1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include "xhci.h" 24 25 #define XHCI_INIT_VALUE 0x0 26 27 /* Add verbose debugging later, just print everything for now */ 28 29 void xhci_dbg_regs(struct xhci_hcd *xhci) 30 { 31 u32 temp; 32 33 xhci_dbg(xhci, "// xHCI capability registers at %p:\n", 34 xhci->cap_regs); 35 temp = xhci_readl(xhci, &xhci->cap_regs->hc_capbase); 36 xhci_dbg(xhci, "// @%p = 0x%x (CAPLENGTH AND HCIVERSION)\n", 37 &xhci->cap_regs->hc_capbase, temp); 38 xhci_dbg(xhci, "// CAPLENGTH: 0x%x\n", 39 (unsigned int) HC_LENGTH(temp)); 40 #if 0 41 xhci_dbg(xhci, "// HCIVERSION: 0x%x\n", 42 (unsigned int) HC_VERSION(temp)); 43 #endif 44 45 xhci_dbg(xhci, "// xHCI operational registers at %p:\n", xhci->op_regs); 46 47 temp = xhci_readl(xhci, &xhci->cap_regs->run_regs_off); 48 xhci_dbg(xhci, "// @%p = 0x%x RTSOFF\n", 49 &xhci->cap_regs->run_regs_off, 50 (unsigned int) temp & RTSOFF_MASK); 51 xhci_dbg(xhci, "// xHCI runtime registers at %p:\n", xhci->run_regs); 52 53 temp = xhci_readl(xhci, &xhci->cap_regs->db_off); 54 xhci_dbg(xhci, "// @%p = 0x%x DBOFF\n", &xhci->cap_regs->db_off, temp); 55 xhci_dbg(xhci, "// Doorbell array at %p:\n", xhci->dba); 56 } 57 58 static void xhci_print_cap_regs(struct xhci_hcd *xhci) 59 { 60 u32 temp; 61 62 xhci_dbg(xhci, "xHCI capability registers at %p:\n", xhci->cap_regs); 63 64 temp = xhci_readl(xhci, &xhci->cap_regs->hc_capbase); 65 xhci_dbg(xhci, "CAPLENGTH AND HCIVERSION 0x%x:\n", 66 (unsigned int) temp); 67 xhci_dbg(xhci, "CAPLENGTH: 0x%x\n", 68 (unsigned int) HC_LENGTH(temp)); 69 xhci_dbg(xhci, "HCIVERSION: 0x%x\n", 70 (unsigned int) HC_VERSION(temp)); 71 72 temp = xhci_readl(xhci, &xhci->cap_regs->hcs_params1); 73 xhci_dbg(xhci, "HCSPARAMS 1: 0x%x\n", 74 (unsigned int) temp); 75 xhci_dbg(xhci, " Max device slots: %u\n", 76 (unsigned int) HCS_MAX_SLOTS(temp)); 77 xhci_dbg(xhci, " Max interrupters: %u\n", 78 (unsigned int) HCS_MAX_INTRS(temp)); 79 xhci_dbg(xhci, " Max ports: %u\n", 80 (unsigned int) HCS_MAX_PORTS(temp)); 81 82 temp = xhci_readl(xhci, &xhci->cap_regs->hcs_params2); 83 xhci_dbg(xhci, "HCSPARAMS 2: 0x%x\n", 84 (unsigned int) temp); 85 xhci_dbg(xhci, " Isoc scheduling threshold: %u\n", 86 (unsigned int) HCS_IST(temp)); 87 xhci_dbg(xhci, " Maximum allowed segments in event ring: %u\n", 88 (unsigned int) HCS_ERST_MAX(temp)); 89 90 temp = xhci_readl(xhci, &xhci->cap_regs->hcs_params3); 91 xhci_dbg(xhci, "HCSPARAMS 3 0x%x:\n", 92 (unsigned int) temp); 93 xhci_dbg(xhci, " Worst case U1 device exit latency: %u\n", 94 (unsigned int) HCS_U1_LATENCY(temp)); 95 xhci_dbg(xhci, " Worst case U2 device exit latency: %u\n", 96 (unsigned int) HCS_U2_LATENCY(temp)); 97 98 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params); 99 xhci_dbg(xhci, "HCC PARAMS 0x%x:\n", (unsigned int) temp); 100 xhci_dbg(xhci, " HC generates %s bit addresses\n", 101 