1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include "xhci.h" 24 25 #define XHCI_INIT_VALUE 0x0 26 27 /* Add verbose debugging later, just print everything for now */ 28 29 void xhci_dbg_regs(struct xhci_hcd *xhci) 30 { 31 u32 temp; 32 33 xhci_dbg(xhci, "// xHCI capability registers at %p:\n", 34 xhci->cap_regs); 35 temp = xhci_readl(xhci, &xhci->cap_regs->hc_capbase); 36 xhci_dbg(xhci, "// @%p = 0x%x (CAPLENGTH AND HCIVERSION)\n", 37 &xhci->cap_regs->hc_capbase, temp); 38 xhci_dbg(xhci, "// CAPLENGTH: 0x%x\n", 39 (unsigned int) HC_LENGTH(temp)); 40 #if 0 41 xhci_dbg(xhci, "// HCIVERSION: 0x%x\n", 42 (unsigned int) HC_VERSION(temp)); 43 #endif 44 45 xhci_dbg(xhci, "// xHCI operational registers at %p:\n", xhci->op_regs); 46 47 temp = xhci_readl(xhci, &xhci->cap_regs->run_regs_off); 48 xhci_dbg(xhci, "// @%p = 0x%x RTSOFF\n", 49 &xhci->cap_regs->run_regs_off, 50 (unsigned int) temp & RTSOFF_MASK); 51 xhci_dbg(xhci, "// xHCI runtime registers at %p:\n", xhci->run_regs); 52 53 temp = xhci_readl(xhci, &xhci->cap_regs->db_off); 54 xhci_dbg(xhci, "// @%p = 0x%x DBOFF\n", &xhci->cap_regs->db_off, temp); 55 xhci_dbg(xhci, "// Doorbell array at %p:\n", xhci->dba); 56 } 57 58 static void xhci_print_cap_regs(struct xhci_hcd *xhci) 59 { 60 u32 temp; 61 62 xhci_dbg(xhci, "xHCI capability registers at %p:\n", xhci->cap_regs); 63 64 temp = xhci_readl(xhci, &xhci->cap_regs->hc_capbase); 65 xhci_dbg(xhci, "CAPLENGTH AND HCIVERSION 0x%x:\n", 66 (unsigned int) temp); 67 xhci_dbg(xhci, "CAPLENGTH: 0x%x\n", 68 (unsigned int) HC_LENGTH(temp)); 69 xhci_dbg(xhci, "HCIVERSION: 0x%x\n", 70 (unsigned int) HC_VERSION(temp)); 71 72 temp = xhci_readl(xhci, &xhci->cap_regs->hcs_params1); 73 xhci_dbg(xhci, "HCSPARAMS 1: 0x%x\n", 74 (unsigned int) temp); 75 xhci_dbg(xhci, " Max device slots: %u\n", 76 (unsigned int) HCS_MAX_SLOTS(temp)); 77 xhci_dbg(xhci, " Max interrupters: %u\n", 78 (unsigned int) HCS_MAX_INTRS(temp)); 79 xhci_dbg(xhci, " Max ports: %u\n", 80 (unsigned int) HCS_MAX_PORTS(temp)); 81 82 temp = xhci_readl(xhci, &xhci->cap_regs->hcs_params2); 83 xhci_dbg(xhci, "HCSPARAMS 2: 0x%x\n", 84 (unsigned int) temp); 85 xhci_dbg(xhci, " Isoc scheduling threshold: %u\n", 86 (unsigned int) HCS_IST(temp)); 87 xhci_dbg(xhci, " Maximum allowed segments in event ring: %u\n", 88 (unsigned int) HCS_ERST_MAX(temp)); 89 90 temp = xhci_readl(xhci, &xhci->cap_regs->hcs_params3); 91 xhci_dbg(xhci, "HCSPARAMS 3 0x%x:\n", 92 (unsigned int) temp); 93 xhci_dbg(xhci, " Worst case U1 device exit latency: %u\n", 94 (unsigned int) HCS_U1_LATENCY(temp)); 95 xhci_dbg(xhci, " Worst case U2 device exit latency: %u\n", 96 (unsigned int) HCS_U2_LATENCY(temp)); 97 98 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params); 99 xhci_dbg(xhci, "HCC PARAMS 0x%x:\n", (unsigned int) temp); 100 xhci_dbg(xhci, " HC generates %s bit addresses\n", 101 HCC_64BIT_ADDR(temp) ? "64" : "32"); 102 /* FIXME */ 103 xhci_dbg(xhci, " FIXME: more HCCPARAMS debugging\n"); 104 105 temp = xhci_readl(xhci, &xhci->cap_regs->run_regs_off); 106 xhci_dbg(xhci, "RTSOFF 0x%x:\n", temp & RTSOFF_MASK); 107 } 108 109 static void xhci_print_command_reg(struct xhci_hcd *xhci) 110 { 111 u32 temp; 112 113 temp = xhci_readl(xhci, &xhci->op_regs->command); 114 xhci_dbg(xhci, "USBCMD 0x%x:\n", temp); 115 xhci_dbg(xhci, " HC is %s\n", 116 (temp & CMD_RUN) ? "running" : "being stopped"); 117 xhci_dbg(xhci, " HC has %sfinished hard reset\n", 118 (temp & CMD_RESET) ? "not " : ""); 119 xhci_dbg(xhci, " Event Interrupts %s\n", 120 (temp & CMD_EIE) ? "enabled " : "disabled"); 121 xhci_dbg(xhci, " Host System Error Interrupts %s\n", 122 (temp & CMD_HSEIE) ? "enabled " : "disabled"); 123 xhci_dbg(xhci, " HC has %sfinished light reset\n", 124 (temp & CMD_LRESET) ? "not " : ""); 125 } 126 127 static void xhci_print_status(struct xhci_hcd *xhci) 128 { 129 u32 temp; 130 131 temp = xhci_readl(xhci, &xhci->op_regs->status); 132 xhci_dbg(xhci, "USBSTS 0x%x:\n", temp); 133 xhci_dbg(xhci, " Event ring is %sempty\n", 134 (temp & STS_EINT) ? "not " : ""); 135 xhci_dbg(xhci, " %sHost System Error\n", 136 (temp & STS_FATAL) ? "WARNING: " : "No "); 137 xhci_dbg(xhci, " HC is %s\n", 138 (temp & STS_HALT) ? "halted" : "running"); 139 } 140 141 static void xhci_print_op_regs(struct xhci_hcd *xhci) 142 { 143 xhci_dbg(xhci, "xHCI operational registers at %p:\n", xhci->op_regs); 144 xhci_print_command_reg(xhci); 145 xhci_print_status(xhci); 146 } 147 148 static void xhci_print_ports(struct xhci_hcd *xhci) 149 { 150 __le32 __iomem *addr; 151 int i, j; 152 int ports; 153 char *names[NUM_PORT_REGS] = { 154 "status", 155 "power", 156 "link", 157 "reserved", 158 }; 159 160 ports = HCS_MAX_PORTS(xhci->hcs_params1); 161 addr = &xhci->op_regs->port_status_base; 162 for (i = 0; i < ports; i++) { 163 for (j = 0; j < NUM_PORT_REGS; ++j) { 164 xhci_dbg(xhci, "%p port %s reg = 0x%x\n", 165 addr, names[j], 166 (unsigned int) xhci_readl(xhci, addr)); 167 addr++; 168 } 169 } 170 } 171 172 void xhci_print_ir_set(struct xhci_hcd *xhci, int set_num) 173 { 174 struct xhci_intr_reg __iomem *ir_set = &xhci->run_regs->ir_set[set_num]; 175 void __iomem *addr; 176 u32 temp; 177 u64 temp_64; 178 179 addr = &ir_set->irq_pending; 180 temp = xhci_readl(xhci, addr); 181 if (temp == XHCI_INIT_VALUE) 182 return; 183 184 xhci_dbg(xhci, " %p: ir_set[%i]\n", ir_set, set_num); 185 186 xhci_dbg(xhci, " %p: ir_set.pending = 0x%x\n", addr, 187 (unsigned int)temp); 188 189 addr = &ir_set->irq_control; 190 temp = xhci_readl(xhci, addr); 191 xhci_dbg(xhci, " %p: ir_set.control = 0x%x\n", addr, 192 (unsigned int)temp); 193 194 addr = &ir_set->erst_size; 195 temp = xhci_readl(xhci, addr); 196 xhci_dbg(xhci, " %p: ir_set.erst_size = 0x%x\n", addr, 197 (unsigned int)temp); 198 199 addr = &ir_set->rsvd; 200 temp = xhci_readl(xhci, addr); 201 if (temp != XHCI_INIT_VALUE) 202 xhci_dbg(xhci, " WARN: %p: ir_set.rsvd = 0x%x\n", 203 addr, (unsigned int)temp); 204 205 addr = &ir_set->erst_base; 206 temp_64 = xhci_read_64(xhci, addr); 207 