xref: /linux/drivers/usb/host/oxu210hp-hcd.c (revision e0bf6c5ca2d3281f231c5f0c9bf145e9513644de)
1 /*
2  * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it>
3  * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it>
4  *
5  * This code is *strongly* based on EHCI-HCD code by David Brownell since
6  * the chip is a quasi-EHCI compatible.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License as published by the
10  * Free Software Foundation; either version 2 of the License, or (at your
11  * option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/module.h>
24 #include <linux/pci.h>
25 #include <linux/dmapool.h>
26 #include <linux/kernel.h>
27 #include <linux/delay.h>
28 #include <linux/ioport.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/errno.h>
32 #include <linux/timer.h>
33 #include <linux/list.h>
34 #include <linux/interrupt.h>
35 #include <linux/usb.h>
36 #include <linux/usb/hcd.h>
37 #include <linux/moduleparam.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/io.h>
40 
41 #include <asm/irq.h>
42 #include <asm/unaligned.h>
43 
44 #include <linux/irq.h>
45 #include <linux/platform_device.h>
46 
47 #include "oxu210hp.h"
48 
49 #define DRIVER_VERSION "0.0.50"
50 
51 /*
52  * Main defines
53  */
54 
55 #define oxu_dbg(oxu, fmt, args...) \
56 		dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
57 #define oxu_err(oxu, fmt, args...) \
58 		dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
59 #define oxu_info(oxu, fmt, args...) \
60 		dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
61 
62 #ifdef CONFIG_DYNAMIC_DEBUG
63 #define DEBUG
64 #endif
65 
66 static inline struct usb_hcd *oxu_to_hcd(struct oxu_hcd *oxu)
67 {
68 	return container_of((void *) oxu, struct usb_hcd, hcd_priv);
69 }
70 
71 static inline struct oxu_hcd *hcd_to_oxu(struct usb_hcd *hcd)
72 {
73 	return (struct oxu_hcd *) (hcd->hcd_priv);
74 }
75 
76 /*
77  * Debug stuff
78  */
79 
80 #undef OXU_URB_TRACE
81 #undef OXU_VERBOSE_DEBUG
82 
83 #ifdef OXU_VERBOSE_DEBUG
84 #define oxu_vdbg			oxu_dbg
85 #else
86 #define oxu_vdbg(oxu, fmt, args...)	/* Nop */
87 #endif
88 
89 #ifdef DEBUG
90 
91 static int __attribute__((__unused__))
92 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
93 {
94 	return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
95 		label, label[0] ? " " : "", status,
96 		(status & STS_ASS) ? " Async" : "",
97 		(status & STS_PSS) ? " Periodic" : "",
98 		(status & STS_RECL) ? " Recl" : "",
99 		(status & STS_HALT) ? " Halt" : "",
100 		(status & STS_IAA) ? " IAA" : "",
101 		(status & STS_FATAL) ? " FATAL" : "",
102 		(status & STS_FLR) ? " FLR" : "",
103 		(status & STS_PCD) ? " PCD" : "",
104 		(status & STS_ERR) ? " ERR" : "",
105 		(status & STS_INT) ? " INT" : ""
106 		);
107 }
108 
109 static int __attribute__((__unused__))
110 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
111 {
112 	return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
113 		label, label[0] ? " " : "", enable,
114 		(enable & STS_IAA) ? " IAA" : "",
115 		(enable & STS_FATAL) ? " FATAL" : "",
116 		(enable & STS_FLR) ? " FLR" : "",
117 		(enable & STS_PCD) ? " PCD" : "",
118 		(enable & STS_ERR) ? " ERR" : "",
119 		(enable & STS_INT) ? " INT" : ""
120 		);
121 }
122 
123 static const char *const fls_strings[] =
124     { "1024", "512", "256", "??" };
125 
126 static int dbg_command_buf(char *buf, unsigned len,
127 				const char *label, u32 command)
128 {
129 	return scnprintf(buf, len,
130 		"%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s",
131 		label, label[0] ? " " : "", command,
132 		(command & CMD_PARK) ? "park" : "(park)",
133 		CMD_PARK_CNT(command),
134 		(command >> 16) & 0x3f,
135 		(command & CMD_LRESET) ? " LReset" : "",
136 		(command & CMD_IAAD) ? " IAAD" : "",
137 		(command & CMD_ASE) ? " Async" : "",
138 		(command & CMD_PSE) ? " Periodic" : "",
139 		fls_strings[(command >> 2) & 0x3],
140 		(command & CMD_RESET) ? " Reset" : "",
141 		(command & CMD_RUN) ? "RUN" : "HALT"
142 		);
143 }
144 
145 static int dbg_port_buf(char *buf, unsigned len, const char *label,
146 				int port, u32 status)
147 {
148 	char	*sig;
149 
150 	/* signaling state */
151 	switch (status & (3 << 10)) {
152 	case 0 << 10:
153 		sig = "se0";
154 		break;
155 	case 1 << 10:
156 		sig = "k";	/* low speed */
157 		break;
158 	case 2 << 10:
159 		sig = "j";
160 		break;
161 	default:
162 		sig = "?";
163 		break;
164 	}
165 
166 	return scnprintf(buf, len,
167 		"%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s",
168 		label, label[0] ? " " : "", port, status,
169 		(status & PORT_POWER) ? " POWER" : "",
170 		(status & PORT_OWNER) ? " OWNER" : "",
171 		sig,
172 		(status & PORT_RESET) ? " RESET" : "",
173 		(status & PORT_SUSPEND) ? " SUSPEND" : "",
174 		(status & PORT_RESUME) ? " RESUME" : "",
175 		(status & PORT_OCC) ? " OCC" : "",
176 		(status & PORT_OC) ? " OC" : "",
177 		(status & PORT_PEC) ? " PEC" : "",
178 		(status & PORT_PE) ? " PE" : "",
179 		(status & PORT_CSC) ? " CSC" : "",
180 		(status & PORT_CONNECT) ? " CONNECT" : ""
181 	    );
182 }
183 
184 #else
185 
186 static inline int __attribute__((__unused__))
187 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
188 { return 0; }
189 
190 static inline int __attribute__((__unused__))
191 dbg_command_buf(char *buf, unsigned len, const char *label, u32 command)
192 { return 0; }
193 
194 static inline int __attribute__((__unused__))
195 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
196 { return 0; }
197 
198 static inline int __attribute__((__unused__))
199 dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status)
200 { return 0; }
201 
202 #endif /* DEBUG */
203 
204 /* functions have the "wrong" filename when they're output... */
205 #define dbg_status(oxu, label, status) { \
206 	char _buf[80]; \
207 	dbg_status_buf(_buf, sizeof _buf, label, status); \
208 	oxu_dbg(oxu, "%s\n", _buf); \
209 }
210 
211 #define dbg_cmd(oxu, label, command) { \
212 	char _buf[80]; \
213 	dbg_command_buf(_buf, sizeof _buf, label, command); \
214 	oxu_dbg(oxu, "%s\n", _buf); \
215 }
216 
217 #define dbg_port(oxu, label, port, status) { \
218 	char _buf[80]; \
219 	dbg_port_buf(_buf, sizeof _buf, label, port, status); \
220 	oxu_dbg(oxu, "%s\n", _buf); \
221 }
222 
223 /*
224  * Module parameters
225  */
226 
227 /* Initial IRQ latency: faster than hw default */
228 static int log2_irq_thresh;			/* 0 to 6 */
229 module_param(log2_irq_thresh, int, S_IRUGO);
230 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
231 
232 /* Initial park setting: slower than hw default */
233 static unsigned park;
234 module_param(park, uint, S_IRUGO);
235 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
236 
237 /* For flakey hardware, ignore overcurrent indicators */
238 static bool ignore_oc;
239 module_param(ignore_oc, bool, S_IRUGO);
240 MODULE_PARM_DESC(ignore_oc, "ignore bogus hardware overcurrent indications");
241 
242 
243 static void ehci_work(struct oxu_hcd *oxu);
244 static int oxu_hub_control(struct usb_hcd *hcd,
245 				u16 typeReq, u16 wValue, u16 wIndex,
246 				char *buf, u16 wLength);
247 
248 /*
249  * Local functions
250  */
251 
252 /* Low level read/write registers functions */
253 static inline u32 oxu_readl(void *base, u32 reg)
254 {
255 	return readl(base + reg);
256 }
257 
258 static inline void oxu_writel(void *base, u32 reg, u32 val)
259 {
260 	writel(val, base + reg);
261 }
262 
263 static inline void timer_action_done(struct oxu_hcd *oxu,
264 					enum ehci_timer_action action)
265 {
266 	clear_bit(action, &oxu->actions);
267 }
268 
269 static inline void timer_action(struct oxu_hcd *oxu,
270 					enum ehci_timer_action action)
271 {
272 	if (!test_and_set_bit(action, &oxu->actions)) {
273 		unsigned long t;
274 
275 		switch (action) {
276 		case TIMER_IAA_WATCHDOG:
277 			t = EHCI_IAA_JIFFIES;
278 			break;
279 		case TIMER_IO_WATCHDOG:
280 			t = EHCI_IO_JIFFIES;
281 			break;
282 		case TIMER_ASYNC_OFF:
283 			t = EHCI_ASYNC_JIFFIES;
284 			break;
285 		case TIMER_ASYNC_SHRINK:
286 		default:
287 			t = EHCI_SHRINK_JIFFIES;
288 			break;
289 		}
290 		t += jiffies;
291 		/* all timings except IAA watchdog can be overridden.
292 		 * async queue SHRINK often precedes IAA.  while it's ready
293 		 * to go OFF neither can matter, and afterwards the IO
294 		 * watchdog stops unless there's still periodic traffic.
295 		 */
296 		if (action != TIMER_IAA_WATCHDOG
297 				&& t > oxu->watchdog.expires
298 				&& timer_pending(&oxu->watchdog))
299 			return;
300 		mod_timer(&oxu->watchdog, t);
301 	}
302 }
303 
304 /*
305  * handshake - spin reading hc until handshake completes or fails
306  * @ptr: address of hc register to be read
307  * @mask: bits to look at in result of read
308  * @done: value of those bits when handshake succeeds
309  * @usec: timeout in microseconds
310  *
311  * Returns negative errno, or zero on success
312  *
313  * Success happens when the "mask" bits have the specified value (hardware
314  * handshake done).  There are two failure modes:  "usec" have passed (major
315  * hardware flakeout), or the register reads as all-ones (hardware removed).
316  *
317  * That last failure should_only happen in cases like physical cardbus eject
318  * before driver shutdown. But it also seems to be caused by bugs in cardbus
319  * bridge shutdown:  shutting down the bridge before the devices using it.
320  */
321 static int handshake(struct oxu_hcd *oxu, void __iomem *ptr,
322 					u32 mask, u32 done, int usec)
323 {
324 	u32 result;
325 
326 	do {
327 		result = readl(ptr);
328 		if (result == ~(u32)0)		/* card removed */
329 			return -ENODEV;
330 		result &= mask;
331 		if (result == done)
332 			return 0;
333 		udelay(1);
334 		usec--;
335 	} while (usec > 0);
336 	return -ETIMEDOUT;
337 }
338 
339 /* Force HC to halt state from unknown (EHCI spec section 2.3) */
340 static int ehci_halt(struct oxu_hcd *oxu)
341 {
342 	u32	temp = readl(&oxu->regs->status);
343 
344 	/* disable any irqs left enabled by previous code */
345 	writel(0, &oxu->regs->intr_enable);
346 
347 	if ((temp & STS_HALT) != 0)
348 		return 0;
349 
350 	temp = readl(&oxu->regs->command);
351 	temp &= ~CMD_RUN;
352 	writel(temp, &oxu->regs->command);
353 	return handshake(oxu, &oxu->regs->status,
354 			  STS_HALT, STS_HALT, 16 * 125);
355 }
356 
357 /* Put TDI/ARC silicon into EHCI mode */
358 static void tdi_reset(struct oxu_hcd *oxu)
359 {
360 	u32 __iomem *reg_ptr;
361 	u32 tmp;
362 
363 	reg_ptr = (u32 __iomem *)(((u8 __iomem *)oxu->regs) + 0x68);
364 	tmp = readl(reg_ptr);
365 	tmp |= 0x3;
366 	writel(tmp, reg_ptr);
367 }
368 
369 /* Reset a non-running (STS_HALT == 1) controller */
370 static int ehci_reset(struct oxu_hcd *oxu)
371 {
372 	int	retval;
373 	u32	command = readl(&oxu->regs->command);
374 
375 	command |= CMD_RESET;
376 	dbg_cmd(oxu, "reset", command);
377 	writel(command, &oxu->regs->command);
378 	oxu_to_hcd(oxu)->state = HC_STATE_HALT;
379 	oxu->next_statechange = jiffies;
380 	retval = handshake(oxu, &oxu->regs->command,
381 			    CMD_RESET, 0, 250 * 1000);
382 
383 	if (retval)
384 		return retval;
385 
386 	tdi_reset(oxu);
387 
388 	return retval;
389 }
390 
391 /* Idle the controller (from running) */
392 static void ehci_quiesce(struct oxu_hcd *oxu)
393 {
394 	u32	temp;
395 
396 #ifdef DEBUG
397 	if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
398 		BUG();
399 #endif
400 
401 	/* wait for any schedule enables/disables to take effect */
402 	temp = readl(&oxu->regs->command) << 10;
403 	temp &= STS_ASS | STS_PSS;
404 	if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
405 				temp, 16 * 125) != 0) {
406 		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
407 		return;
408 	}
409 
410 	/* then disable anything that's still active */
411 	temp = readl(&oxu->regs->command);
412 	temp &= ~(CMD_ASE | CMD_IAAD | CMD_PSE);
413 	writel(temp, &oxu->regs->command);
414 
415 	/* hardware can take 16 microframes to turn off ... */
416 	if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
417 				0, 16 * 125) != 0) {
418 		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
419 		return;
420 	}
421 }
422 
423 static int check_reset_complete(struct oxu_hcd *oxu, int index,
424 				u32 __iomem *status_reg, int port_status)
425 {
426 	if (!(port_status & PORT_CONNECT)) {
427 		oxu->reset_done[index] = 0;
428 		return port_status;
429 	}
430 
431 	/* if reset finished and it's still not enabled -- handoff */
432 	if (!(port_status & PORT_PE)) {
433 		oxu_dbg(oxu, "Failed to enable port %d on root hub TT\n",
434 				index+1);
435 		return port_status;
436 	} else
437 		oxu_dbg(oxu, "port %d high speed\n", index + 1);
438 
439 	return port_status;
440 }
441 
442 static void ehci_hub_descriptor(struct oxu_hcd *oxu,
443 				struct usb_hub_descriptor *desc)
444 {
445 	int ports = HCS_N_PORTS(oxu->hcs_params);
446 	u16 temp;
447 
448 	desc->bDescriptorType = 0x29;
449 	desc->bPwrOn2PwrGood = 10;	/* oxu 1.0, 2.3.9 says 20ms max */
450 	desc->bHubContrCurrent = 0;
451 
452 	desc->bNbrPorts = ports;
453 	temp = 1 + (ports / 8);
454 	desc->bDescLength = 7 + 2 * temp;
455 
456 	/* ports removable, and usb 1.0 legacy PortPwrCtrlMask */
457 	memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
458 	memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
459 
460 	temp = HUB_CHAR_INDV_PORT_OCPM;	/* per-port overcurrent reporting */
461 	if (HCS_PPC(oxu->hcs_params))
462 		temp |= HUB_CHAR_INDV_PORT_LPSM; /* per-port power control */
463 	else
464 		temp |= HUB_CHAR_NO_LPSM; /* no power switching */
465 	desc->wHubCharacteristics = (__force __u16)cpu_to_le16(temp);
466 }
467 
468 
469 /* Allocate an OXU210HP on-chip memory data buffer
470  *
471  * An on-chip memory data buffer is required for each OXU210HP USB transfer.
472  * Each transfer descriptor has one or more on-chip memory data buffers.
473  *
474  * Data buffers are allocated from a fix sized pool of data blocks.
475  * To minimise fragmentation and give reasonable memory utlisation,
476  * data buffers are allocated with sizes the power of 2 multiples of
477  * the block size, starting on an address a multiple of the allocated size.
478  *
479  * FIXME: callers of this function require a buffer to be allocated for
480  * len=0. This is a waste of on-chip memory and should be fix. Then this
481  * function should be changed to not allocate a buffer for len=0.
