1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it> 4 * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it> 5 * 6 * This code is *strongly* based on EHCI-HCD code by David Brownell since 7 * the chip is a quasi-EHCI compatible. 8 */ 9 10 #include <linux/module.h> 11 #include <linux/pci.h> 12 #include <linux/dmapool.h> 13 #include <linux/kernel.h> 14 #include <linux/delay.h> 15 #include <linux/ioport.h> 16 #include <linux/sched.h> 17 #include <linux/slab.h> 18 #include <linux/errno.h> 19 #include <linux/timer.h> 20 #include <linux/list.h> 21 #include <linux/interrupt.h> 22 #include <linux/usb.h> 23 #include <linux/usb/hcd.h> 24 #include <linux/moduleparam.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/io.h> 27 #include <linux/iopoll.h> 28 29 #include <asm/irq.h> 30 #include <linux/unaligned.h> 31 32 #include <linux/irq.h> 33 #include <linux/platform_device.h> 34 35 #define DRIVER_VERSION "0.0.50" 36 37 #define OXU_DEVICEID 0x00 38 #define OXU_REV_MASK 0xffff0000 39 #define OXU_REV_SHIFT 16 40 #define OXU_REV_2100 0x2100 41 #define OXU_BO_SHIFT 8 42 #define OXU_BO_MASK (0x3 << OXU_BO_SHIFT) 43 #define OXU_MAJ_REV_SHIFT 4 44 #define OXU_MAJ_REV_MASK (0xf << OXU_MAJ_REV_SHIFT) 45 #define OXU_MIN_REV_SHIFT 0 46 #define OXU_MIN_REV_MASK (0xf << OXU_MIN_REV_SHIFT) 47 #define OXU_HOSTIFCONFIG 0x04 48 #define OXU_SOFTRESET 0x08 49 #define OXU_SRESET (1 << 0) 50 51 #define OXU_PIOBURSTREADCTRL 0x0C 52 53 #define OXU_CHIPIRQSTATUS 0x10 54 #define OXU_CHIPIRQEN_SET 0x14 55 #define OXU_CHIPIRQEN_CLR 0x18 56 #define OXU_USBSPHLPWUI 0x00000080 57 #define OXU_USBOTGLPWUI 0x00000040 58 #define OXU_USBSPHI 0x00000002 59 #define OXU_USBOTGI 0x00000001 60 61 #define OXU_CLKCTRL_SET 0x1C 62 #define OXU_SYSCLKEN 0x00000008 63 #define OXU_USBSPHCLKEN 0x00000002 64 #define OXU_USBOTGCLKEN 0x00000001 65 66 #define OXU_ASO 0x68 67 #define OXU_SPHPOEN 0x00000100 68 #define OXU_OVRCCURPUPDEN 0x00000800 69 #define OXU_ASO_OP (1 << 10) 70 #define OXU_COMPARATOR 0x000004000 71 72 #define OXU_USBMODE 0x1A8 73 #define OXU_VBPS 0x00000020 74 #define OXU_ES_LITTLE 0x00000000 75 #define OXU_CM_HOST_ONLY 0x00000003 76 77 /* 78 * Proper EHCI structs & defines 79 */ 80 81 /* Magic numbers that can affect system performance */ 82 #define EHCI_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */ 83 #define EHCI_TUNE_RL_HS 4 /* nak throttle; see 4.9 */ 84 #define EHCI_TUNE_RL_TT 0 85 #define EHCI_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */ 86 #define EHCI_TUNE_MULT_TT 1 87 #define EHCI_TUNE_FLS 2 /* (small) 256 frame schedule */ 88 89 struct oxu_hcd; 90 91 /* EHCI register interface, corresponds to EHCI Revision 0.95 specification */ 92 93 /* Section 2.2 Host Controller Capability Registers */ 94 struct ehci_caps { 95 /* these fields are specified as 8 and 16 bit registers, 96 * but some hosts can't perform 8 or 16 bit PCI accesses. 97 */ 98 u32 hc_capbase; 99 #define HC_LENGTH(p) (((p)>>00)&0x00ff) /* bits 7:0 */ 100 #define HC_VERSION(p) (((p)>>16)&0xffff) /* bits 31:16 */ 101 u32 hcs_params; /* HCSPARAMS - offset 0x4 */ 102 #define HCS_DEBUG_PORT(p) (((p)>>20)&0xf) /* bits 23:20, debug port? */ 103 #define HCS_INDICATOR(p) ((p)&(1 << 16)) /* true: has port indicators */ 104 #define HCS_N_CC(p) (((p)>>12)&0xf) /* bits 15:12, #companion HCs */ 105 #define HCS_N_PCC(p) (((p)>>8)&0xf) /* bits 11:8, ports per CC */ 106 #define HCS_PORTROUTED(p) ((p)&(1 << 7)) /* true: port routing */ 107 #define HCS_PPC(p) ((p)&(1 << 4)) /* true: port power control */ 108 #define HCS_N_PORTS(p) (((p)>>0)&0xf) /* bits 3:0, ports on HC */ 109 110 u32 hcc_params; /* HCCPARAMS - offset 0x8 */ 111 #define HCC_EXT_CAPS(p) (((p)>>8)&0xff) /* for pci extended caps */ 112 #define HCC_ISOC_CACHE(p) ((p)&(1 << 7)) /* true: can cache isoc frame */ 113 #define HCC_ISOC_THRES(p) (((p)>>4)&0x7) /* bits 6:4, uframes cached */ 114 #define HCC_CANPARK(p) ((p)&(1 << 2)) /* true: can park on async qh */ 115 #define HCC_PGM_FRAMELISTLEN(p) ((p)&(1 << 1)) /* true: periodic_size changes*/ 116 #define HCC_64BIT_ADDR(p) ((p)&(1)) /* true: can use 64-bit addr */ 117 u8 portroute[8]; /* nibbles for routing - offset 0xC */ 118 } __packed; 119 120 121 /* Section 2.3 Host Controller Operational Registers */ 122 struct ehci_regs { 123 /* USBCMD: offset 0x00 */ 124 u32 command; 125 /* 23:16 is r/w intr rate, in microframes; default "8" == 1/msec */ 126 #define CMD_PARK (1<<11) /* enable "park" on async qh */ 127 #define CMD_PARK_CNT(c) (((c)>>8)&3) /* how many transfers to park for */ 128 #define CMD_LRESET (1<<7) /* partial reset (no ports, etc) */ 129 #define CMD_IAAD (1<<6) /* "doorbell" interrupt async advance */ 130 #define CMD_ASE (1<<5) /* async schedule enable */ 131 #define CMD_PSE (1<<4) /* periodic schedule enable */ 132 /* 3:2 is periodic frame list size */ 133 #define CMD_RESET (1<<1) /* reset HC not bus */ 134 #define CMD_RUN (1<<0) /* start/stop HC */ 135 136 /* USBSTS: offset 0x04 */ 137 u32 status; 138 #define STS_ASS (1<<15) /* Async Schedule Status */ 139 #define STS_PSS (1<<14) /* Periodic Schedule Status */ 140 #define STS_RECL (1<<13) /* Reclamation */ 141 #define STS_HALT (1<<12) /* Not running (any reason) */ 142 /* some bits reserved */ 143 /* these STS_* flags are also intr_enable bits (USBINTR) */ 144 #define STS_IAA (1<<5) /* Interrupted on async advance */ 145 #define STS_FATAL (1<<4) /* such as some PCI access errors */ 146 #define STS_FLR (1<<3) /* frame list rolled over */ 147 #define STS_PCD (1<<2) /* port change detect */ 148 #define STS_ERR (1<<1) /* "error" completion (overflow, ...) */ 149 #define STS_INT (1<<0) /* "normal" completion (short, ...) */ 150 151 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT) 152 153 /* USBINTR: offset 0x08 */ 154 u32 intr_enable; 155 156 /* FRINDEX: offset 0x0C */ 157 u32 frame_index; /* current microframe number */ 158 /* CTRLDSSEGMENT: offset 0x10 */ 159 u32 segment; /* address bits 63:32 if needed */ 160 /* PERIODICLISTBASE: offset 0x14 */ 161 u32 frame_list; /* points to periodic list */ 162 /* ASYNCLISTADDR: offset 0x18 */ 163 u32 async_next; /* address of next async queue head */ 164 165 u32 reserved[9]; 166 167 /* CONFIGFLAG: offset 0x40 */ 168 u32 configured_flag; 169 #define FLAG_CF (1<<0) /* true: we'll support "high speed" */ 170 171 /* PORTSC: offset 0x44 */ 172 u32 port_status[]; /* up to N_PORTS */ 173 /* 31:23 reserved */ 174 #define PORT_WKOC_E (1<<22) /* wake on overcurrent (enable) */ 175 #define PORT_WKDISC_E (1<<21) /* wake on disconnect (enable) */ 176 #define PORT_WKCONN_E (1<<20) /* wake on connect (enable) */ 177 /* 19:16 for port testing */ 178 #define PORT_LED_OFF (0<<14) 179 #define