xref: /linux/drivers/usb/host/oxu210hp-hcd.c (revision d53b8e36925256097a08d7cb749198d85cbf9b2b)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it>
4  * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it>
5  *
6  * This code is *strongly* based on EHCI-HCD code by David Brownell since
7  * the chip is a quasi-EHCI compatible.
8  */
9 
10 #include <linux/module.h>
11 #include <linux/pci.h>
12 #include <linux/dmapool.h>
13 #include <linux/kernel.h>
14 #include <linux/delay.h>
15 #include <linux/ioport.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/timer.h>
20 #include <linux/list.h>
21 #include <linux/interrupt.h>
22 #include <linux/usb.h>
23 #include <linux/usb/hcd.h>
24 #include <linux/moduleparam.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/io.h>
27 #include <linux/iopoll.h>
28 
29 #include <asm/irq.h>
30 #include <asm/unaligned.h>
31 
32 #include <linux/irq.h>
33 #include <linux/platform_device.h>
34 
35 #define DRIVER_VERSION "0.0.50"
36 
37 #define OXU_DEVICEID			0x00
38 	#define OXU_REV_MASK		0xffff0000
39 	#define OXU_REV_SHIFT		16
40 	#define OXU_REV_2100		0x2100
41 	#define OXU_BO_SHIFT		8
42 	#define OXU_BO_MASK		(0x3 << OXU_BO_SHIFT)
43 	#define OXU_MAJ_REV_SHIFT	4
44 	#define OXU_MAJ_REV_MASK	(0xf << OXU_MAJ_REV_SHIFT)
45 	#define OXU_MIN_REV_SHIFT	0
46 	#define OXU_MIN_REV_MASK	(0xf << OXU_MIN_REV_SHIFT)
47 #define OXU_HOSTIFCONFIG		0x04
48 #define OXU_SOFTRESET			0x08
49 	#define OXU_SRESET		(1 << 0)
50 
51 #define OXU_PIOBURSTREADCTRL		0x0C
52 
53 #define OXU_CHIPIRQSTATUS		0x10
54 #define OXU_CHIPIRQEN_SET		0x14
55 #define OXU_CHIPIRQEN_CLR		0x18
56 	#define OXU_USBSPHLPWUI		0x00000080
57 	#define OXU_USBOTGLPWUI		0x00000040
58 	#define OXU_USBSPHI		0x00000002
59 	#define OXU_USBOTGI		0x00000001
60 
61 #define OXU_CLKCTRL_SET			0x1C
62 	#define OXU_SYSCLKEN		0x00000008
63 	#define OXU_USBSPHCLKEN		0x00000002
64 	#define OXU_USBOTGCLKEN		0x00000001
65 
66 #define OXU_ASO				0x68
67 	#define OXU_SPHPOEN		0x00000100
68 	#define OXU_OVRCCURPUPDEN	0x00000800
69 	#define OXU_ASO_OP		(1 << 10)
70 	#define OXU_COMPARATOR		0x000004000
71 
72 #define OXU_USBMODE			0x1A8
73 	#define OXU_VBPS		0x00000020
74 	#define OXU_ES_LITTLE		0x00000000
75 	#define OXU_CM_HOST_ONLY	0x00000003
76 
77 /*
78  * Proper EHCI structs & defines
79  */
80 
81 /* Magic numbers that can affect system performance */
82 #define EHCI_TUNE_CERR		3	/* 0-3 qtd retries; 0 == don't stop */
83 #define EHCI_TUNE_RL_HS		4	/* nak throttle; see 4.9 */
84 #define EHCI_TUNE_RL_TT		0
85 #define EHCI_TUNE_MULT_HS	1	/* 1-3 transactions/uframe; 4.10.3 */
86 #define EHCI_TUNE_MULT_TT	1
87 #define EHCI_TUNE_FLS		2	/* (small) 256 frame schedule */
88 
89 struct oxu_hcd;
90 
91 /* EHCI register interface, corresponds to EHCI Revision 0.95 specification */
92 
93 /* Section 2.2 Host Controller Capability Registers */
94 struct ehci_caps {
95 	/* these fields are specified as 8 and 16 bit registers,
96 	 * but some hosts can't perform 8 or 16 bit PCI accesses.
97 	 */
98 	u32		hc_capbase;
99 #define HC_LENGTH(p)		(((p)>>00)&0x00ff)	/* bits 7:0 */
100 #define HC_VERSION(p)		(((p)>>16)&0xffff)	/* bits 31:16 */
101 	u32		hcs_params;     /* HCSPARAMS - offset 0x4 */
102 #define HCS_DEBUG_PORT(p)	(((p)>>20)&0xf)	/* bits 23:20, debug port? */
103 #define HCS_INDICATOR(p)	((p)&(1 << 16))	/* true: has port indicators */
104 #define HCS_N_CC(p)		(((p)>>12)&0xf)	/* bits 15:12, #companion HCs */
105 #define HCS_N_PCC(p)		(((p)>>8)&0xf)	/* bits 11:8, ports per CC */
106 #define HCS_PORTROUTED(p)	((p)&(1 << 7))	/* true: port routing */
107 #define HCS_PPC(p)		((p)&(1 << 4))	/* true: port power control */
108 #define HCS_N_PORTS(p)		(((p)>>0)&0xf)	/* bits 3:0, ports on HC */
109 
110 	u32		hcc_params;      /* HCCPARAMS - offset 0x8 */
111 #define HCC_EXT_CAPS(p)		(((p)>>8)&0xff)	/* for pci extended caps */
112 #define HCC_ISOC_CACHE(p)       ((p)&(1 << 7))  /* true: can cache isoc frame */
113 #define HCC_ISOC_THRES(p)       (((p)>>4)&0x7)  /* bits 6:4, uframes cached */
114 #define HCC_CANPARK(p)		((p)&(1 << 2))  /* true: can park on async qh */
115 #define HCC_PGM_FRAMELISTLEN(p) ((p)&(1 << 1))  /* true: periodic_size changes*/
116 #define HCC_64BIT_ADDR(p)       ((p)&(1))       /* true: can use 64-bit addr */
117 	u8		portroute[8];	 /* nibbles for routing - offset 0xC */
118 } __packed;
119 
120 
121 /* Section 2.3 Host Controller Operational Registers */
122 struct ehci_regs {
123 	/* USBCMD: offset 0x00 */
124 	u32		command;
125 /* 23:16 is r/w intr rate, in microframes; default "8" == 1/msec */
126 #define CMD_PARK	(1<<11)		/* enable "park" on async qh */
127 #define CMD_PARK_CNT(c)	(((c)>>8)&3)	/* how many transfers to park for */
128 #define CMD_LRESET	(1<<7)		/* partial reset (no ports, etc) */
129 #define CMD_IAAD	(1<<6)		/* "doorbell" interrupt async advance */
130 #define CMD_ASE		(1<<5)		/* async schedule enable */
131 #define CMD_PSE		(1<<4)		/* periodic schedule enable */
132 /* 3:2 is periodic frame list size */
133 #define CMD_RESET	(1<<1)		/* reset HC not bus */
134 #define CMD_RUN		(1<<0)		/* start/stop HC */
135 
136 	/* USBSTS: offset 0x04 */
137 	u32		status;
138 #define STS_ASS		(1<<15)		/* Async Schedule Status */
139 #define STS_PSS		(1<<14)		/* Periodic Schedule Status */
140 #define STS_RECL	(1<<13)		/* Reclamation */
141 #define STS_HALT	(1<<12)		/* Not running (any reason) */
142 /* some bits reserved */
143 	/* these STS_* flags are also intr_enable bits (USBINTR) */
144 #define STS_IAA		(1<<5)		/* Interrupted on async advance */
145 #define STS_FATAL	(1<<4)		/* such as some PCI access errors */
146 #define STS_FLR		(1<<3)		/* frame list rolled over */
147 #define STS_PCD		(1<<2)		/* port change detect */
148 #define STS_ERR		(1<<1)		/* "error" completion (overflow, ...) */
149 #define STS_INT		(1<<0)		/* "normal" completion (short, ...) */
150 
151 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
152 
153 	/* USBINTR: offset 0x08 */
154 	u32		intr_enable;
155 
156 	/* FRINDEX: offset 0x0C */
157 	u32		frame_index;	/* current microframe number */
158 	/* CTRLDSSEGMENT: offset 0x10 */
159 	u32		segment;	/* address bits 63:32 if needed */
160 	/* PERIODICLISTBASE: offset 0x14 */
161 	u32		frame_list;	/* points to periodic list */
162 	/* ASYNCLISTADDR: offset 0x18 */
163 	u32		async_next;	/* address of next async queue head */
164 
165 	u32		reserved[9];
166 
167 	/* CONFIGFLAG: offset 0x40 */
168 	u32		configured_flag;
169 #define FLAG_CF		(1<<0)		/* true: we'll support "high speed" */
170 
171 	/* PORTSC: offset 0x44 */
172 	u32		port_status[];	/* up to N_PORTS */
173 /* 31:23 reserved */
174 #define PORT_WKOC_E	(1<<22)		/* wake on overcurrent (enable) */
175 #define PORT_WKDISC_E	(1<<21)		/* wake on disconnect (enable) */
176 #define PORT_WKCONN_E	(1<<20)		/* wake on connect (enable) */
177 /* 19:16 for port testing */
178 #define PORT_LED_OFF	(0<<14)
179 #define PORT_LED_AMBER	(1<<14)
180 #define PORT_LED_GREEN	(2<<14)
181 #define PORT_LED_MASK	(3<<14)
182 #define PORT_OWNER	(1<<13)		/* true: companion hc owns this port */
183 #define PORT_POWER	(1<<12)		/* true: has power (see PPC) */
184 #define PORT_USB11(x) (((x)&(3<<10)) == (1<<10))	/* USB 1.1 device */
185 /* 11:10 for detecting lowspeed devices (reset vs release ownership) */
186 /* 9 reserved */
187 #define PORT_RESET	(1<<8)		/* reset port */
188 #define PORT_SUSPEND	(1<<7)		/* suspend port */
189 #define PORT_RESUME	(1<<6)		/* resume it */
190 #define PORT_OCC	(1<<5)		/* over current change */
191 #define PORT_OC		(1<<4)		/* over current active */
192 #define PORT_PEC	(1<<3)		/* port enable change */
193 #define PORT_PE		(1<<2)		/* port enable */
194 #define PORT_CSC	(1<<1)		/* connect status change */
195 #define PORT_CONNECT	(1<<0)		/* device connected */
196 #define PORT_RWC_BITS   (PORT_CSC | PORT_PEC | PORT_OCC)
197 } __packed;
198 
199 #define	QTD_NEXT(dma)	cpu_to_le32((u32)dma)
200 
201 /*
202  * EHCI Specification 0.95 Section 3.5
203  * QTD: describe data transfer components (buffer, direction, ...)
204  * See Fig 3-6 "Queue Element Transfer Descriptor Block Diagram".
205  *
206  * These are associated only with "QH" (Queue Head) structures,
207  * used with control, bulk, and interrupt transfers.
208  */
209 struct ehci_qtd {
210 	/* first part defined by EHCI spec */
211 	__le32			hw_next;		/* see EHCI 3.5.1 */
212 	__le32			hw_alt_next;		/* see EHCI 3.5.2 */
213 	__le32			hw_token;		/* see EHCI 3.5.3 */
214 #define	QTD_TOGGLE	(1 << 31)	/* data toggle */
215 #define	QTD_LENGTH(tok)	(((tok)>>16) & 0x7fff)
216 #define	QTD_IOC		(1 << 15)	/* interrupt on complete */
217 #define	QTD_CERR(tok)	(((tok)>>10) & 0x3)
218 #define	QTD_PID(tok)	(((tok)>>8) & 0x3)
219 #define	QTD_STS_ACTIVE	(1 << 7)	/* HC may execute this */
220 #define	QTD_STS_HALT	(1 << 6)	/* halted on error */
221 #define	QTD_STS_DBE	(1 << 5)	/* data buffer error (in HC) */
222 #define	QTD_STS_BABBLE	(1 << 4)	/* device was babbling (qtd halted) */
223 #define	QTD_STS_XACT	(1 << 3)	/* device gave illegal response */
224 #define	QTD_STS_MMF	(1 << 2)	/* incomplete split transaction */
225 #define	QTD_STS_STS	(1 << 1)	/* split transaction state */
226 #define	QTD_STS_PING	(1 << 0)	/* issue PING? */
227 	__le32			hw_buf[5];		/* see EHCI 3.5.4 */
228 	__le32			hw_buf_hi[5];		/* Appendix B */
229 
230 	/* the rest is HCD-private */
231 	dma_addr_t		qtd_dma;		/* qtd address */
232 	struct list_head	qtd_list;		/* sw qtd list */
233 	struct urb		*urb;			/* qtd's urb */
234 	size_t			length;			/* length of buffer */
235 
236 	u32			qtd_buffer_len;
237 	void			*buffer;
238 	dma_addr_t		buffer_dma;
239 	void			*transfer_buffer;
240 	void			*transfer_dma;
241 } __aligned(32);
242 
243 /* mask NakCnt+T in qh->hw_alt_next */
244 #define QTD_MASK cpu_to_le32 (~0x1f)
245 
246 #define IS_SHORT_READ(token) (QTD_LENGTH(token) != 0 && QTD_PID(token) == 1)
247 
248 /* Type tag from {qh, itd, sitd, fstn}->hw_next */
249 #define Q_NEXT_TYPE(dma) ((dma) & cpu_to_le32 (3 << 1))
250 
251 /* values for that type tag */
252 #define Q_TYPE_QH	cpu_to_le32 (1 << 1)
253 
254 /* next async queue entry, or pointer to interrupt/periodic QH */
255 #define	QH_NEXT(dma)	(cpu_to_le32(((u32)dma)&~0x01f)|Q_TYPE_QH)
256 
257 /* for periodic/async schedules and qtd lists, mark end of list */
258 #define	EHCI_LIST_END	cpu_to_le32(1) /* "null pointer" to hw */
259 
260 /*
261  * Entries in periodic shadow table are pointers to one of four kinds
262  * of data structure.  That's dictated by the hardware; a type tag is
263  * encoded in the low bits of the hardware's periodic schedule.  Use
264  * Q_NEXT_TYPE to get the tag.
265  *
266  * For entries in the async schedule, the type tag always says "qh".
267  */
268 union ehci_shadow {
269 	struct ehci_qh		*qh;		/* Q_TYPE_QH */
270 	__le32			*hw_next;	/* (all types) */
271 	void			*ptr;
272 };
273 
274 /*
275  * EHCI Specification 0.95 Section 3.6
276  * QH: describes control/bulk/interrupt endpoints
277  * See Fig 3-7 "Queue Head Structure Layout".
278  *
279  * These appear in both the async and (for interrupt) periodic schedules.
280  */
281 
282 struct ehci_qh {
283 	/* first part defined by EHCI spec */
284 	__le32			hw_next;	 /* see EHCI 3.6.1 */
285 	__le32			hw_info1;	/* see EHCI 3.6.2 */
286 #define	QH_HEAD		0x00008000
287 	__le32			hw_info2;	/* see EHCI 3.6.2 */
288 #define	QH_SMASK	0x000000ff
289 #define	QH_CMASK	0x0000ff00
290 #define	QH_HUBADDR	0x007f0000
291 #define	QH_HUBPORT	0x3f800000
292 #define	QH_MULT		0xc0000000
293 	__le32			hw_current;	 /* qtd list - see EHCI 3.6.4 */
294 
295 	/* qtd overlay (hardware parts of a struct ehci_qtd) */
296 	__le32			hw_qtd_next;
297 	__le32			hw_alt_next;
298 	__le32			hw_token;
299 	__le32			hw_buf[5];
300 	__le32			hw_buf_hi[5];
301 
302 	/* the rest is HCD-private */
303 	dma_addr_t		qh_dma;		/* address of qh */
304 	union ehci_shadow	qh_next;	/* ptr to qh; or periodic */
305 	struct list_head	qtd_list;	/* sw qtd list */
306 	struct ehci_qtd		*dummy;
307 	struct ehci_qh		*reclaim;	/* next to reclaim */
308 
309 	struct oxu_hcd		*oxu;
310 	struct kref		kref;
311 	unsigned int		stamp;
312 
313 	u8			qh_state;
314 #define	QH_STATE_LINKED		1		/* HC sees this */
315 #define	QH_STATE_UNLINK		2		/* HC may still see this */
316 #define	QH_STATE_IDLE		3		/* HC doesn't see this */
317 #define	QH_STATE_UNLINK_WAIT	4		/* LINKED and on reclaim q */
318 #define	QH_STATE_COMPLETING	5		/* don't touch token.HALT */
319 
320 	/* periodic schedule info */
321 	u8			usecs;		/* intr bandwidth */
322 	u8			gap_uf;		/* uframes split/csplit gap */
323 	u8			c_usecs;	/* ... split completion bw */
324 	u16			tt_usecs;	/* tt downstream bandwidth */
325 	unsigned short		period;		/* polling interval */
326 	unsigned short		start;		/* where polling starts */
327 #define NO_FRAME ((unsigned short)~0)			/* pick new start */
328 	struct usb_device	*dev;		/* access to TT */
329 } __aligned(32);
330 
331 /*
332  * Proper OXU210HP structs
333  */
334 
335 #define OXU_OTG_CORE_OFFSET	0x00400
336 #define OXU_OTG_CAP_OFFSET	(OXU_OTG_CORE_OFFSET + 0x100)
337 #define OXU_SPH_CORE_OFFSET	0x00800
338 #define OXU_SPH_CAP_OFFSET	(OXU_SPH_CORE_OFFSET + 0x100)
339 
340 #define OXU_OTG_MEM		0xE000
341 #define OXU_SPH_MEM		0x16000
342 
343 /* Only how many elements & element structure are specifies here. */
344 /* 2 host controllers are enabled - total size <= 28 kbytes */
345 #define	DEFAULT_I_TDPS		1024
346 #define QHEAD_NUM		16
347 #define QTD_NUM			32
348 #define SITD_NUM		8
349 #define MURB_NUM		8
350 
351 #define BUFFER_NUM		8
352 #define BUFFER_SIZE		512
353 
354 struct oxu_info {
355 	struct usb_hcd *hcd[2];
356 };
357 
358 struct oxu_buf {
359 	u8			buffer[BUFFER_SIZE];
360 } __aligned(BUFFER_SIZE);
361 
362 struct oxu_onchip_mem {
363 	struct oxu_buf		db_pool[BUFFER_NUM];
364 
365 	u32			frame_list[DEFAULT_I_TDPS];
366 	struct ehci_qh		qh_pool[QHEAD_NUM];
367 	struct ehci_qtd		qtd_pool[QTD_NUM];
368 } __aligned(4 << 10);
369 
370 #define	EHCI_MAX_ROOT_PORTS	15		/* see HCS_N_PORTS */
371 
372 struct oxu_murb {
373 	struct urb		urb;
374 	struct urb		*main;
375 	u8			last;
376 };
377 
378 struct oxu_hcd {				/* one per controller */
379 	unsigned int		is_otg:1;
380 
381 	u8			qh_used[QHEAD_NUM];
382 	u8			qtd_used[QTD_NUM];
383 	u8			db_used[BUFFER_NUM];
384 	u8			murb_used[MURB_NUM];
385 
386 	struct oxu_onchip_mem	__iomem *mem;
387 	spinlock_t		mem_lock;
388 
389 	struct timer_list	urb_timer;
390 
391 	struct ehci_caps __iomem *caps;
392 	struct ehci_regs __iomem *regs;
393 
394 	u32			hcs_params;	/* cached register copy */
395 	spinlock_t		lock;
396 
397 	/* async schedule support */
398 	struct ehci_qh		*async;
399 	struct ehci_qh		*reclaim;
400 	unsigned int		reclaim_ready:1;
401 	unsigned int		scanning:1;
402 
403 	/* periodic schedule support */
404 	unsigned int		periodic_size;
405 	__le32			*periodic;	/* hw periodic table */
406 	dma_addr_t		periodic_dma;
407 	unsigned int		i_thresh;	/* uframes HC might cache */
408 
409 	union ehci_shadow	*pshadow;	/* mirror hw periodic table */
410 	int			next_uframe;	/* scan periodic, start here */
411 	unsigned int		periodic_sched;	/* periodic activity count */
412 
413 	/* per root hub port */
414 	unsigned long		reset_done[EHCI_MAX_ROOT_PORTS];
415 	/* bit vectors (one bit per port) */
416 	unsigned long		bus_suspended;	/* which ports were
417 						 * already suspended at the
418 						 * start of a bus suspend
419 						 */
420 	unsigned long		companion_ports;/* which ports are dedicated
421 						 * to the companion controller
422 						 */
423 
424 	struct timer_list	watchdog;
425 	unsigned long		actions;
426 	unsigned int		stamp;
427 	unsigned long		next_statechange;
428 	u32			command;
429 
430 	/* SILICON QUIRKS */
431 	struct list_head	urb_list;	/* this is the head to urb
432 						 * queue that didn't get enough
433 						 * resources
434 						 */
435 	struct oxu_murb		*murb_pool;	/* murb per split big urb */
436 	unsigned int		urb_len;
437 
438 	u8			sbrn;		/* packed release number */
439 };
440 
441 #define EHCI_IAA_JIFFIES	(HZ/100)	/* arbitrary; ~10 msec */
442 #define EHCI_IO_JIFFIES		(HZ/10)		/* io watchdog > irq_thresh */
443 #define EHCI_ASYNC_JIFFIES      (HZ/20)		/* async idle timeout */
444 #define EHCI_SHRINK_JIFFIES     (HZ/200)	/* async qh unlink delay */
445 
446 enum ehci_timer_action {
447 	TIMER_IO_WATCHDOG,
448 	TIMER_IAA_WATCHDOG,
449 	TIMER_ASYNC_SHRINK,
450 	TIMER_ASYNC_OFF,
451 };
452 
453 /*
454  * Main defines
455  */
456 
457 #define oxu_dbg(oxu, fmt, args...) \
458 		dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
459 #define oxu_err(oxu, fmt, args...) \
460 		dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
461 #define oxu_info(oxu, fmt, args...) \
462 		dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
463 
464 #ifdef CONFIG_DYNAMIC_DEBUG
465 #define DEBUG
466 #endif
467 
468 static inline struct usb_hcd *oxu_to_hcd(struct oxu_hcd *oxu)
469 {
470 	return container_of((void *) oxu, struct usb_hcd, hcd_priv);
471 }
472 
473 static inline struct oxu_hcd *hcd_to_oxu(struct usb_hcd *hcd)
474 {
475 	return (struct oxu_hcd *) (hcd->hcd_priv);
476 }
477 
478 /*
479  * Debug stuff
480  */
481 
482 #undef OXU_URB_TRACE
483 #undef OXU_VERBOSE_DEBUG
484 
485 #ifdef OXU_VERBOSE_DEBUG
486 #define oxu_vdbg			oxu_dbg
487 #else
488 #define oxu_vdbg(oxu, fmt, args...)	/* Nop */
489 #endif
490 
491 #ifdef DEBUG
492 
493 static int __attribute__((__unused__))
494 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
495 {
496 	return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
497 		label, label[0] ? " " : "", status,
498 		(status & STS_ASS) ? " Async" : "",
499 		(status & STS_PSS) ? " Periodic" : "",
500 		(status & STS_RECL) ? " Recl" : "",
501 		(status & STS_HALT) ? " Halt" : "",