482  */
483 static int oxu_buf_alloc(struct oxu_hcd *oxu, struct ehci_qtd *qtd, int len)
484 {
485 	int n_blocks;	/* minium blocks needed to hold len */
486 	int a_blocks;	/* blocks allocated */
487 	int i, j;
488 
489 	/* Don't allocte bigger than supported */
490 	if (len > BUFFER_SIZE * BUFFER_NUM) {
491 		oxu_err(oxu, "buffer too big (%d)\n", len);
492 		return -ENOMEM;
493 	}
494 
495 	spin_lock(&oxu->mem_lock);
496 
497 	/* Number of blocks needed to hold len */
498 	n_blocks = (len + BUFFER_SIZE - 1) / BUFFER_SIZE;
499 
500 	/* Round the number of blocks up to the power of 2 */
501 	for (a_blocks = 1; a_blocks < n_blocks; a_blocks <<= 1)
502 		;
503 
504 	/* Find a suitable available data buffer */
505 	for (i = 0; i < BUFFER_NUM;
506 			i += max(a_blocks, (int)oxu->db_used[i])) {
507 
508 		/* Check all the required blocks are available */
509 		for (j = 0; j < a_blocks; j++)
510 			if (oxu->db_used[i + j])
511 				break;
512 
513 		if (j != a_blocks)
514 			continue;
515 
516 		/* Allocate blocks found! */
517 		qtd->buffer = (void *) &oxu->mem->db_pool[i];
518 		qtd->buffer_dma = virt_to_phys(qtd->buffer);
519 
520 		qtd->qtd_buffer_len = BUFFER_SIZE * a_blocks;
521 		oxu->db_used[i] = a_blocks;
522 
523 		spin_unlock(&oxu->mem_lock);
524 
525 		return 0;
526 	}
527 
528 	/* Failed */
529 
530 	spin_unlock(&oxu->mem_lock);
531 
532 	return -ENOMEM;
533 }
534 
535 static void oxu_buf_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
536 {
537 	int index;
538 
539 	spin_lock(&oxu->mem_lock);
540 
541 	index = (qtd->buffer - (void *) &oxu->mem->db_pool[0])
542 							 / BUFFER_SIZE;
543 	oxu->db_used[index] = 0;
544 	qtd->qtd_buffer_len = 0;
545 	qtd->buffer_dma = 0;
546 	qtd->buffer = NULL;
547 
548 	spin_unlock(&oxu->mem_lock);
549 }
550 
551 static inline void ehci_qtd_init(struct ehci_qtd *qtd, dma_addr_t dma)
552 {
553 	memset(qtd, 0, sizeof *qtd);
554 	qtd->qtd_dma = dma;
555 	qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
556 	qtd->hw_next = EHCI_LIST_END;
557 	qtd->hw_alt_next = EHCI_LIST_END;
558 	INIT_LIST_HEAD(&qtd->qtd_list);
559 }
560 
561 static inline void oxu_qtd_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
562 {
563 	int index;
564 
565 	if (qtd->buffer)
566 		oxu_buf_free(oxu, qtd);
567 
568 	spin_lock(&oxu->mem_lock);
569 
570 	index = qtd - &oxu->mem->qtd_pool[0];
571 	oxu->qtd_used[index] = 0;
572 
573 	spin_unlock(&oxu->mem_lock);
574 }
575 
576 static struct ehci_qtd *ehci_qtd_alloc(struct oxu_hcd *oxu)
577 {
578 	int i;
579 	struct ehci_qtd *qtd = NULL;
580 
581 	spin_lock(&oxu->mem_lock);
582 
583 	for (i = 0; i < QTD_NUM; i++)
584 		if (!oxu->qtd_used[i])
585 			break;
586 
587 	if (i < QTD_NUM) {
588 		qtd = (struct ehci_qtd *) &oxu->mem->qtd_pool[i];
589 		memset(qtd, 0, sizeof *qtd);
590 
591 		qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
592 		qtd->hw_next = EHCI_LIST_END;
593 		qtd->hw_alt_next = EHCI_LIST_END;
594 		INIT_LIST_HEAD(&qtd->qtd_list);
595 
596 		qtd->qtd_dma = virt_to_phys(qtd);
597 
598 		oxu->qtd_used[i] = 1;
599 	}
600 
601 	spin_unlock(&oxu->mem_lock);
602 
603 	return qtd;
604 }
605 
606 static void oxu_qh_free(struct oxu_hcd *oxu, struct ehci_qh *qh)
607 {
608 	int index;
609 
610 	spin_lock(&oxu->mem_lock);
611 
612 	index = qh - &oxu->mem->qh_pool[0];
613 	oxu->qh_used[index] = 0;
614 
615 	spin_unlock(&oxu->mem_lock);
616 }
617 
618 static void qh_destroy(struct kref *kref)
619 {
620 	struct ehci_qh *qh = container_of(kref, struct ehci_qh, kref);
621 	struct oxu_hcd *oxu = qh->oxu;
622 
623 	/* clean qtds first, and know this is not linked */
624 	if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
625 		oxu_dbg(oxu, "unused qh not empty!\n");
626 		BUG();
627 	}
628 	if (qh->dummy)
629 		oxu_qtd_free(oxu, qh->dummy);
630 	oxu_qh_free(oxu, qh);
631 }
632 
633 static struct ehci_qh *oxu_qh_alloc(struct oxu_hcd *oxu)
634 {
635 	int i;
636 	struct ehci_qh *qh = NULL;
637 
638 	spin_lock(&oxu->mem_lock);
639 
640 	for (i = 0; i < QHEAD_NUM; i++)
641 		if (!oxu->qh_used[i])
642 			break;
643 
644 	if (i < QHEAD_NUM) {
645 		qh = (struct ehci_qh *) &oxu->mem->qh_pool[i];
646 		memset(qh, 0, sizeof *qh);
647 
648 		kref_init(&qh->kref);
649 		qh->oxu = oxu;
650 		qh->qh_dma = virt_to_phys(qh);
651 		INIT_LIST_HEAD(&qh->qtd_list);
652 
653 		/* dummy td enables safe urb queuing */
654 		qh->dummy = ehci_qtd_alloc(oxu);
655 		if (qh->dummy == NULL) {
656 			oxu_dbg(oxu, "no dummy td\n");
657 			oxu->qh_used[i] = 0;
658 			qh = NULL;
659 			goto unlock;
660 		}
661 
662 		oxu->qh_used[i] = 1;
663 	}
664 unlock:
665 	spin_unlock(&oxu->mem_lock);
666 
667 	return qh;
668 }
669 
670 /* to share a qh (cpu threads, or hc) */
671 static inline struct ehci_qh *qh_get(struct ehci_qh *qh)
672 {
673 	kref_get(&qh->kref);
674 	return qh;
675 }
676 
677 static inline void qh_put(struct ehci_qh *qh)
678 {
679 	kref_put(&qh->kref, qh_destroy);
680 }
681 
682 static void oxu_murb_free(struct oxu_hcd *oxu, struct oxu_murb *murb)
683 {
684 	int index;
685 
686 	spin_lock(&oxu->mem_lock);
687 
688 	index = murb - &oxu->murb_pool[0];
689 	oxu->murb_used[index] = 0;
690 
691 	spin_unlock(&oxu->mem_lock);
692 }
693 
694 static struct oxu_murb *oxu_murb_alloc(struct oxu_hcd *oxu)
695 
696 {
697 	int i;
698 	struct oxu_murb *murb = NULL;
699 
700 	spin_lock(&oxu->mem_lock);
701 
702 	for (i = 0; i < MURB_NUM; i++)
703 		if (!oxu->murb_used[i])
704 			break;
705 
706 	if (i < MURB_NUM) {
707 		murb = &(oxu->murb_pool)[i];
708 
709 		oxu->murb_used[i] = 1;
710 	}
711 
712 	spin_unlock(&oxu->mem_lock);
713 
714 	return murb;
715 }
716 
717 /* The queue heads and transfer descriptors are managed from pools tied
718  * to each of the "per device" structures.
719  * This is the initialisation and cleanup code.
720  */
721 static void ehci_mem_cleanup(struct oxu_hcd *oxu)
722 {
723 	kfree(oxu->murb_pool);
724 	oxu->murb_pool = NULL;
725 
726 	if (oxu->async)
727 		qh_put(oxu->async);
728 	oxu->async = NULL;
729 
730 	del_timer(&oxu->urb_timer);
731 
732 	oxu->periodic = NULL;
733 
734 	/* shadow periodic table */
735 	kfree(oxu->pshadow);
736 	oxu->pshadow = NULL;
737 }
738 
739 /* Remember to add cleanup code (above) if you add anything here.
740  */
741 static int ehci_mem_init(struct oxu_hcd *oxu, gfp_t flags)
742 {
743 	int i;
744 
745 	for (i = 0; i < oxu->periodic_size; i++)
746 		oxu->mem->frame_list[i] = EHCI_LIST_END;
747 	for (i = 0; i < QHEAD_NUM; i++)
748 		oxu->qh_used[i] = 0;
749 	for (i = 0; i < QTD_NUM; i++)
750 		oxu->qtd_used[i] = 0;
751 
752 	oxu->murb_pool = kcalloc(MURB_NUM, sizeof(struct oxu_murb), flags);
753 	if (!oxu->murb_pool)
754 		goto fail;
755 
756 	for (i = 0; i < MURB_NUM; i++)
757 		oxu->murb_used[i] = 0;
758 
759 	oxu->async = oxu_qh_alloc(oxu);
760 	if (!oxu->async)
761 		goto fail;
762 
763 	oxu->periodic = (__le32 *) &oxu->mem->frame_list;
764 	oxu->periodic_dma = virt_to_phys(oxu->periodic);
765 
766 	for (i = 0; i < oxu->periodic_size; i++)
767 		oxu->periodic[i] = EHCI_LIST_END;
768 
769 	/* software shadow of hardware table */
770 	oxu->pshadow = kcalloc(oxu->periodic_size, sizeof(void *), flags);
771 	if (oxu->pshadow != NULL)
772 		return 0;
773 
774 fail:
775 	oxu_dbg(oxu, "couldn't init memory\n");
776 	ehci_mem_cleanup(oxu);
777 	return -ENOMEM;
778 }
779 
780 /* Fill a qtd, returning how much of the buffer we were able to queue up.
781  */
782 static int qtd_fill(struct ehci_qtd *qtd, dma_addr_t buf, size_t len,
783 				int token, int maxpacket)
784 {
785 	int i, count;
786 	u64 addr = buf;
787 
788 	/* one buffer entry per 4K ... first might be short or unaligned */
789 	qtd->hw_buf[0] = cpu_to_le32((u32)addr);
790 	qtd->hw_buf_hi[0] = cpu_to_le32((u32)(addr >> 32));
791 	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
792 	if (likely(len < count))		/* ... iff needed */
793 		count = len;
794 	else {
795 		buf +=  0x1000;
796 		buf &= ~0x0fff;
797 
798 		/* per-qtd limit: from 16K to 20K (best alignment) */
799 		for (i = 1; count < len && i < 5; i++) {
800 			addr = buf;
801 			qtd->hw_buf[i] = cpu_to_le32((u32)addr);
802 			qtd->hw_buf_hi[i] = cpu_to_le32((u32)(addr >> 32));
803 			buf += 0x1000;
804 			if ((count + 0x1000) < len)
805 				count += 0x1000;
806 			else
807 				count = len;
808 		}
809 
810 		/* short packets may only terminate transfers */
811 		if (count != len)
812 			count -= (count % maxpacket);
813 	}
814 	qtd->hw_token = cpu_to_le32((count << 16) | token);
815 	qtd->length = count;
816 
817 	return count;
818 }
819 
820 static inline void qh_update(struct oxu_hcd *oxu,
821 				struct ehci_qh *qh, struct ehci_qtd *qtd)
822 {
823 	/* writes to an active overlay are unsafe */
824 	BUG_ON(qh->qh_state != QH_STATE_IDLE);
825 
826 	qh->hw_qtd_next = QTD_NEXT(qtd->qtd_dma);
827 	qh->hw_alt_next = EHCI_LIST_END;
828 
829 	/* Except for control endpoints, we make hardware maintain data
830 	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
831 	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
832 	 * ever clear it.
833 	 */
834 	if (!(qh->hw_info1 & cpu_to_le32(1 << 14))) {
835 		unsigned	is_out, epnum;
836 
837 		is_out = !(qtd->hw_token & cpu_to_le32(1 << 8));
838 		epnum = (le32_to_cpup(&qh->hw_info1) >> 8) & 0x0f;
839 		if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
840 			qh->hw_token &= ~cpu_to_le32(QTD_TOGGLE);
841 			usb_settoggle(qh->dev, epnum, is_out, 1);
842 		}
843 	}
844 
845 	/* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
846 	wmb();
847 	qh->hw_token &= cpu_to_le32(QTD_TOGGLE | QTD_STS_PING);
848 }
849 
850 /* If it weren't for a common silicon quirk (writing the dummy into the qh
851  * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
852  * recovery (including urb dequeue) would need software changes to a QH...
853  */
854 static void qh_refresh(struct oxu_hcd *oxu, struct ehci_qh *qh)
855 {
856 	struct ehci_qtd *qtd;
857 
858 	if (list_empty(&qh->qtd_list))
859 		qtd = qh->dummy;
860 	else {
861 		qtd = list_entry(qh->qtd_list.next,
862 				struct ehci_qtd, qtd_list);
863 		/* first qtd may already be partially processed */
864 		if (cpu_to_le32(qtd->qtd_dma) == qh->hw_current)
865 			qtd = NULL;
866 	}
867 
868 	if (qtd)
869 		qh_update(oxu, qh, qtd);
870 }
871 
872 static void qtd_copy_status(struct oxu_hcd *oxu, struct urb *urb,
873 				size_t length, u32 token)
874 {
875 	/* count IN/OUT bytes, not SETUP (even short packets) */
876 	if (likely(QTD_PID(token) != 2))
877 		urb->actual_length += length - QTD_LENGTH(token);
878 
879 	/* don't modify error codes */
880 	if (unlikely(urb->status != -EINPROGRESS))
881 		return;
882 
883 	/* force cleanup after short read; not always an error */
884 	if (unlikely(IS_SHORT_READ(token)))
885 		urb->status = -EREMOTEIO;
886 
887 	/* serious "can't proceed" faults reported by the hardware */
888 	if (token & QTD_STS_HALT) {
889 		if (token & QTD_STS_BABBLE) {
890 			/* FIXME "must" disable babbling device's port too */
891 			urb->status = -EOVERFLOW;
892 		} else if (token & QTD_STS_MMF) {
893 			/* fs/ls interrupt xfer missed the complete-split */
894 			urb->status = -EPROTO;
895 		} else if (token & QTD_STS_DBE) {
896 			urb->status = (QTD_PID(token) == 1) /* IN ? */
897 				? -ENOSR  /* hc couldn't read data */
898 				: -ECOMM; /* hc couldn't write data */
899 		} else if (token & QTD_STS_XACT) {
900 			/* timeout, bad crc, wrong PID, etc; retried */
901 			if (QTD_CERR(token))
902 				urb->status = -EPIPE;
903 			else {
904 				oxu_dbg(oxu, "devpath %s ep%d%s 3strikes\n",
905 					urb->dev->devpath,
906 					usb_pipeendpoint(urb->pipe),
907 					usb_pipein(urb->pipe) ? "in" : "out");
908 				urb->status = -EPROTO;
909 			}
910 		/* CERR nonzero + no errors + halt --> stall */
911 		} else if (QTD_CERR(token))
912 			urb->status = -EPIPE;
913 		else	/* unknown */
914 			urb->status = -EPROTO;
915 
916 		oxu_vdbg(oxu, "dev%d ep%d%s qtd token %08x --> status %d\n",
917 			usb_pipedevice(urb->pipe),
918 			usb_pipeendpoint(urb->pipe),
919 			usb_pipein(urb->pipe) ? "in" : "out",
920 			token, urb->status);
921 	}
922 }
923 
924 static void ehci_urb_done(struct oxu_hcd *oxu, struct urb *urb)
925 __releases(oxu->lock)
926 __acquires(oxu->lock)
927 {
928 	if (likely(urb->hcpriv != NULL)) {
929 		struct ehci_qh	*qh = (struct ehci_qh *) urb->hcpriv;
930 
931 		/* S-mask in a QH means it's an interrupt urb */
932 		if ((qh->hw_info2 & cpu_to_le32(QH_SMASK)) != 0) {
933 
934 			/* ... update hc-wide periodic stats (for usbfs) */
935 			oxu_to_hcd(oxu)->self.bandwidth_int_reqs--;
936 		}
937 		qh_put(qh);
938 	}
939 
940 	urb->hcpriv = NULL;
941 	switch (urb->status) {
942 	case -EINPROGRESS:		/* success */
943 		urb->status = 0;
944 	default:			/* fault */
945 		break;
946 	case -EREMOTEIO:		/* fault or normal */
947 		if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
948 			urb->status = 0;
949 		break;
950 	case -ECONNRESET:		/* canceled */
951 	case -ENOENT:
952 		break;
953 	}
954 
955 #ifdef OXU_URB_TRACE
956 	oxu_dbg(oxu, "%s %s urb %p ep%d%s status %d len %d/%d\n",
957 		__func__, urb->dev->devpath, urb,
958 		usb_pipeendpoint(urb->pipe),
959 		usb_pipein(urb->pipe) ? "in" : "out",
960 		urb->status,
961 		urb->actual_length, urb->transfer_buffer_length);
962 #endif
963 
964 	/* complete() can reenter this HCD */
965 	spin_unlock(&oxu->lock);
966 	usb_hcd_giveback_urb(oxu_to_hcd(oxu), urb, urb->status);
967 	spin_lock(&oxu->lock);
968 }
969 
970 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
971 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
972 
973 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
974 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
975 
976 #define HALT_BIT cpu_to_le32(QTD_STS_HALT)
977 
978 /* Process and free completed qtds for a qh, returning URBs to drivers.
979  * Chases up to qh->hw_current.  Returns number of completions called,
980  * indicating how much "real" work we did.
981  */
982 static unsigned qh_completions(struct oxu_hcd *oxu, struct ehci_qh *qh)
983 {
984 	struct ehci_qtd *last = NULL, *end = qh->dummy;
985 	struct list_head *entry, *tmp;
986 	int stopped;
987 	unsigned count = 0;
988 	int do_status = 0;
989 	u8 state;
990 	struct oxu_murb *murb = NULL;
991 
992 	if (unlikely(list_empty(&qh->qtd_list)))
993 		return count;
994 
995 	/* completions (or tasks on other cpus) must never clobber HALT
996 	 * till we've gone through and cleaned everything up, even when
997 	 * they add urbs to this qh's queue or mark them for unlinking.
998 	 *
999 	 * NOTE:  unlinking expects to be done in queue order.
1000 	 */
1001 	state = qh->qh_state;
1002 	qh->qh_state = QH_STATE_COMPLETING;
1003 	stopped = (state == QH_STATE_IDLE);
1004 
1005 	/* remove de-activated QTDs from front of queue.
1006 	 * after faults (including short reads), cleanup this urb
1007 	 * then let the queue advance.
1008 	 * if queue is stopped, handles unlinks.
1009 	 */
1010 	list_for_each_safe(entry, tmp, &qh->qtd_list) {
1011 		struct ehci_qtd	*qtd;
1012 		struct urb *urb;
1013 		u32 token = 0;
1014 
1015 		qtd = list_entry(entry, struct ehci_qtd, qtd_list);
1016 		urb = qtd->urb;
1017 
1018 		/* Clean up any state from previous QTD ...*/
1019 		if (last) {
1020 			if (likely(last->urb != urb)) {
1021 				if (last->urb->complete == NULL) {
1022 					murb = (struct oxu_murb *) last->urb;
1023 					last->urb = murb->main;
1024 					if (murb->last) {
1025 						ehci_urb_done(oxu, last->urb);
1026 						count++;
1027 					}
1028 					oxu_murb_free(oxu, murb);
1029 				} else {
1030 					ehci_urb_done(oxu, last->urb);
1031 					count++;
1032 				}
1033 			}
1034 			oxu_qtd_free(oxu, last);
1035 			last = NULL;
1036 		}
1037 
1038 		/* ignore urbs submitted during completions we reported */
1039 		if (qtd == end)
1040 			break;
1041 
1042 		/* hardware copies qtd out of qh overlay */
1043 		rmb();
1044 		token = le32_to_cpu(qtd->hw_token);
1045 
1046 		/* always clean up qtds the hc de-activated */
1047 		if ((token & QTD_STS_ACTIVE) == 0) {
1048 
1049 			if ((token & QTD_STS_HALT) != 0) {
1050 				stopped = 1;
1051 
1052 			/* magic dummy for some short reads; qh won't advance.