PORT_LED_AMBER (1<<14) 180 #define PORT_LED_GREEN (2<<14) 181 #define PORT_LED_MASK (3<<14) 182 #define PORT_OWNER (1<<13) /* true: companion hc owns this port */ 183 #define PORT_POWER (1<<12) /* true: has power (see PPC) */ 184 #define PORT_USB11(x) (((x)&(3<<10)) == (1<<10)) /* USB 1.1 device */ 185 /* 11:10 for detecting lowspeed devices (reset vs release ownership) */ 186 /* 9 reserved */ 187 #define PORT_RESET (1<<8) /* reset port */ 188 #define PORT_SUSPEND (1<<7) /* suspend port */ 189 #define PORT_RESUME (1<<6) /* resume it */ 190 #define PORT_OCC (1<<5) /* over current change */ 191 #define PORT_OC (1<<4) /* over current active */ 192 #define PORT_PEC (1<<3) /* port enable change */ 193 #define PORT_PE (1<<2) /* port enable */ 194 #define PORT_CSC (1<<1) /* connect status change */ 195 #define PORT_CONNECT (1<<0) /* device connected */ 196 #define PORT_RWC_BITS (PORT_CSC | PORT_PEC | PORT_OCC) 197 } __packed; 198 199 #define QTD_NEXT(dma) cpu_to_le32((u32)dma) 200 201 /* 202 * EHCI Specification 0.95 Section 3.5 203 * QTD: describe data transfer components (buffer, direction, ...) 204 * See Fig 3-6 "Queue Element Transfer Descriptor Block Diagram". 205 * 206 * These are associated only with "QH" (Queue Head) structures, 207 * used with control, bulk, and interrupt transfers. 208 */ 209 struct ehci_qtd { 210 /* first part defined by EHCI spec */ 211 __le32 hw_next; /* see EHCI 3.5.1 */ 212 __le32 hw_alt_next; /* see EHCI 3.5.2 */ 213 __le32 hw_token; /* see EHCI 3.5.3 */ 214 #define QTD_TOGGLE (1 << 31) /* data toggle */ 215 #define QTD_LENGTH(tok) (((tok)>>16) & 0x7fff) 216 #define QTD_IOC (1 << 15) /* interrupt on complete */ 217 #define QTD_CERR(tok) (((tok)>>10) & 0x3) 218 #define QTD_PID(tok) (((tok)>>8) & 0x3) 219 #define QTD_STS_ACTIVE (1 << 7) /* HC may execute this */ 220 #define QTD_STS_HALT (1 << 6) /* halted on error */ 221 #define QTD_STS_DBE (1 << 5) /* data buffer error (in HC) */ 222 #define QTD_STS_BABBLE (1 << 4) /* device was babbling (qtd halted) */ 223 #define QTD_STS_XACT (1 << 3) /* device gave illegal response */ 224 #define QTD_STS_MMF (1 << 2) /* incomplete split transaction */ 225 #define QTD_STS_STS (1 << 1) /* split transaction state */ 226 #define QTD_STS_PING (1 << 0) /* issue PING? */ 227 __le32 hw_buf[5]; /* see EHCI 3.5.4 */ 228 __le32 hw_buf_hi[5]; /* Appendix B */ 229 230 /* the rest is HCD-private */ 231 dma_addr_t qtd_dma; /* qtd address */ 232 struct list_head qtd_list; /* sw qtd list */ 233 struct urb *urb; /* qtd's urb */ 234 size_t length; /* length of buffer */ 235 236 u32 qtd_buffer_len; 237 void *buffer; 238 dma_addr_t buffer_dma; 239 void *transfer_buffer; 240 void *transfer_dma; 241 } __aligned(32); 242 243 /* mask NakCnt+T in qh->hw_alt_next */ 244 #define QTD_MASK cpu_to_le32 (~0x1f) 245 246 #define IS_SHORT_READ(token) (QTD_LENGTH(token) != 0 && QTD_PID(token) == 1) 247 248 /* Type tag from {qh, itd, sitd, fstn}->hw_next */ 249 #define Q_NEXT_TYPE(dma) ((dma) & cpu_to_le32 (3 << 1)) 250 251 /* values for that type tag */ 252 #define Q_TYPE_QH cpu_to_le32 (1 << 1) 253 254 /* next async queue entry, or pointer to interrupt/periodic QH */ 255 #define QH_NEXT(dma) (cpu_to_le32(((u32)dma)&~0x01f)|Q_TYPE_QH) 256 257 /* for periodic/async schedules and qtd lists, mark end of list */ 258 #define EHCI_LIST_END cpu_to_le32(1) /* "null pointer" to hw */ 259 260 /* 261 * Entries in periodic shadow table are pointers to one of four kinds 262 * of data structure. That's dictated by the hardware; a type tag is 263 * encoded in the low bits of the hardware's periodic schedule. Use 264 * Q_NEXT_TYPE to get the tag. 265 * 266 * For entries in the async schedule, the type tag always says "qh". 267 */ 268 union ehci_shadow { 269 struct ehci_qh *qh; /* Q_TYPE_QH */ 270 __le32 *hw_next; /* (all types) */ 271 void *ptr; 272 }; 273 274 /* 275 * EHCI Specification 0.95 Section 3.6 276 * QH: describes control/bulk/interrupt endpoints 277 * See Fig 3-7 "Queue Head Structure Layout". 278 * 279 * These appear in both the async and (for interrupt) periodic schedules. 280 */ 281 282 struct ehci_qh { 283 /* first part defined by EHCI spec */ 284 __le32 hw_next; /* see EHCI 3.6.1 */ 285 __le32 hw_info1; /* see EHCI 3.6.2 */ 286 #define QH_HEAD 0x00008000 287 __le32 hw_info2; /* see EHCI 3.6.2 */ 288 #define QH_SMASK 0x000000ff 289 #define QH_CMASK 0x0000ff00 290 #define QH_HUBADDR 0x007f0000 291 #define QH_HUBPORT 0x3f800000 292 #define QH_MULT 0xc0000000 293 __le32 hw_current; /* qtd list - see EHCI 3.6.4 */ 294 295 /* qtd overlay (hardware parts of a struct ehci_qtd) */ 296 __le32 hw_qtd_next; 297 __le32 hw_alt_next; 298 __le32 hw_token; 299 __le32 hw_buf[5]; 300 __le32 hw_buf_hi[5]; 301 302 /* the rest is HCD-private */ 303 dma_addr_t qh_dma; /* address of qh */ 304 union ehci_shadow qh_next; /* ptr to qh; or periodic */ 305 struct list_head qtd_list; /* sw qtd list */ 306 struct ehci_qtd *dummy; 307 struct ehci_qh *reclaim; /* next to reclaim */ 308 309 struct oxu_hcd *oxu; 310 struct kref kref; 311 unsigned int stamp; 312 313 u8 qh_state; 314 #define QH_STATE_LINKED 1 /* HC sees this */ 315 #define QH_STATE_UNLINK 2 /* HC may still see this */ 316 #define QH_STATE_IDLE 3 /* HC doesn't see this */ 317 #define QH_STATE_UNLINK_WAIT 4 /* LINKED and on reclaim q */ 318 #define QH_STATE_COMPLETING 5 /* don't touch token.HALT */ 319 320 /* periodic schedule info */ 321 u8 usecs; /* intr bandwidth */ 322 u8 gap_uf; /* uframes split/csplit gap */ 323 u8 c_usecs; /* ... split completion bw */ 324 u16 tt_usecs; /* tt downstream bandwidth */ 325 unsigned short period; /* polling interval */ 326 unsigned short start; /* where polling starts */ 327 #define NO_FRAME ((unsigned short)~0) /* pick new start */ 328 struct usb_device *dev; /* access to TT */ 329 } __aligned(32); 330 331 /* 332 * Proper OXU210HP structs 333 */ 334 335 #define OXU_OTG_CORE_OFFSET 0x00400 336 #define OXU_OTG_CAP_OFFSET (OXU_OTG_CORE_OFFSET + 0x100) 337 #define OXU_SPH_CORE_OFFSET 0x00800 338 #define OXU_SPH_CAP_OFFSET (OXU_SPH_CORE_OFFSET + 0x100) 339 340 #define OXU_OTG_MEM 0xE000 341 #define OXU_SPH_MEM 0x16000 342 343 /* Only how many elements & element structure are specifies here. */ 344 /* 2 host controllers are enabled - total size <= 28 kbytes */ 345 #define DEFAULT_I_TDPS 1024 346 #define QHEAD_NUM 16 347 #define QTD_NUM 32 348 #define SITD_NUM 8 349 #define MURB_NUM 8 350 351 #define BUFFER_NUM 8 352 #define BUFFER_SIZE 512 353 354 struct oxu_info { 355 struct usb_hcd *hcd[2]; 356 }; 357 358 struct oxu_buf { 359 u8 buffer[BUFFER_SIZE]; 360 } __aligned(BUFFER_SIZE); 361 362 struct oxu_onchip_mem { 363 struct oxu_buf