev, ep); 1450 1451 /* Periodic endpoint bInterval limit quirk */ 1452 if (usb_endpoint_xfer_int(&ep->desc) || 1453 usb_endpoint_xfer_isoc(&ep->desc)) { 1454 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_9) && 1455 interval >= 9) { 1456 interval = 8; 1457 } 1458 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) && 1459 udev->speed >= USB_SPEED_HIGH && 1460 interval >= 7) { 1461 interval = 6; 1462 } 1463 } 1464 1465 mult = xhci_get_endpoint_mult(udev, ep); 1466 max_packet = usb_endpoint_maxp(&ep->desc); 1467 max_burst = xhci_get_endpoint_max_burst(udev, ep); 1468 avg_trb_len = max_esit_payload; 1469 1470 /* FIXME dig Mult and streams info out of ep companion desc */ 1471 1472 /* Allow 3 retries for everything but isoc, set CErr = 3 */ 1473 if (!usb_endpoint_xfer_isoc(&ep->desc)) 1474 err_count = 3; 1475 /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */ 1476 if (usb_endpoint_xfer_bulk(&ep->desc)) { 1477 if (udev->speed == USB_SPEED_HIGH) 1478 max_packet = 512; 1479 if (udev->speed == USB_SPEED_FULL) { 1480 max_packet = rounddown_pow_of_two(max_packet); 1481 max_packet = clamp_val(max_packet, 8, 64); 1482 } 1483 } 1484 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */ 1485 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100) 1486 avg_trb_len = 8; 1487 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */ 1488 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2)) 1489 mult = 0; 1490 1491 /* Set up the endpoint ring */ 1492 virt_dev->eps[ep_index].new_ring = 1493 xhci_ring_alloc(xhci, 2, ring_type, max_packet, mem_flags); 1494 if (!virt_dev->eps[ep_index].new_ring) 1495 return -ENOMEM; 1496 1497 virt_dev->eps[ep_index].skip = false; 1498 ep_ring = virt_dev->eps[ep_index].new_ring; 1499 1500 /* Fill the endpoint context */ 1501 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) | 1502 EP_INTERVAL(interval) | 1503 EP_MULT(mult)); 1504 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) | 1505 MAX_PACKET(max_packet) | 1506 MAX_BURST(max_burst) | 1507 ERROR_COUNT(err_count)); 1508 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | 1509 ep_ring->cycle_state); 1510 1511 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) | 1512 EP_AVG_TRB_LENGTH(avg_trb_len)); 1513 1514 return 0; 1515 } 1516 1517 void xhci_endpoint_zero(struct xhci_hcd *xhci, 1518 struct xhci_virt_device *virt_dev, 1519 struct usb_host_endpoint *ep) 1520 { 1521 unsigned int ep_index; 1522 struct xhci_ep_ctx *ep_ctx; 1523 1524 ep_index = xhci_get_endpoint_index(&ep->desc); 1525 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1526 1527 ep_ctx->ep_info = 0; 1528 ep_ctx->ep_info2 = 0; 1529 ep_ctx->deq = 0; 1530 ep_ctx->tx_info = 0; 1531 /* Don't free the endpoint ring until the set interface or configuration 1532 * request succeeds. 1533 */ 1534 } 1535 1536 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info) 1537 { 1538 bw_info->ep_interval = 0; 1539 bw_info->mult = 0; 1540 bw_info->num_packets = 0; 1541 bw_info->max_packet_size = 0; 1542 bw_info->type = 0; 1543 bw_info->max_esit_payload = 0; 1544 } 1545 1546 void xhci_update_bw_info(struct xhci_hcd *xhci, 1547 struct xhci_container_ctx *in_ctx, 1548 struct xhci_input_control_ctx *ctrl_ctx, 1549 struct xhci_virt_device *virt_dev) 1550 { 1551 struct xhci_bw_info *bw_info; 1552 struct xhci_ep_ctx *ep_ctx; 1553 unsigned int ep_type; 1554 int i; 1555 1556 for (i = 1; i < 31; i++) { 1557 bw_info = &virt_dev->eps[i].bw_info; 1558 1559 /* We can't tell what endpoint type is being dropped, but 1560 * unconditionally clearing the bandwidth info for non-periodic 1561 * endpoints should be harmless because the info will never be 1562 * set in the first place. 1563 */ 1564 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) { 1565 /* Dropped endpoint */ 1566 xhci_clear_endpoint_bw_info(bw_info); 1567 continue; 1568 } 1569 1570 if (EP_IS_ADDED(ctrl_ctx, i)) { 1571 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i); 1572 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2)); 1573 1574 /* Ignore non-periodic endpoints */ 1575 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 1576 ep_type != ISOC_IN_EP && 1577 ep_type != INT_IN_EP) 1578 continue; 1579 1580 /* Added or changed endpoint */ 1581 bw_info->ep_interval = CTX_TO_EP_INTERVAL( 1582 le32_to_cpu(ep_ctx->ep_info)); 1583 /* Number of packets and mult are zero-based in the 1584 * input context, but we want one-based for the 1585 * interval table. 