1053 			 * that silicon quirk can kick in with this dummy too.
1054 			 */
1055 			} else if (IS_SHORT_READ(token) &&
1056 					!(qtd->hw_alt_next & EHCI_LIST_END)) {
1057 				stopped = 1;
1058 				goto halt;
1059 			}
1060 
1061 		/* stop scanning when we reach qtds the hc is using */
1062 		} else if (likely(!stopped &&
1063 				HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) {
1064 			break;
1065 
1066 		} else {
1067 			stopped = 1;
1068 
1069 			if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)))
1070 				urb->status = -ESHUTDOWN;
1071 
1072 			/* ignore active urbs unless some previous qtd
1073 			 * for the urb faulted (including short read) or
1074 			 * its urb was canceled.  we may patch qh or qtds.
1075 			 */
1076 			if (likely(urb->status == -EINPROGRESS))
1077 				continue;
1078 
1079 			/* issue status after short control reads */
1080 			if (unlikely(do_status != 0)
1081 					&& QTD_PID(token) == 0 /* OUT */) {
1082 				do_status = 0;
1083 				continue;
1084 			}
1085 
1086 			/* token in overlay may be most current */
1087 			if (state == QH_STATE_IDLE
1088 					&& cpu_to_le32(qtd->qtd_dma)
1089 						== qh->hw_current)
1090 				token = le32_to_cpu(qh->hw_token);
1091 
1092 			/* force halt for unlinked or blocked qh, so we'll
1093 			 * patch the qh later and so that completions can't
1094 			 * activate it while we "know" it's stopped.
1095 			 */
1096 			if ((HALT_BIT & qh->hw_token) == 0) {
1097 halt:
1098 				qh->hw_token |= HALT_BIT;
1099 				wmb();
1100 			}
1101 		}
1102 
1103 		/* Remove it from the queue */
1104 		qtd_copy_status(oxu, urb->complete ?
1105 					urb : ((struct oxu_murb *) urb)->main,
1106 				qtd->length, token);
1107 		if ((usb_pipein(qtd->urb->pipe)) &&
1108 				(NULL != qtd->transfer_buffer))
1109 			memcpy(qtd->transfer_buffer, qtd->buffer, qtd->length);
1110 		do_status = (urb->status == -EREMOTEIO)
1111 				&& usb_pipecontrol(urb->pipe);
1112 
1113 		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
1114 			last = list_entry(qtd->qtd_list.prev,
1115 					struct ehci_qtd, qtd_list);
1116 			last->hw_next = qtd->hw_next;
1117 		}
1118 		list_del(&qtd->qtd_list);
1119 		last = qtd;
1120 	}
1121 
1122 	/* last urb's completion might still need calling */
1123 	if (likely(last != NULL)) {
1124 		if (last->urb->complete == NULL) {
1125 			murb = (struct oxu_murb *) last->urb;
1126 			last->urb = murb->main;
1127 			if (murb->last) {
1128 				ehci_urb_done(oxu, last->urb);
1129 				count++;
1130 			}
1131 			oxu_murb_free(oxu, murb);
1132 		} else {
1133 			ehci_urb_done(oxu, last->urb);
1134 			count++;
1135 		}
1136 		oxu_qtd_free(oxu, last);
1137 	}
1138 
1139 	/* restore original state; caller must unlink or relink */
1140 	qh->qh_state = state;
1141 
1142 	/* be sure the hardware's done with the qh before refreshing
1143 	 * it after fault cleanup, or recovering from silicon wrongly
1144 	 * overlaying the dummy qtd (which reduces DMA chatter).
1145 	 */
1146 	if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END) {
1147 		switch (state) {
1148 		case QH_STATE_IDLE:
1149 			qh_refresh(oxu, qh);
1150 			break;
1151 		case QH_STATE_LINKED:
1152 			/* should be rare for periodic transfers,
1153 			 * except maybe high bandwidth ...
1154 			 */
1155 			if ((cpu_to_le32(QH_SMASK)
1156 					& qh->hw_info2) != 0) {
1157 				intr_deschedule(oxu, qh);
1158 				(void) qh_schedule(oxu, qh);
1159 			} else
1160 				unlink_async(oxu, qh);
1161 			break;
1162 		/* otherwise, unlink already started */
1163 		}
1164 	}
1165 
1166 	return count;
1167 }
1168 
1169 /* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */
1170 #define hb_mult(wMaxPacketSize)		(1 + (((wMaxPacketSize) >> 11) & 0x03))
1171 /* ... and packet size, for any kind of endpoint descriptor */
1172 #define max_packet(wMaxPacketSize)	((wMaxPacketSize) & 0x07ff)
1173 
1174 /* Reverse of qh_urb_transaction: free a list of TDs.
1175  * used for cleanup after errors, before HC sees an URB's TDs.
1176  */
1177 static void qtd_list_free(struct oxu_hcd *oxu,
1178 				struct urb *urb, struct list_head *qtd_list)
1179 {
1180 	struct list_head *entry, *temp;
1181 
1182 	list_for_each_safe(entry, temp, qtd_list) {
1183 		struct ehci_qtd	*qtd;
1184 
1185 		qtd = list_entry(entry, struct ehci_qtd, qtd_list);
1186 		list_del(&qtd->qtd_list);
1187 		oxu_qtd_free(oxu, qtd);
1188 	}
1189 }
1190 
1191 /* Create a list of filled qtds for this URB; won't link into qh.
1192  */
1193 static struct list_head *qh_urb_transaction(struct oxu_hcd *oxu,
1194 						struct urb *urb,
1195 						struct list_head *head,
1196 						gfp_t flags)
1197 {
1198 	struct ehci_qtd	*qtd, *qtd_prev;
1199 	dma_addr_t buf;
1200 	int len, maxpacket;
1201 	int is_input;
1202 	u32 token;
1203 	void *transfer_buf = NULL;
1204 	int ret;
1205 
1206 	/*
1207 	 * URBs map to sequences of QTDs: one logical transaction
1208 	 */
1209 	qtd = ehci_qtd_alloc(oxu);
1210 	if (unlikely(!qtd))
1211 		return NULL;
1212 	list_add_tail(&qtd->qtd_list, head);
1213 	qtd->urb = urb;
1214 
1215 	token = QTD_STS_ACTIVE;
1216 	token |= (EHCI_TUNE_CERR << 10);
1217 	/* for split transactions, SplitXState initialized to zero */
1218 
1219 	len = urb->transfer_buffer_length;
1220 	is_input = usb_pipein(urb->pipe);
1221 	if (!urb->transfer_buffer && urb->transfer_buffer_length && is_input)
1222 		urb->transfer_buffer = phys_to_virt(urb->transfer_dma);
1223 
1224 	if (usb_pipecontrol(urb->pipe)) {
1225 		/* SETUP pid */
1226 		ret = oxu_buf_alloc(oxu, qtd, sizeof(struct usb_ctrlrequest));
1227 		if (ret)
1228 			goto cleanup;
1229 
1230 		qtd_fill(qtd, qtd->buffer_dma, sizeof(struct usb_ctrlrequest),
1231 				token | (2 /* "setup" */ << 8), 8);
1232 		memcpy(qtd->buffer, qtd->urb->setup_packet,
1233 				sizeof(struct usb_ctrlrequest));
1234 
1235 		/* ... and always at least one more pid */
1236 		token ^= QTD_TOGGLE;
1237 		qtd_prev = qtd;
1238 		qtd = ehci_qtd_alloc(oxu);
1239 		if (unlikely(!qtd))
1240 			goto cleanup;
1241 		qtd->urb = urb;
1242 		qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1243 		list_add_tail(&qtd->qtd_list, head);
1244 
1245 		/* for zero length DATA stages, STATUS is always IN */
1246 		if (len == 0)
1247 			token |= (1 /* "in" */ << 8);
1248 	}
1249 
1250 	/*
1251 	 * Data transfer stage: buffer setup
1252 	 */
1253 
1254 	ret = oxu_buf_alloc(oxu, qtd, len);
1255 	if (ret)
1256 		goto cleanup;
1257 
1258 	buf = qtd->buffer_dma;
1259 	transfer_buf = urb->transfer_buffer;
1260 
1261 	if (!is_input)
1262 		memcpy(qtd->buffer, qtd->urb->transfer_buffer, len);
1263 
1264 	if (is_input)
1265 		token |= (1 /* "in" */ << 8);
1266 	/* else it's already initted to "out" pid (0 << 8) */
1267 
1268 	maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
1269 
1270 	/*
1271 	 * buffer gets wrapped in one or more qtds;
1272 	 * last one may be "short" (including zero len)
1273 	 * and may serve as a control status ack
1274 	 */
1275 	for (;;) {
1276 		int this_qtd_len;
1277 
1278 		this_qtd_len = qtd_fill(qtd, buf, len, token, maxpacket);
1279 		qtd->transfer_buffer = transfer_buf;
1280 		len -= this_qtd_len;
1281 		buf += this_qtd_len;
1282 		transfer_buf += this_qtd_len;
1283 		if (is_input)
1284 			qtd->hw_alt_next = oxu->async->hw_alt_next;
1285 
1286 		/* qh makes control packets use qtd toggle; maybe switch it */
1287 		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
1288 			token ^= QTD_TOGGLE;
1289 
1290 		if (likely(len <= 0))
1291 			break;
1292 
1293 		qtd_prev = qtd;
1294 		qtd = ehci_qtd_alloc(oxu);
1295 		if (unlikely(!qtd))
1296 			goto cleanup;
1297 		if (likely(len > 0)) {
1298 			ret = oxu_buf_alloc(oxu, qtd, len);
1299 			if (ret)
1300 				goto cleanup;
1301 		}
1302 		qtd->urb = urb;
1303 		qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1304 		list_add_tail(&qtd->qtd_list, head);
1305 	}
1306 
1307 	/* unless the bulk/interrupt caller wants a chance to clean
1308 	 * up after short reads, hc should advance qh past this urb
1309 	 */
1310 	if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
1311 				|| usb_pipecontrol(urb->pipe)))
1312 		qtd->hw_alt_next = EHCI_LIST_END;
1313 
1314 	/*
1315 	 * control requests may need a terminating data "status" ack;
1316 	 * bulk ones may need a terminating short packet (zero length).
1317 	 */
1318 	if (likely(urb->transfer_buffer_length != 0)) {
1319 		int	one_more = 0;
1320 
1321 		if (usb_pipecontrol(urb->pipe)) {
1322 			one_more = 1;
1323 			token ^= 0x0100;	/* "in" <--> "out"  */
1324 			token |= QTD_TOGGLE;	/* force DATA1 */
1325 		} else if (usb_pipebulk(urb->pipe)
1326 				&& (urb->transfer_flags & URB_ZERO_PACKET)
1327 				&& !(urb->transfer_buffer_length % maxpacket)) {
1328 			one_more = 1;
1329 		}
1330 		if (one_more) {
1331 			qtd_prev = qtd;
1332 			qtd = ehci_qtd_alloc(oxu);
1333 			if (unlikely(!qtd))
1334 				goto cleanup;
1335 			qtd->urb = urb;
1336 			qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1337 			list_add_tail(&qtd->qtd_list, head);
1338 
1339 			/* never any data in such packets */
1340 			qtd_fill(qtd, 0, 0, token, 0);
1341 		}
1342 	}
1343 
1344 	/* by default, enable interrupt on urb completion */
1345 		qtd->hw_token |= cpu_to_le32(QTD_IOC);
1346 	return head;
1347 
1348 cleanup:
1349 	qtd_list_free(oxu, urb, head);
1350 	return NULL;
1351 }
1352 
1353 /* Each QH holds a qtd list; a QH is used for everything except iso.
1354  *
1355  * For interrupt urbs, the scheduler must set the microframe scheduling
1356  * mask(s) each time the QH gets scheduled.  For highspeed, that's
1357  * just one microframe in the s-mask.  For split interrupt transactions
1358  * there are additional complications: c-mask, maybe FSTNs.
1359  */
1360 static struct ehci_qh *qh_make(struct oxu_hcd *oxu,
1361 				struct urb *urb, gfp_t flags)
1362 {
1363 	struct ehci_qh *qh = oxu_qh_alloc(oxu);
1364 	u32 info1 = 0, info2 = 0;
1365 	int is_input, type;
1366 	int maxp = 0;
1367 
1368 	if (!qh)
1369 		return qh;
1370 
1371 	/*
1372 	 * init endpoint/device data for this QH
1373 	 */
1374 	info1 |= usb_pipeendpoint(urb->pipe) << 8;
1375 	info1 |= usb_pipedevice(urb->pipe) << 0;
1376 
1377 	is_input = usb_pipein(urb->pipe);
1378 	type = usb_pipetype(urb->pipe);
1379 	maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
1380 
1381 	/* Compute interrupt scheduling parameters just once, and save.
1382 	 * - allowing for high bandwidth, how many nsec/uframe are used?
1383 	 * - split transactions need a second CSPLIT uframe; same question
1384 	 * - splits also need a schedule gap (for full/low speed I/O)
1385 	 * - qh has a polling interval
1386 	 *
1387 	 * For control/bulk requests, the HC or TT handles these.
1388 	 */
1389 	if (type == PIPE_INTERRUPT) {
1390 		qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
1391 								is_input, 0,
1392 				hb_mult(maxp) * max_packet(maxp)));
1393 		qh->start = NO_FRAME;
1394 
1395 		if (urb->dev->speed == USB_SPEED_HIGH) {
1396 			qh->c_usecs = 0;
1397 			qh->gap_uf = 0;
1398 
1399 			qh->period = urb->interval >> 3;
1400 			if (qh->period == 0 && urb->interval != 1) {
1401 				/* NOTE interval 2 or 4 uframes could work.
1402 				 * But interval 1 scheduling is simpler, and
1403 				 * includes high bandwidth.
1404 				 */
1405 				oxu_dbg(oxu, "intr period %d uframes, NYET!\n",
1406 					urb->interval);
1407 				goto done;
1408 			}
1409 		} else {
1410 			struct usb_tt	*tt = urb->dev->tt;
1411 			int		think_time;
1412 
1413 			/* gap is f(FS/LS transfer times) */
1414 			qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
1415 					is_input, 0, maxp) / (125 * 1000);
1416 
1417 			/* FIXME this just approximates SPLIT/CSPLIT times */
1418 			if (is_input) {		/* SPLIT, gap, CSPLIT+DATA */
1419 				qh->c_usecs = qh->usecs + HS_USECS(0);
1420 				qh->usecs = HS_USECS(1);
1421 			} else {		/* SPLIT+DATA, gap, CSPLIT */
1422 				qh->usecs += HS_USECS(1);
1423 				qh->c_usecs = HS_USECS(0);
1424 			}
1425 
1426 			think_time = tt ? tt->think_time : 0;
1427 			qh->tt_usecs = NS_TO_US(think_time +
1428 					usb_calc_bus_time(urb->dev->speed,
1429 					is_input, 0, max_packet(maxp)));
1430 			qh->period = urb->interval;
1431 		}
1432 	}
1433 
1434 	/* support for tt scheduling, and access to toggles */
1435 	qh->dev = urb->dev;
1436 
1437 	/* using TT? */
1438 	switch (urb->dev->speed) {
1439 	case USB_SPEED_LOW:
1440 		info1 |= (1 << 12);	/* EPS "low" */
1441 		/* FALL THROUGH */
1442 
1443 	case USB_SPEED_FULL:
1444 		/* EPS 0 means "full" */
1445 		if (type != PIPE_INTERRUPT)
1446 			info1 |= (EHCI_TUNE_RL_TT << 28);
1447 		if (type == PIPE_CONTROL) {
1448 			info1 |= (1 << 27);	/* for TT */
1449 			info1 |= 1 << 14;	/* toggle from qtd */
1450 		}
1451 		info1 |= maxp << 16;
1452 
1453 		info2 |= (EHCI_TUNE_MULT_TT << 30);
1454 		info2 |= urb->dev->ttport << 23;
1455 
1456 		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
1457 
1458 		break;
1459 
1460 	case USB_SPEED_HIGH:		/* no TT involved */
1461 		info1 |= (2 << 12);	/* EPS "high" */
1462 		if (type == PIPE_CONTROL) {
1463 			info1 |= (EHCI_TUNE_RL_HS << 28);
1464 			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
1465 			info1 |= 1 << 14;	/* toggle from qtd */
1466 			info2 |= (EHCI_TUNE_MULT_HS << 30);
1467 		} else if (type == PIPE_BULK) {
1468 			info1 |= (EHCI_TUNE_RL_HS << 28);
1469 			info1 |= 512 << 16;	/* usb2 fixed maxpacket */
1470 			info2 |= (EHCI_TUNE_MULT_HS << 30);
1471 		} else {		/* PIPE_INTERRUPT */
1472 			info1 |= max_packet(maxp) << 16;
1473 			info2 |= hb_mult(maxp) << 30;
1474 		}
1475 		break;
1476 	default:
1477 		oxu_dbg(oxu, "bogus dev %p speed %d\n", urb->dev, urb->dev->speed);
1478 done:
1479 		qh_put(qh);
1480 		return NULL;
1481 	}
1482 
1483 	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
1484 
1485 	/* init as live, toggle clear, advance to dummy */
1486 	qh->qh_state = QH_STATE_IDLE;
1487 	qh->hw_info1 = cpu_to_le32(info1);
1488 	qh->hw_info2 = cpu_to_le32(info2);
1489 	usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
1490 	qh_refresh(oxu, qh);
1491 	return qh;
1492 }
1493 
1494 /* Move qh (and its qtds) onto async queue; maybe enable queue.
1495  */
1496 static void qh_link_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
1497 {
1498 	__le32 dma = QH_NEXT(qh->qh_dma);
1499 	struct ehci_qh *head;
1500 
1501 	/* (re)start the async schedule? */
1502 	head = oxu->async;
1503 	timer_action_done(oxu, TIMER_ASYNC_OFF);
1504 	if (!head->qh_next.qh) {
1505 		u32	cmd = readl(&oxu->regs->command);
1506 
1507 		if (!(cmd & CMD_ASE)) {
1508 			/* in case a clear of CMD_ASE didn't take yet */
1509 			(void)handshake(oxu, &oxu->regs->status,
1510 					STS_ASS, 0, 150);
1511 			cmd |= CMD_ASE | CMD_RUN;
1512 			writel(cmd, &oxu->regs->command);
1513 			oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
1514 			/* posted write need not be known to HC yet ... */
1515 		}
1516 	}
1517 
1518 	/* clear halt and/or toggle; and maybe recover from silicon quirk */
1519 	if (qh->qh_state == QH_STATE_IDLE)
1520 		qh_refresh(oxu, qh);
1521 
1522 	/* splice right after start */
1523 	qh->qh_next = head->qh_next;
1524 	qh->hw_next = head->hw_next;
1525 	wmb();
1526 
1527 	head->qh_next.qh = qh;
1528 	head->hw_next = dma;
1529 
1530 	qh->qh_state = QH_STATE_LINKED;
1531 	/* qtd completions reported later by interrupt */
1532 }
1533 
1534 #define	QH_ADDR_MASK	cpu_to_le32(0x7f)
1535 
1536 /*
1537  * For control/bulk/interrupt, return QH with these TDs appended.