db_pool[BUFFER_NUM]; 364 365 u32 frame_list[DEFAULT_I_TDPS]; 366 struct ehci_qh qh_pool[QHEAD_NUM]; 367 struct ehci_qtd qtd_pool[QTD_NUM]; 368 } __aligned(4 << 10); 369 370 #define EHCI_MAX_ROOT_PORTS 15 /* see HCS_N_PORTS */ 371 372 struct oxu_murb { 373 struct urb urb; 374 struct urb *main; 375 u8 last; 376 }; 377 378 struct oxu_hcd { /* one per controller */ 379 unsigned int is_otg:1; 380 381 u8 qh_used[QHEAD_NUM]; 382 u8 qtd_used[QTD_NUM]; 383 u8 db_used[BUFFER_NUM]; 384 u8 murb_used[MURB_NUM]; 385 386 struct oxu_onchip_mem __iomem *mem; 387 spinlock_t mem_lock; 388 389 struct timer_list urb_timer; 390 391 struct ehci_caps __iomem *caps; 392 struct ehci_regs __iomem *regs; 393 394 u32 hcs_params; /* cached register copy */ 395 spinlock_t lock; 396 397 /* async schedule support */ 398 struct ehci_qh *async; 399 struct ehci_qh *reclaim; 400 unsigned int reclaim_ready:1; 401 unsigned int scanning:1; 402 403 /* periodic schedule support */ 404 unsigned int periodic_size; 405 __le32 *periodic; /* hw periodic table */ 406 dma_addr_t periodic_dma; 407 unsigned int i_thresh; /* uframes HC might cache */ 408 409 union ehci_shadow *pshadow; /* mirror hw periodic table */ 410 int next_uframe; /* scan periodic, start here */ 411 unsigned int periodic_sched; /* periodic activity count */ 412 413 /* per root hub port */ 414 unsigned long reset_done[EHCI_MAX_ROOT_PORTS]; 415 /* bit vectors (one bit per port) */ 416 unsigned long bus_suspended; /* which ports were 417 * already suspended at the 418 * start of a bus suspend 419 */ 420 unsigned long companion_ports;/* which ports are dedicated 421 * to the companion controller 422 */ 423 424 struct timer_list watchdog; 425 unsigned long actions; 426 unsigned int stamp; 427 unsigned long next_statechange; 428 u32 command; 429 430 /* SILICON QUIRKS */ 431 struct list_head urb_list; /* this is the head to urb 432 * queue that didn't get enough 433 * resources 434 */ 435 struct oxu_murb *murb_pool; /* murb per split big urb */ 436 unsigned int urb_len; 437 438 u8 sbrn; /* packed release number */ 439 }; 440 441 #define EHCI_IAA_JIFFIES (HZ/100) /* arbitrary; ~10 msec */ 442 #define EHCI_IO_JIFFIES (HZ/10) /* io watchdog > irq_thresh */ 443 #define EHCI_ASYNC_JIFFIES (HZ/20) /* async idle timeout */ 444 #define EHCI_SHRINK_JIFFIES (HZ/200) /* async qh unlink delay */ 445 446 enum ehci_timer_action { 447 TIMER_IO_WATCHDOG, 448 TIMER_IAA_WATCHDOG, 449 TIMER_ASYNC_SHRINK, 450 TIMER_ASYNC_OFF, 451 }; 452 453 /* 454 * Main defines 455 */ 456 457 #define oxu_dbg(oxu, fmt, args...) \ 458 dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args) 459 #define oxu_err(oxu, fmt, args...) \ 460 dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args) 461 #define oxu_info(oxu, fmt, args...) \ 462 dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args) 463 464 #ifdef CONFIG_DYNAMIC_DEBUG 465 #define DEBUG 466 #endif 467 468 static inline struct usb_hcd *oxu_to_hcd(struct oxu_hcd *oxu) 469 { 470 return container_of((void *) oxu, struct usb_hcd, hcd_priv); 471 } 472 473 static inline struct oxu_hcd *hcd_to_oxu(struct usb_hcd *hcd) 474 { 475 return (struct oxu_hcd *) (hcd->hcd_priv); 476 } 477 478 /* 479 * Debug stuff 480 */ 481 482 #undef OXU_URB_TRACE 483 #undef OXU_VERBOSE_DEBUG 484 485 #ifdef OXU_VERBOSE_DEBUG 486 #define oxu_vdbg oxu_dbg 487 #else 488 #define oxu_vdbg(oxu, fmt, args...) /* Nop */ 489 #endif 490 491 #ifdef DEBUG 492 493 static int __attribute__((__unused__)) 494 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status) 495 { 496 return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s", 497 label, label[0] ? " " : "", status, 498 (status & STS_ASS) ? " Async" : "", 499 (status & STS_PSS) ? " Periodic" : "", 500 (status & STS_RECL) ? " Recl" : "", 501 (status & STS_HALT) ? " Halt" : "", 502 (status & STS_IAA) ? " IAA" : "", 503 (status & STS_FATAL) ? " FATAL" : "", 504 (status & STS_FLR) ? " FLR" : "", 505 (status & STS_PCD) ? " PCD" : "", 506 (status & STS_ERR) ? " ERR" : "", 507 (status & STS_INT) ? " INT" : "" 508 ); 509 } 510 511 static int __attribute__((__unused__)) 512 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable) 513 { 514 return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s", 515 label, label[0] ? " " : "", enable, 516 (enable & STS_IAA) ? " IAA" : "", 517 (enable & STS_FATAL) ? " FATAL" : "", 518 (enable & STS_FLR) ? " FLR" : "", 519 (enable & STS_PCD) ? " PCD" : "", 520 (enable & STS_ERR) ? " ERR" : "", 521 (enable & STS_INT) ? " INT" : "" 522 ); 523 } 524 525 static const char *const fls_strings[] = 526 { "1024", "512", "256", "??" }; 527 528 static int dbg_command_buf(char *buf, unsigned len, 529 const char *label, u32 command) 530 { 531 return scnprintf(buf, len, 532 "%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s", 533 label, label[0] ? " " : "", command, 534 (command & CMD_PARK) ? "park" : "(park)", 535 CMD_PARK_CNT(command), 536 (command >> 16) & 0x3f, 537 (command & CMD_LRESET) ? " LReset" : "", 538 (command & CMD_IAAD) ? " IAAD" : "", 539 (command & CMD_ASE) ? " Async" : "", 540 (command & CMD_PSE) ? " Periodic" : "", 541 fls_strings[(command >> 2) & 0x3], 542 (command & CMD_RESET) ? " Reset" : "", 543 (command & CMD_RUN) ? "RUN" : "HALT" 544 ); 545 } 546 547 static int dbg_port_buf(char *buf, unsigned len, const char *label, 548 int port, u32 status) 549 { 550 char *sig; 551 552 /* signaling state */ 553 switch (status & (3 << 10)) { 554 case 0 << 10: 555 sig = "se0"; 556 break; 557 case 1 << 10: 558 sig = "k"; /* low speed */ 559 break; 560 case 2 << 10: 561 sig = "j"; 562 break; 563 default: 564 sig = "?"; 565 break; 566 } 567 568 return scnprintf(buf, len, 569 "%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s", 570 label, label[0] ? " " : "", port, status, 571 (status & PORT_POWER) ? " POWER" : "", 572 (status & PORT_OWNER) ? " OWNER" : "", 573 sig, 574 (status & PORT_RESET) ? " RESET" : "", 575 (status & PORT_SUSPEND) ? " SUSPEND" : "", 576 (status & PORT_RESUME) ? " RESUME" : "", 577 (status & PORT_OCC) ? " OCC" : "", 578 (status & PORT_OC) ? " OC" : "", 579 (status & PORT_PEC) ? " PEC" : "", 580 (status & PORT_PE) ? " PE" : "", 581 (status & PORT_CSC) ? " CSC" : "", 582 (status & PORT_CONNECT) ? " CONNECT" : "" 583 ); 584 } 585 586 #else 587 588 static inline int __attribute__((__unused__)) 589 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status) 590 { return 0; } 591 592 static inline int __attribute__((__unused__)) 593 dbg_command_buf(char *buf, unsigned len, const char *label, u32 command) 594 { return 0; } 595 596 static inline int __attribute__((__unused__)) 597 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable) 