xhci_dbg(xhci, " %p: ir_set.erst_base = @%08llx\n", 208 addr, temp_64); 209 210 addr = &ir_set->erst_dequeue; 211 temp_64 = xhci_read_64(xhci, addr); 212 xhci_dbg(xhci, " %p: ir_set.erst_dequeue = @%08llx\n", 213 addr, temp_64); 214 } 215 216 void xhci_print_run_regs(struct xhci_hcd *xhci) 217 { 218 u32 temp; 219 int i; 220 221 xhci_dbg(xhci, "xHCI runtime registers at %p:\n", xhci->run_regs); 222 temp = xhci_readl(xhci, &xhci->run_regs->microframe_index); 223 xhci_dbg(xhci, " %p: Microframe index = 0x%x\n", 224 &xhci->run_regs->microframe_index, 225 (unsigned int) temp); 226 for (i = 0; i < 7; ++i) { 227 temp = xhci_readl(xhci, &xhci->run_regs->rsvd[i]); 228 if (temp != XHCI_INIT_VALUE) 229 xhci_dbg(xhci, " WARN: %p: Rsvd[%i] = 0x%x\n", 230 &xhci->run_regs->rsvd[i], 231 i, (unsigned int) temp); 232 } 233 } 234 235 void xhci_print_registers(struct xhci_hcd *xhci) 236 { 237 xhci_print_cap_regs(xhci); 238 xhci_print_op_regs(xhci); 239 xhci_print_ports(xhci); 240 } 241 242 void xhci_print_trb_offsets(struct xhci_hcd *xhci, union xhci_trb *trb) 243 { 244 int i; 245 for (i = 0; i < 4; ++i) 246 xhci_dbg(xhci, "Offset 0x%x = 0x%x\n", 247 i*4, trb->generic.field[i]); 248 } 249 250 /** 251 * Debug a transfer request block (TRB). 252 */ 253 void xhci_debug_trb(struct xhci_hcd *xhci, union xhci_trb *trb) 254 { 255 u64 address; 256 u32 type = le32_to_cpu(trb->link.control) & TRB_TYPE_BITMASK; 257 258 switch (type) { 259 case TRB_TYPE(TRB_LINK): 260 xhci_dbg(xhci, "Link TRB:\n"); 261 xhci_print_trb_offsets(xhci, trb); 262 263 address = le64_to_cpu(trb->link.segment_ptr); 264 xhci_dbg(xhci, "Next ring segment DMA address = 0x%llx\n", address); 265 266 xhci_dbg(xhci, "Interrupter target = 0x%x\n", 267 GET_INTR_TARGET(le32_to_cpu(trb->link.intr_target))); 268 xhci_dbg(xhci, "Cycle bit = %u\n", 269 le32_to_cpu(trb->link.control) & TRB_CYCLE); 270 xhci_dbg(xhci, "Toggle cycle bit = %u\n", 271 le32_to_cpu(trb->link.control) & LINK_TOGGLE); 272 xhci_dbg(xhci, "No Snoop bit = %u\n", 273 le32_to_cpu(trb->link.control) & TRB_NO_SNOOP); 274 break; 275 case TRB_TYPE(TRB_TRANSFER): 276 address = le64_to_cpu(trb->trans_event.buffer); 277 /* 278 * FIXME: look at flags to figure out if it's an address or if 279 * the data is directly in the buffer field. 280 */ 281 xhci_dbg(xhci, "DMA address or buffer contents= %llu\n", address); 282 break; 283 case TRB_TYPE(TRB_COMPLETION): 284 address = le64_to_cpu(trb->event_cmd.cmd_trb); 285 xhci_dbg(xhci, "Command TRB pointer = %llu\n", address); 286 xhci_dbg(xhci, "Completion status = %u\n", 287 GET_COMP_CODE(le32_to_cpu(trb->event_cmd.status))); 288 xhci_dbg(xhci, "Flags = 0x%x\n", 289 le32_to_cpu(trb->event_cmd.flags)); 290 break; 291 default: 292 xhci_dbg(xhci, "Unknown TRB with TRB type ID %u\n", 293 (unsigned int) type>>10); 294 xhci_print_trb_offsets(xhci, trb); 295 break; 296 } 297 } 298 299 /** 300 * Debug a segment with an xHCI ring. 301 * 302 * @return The Link TRB of the segment, or NULL if there is no Link TRB 303 * (which is a bug, since all segments must have a Link TRB). 