502 		(status & STS_IAA) ? " IAA" : "",
503 		(status & STS_FATAL) ? " FATAL" : "",
504 		(status & STS_FLR) ? " FLR" : "",
505 		(status & STS_PCD) ? " PCD" : "",
506 		(status & STS_ERR) ? " ERR" : "",
507 		(status & STS_INT) ? " INT" : ""
508 		);
509 }
510 
511 static int __attribute__((__unused__))
512 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
513 {
514 	return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
515 		label, label[0] ? " " : "", enable,
516 		(enable & STS_IAA) ? " IAA" : "",
517 		(enable & STS_FATAL) ? " FATAL" : "",
518 		(enable & STS_FLR) ? " FLR" : "",
519 		(enable & STS_PCD) ? " PCD" : "",
520 		(enable & STS_ERR) ? " ERR" : "",
521 		(enable & STS_INT) ? " INT" : ""
522 		);
523 }
524 
525 static const char *const fls_strings[] =
526     { "1024", "512", "256", "??" };
527 
528 static int dbg_command_buf(char *buf, unsigned len,
529 				const char *label, u32 command)
530 {
531 	return scnprintf(buf, len,
532 		"%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s",
533 		label, label[0] ? " " : "", command,
534 		(command & CMD_PARK) ? "park" : "(park)",
535 		CMD_PARK_CNT(command),
536 		(command >> 16) & 0x3f,
537 		(command & CMD_LRESET) ? " LReset" : "",
538 		(command & CMD_IAAD) ? " IAAD" : "",
539 		(command & CMD_ASE) ? " Async" : "",
540 		(command & CMD_PSE) ? " Periodic" : "",
541 		fls_strings[(command >> 2) & 0x3],
542 		(command & CMD_RESET) ? " Reset" : "",
543 		(command & CMD_RUN) ? "RUN" : "HALT"
544 		);
545 }
546 
547 static int dbg_port_buf(char *buf, unsigned len, const char *label,
548 				int port, u32 status)
549 {
550 	char	*sig;
551 
552 	/* signaling state */
553 	switch (status & (3 << 10)) {
554 	case 0 << 10:
555 		sig = "se0";
556 		break;
557 	case 1 << 10:
558 		sig = "k";	/* low speed */
559 		break;
560 	case 2 << 10:
561 		sig = "j";
562 		break;
563 	default:
564 		sig = "?";
565 		break;
566 	}
567 
568 	return scnprintf(buf, len,
569 		"%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s",
570 		label, label[0] ? " " : "", port, status,
571 		(status & PORT_POWER) ? " POWER" : "",
572 		(status & PORT_OWNER) ? " OWNER" : "",
573 		sig,
574 		(status & PORT_RESET) ? " RESET" : "",
575 		(status & PORT_SUSPEND) ? " SUSPEND" : "",
576 		(status & PORT_RESUME) ? " RESUME" : "",
577 		(status & PORT_OCC) ? " OCC" : "",
578 		(status & PORT_OC) ? " OC" : "",
579 		(status & PORT_PEC) ? " PEC" : "",
580 		(status & PORT_PE) ? " PE" : "",
581 		(status & PORT_CSC) ? " CSC" : "",
582 		(status & PORT_CONNECT) ? " CONNECT" : ""
583 	    );
584 }
585 
586 #else
587 
588 static inline int __attribute__((__unused__))
589 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
590 { return 0; }
591 
592 static inline int __attribute__((__unused__))
593 dbg_command_buf(char *buf, unsigned len, const char *label, u32 command)
594 { return 0; }
595 
596 static inline int __attribute__((__unused__))
597 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
598 { return 0; }
599 
600 static inline int __attribute__((__unused__))
601 dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status)
602 { return 0; }
603 
604 #endif /* DEBUG */
605 
606 /* functions have the "wrong" filename when they're output... */
607 #define dbg_status(oxu, label, status) { \
608 	char _buf[80]; \
609 	dbg_status_buf(_buf, sizeof _buf, label, status); \
610 	oxu_dbg(oxu, "%s\n", _buf); \
611 }
612 
613 #define dbg_cmd(oxu, label, command) { \
614 	char _buf[80]; \
615 	dbg_command_buf(_buf, sizeof _buf, label, command); \
616 	oxu_dbg(oxu, "%s\n", _buf); \
617 }
618 
619 #define dbg_port(oxu, label, port, status) { \
620 	char _buf[80]; \
621 	dbg_port_buf(_buf, sizeof _buf, label, port, status); \
622 	oxu_dbg(oxu, "%s\n", _buf); \
623 }
624 
625 /*
626  * Module parameters
627  */
628 
629 /* Initial IRQ latency: faster than hw default */
630 static int log2_irq_thresh;			/* 0 to 6 */
631 module_param(log2_irq_thresh, int, S_IRUGO);
632 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
633 
634 /* Initial park setting: slower than hw default */
635 static unsigned park;
636 module_param(park, uint, S_IRUGO);
637 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
638 
639 /* For flakey hardware, ignore overcurrent indicators */
640 static bool ignore_oc;
641 module_param(ignore_oc, bool, S_IRUGO);
642 MODULE_PARM_DESC(ignore_oc, "ignore bogus hardware overcurrent indications");
643 
644 
645 static void ehci_work(struct oxu_hcd *oxu);
646 static int oxu_hub_control(struct usb_hcd *hcd,
647 				u16 typeReq, u16 wValue, u16 wIndex,
648 				char *buf, u16 wLength);
649 
650 /*
651  * Local functions
652  */
653 
654 /* Low level read/write registers functions */
655 static inline u32 oxu_readl(void __iomem *base, u32 reg)
656 {
657 	return readl(base + reg);
658 }
659 
660 static inline void oxu_writel(void __iomem *base, u32 reg, u32 val)
661 {
662 	writel(val, base + reg);
663 }
664 
665 static inline void timer_action_done(struct oxu_hcd *oxu,
666 					enum ehci_timer_action action)
667 {
668 	clear_bit(action, &oxu->actions);
669 }
670 
671 static inline void timer_action(struct oxu_hcd *oxu,
672 					enum ehci_timer_action action)
673 {
674 	if (!test_and_set_bit(action, &oxu->actions)) {
675 		unsigned long t;
676 
677 		switch (action) {
678 		case TIMER_IAA_WATCHDOG:
679 			t = EHCI_IAA_JIFFIES;
680 			break;
681 		case TIMER_IO_WATCHDOG:
682 			t = EHCI_IO_JIFFIES;
683 			break;
684 		case TIMER_ASYNC_OFF:
685 			t = EHCI_ASYNC_JIFFIES;
686 			break;
687 		case TIMER_ASYNC_SHRINK:
688 		default:
689 			t = EHCI_SHRINK_JIFFIES;
690 			break;
691 		}
692 		t += jiffies;
693 		/* all timings except IAA watchdog can be overridden.
694 		 * async queue SHRINK often precedes IAA.  while it's ready
695 		 * to go OFF neither can matter, and afterwards the IO
696 		 * watchdog stops unless there's still periodic traffic.
697 		 */
698 		if (action != TIMER_IAA_WATCHDOG
699 				&& t > oxu->watchdog.expires
700 				&& timer_pending(&oxu->watchdog))
701 			return;
702 		mod_timer(&oxu->watchdog, t);
703 	}
704 }
705 
706 /*
707  * handshake - spin reading hc until handshake completes or fails
708  * @ptr: address of hc register to be read
709  * @mask: bits to look at in result of read
710  * @done: value of those bits when handshake succeeds
711  * @usec: timeout in microseconds
712  *
713  * Returns negative errno, or zero on success
714  *
715  * Success happens when the "mask" bits have the specified value (hardware
716  * handshake done).  There are two failure modes:  "usec" have passed (major
717  * hardware flakeout), or the register reads as all-ones (hardware removed).
718  *
719  * That last failure should_only happen in cases like physical cardbus eject
720  * before driver shutdown. But it also seems to be caused by bugs in cardbus
721  * bridge shutdown:  shutting down the bridge before the devices using it.
722  */
723 static int handshake(struct oxu_hcd *oxu, void __iomem *ptr,
724 					u32 mask, u32 done, int usec)
725 {
726 	u32 result;
727 	int ret;
728 
729 	ret = readl_poll_timeout_atomic(ptr, result,
730 					((result & mask) == done ||
731 					 result == U32_MAX),
732 					1, usec);
733 	if (result == U32_MAX)		/* card removed */
734 		return -ENODEV;
735 
736 	return ret;
737 }
738 
739 /* Force HC to halt state from unknown (EHCI spec section 2.3) */
740 static int ehci_halt(struct oxu_hcd *oxu)
741 {
742 	u32	temp = readl(&oxu->regs->status);
743 
744 	/* disable any irqs left enabled by previous code */
745 	writel(0, &oxu->regs->intr_enable);
746 
747 	if ((temp & STS_HALT) != 0)
748 		return 0;
749 
750 	temp = readl(&oxu->regs->command);
751 	temp &= ~CMD_RUN;
752 	writel(temp, &oxu->regs->command);
753 	return handshake(oxu, &oxu->regs->status,
754 			  STS_HALT, STS_HALT, 16 * 125);
755 }
756 
757 /* Put TDI/ARC silicon into EHCI mode */
758 static void tdi_reset(struct oxu_hcd *oxu)
759 {
760 	u32 __iomem *reg_ptr;
761 	u32 tmp;
762 
763 	reg_ptr = (u32 __iomem *)(((u8 __iomem *)oxu->regs) + 0x68);
764 	tmp = readl(reg_ptr);
765 	tmp |= 0x3;
766 	writel(tmp, reg_ptr);
767 }
768 
769 /* Reset a non-running (STS_HALT == 1) controller */
770 static int ehci_reset(struct oxu_hcd *oxu)
771 {
772 	int	retval;
773 	u32	command = readl(&oxu->regs->command);
774 
775 	command |= CMD_RESET;
776 	dbg_cmd(oxu, "reset", command);
777 	writel(command, &oxu->regs->command);
778 	oxu_to_hcd(oxu)->state = HC_STATE_HALT;
779 	oxu->next_statechange = jiffies;
780 	retval = handshake(oxu, &oxu->regs->command,
781 			    CMD_RESET, 0, 250 * 1000);
782 
783 	if (retval)
784 		return retval;
785 
786 	tdi_reset(oxu);
787 
788 	return retval;
789 }
790 
791 /* Idle the controller (from running) */
792 static void ehci_quiesce(struct oxu_hcd *oxu)
793 {
794 	u32	temp;
795 
796 #ifdef DEBUG
797 	BUG_ON(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state));
798 #endif
799 
800 	/* wait for any schedule enables/disables to take effect */
801 	temp = readl(&oxu->regs->command) << 10;
802 	temp &= STS_ASS | STS_PSS;
803 	if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
804 				temp, 16 * 125) != 0) {
805 		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
806 		return;
807 	}
808 
809 	/* then disable anything that's still active */
810 	temp = readl(&oxu->regs->command);
811 	temp &= ~(CMD_ASE | CMD_IAAD | CMD_PSE);
812 	writel(temp, &oxu->regs->command);
813 
814 	/* hardware can take 16 microframes to turn off ... */
815 	if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
816 				0, 16 * 125) != 0) {
817 		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
818 		return;
819 	}
820 }
821 
822 static int check_reset_complete(struct oxu_hcd *oxu, int index,
823 				u32 __iomem *status_reg, int port_status)
824 {
825 	if (!(port_status & PORT_CONNECT)) {
826 		oxu->reset_done[index] = 0;
827 		return port_status;
828 	}
829 
830 	/* if reset finished and it's still not enabled -- handoff */
831 	if (!(port_status & PORT_PE)) {
832 		oxu_dbg(oxu, "Failed to enable port %d on root hub TT\n",
833 				index+1);
834 		return port_status;
835 	} else
836 		oxu_dbg(oxu, "port %d high speed\n", index + 1);
837 
838 	return port_status;
839 }
840 
841 static void ehci_hub_descriptor(struct oxu_hcd *oxu,
842 				struct usb_hub_descriptor *desc)
843 {
844 	int ports = HCS_N_PORTS(oxu->hcs_params);
845 	u16 temp;
846 
847 	desc->bDescriptorType = USB_DT_HUB;
848 	desc->bPwrOn2PwrGood = 10;	/* oxu 1.0, 2.3.9 says 20ms max */
849 	desc->bHubContrCurrent = 0;
850 
851 	desc->bNbrPorts = ports;
852 	temp = 1 + (ports / 8);
853 	desc->bDescLength = 7 + 2 * temp;
854 
855 	/* ports removable, and usb 1.0 legacy PortPwrCtrlMask */
856 	memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
857 	memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
858 
859 	temp = HUB_CHAR_INDV_PORT_OCPM;	/* per-port overcurrent reporting */
860 	if (HCS_PPC(oxu->hcs_params))
861 		temp |= HUB_CHAR_INDV_PORT_LPSM; /* per-port power control */
862 	else
863 		temp |= HUB_CHAR_NO_LPSM; /* no power switching */
864 	desc->wHubCharacteristics = (__force __u16)cpu_to_le16(temp);
865 }
866 
867 
868 /* Allocate an OXU210HP on-chip memory data buffer
869  *
870  * An on-chip memory data buffer is required for each OXU210HP USB transfer.
871  * Each transfer descriptor has one or more on-chip memory data buffers.
872  *
873  * Data buffers are allocated from a fix sized pool of data blocks.
874  * To minimise fragmentation and give reasonable memory utlisation,
875  * data buffers are allocated with sizes the power of 2 multiples of
876  * the block size, starting on an address a multiple of the allocated size.
877  *
878  * FIXME: callers of this function require a buffer to be allocated for
879  * len=0. This is a waste of on-chip memory and should be fix. Then this
880  * function should be changed to not allocate a buffer for len=0.
881  */
882 static int oxu_buf_alloc(struct oxu_hcd *oxu, struct ehci_qtd *qtd, int len)
883 {
884 	int n_blocks;	/* minium blocks needed to hold len */
885 	int a_blocks;	/* blocks allocated */
886 	int i, j;
887 
888 	/* Don't allocte bigger than supported */
889 	if (len > BUFFER_SIZE * BUFFER_NUM) {
890 		oxu_err(oxu, "buffer too big (%d)\n", len);
891 		return -ENOMEM;
892 	}
893 
894 	spin_lock(&oxu->mem_lock);
895 
896 	/* Number of blocks needed to hold len */
897 	n_blocks = (len + BUFFER_SIZE - 1) / BUFFER_SIZE;
898 
899 	/* Round the number of blocks up to the power of 2 */
900 	for (a_blocks = 1; a_blocks < n_blocks; a_blocks <<= 1)
901 		;
902 
903 	/* Find a suitable available data buffer */
904 	for (i = 0; i < BUFFER_NUM;
905 			i += max(a_blocks, (int)oxu->db_used[i])) {
906 
907 		/* Check all the required blocks are available */
908 		for (j = 0; j < a_blocks; j++)
909 			if (oxu->db_used[i + j])
910 				break;
911 
912 		if (j != a_blocks)
913 			continue;
914 
915 		/* Allocate blocks found! */
916 		qtd->buffer = (void *) &oxu->mem->db_pool[i];
917 		qtd->buffer_dma = virt_to_phys(qtd->buffer);
918 
919 		qtd->qtd_buffer_len = BUFFER_SIZE * a_blocks;
920 		oxu->db_used[i] = a_blocks;
921 
922 		spin_unlock(&oxu->mem_lock);
923 
924 		return 0;
925 	}
926 
927 	/* Failed */
928 
929 	spin_unlock(&oxu->mem_lock);
930 
931 	return -ENOMEM;
932 }
933 
934 static void oxu_buf_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
935 {
936 	int index;
937 
938 	spin_lock(&oxu->mem_lock);
939 
940 	index = (qtd->buffer - (void *) &oxu->mem->db_pool[0])
941 							 / BUFFER_SIZE;
942 	oxu->db_used[index] = 0;
943 	qtd->qtd_buffer_len = 0;
944 	qtd->buffer_dma = 0;
945 	qtd->buffer = NULL;
946 
947 	spin_unlock(&oxu->mem_lock);
948 }
949 
950 static inline void ehci_qtd_init(struct ehci_qtd *qtd, dma_addr_t dma)
951 {
952 	memset(qtd, 0, sizeof *qtd);
953 	qtd->qtd_dma = dma;
954 	qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
955 	qtd->hw_next = EHCI_LIST_END;
956 	qtd->hw_alt_next = EHCI_LIST_END;
957 	INIT_LIST_HEAD(&qtd->qtd_list);
958 }
959 
960 static inline void oxu_qtd_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
961 {
962 	int index;
963 
964 	if (qtd->buffer)
965 		oxu_buf_free(oxu, qtd);
966 
967 	spin_lock(&oxu->mem_lock);
968 
969 	index = qtd - &oxu->mem->qtd_pool[0];
970 	oxu->qtd_used[index] = 0;
971 
972 	spin_unlock(&oxu->mem_lock);
973 }
974 
975 static struct ehci_qtd *ehci_qtd_alloc(struct oxu_hcd *oxu)
976 {
977 	int i;
978 	struct ehci_qtd *qtd = NULL;
979 
980 	spin_lock(&oxu->mem_lock);
981 
982 	for (i = 0; i < QTD_NUM; i++)
983 		if (!oxu->qtd_used[i])
984 			break;
985 
986 	if (i < QTD_NUM) {
987 		qtd = (struct ehci_qtd *) &oxu->mem->qtd_pool[i];
988 		memset(qtd, 0, sizeof *qtd);
989 
990 		qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
991 		qtd->hw_next = EHCI_LIST_END;
992 		qtd->hw_alt_next = EHCI_LIST_END;
993 		INIT_LIST_HEAD(&qtd->qtd_list);
994 
995 		qtd->qtd_dma = virt_to_phys(qtd);
996 
997 		oxu->qtd_used[i] = 1;
998 	}
999 
1000 	spin_unlock(&oxu->mem_lock);
1001 
1002 	return qtd;
1003 }
1004 
1005 static void oxu_qh_free(struct oxu_hcd *oxu, struct ehci_qh *qh)
1006 {
1007 	int index;
1008 
1009 	spin_lock(&oxu->mem_lock);
1010 
1011 	index = qh - &oxu->mem->qh_pool[0];
1012 	oxu->qh_used[index] = 0;
1013 
1014 	spin_unlock(&oxu->mem_lock);
1015 }
1016 
1017 static void qh_destroy(struct kref *kref)
1018 {
1019 	struct ehci_qh *qh = container_of(kref, struct ehci_qh, kref);
1020 	struct oxu_hcd *oxu = qh->oxu;
1021 
1022 	/* clean qtds first, and know this is not linked */
1023 	if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1024 		oxu_dbg(oxu, "unused qh not empty!\n");
1025 		BUG();
1026 	}
1027 	if (qh->dummy)
1028 		oxu_qtd_free(oxu, qh->dummy);
1029 	oxu_qh_free(oxu, qh);
1030 }
1031 
1032 static struct ehci_qh *oxu_qh_alloc(struct oxu_hcd *oxu)
1033 {
1034 	int i;
1035 	struct ehci_qh *qh = NULL;
1036 
1037 	spin_lock(&oxu->mem_lock);
1038 
1039 	for (i = 0; i < QHEAD_NUM; i++)
1040 		if (!oxu->qh_used[i])
1041 			break;
1042 
1043 	if (i < QHEAD_NUM) {
1044 		qh = (struct ehci_qh *) &oxu->mem->qh_pool[i];
1045 		memset(qh, 0, sizeof *qh);
1046 
1047 		kref_init(&qh->kref);
1048 		qh->oxu = oxu;
1049 		qh->qh_dma = virt_to_phys(qh);
1050 		INIT_LIST_HEAD(&qh->qtd_list);
1051 
1052 		/* dummy td enables safe urb queuing */
1053 		qh->dummy = ehci_qtd_alloc(oxu);
1054 		if (qh->dummy == NULL) {
1055 			oxu_dbg(oxu, "no dummy td\n");
1056 			oxu->qh_used[i] = 0;
1057 			qh = NULL;
1058 			goto unlock;
1059 		}
1060 
1061 		oxu->qh_used[i] = 1;
1062 	}
1063 unlock:
1064 	spin_unlock(&oxu->mem_lock);
1065 
1066 	return qh;
1067 }
1068 
1069 /* to share a qh (cpu threads, or hc) */
1070 static inline struct ehci_qh *qh_get(struct ehci_qh *qh)
1071 {
1072 	kref_get(&qh->kref);
1073 	return qh;
1074 }
1075 
1076 static inline void qh_put(struct ehci_qh *qh)
1077 {
1078 	kref_put(&qh->kref, qh_destroy);
1079 }
1080 
1081 static void oxu_murb_free(struct oxu_hcd *oxu, struct oxu_murb *murb)
1082 {
1083 	int index;
1084 
1085 	spin_lock(&oxu->mem_lock);
1086 
1087 	index = murb - &oxu->murb_pool[0];
1088 	oxu->murb_used[index] = 0;
1089 
1090 	spin_unlock(&oxu->mem_lock);
1091 }
1092 
1093 static struct oxu_murb *oxu_murb_alloc(struct oxu_hcd *oxu)
1094 
1095 {
1096 	int i;
1097 	struct oxu_murb *murb = NULL;
1098 
1099 	spin_lock(&oxu->mem_lock);
1100 
1101 	for (i = 0; i < MURB_NUM; i++)
1102 		if (!oxu->murb_used[i])
1103 			break;
1104 
1105 	if (i < MURB_NUM) {
1106 		murb = &(oxu->murb_pool)[i];
1107 
1108 		oxu->murb_used[i] = 1;
1109 	}
1110 
1111 	spin_unlock(&oxu->mem_lock);
1112 
1113 	return murb;
1114 }
1115 
1116 /* The queue heads and transfer descriptors are managed from pools tied
1117  * to each of the "per device" structures.