HCC_64BIT_ADDR(temp) ? "64" : "32"); 102 /* FIXME */ 103 xhci_dbg(xhci, " FIXME: more HCCPARAMS debugging\n"); 104 105 temp = xhci_readl(xhci, &xhci->cap_regs->run_regs_off); 106 xhci_dbg(xhci, "RTSOFF 0x%x:\n", temp & RTSOFF_MASK); 107 } 108 109 static void xhci_print_command_reg(struct xhci_hcd *xhci) 110 { 111 u32 temp; 112 113 temp = xhci_readl(xhci, &xhci->op_regs->command); 114 xhci_dbg(xhci, "USBCMD 0x%x:\n", temp); 115 xhci_dbg(xhci, " HC is %s\n", 116 (temp & CMD_RUN) ? "running" : "being stopped"); 117 xhci_dbg(xhci, " HC has %sfinished hard reset\n", 118 (temp & CMD_RESET) ? "not " : ""); 119 xhci_dbg(xhci, " Event Interrupts %s\n", 120 (temp & CMD_EIE) ? "enabled " : "disabled"); 121 xhci_dbg(xhci, " Host System Error Interrupts %s\n", 122 (temp & CMD_EIE) ? "enabled " : "disabled"); 123 xhci_dbg(xhci, " HC has %sfinished light reset\n", 124 (temp & CMD_LRESET) ? "not " : ""); 125 } 126 127 static void xhci_print_status(struct xhci_hcd *xhci) 128 { 129 u32 temp; 130 131 temp = xhci_readl(xhci, &xhci->op_regs->status); 132 xhci_dbg(xhci, "USBSTS 0x%x:\n", temp); 133 xhci_dbg(xhci, " Event ring is %sempty\n", 134 (temp & STS_EINT) ? "not " : ""); 135 xhci_dbg(xhci, " %sHost System Error\n", 136 (temp & STS_FATAL) ? "WARNING: " : "No "); 137 xhci_dbg(xhci, " HC is %s\n", 138 (temp & STS_HALT) ? "halted" : "running"); 139 } 140 141 static void xhci_print_op_regs(struct xhci_hcd *xhci) 142 { 143 xhci_dbg(xhci, "xHCI operational registers at %p:\n", xhci->op_regs); 144 xhci_print_command_reg(xhci); 145 xhci_print_status(xhci); 146 } 147 148 static void xhci_print_ports(struct xhci_hcd *xhci) 149 { 150 u32 __iomem *addr; 151 int i, j; 152 int ports; 153 char *names[NUM_PORT_REGS] = { 154 "status", 155 "power", 156 "link", 157 "reserved", 158 }; 159 160 ports = HCS_MAX_PORTS(xhci->hcs_params1); 161 addr = &xhci->op_regs->port_status_base; 162 for (i = 0; i < ports; i++) { 163 for (j = 0; j < NUM_PORT_REGS; ++j) { 164 xhci_dbg(xhci, "%p port %s reg = 0x%x\n", 165 addr, names[j], 166 (unsigned int) xhci_readl(xhci, addr)); 167 addr++; 168 } 169 } 170 } 171 172 void xhci_print_ir_set(struct xhci_hcd *xhci, struct xhci_intr_reg *ir_set, int set_num) 173 { 174 void *addr; 175 u32 temp; 176 u64 temp_64; 177 178 addr = &ir_set->irq_pending; 179 temp = xhci_readl(xhci, addr); 180 if (temp == XHCI_INIT_VALUE) 181 return; 182 183 xhci_dbg(xhci, " %p: ir_set[%i]\n", ir_set, set_num); 184 185 xhci_dbg(xhci, " %p: ir_set.pending = 0x%x\n", addr, 186 (unsigned int)temp); 187 188 addr = &ir_set->irq_control; 189 temp = xhci_readl(xhci, addr); 190 xhci_dbg(xhci, " %p: ir_set.control = 0x%x\n", addr, 191 (unsigned int)temp); 192 193 addr = &ir_set->erst_size; 194 temp = xhci_readl(xhci, addr); 195 xhci_dbg(xhci, " %p: ir_set.erst_size = 0x%x\n", addr, 196 (unsigned int)temp); 197 198 addr = &ir_set->rsvd; 199 temp = xhci_readl(xhci, addr); 