598 { return 0; } 599 600 static inline int __attribute__((__unused__)) 601 dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status) 602 { return 0; } 603 604 #endif /* DEBUG */ 605 606 /* functions have the "wrong" filename when they're output... */ 607 #define dbg_status(oxu, label, status) { \ 608 char _buf[80]; \ 609 dbg_status_buf(_buf, sizeof _buf, label, status); \ 610 oxu_dbg(oxu, "%s\n", _buf); \ 611 } 612 613 #define dbg_cmd(oxu, label, command) { \ 614 char _buf[80]; \ 615 dbg_command_buf(_buf, sizeof _buf, label, command); \ 616 oxu_dbg(oxu, "%s\n", _buf); \ 617 } 618 619 #define dbg_port(oxu, label, port, status) { \ 620 char _buf[80]; \ 621 dbg_port_buf(_buf, sizeof _buf, label, port, status); \ 622 oxu_dbg(oxu, "%s\n", _buf); \ 623 } 624 625 /* 626 * Module parameters 627 */ 628 629 /* Initial IRQ latency: faster than hw default */ 630 static int log2_irq_thresh; /* 0 to 6 */ 631 module_param(log2_irq_thresh, int, S_IRUGO); 632 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes"); 633 634 /* Initial park setting: slower than hw default */ 635 static unsigned park; 636 module_param(park, uint, S_IRUGO); 637 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets"); 638 639 /* For flakey hardware, ignore overcurrent indicators */ 640 static bool ignore_oc; 641 module_param(ignore_oc, bool, S_IRUGO); 642 MODULE_PARM_DESC(ignore_oc, "ignore bogus hardware overcurrent indications"); 643 644 645 static void ehci_work(struct oxu_hcd *oxu); 646 static int oxu_hub_control(struct usb_hcd *hcd, 647 u16 typeReq, u16 wValue, u16 wIndex, 648 char *buf, u16 wLength); 649 650 /* 651 * Local functions 652 */ 653 654 /* Low level read/write registers functions */ 655 static inline u32 oxu_readl(void __iomem *base, u32 reg) 656 { 657 return readl(base + reg); 658 } 659 660 static inline void oxu_writel(void __iomem *base, u32 reg, u32 val) 661 { 662 writel(val, base + reg); 663 } 664 665 static inline void timer_action_done(struct oxu_hcd *oxu, 666 enum ehci_timer_action action) 667 { 668 clear_bit(action, &oxu->actions); 669 } 670 671 static inline void timer_action(struct oxu_hcd *oxu, 672 enum ehci_timer_action action) 673 { 674 if (!test_and_set_bit(action, &oxu->actions)) { 675 unsigned long t; 676 677 switch (action) { 678 case TIMER_IAA_WATCHDOG: 679 t = EHCI_IAA_JIFFIES; 680 break; 681 case TIMER_IO_WATCHDOG: 682 t = EHCI_IO_JIFFIES; 683 break; 684 case TIMER_ASYNC_OFF: 685 t = EHCI_ASYNC_JIFFIES; 686 break; 687 case TIMER_ASYNC_SHRINK: 688 default: 689 t = EHCI_SHRINK_JIFFIES; 690 break; 691 } 692 t += jiffies; 693 /* all timings except IAA watchdog can be overridden. 694 * async queue SHRINK often precedes IAA. while it's ready 695 * to go OFF neither can matter, and afterwards the IO 696 * watchdog stops unless there's still periodic traffic. 697 */ 698 if (action != TIMER_IAA_WATCHDOG 699 && t > oxu->watchdog.expires 700 && timer_pending(&oxu->watchdog)) 701 return; 702 mod_timer(&oxu->watchdog, t); 703 } 704 } 705 706 /* 707 * handshake - spin reading hc until handshake completes or fails 708 * @ptr: address of hc register to be read 709 * @mask: bits to look at in result of read 710 * @done: value of those bits when handshake succeeds 711 * @usec: timeout in microseconds 712 * 713 * Returns negative errno, or zero on success 714 * 715 * Success happens when the "mask" bits have the specified value (hardware 716 * handshake done). There are two failure modes: "usec" have passed (major 717 * hardware flakeout), or the register reads as all-ones (hardware removed). 718 * 719 * That last failure should_only happen in cases like physical cardbus eject 720 * before driver shutdown. But it also seems to be caused by bugs in cardbus 721 * bridge shutdown: shutting down the bridge before the devices using it. 722 */ 723 static int handshake(struct oxu_hcd *oxu, void __iomem *ptr, 724 u32 mask, u32 done, int usec) 725 { 726 u32 result; 727 int ret; 728 729 ret = readl_poll_timeout_atomic(ptr, result, 730 ((result & mask) == done || 731 result == U32_MAX), 732 1, usec); 733 if (result == U32_MAX) /* card removed */ 734 return -ENODEV; 735 736 return ret; 737 } 738 739 /* Force HC to halt state from unknown (EHCI spec section 2.3) */ 740 static int ehci_halt(struct oxu_hcd *oxu) 741 { 742 u32 temp = readl(&oxu->regs->status); 743 744 /* disable any irqs left enabled by previous code */ 745 writel(0, &oxu->regs->intr_enable); 746 747 if ((temp & STS_HALT) != 0) 748 return 0; 749 750 temp = readl(&oxu->regs->command); 751 temp &= ~CMD_RUN; 752 writel(temp, &oxu->regs->command); 753 return handshake(oxu, &oxu->regs->status, 754 STS_HALT, STS_HALT, 16 * 125); 755 } 756 757 /* Put TDI/ARC silicon into EHCI mode */ 758 static void tdi_reset(struct oxu_hcd *oxu) 759 { 760 u32 __iomem *reg_ptr; 761 u32 tmp; 762 763 reg_ptr = (u32 __iomem *)(((u8 __iomem *)oxu->regs) + 0x68); 764 tmp = readl(reg_ptr); 765 tmp |= 0x3; 766 writel(tmp, reg_ptr); 767 } 768 769 /* Reset a non-running (STS_HALT == 1) controller */ 770 static int ehci_reset(struct oxu_hcd *oxu) 771 { 772 int retval; 773 u32 command = readl(&oxu->regs->command); 774 775 command |= CMD_RESET; 776 dbg_cmd(oxu, "reset", command); 777 writel(command, &oxu->regs->command); 778 oxu_to_hcd(oxu)->state = HC_STATE_HALT; 779 oxu->next_statechange = jiffies; 780 retval = handshake(oxu, &oxu->regs->command, 781 CMD_RESET, 0, 250 * 1000); 782 783 if (retval) 784 return retval; 785 786 tdi_reset(oxu); 787 788 return retval; 789 } 790 791 /* Idle the controller (from running) */ 792 static void ehci_quiesce(struct oxu_hcd *oxu) 793 { 794 u32 temp; 795 796 #ifdef DEBUG 797 BUG_ON(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)); 798 #endif 799 800 /* wait for any schedule enables/disables to take effect */ 801 temp = readl(&oxu->regs->command) << 10; 802 temp &= STS_ASS | STS_PSS; 803 if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS, 804 temp, 16 * 125) != 0) { 805 oxu_to_hcd(oxu)->state = HC_STATE_HALT; 806 return; 807 } 808 809 /* then disable anything that's still active */ 810 temp = readl(&oxu->regs->command); 811 temp &= ~(CMD_ASE | CMD_IAAD | CMD_PSE); 812 writel(temp, &oxu->regs->command); 813 814 /* hardware can take 16 microframes to turn off ... */ 815 if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS, 816 0, 16 * 125) != 0) { 817 oxu_to_hcd(oxu)->state = HC_STATE_HALT; 818 return; 819 } 820 } 821 822 static int check_reset_complete(struct oxu_hcd *oxu, int index, 823 u32 __iomem *status_reg, int port_status) 824 { 825 if (!(port_status & PORT_CONNECT)) { 826 oxu->reset_done[index] = 0; 827 return port_status; 828 } 829 830 /* if reset finished and it's still not enabled -- handoff */ 831 if (!