1586 */ 1587 bw_info->mult = CTX_TO_EP_MULT( 1588 le32_to_cpu(ep_ctx->ep_info)) + 1; 1589 bw_info->num_packets = CTX_TO_MAX_BURST( 1590 le32_to_cpu(ep_ctx->ep_info2)) + 1; 1591 bw_info->max_packet_size = MAX_PACKET_DECODED( 1592 le32_to_cpu(ep_ctx->ep_info2)); 1593 bw_info->type = ep_type; 1594 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD( 1595 le32_to_cpu(ep_ctx->tx_info)); 1596 } 1597 } 1598 } 1599 1600 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy. 1601 * Useful when you want to change one particular aspect of the endpoint and then 1602 * issue a configure endpoint command. 1603 */ 1604 void xhci_endpoint_copy(struct xhci_hcd *xhci, 1605 struct xhci_container_ctx *in_ctx, 1606 struct xhci_container_ctx *out_ctx, 1607 unsigned int ep_index) 1608 { 1609 struct xhci_ep_ctx *out_ep_ctx; 1610 struct xhci_ep_ctx *in_ep_ctx; 1611 1612 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1613 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 1614 1615 in_ep_ctx->ep_info = out_ep_ctx->ep_info; 1616 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2; 1617 in_ep_ctx->deq = out_ep_ctx->deq; 1618 in_ep_ctx->tx_info = out_ep_ctx->tx_info; 1619 if (xhci->quirks & XHCI_MTK_HOST) { 1620 in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0]; 1621 in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1]; 1622 } 1623 } 1624 1625 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx. 1626 * Useful when you want to change one particular aspect of the endpoint and then 1627 * issue a configure endpoint command. Only the context entries field matters, 1628 * but we'll copy the whole thing anyway. 1629 */ 1630 void xhci_slot_copy(struct xhci_hcd *xhci, 1631 struct xhci_container_ctx *in_ctx, 1632 struct xhci_container_ctx *out_ctx) 1633 { 1634 struct xhci_slot_ctx *in_slot_ctx; 1635 struct xhci_slot_ctx *out_slot_ctx; 1636 1637 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1638 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx); 1639 1640 in_slot_ctx->dev_info = out_slot_ctx->dev_info; 1641 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2; 1642 in_slot_ctx->tt_info = out_slot_ctx->tt_info; 1643 in_slot_ctx->dev_state = out_slot_ctx->dev_state; 1644 } 1645 1646 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */ 1647 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags) 1648 { 1649 int i; 1650 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1651 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1652 1653 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1654 "Allocating %d scratchpad buffers", num_sp); 1655 1656 if (!num_sp) 1657 return 0; 1658 1659 xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags, 1660 dev_to_node(dev)); 1661 if (!xhci->scratchpad) 1662 goto fail_sp; 1663 1664 xhci->scratchpad->sp_array = dma_alloc_coherent(dev, 1665 array_size(sizeof(u64), num_sp), 1666 &xhci->scratchpad->sp_dma, flags); 1667 if (!xhci->scratchpad->sp_array) 1668 goto fail_sp2; 1669 1670 xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *), 1671 flags, dev_to_node(dev)); 1672 if (!xhci->scratchpad->sp_buffers) 1673 goto fail_sp3; 1674 1675 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma); 1676 for (i = 0; i < num_sp; i++) { 1677 dma_addr_t dma; 1678 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma, 1679 flags); 1680 if (!buf) 1681 goto fail_sp4; 1682 1683 xhci->scratchpad->sp_array[i] = dma; 1684 xhci->scratchpad->sp_buffers[i] = buf; 1685 } 1686 1687 return 0; 1688 1689 fail_sp4: 1690 while (i--) 1691 dma_free_coherent(dev, xhci->page_size, 1692 xhci->scratchpad->sp_buffers[i], 1693 xhci->scratchpad->sp_array[i]); 1694 1695 kfree(xhci->scratchpad->sp_buffers); 1696 1697 fail_sp3: 1698 dma_free_coherent(dev, array_size(sizeof(u64), num_sp), 1699 xhci->scratchpad->sp_array, 1700 xhci->scratchpad->sp_dma); 1701 1702 fail_sp2: 1703 kfree(xhci->scratchpad); 1704 xhci->scratchpad = NULL; 1705 1706 fail_sp: 1707 return -ENOMEM; 1708 } 1709 1710 static void scratchpad_free(struct xhci_hcd *xhci) 1711 { 1712 int num_sp; 1713 int i; 1714 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1715 1716 if (!xhci->scratchpad) 1717 return; 1718 1719 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1720 