1118  * This is the initialisation and cleanup code.
1119  */
1120 static void ehci_mem_cleanup(struct oxu_hcd *oxu)
1121 {
1122 	kfree(oxu->murb_pool);
1123 	oxu->murb_pool = NULL;
1124 
1125 	if (oxu->async)
1126 		qh_put(oxu->async);
1127 	oxu->async = NULL;
1128 
1129 	del_timer(&oxu->urb_timer);
1130 
1131 	oxu->periodic = NULL;
1132 
1133 	/* shadow periodic table */
1134 	kfree(oxu->pshadow);
1135 	oxu->pshadow = NULL;
1136 }
1137 
1138 /* Remember to add cleanup code (above) if you add anything here.
1139  */
1140 static int ehci_mem_init(struct oxu_hcd *oxu, gfp_t flags)
1141 {
1142 	int i;
1143 
1144 	for (i = 0; i < oxu->periodic_size; i++)
1145 		oxu->mem->frame_list[i] = EHCI_LIST_END;
1146 	for (i = 0; i < QHEAD_NUM; i++)
1147 		oxu->qh_used[i] = 0;
1148 	for (i = 0; i < QTD_NUM; i++)
1149 		oxu->qtd_used[i] = 0;
1150 
1151 	oxu->murb_pool = kcalloc(MURB_NUM, sizeof(struct oxu_murb), flags);
1152 	if (!oxu->murb_pool)
1153 		goto fail;
1154 
1155 	for (i = 0; i < MURB_NUM; i++)
1156 		oxu->murb_used[i] = 0;
1157 
1158 	oxu->async = oxu_qh_alloc(oxu);
1159 	if (!oxu->async)
1160 		goto fail;
1161 
1162 	oxu->periodic = (__le32 *) &oxu->mem->frame_list;
1163 	oxu->periodic_dma = virt_to_phys(oxu->periodic);
1164 
1165 	for (i = 0; i < oxu->periodic_size; i++)
1166 		oxu->periodic[i] = EHCI_LIST_END;
1167 
1168 	/* software shadow of hardware table */
1169 	oxu->pshadow = kcalloc(oxu->periodic_size, sizeof(void *), flags);
1170 	if (oxu->pshadow != NULL)
1171 		return 0;
1172 
1173 fail:
1174 	oxu_dbg(oxu, "couldn't init memory\n");
1175 	ehci_mem_cleanup(oxu);
1176 	return -ENOMEM;
1177 }
1178 
1179 /* Fill a qtd, returning how much of the buffer we were able to queue up.
1180  */
1181 static int qtd_fill(struct ehci_qtd *qtd, dma_addr_t buf, size_t len,
1182 				int token, int maxpacket)
1183 {
1184 	int i, count;
1185 	u64 addr = buf;
1186 
1187 	/* one buffer entry per 4K ... first might be short or unaligned */
1188 	qtd->hw_buf[0] = cpu_to_le32((u32)addr);
1189 	qtd->hw_buf_hi[0] = cpu_to_le32((u32)(addr >> 32));
1190 	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
1191 	if (likely(len < count))		/* ... iff needed */
1192 		count = len;
1193 	else {
1194 		buf +=  0x1000;
1195 		buf &= ~0x0fff;
1196 
1197 		/* per-qtd limit: from 16K to 20K (best alignment) */
1198 		for (i = 1; count < len && i < 5; i++) {
1199 			addr = buf;
1200 			qtd->hw_buf[i] = cpu_to_le32((u32)addr);
1201 			qtd->hw_buf_hi[i] = cpu_to_le32((u32)(addr >> 32));
1202 			buf += 0x1000;
1203 			if ((count + 0x1000) < len)
1204 				count += 0x1000;
1205 			else
1206 				count = len;
1207 		}
1208 
1209 		/* short packets may only terminate transfers */
1210 		if (count != len)
1211 			count -= (count % maxpacket);
1212 	}
1213 	qtd->hw_token = cpu_to_le32((count << 16) | token);
1214 	qtd->length = count;
1215 
1216 	return count;
1217 }
1218 
1219 static inline void qh_update(struct oxu_hcd *oxu,
1220 				struct ehci_qh *qh, struct ehci_qtd *qtd)
1221 {
1222 	/* writes to an active overlay are unsafe */
1223 	BUG_ON(qh->qh_state != QH_STATE_IDLE);
1224 
1225 	qh->hw_qtd_next = QTD_NEXT(qtd->qtd_dma);
1226 	qh->hw_alt_next = EHCI_LIST_END;
1227 
1228 	/* Except for control endpoints, we make hardware maintain data
1229 	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
1230 	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
1231 	 * ever clear it.
1232 	 */
1233 	if (!(qh->hw_info1 & cpu_to_le32(1 << 14))) {
1234 		unsigned	is_out, epnum;
1235 
1236 		is_out = !(qtd->hw_token & cpu_to_le32(1 << 8));
1237 		epnum = (le32_to_cpup(&qh->hw_info1) >> 8) & 0x0f;
1238 		if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
1239 			qh->hw_token &= ~cpu_to_le32(QTD_TOGGLE);
1240 			usb_settoggle(qh->dev, epnum, is_out, 1);
1241 		}
1242 	}
1243 
1244 	/* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
1245 	wmb();
1246 	qh->hw_token &= cpu_to_le32(QTD_TOGGLE | QTD_STS_PING);
1247 }
1248 
1249 /* If it weren't for a common silicon quirk (writing the dummy into the qh
1250  * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
1251  * recovery (including urb dequeue) would need software changes to a QH...
1252  */
1253 static void qh_refresh(struct oxu_hcd *oxu, struct ehci_qh *qh)
1254 {
1255 	struct ehci_qtd *qtd;
1256 
1257 	if (list_empty(&qh->qtd_list))
1258 		qtd = qh->dummy;
1259 	else {
1260 		qtd = list_entry(qh->qtd_list.next,
1261 				struct ehci_qtd, qtd_list);
1262 		/* first qtd may already be partially processed */
1263 		if (cpu_to_le32(qtd->qtd_dma) == qh->hw_current)
1264 			qtd = NULL;
1265 	}
1266 
1267 	if (qtd)
1268 		qh_update(oxu, qh, qtd);
1269 }
1270 
1271 static void qtd_copy_status(struct oxu_hcd *oxu, struct urb *urb,
1272 				size_t length, u32 token)
1273 {
1274 	/* count IN/OUT bytes, not SETUP (even short packets) */
1275 	if (likely(QTD_PID(token) != 2))
1276 		urb->actual_length += length - QTD_LENGTH(token);
1277 
1278 	/* don't modify error codes */
1279 	if (unlikely(urb->status != -EINPROGRESS))
1280 		return;
1281 
1282 	/* force cleanup after short read; not always an error */
1283 	if (unlikely(IS_SHORT_READ(token)))
1284 		urb->status = -EREMOTEIO;
1285 
1286 	/* serious "can't proceed" faults reported by the hardware */
1287 	if (token & QTD_STS_HALT) {
1288 		if (token & QTD_STS_BABBLE) {
1289 			/* FIXME "must" disable babbling device's port too */
1290 			urb->status = -EOVERFLOW;
1291 		} else if (token & QTD_STS_MMF) {
1292 			/* fs/ls interrupt xfer missed the complete-split */
1293 			urb->status = -EPROTO;
1294 		} else if (token & QTD_STS_DBE) {
1295 			urb->status = (QTD_PID(token) == 1) /* IN ? */
1296 				? -ENOSR  /* hc couldn't read data */
1297 				: -ECOMM; /* hc couldn't write data */
1298 		} else if (token & QTD_STS_XACT) {
1299 			/* timeout, bad crc, wrong PID, etc; retried */
1300 			if (QTD_CERR(token))
1301 				urb->status = -EPIPE;
1302 			else {
1303 				oxu_dbg(oxu, "devpath %s ep%d%s 3strikes\n",
1304 					urb->dev->devpath,
1305 					usb_pipeendpoint(urb->pipe),
1306 					usb_pipein(urb->pipe) ? "in" : "out");
1307 				urb->status = -EPROTO;
1308 			}
1309 		/* CERR nonzero + no errors + halt --> stall */
1310 		} else if (QTD_CERR(token))
1311 			urb->status = -EPIPE;
1312 		else	/* unknown */
1313 			urb->status = -EPROTO;
1314 
1315 		oxu_vdbg(oxu, "dev%d ep%d%s qtd token %08x --> status %d\n",
1316 			usb_pipedevice(urb->pipe),
1317 			usb_pipeendpoint(urb->pipe),
1318 			usb_pipein(urb->pipe) ? "in" : "out",
1319 			token, urb->status);
1320 	}
1321 }
1322 
1323 static void ehci_urb_done(struct oxu_hcd *oxu, struct urb *urb)
1324 __releases(oxu->lock)
1325 __acquires(oxu->lock)
1326 {
1327 	if (likely(urb->hcpriv != NULL)) {
1328 		struct ehci_qh	*qh = (struct ehci_qh *) urb->hcpriv;
1329 
1330 		/* S-mask in a QH means it's an interrupt urb */
1331 		if ((qh->hw_info2 & cpu_to_le32(QH_SMASK)) != 0) {
1332 
1333 			/* ... update hc-wide periodic stats (for usbfs) */
1334 			oxu_to_hcd(oxu)->self.bandwidth_int_reqs--;
1335 		}
1336 		qh_put(qh);
1337 	}
1338 
1339 	urb->hcpriv = NULL;
1340 	switch (urb->status) {
1341 	case -EINPROGRESS:		/* success */
1342 		urb->status = 0;
1343 		break;
1344 	default:			/* fault */
1345 		break;
1346 	case -EREMOTEIO:		/* fault or normal */
1347 		if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
1348 			urb->status = 0;
1349 		break;
1350 	case -ECONNRESET:		/* canceled */
1351 	case -ENOENT:
1352 		break;
1353 	}
1354 
1355 #ifdef OXU_URB_TRACE
1356 	oxu_dbg(oxu, "%s %s urb %p ep%d%s status %d len %d/%d\n",
1357 		__func__, urb->dev->devpath, urb,
1358 		usb_pipeendpoint(urb->pipe),
1359 		usb_pipein(urb->pipe) ? "in" : "out",
1360 		urb->status,
1361 		urb->actual_length, urb->transfer_buffer_length);
1362 #endif
1363 
1364 	/* complete() can reenter this HCD */
1365 	spin_unlock(&oxu->lock);
1366 	usb_hcd_giveback_urb(oxu_to_hcd(oxu), urb, urb->status);
1367 	spin_lock(&oxu->lock);
1368 }
1369 
1370 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
1371 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
1372 
1373 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
1374 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
1375 
1376 #define HALT_BIT cpu_to_le32(QTD_STS_HALT)
1377 
1378 /* Process and free completed qtds for a qh, returning URBs to drivers.
1379  * Chases up to qh->hw_current.  Returns number of completions called,
1380  * indicating how much "real" work we did.
1381  */
1382 static unsigned qh_completions(struct oxu_hcd *oxu, struct ehci_qh *qh)
1383 {
1384 	struct ehci_qtd *last = NULL, *end = qh->dummy;
1385 	struct ehci_qtd	*qtd, *tmp;
1386 	int stopped;
1387 	unsigned count = 0;
1388 	int do_status = 0;
1389 	u8 state;
1390 	struct oxu_murb *murb = NULL;
1391 
1392 	if (unlikely(list_empty(&qh->qtd_list)))
1393 		return count;
1394 
1395 	/* completions (or tasks on other cpus) must never clobber HALT
1396 	 * till we've gone through and cleaned everything up, even when
1397 	 * they add urbs to this qh's queue or mark them for unlinking.
1398 	 *
1399 	 * NOTE:  unlinking expects to be done in queue order.
1400 	 */
1401 	state = qh->qh_state;
1402 	qh->qh_state = QH_STATE_COMPLETING;
1403 	stopped = (state == QH_STATE_IDLE);
1404 
1405 	/* remove de-activated QTDs from front of queue.
1406 	 * after faults (including short reads), cleanup this urb
1407 	 * then let the queue advance.
1408 	 * if queue is stopped, handles unlinks.
1409 	 */
1410 	list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
1411 		struct urb *urb;
1412 		u32 token = 0;
1413 
1414 		urb = qtd->urb;
1415 
1416 		/* Clean up any state from previous QTD ...*/
1417 		if (last) {
1418 			if (likely(last->urb != urb)) {
1419 				if (last->urb->complete == NULL) {
1420 					murb = (struct oxu_murb *) last->urb;
1421 					last->urb = murb->main;
1422 					if (murb->last) {
1423 						ehci_urb_done(oxu, last->urb);
1424 						count++;
1425 					}
1426 					oxu_murb_free(oxu, murb);
1427 				} else {
1428 					ehci_urb_done(oxu, last->urb);
1429 					count++;
1430 				}
1431 			}
1432 			oxu_qtd_free(oxu, last);
1433 			last = NULL;
1434 		}
1435 
1436 		/* ignore urbs submitted during completions we reported */
1437 		if (qtd == end)
1438 			break;
1439 
1440 		/* hardware copies qtd out of qh overlay */
1441 		rmb();
1442 		token = le32_to_cpu(qtd->hw_token);
1443 
1444 		/* always clean up qtds the hc de-activated */
1445 		if ((token & QTD_STS_ACTIVE) == 0) {
1446 
1447 			if ((token & QTD_STS_HALT) != 0) {
1448 				stopped = 1;
1449 
1450 			/* magic dummy for some short reads; qh won't advance.
1451 			 * that silicon quirk can kick in with this dummy too.
1452 			 */
1453 			} else if (IS_SHORT_READ(token) &&
1454 					!(qtd->hw_alt_next & EHCI_LIST_END)) {
1455 				stopped = 1;
1456 				goto halt;
1457 			}
1458 
1459 		/* stop scanning when we reach qtds the hc is using */
1460 		} else if (likely(!stopped &&
1461 				HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) {
1462 			break;
1463 
1464 		} else {
1465 			stopped = 1;
1466 
1467 			if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)))
1468 				urb->status = -ESHUTDOWN;
1469 
1470 			/* ignore active urbs unless some previous qtd
1471 			 * for the urb faulted (including short read) or
1472 			 * its urb was canceled.  we may patch qh or qtds.
1473 			 */
1474 			if (likely(urb->status == -EINPROGRESS))
1475 				continue;
1476 
1477 			/* issue status after short control reads */
1478 			if (unlikely(do_status != 0)
1479 					&& QTD_PID(token) == 0 /* OUT */) {
1480 				do_status = 0;
1481 				continue;
1482 			}
1483 
1484 			/* token in overlay may be most current */
1485 			if (state == QH_STATE_IDLE
1486 					&& cpu_to_le32(qtd->qtd_dma)
1487 						== qh->hw_current)
1488 				token = le32_to_cpu(qh->hw_token);
1489 
1490 			/* force halt for unlinked or blocked qh, so we'll
1491 			 * patch the qh later and so that completions can't
1492 			 * activate it while we "know" it's stopped.
1493 			 */
1494 			if ((HALT_BIT & qh->hw_token) == 0) {
1495 halt:
1496 				qh->hw_token |= HALT_BIT;
1497 				wmb();
1498 			}
1499 		}
1500 
1501 		/* Remove it from the queue */
1502 		qtd_copy_status(oxu, urb->complete ?
1503 					urb : ((struct oxu_murb *) urb)->main,
1504 				qtd->length, token);
1505 		if ((usb_pipein(qtd->urb->pipe)) &&
1506 				(NULL != qtd->transfer_buffer))
1507 			memcpy(qtd->transfer_buffer, qtd->buffer, qtd->length);
1508 		do_status = (urb->status == -EREMOTEIO)
1509 				&& usb_pipecontrol(urb->pipe);
1510 
1511 		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
1512 			last = list_entry(qtd->qtd_list.prev,
1513 					struct ehci_qtd, qtd_list);
1514 			last->hw_next = qtd->hw_next;
1515 		}
1516 		list_del(&qtd->qtd_list);
1517 		last = qtd;
1518 	}
1519 
1520 	/* last urb's completion might still need calling */
1521 	if (likely(last != NULL)) {
1522 		if (last->urb->complete == NULL) {
1523 			murb = (struct oxu_murb *) last->urb;
1524 			last->urb = murb->main;
1525 			if (murb->last) {
1526 				ehci_urb_done(oxu, last->urb);
1527 				count++;
1528 			}
1529 			oxu_murb_free(oxu, murb);
1530 		} else {
1531 			ehci_urb_done(oxu, last->urb);
1532 			count++;
1533 		}
1534 		oxu_qtd_free(oxu, last);
1535 	}
1536 
1537 	/* restore original state; caller must unlink or relink */
1538 	qh->qh_state = state;
1539 
1540 	/* be sure the hardware's done with the qh before refreshing
1541 	 * it after fault cleanup, or recovering from silicon wrongly
1542 	 * overlaying the dummy qtd (which reduces DMA chatter).
1543 	 */
1544 	if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END) {
1545 		switch (state) {
1546 		case QH_STATE_IDLE:
1547 			qh_refresh(oxu, qh);
1548 			break;
1549 		case QH_STATE_LINKED:
1550 			/* should be rare for periodic transfers,
1551 			 * except maybe high bandwidth ...
1552 			 */
1553 			if ((cpu_to_le32(QH_SMASK)
1554 					& qh->hw_info2) != 0) {
1555 				intr_deschedule(oxu, qh);
1556 				(void) qh_schedule(oxu, qh);
1557 			} else
1558 				unlink_async(oxu, qh);
1559 			break;
1560 		/* otherwise, unlink already started */
1561 		}
1562 	}
1563 
1564 	return count;
1565 }
1566 
1567 /* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */
1568 #define hb_mult(wMaxPacketSize)		(1 + (((wMaxPacketSize) >> 11) & 0x03))
1569 /* ... and packet size, for any kind of endpoint descriptor */
1570 #define max_packet(wMaxPacketSize)	((wMaxPacketSize) & 0x07ff)
1571 
1572 /* Reverse of qh_urb_transaction: free a list of TDs.
1573  * used for cleanup after errors, before HC sees an URB's TDs.
1574  */
1575 static void qtd_list_free(struct oxu_hcd *oxu,
1576 				struct urb *urb, struct list_head *head)
1577 {
1578 	struct ehci_qtd	*qtd, *temp;
1579 
1580 	list_for_each_entry_safe(qtd, temp, head, qtd_list) {
1581 		list_del(&qtd->qtd_list);
1582 		oxu_qtd_free(oxu, qtd);
1583 	}
1584 }
1585 
1586 /* Create a list of filled qtds for this URB; won't link into qh.