200 if (temp != XHCI_INIT_VALUE) 201 xhci_dbg(xhci, " WARN: %p: ir_set.rsvd = 0x%x\n", 202 addr, (unsigned int)temp); 203 204 addr = &ir_set->erst_base; 205 temp_64 = xhci_read_64(xhci, addr); 206 xhci_dbg(xhci, " %p: ir_set.erst_base = @%08llx\n", 207 addr, temp_64); 208 209 addr = &ir_set->erst_dequeue; 210 temp_64 = xhci_read_64(xhci, addr); 211 xhci_dbg(xhci, " %p: ir_set.erst_dequeue = @%08llx\n", 212 addr, temp_64); 213 } 214 215 void xhci_print_run_regs(struct xhci_hcd *xhci) 216 { 217 u32 temp; 218 int i; 219 220 xhci_dbg(xhci, "xHCI runtime registers at %p:\n", xhci->run_regs); 221 temp = xhci_readl(xhci, &xhci->run_regs->microframe_index); 222 xhci_dbg(xhci, " %p: Microframe index = 0x%x\n", 223 &xhci->run_regs->microframe_index, 224 (unsigned int) temp); 225 for (i = 0; i < 7; ++i) { 226 temp = xhci_readl(xhci, &xhci->run_regs->rsvd[i]); 227 if (temp != XHCI_INIT_VALUE) 228 xhci_dbg(xhci, " WARN: %p: Rsvd[%i] = 0x%x\n", 229 &xhci->run_regs->rsvd[i], 230 i, (unsigned int) temp); 231 } 232 } 233 234 void xhci_print_registers(struct xhci_hcd *xhci) 235 { 236 xhci_print_cap_regs(xhci); 237 xhci_print_op_regs(xhci); 238 xhci_print_ports(xhci); 239 } 240 241 void xhci_print_trb_offsets(struct xhci_hcd *xhci, union xhci_trb *trb) 242 { 243 int i; 244 for (i = 0; i < 4; ++i) 245 xhci_dbg(xhci, "Offset 0x%x = 0x%x\n", 246 i*4, trb->generic.field[i]); 247 } 248 249 /** 250 * Debug a transfer request block (TRB). 251 */ 252 void xhci_debug_trb(struct xhci_hcd *xhci, union xhci_trb *trb) 253 { 254 u64 address; 255 u32 type = xhci_readl(xhci, &trb->link.control) & TRB_TYPE_BITMASK; 256 257 switch (type) { 258 case TRB_TYPE(TRB_LINK): 259 xhci_dbg(xhci, "Link TRB:\n"); 260 xhci_print_trb_offsets(xhci, trb); 261 262 address = trb->link.segment_ptr; 263 xhci_dbg(xhci, "Next ring segment DMA address = 0x%llx\n", address); 264 265 xhci_dbg(xhci, "Interrupter target = 0x%x\n", 266 GET_INTR_TARGET(trb->link.intr_target)); 267 xhci_dbg(xhci, "Cycle bit = %u\n", 268 (unsigned int) (trb->link.control & TRB_CYCLE)); 269 xhci_dbg(xhci, "Toggle cycle bit = %u\n", 270 (unsigned int) (trb->link.control & LINK_TOGGLE)); 271 xhci_dbg(xhci, "No Snoop bit = %u\n", 272 (unsigned int) (trb->link.control & TRB_NO_SNOOP)); 273 break; 274 case TRB_TYPE(TRB_TRANSFER): 275 address = trb->trans_event.buffer; 276 /* 277 * FIXME: look at flags to figure out if it's an address or if 278 * the data is directly in the buffer field. 279 */ 280 xhci_dbg(xhci, "DMA address or buffer contents= %llu\n", address); 281 break; 282 case TRB_TYPE(TRB_COMPLETION): 283 address = trb->event_cmd.cmd_trb; 284 xhci_dbg(xhci, "Command TRB pointer = %llu\n", address); 285 xhci_dbg(xhci, "Completion status = %u\n", 286 (unsigned int) GET_COMP_CODE(trb->event_cmd.status)); 287 xhci_dbg(xhci, "Flags = 0x%x\n", (unsigned int) trb->event_cmd.flags); 288 break; 289 default: 290 xhci_dbg(xhci, "Unknown TRB with TRB type ID %u\n", 291 (unsigned int) type>>10); 292 xhci_print_trb_offsets(xhci, trb); 293 break; 294 } 295 } 296 297 /** 298 * Debug a segment with an xHCI ring. 299 * 300 * @return The Link TRB of the segment, or NULL if there is no Link TRB 301 * (which is a bug, since all segments must have a Link TRB). 