(port_status & PORT_PE)) { 832 oxu_dbg(oxu, "Failed to enable port %d on root hub TT\n", 833 index+1); 834 return port_status; 835 } else 836 oxu_dbg(oxu, "port %d high speed\n", index + 1); 837 838 return port_status; 839 } 840 841 static void ehci_hub_descriptor(struct oxu_hcd *oxu, 842 struct usb_hub_descriptor *desc) 843 { 844 int ports = HCS_N_PORTS(oxu->hcs_params); 845 u16 temp; 846 847 desc->bDescriptorType = USB_DT_HUB; 848 desc->bPwrOn2PwrGood = 10; /* oxu 1.0, 2.3.9 says 20ms max */ 849 desc->bHubContrCurrent = 0; 850 851 desc->bNbrPorts = ports; 852 temp = 1 + (ports / 8); 853 desc->bDescLength = 7 + 2 * temp; 854 855 /* ports removable, and usb 1.0 legacy PortPwrCtrlMask */ 856 memset(&desc->u.hs.DeviceRemovable[0], 0, temp); 857 memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp); 858 859 temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */ 860 if (HCS_PPC(oxu->hcs_params)) 861 temp |= HUB_CHAR_INDV_PORT_LPSM; /* per-port power control */ 862 else 863 temp |= HUB_CHAR_NO_LPSM; /* no power switching */ 864 desc->wHubCharacteristics = (__force __u16)cpu_to_le16(temp); 865 } 866 867 868 /* Allocate an OXU210HP on-chip memory data buffer 869 * 870 * An on-chip memory data buffer is required for each OXU210HP USB transfer. 871 * Each transfer descriptor has one or more on-chip memory data buffers. 872 * 873 * Data buffers are allocated from a fix sized pool of data blocks. 874 * To minimise fragmentation and give reasonable memory utlisation, 875 * data buffers are allocated with sizes the power of 2 multiples of 876 * the block size, starting on an address a multiple of the allocated size. 877 * 878 * FIXME: callers of this function require a buffer to be allocated for 879 * len=0. This is a waste of on-chip memory and should be fix. Then this 880 * function should be changed to not allocate a buffer for len=0. 881 */ 882 static int oxu_buf_alloc(struct oxu_hcd *oxu, struct ehci_qtd *qtd, int len) 883 { 884 int n_blocks; /* minium blocks needed to hold len */ 885 int a_blocks; /* blocks allocated */ 886 int i, j; 887 888 /* Don't allocate bigger than supported */ 889 if (len > BUFFER_SIZE * BUFFER_NUM) { 890 oxu_err(oxu, "buffer too big (%d)\n", len); 891 return -ENOMEM; 892 } 893 894 spin_lock(&oxu->mem_lock); 895 896 /* Number of blocks needed to hold len */ 897 n_blocks = (len + BUFFER_SIZE - 1) / BUFFER_SIZE; 898 899 /* Round the number of blocks up to the power of 2 */ 900 for (a_blocks = 1; a_blocks < n_blocks; a_blocks <<= 1) 901 ; 902 903 /* Find a suitable available data buffer */ 904 for (i = 0; i < BUFFER_NUM; 905 i += max_t(int, a_blocks, oxu->db_used[i])) { 906 907 /* Check all the required blocks are available */ 908 for (j = 0; j < a_blocks; j++) 909 if (oxu->db_used[i + j]) 910 break; 911 912 if (j != a_blocks) 913 continue; 914 915 /* Allocate blocks found! */ 916 qtd->buffer = (void *) &oxu->mem->db_pool[i]; 917 qtd->buffer_dma = virt_to_phys(qtd->buffer); 918 919 qtd->qtd_buffer_len = BUFFER_SIZE * a_blocks; 920 oxu->db_used[i] = a_blocks; 921 922 spin_unlock(&oxu->mem_lock); 923 924 return 0; 925 } 926 927 /* Failed */ 928 929 spin_unlock(&oxu->mem_lock); 930 931 return -ENOMEM; 932 } 933 934 static void oxu_buf_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd) 935 { 936 int index; 937 938 spin_lock(&oxu->mem_lock); 939 940 index = (qtd->buffer - (void *) &oxu->mem->db_pool[0]) 941 / BUFFER_SIZE; 942 oxu->db_used[index] = 0; 943 qtd->qtd_buffer_len = 0; 944 qtd->buffer_dma = 0; 945 qtd->buffer = NULL; 946 947 spin_unlock(&oxu->mem_lock); 948 } 949 950 static inline void ehci_qtd_init(struct ehci_qtd *qtd, dma_addr_t dma) 951 { 952 memset(qtd, 0, sizeof *qtd); 953 qtd->qtd_dma = dma; 954 qtd->hw_token = cpu_to_le32(QTD_STS_HALT); 955 qtd->hw_next = EHCI_LIST_END; 956 qtd->hw_alt_next = EHCI_LIST_END; 957 INIT_LIST_HEAD(&qtd->qtd_list); 958 } 959 960 static inline void oxu_qtd_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd) 961 { 962 int index; 963 964 if (qtd->buffer) 965 oxu_buf_free(oxu, qtd); 966 967 spin_lock(&oxu->mem_lock); 968 969 index = qtd - &oxu->mem->qtd_pool[0]; 970 oxu->qtd_used[index] = 0; 971 972 spin_unlock(&oxu->mem_lock); 973 } 974 975 static struct ehci_qtd *ehci_qtd_alloc(struct oxu_hcd *oxu) 976 { 977 int i; 978 struct ehci_qtd *qtd = NULL; 979 980 spin_lock(&oxu->mem_lock); 981 982 for (i = 0; i < QTD_NUM; i++) 983 if (!oxu->qtd_used[i]) 984 break; 985 986 if (i < QTD_NUM) { 987 qtd = (struct ehci_qtd *) &oxu->mem->qtd_pool[i]; 988 memset(qtd, 0, sizeof *qtd); 989 990 qtd->hw_token = cpu_to_le32(QTD_STS_HALT); 991 qtd->hw_next = EHCI_LIST_END; 992 qtd->hw_alt_next = EHCI_LIST_END; 993 INIT_LIST_HEAD(&qtd->qtd_list); 994 995 qtd->qtd_dma = virt_to_phys(qtd); 996 997 oxu->qtd_used[i] = 1; 998 } 999 1000 spin_unlock(&oxu->mem_lock); 1001 1002 return qtd; 1003 } 1004 1005 static void oxu_qh_free(struct oxu_hcd *oxu, struct ehci_qh *qh) 1006 { 1007 int index; 1008 1009 spin_lock(&oxu->mem_lock); 1010 1011 index = qh - &oxu->mem->qh_pool[0]; 1012 oxu->qh_used[index] = 0; 1013 1014 spin_unlock(&oxu->mem_lock); 1015 } 1016 1017 static void qh_destroy(struct kref *kref) 1018 { 1019 struct ehci_qh *qh = container_of(kref, struct ehci_qh, kref); 1020 struct oxu_hcd *oxu = qh->oxu; 1021 1022 /* clean qtds first, and know this is not linked */ 1023 if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) { 1024 oxu_dbg(oxu, "unused qh not empty!\n"); 1025 BUG(); 1026 } 1027 if (qh->dummy) 1028 oxu_qtd_free(oxu, qh->dummy); 1029 oxu_qh_free(oxu, qh); 1030 } 1031 1032 static struct ehci_qh *oxu_qh_alloc(struct oxu_hcd *oxu) 1033 { 1034 int i; 1035 struct ehci_qh *qh = NULL; 1036 1037 spin_lock(&oxu->mem_lock); 1038 1039 for (i = 0; i < QHEAD_NUM; i++) 1040 if (!oxu->qh_used[i]) 1041 break; 1042 1043 if (i < QHEAD_NUM) { 1044 qh = (struct ehci_qh *) &oxu->mem->qh_pool[i]; 1045 memset(qh, 0, sizeof *qh); 1046 1047 kref_init(&qh->kref); 1048 qh->oxu = oxu; 1049 qh->qh_dma = virt_to_phys(qh); 1050 INIT_LIST_HEAD(&qh->qtd_list); 1051 1052 /* dummy td enables safe urb queuing */ 1053 qh->dummy = ehci_qtd_alloc(oxu); 1054 if (qh->dummy == NULL) { 1055 oxu_dbg(oxu, "no dummy td\n"); 1056 oxu->qh_used[i] = 0; 1057 qh = NULL; 1058 goto unlock; 1059 } 1060 1061 oxu->qh_used[i] = 1; 1062 } 1063 unlock: 1064 spin_unlock(&oxu->mem_lock); 1065 1066 return qh; 1067 } 1068 1069 /* to share a qh (cpu threads, or hc) */ 1070 static inline struct ehci_qh *qh_get(struct ehci_qh *qh) 1071 { 1072 kref_get(&qh->kref); 1073 return qh; 1074 } 1075 1076 static inline void qh_put(struct ehci_qh *qh) 1077 { 1078 kref_put(&qh->kref, qh_destroy); 1079 } 1080 1081 static void oxu_murb_free(struct oxu_hcd *oxu, struct oxu_murb *murb) 1082 { 1083 int index; 1084 1085 spin_lock(&oxu->mem_lock); 1086 1087 index = murb - &oxu->murb_pool[0]; 1088 oxu->murb_used[index] = 0; 1089 1090 spin_unlock(&oxu->mem_lock); 1091 } 1092 1093 static struct oxu_murb *oxu_murb_alloc(struct oxu_hcd *oxu) 1094 1095 { 1096 int i; 1097 struct oxu_murb *murb = NULL; 1098 1099 spin_lock(&oxu->mem_lock); 1100 1101 for (i = 0; i < MURB_NUM; i++) 1102 if (!oxu->murb_used[i]) 1103 break; 1104 1105 if (i < MURB_NUM) { 1106 murb = &(oxu->murb_pool)[i]; 1107 1108 oxu->murb_used[i] = 1; 1109 } 1110 1111 spin_unlock(&oxu->mem_lock); 1112 1113 return murb; 1114 } 1115 1116 /* The queue heads and transfer descriptors are managed from pools tied 1117 * to each of the "per device" structures. 