1538  * Allocates and initializes the QH if necessary.
1539  * Returns null if it can't allocate a QH it needs to.
1540  * If the QH has TDs (urbs) already, that's great.
1541  */
1542 static struct ehci_qh *qh_append_tds(struct oxu_hcd *oxu,
1543 				struct urb *urb, struct list_head *qtd_list,
1544 				int epnum, void	**ptr)
1545 {
1546 	struct ehci_qh *qh = NULL;
1547 
1548 	qh = (struct ehci_qh *) *ptr;
1549 	if (unlikely(qh == NULL)) {
1550 		/* can't sleep here, we have oxu->lock... */
1551 		qh = qh_make(oxu, urb, GFP_ATOMIC);
1552 		*ptr = qh;
1553 	}
1554 	if (likely(qh != NULL)) {
1555 		struct ehci_qtd	*qtd;
1556 
1557 		if (unlikely(list_empty(qtd_list)))
1558 			qtd = NULL;
1559 		else
1560 			qtd = list_entry(qtd_list->next, struct ehci_qtd,
1561 					qtd_list);
1562 
1563 		/* control qh may need patching ... */
1564 		if (unlikely(epnum == 0)) {
1565 
1566 			/* usb_reset_device() briefly reverts to address 0 */
1567 			if (usb_pipedevice(urb->pipe) == 0)
1568 				qh->hw_info1 &= ~QH_ADDR_MASK;
1569 		}
1570 
1571 		/* just one way to queue requests: swap with the dummy qtd.
1572 		 * only hc or qh_refresh() ever modify the overlay.
1573 		 */
1574 		if (likely(qtd != NULL)) {
1575 			struct ehci_qtd	*dummy;
1576 			dma_addr_t dma;
1577 			__le32 token;
1578 
1579 			/* to avoid racing the HC, use the dummy td instead of
1580 			 * the first td of our list (becomes new dummy).  both
1581 			 * tds stay deactivated until we're done, when the
1582 			 * HC is allowed to fetch the old dummy (4.10.2).
1583 			 */
1584 			token = qtd->hw_token;
1585 			qtd->hw_token = HALT_BIT;
1586 			wmb();
1587 			dummy = qh->dummy;
1588 
1589 			dma = dummy->qtd_dma;
1590 			*dummy = *qtd;
1591 			dummy->qtd_dma = dma;
1592 
1593 			list_del(&qtd->qtd_list);
1594 			list_add(&dummy->qtd_list, qtd_list);
1595 			list_splice(qtd_list, qh->qtd_list.prev);
1596 
1597 			ehci_qtd_init(qtd, qtd->qtd_dma);
1598 			qh->dummy = qtd;
1599 
1600 			/* hc must see the new dummy at list end */
1601 			dma = qtd->qtd_dma;
1602 			qtd = list_entry(qh->qtd_list.prev,
1603 					struct ehci_qtd, qtd_list);
1604 			qtd->hw_next = QTD_NEXT(dma);
1605 
1606 			/* let the hc process these next qtds */
1607 			dummy->hw_token = (token & ~(0x80));
1608 			wmb();
1609 			dummy->hw_token = token;
1610 
1611 			urb->hcpriv = qh_get(qh);
1612 		}
1613 	}
1614 	return qh;
1615 }
1616 
1617 static int submit_async(struct oxu_hcd	*oxu, struct urb *urb,
1618 			struct list_head *qtd_list, gfp_t mem_flags)
1619 {
1620 	struct ehci_qtd	*qtd;
1621 	int epnum;
1622 	unsigned long flags;
1623 	struct ehci_qh *qh = NULL;
1624 	int rc = 0;
1625 
1626 	qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
1627 	epnum = urb->ep->desc.bEndpointAddress;
1628 
1629 #ifdef OXU_URB_TRACE
1630 	oxu_dbg(oxu, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1631 		__func__, urb->dev->devpath, urb,
1632 		epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
1633 		urb->transfer_buffer_length,
1634 		qtd, urb->ep->hcpriv);
1635 #endif
1636 
1637 	spin_lock_irqsave(&oxu->lock, flags);
1638 	if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
1639 		rc = -ESHUTDOWN;
1640 		goto done;
1641 	}
1642 
1643 	qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
1644 	if (unlikely(qh == NULL)) {
1645 		rc = -ENOMEM;
1646 		goto done;
1647 	}
1648 
1649 	/* Control/bulk operations through TTs don't need scheduling,
1650 	 * the HC and TT handle it when the TT has a buffer ready.
1651 	 */
1652 	if (likely(qh->qh_state == QH_STATE_IDLE))
1653 		qh_link_async(oxu, qh_get(qh));
1654 done:
1655 	spin_unlock_irqrestore(&oxu->lock, flags);
1656 	if (unlikely(qh == NULL))
1657 		qtd_list_free(oxu, urb, qtd_list);
1658 	return rc;
1659 }
1660 
1661 /* The async qh for the qtds being reclaimed are now unlinked from the HC */
1662 
1663 static void end_unlink_async(struct oxu_hcd *oxu)
1664 {
1665 	struct ehci_qh *qh = oxu->reclaim;
1666 	struct ehci_qh *next;
1667 
1668 	timer_action_done(oxu, TIMER_IAA_WATCHDOG);
1669 
1670 	qh->qh_state = QH_STATE_IDLE;
1671 	qh->qh_next.qh = NULL;
1672 	qh_put(qh);			/* refcount from reclaim */
1673 
1674 	/* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
1675 	next = qh->reclaim;
1676 	oxu->reclaim = next;
1677 	oxu->reclaim_ready = 0;
1678 	qh->reclaim = NULL;
1679 
1680 	qh_completions(oxu, qh);
1681 
1682 	if (!list_empty(&qh->qtd_list)
1683 			&& HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
1684 		qh_link_async(oxu, qh);
1685 	else {
1686 		qh_put(qh);		/* refcount from async list */
1687 
1688 		/* it's not free to turn the async schedule on/off; leave it
1689 		 * active but idle for a while once it empties.
1690 		 */
1691 		if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state)
1692 				&& oxu->async->qh_next.qh == NULL)
1693 			timer_action(oxu, TIMER_ASYNC_OFF);
1694 	}
1695 
1696 	if (next) {
1697 		oxu->reclaim = NULL;
1698 		start_unlink_async(oxu, next);
1699 	}
1700 }
1701 
1702 /* makes sure the async qh will become idle */
1703 /* caller must own oxu->lock */
1704 
1705 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
1706 {
1707 	int cmd = readl(&oxu->regs->command);
1708 	struct ehci_qh *prev;
1709 
1710 #ifdef DEBUG
1711 	assert_spin_locked(&oxu->lock);
1712 	if (oxu->reclaim || (qh->qh_state != QH_STATE_LINKED
1713 				&& qh->qh_state != QH_STATE_UNLINK_WAIT))
1714 		BUG();
1715 #endif
1716 
1717 	/* stop async schedule right now? */
1718 	if (unlikely(qh == oxu->async)) {
1719 		/* can't get here without STS_ASS set */
1720 		if (oxu_to_hcd(oxu)->state != HC_STATE_HALT
1721 				&& !oxu->reclaim) {
1722 			/* ... and CMD_IAAD clear */
1723 			writel(cmd & ~CMD_ASE, &oxu->regs->command);
1724 			wmb();
1725 			/* handshake later, if we need to */
1726 			timer_action_done(oxu, TIMER_ASYNC_OFF);
1727 		}
1728 		return;
1729 	}
1730 
1731 	qh->qh_state = QH_STATE_UNLINK;
1732 	oxu->reclaim = qh = qh_get(qh);
1733 
1734 	prev = oxu->async;
1735 	while (prev->qh_next.qh != qh)
1736 		prev = prev->qh_next.qh;
1737 
1738 	prev->hw_next = qh->hw_next;
1739 	prev->qh_next = qh->qh_next;
1740 	wmb();
1741 
1742 	if (unlikely(oxu_to_hcd(oxu)->state == HC_STATE_HALT)) {
1743 		/* if (unlikely(qh->reclaim != 0))
1744 		 *	this will recurse, probably not much
1745 		 */
1746 		end_unlink_async(oxu);
1747 		return;
1748 	}
1749 
1750 	oxu->reclaim_ready = 0;
1751 	cmd |= CMD_IAAD;
1752 	writel(cmd, &oxu->regs->command);
1753 	(void) readl(&oxu->regs->command);
1754 	timer_action(oxu, TIMER_IAA_WATCHDOG);
1755 }
1756 
1757 static void scan_async(struct oxu_hcd *oxu)
1758 {
1759 	struct ehci_qh *qh;
1760 	enum ehci_timer_action action = TIMER_IO_WATCHDOG;
1761 
1762 	if (!++(oxu->stamp))
1763 		oxu->stamp++;
1764 	timer_action_done(oxu, TIMER_ASYNC_SHRINK);
1765 rescan:
1766 	qh = oxu->async->qh_next.qh;
1767 	if (likely(qh != NULL)) {
1768 		do {
1769 			/* clean any finished work for this qh */
1770 			if (!list_empty(&qh->qtd_list)
1771 					&& qh->stamp != oxu->stamp) {
1772 				int temp;
1773 
1774 				/* unlinks could happen here; completion
1775 				 * reporting drops the lock.  rescan using
1776 				 * the latest schedule, but don't rescan
1777 				 * qhs we already finished (no looping).
1778 				 */
1779 				qh = qh_get(qh);
1780 				qh->stamp = oxu->stamp;
1781 				temp = qh_completions(oxu, qh);
1782 				qh_put(qh);
1783 				if (temp != 0)
1784 					goto rescan;
1785 			}
1786 
1787 			/* unlink idle entries, reducing HC PCI usage as well
1788 			 * as HCD schedule-scanning costs.  delay for any qh
1789 			 * we just scanned, there's a not-unusual case that it
1790 			 * doesn't stay idle for long.
1791 			 * (plus, avoids some kind of re-activation race.)
1792 			 */
1793 			if (list_empty(&qh->qtd_list)) {
1794 				if (qh->stamp == oxu->stamp)
1795 					action = TIMER_ASYNC_SHRINK;
1796 				else if (!oxu->reclaim
1797 					    && qh->qh_state == QH_STATE_LINKED)
1798 					start_unlink_async(oxu, qh);
1799 			}
1800 
1801 			qh = qh->qh_next.qh;
1802 		} while (qh);
1803 	}
1804 	if (action == TIMER_ASYNC_SHRINK)
1805 		timer_action(oxu, TIMER_ASYNC_SHRINK);
1806 }
1807 
1808 /*
1809  * periodic_next_shadow - return "next" pointer on shadow list
1810  * @periodic: host pointer to qh/itd/sitd
1811  * @tag: hardware tag for type of this record
1812  */
1813 static union ehci_shadow *periodic_next_shadow(union ehci_shadow *periodic,
1814 						__le32 tag)
1815 {
1816 	switch (tag) {
1817 	default:
1818 	case Q_TYPE_QH:
1819 		return &periodic->qh->qh_next;
1820 	}
1821 }
1822 
1823 /* caller must hold oxu->lock */
1824 static void periodic_unlink(struct oxu_hcd *oxu, unsigned frame, void *ptr)
1825 {
1826 	union ehci_shadow *prev_p = &oxu->pshadow[frame];
1827 	__le32 *hw_p = &oxu->periodic[frame];
1828 	union ehci_shadow here = *prev_p;
1829 
1830 	/* find predecessor of "ptr"; hw and shadow lists are in sync */
1831 	while (here.ptr && here.ptr != ptr) {
1832 		prev_p = periodic_next_shadow(prev_p, Q_NEXT_TYPE(*hw_p));
1833 		hw_p = here.hw_next;
1834 		here = *prev_p;
1835 	}
1836 	/* an interrupt entry (at list end) could have been shared */
1837 	if (!here.ptr)
1838 		return;
1839 
1840 	/* update shadow and hardware lists ... the old "next" pointers
1841 	 * from ptr may still be in use, the caller updates them.
1842 	 */
1843 	*prev_p = *periodic_next_shadow(&here, Q_NEXT_TYPE(*hw_p));
1844 	*hw_p = *here.hw_next;
1845 }
1846 
1847 /* how many of the uframe's 125 usecs are allocated? */
1848 static unsigned short periodic_usecs(struct oxu_hcd *oxu,
1849 					unsigned frame, unsigned uframe)
1850 {
1851 	__le32 *hw_p = &oxu->periodic[frame];
1852 	union ehci_shadow *q = &oxu->pshadow[frame];
1853 	unsigned usecs = 0;
1854 
1855 	while (q->ptr) {
1856 		switch (Q_NEXT_TYPE(*hw_p)) {
1857 		case Q_TYPE_QH:
1858 		default:
1859 			/* is it in the S-mask? */
1860 			if (q->qh->hw_info2 & cpu_to_le32(1 << uframe))
1861 				usecs += q->qh->usecs;
1862 			/* ... or C-mask? */
1863 			if (q->qh->hw_info2 & cpu_to_le32(1 << (8 + uframe)))
1864 				usecs += q->qh->c_usecs;
1865 			hw_p = &q->qh->hw_next;
1866 			q = &q->qh->qh_next;
1867 			break;
1868 		}
1869 	}
1870 #ifdef DEBUG
1871 	if (usecs > 100)
1872 		oxu_err(oxu, "uframe %d sched overrun: %d usecs\n",
1873 						frame * 8 + uframe, usecs);
1874 #endif
1875 	return usecs;
1876 }
1877 
1878 static int enable_periodic(struct oxu_hcd *oxu)
1879 {
1880 	u32 cmd;
1881 	int status;
1882 
1883 	/* did clearing PSE did take effect yet?
1884 	 * takes effect only at frame boundaries...
1885 	 */
1886 	status = handshake(oxu, &oxu->regs->status, STS_PSS, 0, 9 * 125);
1887 	if (status != 0) {
1888 		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
1889 		usb_hc_died(oxu_to_hcd(oxu));
1890 		return status;
1891 	}
1892 
1893 	cmd = readl(&oxu->regs->command) | CMD_PSE;
1894 	writel(cmd, &oxu->regs->command);
1895 	/* posted write ... PSS happens later */
1896 	oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
1897 
1898 	/* make sure ehci_work scans these */
1899 	oxu->next_uframe = readl(&oxu->regs->frame_index)
1900 		% (oxu->periodic_size << 3);
1901 	return 0;
1902 }
1903 
1904 static int disable_periodic(struct oxu_hcd *oxu)
1905 {
1906 	u32 cmd;
1907 	int status;
1908 
1909 	/* did setting PSE not take effect yet?
1910 	 * takes effect only at frame boundaries...
1911 	 */
1912 	status = handshake(oxu, &oxu->regs->status, STS_PSS, STS_PSS, 9 * 125);
1913 	if (status != 0) {
1914 		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
1915 		usb_hc_died(oxu_to_hcd(oxu));
1916 		return status;
1917 	}
1918 
1919 	cmd = readl(&oxu->regs->command) & ~CMD_PSE;
1920 	writel(cmd, &oxu->regs->command);
1921 	/* posted write ... */
1922 
1923 	oxu->next_uframe = -1;
1924 	return 0;
1925 }
1926 
1927 /* periodic schedule slots have iso tds (normal or split) first, then a
1928  * sparse tree for active interrupt transfers.
1929  *
1930  * this just links in a qh; caller guarantees uframe masks are set right.
1931  * no FSTN support (yet; oxu 0.96+)
1932  */
1933 static int qh_link_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
1934 {
1935 	unsigned i;
1936 	unsigned period = qh->period;
1937 
1938 	dev_dbg(&qh->dev->dev,
1939 		"link qh%d-%04x/%p start %d [%d/%d us]\n",
1940 		period, le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
1941 		qh, qh->start, qh->usecs, qh->c_usecs);
1942 
1943 	/* high bandwidth, or otherwise every microframe */
1944 	if (period == 0)
1945 		period = 1;
1946 
1947 	for (i = qh->start; i < oxu->periodic_size; i += period) {
1948 		union ehci_shadow	*prev = &oxu->pshadow[i];
1949 		__le32			*hw_p = &oxu->periodic[i];
1950 		union ehci_shadow	here = *prev;
1951 		__le32			type = 0;
1952 
1953 		/* skip the iso nodes at list head */
1954 		while (here.ptr) {
1955 			type = Q_NEXT_TYPE(*hw_p);
1956 			if (type == Q_TYPE_QH)
1957 				break;
1958 			prev = periodic_next_shadow(prev, type);
1959 			hw_p = &here.qh->hw_next;
1960 			here = *prev;
1961 		}
1962 
1963 		/* sorting each branch by period (slow-->fast)
1964 		 * enables sharing interior tree nodes
1965 		 */
1966 		while (here.ptr && qh != here.qh) {
1967 			if (qh->period > here.qh->period)
1968 				break;
1969 			prev = &here.qh->qh_next;
1970 			hw_p = &here.qh->hw_next;
1971 			here = *prev;
1972 		}
1973 		/* link in this qh, unless some earlier pass did that */
1974 		if (qh != here.qh) {
1975 			qh->qh_next = here;
1976 			if (here.qh)
1977 				qh->hw_next = *hw_p;
1978 			wmb();
1979 			prev->qh = qh;
1980 			*hw_p = QH_NEXT(qh->qh_dma);
1981 		}
1982 	}
1983 	qh->qh_state = QH_STATE_LINKED;
1984 	qh_get(qh);
1985 
1986 	/* update per-qh bandwidth for usbfs */
1987 	oxu_to_hcd(oxu)->self.bandwidth_allocated += qh->period
1988 		? ((qh->usecs + qh->c_usecs) / qh->period)
1989 		: (qh->usecs * 8);
1990 
1991 	/* maybe enable periodic schedule processing */
1992 	if (!oxu->periodic_sched++)
1993 		return enable_periodic(oxu);
1994 
1995 	return 0;
1996 }
1997 
1998 static void qh_unlink_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
1999 {
2000 	unsigned i;
2001 	unsigned period;
2002 
2003 	/* FIXME:
2004 	 *   IF this isn't high speed
2005 	 *   and this qh is active in the current uframe
2006 	 *   (and overlay token SplitXstate is false?)