302 * 303 * Prints out all TRBs in the segment, even those after the Link TRB. 304 * 305 * XXX: should we print out TRBs that the HC owns? As long as we don't 306 * write, that should be fine... We shouldn't expect that the memory pointed to 307 * by the TRB is valid at all. Do we care about ones the HC owns? Probably, 308 * for HC debugging. 309 */ 310 void xhci_debug_segment(struct xhci_hcd *xhci, struct xhci_segment *seg) 311 { 312 int i; 313 u32 addr = (u32) seg->dma; 314 union xhci_trb *trb = seg->trbs; 315 316 for (i = 0; i < TRBS_PER_SEGMENT; ++i) { 317 trb = &seg->trbs[i]; 318 xhci_dbg(xhci, "@%08x %08x %08x %08x %08x\n", addr, 319 lower_32_bits(trb->link.segment_ptr), 320 upper_32_bits(trb->link.segment_ptr), 321 (unsigned int) trb->link.intr_target, 322 (unsigned int) trb->link.control); 323 addr += sizeof(*trb); 324 } 325 } 326 327 void xhci_dbg_ring_ptrs(struct xhci_hcd *xhci, struct xhci_ring *ring) 328 { 329 xhci_dbg(xhci, "Ring deq = %p (virt), 0x%llx (dma)\n", 330 ring->dequeue, 331 (unsigned long long)xhci_trb_virt_to_dma(ring->deq_seg, 332 ring->dequeue)); 333 xhci_dbg(xhci, "Ring deq updated %u times\n", 334 ring->deq_updates); 335 xhci_dbg(xhci, "Ring enq = %p (virt), 0x%llx (dma)\n", 336 ring->enqueue, 337 (unsigned long long)xhci_trb_virt_to_dma(ring->enq_seg, 338 ring->enqueue)); 339 xhci_dbg(xhci, "Ring enq updated %u times\n", 340 ring->enq_updates); 341 } 342 343 /** 344 * Debugging for an xHCI ring, which is a queue broken into multiple segments. 345 * 346 * Print out each segment in the ring. Check that the DMA address in 347 * each link segment actually matches the segment's stored DMA address. 348 * Check that the link end bit is only set at the end of the ring. 349 * Check that the dequeue and enqueue pointers point to real data in this ring 350 * (not some other ring). 351 */ 352 void xhci_debug_ring(struct xhci_hcd *xhci, struct xhci_ring *ring) 353 { 354 /* FIXME: Throw an error if any segment doesn't have a Link TRB */ 355 struct xhci_segment *seg; 356 struct xhci_segment *first_seg = ring->first_seg; 357 xhci_debug_segment(xhci, first_seg); 358 359 if (!ring->enq_updates && !ring->deq_updates) { 360 xhci_dbg(xhci, " Ring has not been updated\n"); 361 return; 362 } 363 for (seg = first_seg->next; seg != first_seg; seg = seg->next) 364 xhci_debug_segment(xhci, seg); 365 } 366 367 void xhci_dbg_erst(struct xhci_hcd *xhci, struct xhci_erst *erst) 368 { 369 u32 addr = (u32) erst->erst_dma_addr; 370 int i; 371 struct