1721 for (i = 0; i < num_sp; i++) { 1722 dma_free_coherent(dev, xhci->page_size, 1723 xhci->scratchpad->sp_buffers[i], 1724 xhci->scratchpad->sp_array[i]); 1725 } 1726 kfree(xhci->scratchpad->sp_buffers); 1727 dma_free_coherent(dev, array_size(sizeof(u64), num_sp), 1728 xhci->scratchpad->sp_array, 1729 xhci->scratchpad->sp_dma); 1730 kfree(xhci->scratchpad); 1731 xhci->scratchpad = NULL; 1732 } 1733 1734 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci, 1735 bool allocate_completion, gfp_t mem_flags) 1736 { 1737 struct xhci_command *command; 1738 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1739 1740 command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev)); 1741 if (!command) 1742 return NULL; 1743 1744 if (allocate_completion) { 1745 command->completion = 1746 kzalloc_node(sizeof(struct completion), mem_flags, 1747 dev_to_node(dev)); 1748 if (!command->completion) { 1749 kfree(command); 1750 return NULL; 1751 } 1752 init_completion(command->completion); 1753 } 1754 1755 command->status = 0; 1756 /* set default timeout to 5000 ms */ 1757 command->timeout_ms = XHCI_CMD_DEFAULT_TIMEOUT; 1758 INIT_LIST_HEAD(&command->cmd_list); 1759 return command; 1760 } 1761 1762 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci, 1763 bool allocate_completion, gfp_t mem_flags) 1764 { 1765 struct xhci_command *command; 1766 1767 command = xhci_alloc_command(xhci, allocate_completion, mem_flags); 1768 if (!command) 1769 return NULL; 1770 1771 command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, 1772 mem_flags); 1773 if (!command->in_ctx) { 1774 kfree(command->completion); 1775 kfree(command); 1776 return NULL; 1777 } 1778 return command; 1779 } 1780 1781 void xhci_urb_free_priv(struct urb_priv *urb_priv) 1782 { 1783 kfree(urb_priv); 1784 } 1785 1786 void xhci_free_command(struct xhci_hcd *xhci, 1787 struct xhci_command *command) 1788 { 1789 xhci_free_container_ctx(xhci, 1790 command->in_ctx); 1791 kfree(command->completion); 1792 kfree(command); 1793 } 1794 1795 static int xhci_alloc_erst(struct xhci_hcd *xhci, 1796 struct xhci_ring *evt_ring, 1797 struct xhci_erst *erst, 1798 gfp_t flags) 1799 { 1800 size_t size; 1801 unsigned int val; 1802 struct xhci_segment *seg; 1803 struct xhci_erst_entry *entry; 1804 1805 size = array_size(sizeof(struct xhci_erst_entry), evt_ring->num_segs); 1806 erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev, 1807 size, &erst->erst_dma_addr, flags); 1808 if (!erst->entries) 1809 return -ENOMEM; 1810 1811 erst->num_entries = evt_ring->num_segs; 1812 1813 seg = evt_ring->first_seg; 1814 for (val = 0; val < evt_ring->num_segs; val++) { 1815 entry = &erst->entries[val]; 1816 entry->seg_addr = cpu_to_le64(seg->dma); 1817 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT); 1818 entry->rsvd = 0; 1819 seg = seg->next; 1820 } 1821 1822 return 0; 1823 } 1824 1825 static void 1826 xhci_remove_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir) 1827 { 1828 u32 tmp; 1829 1830 if (!ir) 1831 return; 1832 1833 /* 1834 * Clean out interrupter registers except ERSTBA. Clearing either the 1835 * low or high 32 bits of ERSTBA immediately causes the controller to 1836 * dereference the partially cleared 64 bit address, causing IOMMU error. 1837 */ 1838 if (ir->ir_set) { 1839 tmp = readl(&ir->ir_set->erst_size); 1840 tmp &= ~ERST_SIZE_MASK; 1841 writel(tmp, &ir->ir_set->erst_size); 1842 1843 xhci_update_erst_dequeue(xhci, ir, true); 1844 } 1845 } 1846 1847 static void 1848 xhci_free_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir) 1849 { 1850 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1851 size_t erst_size; 1852 1853 if (!ir) 1854 return; 1855 1856 erst_size = array_size(sizeof(struct xhci_erst_entry), ir->erst.num_entries); 1857 if (ir->erst.entries) 1858 dma_free_coherent(dev, erst_size, 1859 ir->erst.entries, 1860 ir->erst.erst_dma_addr); 1861 ir->erst.entries = NULL; 1862 1863 /* free interrupter event ring */ 1864 if (ir->event_ring) 1865 xhci_ring_free(xhci, ir->event_ring); 1866 1867 ir->event_ring = NULL; 1868 1869 kfree(ir); 1870 } 1871 1872 void xhci_remove_secondary_interrupter(struct usb_hcd *hcd, struct xhci_interrupter *ir) 1873 { 1874 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1875 unsigned int intr_num; 1876 1877 spin_lock_irq(&xhci->lock); 1878 1879 /* interrupter 0 is primary interrupter, don't touch it */ 1880 if (!ir || !ir->intr_num || ir->intr_num >= xhci->max_interrupters) { 1881 xhci_dbg(xhci, "Invalid secondary interrupter, can't remove\n"); 1882 spin_unlock_irq(&xhci->lock); 1883 return; 1884 } 1885 1886 /* 1887 * Cleanup secondary interrupter to ensure there are no pending events. 