1587  */
1588 static struct list_head *qh_urb_transaction(struct oxu_hcd *oxu,
1589 						struct urb *urb,
1590 						struct list_head *head,
1591 						gfp_t flags)
1592 {
1593 	struct ehci_qtd	*qtd, *qtd_prev;
1594 	dma_addr_t buf;
1595 	int len, maxpacket;
1596 	int is_input;
1597 	u32 token;
1598 	void *transfer_buf = NULL;
1599 	int ret;
1600 
1601 	/*
1602 	 * URBs map to sequences of QTDs: one logical transaction
1603 	 */
1604 	qtd = ehci_qtd_alloc(oxu);
1605 	if (unlikely(!qtd))
1606 		return NULL;
1607 	list_add_tail(&qtd->qtd_list, head);
1608 	qtd->urb = urb;
1609 
1610 	token = QTD_STS_ACTIVE;
1611 	token |= (EHCI_TUNE_CERR << 10);
1612 	/* for split transactions, SplitXState initialized to zero */
1613 
1614 	len = urb->transfer_buffer_length;
1615 	is_input = usb_pipein(urb->pipe);
1616 	if (!urb->transfer_buffer && urb->transfer_buffer_length && is_input)
1617 		urb->transfer_buffer = phys_to_virt(urb->transfer_dma);
1618 
1619 	if (usb_pipecontrol(urb->pipe)) {
1620 		/* SETUP pid */
1621 		ret = oxu_buf_alloc(oxu, qtd, sizeof(struct usb_ctrlrequest));
1622 		if (ret)
1623 			goto cleanup;
1624 
1625 		qtd_fill(qtd, qtd->buffer_dma, sizeof(struct usb_ctrlrequest),
1626 				token | (2 /* "setup" */ << 8), 8);
1627 		memcpy(qtd->buffer, qtd->urb->setup_packet,
1628 				sizeof(struct usb_ctrlrequest));
1629 
1630 		/* ... and always at least one more pid */
1631 		token ^= QTD_TOGGLE;
1632 		qtd_prev = qtd;
1633 		qtd = ehci_qtd_alloc(oxu);
1634 		if (unlikely(!qtd))
1635 			goto cleanup;
1636 		qtd->urb = urb;
1637 		qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1638 		list_add_tail(&qtd->qtd_list, head);
1639 
1640 		/* for zero length DATA stages, STATUS is always IN */
1641 		if (len == 0)
1642 			token |= (1 /* "in" */ << 8);
1643 	}
1644 
1645 	/*
1646 	 * Data transfer stage: buffer setup
1647 	 */
1648 
1649 	ret = oxu_buf_alloc(oxu, qtd, len);
1650 	if (ret)
1651 		goto cleanup;
1652 
1653 	buf = qtd->buffer_dma;
1654 	transfer_buf = urb->transfer_buffer;
1655 
1656 	if (!is_input)
1657 		memcpy(qtd->buffer, qtd->urb->transfer_buffer, len);
1658 
1659 	if (is_input)
1660 		token |= (1 /* "in" */ << 8);
1661 	/* else it's already initted to "out" pid (0 << 8) */
1662 
1663 	maxpacket = usb_maxpacket(urb->dev, urb->pipe);
1664 
1665 	/*
1666 	 * buffer gets wrapped in one or more qtds;
1667 	 * last one may be "short" (including zero len)
1668 	 * and may serve as a control status ack
1669 	 */
1670 	for (;;) {
1671 		int this_qtd_len;
1672 
1673 		this_qtd_len = qtd_fill(qtd, buf, len, token, maxpacket);
1674 		qtd->transfer_buffer = transfer_buf;
1675 		len -= this_qtd_len;
1676 		buf += this_qtd_len;
1677 		transfer_buf += this_qtd_len;
1678 		if (is_input)
1679 			qtd->hw_alt_next = oxu->async->hw_alt_next;
1680 
1681 		/* qh makes control packets use qtd toggle; maybe switch it */
1682 		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
1683 			token ^= QTD_TOGGLE;
1684 
1685 		if (likely(len <= 0))
1686 			break;
1687 
1688 		qtd_prev = qtd;
1689 		qtd = ehci_qtd_alloc(oxu);
1690 		if (unlikely(!qtd))
1691 			goto cleanup;
1692 		if (likely(len > 0)) {
1693 			ret = oxu_buf_alloc(oxu, qtd, len);
1694 			if (ret)
1695 				goto cleanup;
1696 		}
1697 		qtd->urb = urb;
1698 		qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1699 		list_add_tail(&qtd->qtd_list, head);
1700 	}
1701 
1702 	/* unless the bulk/interrupt caller wants a chance to clean
1703 	 * up after short reads, hc should advance qh past this urb
1704 	 */
1705 	if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
1706 				|| usb_pipecontrol(urb->pipe)))
1707 		qtd->hw_alt_next = EHCI_LIST_END;
1708 
1709 	/*
1710 	 * control requests may need a terminating data "status" ack;
1711 	 * bulk ones may need a terminating short packet (zero length).
1712 	 */
1713 	if (likely(urb->transfer_buffer_length != 0)) {
1714 		int	one_more = 0;
1715 
1716 		if (usb_pipecontrol(urb->pipe)) {
1717 			one_more = 1;
1718 			token ^= 0x0100;	/* "in" <--> "out"  */
1719 			token |= QTD_TOGGLE;	/* force DATA1 */
1720 		} else if (usb_pipebulk(urb->pipe)
1721 				&& (urb->transfer_flags & URB_ZERO_PACKET)
1722 				&& !(urb->transfer_buffer_length % maxpacket)) {
1723 			one_more = 1;
1724 		}
1725 		if (one_more) {
1726 			qtd_prev = qtd;
1727 			qtd = ehci_qtd_alloc(oxu);
1728 			if (unlikely(!qtd))
1729 				goto cleanup;
1730 			qtd->urb = urb;
1731 			qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1732 			list_add_tail(&qtd->qtd_list, head);
1733 
1734 			/* never any data in such packets */
1735 			qtd_fill(qtd, 0, 0, token, 0);
1736 		}
1737 	}
1738 
1739 	/* by default, enable interrupt on urb completion */
1740 	qtd->hw_token |= cpu_to_le32(QTD_IOC);
1741 	return head;
1742 
1743 cleanup:
1744 	qtd_list_free(oxu, urb, head);
1745 	return NULL;
1746 }
1747 
1748 /* Each QH holds a qtd list; a QH is used for everything except iso.
1749  *
1750  * For interrupt urbs, the scheduler must set the microframe scheduling
1751  * mask(s) each time the QH gets scheduled.  For highspeed, that's
1752  * just one microframe in the s-mask.  For split interrupt transactions
1753  * there are additional complications: c-mask, maybe FSTNs.
1754  */
1755 static struct ehci_qh *qh_make(struct oxu_hcd *oxu,
1756 				struct urb *urb, gfp_t flags)
1757 {
1758 	struct ehci_qh *qh = oxu_qh_alloc(oxu);
1759 	u32 info1 = 0, info2 = 0;
1760 	int is_input, type;
1761 	int maxp = 0;
1762 
1763 	if (!qh)
1764 		return qh;
1765 
1766 	/*
1767 	 * init endpoint/device data for this QH
1768 	 */
1769 	info1 |= usb_pipeendpoint(urb->pipe) << 8;
1770 	info1 |= usb_pipedevice(urb->pipe) << 0;
1771 
1772 	is_input = usb_pipein(urb->pipe);
1773 	type = usb_pipetype(urb->pipe);
1774 	maxp = usb_maxpacket(urb->dev, urb->pipe);
1775 
1776 	/* Compute interrupt scheduling parameters just once, and save.
1777 	 * - allowing for high bandwidth, how many nsec/uframe are used?
1778 	 * - split transactions need a second CSPLIT uframe; same question
1779 	 * - splits also need a schedule gap (for full/low speed I/O)
1780 	 * - qh has a polling interval
1781 	 *
1782 	 * For control/bulk requests, the HC or TT handles these.
1783 	 */
1784 	if (type == PIPE_INTERRUPT) {
1785 		qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
1786 								is_input, 0,
1787 				hb_mult(maxp) * max_packet(maxp)));
1788 		qh->start = NO_FRAME;
1789 
1790 		if (urb->dev->speed == USB_SPEED_HIGH) {
1791 			qh->c_usecs = 0;
1792 			qh->gap_uf = 0;
1793 
1794 			qh->period = urb->interval >> 3;
1795 			if (qh->period == 0 && urb->interval != 1) {
1796 				/* NOTE interval 2 or 4 uframes could work.
1797 				 * But interval 1 scheduling is simpler, and
1798 				 * includes high bandwidth.
1799 				 */
1800 				oxu_dbg(oxu, "intr period %d uframes, NYET!\n",
1801 					urb->interval);
1802 				goto done;
1803 			}
1804 		} else {
1805 			struct usb_tt	*tt = urb->dev->tt;
1806 			int		think_time;
1807 
1808 			/* gap is f(FS/LS transfer times) */
1809 			qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
1810 					is_input, 0, maxp) / (125 * 1000);
1811 
1812 			/* FIXME this just approximates SPLIT/CSPLIT times */
1813 			if (is_input) {		/* SPLIT, gap, CSPLIT+DATA */
1814 				qh->c_usecs = qh->usecs + HS_USECS(0);
1815 				qh->usecs = HS_USECS(1);
1816 			} else {		/* SPLIT+DATA, gap, CSPLIT */
1817 				qh->usecs += HS_USECS(1);
1818 				qh->c_usecs = HS_USECS(0);
1819 			}
1820 
1821 			think_time = tt ? tt->think_time : 0;
1822 			qh->tt_usecs = NS_TO_US(think_time +
1823 					usb_calc_bus_time(urb->dev->speed,
1824 					is_input, 0, max_packet(maxp)));
1825 			qh->period = urb->interval;
1826 		}
1827 	}
1828 
1829 	/* support for tt scheduling, and access to toggles */
1830 	qh->dev = urb->dev;
1831 
1832 	/* using TT? */
1833 	switch (urb->dev->speed) {
1834 	case USB_SPEED_LOW:
1835 		info1 |= (1 << 12);	/* EPS "low" */
1836 		fallthrough;
1837 
1838 	case USB_SPEED_FULL:
1839 		/* EPS 0 means "full" */
1840 		if (type != PIPE_INTERRUPT)
1841 			info1 |= (EHCI_TUNE_RL_TT << 28);
1842 		if (type == PIPE_CONTROL) {
1843 			info1 |= (1 << 27);	/* for TT */
1844 			info1 |= 1 << 14;	/* toggle from qtd */
1845 		}
1846 		info1 |= maxp << 16;
1847 
1848 		info2 |= (EHCI_TUNE_MULT_TT << 30);
1849 		info2 |= urb->dev->ttport << 23;
1850 
1851 		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
1852 
1853 		break;
1854 
1855 	case USB_SPEED_HIGH:		/* no TT involved */
1856 		info1 |= (2 << 12);	/* EPS "high" */
1857 		if (type == PIPE_CONTROL) {
1858 			info1 |= (EHCI_TUNE_RL_HS << 28);
1859 			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
1860 			info1 |= 1 << 14;	/* toggle from qtd */
1861 			info2 |= (EHCI_TUNE_MULT_HS << 30);
1862 		} else if (type == PIPE_BULK) {
1863 			info1 |= (EHCI_TUNE_RL_HS << 28);
1864 			info1 |= 512 << 16;	/* usb2 fixed maxpacket */
1865 			info2 |= (EHCI_TUNE_MULT_HS << 30);
1866 		} else {		/* PIPE_INTERRUPT */
1867 			info1 |= max_packet(maxp) << 16;
1868 			info2 |= hb_mult(maxp) << 30;
1869 		}
1870 		break;
1871 	default:
1872 		oxu_dbg(oxu, "bogus dev %p speed %d\n", urb->dev, urb->dev->speed);
1873 done:
1874 		qh_put(qh);
1875 		return NULL;
1876 	}
1877 
1878 	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
1879 
1880 	/* init as live, toggle clear, advance to dummy */
1881 	qh->qh_state = QH_STATE_IDLE;
1882 	qh->hw_info1 = cpu_to_le32(info1);
1883 	qh->hw_info2 = cpu_to_le32(info2);
1884 	usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
1885 	qh_refresh(oxu, qh);
1886 	return qh;
1887 }
1888 
1889 /* Move qh (and its qtds) onto async queue; maybe enable queue.
1890  */
1891 static void qh_link_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
1892 {
1893 	__le32 dma = QH_NEXT(qh->qh_dma);
1894 	struct ehci_qh *head;
1895 
1896 	/* (re)start the async schedule? */
1897 	head = oxu->async;
1898 	timer_action_done(oxu, TIMER_ASYNC_OFF);
1899 	if (!head->qh_next.qh) {
1900 		u32	cmd = readl(&oxu->regs->command);
1901 
1902 		if (!(cmd & CMD_ASE)) {
1903 			/* in case a clear of CMD_ASE didn't take yet */
1904 			(void)handshake(oxu, &oxu->regs->status,
1905 					STS_ASS, 0, 150);
1906 			cmd |= CMD_ASE | CMD_RUN;
1907 			writel(cmd, &oxu->regs->command);
1908 			oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
1909 			/* posted write need not be known to HC yet ... */
1910 		}
1911 	}
1912 
1913 	/* clear halt and/or toggle; and maybe recover from silicon quirk */
1914 	if (qh->qh_state == QH_STATE_IDLE)
1915 		qh_refresh(oxu, qh);
1916 
1917 	/* splice right after start */
1918 	qh->qh_next = head->qh_next;
1919 	qh->hw_next = head->hw_next;
1920 	wmb();
1921 
1922 	head->qh_next.qh = qh;
1923 	head->hw_next = dma;
1924 
1925 	qh->qh_state = QH_STATE_LINKED;
1926 	/* qtd completions reported later by interrupt */
1927 }
1928 
1929 #define	QH_ADDR_MASK	cpu_to_le32(0x7f)
1930 
1931 /*
1932  * For control/bulk/interrupt, return QH with these TDs appended.
1933  * Allocates and initializes the QH if necessary.
1934  * Returns null if it can't allocate a QH it needs to.
1935  * If the QH has TDs (urbs) already, that's great.
1936  */
1937 static struct ehci_qh *qh_append_tds(struct oxu_hcd *oxu,
1938 				struct urb *urb, struct list_head *qtd_list,
1939 				int epnum, void	**ptr)
1940 {
1941 	struct ehci_qh *qh = NULL;
1942 
1943 	qh = (struct ehci_qh *) *ptr;
1944 	if (unlikely(qh == NULL)) {
1945 		/* can't sleep here, we have oxu->lock... */
1946 		qh = qh_make(oxu, urb, GFP_ATOMIC);
1947 		*ptr = qh;
1948 	}
1949 	if (likely(qh != NULL)) {
1950 		struct ehci_qtd	*qtd;
1951 
1952 		if (unlikely(list_empty(qtd_list)))
1953 			qtd = NULL;
1954 		else
1955 			qtd = list_entry(qtd_list->next, struct ehci_qtd,
1956 					qtd_list);
1957 
1958 		/* control qh may need patching ... */
1959 		if (unlikely(epnum == 0)) {
1960 
1961 			/* usb_reset_device() briefly reverts to address 0 */
1962 			if (usb_pipedevice(urb->pipe) == 0)
1963 				qh->hw_info1 &= ~QH_ADDR_MASK;
1964 		}
1965 
1966 		/* just one way to queue requests: swap with the dummy qtd.
1967 		 * only hc or qh_refresh() ever modify the overlay.
1968 		 */
1969 		if (likely(qtd != NULL)) {
1970 			struct ehci_qtd	*dummy;
1971 			dma_addr_t dma;
1972 			__le32 token;
1973 
1974 			/* to avoid racing the HC, use the dummy td instead of
1975 			 * the first td of our list (becomes new dummy).  both
1976 			 * tds stay deactivated until we're done, when the
1977 			 * HC is allowed to fetch the old dummy (4.10.2).
1978 			 */
1979 			token = qtd->hw_token;
1980 			qtd->hw_token = HALT_BIT;
1981 			wmb();
1982 			dummy = qh->dummy;
1983 
1984 			dma = dummy->qtd_dma;
1985 			*dummy = *qtd;
1986 			dummy->qtd_dma = dma;
1987 
1988 			list_del(&qtd->qtd_list);
1989 			list_add(&dummy->qtd_list, qtd_list);
1990 			list_splice(qtd_list, qh->qtd_list.prev);
1991 
1992 			ehci_qtd_init(qtd, qtd->qtd_dma);
1993 			qh->dummy = qtd;
1994 
1995 			/* hc must see the new dummy at list end */
1996 			dma = qtd->qtd_dma;
1997 			qtd = list_entry(qh->qtd_list.prev,
1998 					struct ehci_qtd, qtd_list);
1999 			qtd->hw_next = QTD_NEXT(dma);
2000 
2001 			/* let the hc process these next qtds */
2002 			dummy->hw_token = (token & ~(0x80));
2003 			wmb();
2004 			dummy->hw_token = token;
2005 
2006 			urb->hcpriv = qh_get(qh);
2007 		}
2008 	}
2009 	return qh;
2010 }
2011 
2012 static int submit_async(struct oxu_hcd	*oxu, struct urb *urb,
2013 			struct list_head *qtd_list, gfp_t mem_flags)
2014 {
2015 	int epnum = urb->ep->desc.bEndpointAddress;
2016 	unsigned long flags;
2017 	struct ehci_qh *qh = NULL;
2018 	int rc = 0;
2019 #ifdef OXU_URB_TRACE
2020 	struct ehci_qtd	*qtd;
2021 
2022 	qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
2023 
2024 	oxu_dbg(oxu, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2025 		__func__, urb->dev->devpath, urb,
2026 		epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
2027 		urb->transfer_buffer_length,
2028 		qtd, urb->ep->hcpriv);
2029 #endif
2030 
2031 	spin_lock_irqsave(&oxu->lock, flags);
2032 	if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
2033 		rc = -ESHUTDOWN;
2034 		goto done;
2035 	}
2036 
2037 	qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
2038 	if (unlikely(qh == NULL)) {
2039 		rc = -ENOMEM;
2040 		goto done;
2041 	}
2042 
2043 	/* Control/bulk operations through TTs don't need scheduling,
2044 	 * the HC and TT handle it when the TT has a buffer ready.
2045 	 */
2046 	if (likely(qh->qh_state == QH_STATE_IDLE))
2047 		qh_link_async(oxu, qh_get(qh));
2048 done:
2049 	spin_unlock_irqrestore(&oxu->lock, flags);
2050 	if (unlikely(qh == NULL))
2051 		qtd_list_free(oxu, urb, qtd_list);
2052 	return rc;
2053 }
2054 
2055 /* The async qh for the qtds being reclaimed are now unlinked from the HC */
2056 
2057 static void end_unlink_async(struct oxu_hcd *oxu)
2058 {
2059 	struct ehci_qh *qh = oxu->reclaim;
2060 	struct ehci_qh *next;
2061 
2062 	timer_action_done(oxu, TIMER_IAA_WATCHDOG);
2063 
2064 	qh->qh_state = QH_STATE_IDLE;
2065 	qh->qh_next.qh = NULL;
2066 	qh_put(qh);			/* refcount from reclaim */
2067 
2068 	/* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
2069 	next = qh->reclaim;
2070 	oxu->reclaim = next;
2071 	oxu->reclaim_ready = 0;
2072 	qh->reclaim = NULL;
2073 
2074 	qh_completions(oxu, qh);
2075 
2076 	if (!list_empty(&qh->qtd_list)
2077 			&& HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2078 		qh_link_async(oxu, qh);
2079 	else {
2080 		qh_put(qh);		/* refcount from async list */
2081 
2082 		/* it's not free to turn the async schedule on/off; leave it
2083 		 * active but idle for a while once it empties.