2007 	 * THEN
2008 	 *   qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore");
2009 	 */
2010 
2011 	/* high bandwidth, or otherwise part of every microframe */
2012 	period = qh->period;
2013 	if (period == 0)
2014 		period = 1;
2015 
2016 	for (i = qh->start; i < oxu->periodic_size; i += period)
2017 		periodic_unlink(oxu, i, qh);
2018 
2019 	/* update per-qh bandwidth for usbfs */
2020 	oxu_to_hcd(oxu)->self.bandwidth_allocated -= qh->period
2021 		? ((qh->usecs + qh->c_usecs) / qh->period)
2022 		: (qh->usecs * 8);
2023 
2024 	dev_dbg(&qh->dev->dev,
2025 		"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
2026 		qh->period,
2027 		le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
2028 		qh, qh->start, qh->usecs, qh->c_usecs);
2029 
2030 	/* qh->qh_next still "live" to HC */
2031 	qh->qh_state = QH_STATE_UNLINK;
2032 	qh->qh_next.ptr = NULL;
2033 	qh_put(qh);
2034 
2035 	/* maybe turn off periodic schedule */
2036 	oxu->periodic_sched--;
2037 	if (!oxu->periodic_sched)
2038 		(void) disable_periodic(oxu);
2039 }
2040 
2041 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2042 {
2043 	unsigned wait;
2044 
2045 	qh_unlink_periodic(oxu, qh);
2046 
2047 	/* simple/paranoid:  always delay, expecting the HC needs to read
2048 	 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
2049 	 * expect hub_wq to clean up after any CSPLITs we won't issue.
2050 	 * active high speed queues may need bigger delays...
2051 	 */
2052 	if (list_empty(&qh->qtd_list)
2053 		|| (cpu_to_le32(QH_CMASK) & qh->hw_info2) != 0)
2054 		wait = 2;
2055 	else
2056 		wait = 55;	/* worst case: 3 * 1024 */
2057 
2058 	udelay(wait);
2059 	qh->qh_state = QH_STATE_IDLE;
2060 	qh->hw_next = EHCI_LIST_END;
2061 	wmb();
2062 }
2063 
2064 static int check_period(struct oxu_hcd *oxu,
2065 			unsigned frame, unsigned uframe,
2066 			unsigned period, unsigned usecs)
2067 {
2068 	int claimed;
2069 
2070 	/* complete split running into next frame?
2071 	 * given FSTN support, we could sometimes check...
2072 	 */
2073 	if (uframe >= 8)
2074 		return 0;
2075 
2076 	/*
2077 	 * 80% periodic == 100 usec/uframe available
2078 	 * convert "usecs we need" to "max already claimed"
2079 	 */
2080 	usecs = 100 - usecs;
2081 
2082 	/* we "know" 2 and 4 uframe intervals were rejected; so
2083 	 * for period 0, check _every_ microframe in the schedule.
2084 	 */
2085 	if (unlikely(period == 0)) {
2086 		do {
2087 			for (uframe = 0; uframe < 7; uframe++) {
2088 				claimed = periodic_usecs(oxu, frame, uframe);
2089 				if (claimed > usecs)
2090 					return 0;
2091 			}
2092 		} while ((frame += 1) < oxu->periodic_size);
2093 
2094 	/* just check the specified uframe, at that period */
2095 	} else {
2096 		do {
2097 			claimed = periodic_usecs(oxu, frame, uframe);
2098 			if (claimed > usecs)
2099 				return 0;
2100 		} while ((frame += period) < oxu->periodic_size);
2101 	}
2102 
2103 	return 1;
2104 }
2105 
2106 static int check_intr_schedule(struct oxu_hcd	*oxu,
2107 				unsigned frame, unsigned uframe,
2108 				const struct ehci_qh *qh, __le32 *c_maskp)
2109 {
2110 	int retval = -ENOSPC;
2111 
2112 	if (qh->c_usecs && uframe >= 6)		/* FSTN territory? */
2113 		goto done;
2114 
2115 	if (!check_period(oxu, frame, uframe, qh->period, qh->usecs))
2116 		goto done;
2117 	if (!qh->c_usecs) {
2118 		retval = 0;
2119 		*c_maskp = 0;
2120 		goto done;
2121 	}
2122 
2123 done:
2124 	return retval;
2125 }
2126 
2127 /* "first fit" scheduling policy used the first time through,
2128  * or when the previous schedule slot can't be re-used.
2129  */
2130 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2131 {
2132 	int		status;
2133 	unsigned	uframe;
2134 	__le32		c_mask;
2135 	unsigned	frame;		/* 0..(qh->period - 1), or NO_FRAME */
2136 
2137 	qh_refresh(oxu, qh);
2138 	qh->hw_next = EHCI_LIST_END;
2139 	frame = qh->start;
2140 
2141 	/* reuse the previous schedule slots, if we can */
2142 	if (frame < qh->period) {
2143 		uframe = ffs(le32_to_cpup(&qh->hw_info2) & QH_SMASK);
2144 		status = check_intr_schedule(oxu, frame, --uframe,
2145 				qh, &c_mask);
2146 	} else {
2147 		uframe = 0;
2148 		c_mask = 0;
2149 		status = -ENOSPC;
2150 	}
2151 
2152 	/* else scan the schedule to find a group of slots such that all
2153 	 * uframes have enough periodic bandwidth available.
2154 	 */
2155 	if (status) {
2156 		/* "normal" case, uframing flexible except with splits */
2157 		if (qh->period) {
2158 			frame = qh->period - 1;
2159 			do {
2160 				for (uframe = 0; uframe < 8; uframe++) {
2161 					status = check_intr_schedule(oxu,
2162 							frame, uframe, qh,
2163 							&c_mask);
2164 					if (status == 0)
2165 						break;
2166 				}
2167 			} while (status && frame--);
2168 
2169 		/* qh->period == 0 means every uframe */
2170 		} else {
2171 			frame = 0;
2172 			status = check_intr_schedule(oxu, 0, 0, qh, &c_mask);
2173 		}
2174 		if (status)
2175 			goto done;
2176 		qh->start = frame;
2177 
2178 		/* reset S-frame and (maybe) C-frame masks */
2179 		qh->hw_info2 &= cpu_to_le32(~(QH_CMASK | QH_SMASK));
2180 		qh->hw_info2 |= qh->period
2181 			? cpu_to_le32(1 << uframe)
2182 			: cpu_to_le32(QH_SMASK);
2183 		qh->hw_info2 |= c_mask;
2184 	} else
2185 		oxu_dbg(oxu, "reused qh %p schedule\n", qh);
2186 
2187 	/* stuff into the periodic schedule */
2188 	status = qh_link_periodic(oxu, qh);
2189 done:
2190 	return status;
2191 }
2192 
2193 static int intr_submit(struct oxu_hcd *oxu, struct urb *urb,
2194 			struct list_head *qtd_list, gfp_t mem_flags)
2195 {
2196 	unsigned epnum;
2197 	unsigned long flags;
2198 	struct ehci_qh *qh;
2199 	int status = 0;
2200 	struct list_head	empty;
2201 
2202 	/* get endpoint and transfer/schedule data */
2203 	epnum = urb->ep->desc.bEndpointAddress;
2204 
2205 	spin_lock_irqsave(&oxu->lock, flags);
2206 
2207 	if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
2208 		status = -ESHUTDOWN;
2209 		goto done;
2210 	}
2211 
2212 	/* get qh and force any scheduling errors */
2213 	INIT_LIST_HEAD(&empty);
2214 	qh = qh_append_tds(oxu, urb, &empty, epnum, &urb->ep->hcpriv);
2215 	if (qh == NULL) {
2216 		status = -ENOMEM;
2217 		goto done;
2218 	}
2219 	if (qh->qh_state == QH_STATE_IDLE) {
2220 		status = qh_schedule(oxu, qh);
2221 		if (status != 0)
2222 			goto done;
2223 	}
2224 
2225 	/* then queue the urb's tds to the qh */
2226 	qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
2227 	BUG_ON(qh == NULL);
2228 
2229 	/* ... update usbfs periodic stats */
2230 	oxu_to_hcd(oxu)->self.bandwidth_int_reqs++;
2231 
2232 done:
2233 	spin_unlock_irqrestore(&oxu->lock, flags);
2234 	if (status)
2235 		qtd_list_free(oxu, urb, qtd_list);
2236 
2237 	return status;
2238 }
2239 
2240 static inline int itd_submit(struct oxu_hcd *oxu, struct urb *urb,
2241 						gfp_t mem_flags)
2242 {
2243 	oxu_dbg(oxu, "iso support is missing!\n");
2244 	return -ENOSYS;
2245 }
2246 
2247 static inline int sitd_submit(struct oxu_hcd *oxu, struct urb *urb,
2248 						gfp_t mem_flags)
2249 {
2250 	oxu_dbg(oxu, "split iso support is missing!\n");
2251 	return -ENOSYS;
2252 }
2253 
2254 static void scan_periodic(struct oxu_hcd *oxu)
2255 {
2256 	unsigned frame, clock, now_uframe, mod;
2257 	unsigned modified;
2258 
2259 	mod = oxu->periodic_size << 3;
2260 
2261 	/*
2262 	 * When running, scan from last scan point up to "now"
2263 	 * else clean up by scanning everything that's left.
2264 	 * Touches as few pages as possible:  cache-friendly.
2265 	 */
2266 	now_uframe = oxu->next_uframe;
2267 	if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2268 		clock = readl(&oxu->regs->frame_index);
2269 	else
2270 		clock = now_uframe + mod - 1;
2271 	clock %= mod;
2272 
2273 	for (;;) {
2274 		union ehci_shadow	q, *q_p;
2275 		__le32			type, *hw_p;
2276 		unsigned		uframes;
2277 
2278 		/* don't scan past the live uframe */
2279 		frame = now_uframe >> 3;
2280 		if (frame == (clock >> 3))
2281 			uframes = now_uframe & 0x07;
2282 		else {
2283 			/* safe to scan the whole frame at once */
2284 			now_uframe |= 0x07;
2285 			uframes = 8;
2286 		}
2287 
2288 restart:
2289 		/* scan each element in frame's queue for completions */
2290 		q_p = &oxu->pshadow[frame];
2291 		hw_p = &oxu->periodic[frame];
2292 		q.ptr = q_p->ptr;
2293 		type = Q_NEXT_TYPE(*hw_p);
2294 		modified = 0;
2295 
2296 		while (q.ptr != NULL) {
2297 			union ehci_shadow temp;
2298 			int live;
2299 
2300 			live = HC_IS_RUNNING(oxu_to_hcd(oxu)->state);
2301 			switch (type) {
2302 			case Q_TYPE_QH:
2303 				/* handle any completions */
2304 				temp.qh = qh_get(q.qh);
2305 				type = Q_NEXT_TYPE(q.qh->hw_next);
2306 				q = q.qh->qh_next;
2307 				modified = qh_completions(oxu, temp.qh);
2308 				if (unlikely(list_empty(&temp.qh->qtd_list)))
2309 					intr_deschedule(oxu, temp.qh);
2310 				qh_put(temp.qh);
2311 				break;
2312 			default:
2313 				oxu_dbg(oxu, "corrupt type %d frame %d shadow %p\n",
2314 					type, frame, q.ptr);
2315 				q.ptr = NULL;
2316 			}
2317 
2318 			/* assume completion callbacks modify the queue */
2319 			if (unlikely(modified))
2320 				goto restart;
2321 		}
2322 
2323 		/* Stop when we catch up to the HC */
2324 
2325 		/* FIXME:  this assumes we won't get lapped when
2326 		 * latencies climb; that should be rare, but...
2327 		 * detect it, and just go all the way around.
2328 		 * FLR might help detect this case, so long as latencies
2329 		 * don't exceed periodic_size msec (default 1.024 sec).
2330 		 */
2331 
2332 		/* FIXME: likewise assumes HC doesn't halt mid-scan */
2333 
2334 		if (now_uframe == clock) {
2335 			unsigned	now;
2336 
2337 			if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2338 				break;
2339 			oxu->next_uframe = now_uframe;
2340 			now = readl(&oxu->regs->frame_index) % mod;
2341 			if (now_uframe == now)
2342 				break;
2343 
2344 			/* rescan the rest of this frame, then ... */
2345 			clock = now;
2346 		} else {
2347 			now_uframe++;
2348 			now_uframe %= mod;
2349 		}
2350 	}
2351 }
2352 
2353 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
2354  * The firmware seems to think that powering off is a wakeup event!
2355  * This routine turns off remote wakeup and everything else, on all ports.
2356  */
2357 static void ehci_turn_off_all_ports(struct oxu_hcd *oxu)
2358 {
2359 	int port = HCS_N_PORTS(oxu->hcs_params);
2360 
2361 	while (port--)
2362 		writel(PORT_RWC_BITS, &oxu->regs->port_status[port]);
2363 }
2364 
2365 static void ehci_port_power(struct oxu_hcd *oxu, int is_on)
2366 {
2367 	unsigned port;
2368 
2369 	if (!HCS_PPC(oxu->hcs_params))
2370 		return;
2371 
2372 	oxu_dbg(oxu, "...power%s ports...\n", is_on ? "up" : "down");
2373 	for (port = HCS_N_PORTS(oxu->hcs_params); port > 0; )
2374 		(void) oxu_hub_control(oxu_to_hcd(oxu),
2375 				is_on ? SetPortFeature : ClearPortFeature,
2376 				USB_PORT_FEAT_POWER,
2377 				port--, NULL, 0);
2378 	msleep(20);
2379 }
2380 
2381 /* Called from some interrupts, timers, and so on.
2382  * It calls driver completion functions, after dropping oxu->lock.
2383  */
2384 static void ehci_work(struct oxu_hcd *oxu)
2385 {
2386 	timer_action_done(oxu, TIMER_IO_WATCHDOG);
2387 	if (oxu->reclaim_ready)
2388 		end_unlink_async(oxu);
2389 
2390 	/* another CPU may drop oxu->lock during a schedule scan while
2391 	 * it reports urb completions.  this flag guards against bogus
2392 	 * attempts at re-entrant schedule scanning.
2393 	 */
2394 	if (oxu->scanning)
2395 		return;
2396 	oxu->scanning = 1;
2397 	scan_async(oxu);
2398 	if (oxu->next_uframe != -1)
2399 		scan_periodic(oxu);
2400 	oxu->scanning = 0;
2401 
2402 	/* the IO watchdog guards against hardware or driver bugs that
2403 	 * misplace IRQs, and should let us run completely without IRQs.
2404 	 * such lossage has been observed on both VT6202 and VT8235.
2405 	 */
2406 	if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) &&
2407 			(oxu->async->qh_next.ptr != NULL ||
2408 			 oxu->periodic_sched != 0))
2409 		timer_action(oxu, TIMER_IO_WATCHDOG);
2410 }
2411 
2412 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
2413 {
2414 	/* if we need to use IAA and it's busy, defer */
2415 	if (qh->qh_state == QH_STATE_LINKED
2416 			&& oxu->reclaim
2417 			&& HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) {
2418 		struct ehci_qh		*last;
2419 
2420 		for (last = oxu->reclaim;
2421 				last->reclaim;
2422 				last = last->reclaim)
2423 			continue;
2424 		qh->qh_state = QH_STATE_UNLINK_WAIT;
2425 		last->reclaim = qh;
2426 
2427 	/* bypass IAA if the hc can't care */
2428 	} else if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && oxu->reclaim)
2429 		end_unlink_async(oxu);
2430 
2431 	/* something else might have unlinked the qh by now */
2432 	if (qh->qh_state == QH_STATE_LINKED)
2433 		start_unlink_async(oxu, qh);
2434 }
2435 
2436 /*
2437  * USB host controller methods
2438  */
2439 
2440 static irqreturn_t oxu210_hcd_irq(struct usb_hcd *hcd)
2441 {
2442 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2443 	u32 status, pcd_status = 0;
2444 	int bh;
2445 
2446 	spin_lock(&oxu->lock);
2447 
2448 	status = readl(&oxu->regs->status);
2449 
2450 	/* e.g. cardbus physical eject */
2451 	if (status == ~(u32) 0) {
2452 		oxu_dbg(oxu, "device removed\n");
2453 		goto dead;
2454 	}
2455 
2456 	/* Shared IRQ? */
2457 	status &= INTR_MASK;
2458 	if (!status || unlikely(hcd->state == HC_STATE_HALT)) {
2459 		spin_unlock(&oxu->lock);
2460 		return IRQ_NONE;
2461 	}
2462 
2463 	/* clear (just) interrupts */
2464 	writel(status, &oxu->regs->status);
2465 	readl(&oxu->regs->command);	/* unblock posted write */
2466 	bh = 0;
2467 
2468 #ifdef OXU_VERBOSE_DEBUG
2469 	/* unrequested/ignored: Frame List Rollover */
2470 	dbg_status(oxu, "irq", status);
2471 #endif
2472 
2473 	/* INT, ERR, and IAA interrupt rates can be throttled */
2474 
2475 	/* normal [4.15.1.2] or error [4.15.1.1] completion */
2476 	if (likely((status & (STS_INT|STS_ERR)) != 0))
2477 		bh = 1;
2478 
2479 	/* complete the unlinking of some qh [4.15.2.3] */
2480 	if (status & STS_IAA) {
2481 		oxu->reclaim_ready = 1;
2482 		bh = 1;
2483 	}
2484 
2485 	/* remote wakeup [4.3.1] */
2486 	if (status & STS_PCD) {
2487 		unsigned i = HCS_N_PORTS(oxu->hcs_params);
2488 		pcd_status = status;
2489 
2490 		/* resume root hub? */
2491 		if (!(readl(&oxu->regs->command) & CMD_RUN))
2492 			usb_hcd_resume_root_hub(hcd);
2493 
2494 		while (i--) {
2495 			int pstatus = readl(&oxu->regs->port_status[i]);
2496 
2497 			if (pstatus & PORT_OWNER)
2498 				continue;
2499 			if (!(pstatus & PORT_RESUME)
2500 					|| oxu->reset_done[i] != 0)
2501 				continue;
2502 
2503 			/* start 20 msec resume signaling from this port,
2504 			 * and make hub_wq collect PORT_STAT_C_SUSPEND to
2505 			 * stop that signaling.