304 * 305 * Prints out all TRBs in the segment, even those after the Link TRB. 306 * 307 * XXX: should we print out TRBs that the HC owns? As long as we don't 308 * write, that should be fine... We shouldn't expect that the memory pointed to 309 * by the TRB is valid at all. Do we care about ones the HC owns? Probably, 310 * for HC debugging. 311 */ 312 void xhci_debug_segment(struct xhci_hcd *xhci, struct xhci_segment *seg) 313 { 314 int i; 315 u64 addr = seg->dma; 316 union xhci_trb *trb = seg->trbs; 317 318 for (i = 0; i < TRBS_PER_SEGMENT; ++i) { 319 trb = &seg->trbs[i]; 320 xhci_dbg(xhci, "@%016llx %08x %08x %08x %08x\n", addr, 321 lower_32_bits(le64_to_cpu(trb->link.segment_ptr)), 322 upper_32_bits(le64_to_cpu(trb->link.segment_ptr)), 323 le32_to_cpu(trb->link.intr_target), 324 le32_to_cpu(trb->link.control)); 325 addr += sizeof(*trb); 326 } 327 } 328 329 void xhci_dbg_ring_ptrs(struct xhci_hcd *xhci, struct xhci_ring *ring) 330 { 331 xhci_dbg(xhci, "Ring deq = %p (virt), 0x%llx (dma)\n", 332 ring->dequeue, 333 (unsigned long long)xhci_trb_virt_to_dma(ring->deq_seg, 334 ring->dequeue)); 335 xhci_dbg(xhci, "Ring deq updated %u times\n", 336 ring->deq_updates); 337 xhci_dbg(xhci, "Ring enq = %p (virt), 0x%llx (dma)\n", 338 ring->enqueue, 339 (unsigned long long)xhci_trb_virt_to_dma(ring->enq_seg, 340 ring->enqueue)); 341 xhci_dbg(xhci, "Ring enq updated %u times\n", 342 ring->enq_updates); 343 } 344 345 /** 346 * Debugging for an xHCI ring, which is a queue broken into multiple segments. 347 * 348 * Print out each segment in the ring. Check that the DMA address in 349 * each link segment actually matches the segment's stored DMA address. 350 * Check that the link end bit is only set at the end of the ring. 351 * Check that the dequeue and enqueue pointers point to real data in this ring 352 * (not some other ring). 353 */ 354 void xhci_debug_ring(struct xhci_hcd *xhci, struct xhci_ring *ring) 355 { 356 /* FIXME: Throw an error if any segment doesn't have a Link TRB */ 357 struct xhci_segment *seg; 358 struct xhci_segment *first_seg = ring->first_seg; 359 xhci_debug_segment(xhci, first_seg); 360 361 if (!ring->enq_updates && !ring->deq_updates) { 362 xhci_dbg(xhci, " Ring has not been updated\n"); 363 return; 364 } 365 for (seg = first_seg->next; seg != first_seg; seg = seg->next) 366 xhci_debug_segment(xhci, seg); 367 } 368 369 void xhci_dbg_ep_rings(struct xhci_hcd *xhci, 370 unsigned int slot_id, unsigned int ep_index, 371 struct xhci_virt_ep *ep) 372 { 373 int i; 374 struct xhci_ring *ring; 375 376 if (ep->ep_state & EP_HAS_STREAMS) { 377 for (i = 1; i < ep->stream_info->num_streams; i++) { 378 ring = ep->stream_info->stream_rings[i]; 379 xhci_dbg(xhci, "Dev %d endpoint %d stream ID %d:\n", 380 slot_id, ep_index, i); 381 xhci_debug_segment(xhci, ring->deq_seg); 382 } 383 } else { 384 ring = ep->ring; 385 if (!ring) 386 return; 387 xhci_dbg(xhci, "Dev %d endpoint ring %d:\n", 