1888 * This also updates event ring dequeue pointer back to the start. 1889 */ 1890 xhci_skip_sec_intr_events(xhci, ir->event_ring, ir); 1891 intr_num = ir->intr_num; 1892 1893 xhci_remove_interrupter(xhci, ir); 1894 xhci->interrupters[intr_num] = NULL; 1895 1896 spin_unlock_irq(&xhci->lock); 1897 1898 xhci_free_interrupter(xhci, ir); 1899 } 1900 EXPORT_SYMBOL_GPL(xhci_remove_secondary_interrupter); 1901 1902 void xhci_mem_cleanup(struct xhci_hcd *xhci) 1903 { 1904 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1905 int i, j, num_ports; 1906 1907 cancel_delayed_work_sync(&xhci->cmd_timer); 1908 1909 for (i = 0; xhci->interrupters && i < xhci->max_interrupters; i++) { 1910 if (xhci->interrupters[i]) { 1911 xhci_remove_interrupter(xhci, xhci->interrupters[i]); 1912 xhci_free_interrupter(xhci, xhci->interrupters[i]); 1913 xhci->interrupters[i] = NULL; 1914 } 1915 } 1916 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed interrupters"); 1917 1918 if (xhci->cmd_ring) 1919 xhci_ring_free(xhci, xhci->cmd_ring); 1920 xhci->cmd_ring = NULL; 1921 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring"); 1922 xhci_cleanup_command_queue(xhci); 1923 1924 num_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1925 for (i = 0; i < num_ports && xhci->rh_bw; i++) { 1926 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table; 1927 for (j = 0; j < XHCI_MAX_INTERVAL; j++) { 1928 struct list_head *ep = &bwt->interval_bw[j].endpoints; 1929 while (!list_empty(ep)) 1930 list_del_init(ep->next); 1931 } 1932 } 1933 1934 for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--) 1935 xhci_free_virt_devices_depth_first(xhci, i); 1936 1937 dma_pool_destroy(xhci->segment_pool); 1938 xhci->segment_pool = NULL; 1939 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool"); 1940 1941 dma_pool_destroy(xhci->device_pool); 1942 xhci->device_pool = NULL; 1943 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool"); 1944 1945 dma_pool_destroy(xhci->small_streams_pool); 1946 xhci->small_streams_pool = NULL; 1947 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1948 "Freed small stream array pool"); 1949 1950 dma_pool_destroy(xhci->port_bw_pool); 1951 xhci->port_bw_pool = NULL; 1952 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1953 "Freed xhci port bw array pool"); 1954 1955 dma_pool_destroy(xhci->medium_streams_pool); 1956 xhci->medium_streams_pool = NULL; 1957 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1958 "Freed medium stream array pool"); 1959 1960 if (xhci->dcbaa) 1961 dma_free_coherent(dev, sizeof(*xhci->dcbaa), 1962 xhci->dcbaa, xhci->dcbaa->dma); 1963 xhci->dcbaa = NULL; 1964 1965 scratchpad_free(xhci); 1966 1967 if (!xhci->rh_bw) 1968 goto no_bw; 1969 1970 for (i = 0; i < num_ports; i++) { 1971 struct xhci_tt_bw_info *tt, *n; 1972 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) { 1973 list_del(&tt->tt_list); 1974 kfree(tt); 1975 } 1976 } 1977 1978 no_bw: 1979 xhci->cmd_ring_reserved_trbs = 0; 1980 xhci->usb2_rhub.num_ports = 0; 1981 xhci->usb3_rhub.num_ports = 0; 1982 xhci->num_active_eps = 0; 1983 kfree(xhci->usb2_rhub.ports); 1984 kfree(xhci->usb3_rhub.ports); 1985 kfree(xhci->hw_ports); 1986 kfree(xhci->rh_bw); 1987 for (i = 0; i < xhci->num_port_caps; i++) 1988 kfree(xhci->port_caps[i].psi); 1989 kfree(xhci->port_caps); 1990 kfree(xhci->interrupters); 1991 xhci->num_port_caps = 0; 1992 1993 xhci->usb2_rhub.ports = NULL; 1994 xhci->usb3_rhub.ports = NULL; 1995 xhci->hw_ports = NULL; 1996 xhci->rh_bw = NULL; 1997 xhci->port_caps = NULL; 1998 xhci->interrupters = NULL; 1999 2000 xhci->page_size = 0; 2001 xhci->usb2_rhub.bus_state.bus_suspended = 0; 2002 xhci->usb3_rhub.bus_state.bus_suspended = 0; 2003 } 2004 2005 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci, struct xhci_interrupter *ir) 2006 { 2007 dma_addr_t deq; 2008 2009 deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg, 2010 ir->event_ring->dequeue); 2011 if (!deq) 2012 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr.\n"); 2013 /* Update HC event ring dequeue pointer */ 2014 /* Don't clear the EHB bit (which is RW1C) because 2015 * there might be more events to service. 2016 */ 2017 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2018 "// Write event ring dequeue pointer, preserving EHB bit"); 2019 xhci_write_64(xhci, deq & ERST_PTR_MASK, &ir->ir_set->erst_dequeue); 2020 } 2021 2022 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports, 2023 __le32 __iomem *addr, int max_caps) 2024 { 2025 u32 temp, port_offset, port_count; 2026 int i; 2027 u8 major_revision, minor_revision, tmp_minor_revision; 2028 struct xhci_hub *rhub; 2029 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2030 struct xhci_port_cap *port_cap; 2031 2032 temp = readl(addr); 2033 major_revision = XHCI_EXT_PORT_MAJOR(temp); 2034 minor_revision = XHCI_EXT_PORT_MINOR(temp); 2035 2036 if (major_revision == 0x03) { 2037 rhub = &xhci->usb3_rhub; 2038 /* 2039 * Some hosts incorrectly use sub-minor version for minor 2040 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01 2041 * for bcdUSB 0x310). Since there is no USB release with sub 2042 * minor version 0x301 to 0x309, we can assume that they are 2043 * incorrect and fix it here. 2044 */ 2045 if (minor_revision > 0x00 && minor_revision < 0x10) 2046 minor_revision <<= 4; 2047 /* 2048 * Some zhaoxin's xHCI controller that follow usb3.1 spec 2049 * but only support Gen1. 2050 */ 2051 if (xhci->quirks & XHCI_ZHAOXIN_HOST) { 2052 tmp_minor_revision = minor_revision; 2053 minor_revision = 0; 2054 } 2055 2056 } else if (major_revision <= 0x02) { 2057 rhub = &xhci->usb2_rhub; 2058 } else { 2059 xhci_warn(xhci, "Ignoring unknown port speed, Ext Cap %p, revision = 0x%x\n", 2060 addr, major_revision); 2061 /* Ignoring port protocol we can't understand. FIXME */ 2062 return; 2063 } 2064 2065 /* Port offset and count in the third dword, see section 7.2 */ 2066 temp = readl(addr + 2); 2067 port_offset = XHCI_EXT_PORT_OFF(temp); 2068 port_count = XHCI_EXT_PORT_COUNT(temp); 2069 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2070 "Ext Cap %p, port offset = %u, count = %u, revision = 0x%x", 2071 addr, port_offset, port_count, major_revision); 2072 /* Port count includes the current port offset */ 2073 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports) 2074 /* WTF? "Valid values are ‘1’ to MaxPorts" */ 2075 return; 2076 2077 port_cap = &xhci->port_caps[xhci->num_port_caps++]; 2078 if (xhci->num_port_caps > max_caps) 2079 return; 2080 2081 port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp); 2082 2083 if (port_cap->psi_count) { 2084 port_cap->psi = kcalloc_node(port_cap->psi_count, 2085 sizeof(*port_cap->psi), 2086 GFP_KERNEL, dev_to_node(dev)); 2087 if (!port_cap->psi) 2088 port_cap->psi_count = 0; 2089 2090 port_cap->psi_uid_count++; 2091 for (i = 0; i < port_cap->psi_count; i++) { 2092 port_cap->psi[i] = readl(addr + 4 + i); 2093 2094 /* count unique ID values, two consecutive entries can 2095 * have the same ID if link is assymetric 2096 */ 2097 if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) != 2098 XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1]))) 2099 port_cap->psi_uid_count++; 2100 2101 if (xhci->quirks & XHCI_ZHAOXIN_HOST && 2102 major_revision == 0x03 && 2103 XHCI_EXT_PORT_PSIV(port_cap->psi[i]) >= 5) 2104 minor_revision = tmp_minor_revision; 2105 2106 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n", 2107 XHCI_EXT_PORT_PSIV(port_cap->psi[i]), 2108 XHCI_EXT_PORT_PSIE(port_cap->psi[i]), 2109 XHCI_EXT_PORT_PLT(port_cap->psi[i]), 2110 XHCI_EXT_PORT_PFD(port_cap->psi[i]), 2111 XHCI_EXT_PORT_LP(port_cap->psi[i]), 2112 XHCI_EXT_PORT_PSIM(port_cap->psi[i])); 2113 } 2114 } 2115 2116 rhub->maj_rev = major_revision; 2117 2118 if (rhub->min_rev < minor_revision) 2119 rhub->min_rev = minor_revision; 2120 2121 port_cap->maj_rev = major_revision; 2122 port_cap->min_rev = minor_revision; 2123 port_cap->protocol_caps = temp; 2124 2125 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) && 2126 (temp & XHCI_HLC)) { 2127 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2128 "xHCI 1.0: support USB2 hardware lpm"); 2129 xhci->hw_lpm_support = 1; 2130 } 2131 2132 port_offset--; 2133 for (i = port_offset; i < (port_offset + port_count); i++) { 2134 struct xhci_port *hw_port = &xhci->hw_ports[i]; 2135 /* Duplicate entry. Ignore the port if the revisions differ. */ 2136 if (hw_port->rhub) { 2137 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p, port %u\n", addr, i); 2138 xhci_warn(xhci, "Port was marked as USB %u, duplicated as USB %u\n", 2139 hw_port->rhub->maj_rev, major_revision); 2140 /* Only adjust the roothub port counts if we haven't 2141 * found a similar duplicate. 