2084 		 */
2085 		if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state)
2086 				&& oxu->async->qh_next.qh == NULL)
2087 			timer_action(oxu, TIMER_ASYNC_OFF);
2088 	}
2089 
2090 	if (next) {
2091 		oxu->reclaim = NULL;
2092 		start_unlink_async(oxu, next);
2093 	}
2094 }
2095 
2096 /* makes sure the async qh will become idle */
2097 /* caller must own oxu->lock */
2098 
2099 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
2100 {
2101 	int cmd = readl(&oxu->regs->command);
2102 	struct ehci_qh *prev;
2103 
2104 #ifdef DEBUG
2105 	assert_spin_locked(&oxu->lock);
2106 	BUG_ON(oxu->reclaim || (qh->qh_state != QH_STATE_LINKED
2107 				&& qh->qh_state != QH_STATE_UNLINK_WAIT));
2108 #endif
2109 
2110 	/* stop async schedule right now? */
2111 	if (unlikely(qh == oxu->async)) {
2112 		/* can't get here without STS_ASS set */
2113 		if (oxu_to_hcd(oxu)->state != HC_STATE_HALT
2114 				&& !oxu->reclaim) {
2115 			/* ... and CMD_IAAD clear */
2116 			writel(cmd & ~CMD_ASE, &oxu->regs->command);
2117 			wmb();
2118 			/* handshake later, if we need to */
2119 			timer_action_done(oxu, TIMER_ASYNC_OFF);
2120 		}
2121 		return;
2122 	}
2123 
2124 	qh->qh_state = QH_STATE_UNLINK;
2125 	oxu->reclaim = qh = qh_get(qh);
2126 
2127 	prev = oxu->async;
2128 	while (prev->qh_next.qh != qh)
2129 		prev = prev->qh_next.qh;
2130 
2131 	prev->hw_next = qh->hw_next;
2132 	prev->qh_next = qh->qh_next;
2133 	wmb();
2134 
2135 	if (unlikely(oxu_to_hcd(oxu)->state == HC_STATE_HALT)) {
2136 		/* if (unlikely(qh->reclaim != 0))
2137 		 *	this will recurse, probably not much
2138 		 */
2139 		end_unlink_async(oxu);
2140 		return;
2141 	}
2142 
2143 	oxu->reclaim_ready = 0;
2144 	cmd |= CMD_IAAD;
2145 	writel(cmd, &oxu->regs->command);
2146 	(void) readl(&oxu->regs->command);
2147 	timer_action(oxu, TIMER_IAA_WATCHDOG);
2148 }
2149 
2150 static void scan_async(struct oxu_hcd *oxu)
2151 {
2152 	struct ehci_qh *qh;
2153 	enum ehci_timer_action action = TIMER_IO_WATCHDOG;
2154 
2155 	if (!++(oxu->stamp))
2156 		oxu->stamp++;
2157 	timer_action_done(oxu, TIMER_ASYNC_SHRINK);
2158 rescan:
2159 	qh = oxu->async->qh_next.qh;
2160 	if (likely(qh != NULL)) {
2161 		do {
2162 			/* clean any finished work for this qh */
2163 			if (!list_empty(&qh->qtd_list)
2164 					&& qh->stamp != oxu->stamp) {
2165 				int temp;
2166 
2167 				/* unlinks could happen here; completion
2168 				 * reporting drops the lock.  rescan using
2169 				 * the latest schedule, but don't rescan
2170 				 * qhs we already finished (no looping).
2171 				 */
2172 				qh = qh_get(qh);
2173 				qh->stamp = oxu->stamp;
2174 				temp = qh_completions(oxu, qh);
2175 				qh_put(qh);
2176 				if (temp != 0)
2177 					goto rescan;
2178 			}
2179 
2180 			/* unlink idle entries, reducing HC PCI usage as well
2181 			 * as HCD schedule-scanning costs.  delay for any qh
2182 			 * we just scanned, there's a not-unusual case that it
2183 			 * doesn't stay idle for long.
2184 			 * (plus, avoids some kind of re-activation race.)
2185 			 */
2186 			if (list_empty(&qh->qtd_list)) {
2187 				if (qh->stamp == oxu->stamp)
2188 					action = TIMER_ASYNC_SHRINK;
2189 				else if (!oxu->reclaim
2190 					    && qh->qh_state == QH_STATE_LINKED)
2191 					start_unlink_async(oxu, qh);
2192 			}
2193 
2194 			qh = qh->qh_next.qh;
2195 		} while (qh);
2196 	}
2197 	if (action == TIMER_ASYNC_SHRINK)
2198 		timer_action(oxu, TIMER_ASYNC_SHRINK);
2199 }
2200 
2201 /*
2202  * periodic_next_shadow - return "next" pointer on shadow list
2203  * @periodic: host pointer to qh/itd/sitd
2204  * @tag: hardware tag for type of this record
2205  */
2206 static union ehci_shadow *periodic_next_shadow(union ehci_shadow *periodic,
2207 						__le32 tag)
2208 {
2209 	switch (tag) {
2210 	default:
2211 	case Q_TYPE_QH:
2212 		return &periodic->qh->qh_next;
2213 	}
2214 }
2215 
2216 /* caller must hold oxu->lock */
2217 static void periodic_unlink(struct oxu_hcd *oxu, unsigned frame, void *ptr)
2218 {
2219 	union ehci_shadow *prev_p = &oxu->pshadow[frame];
2220 	__le32 *hw_p = &oxu->periodic[frame];
2221 	union ehci_shadow here = *prev_p;
2222 
2223 	/* find predecessor of "ptr"; hw and shadow lists are in sync */
2224 	while (here.ptr && here.ptr != ptr) {
2225 		prev_p = periodic_next_shadow(prev_p, Q_NEXT_TYPE(*hw_p));
2226 		hw_p = here.hw_next;
2227 		here = *prev_p;
2228 	}
2229 	/* an interrupt entry (at list end) could have been shared */
2230 	if (!here.ptr)
2231 		return;
2232 
2233 	/* update shadow and hardware lists ... the old "next" pointers
2234 	 * from ptr may still be in use, the caller updates them.
2235 	 */
2236 	*prev_p = *periodic_next_shadow(&here, Q_NEXT_TYPE(*hw_p));
2237 	*hw_p = *here.hw_next;
2238 }
2239 
2240 /* how many of the uframe's 125 usecs are allocated? */
2241 static unsigned short periodic_usecs(struct oxu_hcd *oxu,
2242 					unsigned frame, unsigned uframe)
2243 {
2244 	__le32 *hw_p = &oxu->periodic[frame];
2245 	union ehci_shadow *q = &oxu->pshadow[frame];
2246 	unsigned usecs = 0;
2247 
2248 	while (q->ptr) {
2249 		switch (Q_NEXT_TYPE(*hw_p)) {
2250 		case Q_TYPE_QH:
2251 		default:
2252 			/* is it in the S-mask? */
2253 			if (q->qh->hw_info2 & cpu_to_le32(1 << uframe))
2254 				usecs += q->qh->usecs;
2255 			/* ... or C-mask? */
2256 			if (q->qh->hw_info2 & cpu_to_le32(1 << (8 + uframe)))
2257 				usecs += q->qh->c_usecs;
2258 			hw_p = &q->qh->hw_next;
2259 			q = &q->qh->qh_next;
2260 			break;
2261 		}
2262 	}
2263 #ifdef DEBUG
2264 	if (usecs > 100)
2265 		oxu_err(oxu, "uframe %d sched overrun: %d usecs\n",
2266 						frame * 8 + uframe, usecs);
2267 #endif
2268 	return usecs;
2269 }
2270 
2271 static int enable_periodic(struct oxu_hcd *oxu)
2272 {
2273 	u32 cmd;
2274 	int status;
2275 
2276 	/* did clearing PSE did take effect yet?
2277 	 * takes effect only at frame boundaries...
2278 	 */
2279 	status = handshake(oxu, &oxu->regs->status, STS_PSS, 0, 9 * 125);
2280 	if (status != 0) {
2281 		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
2282 		usb_hc_died(oxu_to_hcd(oxu));
2283 		return status;
2284 	}
2285 
2286 	cmd = readl(&oxu->regs->command) | CMD_PSE;
2287 	writel(cmd, &oxu->regs->command);
2288 	/* posted write ... PSS happens later */
2289 	oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
2290 
2291 	/* make sure ehci_work scans these */
2292 	oxu->next_uframe = readl(&oxu->regs->frame_index)
2293 		% (oxu->periodic_size << 3);
2294 	return 0;
2295 }
2296 
2297 static int disable_periodic(struct oxu_hcd *oxu)
2298 {
2299 	u32 cmd;
2300 	int status;
2301 
2302 	/* did setting PSE not take effect yet?
2303 	 * takes effect only at frame boundaries...
2304 	 */
2305 	status = handshake(oxu, &oxu->regs->status, STS_PSS, STS_PSS, 9 * 125);
2306 	if (status != 0) {
2307 		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
2308 		usb_hc_died(oxu_to_hcd(oxu));
2309 		return status;
2310 	}
2311 
2312 	cmd = readl(&oxu->regs->command) & ~CMD_PSE;
2313 	writel(cmd, &oxu->regs->command);
2314 	/* posted write ... */
2315 
2316 	oxu->next_uframe = -1;
2317 	return 0;
2318 }
2319 
2320 /* periodic schedule slots have iso tds (normal or split) first, then a
2321  * sparse tree for active interrupt transfers.
2322  *
2323  * this just links in a qh; caller guarantees uframe masks are set right.
2324  * no FSTN support (yet; oxu 0.96+)
2325  */
2326 static int qh_link_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
2327 {
2328 	unsigned i;
2329 	unsigned period = qh->period;
2330 
2331 	dev_dbg(&qh->dev->dev,
2332 		"link qh%d-%04x/%p start %d [%d/%d us]\n",
2333 		period, le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
2334 		qh, qh->start, qh->usecs, qh->c_usecs);
2335 
2336 	/* high bandwidth, or otherwise every microframe */
2337 	if (period == 0)
2338 		period = 1;
2339 
2340 	for (i = qh->start; i < oxu->periodic_size; i += period) {
2341 		union ehci_shadow	*prev = &oxu->pshadow[i];
2342 		__le32			*hw_p = &oxu->periodic[i];
2343 		union ehci_shadow	here = *prev;
2344 		__le32			type = 0;
2345 
2346 		/* skip the iso nodes at list head */
2347 		while (here.ptr) {
2348 			type = Q_NEXT_TYPE(*hw_p);
2349 			if (type == Q_TYPE_QH)
2350 				break;
2351 			prev = periodic_next_shadow(prev, type);
2352 			hw_p = &here.qh->hw_next;
2353 			here = *prev;
2354 		}
2355 
2356 		/* sorting each branch by period (slow-->fast)
2357 		 * enables sharing interior tree nodes
2358 		 */
2359 		while (here.ptr && qh != here.qh) {
2360 			if (qh->period > here.qh->period)
2361 				break;
2362 			prev = &here.qh->qh_next;
2363 			hw_p = &here.qh->hw_next;
2364 			here = *prev;
2365 		}
2366 		/* link in this qh, unless some earlier pass did that */
2367 		if (qh != here.qh) {
2368 			qh->qh_next = here;
2369 			if (here.qh)
2370 				qh->hw_next = *hw_p;
2371 			wmb();
2372 			prev->qh = qh;
2373 			*hw_p = QH_NEXT(qh->qh_dma);
2374 		}
2375 	}
2376 	qh->qh_state = QH_STATE_LINKED;
2377 	qh_get(qh);
2378 
2379 	/* update per-qh bandwidth for usbfs */
2380 	oxu_to_hcd(oxu)->self.bandwidth_allocated += qh->period
2381 		? ((qh->usecs + qh->c_usecs) / qh->period)
2382 		: (qh->usecs * 8);
2383 
2384 	/* maybe enable periodic schedule processing */
2385 	if (!oxu->periodic_sched++)
2386 		return enable_periodic(oxu);
2387 
2388 	return 0;
2389 }
2390 
2391 static void qh_unlink_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
2392 {
2393 	unsigned i;
2394 	unsigned period;
2395 
2396 	/* FIXME:
2397 	 *   IF this isn't high speed
2398 	 *   and this qh is active in the current uframe
2399 	 *   (and overlay token SplitXstate is false?)
2400 	 * THEN
2401 	 *   qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore");
2402 	 */
2403 
2404 	/* high bandwidth, or otherwise part of every microframe */
2405 	period = qh->period;
2406 	if (period == 0)
2407 		period = 1;
2408 
2409 	for (i = qh->start; i < oxu->periodic_size; i += period)
2410 		periodic_unlink(oxu, i, qh);
2411 
2412 	/* update per-qh bandwidth for usbfs */
2413 	oxu_to_hcd(oxu)->self.bandwidth_allocated -= qh->period
2414 		? ((qh->usecs + qh->c_usecs) / qh->period)
2415 		: (qh->usecs * 8);
2416 
2417 	dev_dbg(&qh->dev->dev,
2418 		"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
2419 		qh->period,
2420 		le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
2421 		qh, qh->start, qh->usecs, qh->c_usecs);
2422 
2423 	/* qh->qh_next still "live" to HC */
2424 	qh->qh_state = QH_STATE_UNLINK;
2425 	qh->qh_next.ptr = NULL;
2426 	qh_put(qh);
2427 
2428 	/* maybe turn off periodic schedule */
2429 	oxu->periodic_sched--;
2430 	if (!oxu->periodic_sched)
2431 		(void) disable_periodic(oxu);
2432 }
2433 
2434 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2435 {
2436 	unsigned wait;
2437 
2438 	qh_unlink_periodic(oxu, qh);
2439 
2440 	/* simple/paranoid:  always delay, expecting the HC needs to read
2441 	 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
2442 	 * expect hub_wq to clean up after any CSPLITs we won't issue.
2443 	 * active high speed queues may need bigger delays...
2444 	 */
2445 	if (list_empty(&qh->qtd_list)
2446 		|| (cpu_to_le32(QH_CMASK) & qh->hw_info2) != 0)
2447 		wait = 2;
2448 	else
2449 		wait = 55;	/* worst case: 3 * 1024 */
2450 
2451 	udelay(wait);
2452 	qh->qh_state = QH_STATE_IDLE;
2453 	qh->hw_next = EHCI_LIST_END;
2454 	wmb();
2455 }
2456 
2457 static int check_period(struct oxu_hcd *oxu,
2458 			unsigned frame, unsigned uframe,
2459 			unsigned period, unsigned usecs)
2460 {
2461 	int claimed;
2462 
2463 	/* complete split running into next frame?
2464 	 * given FSTN support, we could sometimes check...
2465 	 */
2466 	if (uframe >= 8)
2467 		return 0;
2468 
2469 	/*
2470 	 * 80% periodic == 100 usec/uframe available
2471 	 * convert "usecs we need" to "max already claimed"
2472 	 */
2473 	usecs = 100 - usecs;
2474 
2475 	/* we "know" 2 and 4 uframe intervals were rejected; so
2476 	 * for period 0, check _every_ microframe in the schedule.
2477 	 */
2478 	if (unlikely(period == 0)) {
2479 		do {
2480 			for (uframe = 0; uframe < 7; uframe++) {
2481 				claimed = periodic_usecs(oxu, frame, uframe);
2482 				if (claimed > usecs)
2483 					return 0;
2484 			}
2485 		} while ((frame += 1) < oxu->periodic_size);
2486 
2487 	/* just check the specified uframe, at that period */
2488 	} else {
2489 		do {
2490 			claimed = periodic_usecs(oxu, frame, uframe);
2491 			if (claimed > usecs)
2492 				return 0;
2493 		} while ((frame += period) < oxu->periodic_size);
2494 	}
2495 
2496 	return 1;
2497 }
2498 
2499 static int check_intr_schedule(struct oxu_hcd	*oxu,
2500 				unsigned frame, unsigned uframe,
2501 				const struct ehci_qh *qh, __le32 *c_maskp)
2502 {
2503 	int retval = -ENOSPC;
2504 
2505 	if (qh->c_usecs && uframe >= 6)		/* FSTN territory? */
2506 		goto done;
2507 
2508 	if (!check_period(oxu, frame, uframe, qh->period, qh->usecs))
2509 		goto done;
2510 	if (!qh->c_usecs) {
2511 		retval = 0;
2512 		*c_maskp = 0;
2513 		goto done;
2514 	}
2515 
2516 done:
2517 	return retval;
2518 }
2519 
2520 /* "first fit" scheduling policy used the first time through,
2521  * or when the previous schedule slot can't be re-used.
2522  */
2523 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2524 {
2525 	int		status;
2526 	unsigned	uframe;
2527 	__le32		c_mask;
2528 	unsigned	frame;		/* 0..(qh->period - 1), or NO_FRAME */
2529 
2530 	qh_refresh(oxu, qh);
2531 	qh->hw_next = EHCI_LIST_END;
2532 	frame = qh->start;
2533 
2534 	/* reuse the previous schedule slots, if we can */
2535 	if (frame < qh->period) {
2536 		uframe = ffs(le32_to_cpup(&qh->hw_info2) & QH_SMASK);
2537 		status = check_intr_schedule(oxu, frame, --uframe,
2538 				qh, &c_mask);
2539 	} else {
2540 		uframe = 0;
2541 		c_mask = 0;
2542 		status = -ENOSPC;
2543 	}
2544 
2545 	/* else scan the schedule to find a group of slots such that all
2546 	 * uframes have enough periodic bandwidth available.
2547 	 */
2548 	if (status) {
2549 		/* "normal" case, uframing flexible except with splits */
2550 		if (qh->period) {
2551 			frame = qh->period - 1;
2552 			do {
2553 				for (uframe = 0; uframe < 8; uframe++) {
2554 					status = check_intr_schedule(oxu,
2555 							frame, uframe, qh,
2556 							&c_mask);
2557 					if (status == 0)
2558 						break;
2559 				}
2560 			} while (status && frame--);
2561 
2562 		/* qh->period == 0 means every uframe */
2563 		} else {
2564 			frame = 0;
2565 			status = check_intr_schedule(oxu, 0, 0, qh, &c_mask);
2566 		}
2567 		if (status)
2568 			goto done;
2569 		qh->start = frame;
2570 
2571 		/* reset S-frame and (maybe) C-frame masks */
2572 		qh->hw_info2 &= cpu_to_le32(~(QH_CMASK | QH_SMASK));
2573 		qh->hw_info2 |= qh->period
2574 			? cpu_to_le32(1 << uframe)
2575 			: cpu_to_le32(QH_SMASK);
2576 		qh->hw_info2 |= c_mask;
2577 	} else
2578 		oxu_dbg(oxu, "reused qh %p schedule\n", qh);
2579 
2580 	/* stuff into the periodic schedule */
2581 	status = qh_link_periodic(oxu, qh);
2582 done:
2583 	return status;
2584 }
2585 
2586 static int intr_submit(struct oxu_hcd *oxu, struct urb *urb,
2587 			struct list_head *qtd_list, gfp_t mem_flags)
2588 {
2589 	unsigned epnum;
2590 	unsigned long flags;
2591 	struct ehci_qh *qh;
2592 	int status = 0;
2593 	struct list_head	empty;
2594 
2595 	/* get endpoint and transfer/schedule data */
2596 	epnum = urb->ep->desc.bEndpointAddress;
2597 
2598 	spin_lock_irqsave(&oxu->lock, flags);
2599 
2600 	if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
2601 		status = -ESHUTDOWN;
2602 		goto done;
2603 	}
2604 
2605 	/* get qh and force any scheduling errors */
2606 	INIT_LIST_HEAD(&empty);
2607 	qh = qh_append_tds(oxu, urb, &empty, epnum, &urb->ep->hcpriv);
2608 	if (qh == NULL) {
2609 		status = -ENOMEM;
2610 		goto done;
2611 	}
2612 	if (qh->qh_state == QH_STATE_IDLE) {
2613 		status = qh_schedule(oxu, qh);
2614 		if (status != 0)
2615 			goto done;
2616 	}
2617 
2618 	/* then queue the urb's tds to the qh */
2619 	qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
2620 	BUG_ON(qh == NULL);
2621 
2622 	/* ... update usbfs periodic stats */
2623 	oxu_to_hcd(oxu)->self.bandwidth_int_reqs++;
2624 
2625 done:
2626 	spin_unlock_irqrestore(&oxu->lock, flags);
2627 	if (status)
2628 		qtd_list_free(oxu, urb, qtd_list);
2629 
2630 	return status;
2631 }
2632 
2633 static inline int itd_submit(struct oxu_hcd *oxu, struct urb *urb,
2634 						gfp_t mem_flags)
2635 {
2636 	oxu_dbg(oxu, "iso support is missing!\n");
2637 	return -ENOSYS;
2638 }
2639 
2640 static inline int sitd_submit(struct oxu_hcd *oxu, struct urb *urb,
2641 						gfp_t mem_flags)
2642 {
2643 	oxu_dbg(oxu, "split iso support is missing!\n");
2644 	return -ENOSYS;
2645 }
2646 
2647 static void scan_periodic(struct oxu_hcd *oxu)
2648 {
2649 	unsigned frame, clock, now_uframe, mod;
2650 	unsigned modified;
2651 
2652 	mod = oxu->periodic_size << 3;
2653 
2654 	/*
2655 	 * When running, scan from last scan point up to "now"
2656 	 * else clean up by scanning everything that's left.
2657 	 * Touches as few pages as possible:  cache-friendly.