388 slot_id, ep_index); 389 xhci_debug_segment(xhci, ring->deq_seg); 390 } 391 } 392 393 void xhci_dbg_erst(struct xhci_hcd *xhci, struct xhci_erst *erst) 394 { 395 u64 addr = erst->erst_dma_addr; 396 int i; 397 struct xhci_erst_entry *entry; 398 399 for (i = 0; i < erst->num_entries; ++i) { 400 entry = &erst->entries[i]; 401 xhci_dbg(xhci, "@%016llx %08x %08x %08x %08x\n", 402 addr, 403 lower_32_bits(le64_to_cpu(entry->seg_addr)), 404 upper_32_bits(le64_to_cpu(entry->seg_addr)), 405 le32_to_cpu(entry->seg_size), 406 le32_to_cpu(entry->rsvd)); 407 addr += sizeof(*entry); 408 } 409 } 410 411 void xhci_dbg_cmd_ptrs(struct xhci_hcd *xhci) 412 { 413 u64 val; 414 415 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 416 xhci_dbg(xhci, "// xHC command ring deq ptr low bits + flags = @%08x\n", 417 lower_32_bits(val)); 418 xhci_dbg(xhci, "// xHC command ring deq ptr high bits = @%08x\n", 419 upper_32_bits(val)); 420 } 421 422 /* Print the last 32 bytes for 64-byte contexts */ 423 static void dbg_rsvd64(struct xhci_hcd *xhci, u64 *ctx, dma_addr_t dma) 424 { 425 int i; 426 for (i = 0; i < 4; ++i) { 427 xhci_dbg(xhci, "@%p (virt) @%08llx " 428 "(dma) %#08llx - rsvd64[%d]\n", 429 &ctx[4 + i], (unsigned long long)dma, 430 ctx[4 + i], i); 431 dma += 8; 432 } 433 } 434 435 char *xhci_get_slot_state(struct xhci_hcd *xhci, 436 struct xhci_container_ctx *ctx) 437 { 438 struct xhci_slot_ctx *slot_ctx = xhci_get_slot_ctx(xhci, ctx); 439 440 switch (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state))) { 441 case SLOT_STATE_ENABLED: 442 return "enabled/disabled"; 443 case SLOT_STATE_DEFAULT: 444 return "default"; 445 case SLOT_STATE_ADDRESSED: 446 return "addressed"; 447 case SLOT_STATE_CONFIGURED: 448 return "configured"; 449 default: 450 return "reserved"; 451 } 452 } 453 454 static void xhci_dbg_slot_ctx(struct xhci_hcd *xhci, struct xhci_container_ctx *ctx) 455 { 456 /* Fields are 32 bits wide, DMA addresses are in bytes */ 457 int field_size = 32 / 8; 458 int i; 459 460 struct xhci_slot_ctx *slot_ctx = xhci_get_slot_ctx(xhci, ctx); 461 dma_addr_t dma = ctx->dma + 462 ((unsigned long)slot_ctx - (unsigned long)ctx->bytes); 463 int csz = HCC_64BYTE_CONTEXT(xhci->hcc_params); 464 465 xhci_dbg(xhci, "Slot Context:\n"); 466 xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08x - dev_info\n", 467 &slot_ctx->dev_info, 468 (unsigned long long)dma, slot_ctx->dev_info); 469 dma += field_size; 470 xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08x - dev_info2\n", 471 &slot_ctx->dev_info2, 472 (unsigned long long)dma, slot_ctx->dev_info2); 473 dma += field_size; 474 xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08x - tt_info\n", 475 &slot_ctx->tt_info, 476 (unsigned long long)dma, slot_ctx->tt_info); 477 dma += field_size; 478 xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08x - dev_state\n", 479 &slot_ctx->dev_state, 480 (unsigned long long)dma, slot_ctx->dev_state); 481 dma += field_size; 482 for (i = 0; i < 4; ++i) { 483 xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08x - rsvd[%d]\n", 484 &slot_ctx->reserved[i], (unsigned long long)dma, 485 slot_ctx->reserved[i], i); 486 dma += field_size; 487 } 488 489 if (csz) 490 dbg_rsvd64(xhci, (u64 *)slot_ctx, dma); 491 } 492 493 static void xhci_dbg_ep_ctx(struct xhci_hcd *xhci, 494 struct xhci_container_ctx *ctx, 495 unsigned int last_ep) 496 { 497 int i, j; 498 int last_ep_ctx = 31; 499 /* Fields are 32 bits wide, DMA addresses are in bytes */ 500 int field_size = 32 / 8; 501 int csz = HCC_64BYTE_CONTEXT(xhci->hcc_params); 502 503 if (last_ep < 31) 504 last_ep_ctx = last_ep + 1; 505 for (i = 0; i < last_ep_ctx; ++i) { 506 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, ctx, i); 507 dma_addr_t dma = ctx->dma + 508 ((unsigned long)ep_ctx - (unsigned long)ctx->bytes); 509 510 xhci_dbg(xhci, "Endpoint %02d Context:\n", i); 511 xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08x - ep_info\n", 512 &ep_ctx->ep_info, 513 (unsigned long long)dma, ep_ctx->ep_info); 514 dma += field_size; 515 xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08x - ep_info2\n", 516 &ep_ctx->ep_info2, 517 (unsigned long long)dma, ep_ctx->ep_info2); 518 dma += field_size; 519 xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08llx - deq\n", 520 &ep_ctx->deq, 521 (unsigned long long)dma, ep_ctx->deq); 522 dma += 2*field_size; 523 xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08x - tx_info\n", 524 &ep_ctx->tx_info, 525 (unsigned long long)dma, ep_ctx->tx_info); 526 dma += field_size; 527 for (j = 0; j < 3; ++j) { 528 xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08x - rsvd[%d]\n", 529 &ep_ctx->reserved[j], 530 (unsigned long long)dma, 531 ep_ctx->reserved[j], j); 532 dma += field_size; 533 } 534 535 if (csz) 536 dbg_rsvd64(xhci, (u64 *)ep_ctx, dma); 537 } 538 } 539 540 void xhci_dbg_ctx(struct xhci_hcd *xhci, 541 struct xhci_container_ctx *ctx, 542 unsigned int last_ep) 543 { 544 int i; 545 /* Fields are 32 bits wide, DMA addresses are in bytes */ 546 int field_size = 32 / 8; 547 dma_addr_t dma = ctx->dma; 548 int csz = HCC_64BYTE_CONTEXT(xhci->hcc_params); 549 550 if (ctx->type == XHCI_CTX_TYPE_INPUT) { 551 struct xhci_input_control_ctx *ctrl_ctx = 552 xhci_get_input_control_ctx(xhci, ctx); 553 xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08x - drop flags\n", 554 &ctrl_ctx->drop_flags, (unsigned long long)dma, 555 ctrl_ctx->drop_flags); 556 dma += field_size; 557 xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08x - add flags\n", 558 &ctrl_ctx->add_flags, (unsigned long long)dma, 559 ctrl_ctx->add_flags); 560 dma += field_size; 561 for (i = 0; i < 6; ++i) { 562 xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08x - rsvd2[%d]\n", 563 &ctrl_ctx->rsvd2[i], (unsigned long long)dma, 564 ctrl_ctx->rsvd2[i], i); 565 dma += field_size; 566 } 567 568 if (csz) 569 dbg_rsvd64(xhci, (u64 *)ctrl_ctx, dma); 570 } 571 572 xhci_dbg_slot_ctx(xhci, ctx); 573 xhci_dbg_ep_ctx(xhci, ctx, last_ep); 574 } 575