2142 */ 2143 if (hw_port->rhub != rhub && 2144 hw_port->hcd_portnum != DUPLICATE_ENTRY) { 2145 hw_port->rhub->num_ports--; 2146 hw_port->hcd_portnum = DUPLICATE_ENTRY; 2147 } 2148 continue; 2149 } 2150 hw_port->rhub = rhub; 2151 hw_port->port_cap = port_cap; 2152 rhub->num_ports++; 2153 } 2154 /* FIXME: Should we disable ports not in the Extended Capabilities? */ 2155 } 2156 2157 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci, 2158 struct xhci_hub *rhub, gfp_t flags) 2159 { 2160 int port_index = 0; 2161 int i; 2162 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2163 2164 if (!rhub->num_ports) 2165 return; 2166 rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports), 2167 flags, dev_to_node(dev)); 2168 if (!rhub->ports) 2169 return; 2170 2171 for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) { 2172 if (xhci->hw_ports[i].rhub != rhub || 2173 xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY) 2174 continue; 2175 xhci->hw_ports[i].hcd_portnum = port_index; 2176 rhub->ports[port_index] = &xhci->hw_ports[i]; 2177 port_index++; 2178 if (port_index == rhub->num_ports) 2179 break; 2180 } 2181 } 2182 2183 /* 2184 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that 2185 * specify what speeds each port is supposed to be. We can't count on the port 2186 * speed bits in the PORTSC register being correct until a device is connected, 2187 * but we need to set up the two fake roothubs with the correct number of USB 2188 * 3.0 and USB 2.0 ports at host controller initialization time. 2189 */ 2190 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags) 2191 { 2192 void __iomem *base; 2193 u32 offset; 2194 unsigned int num_ports; 2195 int i, j; 2196 int cap_count = 0; 2197 u32 cap_start; 2198 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2199 2200 num_ports = HCS_MAX_PORTS(xhci->hcs_params1); 2201 xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports), 2202 flags, dev_to_node(dev)); 2203 if (!xhci->hw_ports) 2204 return -ENOMEM; 2205 2206 for (i = 0; i < num_ports; i++) { 2207 xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base + 2208 NUM_PORT_REGS * i; 2209 xhci->hw_ports[i].hw_portnum = i; 2210 2211 init_completion(&xhci->hw_ports[i].rexit_done); 2212 init_completion(&xhci->hw_ports[i].u3exit_done); 2213 } 2214 2215 xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags, 2216 dev_to_node(dev)); 2217 if (!xhci->rh_bw) 2218 return -ENOMEM; 2219 for (i = 0; i < num_ports; i++) { 2220 struct xhci_interval_bw_table *bw_table; 2221 2222 INIT_LIST_HEAD(&xhci->rh_bw[i].tts); 2223 bw_table = &xhci->rh_bw[i].bw_table; 2224 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 2225 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 2226 } 2227 base = &xhci->cap_regs->hc_capbase; 2228 2229 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL); 2230 if (!cap_start) { 2231 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n"); 2232 return -ENODEV; 2233 } 2234 2235 offset = cap_start; 2236 /* count extended protocol capability entries for later caching */ 2237 while (offset) { 2238 cap_count++; 2239 offset = xhci_find_next_ext_cap(base, offset, 2240 XHCI_EXT_CAPS_PROTOCOL); 2241 } 2242 2243 xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps), 2244 flags, dev_to_node(dev)); 2245 if (!xhci->port_caps) 2246 return -ENOMEM; 2247 2248 offset = cap_start; 2249 2250 while (offset) { 2251 xhci_add_in_port(xhci, num_ports, base + offset, cap_count); 2252 if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports == 2253 num_ports) 2254 break; 2255 offset = xhci_find_next_ext_cap(base, offset, 2256 XHCI_EXT_CAPS_PROTOCOL); 2257 } 2258 if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) { 2259 xhci_warn(xhci, "No ports on the roothubs?\n"); 2260 return -ENODEV; 2261 } 2262 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2263 "Found %u USB 2.0 ports and %u USB 3.0 ports.", 2264 xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports); 2265 2266 /* Place limits on the number of roothub ports so that the hub 2267 * descriptors aren't longer than the USB core will allocate. 