2658 	 */
2659 	now_uframe = oxu->next_uframe;
2660 	if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2661 		clock = readl(&oxu->regs->frame_index);
2662 	else
2663 		clock = now_uframe + mod - 1;
2664 	clock %= mod;
2665 
2666 	for (;;) {
2667 		union ehci_shadow	q, *q_p;
2668 		__le32			type, *hw_p;
2669 
2670 		/* don't scan past the live uframe */
2671 		frame = now_uframe >> 3;
2672 		if (frame != (clock >> 3)) {
2673 			/* safe to scan the whole frame at once */
2674 			now_uframe |= 0x07;
2675 		}
2676 
2677 restart:
2678 		/* scan each element in frame's queue for completions */
2679 		q_p = &oxu->pshadow[frame];
2680 		hw_p = &oxu->periodic[frame];
2681 		q.ptr = q_p->ptr;
2682 		type = Q_NEXT_TYPE(*hw_p);
2683 		modified = 0;
2684 
2685 		while (q.ptr != NULL) {
2686 			union ehci_shadow temp;
2687 
2688 			switch (type) {
2689 			case Q_TYPE_QH:
2690 				/* handle any completions */
2691 				temp.qh = qh_get(q.qh);
2692 				type = Q_NEXT_TYPE(q.qh->hw_next);
2693 				q = q.qh->qh_next;
2694 				modified = qh_completions(oxu, temp.qh);
2695 				if (unlikely(list_empty(&temp.qh->qtd_list)))
2696 					intr_deschedule(oxu, temp.qh);
2697 				qh_put(temp.qh);
2698 				break;
2699 			default:
2700 				oxu_dbg(oxu, "corrupt type %d frame %d shadow %p\n",
2701 					type, frame, q.ptr);
2702 				q.ptr = NULL;
2703 			}
2704 
2705 			/* assume completion callbacks modify the queue */
2706 			if (unlikely(modified))
2707 				goto restart;
2708 		}
2709 
2710 		/* Stop when we catch up to the HC */
2711 
2712 		/* FIXME:  this assumes we won't get lapped when
2713 		 * latencies climb; that should be rare, but...
2714 		 * detect it, and just go all the way around.
2715 		 * FLR might help detect this case, so long as latencies
2716 		 * don't exceed periodic_size msec (default 1.024 sec).
2717 		 */
2718 
2719 		/* FIXME: likewise assumes HC doesn't halt mid-scan */
2720 
2721 		if (now_uframe == clock) {
2722 			unsigned	now;
2723 
2724 			if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2725 				break;
2726 			oxu->next_uframe = now_uframe;
2727 			now = readl(&oxu->regs->frame_index) % mod;
2728 			if (now_uframe == now)
2729 				break;
2730 
2731 			/* rescan the rest of this frame, then ... */
2732 			clock = now;
2733 		} else {
2734 			now_uframe++;
2735 			now_uframe %= mod;
2736 		}
2737 	}
2738 }
2739 
2740 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
2741  * The firmware seems to think that powering off is a wakeup event!
2742  * This routine turns off remote wakeup and everything else, on all ports.
2743  */
2744 static void ehci_turn_off_all_ports(struct oxu_hcd *oxu)
2745 {
2746 	int port = HCS_N_PORTS(oxu->hcs_params);
2747 
2748 	while (port--)
2749 		writel(PORT_RWC_BITS, &oxu->regs->port_status[port]);
2750 }
2751 
2752 static void ehci_port_power(struct oxu_hcd *oxu, int is_on)
2753 {
2754 	unsigned port;
2755 
2756 	if (!HCS_PPC(oxu->hcs_params))
2757 		return;
2758 
2759 	oxu_dbg(oxu, "...power%s ports...\n", is_on ? "up" : "down");
2760 	for (port = HCS_N_PORTS(oxu->hcs_params); port > 0; ) {
2761 		if (is_on)
2762 			oxu_hub_control(oxu_to_hcd(oxu), SetPortFeature,
2763 				USB_PORT_FEAT_POWER, port--, NULL, 0);
2764 		else
2765 			oxu_hub_control(oxu_to_hcd(oxu), ClearPortFeature,
2766 				USB_PORT_FEAT_POWER, port--, NULL, 0);
2767 	}
2768 
2769 	msleep(20);
2770 }
2771 
2772 /* Called from some interrupts, timers, and so on.
2773  * It calls driver completion functions, after dropping oxu->lock.
2774  */
2775 static void ehci_work(struct oxu_hcd *oxu)
2776 {
2777 	timer_action_done(oxu, TIMER_IO_WATCHDOG);
2778 	if (oxu->reclaim_ready)
2779 		end_unlink_async(oxu);
2780 
2781 	/* another CPU may drop oxu->lock during a schedule scan while
2782 	 * it reports urb completions.  this flag guards against bogus
2783 	 * attempts at re-entrant schedule scanning.
2784 	 */
2785 	if (oxu->scanning)
2786 		return;
2787 	oxu->scanning = 1;
2788 	scan_async(oxu);
2789 	if (oxu->next_uframe != -1)
2790 		scan_periodic(oxu);
2791 	oxu->scanning = 0;
2792 
2793 	/* the IO watchdog guards against hardware or driver bugs that
2794 	 * misplace IRQs, and should let us run completely without IRQs.
2795 	 * such lossage has been observed on both VT6202 and VT8235.
2796 	 */
2797 	if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) &&
2798 			(oxu->async->qh_next.ptr != NULL ||
2799 			 oxu->periodic_sched != 0))
2800 		timer_action(oxu, TIMER_IO_WATCHDOG);
2801 }
2802 
2803 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
2804 {
2805 	/* if we need to use IAA and it's busy, defer */
2806 	if (qh->qh_state == QH_STATE_LINKED
2807 			&& oxu->reclaim
2808 			&& HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) {
2809 		struct ehci_qh		*last;
2810 
2811 		for (last = oxu->reclaim;
2812 				last->reclaim;
2813 				last = last->reclaim)
2814 			continue;
2815 		qh->qh_state = QH_STATE_UNLINK_WAIT;
2816 		last->reclaim = qh;
2817 
2818 	/* bypass IAA if the hc can't care */
2819 	} else if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && oxu->reclaim)
2820 		end_unlink_async(oxu);
2821 
2822 	/* something else might have unlinked the qh by now */
2823 	if (qh->qh_state == QH_STATE_LINKED)
2824 		start_unlink_async(oxu, qh);
2825 }
2826 
2827 /*
2828  * USB host controller methods
2829  */
2830 
2831 static irqreturn_t oxu210_hcd_irq(struct usb_hcd *hcd)
2832 {
2833 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2834 	u32 status, pcd_status = 0;
2835 	int bh;
2836 
2837 	spin_lock(&oxu->lock);
2838 
2839 	status = readl(&oxu->regs->status);
2840 
2841 	/* e.g. cardbus physical eject */
2842 	if (status == ~(u32) 0) {
2843 		oxu_dbg(oxu, "device removed\n");
2844 		goto dead;
2845 	}
2846 
2847 	/* Shared IRQ? */
2848 	status &= INTR_MASK;
2849 	if (!status || unlikely(hcd->state == HC_STATE_HALT)) {
2850 		spin_unlock(&oxu->lock);
2851 		return IRQ_NONE;
2852 	}
2853 
2854 	/* clear (just) interrupts */
2855 	writel(status, &oxu->regs->status);
2856 	readl(&oxu->regs->command);	/* unblock posted write */
2857 	bh = 0;
2858 
2859 #ifdef OXU_VERBOSE_DEBUG
2860 	/* unrequested/ignored: Frame List Rollover */
2861 	dbg_status(oxu, "irq", status);
2862 #endif
2863 
2864 	/* INT, ERR, and IAA interrupt rates can be throttled */
2865 
2866 	/* normal [4.15.1.2] or error [4.15.1.1] completion */
2867 	if (likely((status & (STS_INT|STS_ERR)) != 0))
2868 		bh = 1;
2869 
2870 	/* complete the unlinking of some qh [4.15.2.3] */
2871 	if (status & STS_IAA) {
2872 		oxu->reclaim_ready = 1;
2873 		bh = 1;
2874 	}
2875 
2876 	/* remote wakeup [4.3.1] */
2877 	if (status & STS_PCD) {
2878 		unsigned i = HCS_N_PORTS(oxu->hcs_params);
2879 		pcd_status = status;
2880 
2881 		/* resume root hub? */
2882 		if (!(readl(&oxu->regs->command) & CMD_RUN))
2883 			usb_hcd_resume_root_hub(hcd);
2884 
2885 		while (i--) {
2886 			int pstatus = readl(&oxu->regs->port_status[i]);
2887 
2888 			if (pstatus & PORT_OWNER)
2889 				continue;
2890 			if (!(pstatus & PORT_RESUME)
2891 					|| oxu->reset_done[i] != 0)
2892 				continue;
2893 
2894 			/* start USB_RESUME_TIMEOUT resume signaling from this
2895 			 * port, and make hub_wq collect PORT_STAT_C_SUSPEND to
2896 			 * stop that signaling.
2897 			 */
2898 			oxu->reset_done[i] = jiffies +
2899 				msecs_to_jiffies(USB_RESUME_TIMEOUT);
2900 			oxu_dbg(oxu, "port %d remote wakeup\n", i + 1);
2901 			mod_timer(&hcd->rh_timer, oxu->reset_done[i]);
2902 		}
2903 	}
2904 
2905 	/* PCI errors [4.15.2.4] */
2906 	if (unlikely((status & STS_FATAL) != 0)) {
2907 		/* bogus "fatal" IRQs appear on some chips... why?  */
2908 		status = readl(&oxu->regs->status);
2909 		dbg_cmd(oxu, "fatal", readl(&oxu->regs->command));
2910 		dbg_status(oxu, "fatal", status);
2911 		if (status & STS_HALT) {
2912 			oxu_err(oxu, "fatal error\n");
2913 dead:
2914 			ehci_reset(oxu);
2915 			writel(0, &oxu->regs->configured_flag);
2916 			usb_hc_died(hcd);
2917 			/* generic layer kills/unlinks all urbs, then
2918 			 * uses oxu_stop to clean up the rest
2919 			 */
2920 			bh = 1;
2921 		}
2922 	}
2923 
2924 	if (bh)
2925 		ehci_work(oxu);
2926 	spin_unlock(&oxu->lock);
2927 	if (pcd_status & STS_PCD)
2928 		usb_hcd_poll_rh_status(hcd);
2929 	return IRQ_HANDLED;
2930 }
2931 
2932 static irqreturn_t oxu_irq(struct usb_hcd *hcd)
2933 {
2934 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2935 	int ret = IRQ_HANDLED;
2936 
2937 	u32 status = oxu_readl(hcd->regs, OXU_CHIPIRQSTATUS);
2938 	u32 enable = oxu_readl(hcd->regs, OXU_CHIPIRQEN_SET);
2939 
2940 	/* Disable all interrupt */
2941 	oxu_writel(hcd->regs, OXU_CHIPIRQEN_CLR, enable);
2942 
2943 	if ((oxu->is_otg && (status & OXU_USBOTGI)) ||
2944 		(!oxu->is_otg && (status & OXU_USBSPHI)))
2945 		oxu210_hcd_irq(hcd);
2946 	else
2947 		ret = IRQ_NONE;
2948 
2949 	/* Enable all interrupt back */
2950 	oxu_writel(hcd->regs, OXU_CHIPIRQEN_SET, enable);
2951 
2952 	return ret;
2953 }
2954 
2955 static void oxu_watchdog(struct timer_list *t)
2956 {
2957 	struct oxu_hcd	*oxu = from_timer(oxu, t, watchdog);
2958 	unsigned long flags;
2959 
2960 	spin_lock_irqsave(&oxu->lock, flags);
2961 
2962 	/* lost IAA irqs wedge things badly; seen with a vt8235 */
2963 	if (oxu->reclaim) {
2964 		u32 status = readl(&oxu->regs->status);
2965 		if (status & STS_IAA) {
2966 			oxu_vdbg(oxu, "lost IAA\n");
2967 			writel(STS_IAA, &oxu->regs->status);
2968 			oxu->reclaim_ready = 1;
2969 		}
2970 	}
2971 
2972 	/* stop async processing after it's idled a bit */
2973 	if (test_bit(TIMER_ASYNC_OFF, &oxu->actions))
2974 		start_unlink_async(oxu, oxu->async);
2975 
2976 	/* oxu could run by timer, without IRQs ... */
2977 	ehci_work(oxu);
2978 
2979 	spin_unlock_irqrestore(&oxu->lock, flags);
2980 }
2981 
2982 /* One-time init, only for memory state.
2983  */
2984 static int oxu_hcd_init(struct usb_hcd *hcd)
2985 {
2986 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2987 	u32 temp;
2988 	int retval;
2989 	u32 hcc_params;
2990 
2991 	spin_lock_init(&oxu->lock);
2992 
2993 	timer_setup(&oxu->watchdog, oxu_watchdog, 0);
2994 
2995 	/*
2996 	 * hw default: 1K periodic list heads, one per frame.
2997 	 * periodic_size can shrink by USBCMD update if hcc_params allows.
2998 	 */
2999 	oxu->periodic_size = DEFAULT_I_TDPS;
3000 	retval = ehci_mem_init(oxu, GFP_KERNEL);
3001 	if (retval < 0)
3002 		return retval;
3003 
3004 	/* controllers may cache some of the periodic schedule ... */
3005 	hcc_params = readl(&oxu->caps->hcc_params);
3006 	if (HCC_ISOC_CACHE(hcc_params))		/* full frame cache */
3007 		oxu->i_thresh = 8;
3008 	else					/* N microframes cached */
3009 		oxu->i_thresh = 2 + HCC_ISOC_THRES(hcc_params);
3010 
3011 	oxu->reclaim = NULL;
3012 	oxu->reclaim_ready = 0;
3013 	oxu->next_uframe = -1;
3014 
3015 	/*
3016 	 * dedicate a qh for the async ring head, since we couldn't unlink
3017 	 * a 'real' qh without stopping the async schedule [4.8].  use it
3018 	 * as the 'reclamation list head' too.
3019 	 * its dummy is used in hw_alt_next of many tds, to prevent the qh
3020 	 * from automatically advancing to the next td after short reads.
3021 	 */
3022 	oxu->async->qh_next.qh = NULL;
3023 	oxu->async->hw_next = QH_NEXT(oxu->async->qh_dma);
3024 	oxu->async->hw_info1 = cpu_to_le32(QH_HEAD);
3025 	oxu->async->hw_token = cpu_to_le32(QTD_STS_HALT);
3026 	oxu->async->hw_qtd_next = EHCI_LIST_END;
3027 	oxu->async->qh_state = QH_STATE_LINKED;
3028 	oxu->async->hw_alt_next = QTD_NEXT(oxu->async->dummy->qtd_dma);
3029 
3030 	/* clear interrupt enables, set irq latency */
3031 	if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
3032 		log2_irq_thresh = 0;
3033 	temp = 1 << (16 + log2_irq_thresh);
3034 	if (HCC_CANPARK(hcc_params)) {
3035 		/* HW default park == 3, on hardware that supports it (like
3036 		 * NVidia and ALI silicon), maximizes throughput on the async
3037 		 * schedule by avoiding QH fetches between transfers.
3038 		 *
3039 		 * With fast usb storage devices and NForce2, "park" seems to
3040 		 * make problems:  throughput reduction (!), data errors...
3041 		 */
3042 		if (park) {
3043 			park = min(park, (unsigned) 3);
3044 			temp |= CMD_PARK;
3045 			temp |= park << 8;
3046 		}
3047 		oxu_dbg(oxu, "park %d\n", park);
3048 	}
3049 	if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
3050 		/* periodic schedule size can be smaller than default */
3051 		temp &= ~(3 << 2);
3052 		temp |= (EHCI_TUNE_FLS << 2);
3053 	}
3054 	oxu->command = temp;
3055 
3056 	return 0;
3057 }
3058 
3059 /* Called during probe() after chip reset completes.
3060  */
3061 static int oxu_reset(struct usb_hcd *hcd)
3062 {
3063 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3064 
3065 	spin_lock_init(&oxu->mem_lock);
3066 	INIT_LIST_HEAD(&oxu->urb_list);
3067 	oxu->urb_len = 0;
3068 
3069 	if (oxu->is_otg) {
3070 		oxu->caps = hcd->regs + OXU_OTG_CAP_OFFSET;
3071 		oxu->regs = hcd->regs + OXU_OTG_CAP_OFFSET + \
3072 			HC_LENGTH(readl(&oxu->caps->hc_capbase));
3073 
3074 		oxu->mem = hcd->regs + OXU_SPH_MEM;
3075 	} else {
3076 		oxu->caps = hcd->regs + OXU_SPH_CAP_OFFSET;
3077 		oxu->regs = hcd->regs + OXU_SPH_CAP_OFFSET + \
3078 			HC_LENGTH(readl(&oxu->caps->hc_capbase));
3079 
3080 		oxu->mem = hcd->regs + OXU_OTG_MEM;
3081 	}
3082 
3083 	oxu->hcs_params = readl(&oxu->caps->hcs_params);
3084 	oxu->sbrn = 0x20;
3085 
3086 	return oxu_hcd_init(hcd);
3087 }
3088 
3089 static int oxu_run(struct usb_hcd *hcd)
3090 {
3091 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3092 	int retval;
3093 	u32 temp, hcc_params;
3094 
3095 	hcd->uses_new_polling = 1;
3096 
3097 	/* EHCI spec section 4.1 */
3098 	retval = ehci_reset(oxu);
3099 	if (retval != 0) {
3100 		ehci_mem_cleanup(oxu);
3101 		return retval;
3102 	}
3103 	writel(oxu->periodic_dma, &oxu->regs->frame_list);
3104 	writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
3105 
3106 	/* hcc_params controls whether oxu->regs->segment must (!!!)
3107 	 * be used; it constrains QH/ITD/SITD and QTD locations.
3108 	 * dma_pool consistent memory always uses segment zero.
3109 	 * streaming mappings for I/O buffers, like dma_map_single(),
3110 	 * can return segments above 4GB, if the device allows.
3111 	 *
3112 	 * NOTE:  the dma mask is visible through dev->dma_mask, so
3113 	 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
3114 	 * Scsi_Host.highmem_io, and so forth.  It's readonly to all
3115 	 * host side drivers though.
3116 	 */
3117 	hcc_params = readl(&oxu->caps->hcc_params);
3118 	if (HCC_64BIT_ADDR(hcc_params))
3119 		writel(0, &oxu->regs->segment);
3120 
3121 	oxu->command &= ~(CMD_LRESET | CMD_IAAD | CMD_PSE |
3122 				CMD_ASE | CMD_RESET);
3123 	oxu->command |= CMD_RUN;
3124 	writel(oxu->command, &oxu->regs->command);
3125 	dbg_cmd(oxu, "init", oxu->command);
3126 
3127 	/*
3128 	 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
3129 	 * are explicitly handed to companion controller(s), so no TT is
3130 	 * involved with the root hub.  (Except where one is integrated,
3131 	 * and there's no companion controller unless maybe for USB OTG.)
3132 	 */
3133 	hcd->state = HC_STATE_RUNNING;
3134 	writel(FLAG_CF, &oxu->regs->configured_flag);
3135 	readl(&oxu->regs->command);	/* unblock posted writes */
3136 
3137 	temp = HC_VERSION(readl(&oxu->caps->hc_capbase));
3138 	oxu_info(oxu, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n",
3139 		((oxu->sbrn & 0xf0)>>4), (oxu->sbrn & 0x0f),
3140 		temp >> 8, temp & 0xff, DRIVER_VERSION,
3141 		ignore_oc ? ", overcurrent ignored" : "");
3142 
3143 	writel(INTR_MASK, &oxu->regs->intr_enable); /* Turn On Interrupts */
3144 
3145 	return 0;
3146 }
3147 
3148 static void oxu_stop(struct usb_hcd *hcd)
3149 {
3150 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3151 
3152 	/* Turn off port power on all root hub ports. */
3153 	ehci_port_power(oxu, 0);
3154 
3155 	/* no more interrupts ... */
3156 	del_timer_sync(&oxu->watchdog);
3157 
3158 	spin_lock_irq(&oxu->lock);
3159 	if (HC_IS_RUNNING(hcd->state))
3160 		ehci_quiesce(oxu);
3161 
3162 	ehci_reset(oxu);
3163 	writel(0, &oxu->regs->intr_enable);
3164 	spin_unlock_irq(&oxu->lock);
3165 
3166 	/* let companion controllers work when we aren't */
3167 	writel(0, &oxu->regs->configured_flag);
3168 
3169 	/* root hub is shut down separately (first, when possible) */
3170 	spin_lock_irq(&oxu->lock);
3171 	if (oxu->async)
3172 		ehci_work(oxu);
3173 	spin_unlock_irq(&oxu->lock);
3174 	ehci_mem_cleanup(oxu);
3175 
3176 	dbg_status(oxu, "oxu_stop completed", readl(&oxu->regs->status));
3177 }
3178 
3179 /* Kick in for silicon on any bus (not just pci, etc).
3180  * This forcibly disables dma and IRQs, helping kexec and other cases
3181  * where the next system software may expect clean state.
3182  */
3183 static void oxu_shutdown(struct usb_hcd *hcd)
3184 {
3185 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3186 
3187 	(void) ehci_halt(oxu);
3188 	ehci_turn_off_all_ports(oxu);
3189 
3190 	/* make BIOS/etc use companion controller during reboot */
3191 	writel(0, &oxu->regs->configured_flag);
3192 
3193 	/* unblock posted writes */
3194 	readl(&oxu->regs->configured_flag);
3195 }
3196 
3197 /* Non-error returns are a promise to giveback() the urb later
3198  * we drop ownership so next owner (or urb unlink) can get it
3199  *
3200  * urb + dev is in hcd.self.controller.urb_list
3201  * we're queueing TDs onto software and hardware lists
3202  *
3203  * hcd-specific init for hcpriv hasn't been done yet
3204  *
3205  * NOTE:  control, bulk, and interrupt share the same code to append TDs
3206  * to a (possibly active) QH, and the same QH scanning code.