2506 			 */
2507 			oxu->reset_done[i] = jiffies + msecs_to_jiffies(20);
2508 			oxu_dbg(oxu, "port %d remote wakeup\n", i + 1);
2509 			mod_timer(&hcd->rh_timer, oxu->reset_done[i]);
2510 		}
2511 	}
2512 
2513 	/* PCI errors [4.15.2.4] */
2514 	if (unlikely((status & STS_FATAL) != 0)) {
2515 		/* bogus "fatal" IRQs appear on some chips... why?  */
2516 		status = readl(&oxu->regs->status);
2517 		dbg_cmd(oxu, "fatal", readl(&oxu->regs->command));
2518 		dbg_status(oxu, "fatal", status);
2519 		if (status & STS_HALT) {
2520 			oxu_err(oxu, "fatal error\n");
2521 dead:
2522 			ehci_reset(oxu);
2523 			writel(0, &oxu->regs->configured_flag);
2524 			usb_hc_died(hcd);
2525 			/* generic layer kills/unlinks all urbs, then
2526 			 * uses oxu_stop to clean up the rest
2527 			 */
2528 			bh = 1;
2529 		}
2530 	}
2531 
2532 	if (bh)
2533 		ehci_work(oxu);
2534 	spin_unlock(&oxu->lock);
2535 	if (pcd_status & STS_PCD)
2536 		usb_hcd_poll_rh_status(hcd);
2537 	return IRQ_HANDLED;
2538 }
2539 
2540 static irqreturn_t oxu_irq(struct usb_hcd *hcd)
2541 {
2542 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2543 	int ret = IRQ_HANDLED;
2544 
2545 	u32 status = oxu_readl(hcd->regs, OXU_CHIPIRQSTATUS);
2546 	u32 enable = oxu_readl(hcd->regs, OXU_CHIPIRQEN_SET);
2547 
2548 	/* Disable all interrupt */
2549 	oxu_writel(hcd->regs, OXU_CHIPIRQEN_CLR, enable);
2550 
2551 	if ((oxu->is_otg && (status & OXU_USBOTGI)) ||
2552 		(!oxu->is_otg && (status & OXU_USBSPHI)))
2553 		oxu210_hcd_irq(hcd);
2554 	else
2555 		ret = IRQ_NONE;
2556 
2557 	/* Enable all interrupt back */
2558 	oxu_writel(hcd->regs, OXU_CHIPIRQEN_SET, enable);
2559 
2560 	return ret;
2561 }
2562 
2563 static void oxu_watchdog(unsigned long param)
2564 {
2565 	struct oxu_hcd	*oxu = (struct oxu_hcd *) param;
2566 	unsigned long flags;
2567 
2568 	spin_lock_irqsave(&oxu->lock, flags);
2569 
2570 	/* lost IAA irqs wedge things badly; seen with a vt8235 */
2571 	if (oxu->reclaim) {
2572 		u32 status = readl(&oxu->regs->status);
2573 		if (status & STS_IAA) {
2574 			oxu_vdbg(oxu, "lost IAA\n");
2575 			writel(STS_IAA, &oxu->regs->status);
2576 			oxu->reclaim_ready = 1;
2577 		}
2578 	}
2579 
2580 	/* stop async processing after it's idled a bit */
2581 	if (test_bit(TIMER_ASYNC_OFF, &oxu->actions))
2582 		start_unlink_async(oxu, oxu->async);
2583 
2584 	/* oxu could run by timer, without IRQs ... */
2585 	ehci_work(oxu);
2586 
2587 	spin_unlock_irqrestore(&oxu->lock, flags);
2588 }
2589 
2590 /* One-time init, only for memory state.
2591  */
2592 static int oxu_hcd_init(struct usb_hcd *hcd)
2593 {
2594 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2595 	u32 temp;
2596 	int retval;
2597 	u32 hcc_params;
2598 
2599 	spin_lock_init(&oxu->lock);
2600 
2601 	setup_timer(&oxu->watchdog, oxu_watchdog, (unsigned long)oxu);
2602 
2603 	/*
2604 	 * hw default: 1K periodic list heads, one per frame.
2605 	 * periodic_size can shrink by USBCMD update if hcc_params allows.
2606 	 */
2607 	oxu->periodic_size = DEFAULT_I_TDPS;
2608 	retval = ehci_mem_init(oxu, GFP_KERNEL);
2609 	if (retval < 0)
2610 		return retval;
2611 
2612 	/* controllers may cache some of the periodic schedule ... */
2613 	hcc_params = readl(&oxu->caps->hcc_params);
2614 	if (HCC_ISOC_CACHE(hcc_params))		/* full frame cache */
2615 		oxu->i_thresh = 8;
2616 	else					/* N microframes cached */
2617 		oxu->i_thresh = 2 + HCC_ISOC_THRES(hcc_params);
2618 
2619 	oxu->reclaim = NULL;
2620 	oxu->reclaim_ready = 0;
2621 	oxu->next_uframe = -1;
2622 
2623 	/*
2624 	 * dedicate a qh for the async ring head, since we couldn't unlink
2625 	 * a 'real' qh without stopping the async schedule [4.8].  use it
2626 	 * as the 'reclamation list head' too.
2627 	 * its dummy is used in hw_alt_next of many tds, to prevent the qh
2628 	 * from automatically advancing to the next td after short reads.
2629 	 */
2630 	oxu->async->qh_next.qh = NULL;
2631 	oxu->async->hw_next = QH_NEXT(oxu->async->qh_dma);
2632 	oxu->async->hw_info1 = cpu_to_le32(QH_HEAD);
2633 	oxu->async->hw_token = cpu_to_le32(QTD_STS_HALT);
2634 	oxu->async->hw_qtd_next = EHCI_LIST_END;
2635 	oxu->async->qh_state = QH_STATE_LINKED;
2636 	oxu->async->hw_alt_next = QTD_NEXT(oxu->async->dummy->qtd_dma);
2637 
2638 	/* clear interrupt enables, set irq latency */
2639 	if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
2640 		log2_irq_thresh = 0;
2641 	temp = 1 << (16 + log2_irq_thresh);
2642 	if (HCC_CANPARK(hcc_params)) {
2643 		/* HW default park == 3, on hardware that supports it (like
2644 		 * NVidia and ALI silicon), maximizes throughput on the async
2645 		 * schedule by avoiding QH fetches between transfers.
2646 		 *
2647 		 * With fast usb storage devices and NForce2, "park" seems to
2648 		 * make problems:  throughput reduction (!), data errors...
2649 		 */
2650 		if (park) {
2651 			park = min(park, (unsigned) 3);
2652 			temp |= CMD_PARK;
2653 			temp |= park << 8;
2654 		}
2655 		oxu_dbg(oxu, "park %d\n", park);
2656 	}
2657 	if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
2658 		/* periodic schedule size can be smaller than default */
2659 		temp &= ~(3 << 2);
2660 		temp |= (EHCI_TUNE_FLS << 2);
2661 	}
2662 	oxu->command = temp;
2663 
2664 	return 0;
2665 }
2666 
2667 /* Called during probe() after chip reset completes.
2668  */
2669 static int oxu_reset(struct usb_hcd *hcd)
2670 {
2671 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2672 	int ret;
2673 
2674 	spin_lock_init(&oxu->mem_lock);
2675 	INIT_LIST_HEAD(&oxu->urb_list);
2676 	oxu->urb_len = 0;
2677 
2678 	/* FIMXE */
2679 	hcd->self.controller->dma_mask = NULL;
2680 
2681 	if (oxu->is_otg) {
2682 		oxu->caps = hcd->regs + OXU_OTG_CAP_OFFSET;
2683 		oxu->regs = hcd->regs + OXU_OTG_CAP_OFFSET + \
2684 			HC_LENGTH(readl(&oxu->caps->hc_capbase));
2685 
2686 		oxu->mem = hcd->regs + OXU_SPH_MEM;
2687 	} else {
2688 		oxu->caps = hcd->regs + OXU_SPH_CAP_OFFSET;
2689 		oxu->regs = hcd->regs + OXU_SPH_CAP_OFFSET + \
2690 			HC_LENGTH(readl(&oxu->caps->hc_capbase));
2691 
2692 		oxu->mem = hcd->regs + OXU_OTG_MEM;
2693 	}
2694 
2695 	oxu->hcs_params = readl(&oxu->caps->hcs_params);
2696 	oxu->sbrn = 0x20;
2697 
2698 	ret = oxu_hcd_init(hcd);
2699 	if (ret)
2700 		return ret;
2701 
2702 	return 0;
2703 }
2704 
2705 static int oxu_run(struct usb_hcd *hcd)
2706 {
2707 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2708 	int retval;
2709 	u32 temp, hcc_params;
2710 
2711 	hcd->uses_new_polling = 1;
2712 
2713 	/* EHCI spec section 4.1 */
2714 	retval = ehci_reset(oxu);
2715 	if (retval != 0) {
2716 		ehci_mem_cleanup(oxu);
2717 		return retval;
2718 	}
2719 	writel(oxu->periodic_dma, &oxu->regs->frame_list);
2720 	writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
2721 
2722 	/* hcc_params controls whether oxu->regs->segment must (!!!)
2723 	 * be used; it constrains QH/ITD/SITD and QTD locations.
2724 	 * pci_pool consistent memory always uses segment zero.
2725 	 * streaming mappings for I/O buffers, like pci_map_single(),
2726 	 * can return segments above 4GB, if the device allows.
2727 	 *
2728 	 * NOTE:  the dma mask is visible through dma_supported(), so
2729 	 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
2730 	 * Scsi_Host.highmem_io, and so forth.  It's readonly to all
2731 	 * host side drivers though.
2732 	 */
2733 	hcc_params = readl(&oxu->caps->hcc_params);
2734 	if (HCC_64BIT_ADDR(hcc_params))
2735 		writel(0, &oxu->regs->segment);
2736 
2737 	oxu->command &= ~(CMD_LRESET | CMD_IAAD | CMD_PSE |
2738 				CMD_ASE | CMD_RESET);
2739 	oxu->command |= CMD_RUN;
2740 	writel(oxu->command, &oxu->regs->command);
2741 	dbg_cmd(oxu, "init", oxu->command);
2742 
2743 	/*
2744 	 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
2745 	 * are explicitly handed to companion controller(s), so no TT is
2746 	 * involved with the root hub.  (Except where one is integrated,
2747 	 * and there's no companion controller unless maybe for USB OTG.)
2748 	 */
2749 	hcd->state = HC_STATE_RUNNING;
2750 	writel(FLAG_CF, &oxu->regs->configured_flag);
2751 	readl(&oxu->regs->command);	/* unblock posted writes */
2752 
2753 	temp = HC_VERSION(readl(&oxu->caps->hc_capbase));
2754 	oxu_info(oxu, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n",
2755 		((oxu->sbrn & 0xf0)>>4), (oxu->sbrn & 0x0f),
2756 		temp >> 8, temp & 0xff, DRIVER_VERSION,
2757 		ignore_oc ? ", overcurrent ignored" : "");
2758 
2759 	writel(INTR_MASK, &oxu->regs->intr_enable); /* Turn On Interrupts */
2760 
2761 	return 0;
2762 }
2763 
2764 static void oxu_stop(struct usb_hcd *hcd)
2765 {
2766 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2767 
2768 	/* Turn off port power on all root hub ports. */
2769 	ehci_port_power(oxu, 0);
2770 
2771 	/* no more interrupts ... */
2772 	del_timer_sync(&oxu->watchdog);
2773 
2774 	spin_lock_irq(&oxu->lock);
2775 	if (HC_IS_RUNNING(hcd->state))
2776 		ehci_quiesce(oxu);
2777 
2778 	ehci_reset(oxu);
2779 	writel(0, &oxu->regs->intr_enable);
2780 	spin_unlock_irq(&oxu->lock);
2781 
2782 	/* let companion controllers work when we aren't */
2783 	writel(0, &oxu->regs->configured_flag);
2784 
2785 	/* root hub is shut down separately (first, when possible) */
2786 	spin_lock_irq(&oxu->lock);
2787 	if (oxu->async)
2788 		ehci_work(oxu);
2789 	spin_unlock_irq(&oxu->lock);
2790 	ehci_mem_cleanup(oxu);
2791 
2792 	dbg_status(oxu, "oxu_stop completed", readl(&oxu->regs->status));
2793 }
2794 
2795 /* Kick in for silicon on any bus (not just pci, etc).
2796  * This forcibly disables dma and IRQs, helping kexec and other cases
2797  * where the next system software may expect clean state.
2798  */
2799 static void oxu_shutdown(struct usb_hcd *hcd)
2800 {
2801 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2802 
2803 	(void) ehci_halt(oxu);
2804 	ehci_turn_off_all_ports(oxu);
2805 
2806 	/* make BIOS/etc use companion controller during reboot */
2807 	writel(0, &oxu->regs->configured_flag);
2808 
2809 	/* unblock posted writes */
2810 	readl(&oxu->regs->configured_flag);
2811 }
2812 
2813 /* Non-error returns are a promise to giveback() the urb later
2814  * we drop ownership so next owner (or urb unlink) can get it
2815  *
2816  * urb + dev is in hcd.self.controller.urb_list
2817  * we're queueing TDs onto software and hardware lists
2818  *
2819  * hcd-specific init for hcpriv hasn't been done yet
2820  *
2821  * NOTE:  control, bulk, and interrupt share the same code to append TDs
2822  * to a (possibly active) QH, and the same QH scanning code.
2823  */
2824 static int __oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
2825 				gfp_t mem_flags)
2826 {
2827 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2828 	struct list_head qtd_list;
2829 
2830 	INIT_LIST_HEAD(&qtd_list);
2831 
2832 	switch (usb_pipetype(urb->pipe)) {
2833 	case PIPE_CONTROL:
2834 	case PIPE_BULK:
2835 	default:
2836 		if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
2837 			return -ENOMEM;
2838 		return submit_async(oxu, urb, &qtd_list, mem_flags);
2839 
2840 	case PIPE_INTERRUPT:
2841 		if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
2842 			return -ENOMEM;
2843 		return intr_submit(oxu, urb, &qtd_list, mem_flags);
2844 
2845 	case PIPE_ISOCHRONOUS:
2846 		if (urb->dev->speed == USB_SPEED_HIGH)
2847 			return itd_submit(oxu, urb, mem_flags);
2848 		else
2849 			return sitd_submit(oxu, urb, mem_flags);
2850 	}
2851 }
2852 
2853 /* This function is responsible for breaking URBs with big data size
2854  * into smaller size and processing small urbs in sequence.
2855  */
2856 static int oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
2857 				gfp_t mem_flags)
2858 {
2859 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2860 	int num, rem;
2861 	int transfer_buffer_length;
2862 	void *transfer_buffer;
2863 	struct urb *murb;
2864 	int i, ret;
2865 
2866 	/* If not bulk pipe just enqueue the URB */
2867 	if (!usb_pipebulk(urb->pipe))
2868 		return __oxu_urb_enqueue(hcd, urb, mem_flags);
2869 
2870 	/* Otherwise we should verify the USB transfer buffer size! */
2871 	transfer_buffer = urb->transfer_buffer;
2872 	transfer_buffer_length = urb->transfer_buffer_length;
2873 
2874 	num = urb->transfer_buffer_length / 4096;
2875 	rem = urb->transfer_buffer_length % 4096;
2876 	if (rem != 0)
2877 		num++;
2878 
2879 	/* If URB is smaller than 4096 bytes just enqueue it! */
2880 	if (num == 1)
2881 		return __oxu_urb_enqueue(hcd, urb, mem_flags);
2882 
2883 	/* Ok, we have more job to do! :) */
2884 
2885 	for (i = 0; i < num - 1; i++) {
2886 		/* Get free micro URB poll till a free urb is received */
2887 
2888 		do {
2889 			murb = (struct urb *) oxu_murb_alloc(oxu);
2890 			if (!murb)
2891 				schedule();
2892 		} while (!murb);
2893 
2894 		/* Coping the urb */
2895 		memcpy(murb, urb, sizeof(struct urb));
2896 
2897 		murb->transfer_buffer_length = 4096;
2898 		murb->transfer_buffer = transfer_buffer + i * 4096;
2899 
2900 		/* Null pointer for the encodes that this is a micro urb */
2901 		murb->complete = NULL;
2902 
2903 		((struct oxu_murb *) murb)->main = urb;
2904 		((struct oxu_murb *) murb)->last = 0;
2905 
2906 		/* This loop is to guarantee urb to be processed when there's
2907 		 * not enough resources at a particular time by retrying.
2908 		 */
2909 		do {
2910 			ret  = __oxu_urb_enqueue(hcd, murb, mem_flags);
2911 			if (ret)
2912 				schedule();
2913 		} while (ret);
2914 	}
2915 
2916 	/* Last urb requires special handling  */
2917 
2918 	/* Get free micro URB poll till a free urb is received */
2919 	do {
2920 		murb = (struct urb *) oxu_murb_alloc(oxu);
2921 		if (!murb)
2922 			schedule();
2923 	} while (!murb);
2924 
2925 	/* Coping the urb */
2926 	memcpy(murb, urb, sizeof(struct urb));
2927 
2928 	murb->transfer_buffer_length = rem > 0 ? rem : 4096;
2929 	murb->transfer_buffer = transfer_buffer + (num - 1) * 4096;
2930 
2931 	/* Null pointer for the encodes that this is a micro urb */
2932 	murb->complete = NULL;
2933 
2934 	((struct oxu_murb *) murb)->main = urb;
2935 	((struct oxu_murb *) murb)->last = 1;
2936 
2937 	do {
2938 		ret = __oxu_urb_enqueue(hcd, murb, mem_flags);
2939 		if (ret)
2940 			schedule();
2941 	} while (ret);
2942 
2943 	return ret;
2944 }
2945 
2946 /* Remove from hardware lists.
2947  * Completions normally happen asynchronously
2948  */
2949 static int oxu_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
2950 {
2951 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2952 	struct ehci_qh *qh;
2953 	unsigned long flags;
2954 
2955 	spin_lock_irqsave(&oxu->lock, flags);
2956 	switch (usb_pipetype(urb->pipe)) {
2957 	case PIPE_CONTROL:
2958 	case PIPE_BULK:
2959 	default:
2960 		qh = (struct ehci_qh *) urb->hcpriv;
2961 		if (!qh)
2962 			break;
2963 		unlink_async(oxu, qh);
2964 		break;
2965 
2966 	case PIPE_INTERRUPT:
2967 		qh = (struct ehci_qh *) urb->hcpriv;
2968 		if (!qh)
2969 			break;
2970 		switch (qh->qh_state) {
2971 		case QH_STATE_LINKED:
2972 			intr_deschedule(oxu, qh);
2973 			/* FALL THROUGH */
2974 		case QH_STATE_IDLE:
2975 			qh_completions(oxu, qh);
2976 			break;
2977 		default:
2978 			oxu_dbg(oxu, "bogus qh %p state %d\n",
2979 					qh, qh->qh_state);
2980 			goto done;
2981 		}
2982 
2983 		/* reschedule QH iff another request is queued */
2984 		if (!list_empty(&qh->qtd_list)
2985 				&& HC_IS_RUNNING(hcd->state)) {
2986 			int status;
2987 
2988 			status = qh_schedule(oxu, qh);
2989 			spin_unlock_irqrestore(&oxu->lock, flags);
2990 
2991 			if (status != 0) {
2992 				/* shouldn't happen often, but ...