1118 * This is the initialisation and cleanup code. 1119 */ 1120 static void ehci_mem_cleanup(struct oxu_hcd *oxu) 1121 { 1122 kfree(oxu->murb_pool); 1123 oxu->murb_pool = NULL; 1124 1125 if (oxu->async) 1126 qh_put(oxu->async); 1127 oxu->async = NULL; 1128 1129 del_timer(&oxu->urb_timer); 1130 1131 oxu->periodic = NULL; 1132 1133 /* shadow periodic table */ 1134 kfree(oxu->pshadow); 1135 oxu->pshadow = NULL; 1136 } 1137 1138 /* Remember to add cleanup code (above) if you add anything here. 1139 */ 1140 static int ehci_mem_init(struct oxu_hcd *oxu, gfp_t flags) 1141 { 1142 int i; 1143 1144 for (i = 0; i < oxu->periodic_size; i++) 1145 oxu->mem->frame_list[i] = EHCI_LIST_END; 1146 for (i = 0; i < QHEAD_NUM; i++) 1147 oxu->qh_used[i] = 0; 1148 for (i = 0; i < QTD_NUM; i++) 1149 oxu->qtd_used[i] = 0; 1150 1151 oxu->murb_pool = kcalloc(MURB_NUM, sizeof(struct oxu_murb), flags); 1152 if (!oxu->murb_pool) 1153 goto fail; 1154 1155 for (i = 0; i < MURB_NUM; i++) 1156 oxu->murb_used[i] = 0; 1157 1158 oxu->async = oxu_qh_alloc(oxu); 1159 if (!oxu->async) 1160 goto fail; 1161 1162 oxu->periodic = (__le32 *) &oxu->mem->frame_list; 1163 oxu->periodic_dma = virt_to_phys(oxu->periodic); 1164 1165 for (i = 0; i < oxu->periodic_size; i++) 1166 oxu->periodic[i] = EHCI_LIST_END; 1167 1168 /* software shadow of hardware table */ 1169 oxu->pshadow = kcalloc(oxu->periodic_size, sizeof(void *), flags); 1170 if (oxu->pshadow != NULL) 1171 return 0; 1172 1173 fail: 1174 oxu_dbg(oxu, "couldn't init memory\n"); 1175 ehci_mem_cleanup(oxu); 1176 return -ENOMEM; 1177 } 1178 1179 /* Fill a qtd, returning how much of the buffer we were able to queue up. 1180 */ 1181 static int qtd_fill(struct ehci_qtd *qtd, dma_addr_t buf, size_t len, 1182 int token, int maxpacket) 1183 { 1184 int i, count; 1185 u64 addr = buf; 1186 1187 /* one buffer entry per 4K ... first might be short or unaligned */ 1188 qtd->hw_buf[0] = cpu_to_le32((u32)addr); 1189 qtd->hw_buf_hi[0] = cpu_to_le32((u32)(addr >> 32)); 1190 count = 0x1000 - (buf & 0x0fff); /* rest of that page */ 1191 if (likely(len < count)) /* ... iff needed */ 1192 count = len; 1193 else { 1194 buf += 0x1000; 1195 buf &= ~0x0fff; 1196 1197 /* per-qtd limit: from 16K to 20K (best alignment) */ 1198 for (i = 1; count < len && i < 5; i++) { 1199 addr = buf; 1200 qtd->hw_buf[i] = cpu_to_le32((u32)addr); 1201 qtd->hw_buf_hi[i] = cpu_to_le32((u32)(addr >> 32)); 1202 buf += 0x1000; 1203 if ((count + 0x1000) < len) 1204 count += 0x1000; 1205 else 1206 count = len; 1207 } 1208 1209 /* short packets may only terminate transfers */ 1210 if (count != len) 1211 count -= (count % maxpacket); 1212 } 1213 qtd->hw_token = cpu_to_le32((count << 16) | token); 1214 qtd->length = count; 1215 1216 return count; 1217 } 1218 1219 static inline void qh_update(struct oxu_hcd *oxu, 1220 struct ehci_qh *qh, struct ehci_qtd *qtd) 1221 { 1222 /* writes to an active overlay are unsafe */ 1223 BUG_ON(qh->qh_state != QH_STATE_IDLE); 1224 1225 qh->hw_qtd_next = QTD_NEXT(qtd->qtd_dma); 1226 qh->hw_alt_next = EHCI_LIST_END; 1227 1228 /* Except for control endpoints, we make hardware maintain data 1229 * toggle (like OHCI) ... here (re)initialize the toggle in the QH, 1230 * and set the pseudo-toggle in udev. Only usb_clear_halt() will 1231 * ever clear it. 1232 */ 1233 if (!(qh->hw_info1 & cpu_to_le32(1 << 14))) { 1234 unsigned is_out, epnum; 1235 1236 is_out = !(qtd->hw_token & cpu_to_le32(1 << 8)); 1237 epnum = (le32_to_cpup(&qh->hw_info1) >> 8) & 0x0f; 1238 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) { 1239 qh->hw_token &= ~cpu_to_le32(QTD_TOGGLE); 1240 usb_settoggle(qh->dev, epnum, is_out, 1); 1241 } 1242 } 1243 1244 /* HC must see latest qtd and qh data before we clear ACTIVE+HALT */ 1245 wmb(); 1246 qh->hw_token &= cpu_to_le32(QTD_TOGGLE | QTD_STS_PING); 1247 } 1248 1249 /* If it weren't for a common silicon quirk (writing the dummy into the qh 1250 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault 1251 * recovery (including urb dequeue) would need software changes to a QH... 1252 */ 1253 static void qh_refresh(struct oxu_hcd *oxu, struct ehci_qh *qh) 1254 { 1255 struct ehci_qtd *qtd; 1256 1257 if (list_empty(&qh->qtd_list)) 1258 qtd = qh->dummy; 1259 else { 1260 qtd = list_entry(qh->qtd_list.next, 1261 struct ehci_qtd, qtd_list); 1262 /* first qtd may already be partially processed */ 1263 if (cpu_to_le32(qtd->qtd_dma) == qh->hw_current) 1264 qtd = NULL; 1265 } 1266 1267 if (qtd) 1268 qh_update(oxu, qh, qtd); 1269 } 1270 1271 static void qtd_copy_status(struct oxu_hcd *oxu, struct urb *urb, 1272 size_t length, u32 token) 1273 { 1274 /* count IN/OUT bytes, not SETUP (even short packets) */ 1275 if (likely(QTD_PID(token) != 2)) 1276 urb->actual_length += length - QTD_LENGTH(token); 1277 1278 /* don't modify error codes */ 1279 if (unlikely(urb->status != -EINPROGRESS)) 1280 return; 1281 1282 /* force cleanup after short read; not always an error */ 1283 if (unlikely(IS_SHORT_READ(token))) 1284 urb->status = -EREMOTEIO; 1285 1286 /* serious "can't proceed" faults reported by the hardware */ 1287 if (token & QTD_STS_HALT) { 1288 if (token & QTD_STS_BABBLE) { 1289 /* FIXME "must" disable babbling device's port too */ 1290 urb->status = -EOVERFLOW; 1291 } else if (token & QTD_STS_MMF) { 1292 /* fs/ls interrupt xfer missed the complete-split */ 1293 urb->status = -EPROTO; 1294 } else if (token & QTD_STS_DBE) { 1295 urb->status = (QTD_PID(token) == 1) /* IN ? */ 1296 ? -ENOSR /* hc couldn't read data */ 1297 : -ECOMM; /* hc couldn't write data */ 1298 } else if (token & QTD_STS_XACT) { 1299 /* timeout, bad crc, wrong PID, etc; retried */ 1300 if (QTD_CERR(token)) 1301 urb->status = -EPIPE; 1302 else { 1303 oxu_dbg(oxu, "devpath %s ep%d%s 3strikes\n", 1304 urb->dev->devpath, 1305 usb_pipeendpoint(urb->pipe), 