3207  */
3208 static int __oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
3209 				gfp_t mem_flags)
3210 {
3211 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3212 	struct list_head qtd_list;
3213 
3214 	INIT_LIST_HEAD(&qtd_list);
3215 
3216 	switch (usb_pipetype(urb->pipe)) {
3217 	case PIPE_CONTROL:
3218 	case PIPE_BULK:
3219 	default:
3220 		if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
3221 			return -ENOMEM;
3222 		return submit_async(oxu, urb, &qtd_list, mem_flags);
3223 
3224 	case PIPE_INTERRUPT:
3225 		if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
3226 			return -ENOMEM;
3227 		return intr_submit(oxu, urb, &qtd_list, mem_flags);
3228 
3229 	case PIPE_ISOCHRONOUS:
3230 		if (urb->dev->speed == USB_SPEED_HIGH)
3231 			return itd_submit(oxu, urb, mem_flags);
3232 		else
3233 			return sitd_submit(oxu, urb, mem_flags);
3234 	}
3235 }
3236 
3237 /* This function is responsible for breaking URBs with big data size
3238  * into smaller size and processing small urbs in sequence.
3239  */
3240 static int oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
3241 				gfp_t mem_flags)
3242 {
3243 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3244 	int num, rem;
3245 	void *transfer_buffer;
3246 	struct urb *murb;
3247 	int i, ret;
3248 
3249 	/* If not bulk pipe just enqueue the URB */
3250 	if (!usb_pipebulk(urb->pipe))
3251 		return __oxu_urb_enqueue(hcd, urb, mem_flags);
3252 
3253 	/* Otherwise we should verify the USB transfer buffer size! */
3254 	transfer_buffer = urb->transfer_buffer;
3255 
3256 	num = urb->transfer_buffer_length / 4096;
3257 	rem = urb->transfer_buffer_length % 4096;
3258 	if (rem != 0)
3259 		num++;
3260 
3261 	/* If URB is smaller than 4096 bytes just enqueue it! */
3262 	if (num == 1)
3263 		return __oxu_urb_enqueue(hcd, urb, mem_flags);
3264 
3265 	/* Ok, we have more job to do! :) */
3266 
3267 	for (i = 0; i < num - 1; i++) {
3268 		/* Get free micro URB poll till a free urb is received */
3269 
3270 		do {
3271 			murb = (struct urb *) oxu_murb_alloc(oxu);
3272 			if (!murb)
3273 				schedule();
3274 		} while (!murb);
3275 
3276 		/* Coping the urb */
3277 		memcpy(murb, urb, sizeof(struct urb));
3278 
3279 		murb->transfer_buffer_length = 4096;
3280 		murb->transfer_buffer = transfer_buffer + i * 4096;
3281 
3282 		/* Null pointer for the encodes that this is a micro urb */
3283 		murb->complete = NULL;
3284 
3285 		((struct oxu_murb *) murb)->main = urb;
3286 		((struct oxu_murb *) murb)->last = 0;
3287 
3288 		/* This loop is to guarantee urb to be processed when there's
3289 		 * not enough resources at a particular time by retrying.
3290 		 */
3291 		do {
3292 			ret  = __oxu_urb_enqueue(hcd, murb, mem_flags);
3293 			if (ret)
3294 				schedule();
3295 		} while (ret);
3296 	}
3297 
3298 	/* Last urb requires special handling  */
3299 
3300 	/* Get free micro URB poll till a free urb is received */
3301 	do {
3302 		murb = (struct urb *) oxu_murb_alloc(oxu);
3303 		if (!murb)
3304 			schedule();
3305 	} while (!murb);
3306 
3307 	/* Coping the urb */
3308 	memcpy(murb, urb, sizeof(struct urb));
3309 
3310 	murb->transfer_buffer_length = rem > 0 ? rem : 4096;
3311 	murb->transfer_buffer = transfer_buffer + (num - 1) * 4096;
3312 
3313 	/* Null pointer for the encodes that this is a micro urb */
3314 	murb->complete = NULL;
3315 
3316 	((struct oxu_murb *) murb)->main = urb;
3317 	((struct oxu_murb *) murb)->last = 1;
3318 
3319 	do {
3320 		ret = __oxu_urb_enqueue(hcd, murb, mem_flags);
3321 		if (ret)
3322 			schedule();
3323 	} while (ret);
3324 
3325 	return ret;
3326 }
3327 
3328 /* Remove from hardware lists.
3329  * Completions normally happen asynchronously
3330  */
3331 static int oxu_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
3332 {
3333 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3334 	struct ehci_qh *qh;
3335 	unsigned long flags;
3336 
3337 	spin_lock_irqsave(&oxu->lock, flags);
3338 	switch (usb_pipetype(urb->pipe)) {
3339 	case PIPE_CONTROL:
3340 	case PIPE_BULK:
3341 	default:
3342 		qh = (struct ehci_qh *) urb->hcpriv;
3343 		if (!qh)
3344 			break;
3345 		unlink_async(oxu, qh);
3346 		break;
3347 
3348 	case PIPE_INTERRUPT:
3349 		qh = (struct ehci_qh *) urb->hcpriv;
3350 		if (!qh)
3351 			break;
3352 		switch (qh->qh_state) {
3353 		case QH_STATE_LINKED:
3354 			intr_deschedule(oxu, qh);
3355 			fallthrough;
3356 		case QH_STATE_IDLE:
3357 			qh_completions(oxu, qh);
3358 			break;
3359 		default:
3360 			oxu_dbg(oxu, "bogus qh %p state %d\n",
3361 					qh, qh->qh_state);
3362 			goto done;
3363 		}
3364 
3365 		/* reschedule QH iff another request is queued */
3366 		if (!list_empty(&qh->qtd_list)
3367 				&& HC_IS_RUNNING(hcd->state)) {
3368 			int status;
3369 
3370 			status = qh_schedule(oxu, qh);
3371 			spin_unlock_irqrestore(&oxu->lock, flags);
3372 
3373 			if (status != 0) {
3374 				/* shouldn't happen often, but ...
3375 				 * FIXME kill those tds' urbs
3376 				 */
3377 				dev_err(hcd->self.controller,
3378 					"can't reschedule qh %p, err %d\n", qh,
3379 					status);
3380 			}
3381 			return status;
3382 		}
3383 		break;
3384 	}
3385 done:
3386 	spin_unlock_irqrestore(&oxu->lock, flags);
3387 	return 0;
3388 }
3389 
3390 /* Bulk qh holds the data toggle */
3391 static void oxu_endpoint_disable(struct usb_hcd *hcd,
3392 					struct usb_host_endpoint *ep)
3393 {
3394 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3395 	unsigned long		flags;
3396 	struct ehci_qh		*qh, *tmp;
3397 
3398 	/* ASSERT:  any requests/urbs are being unlinked */
3399 	/* ASSERT:  nobody can be submitting urbs for this any more */
3400 
3401 rescan:
3402 	spin_lock_irqsave(&oxu->lock, flags);
3403 	qh = ep->hcpriv;
3404 	if (!qh)
3405 		goto done;
3406 
3407 	/* endpoints can be iso streams.  for now, we don't
3408 	 * accelerate iso completions ... so spin a while.
3409 	 */
3410 	if (qh->hw_info1 == 0) {
3411 		oxu_vdbg(oxu, "iso delay\n");
3412 		goto idle_timeout;
3413 	}
3414 
3415 	if (!HC_IS_RUNNING(hcd->state))
3416 		qh->qh_state = QH_STATE_IDLE;
3417 	switch (qh->qh_state) {
3418 	case QH_STATE_LINKED:
3419 		for (tmp = oxu->async->qh_next.qh;
3420 				tmp && tmp != qh;
3421 				tmp = tmp->qh_next.qh)
3422 			continue;
3423 		/* periodic qh self-unlinks on empty */
3424 		if (!tmp)
3425 			goto nogood;
3426 		unlink_async(oxu, qh);
3427 		fallthrough;
3428 	case QH_STATE_UNLINK:		/* wait for hw to finish? */
3429 idle_timeout:
3430 		spin_unlock_irqrestore(&oxu->lock, flags);
3431 		schedule_timeout_uninterruptible(1);
3432 		goto rescan;
3433 	case QH_STATE_IDLE:		/* fully unlinked */
3434 		if (list_empty(&qh->qtd_list)) {
3435 			qh_put(qh);
3436 			break;
3437 		}
3438 		fallthrough;
3439 	default:
3440 nogood:
3441 		/* caller was supposed to have unlinked any requests;
3442 		 * that's not our job.  just leak this memory.
3443 		 */
3444 		oxu_err(oxu, "qh %p (#%02x) state %d%s\n",
3445 			qh, ep->desc.bEndpointAddress, qh->qh_state,
3446 			list_empty(&qh->qtd_list) ? "" : "(has tds)");
3447 		break;
3448 	}
3449 	ep->hcpriv = NULL;
3450 done:
3451 	spin_unlock_irqrestore(&oxu->lock, flags);
3452 }
3453 
3454 static int oxu_get_frame(struct usb_hcd *hcd)
3455 {
3456 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3457 
3458 	return (readl(&oxu->regs->frame_index) >> 3) %
3459 		oxu->periodic_size;
3460 }
3461 
3462 /* Build "status change" packet (one or two bytes) from HC registers */
3463 static int oxu_hub_status_data(struct usb_hcd *hcd, char *buf)
3464 {
3465 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3466 	u32 temp, mask, status = 0;
3467 	int ports, i, retval = 1;
3468 	unsigned long flags;
3469 
3470 	/* if !PM, root hub timers won't get shut down ... */
3471 	if (!HC_IS_RUNNING(hcd->state))
3472 		return 0;
3473 
3474 	/* init status to no-changes */
3475 	buf[0] = 0;
3476 	ports = HCS_N_PORTS(oxu->hcs_params);
3477 	if (ports > 7) {
3478 		buf[1] = 0;
3479 		retval++;
3480 	}
3481 
3482 	/* Some boards (mostly VIA?) report bogus overcurrent indications,
3483 	 * causing massive log spam unless we completely ignore them.  It
3484 	 * may be relevant that VIA VT8235 controllers, where PORT_POWER is
3485 	 * always set, seem to clear PORT_OCC and PORT_CSC when writing to
3486 	 * PORT_POWER; that's surprising, but maybe within-spec.
3487 	 */
3488 	if (!ignore_oc)
3489 		mask = PORT_CSC | PORT_PEC | PORT_OCC;
3490 	else
3491 		mask = PORT_CSC | PORT_PEC;
3492 
3493 	/* no hub change reports (bit 0) for now (power, ...) */
3494 
3495 	/* port N changes (bit N)? */
3496 	spin_lock_irqsave(&oxu->lock, flags);
3497 	for (i = 0; i < ports; i++) {
3498 		temp = readl(&oxu->regs->port_status[i]);
3499 
3500 		/*
3501 		 * Return status information even for ports with OWNER set.
3502 		 * Otherwise hub_wq wouldn't see the disconnect event when a
3503 		 * high-speed device is switched over to the companion
3504 		 * controller by the user.
3505 		 */
3506 
3507 		if (!(temp & PORT_CONNECT))
3508 			oxu->reset_done[i] = 0;
3509 		if ((temp & mask) != 0 || ((temp & PORT_RESUME) != 0 &&
3510 				time_after_eq(jiffies, oxu->reset_done[i]))) {
3511 			if (i < 7)
3512 				buf[0] |= 1 << (i + 1);
3513 			else
3514 				buf[1] |= 1 << (i - 7);
3515 			status = STS_PCD;
3516 		}
3517 	}
3518 	/* FIXME autosuspend idle root hubs */
3519 	spin_unlock_irqrestore(&oxu->lock, flags);
3520 	return status ? retval : 0;
3521 }
3522 
3523 /* Returns the speed of a device attached to a port on the root hub. */
3524 static inline unsigned int oxu_port_speed(struct oxu_hcd *oxu,
3525 						unsigned int portsc)
3526 {
3527 	switch ((portsc >> 26) & 3) {
3528 	case 0:
3529 		return 0;
3530 	case 1:
3531 		return USB_PORT_STAT_LOW_SPEED;
3532 	case 2:
3533 	default:
3534 		return USB_PORT_STAT_HIGH_SPEED;
3535 	}
3536 }
3537 
3538 #define	PORT_WAKE_BITS	(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E)
3539 static int oxu_hub_control(struct usb_hcd *hcd, u16 typeReq,
3540 				u16 wValue, u16 wIndex, char *buf, u16 wLength)
3541 {
3542 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3543 	int ports = HCS_N_PORTS(oxu->hcs_params);
3544 	u32 __iomem *status_reg = &oxu->regs->port_status[wIndex - 1];
3545 	u32 temp, status;
3546 	unsigned long	flags;
3547 	int retval = 0;
3548 	unsigned selector;
3549 
3550 	/*
3551 	 * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
3552 	 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
3553 	 * (track current state ourselves) ... blink for diagnostics,
3554 	 * power, "this is the one", etc.  EHCI spec supports this.
3555 	 */
3556 
3557 	spin_lock_irqsave(&oxu->lock, flags);
3558 	switch (typeReq) {
3559 	case ClearHubFeature:
3560 		switch (wValue) {
3561 		case C_HUB_LOCAL_POWER:
3562 		case C_HUB_OVER_CURRENT:
3563 			/* no hub-wide feature/status flags */
3564 			break;
3565 		default:
3566 			goto error;
3567 		}
3568 		break;
3569 	case ClearPortFeature:
3570 		if (!wIndex || wIndex > ports)
3571 			goto error;
3572 		wIndex--;
3573 		temp = readl(status_reg);
3574 
3575 		/*
3576 		 * Even if OWNER is set, so the port is owned by the
3577 		 * companion controller, hub_wq needs to be able to clear
3578 		 * the port-change status bits (especially
3579 		 * USB_PORT_STAT_C_CONNECTION).
3580 		 */
3581 
3582 		switch (wValue) {
3583 		case USB_PORT_FEAT_ENABLE:
3584 			writel(temp & ~PORT_PE, status_reg);
3585 			break;
3586 		case USB_PORT_FEAT_C_ENABLE:
3587 			writel((temp & ~PORT_RWC_BITS) | PORT_PEC, status_reg);
3588 			break;
3589 		case USB_PORT_FEAT_SUSPEND:
3590 			if (temp & PORT_RESET)
3591 				goto error;
3592 			if (temp & PORT_SUSPEND) {
3593 				if ((temp & PORT_PE) == 0)
3594 					goto error;
3595 				/* resume signaling for 20 msec */
3596 				temp &= ~(PORT_RWC_BITS | PORT_WAKE_BITS);
3597 				writel(temp | PORT_RESUME, status_reg);
3598 				oxu->reset_done[wIndex] = jiffies
3599 						+ msecs_to_jiffies(20);
3600 			}
3601 			break;
3602 		case USB_PORT_FEAT_C_SUSPEND:
3603 			/* we auto-clear this feature */
3604 			break;
3605 		case USB_PORT_FEAT_POWER:
3606 			if (HCS_PPC(oxu->hcs_params))
3607 				writel(temp & ~(PORT_RWC_BITS | PORT_POWER),
3608 					  status_reg);
3609 			break;
3610 		case USB_PORT_FEAT_C_CONNECTION:
3611 			writel((temp & ~PORT_RWC_BITS) | PORT_CSC, status_reg);
3612 			break;
3613 		case USB_PORT_FEAT_C_OVER_CURRENT:
3614 			writel((temp & ~PORT_RWC_BITS) | PORT_OCC, status_reg);
3615 			break;
3616 		case USB_PORT_FEAT_C_RESET:
3617 			/* GetPortStatus clears reset */
3618 			break;
3619 		default:
3620 			goto error;
3621 		}
3622 		readl(&oxu->regs->command);	/* unblock posted write */
3623 		break;
3624 	case GetHubDescriptor:
3625 		ehci_hub_descriptor(oxu, (struct usb_hub_descriptor *)
3626 			buf);
3627 		break;
3628 	case GetHubStatus:
3629 		/* no hub-wide feature/status flags */
3630 		memset(buf, 0, 4);
3631 		break;
3632 	case GetPortStatus:
3633 		if (!wIndex || wIndex > ports)
3634 			goto error;
3635 		wIndex--;
3636 		status = 0;
3637 		temp = readl(status_reg);
3638 
3639 		/* wPortChange bits */
3640 		if (temp & PORT_CSC)
3641 			status |= USB_PORT_STAT_C_CONNECTION << 16;
3642 		if (temp & PORT_PEC)
3643 			status |= USB_PORT_STAT_C_ENABLE << 16;
3644 		if ((temp & PORT_OCC) && !ignore_oc)
3645 			status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3646 
3647 		/* whoever resumes must GetPortStatus to complete it!! */
3648 		if (temp & PORT_RESUME) {
3649 
3650 			/* Remote Wakeup received? */
3651 			if (!oxu->reset_done[wIndex]) {
3652 				/* resume signaling for 20 msec */
3653 				oxu->reset_done[wIndex] = jiffies
3654 						+ msecs_to_jiffies(20);
3655 				/* check the port again */
3656 				mod_timer(&oxu_to_hcd(oxu)->rh_timer,
3657 						oxu->reset_done[wIndex]);
3658 			}
3659 
3660 			/* resume completed? */
3661 			else if (time_after_eq(jiffies,
3662 					oxu->reset_done[wIndex])) {
3663 				status |= USB_PORT_STAT_C_SUSPEND << 16;
3664 				oxu->reset_done[wIndex] = 0;
3665 
3666 				/* stop resume signaling */
3667 				temp = readl(status_reg);
3668 				writel(temp & ~(PORT_RWC_BITS | PORT_RESUME),
3669 					status_reg);
3670 				retval = handshake(oxu, status_reg,
3671 					   PORT_RESUME, 0, 2000 /* 2msec */);
3672 				if (retval != 0) {
3673 					oxu_err(oxu,
3674 						"port %d resume error %d\n",
3675 						wIndex + 1, retval);
3676 					goto error;
3677 				}
3678 				temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
3679 			}
3680 		}
3681 
3682 		/* whoever resets must GetPortStatus to complete it!! */
3683 		if ((temp & PORT_RESET)
3684 				&& time_after_eq(jiffies,
3685 					oxu->reset_done[wIndex])) {
3686 			status |= USB_PORT_STAT_C_RESET << 16;
3687 			oxu->reset_done[wIndex] = 0;
3688 
3689 			/* force reset to complete */
3690 			writel(temp & ~(PORT_RWC_BITS | PORT_RESET),
3691 					status_reg);
3692 			/* REVISIT:  some hardware needs 550+ usec to clear
3693 			 * this bit; seems too long to spin routinely...
3694 			 */
3695 			retval = handshake(oxu, status_reg,
3696 					PORT_RESET, 0, 750);
3697 			if (retval != 0) {
3698 				oxu_err(oxu, "port %d reset error %d\n",
3699 					wIndex + 1, retval);
3700 				goto error;
3701 			}
3702 
3703 			/* see what we found out */
3704 			temp = check_reset_complete(oxu, wIndex, status_reg,
3705 					readl(status_reg));
3706 		}
3707 
3708 		/* transfer dedicated ports to the companion hc */
3709 		if ((temp & PORT_CONNECT) &&
3710 				test_bit(wIndex, &oxu->companion_ports)) {
3711 			temp &= ~PORT_RWC_BITS;
3712 			temp |= PORT_OWNER;
3713 			writel(temp, status_reg);
3714 			oxu_dbg(oxu, "port %d --> companion\n", wIndex + 1);
3715 			temp = readl(status_reg);
3716 		}
3717 
3718 		/*
3719 		 * Even if OWNER is set, there's no harm letting hub_wq
3720 		 * see the wPortStatus values (they should all be 0 except
3721 		 * for PORT_POWER anyway).
3722 		 */
3723 
3724 		if (temp & PORT_CONNECT) {
3725 			status |= USB_PORT_STAT_CONNECTION;
3726 			/* status may be from integrated TT */
3727 			status |= oxu_port_speed(oxu, temp);
3728 		}
3729 		if (temp & PORT_PE)
3730 			status |= USB_PORT_STAT_ENABLE;
3731 		if (temp & (PORT_SUSPEND|PORT_RESUME))
3732 			status |= USB_PORT_STAT_SUSPEND;
3733 		if (temp & PORT_OC)
3734 			status |= USB_PORT_STAT_OVERCURRENT;
3735 		if (temp & PORT_RESET)
3736 			status |= USB_PORT_STAT_RESET;
3737 		if (temp & PORT_POWER)
3738 			status |= USB_PORT_STAT_POWER;
3739 
3740 #ifndef	OXU_VERBOSE_DEBUG
3741 	if (status & ~0xffff)	/* only if wPortChange is interesting */
3742 #endif
3743 		dbg_port(oxu, "GetStatus", wIndex + 1, temp);
3744 		put_unaligned(cpu_to_le32(status), (__le32 *) buf);
3745 		break;
3746 	case SetHubFeature:
3747 		switch (wValue) {
3748 		case C_HUB_LOCAL_POWER:
3749 		case C_HUB_OVER_CURRENT:
3750 			/* no hub-wide feature/status flags */
3751 			break;
3752 		default:
3753 			goto error;
3754 		}
3755 		break;
3756 	case SetPortFeature:
3757 		selector = wIndex >> 8;
3758 		wIndex &= 0xff;
3759 		if (!wIndex || wIndex > ports)
3760 			goto error;
3761 		wIndex--;
3762 		temp = readl(status_reg);
3763 		if (temp & PORT_OWNER)
3764 			break;
3765 
3766 		temp &= ~PORT_RWC_BITS;
3767 		switch (wValue) {
3768 		case USB_PORT_FEAT_SUSPEND:
3769 			if ((temp & PORT_PE) == 0
3770 					|| (temp & PORT_RESET) != 0)
3771 				goto error;
3772 			if (device_may_wakeup(&hcd->self.root_hub->dev))
3773 				temp |= PORT_WAKE_BITS;
3774 			writel(temp | PORT_SUSPEND, status_reg);
3775 			break;
3776 		case USB_PORT_FEAT_POWER:
3777 			if (HCS_PPC(oxu->hcs_params))
3778 				writel(temp | PORT_POWER, status_reg);
3779 			break;
3780 		case USB_PORT_FEAT_RESET:
3781 			if (temp & PORT_RESUME)
3782 				goto error;
3783 			/* line status bits may report this as low speed,
3784 			 * which can be fine if this root hub has a
3785 			 * transaction translator built in.