2993 				 * FIXME kill those tds' urbs
2994 				 */
2995 				dev_err(hcd->self.controller,
2996 					"can't reschedule qh %p, err %d\n", qh,
2997 					status);
2998 			}
2999 			return status;
3000 		}
3001 		break;
3002 	}
3003 done:
3004 	spin_unlock_irqrestore(&oxu->lock, flags);
3005 	return 0;
3006 }
3007 
3008 /* Bulk qh holds the data toggle */
3009 static void oxu_endpoint_disable(struct usb_hcd *hcd,
3010 					struct usb_host_endpoint *ep)
3011 {
3012 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3013 	unsigned long		flags;
3014 	struct ehci_qh		*qh, *tmp;
3015 
3016 	/* ASSERT:  any requests/urbs are being unlinked */
3017 	/* ASSERT:  nobody can be submitting urbs for this any more */
3018 
3019 rescan:
3020 	spin_lock_irqsave(&oxu->lock, flags);
3021 	qh = ep->hcpriv;
3022 	if (!qh)
3023 		goto done;
3024 
3025 	/* endpoints can be iso streams.  for now, we don't
3026 	 * accelerate iso completions ... so spin a while.
3027 	 */
3028 	if (qh->hw_info1 == 0) {
3029 		oxu_vdbg(oxu, "iso delay\n");
3030 		goto idle_timeout;
3031 	}
3032 
3033 	if (!HC_IS_RUNNING(hcd->state))
3034 		qh->qh_state = QH_STATE_IDLE;
3035 	switch (qh->qh_state) {
3036 	case QH_STATE_LINKED:
3037 		for (tmp = oxu->async->qh_next.qh;
3038 				tmp && tmp != qh;
3039 				tmp = tmp->qh_next.qh)
3040 			continue;
3041 		/* periodic qh self-unlinks on empty */
3042 		if (!tmp)
3043 			goto nogood;
3044 		unlink_async(oxu, qh);
3045 		/* FALL THROUGH */
3046 	case QH_STATE_UNLINK:		/* wait for hw to finish? */
3047 idle_timeout:
3048 		spin_unlock_irqrestore(&oxu->lock, flags);
3049 		schedule_timeout_uninterruptible(1);
3050 		goto rescan;
3051 	case QH_STATE_IDLE:		/* fully unlinked */
3052 		if (list_empty(&qh->qtd_list)) {
3053 			qh_put(qh);
3054 			break;
3055 		}
3056 		/* else FALL THROUGH */
3057 	default:
3058 nogood:
3059 		/* caller was supposed to have unlinked any requests;
3060 		 * that's not our job.  just leak this memory.
3061 		 */
3062 		oxu_err(oxu, "qh %p (#%02x) state %d%s\n",
3063 			qh, ep->desc.bEndpointAddress, qh->qh_state,
3064 			list_empty(&qh->qtd_list) ? "" : "(has tds)");
3065 		break;
3066 	}
3067 	ep->hcpriv = NULL;
3068 done:
3069 	spin_unlock_irqrestore(&oxu->lock, flags);
3070 }
3071 
3072 static int oxu_get_frame(struct usb_hcd *hcd)
3073 {
3074 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3075 
3076 	return (readl(&oxu->regs->frame_index) >> 3) %
3077 		oxu->periodic_size;
3078 }
3079 
3080 /* Build "status change" packet (one or two bytes) from HC registers */
3081 static int oxu_hub_status_data(struct usb_hcd *hcd, char *buf)
3082 {
3083 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3084 	u32 temp, mask, status = 0;
3085 	int ports, i, retval = 1;
3086 	unsigned long flags;
3087 
3088 	/* if !PM, root hub timers won't get shut down ... */
3089 	if (!HC_IS_RUNNING(hcd->state))
3090 		return 0;
3091 
3092 	/* init status to no-changes */
3093 	buf[0] = 0;
3094 	ports = HCS_N_PORTS(oxu->hcs_params);
3095 	if (ports > 7) {
3096 		buf[1] = 0;
3097 		retval++;
3098 	}
3099 
3100 	/* Some boards (mostly VIA?) report bogus overcurrent indications,
3101 	 * causing massive log spam unless we completely ignore them.  It
3102 	 * may be relevant that VIA VT8235 controllers, where PORT_POWER is
3103 	 * always set, seem to clear PORT_OCC and PORT_CSC when writing to
3104 	 * PORT_POWER; that's surprising, but maybe within-spec.
3105 	 */
3106 	if (!ignore_oc)
3107 		mask = PORT_CSC | PORT_PEC | PORT_OCC;
3108 	else
3109 		mask = PORT_CSC | PORT_PEC;
3110 
3111 	/* no hub change reports (bit 0) for now (power, ...) */
3112 
3113 	/* port N changes (bit N)? */
3114 	spin_lock_irqsave(&oxu->lock, flags);
3115 	for (i = 0; i < ports; i++) {
3116 		temp = readl(&oxu->regs->port_status[i]);
3117 
3118 		/*
3119 		 * Return status information even for ports with OWNER set.
3120 		 * Otherwise hub_wq wouldn't see the disconnect event when a
3121 		 * high-speed device is switched over to the companion
3122 		 * controller by the user.
3123 		 */
3124 
3125 		if (!(temp & PORT_CONNECT))
3126 			oxu->reset_done[i] = 0;
3127 		if ((temp & mask) != 0 || ((temp & PORT_RESUME) != 0 &&
3128 				time_after_eq(jiffies, oxu->reset_done[i]))) {
3129 			if (i < 7)
3130 				buf[0] |= 1 << (i + 1);
3131 			else
3132 				buf[1] |= 1 << (i - 7);
3133 			status = STS_PCD;
3134 		}
3135 	}
3136 	/* FIXME autosuspend idle root hubs */
3137 	spin_unlock_irqrestore(&oxu->lock, flags);
3138 	return status ? retval : 0;
3139 }
3140 
3141 /* Returns the speed of a device attached to a port on the root hub. */
3142 static inline unsigned int oxu_port_speed(struct oxu_hcd *oxu,
3143 						unsigned int portsc)
3144 {
3145 	switch ((portsc >> 26) & 3) {
3146 	case 0:
3147 		return 0;
3148 	case 1:
3149 		return USB_PORT_STAT_LOW_SPEED;
3150 	case 2:
3151 	default:
3152 		return USB_PORT_STAT_HIGH_SPEED;
3153 	}
3154 }
3155 
3156 #define	PORT_WAKE_BITS	(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E)
3157 static int oxu_hub_control(struct usb_hcd *hcd, u16 typeReq,
3158 				u16 wValue, u16 wIndex, char *buf, u16 wLength)
3159 {
3160 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3161 	int ports = HCS_N_PORTS(oxu->hcs_params);
3162 	u32 __iomem *status_reg = &oxu->regs->port_status[wIndex - 1];
3163 	u32 temp, status;
3164 	unsigned long	flags;
3165 	int retval = 0;
3166 	unsigned selector;
3167 
3168 	/*
3169 	 * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
3170 	 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
3171 	 * (track current state ourselves) ... blink for diagnostics,
3172 	 * power, "this is the one", etc.  EHCI spec supports this.
3173 	 */
3174 
3175 	spin_lock_irqsave(&oxu->lock, flags);
3176 	switch (typeReq) {
3177 	case ClearHubFeature:
3178 		switch (wValue) {
3179 		case C_HUB_LOCAL_POWER:
3180 		case C_HUB_OVER_CURRENT:
3181 			/* no hub-wide feature/status flags */
3182 			break;
3183 		default:
3184 			goto error;
3185 		}
3186 		break;
3187 	case ClearPortFeature:
3188 		if (!wIndex || wIndex > ports)
3189 			goto error;
3190 		wIndex--;
3191 		temp = readl(status_reg);
3192 
3193 		/*
3194 		 * Even if OWNER is set, so the port is owned by the
3195 		 * companion controller, hub_wq needs to be able to clear
3196 		 * the port-change status bits (especially
3197 		 * USB_PORT_STAT_C_CONNECTION).
3198 		 */
3199 
3200 		switch (wValue) {
3201 		case USB_PORT_FEAT_ENABLE:
3202 			writel(temp & ~PORT_PE, status_reg);
3203 			break;
3204 		case USB_PORT_FEAT_C_ENABLE:
3205 			writel((temp & ~PORT_RWC_BITS) | PORT_PEC, status_reg);
3206 			break;
3207 		case USB_PORT_FEAT_SUSPEND:
3208 			if (temp & PORT_RESET)
3209 				goto error;
3210 			if (temp & PORT_SUSPEND) {
3211 				if ((temp & PORT_PE) == 0)
3212 					goto error;
3213 				/* resume signaling for 20 msec */
3214 				temp &= ~(PORT_RWC_BITS | PORT_WAKE_BITS);
3215 				writel(temp | PORT_RESUME, status_reg);
3216 				oxu->reset_done[wIndex] = jiffies
3217 						+ msecs_to_jiffies(20);
3218 			}
3219 			break;
3220 		case USB_PORT_FEAT_C_SUSPEND:
3221 			/* we auto-clear this feature */
3222 			break;
3223 		case USB_PORT_FEAT_POWER:
3224 			if (HCS_PPC(oxu->hcs_params))
3225 				writel(temp & ~(PORT_RWC_BITS | PORT_POWER),
3226 					  status_reg);
3227 			break;
3228 		case USB_PORT_FEAT_C_CONNECTION:
3229 			writel((temp & ~PORT_RWC_BITS) | PORT_CSC, status_reg);
3230 			break;
3231 		case USB_PORT_FEAT_C_OVER_CURRENT:
3232 			writel((temp & ~PORT_RWC_BITS) | PORT_OCC, status_reg);
3233 			break;
3234 		case USB_PORT_FEAT_C_RESET:
3235 			/* GetPortStatus clears reset */
3236 			break;
3237 		default:
3238 			goto error;
3239 		}
3240 		readl(&oxu->regs->command);	/* unblock posted write */
3241 		break;
3242 	case GetHubDescriptor:
3243 		ehci_hub_descriptor(oxu, (struct usb_hub_descriptor *)
3244 			buf);
3245 		break;
3246 	case GetHubStatus:
3247 		/* no hub-wide feature/status flags */
3248 		memset(buf, 0, 4);
3249 		break;
3250 	case GetPortStatus:
3251 		if (!wIndex || wIndex > ports)
3252 			goto error;
3253 		wIndex--;
3254 		status = 0;
3255 		temp = readl(status_reg);
3256 
3257 		/* wPortChange bits */
3258 		if (temp & PORT_CSC)
3259 			status |= USB_PORT_STAT_C_CONNECTION << 16;
3260 		if (temp & PORT_PEC)
3261 			status |= USB_PORT_STAT_C_ENABLE << 16;
3262 		if ((temp & PORT_OCC) && !ignore_oc)
3263 			status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3264 
3265 		/* whoever resumes must GetPortStatus to complete it!! */
3266 		if (temp & PORT_RESUME) {
3267 
3268 			/* Remote Wakeup received? */
3269 			if (!oxu->reset_done[wIndex]) {
3270 				/* resume signaling for 20 msec */
3271 				oxu->reset_done[wIndex] = jiffies
3272 						+ msecs_to_jiffies(20);
3273 				/* check the port again */
3274 				mod_timer(&oxu_to_hcd(oxu)->rh_timer,
3275 						oxu->reset_done[wIndex]);
3276 			}
3277 
3278 			/* resume completed? */
3279 			else if (time_after_eq(jiffies,
3280 					oxu->reset_done[wIndex])) {
3281 				status |= USB_PORT_STAT_C_SUSPEND << 16;
3282 				oxu->reset_done[wIndex] = 0;
3283 
3284 				/* stop resume signaling */
3285 				temp = readl(status_reg);
3286 				writel(temp & ~(PORT_RWC_BITS | PORT_RESUME),
3287 					status_reg);
3288 				retval = handshake(oxu, status_reg,
3289 					   PORT_RESUME, 0, 2000 /* 2msec */);
3290 				if (retval != 0) {
3291 					oxu_err(oxu,
3292 						"port %d resume error %d\n",
3293 						wIndex + 1, retval);
3294 					goto error;
3295 				}
3296 				temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
3297 			}
3298 		}
3299 
3300 		/* whoever resets must GetPortStatus to complete it!! */
3301 		if ((temp & PORT_RESET)
3302 				&& time_after_eq(jiffies,
3303 					oxu->reset_done[wIndex])) {
3304 			status |= USB_PORT_STAT_C_RESET << 16;
3305 			oxu->reset_done[wIndex] = 0;
3306 
3307 			/* force reset to complete */
3308 			writel(temp & ~(PORT_RWC_BITS | PORT_RESET),
3309 					status_reg);
3310 			/* REVISIT:  some hardware needs 550+ usec to clear
3311 			 * this bit; seems too long to spin routinely...
3312 			 */
3313 			retval = handshake(oxu, status_reg,
3314 					PORT_RESET, 0, 750);
3315 			if (retval != 0) {
3316 				oxu_err(oxu, "port %d reset error %d\n",
3317 					wIndex + 1, retval);
3318 				goto error;
3319 			}
3320 
3321 			/* see what we found out */
3322 			temp = check_reset_complete(oxu, wIndex, status_reg,
3323 					readl(status_reg));
3324 		}
3325 
3326 		/* transfer dedicated ports to the companion hc */
3327 		if ((temp & PORT_CONNECT) &&
3328 				test_bit(wIndex, &oxu->companion_ports)) {
3329 			temp &= ~PORT_RWC_BITS;
3330 			temp |= PORT_OWNER;
3331 			writel(temp, status_reg);
3332 			oxu_dbg(oxu, "port %d --> companion\n", wIndex + 1);
3333 			temp = readl(status_reg);
3334 		}
3335 
3336 		/*
3337 		 * Even if OWNER is set, there's no harm letting hub_wq
3338 		 * see the wPortStatus values (they should all be 0 except
3339 		 * for PORT_POWER anyway).
3340 		 */
3341 
3342 		if (temp & PORT_CONNECT) {
3343 			status |= USB_PORT_STAT_CONNECTION;
3344 			/* status may be from integrated TT */
3345 			status |= oxu_port_speed(oxu, temp);
3346 		}
3347 		if (temp & PORT_PE)
3348 			status |= USB_PORT_STAT_ENABLE;
3349 		if (temp & (PORT_SUSPEND|PORT_RESUME))
3350 			status |= USB_PORT_STAT_SUSPEND;
3351 		if (temp & PORT_OC)
3352 			status |= USB_PORT_STAT_OVERCURRENT;
3353 		if (temp & PORT_RESET)
3354 			status |= USB_PORT_STAT_RESET;
3355 		if (temp & PORT_POWER)
3356 			status |= USB_PORT_STAT_POWER;
3357 
3358 #ifndef	OXU_VERBOSE_DEBUG
3359 	if (status & ~0xffff)	/* only if wPortChange is interesting */
3360 #endif
3361 		dbg_port(oxu, "GetStatus", wIndex + 1, temp);
3362 		put_unaligned(cpu_to_le32(status), (__le32 *) buf);
3363 		break;
3364 	case SetHubFeature:
3365 		switch (wValue) {
3366 		case C_HUB_LOCAL_POWER:
3367 		case C_HUB_OVER_CURRENT:
3368 			/* no hub-wide feature/status flags */
3369 			break;
3370 		default:
3371 			goto error;
3372 		}
3373 		break;
3374 	case SetPortFeature:
3375 		selector = wIndex >> 8;
3376 		wIndex &= 0xff;
3377 		if (!wIndex || wIndex > ports)
3378 			goto error;
3379 		wIndex--;
3380 		temp = readl(status_reg);
3381 		if (temp & PORT_OWNER)
3382 			break;
3383 
3384 		temp &= ~PORT_RWC_BITS;
3385 		switch (wValue) {
3386 		case USB_PORT_FEAT_SUSPEND:
3387 			if ((temp & PORT_PE) == 0
3388 					|| (temp & PORT_RESET) != 0)
3389 				goto error;
3390 			if (device_may_wakeup(&hcd->self.root_hub->dev))
3391 				temp |= PORT_WAKE_BITS;
3392 			writel(temp | PORT_SUSPEND, status_reg);
3393 			break;
3394 		case USB_PORT_FEAT_POWER:
3395 			if (HCS_PPC(oxu->hcs_params))
3396 				writel(temp | PORT_POWER, status_reg);
3397 			break;
3398 		case USB_PORT_FEAT_RESET:
3399 			if (temp & PORT_RESUME)
3400 				goto error;
3401 			/* line status bits may report this as low speed,
3402 			 * which can be fine if this root hub has a
3403 			 * transaction translator built in.
3404 			 */
3405 			oxu_vdbg(oxu, "port %d reset\n", wIndex + 1);
3406 			temp |= PORT_RESET;
3407 			temp &= ~PORT_PE;
3408 
3409 			/*
3410 			 * caller must wait, then call GetPortStatus
3411 			 * usb 2.0 spec says 50 ms resets on root
3412 			 */
3413 			oxu->reset_done[wIndex] = jiffies
3414 					+ msecs_to_jiffies(50);
3415 			writel(temp, status_reg);
3416 			break;
3417 
3418 		/* For downstream facing ports (these):  one hub port is put
3419 		 * into test mode according to USB2 11.24.2.13, then the hub
3420 		 * must be reset (which for root hub now means rmmod+modprobe,
3421 		 * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
3422 		 * about the EHCI-specific stuff.