xhci_erst_entry *entry; 372 373 for (i = 0; i < erst->num_entries; ++i) { 374 entry = &erst->entries[i]; 375 xhci_dbg(xhci, "@%08x %08x %08x %08x %08x\n", 376 (unsigned int) addr, 377 lower_32_bits(entry->seg_addr), 378 upper_32_bits(entry->seg_addr), 379 (unsigned int) entry->seg_size, 380 (unsigned int) entry->rsvd); 381 addr += sizeof(*entry); 382 } 383 } 384 385 void xhci_dbg_cmd_ptrs(struct xhci_hcd *xhci) 386 { 387 u64 val; 388 389 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 390 xhci_dbg(xhci, "// xHC command ring deq ptr low bits + flags = @%08x\n", 391 lower_32_bits(val)); 392 xhci_dbg(xhci, "// xHC command ring deq ptr high bits = @%08x\n", 393 upper_32_bits(val)); 394 } 395 396 /* Print the last 32 bytes for 64-byte contexts */ 397 static void dbg_rsvd64(struct xhci_hcd *xhci, u64 *ctx, dma_addr_t dma) 398 { 399 int i; 400 for (i = 0; i < 4; ++i) { 401 xhci_dbg(xhci, "@%p (virt) @%08llx " 402 "(dma) %#08llx - rsvd64[%d]\n", 403 &ctx[4 + i], (unsigned long long)dma, 404 ctx[4 + i], i); 405 dma += 8; 406 } 407 } 408 409 char *xhci_get_slot_state(struct xhci_hcd *xhci, 410 struct xhci_container_ctx *ctx) 411 { 412 struct xhci_slot_ctx *slot_ctx = xhci_get_slot_ctx(xhci, ctx); 413 414 switch (GET_SLOT_STATE(slot_ctx->dev_state)) { 415 case 0: 416 return "enabled/disabled"; 417 case 1: 418 return "default"; 419 case 2: 420 return "addressed"; 421 case 3: 422 return "configured"; 423 default: 424 return "reserved"; 425 } 426 } 427 428 void xhci_dbg_slot_ctx(struct xhci_hcd *xhci, struct xhci_container_ctx *ctx) 429 { 430 /* Fields are 32 bits wide, DMA addresses are in bytes */ 431 int field_size = 32 / 8; 432 int i; 433 434 struct xhci_slot_ctx *slot_ctx = xhci_get_slot_ctx(xhci, ctx); 435 dma_addr_t dma = ctx->dma + 436 ((unsigned long)slot_ctx - (unsigned long)ctx->bytes); 437 int csz = HCC_64BYTE_CONTEXT(xhci->hcc_params); 438 439 xhci_dbg(xhci, "Slot Context:\n"); 440 xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08x - dev_info\n", 441 &slot_ctx->dev_info, 442 (unsigned long long)dma, slot_ctx->dev_info); 443 dma += field_size; 444 xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08x - dev_info2\n", 445 &slot_ctx->dev_info2, 446 (unsigned long long)dma, slot_ctx->dev_info2); 447 dma += field_size; 448 xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08x - tt_info\n", 449 &slot_ctx->tt_info, 450 (unsigned long long)dma, slot_ctx->tt_info); 451 dma += field_size; 452 xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08x - dev_state\n", 453 &slot_ctx->dev_state, 454 (unsigned long long)dma, slot_ctx->dev_state); 455 dma += field_size; 456 for (i = 0; i < 4; ++i) { 457 xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08x - rsvd[%d]\n", 458 &slot_ctx->reserved[i], (unsigned long long)dma, 459 slot_ctx->reserved[i], i); 460 dma += field_size; 461 } 462 463 if (csz) 464 