3786 			 */
3787 			oxu_vdbg(oxu, "port %d reset\n", wIndex + 1);
3788 			temp |= PORT_RESET;
3789 			temp &= ~PORT_PE;
3790 
3791 			/*
3792 			 * caller must wait, then call GetPortStatus
3793 			 * usb 2.0 spec says 50 ms resets on root
3794 			 */
3795 			oxu->reset_done[wIndex] = jiffies
3796 					+ msecs_to_jiffies(50);
3797 			writel(temp, status_reg);
3798 			break;
3799 
3800 		/* For downstream facing ports (these):  one hub port is put
3801 		 * into test mode according to USB2 11.24.2.13, then the hub
3802 		 * must be reset (which for root hub now means rmmod+modprobe,
3803 		 * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
3804 		 * about the EHCI-specific stuff.
3805 		 */
3806 		case USB_PORT_FEAT_TEST:
3807 			if (!selector || selector > 5)
3808 				goto error;
3809 			ehci_quiesce(oxu);
3810 			ehci_halt(oxu);
3811 			temp |= selector << 16;
3812 			writel(temp, status_reg);
3813 			break;
3814 
3815 		default:
3816 			goto error;
3817 		}
3818 		readl(&oxu->regs->command);	/* unblock posted writes */
3819 		break;
3820 
3821 	default:
3822 error:
3823 		/* "stall" on error */
3824 		retval = -EPIPE;
3825 	}
3826 	spin_unlock_irqrestore(&oxu->lock, flags);
3827 	return retval;
3828 }
3829 
3830 #ifdef CONFIG_PM
3831 
3832 static int oxu_bus_suspend(struct usb_hcd *hcd)
3833 {
3834 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3835 	int port;
3836 	int mask;
3837 
3838 	oxu_dbg(oxu, "suspend root hub\n");
3839 
3840 	if (time_before(jiffies, oxu->next_statechange))
3841 		msleep(5);
3842 
3843 	port = HCS_N_PORTS(oxu->hcs_params);
3844 	spin_lock_irq(&oxu->lock);
3845 
3846 	/* stop schedules, clean any completed work */
3847 	if (HC_IS_RUNNING(hcd->state)) {
3848 		ehci_quiesce(oxu);
3849 		hcd->state = HC_STATE_QUIESCING;
3850 	}
3851 	oxu->command = readl(&oxu->regs->command);
3852 	if (oxu->reclaim)
3853 		oxu->reclaim_ready = 1;
3854 	ehci_work(oxu);
3855 
3856 	/* Unlike other USB host controller types, EHCI doesn't have
3857 	 * any notion of "global" or bus-wide suspend.  The driver has
3858 	 * to manually suspend all the active unsuspended ports, and
3859 	 * then manually resume them in the bus_resume() routine.
3860 	 */
3861 	oxu->bus_suspended = 0;
3862 	while (port--) {
3863 		u32 __iomem *reg = &oxu->regs->port_status[port];
3864 		u32 t1 = readl(reg) & ~PORT_RWC_BITS;
3865 		u32 t2 = t1;
3866 
3867 		/* keep track of which ports we suspend */
3868 		if ((t1 & PORT_PE) && !(t1 & PORT_OWNER) &&
3869 				!(t1 & PORT_SUSPEND)) {
3870 			t2 |= PORT_SUSPEND;
3871 			set_bit(port, &oxu->bus_suspended);
3872 		}
3873 
3874 		/* enable remote wakeup on all ports */
3875 		if (device_may_wakeup(&hcd->self.root_hub->dev))
3876 			t2 |= PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E;
3877 		else
3878 			t2 &= ~(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E);
3879 
3880 		if (t1 != t2) {
3881 			oxu_vdbg(oxu, "port %d, %08x -> %08x\n",
3882 				port + 1, t1, t2);
3883 			writel(t2, reg);
3884 		}
3885 	}
3886 
3887 	spin_unlock_irq(&oxu->lock);
3888 	/* turn off now-idle HC */
3889 	del_timer_sync(&oxu->watchdog);
3890 	spin_lock_irq(&oxu->lock);
3891 	ehci_halt(oxu);
3892 	hcd->state = HC_STATE_SUSPENDED;
3893 
3894 	/* allow remote wakeup */
3895 	mask = INTR_MASK;
3896 	if (!device_may_wakeup(&hcd->self.root_hub->dev))
3897 		mask &= ~STS_PCD;
3898 	writel(mask, &oxu->regs->intr_enable);
3899 	readl(&oxu->regs->intr_enable);
3900 
3901 	oxu->next_statechange = jiffies + msecs_to_jiffies(10);
3902 	spin_unlock_irq(&oxu->lock);
3903 	return 0;
3904 }
3905 
3906 /* Caller has locked the root hub, and should reset/reinit on error */
3907 static int oxu_bus_resume(struct usb_hcd *hcd)
3908 {
3909 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3910 	u32 temp;
3911 	int i;
3912 
3913 	if (time_before(jiffies, oxu->next_statechange))
3914 		msleep(5);
3915 	spin_lock_irq(&oxu->lock);
3916 
3917 	/* Ideally and we've got a real resume here, and no port's power
3918 	 * was lost.  (For PCI, that means Vaux was maintained.)  But we
3919 	 * could instead be restoring a swsusp snapshot -- so that BIOS was
3920 	 * the last user of the controller, not reset/pm hardware keeping
3921 	 * state we gave to it.
3922 	 */
3923 	temp = readl(&oxu->regs->intr_enable);
3924 	oxu_dbg(oxu, "resume root hub%s\n", temp ? "" : " after power loss");
3925 
3926 	/* at least some APM implementations will try to deliver
3927 	 * IRQs right away, so delay them until we're ready.
3928 	 */
3929 	writel(0, &oxu->regs->intr_enable);
3930 
3931 	/* re-init operational registers */
3932 	writel(0, &oxu->regs->segment);
3933 	writel(oxu->periodic_dma, &oxu->regs->frame_list);
3934 	writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
3935 
3936 	/* restore CMD_RUN, framelist size, and irq threshold */
3937 	writel(oxu->command, &oxu->regs->command);
3938 
3939 	/* Some controller/firmware combinations need a delay during which
3940 	 * they set up the port statuses.  See Bugzilla #8190. */
3941 	mdelay(8);
3942 
3943 	/* manually resume the ports we suspended during bus_suspend() */
3944 	i = HCS_N_PORTS(oxu->hcs_params);
3945 	while (i--) {
3946 		temp = readl(&oxu->regs->port_status[i]);
3947 		temp &= ~(PORT_RWC_BITS
3948 			| PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E);
3949 		if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3950 			oxu->reset_done[i] = jiffies + msecs_to_jiffies(20);
3951 			temp |= PORT_RESUME;
3952 		}
3953 		writel(temp, &oxu->regs->port_status[i]);
3954 	}
3955 	i = HCS_N_PORTS(oxu->hcs_params);
3956 	mdelay(20);
3957 	while (i--) {
3958 		temp = readl(&oxu->regs->port_status[i]);
3959 		if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3960 			temp &= ~(PORT_RWC_BITS | PORT_RESUME);
3961 			writel(temp, &oxu->regs->port_status[i]);
3962 			oxu_vdbg(oxu, "resumed port %d\n", i + 1);
3963 		}
3964 	}
3965 	(void) readl(&oxu->regs->command);
3966 
3967 	/* maybe re-activate the schedule(s) */
3968 	temp = 0;
3969 	if (oxu->async->qh_next.qh)
3970 		temp |= CMD_ASE;
3971 	if (oxu->periodic_sched)
3972 		temp |= CMD_PSE;
3973 	if (temp) {
3974 		oxu->command |= temp;
3975 		writel(oxu->command, &oxu->regs->command);
3976 	}
3977 
3978 	oxu->next_statechange = jiffies + msecs_to_jiffies(5);
3979 	hcd->state = HC_STATE_RUNNING;
3980 
3981 	/* Now we can safely re-enable irqs */
3982 	writel(INTR_MASK, &oxu->regs->intr_enable);
3983 
3984 	spin_unlock_irq(&oxu->lock);
3985 	return 0;
3986 }
3987 
3988 #else
3989 
3990 static int oxu_bus_suspend(struct usb_hcd *hcd)
3991 {
3992 	return 0;
3993 }
3994 
3995 static int oxu_bus_resume(struct usb_hcd *hcd)
3996 {
3997 	return 0;
3998 }
3999 
4000 #endif	/* CONFIG_PM */
4001 
4002 static const struct hc_driver oxu_hc_driver = {
4003 	.description =		"oxu210hp_hcd",
4004 	.product_desc =		"oxu210hp HCD",
4005 	.hcd_priv_size =	sizeof(struct oxu_hcd),
4006 
4007 	/*
4008 	 * Generic hardware linkage
4009 	 */
4010 	.irq =			oxu_irq,
4011 	.flags =		HCD_MEMORY | HCD_USB2,
4012 
4013 	/*
4014 	 * Basic lifecycle operations
4015 	 */
4016 	.reset =		oxu_reset,
4017 	.start =		oxu_run,
4018 	.stop =			oxu_stop,
4019 	.shutdown =		oxu_shutdown,
4020 
4021 	/*
4022 	 * Managing i/o requests and associated device resources
4023 	 */
4024 	.urb_enqueue =		oxu_urb_enqueue,
4025 	.urb_dequeue =		oxu_urb_dequeue,
4026 	.endpoint_disable =	oxu_endpoint_disable,
4027 
4028 	/*
4029 	 * Scheduling support
4030 	 */
4031 	.get_frame_number =	oxu_get_frame,
4032 
4033 	/*
4034 	 * Root hub support
4035 	 */
4036 	.hub_status_data =	oxu_hub_status_data,
4037 	.hub_control =		oxu_hub_control,
4038 	.bus_suspend =		oxu_bus_suspend,
4039 	.bus_resume =		oxu_bus_resume,
4040 };
4041 
4042 /*
4043  * Module stuff
4044  */
4045 
4046 static void oxu_configuration(struct platform_device *pdev, void __iomem *base)
4047 {
4048 	u32 tmp;
4049 
4050 	/* Initialize top level registers.
4051 	 * First write ever
4052 	 */
4053 	oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
4054 	oxu_writel(base, OXU_SOFTRESET, OXU_SRESET);
4055 	oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
4056 
4057 	tmp = oxu_readl(base, OXU_PIOBURSTREADCTRL);
4058 	oxu_writel(base, OXU_PIOBURSTREADCTRL, tmp | 0x0040);
4059 
4060 	oxu_writel(base, OXU_ASO, OXU_SPHPOEN | OXU_OVRCCURPUPDEN |
4061 					OXU_COMPARATOR | OXU_ASO_OP);
4062 
4063 	tmp = oxu_readl(base, OXU_CLKCTRL_SET);
4064 	oxu_writel(base, OXU_CLKCTRL_SET, tmp | OXU_SYSCLKEN | OXU_USBOTGCLKEN);
4065 
4066 	/* Clear all top interrupt enable */
4067 	oxu_writel(base, OXU_CHIPIRQEN_CLR, 0xff);
4068 
4069 	/* Clear all top interrupt status */
4070 	oxu_writel(base, OXU_CHIPIRQSTATUS, 0xff);
4071 
4072 	/* Enable all needed top interrupt except OTG SPH core */
4073 	oxu_writel(base, OXU_CHIPIRQEN_SET, OXU_USBSPHLPWUI | OXU_USBOTGLPWUI);
4074 }
4075 
4076 static int oxu_verify_id(struct platform_device *pdev, void __iomem *base)
4077 {
4078 	u32 id;
4079 	static const char * const bo[] = {
4080 		"reserved",
4081 		"128-pin LQFP",
4082 		"84-pin TFBGA",
4083 		"reserved",
4084 	};
4085 
4086 	/* Read controller signature register to find a match */
4087 	id = oxu_readl(base, OXU_DEVICEID);
4088 	dev_info(&pdev->dev, "device ID %x\n", id);
4089 	if ((id & OXU_REV_MASK) != (OXU_REV_2100 << OXU_REV_SHIFT))
4090 		return -1;
4091 
4092 	dev_info(&pdev->dev, "found device %x %s (%04x:%04x)\n",
4093 		id >> OXU_REV_SHIFT,
4094 		bo[(id & OXU_BO_MASK) >> OXU_BO_SHIFT],
4095 		(id & OXU_MAJ_REV_MASK) >> OXU_MAJ_REV_SHIFT,
4096 		(id & OXU_MIN_REV_MASK) >> OXU_MIN_REV_SHIFT);
4097 
4098 	return 0;
4099 }
4100 
4101 static const struct hc_driver oxu_hc_driver;
4102 static struct usb_hcd *oxu_create(struct platform_device *pdev,
4103 				unsigned long memstart, unsigned long memlen,
4104 				void __iomem *base, int irq, int otg)
4105 {
4106 	struct device *dev = &pdev->dev;
4107 
4108 	struct usb_hcd *hcd;
4109 	struct oxu_hcd *oxu;
4110 	int ret;
4111 
4112 	/* Set endian mode and host mode */
4113 	oxu_writel(base + (otg ? OXU_OTG_CORE_OFFSET : OXU_SPH_CORE_OFFSET),
4114 				OXU_USBMODE,
4115 				OXU_CM_HOST_ONLY | OXU_ES_LITTLE | OXU_VBPS);
4116 
4117 	hcd = usb_create_hcd(&oxu_hc_driver, dev,
4118 				otg ? "oxu210hp_otg" : "oxu210hp_sph");
4119 	if (!hcd)
4120 		return ERR_PTR(-ENOMEM);
4121 
4122 	hcd->rsrc_start = memstart;
4123 	hcd->rsrc_len = memlen;
4124 	hcd->regs = base;
4125 	hcd->irq = irq;
4126 	hcd->state = HC_STATE_HALT;
4127 
4128 	oxu = hcd_to_oxu(hcd);
4129 	oxu->is_otg = otg;
4130 
4131 	ret = usb_add_hcd(hcd, irq, IRQF_SHARED);
4132 	if (ret < 0) {
4133 		usb_put_hcd(hcd);
4134 		return ERR_PTR(ret);
4135 	}
4136 
4137 	device_wakeup_enable(hcd->self.controller);
4138 	return hcd;
4139 }
4140 
4141 static int oxu_init(struct platform_device *pdev,
4142 				unsigned long memstart, unsigned long memlen,
4143 				void __iomem *base, int irq)
4144 {
4145 	struct oxu_info *info = platform_get_drvdata(pdev);
4146 	struct usb_hcd *hcd;
4147 	int ret;
4148 
4149 	/* First time configuration at start up */
4150 	oxu_configuration(pdev, base);
4151 
4152 	ret = oxu_verify_id(pdev, base);
4153 	if (ret) {
4154 		dev_err(&pdev->dev, "no devices found!\n");
4155 		return -ENODEV;
4156 	}
4157 
4158 	/* Create the OTG controller */
4159 	hcd = oxu_create(pdev, memstart, memlen, base, irq, 1);
4160 	if (IS_ERR(hcd)) {
4161 		dev_err(&pdev->dev, "cannot create OTG controller!\n");
4162 		ret = PTR_ERR(hcd);
4163 		goto error_create_otg;
4164 	}
4165 	info->hcd[0] = hcd;
4166 
4167 	/* Create the SPH host controller */
4168 	hcd = oxu_create(pdev, memstart, memlen, base, irq, 0);
4169 	if (IS_ERR(hcd)) {
4170 		dev_err(&pdev->dev, "cannot create SPH controller!\n");
4171 		ret = PTR_ERR(hcd);
4172 		goto error_create_sph;
4173 	}
4174 	info->hcd[1] = hcd;
4175 
4176 	oxu_writel(base, OXU_CHIPIRQEN_SET,
4177 		oxu_readl(base, OXU_CHIPIRQEN_SET) | 3);
4178 
4179 	return 0;
4180 
4181 error_create_sph:
4182 	usb_remove_hcd(info->hcd[0]);
4183 	usb_put_hcd(info->hcd[0]);
4184 
4185 error_create_otg:
4186 	return ret;
4187 }
4188 
4189 static int oxu_drv_probe(struct platform_device *pdev)
4190 {
4191 	struct resource *res;
4192 	void __iomem *base;
4193 	unsigned long memstart, memlen;
4194 	int irq, ret;
4195 	struct oxu_info *info;
4196 
4197 	if (usb_disabled())
4198 		return -ENODEV;
4199 
4200 	/*
4201 	 * Get the platform resources
4202 	 */
4203 	irq = platform_get_irq(pdev, 0);
4204 	if (irq < 0)
4205 		return irq;
4206 	dev_dbg(&pdev->dev, "IRQ resource %d\n", irq);
4207 
4208 	base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
4209 	if (IS_ERR(base)) {
4210 		ret = PTR_ERR(base);
4211 		goto error;
4212 	}
4213 	memstart = res->start;
4214 	memlen = resource_size(res);
4215 
4216 	ret = irq_set_irq_type(irq, IRQF_TRIGGER_FALLING);
4217 	if (ret) {
4218 		dev_err(&pdev->dev, "error setting irq type\n");
4219 		ret = -EFAULT;
4220 		goto error;
4221 	}
4222 
4223 	/* Allocate a driver data struct to hold useful info for both
4224 	 * SPH & OTG devices
4225 	 */
4226 	info = devm_kzalloc(&pdev->dev, sizeof(struct oxu_info), GFP_KERNEL);
4227 	if (!info) {
4228 		ret = -EFAULT;
4229 		goto error;
4230 	}
4231 	platform_set_drvdata(pdev, info);
4232 
4233 	ret = oxu_init(pdev, memstart, memlen, base, irq);
4234 	if (ret < 0) {
4235 		dev_dbg(&pdev->dev, "cannot init USB devices\n");
4236 		goto error;
4237 	}
4238 
4239 	dev_info(&pdev->dev, "devices enabled and running\n");
4240 	platform_set_drvdata(pdev, info);
4241 
4242 	return 0;
4243 
4244 error:
4245 	dev_err(&pdev->dev, "init %s fail, %d\n", dev_name(&pdev->dev), ret);
4246 	return ret;
4247 }
4248 
4249 static void oxu_remove(struct platform_device *pdev, struct usb_hcd *hcd)
4250 {
4251 	usb_remove_hcd(hcd);
4252 	usb_put_hcd(hcd);
4253 }
4254 
4255 static void oxu_drv_remove(struct platform_device *pdev)
4256 {
4257 	struct oxu_info *info = platform_get_drvdata(pdev);
4258 
4259 	oxu_remove(pdev, info->hcd[0]);
4260 	oxu_remove(pdev, info->hcd[1]);
4261 }
4262 
4263 static void oxu_drv_shutdown(struct platform_device *pdev)
4264 {
4265 	oxu_drv_remove(pdev);
4266 }
4267 
4268 #if 0
4269 /* FIXME: TODO */
4270 static int oxu_drv_suspend(struct device *dev)
4271 {
4272 	struct platform_device *pdev = to_platform_device(dev);
4273 	struct usb_hcd *hcd = dev_get_drvdata(dev);
4274 
4275 	return 0;
4276 }
4277 
4278 static int oxu_drv_resume(struct device *dev)
4279 {
4280 	struct platform_device *pdev = to_platform_device(dev);
4281 	struct usb_hcd *hcd = dev_get_drvdata(dev);
4282 
4283 	return 0;
4284 }
4285 #else
4286 #define oxu_drv_suspend	NULL
4287 #define oxu_drv_resume	NULL
4288 #endif
4289 
4290 static struct platform_driver oxu_driver = {
4291 	.probe		= oxu_drv_probe,
4292 	.remove_new	= oxu_drv_remove,
4293 	.shutdown	= oxu_drv_shutdown,
4294 	.suspend	= oxu_drv_suspend,
4295 	.resume		= oxu_drv_resume,
4296 	.driver = {
4297 		.name = "oxu210hp-hcd",
4298 		.bus = &platform_bus_type
4299 	}
4300 };
4301 
4302 module_platform_driver(oxu_driver);
4303 
4304 MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION);
4305 MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
4306 MODULE_LICENSE("GPL");
4307