2268 */ 2269 if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) { 2270 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2271 "Limiting USB 3.0 roothub ports to %u.", 2272 USB_SS_MAXPORTS); 2273 xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS; 2274 } 2275 if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) { 2276 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2277 "Limiting USB 2.0 roothub ports to %u.", 2278 USB_MAXCHILDREN); 2279 xhci->usb2_rhub.num_ports = USB_MAXCHILDREN; 2280 } 2281 2282 if (!xhci->usb2_rhub.num_ports) 2283 xhci_info(xhci, "USB2 root hub has no ports\n"); 2284 2285 if (!xhci->usb3_rhub.num_ports) 2286 xhci_info(xhci, "USB3 root hub has no ports\n"); 2287 2288 xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags); 2289 xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags); 2290 2291 return 0; 2292 } 2293 2294 static struct xhci_interrupter * 2295 xhci_alloc_interrupter(struct xhci_hcd *xhci, unsigned int segs, gfp_t flags) 2296 { 2297 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2298 struct xhci_interrupter *ir; 2299 unsigned int max_segs; 2300 int ret; 2301 2302 if (!segs) 2303 segs = ERST_DEFAULT_SEGS; 2304 2305 max_segs = BIT(HCS_ERST_MAX(xhci->hcs_params2)); 2306 segs = min(segs, max_segs); 2307 2308 ir = kzalloc_node(sizeof(*ir), flags, dev_to_node(dev)); 2309 if (!ir) 2310 return NULL; 2311 2312 ir->event_ring = xhci_ring_alloc(xhci, segs, TYPE_EVENT, 0, flags); 2313 if (!ir->event_ring) { 2314 xhci_warn(xhci, "Failed to allocate interrupter event ring\n"); 2315 kfree(ir); 2316 return NULL; 2317 } 2318 2319 ret = xhci_alloc_erst(xhci, ir->event_ring, &ir->erst, flags); 2320 if (ret) { 2321 xhci_warn(xhci, "Failed to allocate interrupter erst\n"); 2322 xhci_ring_free(xhci, ir->event_ring); 2323 kfree(ir); 2324 return NULL; 2325 } 2326 2327 return ir; 2328 } 2329 2330 void xhci_add_interrupter(struct xhci_hcd *xhci, unsigned int intr_num) 2331 { 2332 struct xhci_interrupter *ir; 2333 u64 erst_base; 2334 u32 erst_size; 2335 2336 ir = xhci->interrupters[intr_num]; 2337 ir->intr_num = intr_num; 2338 ir->ir_set = &xhci->run_regs->ir_set[intr_num]; 2339 2340 /* set ERST count with the number of entries in the segment table */ 2341 erst_size = readl(&ir->ir_set->erst_size); 2342 erst_size &= ~ERST_SIZE_MASK; 2343 erst_size |= ir->event_ring->num_segs; 2344 writel(erst_size, &ir->ir_set->erst_size); 2345 2346 erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base); 2347 erst_base &= ~ERST_BASE_ADDRESS_MASK; 2348 erst_base |= ir->erst.erst_dma_addr & ERST_BASE_ADDRESS_MASK; 2349 if (xhci->quirks & XHCI_WRITE_64_HI_LO) 2350 hi_lo_writeq(erst_base, &ir->ir_set->erst_base); 2351 else 2352 xhci_write_64(xhci, erst_base, &ir->ir_set->erst_base); 2353 2354 /* Set the event ring dequeue address of this interrupter */ 2355 xhci_set_hc_event_deq(xhci, ir); 2356 } 2357 2358 struct xhci_interrupter * 2359 xhci_create_secondary_interrupter(struct usb_hcd *hcd, unsigned int segs, 2360 u32 imod_interval, unsigned int intr_num) 2361 { 2362 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2363 struct xhci_interrupter *ir; 2364 unsigned int i; 2365 int err = -ENOSPC; 2366 2367 if (!xhci->interrupters || xhci->max_interrupters <= 1 || 2368 intr_num >= xhci->max_interrupters) 2369 return NULL; 2370 2371 ir = xhci_alloc_interrupter(xhci, segs, GFP_KERNEL); 2372 if (!ir) 2373 return NULL; 2374 2375 spin_lock_irq(&xhci->lock); 2376 if (!intr_num) { 2377 /* Find available secondary interrupter, interrupter 0 is reserved for primary */ 2378 for (i = 1; i < xhci->max_interrupters; i++) { 2379 if (!xhci->interrupters[i]) { 2380 xhci->interrupters[i] = ir; 2381 xhci_add_interrupter(xhci, i); 2382 err = 0; 2383 break; 2384 } 2385 } 2386 } else { 2387 if (!xhci->interrupters[intr_num]) { 2388 xhci->interrupters[intr_num] = ir; 2389 xhci_add_interrupter(xhci, intr_num); 2390 err = 0; 2391 } 2392 } 2393 spin_unlock_irq(&xhci->lock); 2394 2395 if (err) { 2396 xhci_warn(xhci, "Failed to add secondary interrupter, max interrupters %d\n", 2397 xhci->max_interrupters); 2398 xhci_free_interrupter(xhci, ir); 2399 return NULL; 2400 } 2401 2402 xhci_set_interrupter_moderation(ir, imod_interval); 2403 2404 xhci_dbg(xhci, "Add secondary interrupter %d, max interrupters %d\n", 2405 ir->intr_num, xhci->max_interrupters); 2406 2407 return ir; 2408 } 2409 EXPORT_SYMBOL_GPL(xhci_create_secondary_interrupter); 2410 2411 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags) 2412 { 2413 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2414 dma_addr_t dma; 2415 2416 /* 2417 * xHCI section 5.4.6 - Device Context array must be 2418 * "physically contiguous and 64-byte (cache line) aligned". 