1306 usb_pipein(urb->pipe) ? "in" : "out"); 1307 urb->status = -EPROTO; 1308 } 1309 /* CERR nonzero + no errors + halt --> stall */ 1310 } else if (QTD_CERR(token)) 1311 urb->status = -EPIPE; 1312 else /* unknown */ 1313 urb->status = -EPROTO; 1314 1315 oxu_vdbg(oxu, "dev%d ep%d%s qtd token %08x --> status %d\n", 1316 usb_pipedevice(urb->pipe), 1317 usb_pipeendpoint(urb->pipe), 1318 usb_pipein(urb->pipe) ? "in" : "out", 1319 token, urb->status); 1320 } 1321 } 1322 1323 static void ehci_urb_done(struct oxu_hcd *oxu, struct urb *urb) 1324 __releases(oxu->lock) 1325 __acquires(oxu->lock) 1326 { 1327 if (likely(urb->hcpriv != NULL)) { 1328 struct ehci_qh *qh = (struct ehci_qh *) urb->hcpriv; 1329 1330 /* S-mask in a QH means it's an interrupt urb */ 1331 if ((qh->hw_info2 & cpu_to_le32(QH_SMASK)) != 0) { 1332 1333 /* ... update hc-wide periodic stats (for usbfs) */ 1334 oxu_to_hcd(oxu)->self.bandwidth_int_reqs--; 1335 } 1336 qh_put(qh); 1337 } 1338 1339 urb->hcpriv = NULL; 1340 switch (urb->status) { 1341 case -EINPROGRESS: /* success */ 1342 urb->status = 0; 1343 break; 1344 default: /* fault */ 1345 break; 1346 case -EREMOTEIO: /* fault or normal */ 1347 if (!(urb->transfer_flags & URB_SHORT_NOT_OK)) 1348 urb->status = 0; 1349 break; 1350 case -ECONNRESET: /* canceled */ 1351 case -ENOENT: 1352 break; 1353 } 1354 1355 #ifdef OXU_URB_TRACE 1356 oxu_dbg(oxu, "%s %s urb %p ep%d%s status %d len %d/%d\n", 1357 __func__, urb->dev->devpath, urb, 1358 usb_pipeendpoint(urb->pipe), 1359 usb_pipein(urb->pipe) ? "in" : "out", 1360 urb->status, 1361 urb->actual_length, urb->transfer_buffer_length); 1362 #endif 1363 1364 /* complete() can reenter this HCD */ 1365 spin_unlock(&oxu->lock); 1366 usb_hcd_giveback_urb(oxu_to_hcd(oxu), urb, urb->status); 1367 spin_lock(&oxu->lock); 1368 } 1369 1370 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh); 1371 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh); 1372 1373 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh); 1374 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh); 1375 1376 #define HALT_BIT cpu_to_le32(QTD_STS_HALT) 1377 1378 /* Process and free completed qtds for a qh, returning URBs to drivers. 1379 * Chases up to qh->hw_current. Returns number of completions called, 1380 * indicating how much "real" work we did. 1381 */ 1382 static unsigned qh_completions(struct oxu_hcd *oxu, struct ehci_qh *qh) 1383 { 1384 struct ehci_qtd *last = NULL, *end = qh->dummy; 1385 struct ehci_qtd *qtd, *tmp; 1386 int stopped; 1387 unsigned count = 0; 1388 int do_status = 0; 1389 u8 state; 1390 struct oxu_murb *murb = NULL; 1391 1392 if (unlikely(list_empty(&qh->qtd_list))) 1393 return count; 1394 1395 /* completions (or tasks on other cpus) must never clobber HALT 1396 * till we've gone through and cleaned everything up, even when 1397 * they add urbs to this qh's queue or mark them for unlinking. 1398 * 1399 * NOTE: unlinking expects to be done in queue order. 1400 */ 1401 state = qh->qh_state; 1402 qh->qh_state = QH_STATE_COMPLETING; 1403 stopped = (state == QH_STATE_IDLE); 1404 1405 /* remove de-activated QTDs from front of queue. 1406 * after faults (including short reads), cleanup this urb 1407 * then let the queue advance. 1408 * if queue is stopped, handles unlinks. 1409 */ 1410 list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) { 1411 struct urb *urb; 1412 u32 token = 0; 1413 1414 urb = qtd->urb; 1415 1416 /* Clean up any state from previous QTD ...*/ 1417 if (last) { 1418 if (likely(last->urb != urb)) { 1419 if (last->urb->complete == NULL) { 1420 murb = (struct oxu_murb *) last->urb; 1421 last->urb = murb->main; 1422 if (murb->last) { 1423 ehci_urb_done(oxu, last->urb); 1424 count++; 1425 } 1426 oxu_murb_free(oxu, murb); 1427 } else { 1428 ehci_urb_done(oxu, last->urb); 1429 count++; 1430 } 1431 } 1432 oxu_qtd_free(oxu, last); 1433 last = NULL; 1434 } 1435 1436 /* ignore urbs submitted during completions we reported */ 1437 if (qtd == end) 1438 break; 1439 1440 /* hardware copies qtd out of qh overlay */ 1441 rmb(); 1442 token = le32_to_cpu(qtd->hw_token); 1443 1444 /* always clean up qtds the hc de-activated */ 1445 if ((token & QTD_STS_ACTIVE) == 0) { 1446 1447 if ((token & QTD_STS_HALT) != 0) { 1448 stopped = 1; 1449 1450 /* magic dummy for some short reads; qh won't advance. 1451 * that silicon quirk can kick in with this dummy too. 1452 */ 1453 } else if (IS_SHORT_READ(token) && 1454 !(qtd->hw_alt_next & EHCI_LIST_END)) { 1455 stopped = 1; 1456 goto halt; 1457 } 1458 1459 /* stop scanning when we reach qtds the hc is using */ 1460 } else if (likely(!stopped && 1461 HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) { 1462 break; 1463 1464 } else { 1465 stopped = 1; 1466 1467 if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) 1468 urb->status = -ESHUTDOWN; 1469 1470 /* ignore active urbs unless some previous qtd 1471 * for the urb faulted (including short read) or 1472 * its urb was canceled. we may patch qh or qtds. 1473 */ 1474 if (likely(urb->status == -EINPROGRESS)) 1475 continue; 1476 1477 /* issue status after short control reads */ 1478 if (unlikely(do_status != 0) 1479 && QTD_PID(token) == 0 /* OUT */) { 1480 do_status = 0; 1481 continue; 1482 } 1483 1484 /* token in overlay may be most current */ 1485 if (state == QH_STATE_IDLE 1486 && cpu_to_le32(qtd->qtd_dma) 1487 == qh->hw_current) 1488 token = le32_to_cpu(qh->hw_token); 1489 1490 /* force halt for unlinked or blocked qh, so we'll 1491 * patch the qh later and so that completions can't 1492 * activate it while we "know" it's stopped. 1493 */ 1494 if ((HALT_BIT & qh->hw_token) == 0) { 1495 halt: 1496 qh->hw_token |= HALT_BIT; 1497 wmb(); 1498 } 1499 } 1500 1501 /* Remove it from the queue */ 1502 qtd_copy_status(oxu, urb->complete ? 1503 urb : ((struct oxu_murb *) urb)->main, 1504 qtd->length, token); 1505 if ((usb_pipein(qtd->urb->pipe)) && 1506 (NULL != qtd->transfer_buffer)) 1507 memcpy(qtd->transfer_buffer, qtd->buffer, qtd->length); 1508 do_status = (urb->status == -EREMOTEIO) 1509 && usb_pipecontrol(urb->pipe); 1510 1511 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) { 1512 last = list_entry(qtd->qtd_list.prev, 1513 struct ehci_qtd, qtd_list); 1514 last->hw_next = qtd->hw_next; 1515 } 1516 list_del(&qtd->qtd_list); 1517 last = qtd; 1518 } 1519 1520 /* last urb's completion might still need calling */ 1521 if (likely(last != NULL)) { 1522 if (last->urb->complete == NULL) { 1523 murb = (struct oxu_murb *) last->urb; 1524 last->urb = murb->main; 1525 if (murb->last) { 1526 ehci_urb_done(oxu, last->urb); 1527 count++; 1528 } 1529 oxu_murb_free(oxu, murb); 1530 } else { 1531 ehci_urb_done(oxu, last->urb); 1532 count++; 1533 } 1534 oxu_qtd_free(oxu, last); 1535 } 1536 1537 /* restore original state; caller must unlink or relink */ 1538 qh->qh_state = state; 1539 1540 /* be sure the hardware's done with the qh before refreshing 1541 * it after fault cleanup, or recovering from silicon wrongly 1542 * overlaying the dummy qtd (which reduces DMA chatter). 