3423 		 */
3424 		case USB_PORT_FEAT_TEST:
3425 			if (!selector || selector > 5)
3426 				goto error;
3427 			ehci_quiesce(oxu);
3428 			ehci_halt(oxu);
3429 			temp |= selector << 16;
3430 			writel(temp, status_reg);
3431 			break;
3432 
3433 		default:
3434 			goto error;
3435 		}
3436 		readl(&oxu->regs->command);	/* unblock posted writes */
3437 		break;
3438 
3439 	default:
3440 error:
3441 		/* "stall" on error */
3442 		retval = -EPIPE;
3443 	}
3444 	spin_unlock_irqrestore(&oxu->lock, flags);
3445 	return retval;
3446 }
3447 
3448 #ifdef CONFIG_PM
3449 
3450 static int oxu_bus_suspend(struct usb_hcd *hcd)
3451 {
3452 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3453 	int port;
3454 	int mask;
3455 
3456 	oxu_dbg(oxu, "suspend root hub\n");
3457 
3458 	if (time_before(jiffies, oxu->next_statechange))
3459 		msleep(5);
3460 
3461 	port = HCS_N_PORTS(oxu->hcs_params);
3462 	spin_lock_irq(&oxu->lock);
3463 
3464 	/* stop schedules, clean any completed work */
3465 	if (HC_IS_RUNNING(hcd->state)) {
3466 		ehci_quiesce(oxu);
3467 		hcd->state = HC_STATE_QUIESCING;
3468 	}
3469 	oxu->command = readl(&oxu->regs->command);
3470 	if (oxu->reclaim)
3471 		oxu->reclaim_ready = 1;
3472 	ehci_work(oxu);
3473 
3474 	/* Unlike other USB host controller types, EHCI doesn't have
3475 	 * any notion of "global" or bus-wide suspend.  The driver has
3476 	 * to manually suspend all the active unsuspended ports, and
3477 	 * then manually resume them in the bus_resume() routine.
3478 	 */
3479 	oxu->bus_suspended = 0;
3480 	while (port--) {
3481 		u32 __iomem *reg = &oxu->regs->port_status[port];
3482 		u32 t1 = readl(reg) & ~PORT_RWC_BITS;
3483 		u32 t2 = t1;
3484 
3485 		/* keep track of which ports we suspend */
3486 		if ((t1 & PORT_PE) && !(t1 & PORT_OWNER) &&
3487 				!(t1 & PORT_SUSPEND)) {
3488 			t2 |= PORT_SUSPEND;
3489 			set_bit(port, &oxu->bus_suspended);
3490 		}
3491 
3492 		/* enable remote wakeup on all ports */
3493 		if (device_may_wakeup(&hcd->self.root_hub->dev))
3494 			t2 |= PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E;
3495 		else
3496 			t2 &= ~(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E);
3497 
3498 		if (t1 != t2) {
3499 			oxu_vdbg(oxu, "port %d, %08x -> %08x\n",
3500 				port + 1, t1, t2);
3501 			writel(t2, reg);
3502 		}
3503 	}
3504 
3505 	/* turn off now-idle HC */
3506 	del_timer_sync(&oxu->watchdog);
3507 	ehci_halt(oxu);
3508 	hcd->state = HC_STATE_SUSPENDED;
3509 
3510 	/* allow remote wakeup */
3511 	mask = INTR_MASK;
3512 	if (!device_may_wakeup(&hcd->self.root_hub->dev))
3513 		mask &= ~STS_PCD;
3514 	writel(mask, &oxu->regs->intr_enable);
3515 	readl(&oxu->regs->intr_enable);
3516 
3517 	oxu->next_statechange = jiffies + msecs_to_jiffies(10);
3518 	spin_unlock_irq(&oxu->lock);
3519 	return 0;
3520 }
3521 
3522 /* Caller has locked the root hub, and should reset/reinit on error */
3523 static int oxu_bus_resume(struct usb_hcd *hcd)
3524 {
3525 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3526 	u32 temp;
3527 	int i;
3528 
3529 	if (time_before(jiffies, oxu->next_statechange))
3530 		msleep(5);
3531 	spin_lock_irq(&oxu->lock);
3532 
3533 	/* Ideally and we've got a real resume here, and no port's power
3534 	 * was lost.  (For PCI, that means Vaux was maintained.)  But we
3535 	 * could instead be restoring a swsusp snapshot -- so that BIOS was
3536 	 * the last user of the controller, not reset/pm hardware keeping
3537 	 * state we gave to it.
3538 	 */
3539 	temp = readl(&oxu->regs->intr_enable);
3540 	oxu_dbg(oxu, "resume root hub%s\n", temp ? "" : " after power loss");
3541 
3542 	/* at least some APM implementations will try to deliver
3543 	 * IRQs right away, so delay them until we're ready.
3544 	 */
3545 	writel(0, &oxu->regs->intr_enable);
3546 
3547 	/* re-init operational registers */
3548 	writel(0, &oxu->regs->segment);
3549 	writel(oxu->periodic_dma, &oxu->regs->frame_list);
3550 	writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
3551 
3552 	/* restore CMD_RUN, framelist size, and irq threshold */
3553 	writel(oxu->command, &oxu->regs->command);
3554 
3555 	/* Some controller/firmware combinations need a delay during which
3556 	 * they set up the port statuses.  See Bugzilla #8190. */
3557 	mdelay(8);
3558 
3559 	/* manually resume the ports we suspended during bus_suspend() */
3560 	i = HCS_N_PORTS(oxu->hcs_params);
3561 	while (i--) {
3562 		temp = readl(&oxu->regs->port_status[i]);
3563 		temp &= ~(PORT_RWC_BITS
3564 			| PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E);
3565 		if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3566 			oxu->reset_done[i] = jiffies + msecs_to_jiffies(20);
3567 			temp |= PORT_RESUME;
3568 		}
3569 		writel(temp, &oxu->regs->port_status[i]);
3570 	}
3571 	i = HCS_N_PORTS(oxu->hcs_params);
3572 	mdelay(20);
3573 	while (i--) {
3574 		temp = readl(&oxu->regs->port_status[i]);
3575 		if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3576 			temp &= ~(PORT_RWC_BITS | PORT_RESUME);
3577 			writel(temp, &oxu->regs->port_status[i]);
3578 			oxu_vdbg(oxu, "resumed port %d\n", i + 1);
3579 		}
3580 	}
3581 	(void) readl(&oxu->regs->command);
3582 
3583 	/* maybe re-activate the schedule(s) */
3584 	temp = 0;
3585 	if (oxu->async->qh_next.qh)
3586 		temp |= CMD_ASE;
3587 	if (oxu->periodic_sched)
3588 		temp |= CMD_PSE;
3589 	if (temp) {
3590 		oxu->command |= temp;
3591 		writel(oxu->command, &oxu->regs->command);
3592 	}
3593 
3594 	oxu->next_statechange = jiffies + msecs_to_jiffies(5);
3595 	hcd->state = HC_STATE_RUNNING;
3596 
3597 	/* Now we can safely re-enable irqs */
3598 	writel(INTR_MASK, &oxu->regs->intr_enable);
3599 
3600 	spin_unlock_irq(&oxu->lock);
3601 	return 0;
3602 }
3603 
3604 #else
3605 
3606 static int oxu_bus_suspend(struct usb_hcd *hcd)
3607 {
3608 	return 0;
3609 }
3610 
3611 static int oxu_bus_resume(struct usb_hcd *hcd)
3612 {
3613 	return 0;
3614 }
3615 
3616 #endif	/* CONFIG_PM */
3617 
3618 static const struct hc_driver oxu_hc_driver = {
3619 	.description =		"oxu210hp_hcd",
3620 	.product_desc =		"oxu210hp HCD",
3621 	.hcd_priv_size =	sizeof(struct oxu_hcd),
3622 
3623 	/*
3624 	 * Generic hardware linkage
3625 	 */
3626 	.irq =			oxu_irq,
3627 	.flags =		HCD_MEMORY | HCD_USB2,
3628 
3629 	/*
3630 	 * Basic lifecycle operations
3631 	 */
3632 	.reset =		oxu_reset,
3633 	.start =		oxu_run,
3634 	.stop =			oxu_stop,
3635 	.shutdown =		oxu_shutdown,
3636 
3637 	/*
3638 	 * Managing i/o requests and associated device resources
3639 	 */
3640 	.urb_enqueue =		oxu_urb_enqueue,
3641 	.urb_dequeue =		oxu_urb_dequeue,
3642 	.endpoint_disable =	oxu_endpoint_disable,
3643 
3644 	/*
3645 	 * Scheduling support
3646 	 */
3647 	.get_frame_number =	oxu_get_frame,
3648 
3649 	/*
3650 	 * Root hub support
3651 	 */
3652 	.hub_status_data =	oxu_hub_status_data,
3653 	.hub_control =		oxu_hub_control,
3654 	.bus_suspend =		oxu_bus_suspend,
3655 	.bus_resume =		oxu_bus_resume,
3656 };
3657 
3658 /*
3659  * Module stuff
3660  */
3661 
3662 static void oxu_configuration(struct platform_device *pdev, void *base)
3663 {
3664 	u32 tmp;
3665 
3666 	/* Initialize top level registers.
3667 	 * First write ever
3668 	 */
3669 	oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
3670 	oxu_writel(base, OXU_SOFTRESET, OXU_SRESET);
3671 	oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
3672 
3673 	tmp = oxu_readl(base, OXU_PIOBURSTREADCTRL);
3674 	oxu_writel(base, OXU_PIOBURSTREADCTRL, tmp | 0x0040);
3675 
3676 	oxu_writel(base, OXU_ASO, OXU_SPHPOEN | OXU_OVRCCURPUPDEN |
3677 					OXU_COMPARATOR | OXU_ASO_OP);
3678 
3679 	tmp = oxu_readl(base, OXU_CLKCTRL_SET);
3680 	oxu_writel(base, OXU_CLKCTRL_SET, tmp | OXU_SYSCLKEN | OXU_USBOTGCLKEN);
3681 
3682 	/* Clear all top interrupt enable */
3683 	oxu_writel(base, OXU_CHIPIRQEN_CLR, 0xff);
3684 
3685 	/* Clear all top interrupt status */
3686 	oxu_writel(base, OXU_CHIPIRQSTATUS, 0xff);
3687 
3688 	/* Enable all needed top interrupt except OTG SPH core */
3689 	oxu_writel(base, OXU_CHIPIRQEN_SET, OXU_USBSPHLPWUI | OXU_USBOTGLPWUI);
3690 }
3691 
3692 static int oxu_verify_id(struct platform_device *pdev, void *base)
3693 {
3694 	u32 id;
3695 	static const char * const bo[] = {
3696 		"reserved",
3697 		"128-pin LQFP",
3698 		"84-pin TFBGA",
3699 		"reserved",
3700 	};
3701 
3702 	/* Read controller signature register to find a match */
3703 	id = oxu_readl(base, OXU_DEVICEID);
3704 	dev_info(&pdev->dev, "device ID %x\n", id);
3705 	if ((id & OXU_REV_MASK) != (OXU_REV_2100 << OXU_REV_SHIFT))
3706 		return -1;
3707 
3708 	dev_info(&pdev->dev, "found device %x %s (%04x:%04x)\n",
3709 		id >> OXU_REV_SHIFT,
3710 		bo[(id & OXU_BO_MASK) >> OXU_BO_SHIFT],
3711 		(id & OXU_MAJ_REV_MASK) >> OXU_MAJ_REV_SHIFT,
3712 		(id & OXU_MIN_REV_MASK) >> OXU_MIN_REV_SHIFT);
3713 
3714 	return 0;
3715 }
3716 
3717 static const struct hc_driver oxu_hc_driver;
3718 static struct usb_hcd *oxu_create(struct platform_device *pdev,
3719 				unsigned long memstart, unsigned long memlen,
3720 				void *base, int irq, int otg)
3721 {
3722 	struct device *dev = &pdev->dev;
3723 
3724 	struct usb_hcd *hcd;
3725 	struct oxu_hcd *oxu;
3726 	int ret;
3727 
3728 	/* Set endian mode and host mode */
3729 	oxu_writel(base + (otg ? OXU_OTG_CORE_OFFSET : OXU_SPH_CORE_OFFSET),
3730 				OXU_USBMODE,
3731 				OXU_CM_HOST_ONLY | OXU_ES_LITTLE | OXU_VBPS);
3732 
3733 	hcd = usb_create_hcd(&oxu_hc_driver, dev,
3734 				otg ? "oxu210hp_otg" : "oxu210hp_sph");
3735 	if (!hcd)
3736 		return ERR_PTR(-ENOMEM);
3737 
3738 	hcd->rsrc_start = memstart;
3739 	hcd->rsrc_len = memlen;
3740 	hcd->regs = base;
3741 	hcd->irq = irq;
3742 	hcd->state = HC_STATE_HALT;
3743 
3744 	oxu = hcd_to_oxu(hcd);
3745 	oxu->is_otg = otg;
3746 
3747 	ret = usb_add_hcd(hcd, irq, IRQF_SHARED);
3748 	if (ret < 0)
3749 		return ERR_PTR(ret);
3750 
3751 	device_wakeup_enable(hcd->self.controller);
3752 	return hcd;
3753 }
3754 
3755 static int oxu_init(struct platform_device *pdev,
3756 				unsigned long memstart, unsigned long memlen,
3757 				void *base, int irq)
3758 {
3759 	struct oxu_info *info = platform_get_drvdata(pdev);
3760 	struct usb_hcd *hcd;
3761 	int ret;
3762 
3763 	/* First time configuration at start up */
3764 	oxu_configuration(pdev, base);
3765 
3766 	ret = oxu_verify_id(pdev, base);
3767 	if (ret) {
3768 		dev_err(&pdev->dev, "no devices found!\n");
3769 		return -ENODEV;
3770 	}
3771 
3772 	/* Create the OTG controller */
3773 	hcd = oxu_create(pdev, memstart, memlen, base, irq, 1);
3774 	if (IS_ERR(hcd)) {
3775 		dev_err(&pdev->dev, "cannot create OTG controller!\n");
3776 		ret = PTR_ERR(hcd);
3777 		goto error_create_otg;
3778 	}
3779 	info->hcd[0] = hcd;
3780 
3781 	/* Create the SPH host controller */
3782 	hcd = oxu_create(pdev, memstart, memlen, base, irq, 0);
3783 	if (IS_ERR(hcd)) {
3784 		dev_err(&pdev->dev, "cannot create SPH controller!\n");
3785 		ret = PTR_ERR(hcd);
3786 		goto error_create_sph;
3787 	}
3788 	info->hcd[1] = hcd;
3789 
3790 	oxu_writel(base, OXU_CHIPIRQEN_SET,
3791 		oxu_readl(base, OXU_CHIPIRQEN_SET) | 3);
3792 
3793 	return 0;
3794 
3795 error_create_sph:
3796 	usb_remove_hcd(info->hcd[0]);
3797 	usb_put_hcd(info->hcd[0]);
3798 
3799 error_create_otg:
3800 	return ret;
3801 }
3802 
3803 static int oxu_drv_probe(struct platform_device *pdev)
3804 {
3805 	struct resource *res;
3806 	void *base;
3807 	unsigned long memstart, memlen;
3808 	int irq, ret;
3809 	struct oxu_info *info;
3810 
3811 	if (usb_disabled())
3812 		return -ENODEV;
3813 
3814 	/*
3815 	 * Get the platform resources
3816 	 */
3817 	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
3818 	if (!res) {
3819 		dev_err(&pdev->dev,
3820 			"no IRQ! Check %s setup!\n", dev_name(&pdev->dev));
3821 		return -ENODEV;
3822 	}
3823 	irq = res->start;
3824 	dev_dbg(&pdev->dev, "IRQ resource %d\n", irq);
3825 
3826 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3827 	base = devm_ioremap_resource(&pdev->dev, res);
3828 	if (IS_ERR(base)) {
3829 		ret = PTR_ERR(base);
3830 		goto error;
3831 	}
3832 	memstart = res->start;
3833 	memlen = resource_size(res);
3834 
3835 	ret = irq_set_irq_type(irq, IRQF_TRIGGER_FALLING);
3836 	if (ret) {
3837 		dev_err(&pdev->dev, "error setting irq type\n");
3838 		ret = -EFAULT;
3839 		goto error;
3840 	}
3841 
3842 	/* Allocate a driver data struct to hold useful info for both
3843 	 * SPH & OTG devices
3844 	 */
3845 	info = devm_kzalloc(&pdev->dev, sizeof(struct oxu_info), GFP_KERNEL);
3846 	if (!info) {
3847 		ret = -EFAULT;
3848 		goto error;
3849 	}
3850 	platform_set_drvdata(pdev, info);
3851 
3852 	ret = oxu_init(pdev, memstart, memlen, base, irq);
3853 	if (ret < 0) {
3854 		dev_dbg(&pdev->dev, "cannot init USB devices\n");
3855 		goto error;
3856 	}
3857 
3858 	dev_info(&pdev->dev, "devices enabled and running\n");
3859 	platform_set_drvdata(pdev, info);
3860 
3861 	return 0;
3862 
3863 error:
3864 	dev_err(&pdev->dev, "init %s fail, %d\n", dev_name(&pdev->dev), ret);
3865 	return ret;
3866 }
3867 
3868 static void oxu_remove(struct platform_device *pdev, struct usb_hcd *hcd)
3869 {
3870 	usb_remove_hcd(hcd);
3871 	usb_put_hcd(hcd);
3872 }
3873 
3874 static int oxu_drv_remove(struct platform_device *pdev)
3875 {
3876 	struct oxu_info *info = platform_get_drvdata(pdev);
3877 
3878 	oxu_remove(pdev, info->hcd[0]);
3879 	oxu_remove(pdev, info->hcd[1]);
3880 
3881 	return 0;
3882 }
3883 
3884 static void oxu_drv_shutdown(struct platform_device *pdev)
3885 {
3886 	oxu_drv_remove(pdev);
3887 }
3888 
3889 #if 0
3890 /* FIXME: TODO */
3891 static int oxu_drv_suspend(struct device *dev)
3892 {
3893 	struct platform_device *pdev = to_platform_device(dev);
3894 	struct usb_hcd *hcd = dev_get_drvdata(dev);
3895 
3896 	return 0;
3897 }
3898 
3899 static int oxu_drv_resume(struct device *dev)
3900 {
3901 	struct platform_device *pdev = to_platform_device(dev);
3902 	struct usb_hcd *hcd = dev_get_drvdata(dev);
3903 
3904 	return 0;
3905 }
3906 #else
3907 #define oxu_drv_suspend	NULL
3908 #define oxu_drv_resume	NULL
3909 #endif
3910 
3911 static struct platform_driver oxu_driver = {
3912 	.probe		= oxu_drv_probe,
3913 	.remove		= oxu_drv_remove,
3914 	.shutdown	= oxu_drv_shutdown,
3915 	.suspend	= oxu_drv_suspend,
3916 	.resume		= oxu_drv_resume,
3917 	.driver = {
3918 		.name = "oxu210hp-hcd",
3919 		.bus = &platform_bus_type
3920 	}
3921 };
3922 
3923 module_platform_driver(oxu_driver);
3924 
3925 MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION);
3926 MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
3927 MODULE_LICENSE("GPL");
3928