2419 */ 2420 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma, flags); 2421 if (!xhci->dcbaa) 2422 goto fail; 2423 2424 xhci->dcbaa->dma = dma; 2425 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2426 "Device context base array address = 0x%pad (DMA), %p (virt)", 2427 &xhci->dcbaa->dma, xhci->dcbaa); 2428 2429 /* 2430 * Initialize the ring segment pool. The ring must be a contiguous 2431 * structure comprised of TRBs. The TRBs must be 16 byte aligned, 2432 * however, the command ring segment needs 64-byte aligned segments 2433 * and our use of dma addresses in the trb_address_map radix tree needs 2434 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need. 2435 */ 2436 if (xhci->quirks & XHCI_TRB_OVERFETCH) 2437 /* Buggy HC prefetches beyond segment bounds - allocate dummy space at the end */ 2438 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev, 2439 TRB_SEGMENT_SIZE * 2, TRB_SEGMENT_SIZE * 2, xhci->page_size * 2); 2440 else 2441 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev, 2442 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size); 2443 if (!xhci->segment_pool) 2444 goto fail; 2445 2446 /* See Table 46 and Note on Figure 55 */ 2447 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev, 2112, 64, 2448 xhci->page_size); 2449 if (!xhci->device_pool) 2450 goto fail; 2451 2452 /* 2453 * Linear stream context arrays don't have any boundary restrictions, 2454 * and only need to be 16-byte aligned. 2455 */ 2456 xhci->small_streams_pool = dma_pool_create("xHCI 256 byte stream ctx arrays", 2457 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0); 2458 if (!xhci->small_streams_pool) 2459 goto fail; 2460 2461 /* 2462 * Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE will be 2463 * allocated with dma_alloc_coherent(). 2464 */ 2465 2466 xhci->medium_streams_pool = dma_pool_create("xHCI 1KB stream ctx arrays", 2467 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0); 2468 if (!xhci->medium_streams_pool) 2469 goto fail; 2470 2471 /* 2472 * refer to xhci rev1_2 protocol 5.3.3 max ports is 255. 2473 * refer to xhci rev1_2 protocol 6.4.3.14 port bandwidth buffer need 2474 * to be 16-byte aligned. 2475 */ 2476 xhci->port_bw_pool = dma_pool_create("xHCI 256 port bw ctx arrays", 2477 dev, GET_PORT_BW_ARRAY_SIZE, 16, 0); 2478 if (!xhci->port_bw_pool) 2479 goto fail; 2480 2481 /* Set up the command ring to have one segments for now. */ 2482 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, TYPE_COMMAND, 0, flags); 2483 if (!xhci->cmd_ring) 2484 goto fail; 2485 2486 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Allocated command ring at %p", xhci->cmd_ring); 2487 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%pad", 2488 &xhci->cmd_ring->first_seg->dma); 2489 2490 /* 2491 * Reserve one command ring TRB for disabling LPM. 2492 * Since the USB core grabs the shared usb_bus bandwidth mutex before 2493 * disabling LPM, we only need to reserve one TRB for all devices. 2494 */ 2495 xhci->cmd_ring_reserved_trbs++; 2496 2497 /* Allocate and set up primary interrupter 0 with an event ring. */ 2498 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Allocating primary event ring"); 2499 xhci->interrupters = kcalloc_node(xhci->max_interrupters, sizeof(*xhci->interrupters), 2500 flags, dev_to_node(dev)); 2501 if (!xhci->interrupters) 2502 goto fail; 2503 2504 xhci->interrupters[0] = xhci_alloc_interrupter(xhci, 0, flags); 2505 if (!xhci->interrupters[0]) 2506 goto fail; 2507 2508 if (scratchpad_alloc(xhci, flags)) 2509 goto fail; 2510 2511 if (xhci_setup_port_arrays(xhci, flags)) 2512 goto fail; 2513 2514 return 0; 2515 2516 fail: 2517 xhci_halt(xhci); 2518 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 2519 xhci_mem_cleanup(xhci); 2520 return -ENOMEM; 2521 } 2522