dbg_rsvd64(xhci, (u64 *)slot_ctx, dma); 465 } 466 467 void xhci_dbg_ep_ctx(struct xhci_hcd *xhci, 468 struct xhci_container_ctx *ctx, 469 unsigned int last_ep) 470 { 471 int i, j; 472 int last_ep_ctx = 31; 473 /* Fields are 32 bits wide, DMA addresses are in bytes */ 474 int field_size = 32 / 8; 475 int csz = HCC_64BYTE_CONTEXT(xhci->hcc_params); 476 477 if (last_ep < 31) 478 last_ep_ctx = last_ep + 1; 479 for (i = 0; i < last_ep_ctx; ++i) { 480 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, ctx, i); 481 dma_addr_t dma = ctx->dma + 482 ((unsigned long)ep_ctx - (unsigned long)ctx->bytes); 483 484 xhci_dbg(xhci, "Endpoint %02d Context:\n", i); 485 xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08x - ep_info\n", 486 &ep_ctx->ep_info, 487 (unsigned long long)dma, ep_ctx->ep_info); 488 dma += field_size; 489 xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08x - ep_info2\n", 490 &ep_ctx->ep_info2, 491 (unsigned long long)dma, ep_ctx->ep_info2); 492 dma += field_size; 493 xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08llx - deq\n", 494 &ep_ctx->deq, 495 (unsigned long long)dma, ep_ctx->deq); 496 dma += 2*field_size; 497 xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08x - tx_info\n", 498 &ep_ctx->tx_info, 499 (unsigned long long)dma, ep_ctx->tx_info); 500 dma += field_size; 501 for (j = 0; j < 3; ++j) { 502 xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08x - rsvd[%d]\n", 503 &ep_ctx->reserved[j], 504 (unsigned long long)dma, 505 ep_ctx->reserved[j], j); 506 dma += field_size; 507 } 508 509 if (csz) 510 dbg_rsvd64(xhci, (u64 *)ep_ctx, dma); 511 } 512 } 513 514 void xhci_dbg_ctx(struct xhci_hcd *xhci, 515 struct xhci_container_ctx *ctx, 516 unsigned int last_ep) 517 { 518 int i; 519 /* Fields are 32 bits wide, DMA addresses are in bytes */ 520 int field_size = 32 / 8; 521 struct xhci_slot_ctx *slot_ctx; 522 dma_addr_t dma = ctx->dma; 523 int csz = HCC_64BYTE_CONTEXT(xhci->hcc_params); 524 525 if (ctx->type == XHCI_CTX_TYPE_INPUT) { 526 struct xhci_input_control_ctx *ctrl_ctx = 527 xhci_get_input_control_ctx(xhci, ctx); 528 xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08x - drop flags\n", 529 &ctrl_ctx->drop_flags, (unsigned long long)dma, 530 ctrl_ctx->drop_flags); 531 dma += field_size; 532 xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08x - add flags\n", 533 &ctrl_ctx->add_flags, (unsigned long long)dma, 534 ctrl_ctx->add_flags); 535 dma += field_size; 536 for (i = 0; i < 6; ++i) { 537 xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08x - rsvd2[%d]\n", 538 &ctrl_ctx->rsvd2[i], (unsigned long long)dma, 539 ctrl_ctx->rsvd2[i], i); 540 dma += field_size; 541 } 542 543 if (csz) 544 dbg_rsvd64(xhci, (u64 *)ctrl_ctx, dma); 545 } 546 547 slot_ctx = xhci_get_slot_ctx(xhci, ctx); 548 xhci_dbg_slot_ctx(xhci, ctx); 549 xhci_dbg_ep_ctx(xhci, ctx, last_ep); 550 } 551