1543 */ 1544 if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END) { 1545 switch (state) { 1546 case QH_STATE_IDLE: 1547 qh_refresh(oxu, qh); 1548 break; 1549 case QH_STATE_LINKED: 1550 /* should be rare for periodic transfers, 1551 * except maybe high bandwidth ... 1552 */ 1553 if ((cpu_to_le32(QH_SMASK) 1554 & qh->hw_info2) != 0) { 1555 intr_deschedule(oxu, qh); 1556 (void) qh_schedule(oxu, qh); 1557 } else 1558 unlink_async(oxu, qh); 1559 break; 1560 /* otherwise, unlink already started */ 1561 } 1562 } 1563 1564 return count; 1565 } 1566 1567 /* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */ 1568 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03)) 1569 /* ... and packet size, for any kind of endpoint descriptor */ 1570 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff) 1571 1572 /* Reverse of qh_urb_transaction: free a list of TDs. 1573 * used for cleanup after errors, before HC sees an URB's TDs. 1574 */ 1575 static void qtd_list_free(struct oxu_hcd *oxu, 1576 struct urb *urb, struct list_head *head) 1577 { 1578 struct ehci_qtd *qtd, *temp; 1579 1580 list_for_each_entry_safe(qtd, temp, head, qtd_list) { 1581 list_del(&qtd->qtd_list); 1582 oxu_qtd_free(oxu, qtd); 1583 } 1584 } 1585 1586 /* Create a list of filled qtds for this URB; won't link into qh. 1587 */ 1588 static struct list_head *qh_urb_transaction(struct oxu_hcd *oxu, 1589 struct urb *urb, 1590 struct list_head *head, 1591 gfp_t flags) 1592 { 1593 struct ehci_qtd *qtd, *qtd_prev; 1594 dma_addr_t buf; 1595 int len, maxpacket; 1596 int is_input; 1597 u32 token; 1598 void *transfer_buf = NULL; 1599 int ret; 1600 1601 /* 1602 * URBs map to sequences of QTDs: one logical transaction 1603 */ 1604 qtd = ehci_qtd_alloc(oxu); 1605 if (unlikely(!qtd)) 1606 return NULL; 1607 list_add_tail(&qtd->qtd_list, head); 1608 qtd->urb = urb; 1609 1610 token = QTD_STS_ACTIVE; 1611 token |= (EHCI_TUNE_CERR << 10); 1612 /* for split transactions, SplitXState initialized to zero */ 1613 1614 len = urb->transfer_buffer_length; 1615 is_input = usb_pipein(urb->pipe); 1616 if (!urb->transfer_buffer && urb->transfer_buffer_length && is_input) 1617 urb->transfer_buffer = phys_to_virt(urb->transfer_dma); 1618 1619 if (usb_pipecontrol(urb->pipe)) { 1620 /* SETUP pid */ 1621 ret = oxu_buf_alloc(oxu, qtd, sizeof(struct usb_ctrlrequest)); 1622 if (ret) 1623 goto cleanup; 1624 1625 qtd_fill(qtd, qtd->buffer_dma, sizeof(struct usb_ctrlrequest), 1626 token | (2 /* "setup" */ << 8), 8); 1627 memcpy(qtd->buffer, qtd->urb->setup_packet, 1628 sizeof(struct usb_ctrlrequest)); 1629 1630 /* ... and always at least one more pid */ 1631 token ^= QTD_TOGGLE; 1632 qtd_prev = qtd; 1633 qtd = ehci_qtd_alloc(oxu); 1634 if (unlikely(!qtd)) 1635 goto cleanup; 1636 qtd->urb = urb; 1637 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma); 1638 list_add_tail(&qtd->qtd_list, head); 1639 1640 /* for zero length DATA stages, STATUS is always IN */ 1641 if (len == 0) 1642 token |= (1 /* "in" */ << 8); 1643 } 1644 1645 /* 1646 * Data transfer stage: buffer setup 1647 */ 1648 1649 ret = oxu_buf_alloc(oxu, qtd, len); 1650 if (ret) 1651 goto cleanup; 1652 1653 buf = qtd->buffer_dma; 1654 transfer_buf = urb->transfer_buffer; 1655 1656 if (!is_input) 1657 memcpy(qtd->buffer, qtd->urb->transfer_buffer, len); 1658 1659 if (is_input) 1660 token |= (1 /* "in" */ << 8); 1661 /* else it's already initted to "out" pid (0 << 8) */ 1662 1663 maxpacket = usb_maxpacket(urb->dev, urb->pipe); 1664 1665 /* 1666 * buffer gets wrapped in one or more qtds; 1667 * last one may be "short" (including zero len) 1668 * and may serve as a control status ack 1669 */ 1670 for (;;) { 1671 int this_qtd_len; 1672 1673 this_qtd_len = qtd_fill(qtd, buf, len, token, maxpacket); 1674 qtd->transfer_buffer = transfer_buf; 1675 len -= this_qtd_len; 1676 buf += this_qtd_len; 1677 transfer_buf += this_qtd_len; 1678 if (is_input) 1679 qtd->hw_alt_next = oxu->async->hw_alt_next; 1680 1681 /* qh makes control packets use qtd toggle; maybe switch it */ 1682 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0) 1683 token ^= QTD_TOGGLE; 1684 1685 if (likely(len <= 0)) 1686 break; 1687 1688 qtd_prev = qtd; 1689 qtd = ehci_qtd_alloc(oxu); 1690 if (unlikely(!qtd)) 1691 goto cleanup; 1692 if (likely(len > 0)) { 1693 ret = oxu_buf_alloc(oxu, qtd, len); 1694 if (ret) 1695 goto cleanup; 1696 } 1697 qtd->urb = urb; 1698 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma); 1699 list_add_tail(&qtd->qtd_list, head); 1700 } 1701 1702 /* unless the bulk/interrupt caller wants a chance to clean 1703 * up after short reads, hc should advance qh past this urb 1704 */ 1705 if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 1706 || usb_pipecontrol(urb->pipe))) 1707 qtd->hw_alt_next = EHCI_LIST_END; 1708 1709 /* 1710 * control requests may need a terminating data "status" ack; 1711 * bulk ones may need a terminating short packet (zero length). 1712 */ 1713 if (likely(urb->transfer_buffer_length != 0)) { 1714 int one_more = 0; 1715 1716 if (usb_pipecontrol(urb->pipe)) { 1717 one_more = 1; 1718 token ^= 0x0100; /* "in" <--> "out" */ 1719 token |= QTD_TOGGLE; /* force DATA1 */ 1720 } else if (usb_pipebulk(urb->pipe) 1721 && (urb->transfer_flags & URB_ZERO_PACKET) 1722 && !(urb->transfer_buffer_length % maxpacket)) { 1723 one_more = 1; 1724 } 1725 if (one_more) { 1726 qtd_prev = qtd; 1727 qtd = ehci_qtd_alloc(oxu); 1728 if (unlikely(!qtd)) 1729 goto cleanup; 1730 qtd->urb = urb; 1731 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma); 1732 list_add_tail(&qtd->qtd_list, head); 1733 1734 /* never any data in such packets */ 1735 qtd_fill(qtd, 0, 0, token, 0); 1736 } 1737 } 1738 1739 /* by default, enable interrupt on urb completion */ 1740 qtd->hw_token |= cpu_to_le32(QTD_IOC); 1741 return head; 1742 1743 cleanup: 1744 qtd_list_free(oxu, urb, head); 1745 return NULL; 1746 } 1747 1748 /* Each QH holds a qtd list; a QH is used for everything except iso. 1749 * 1750 * For interrupt urbs, the scheduler must set the microframe scheduling 1751 * mask(s) each time the QH gets scheduled. For highspeed, that's 1752 * just one microframe in the s-mask. For split interrupt transactions 1753 * there are additional complications: c-mask, maybe FSTNs. 1754 */ 1755 static struct ehci_qh *qh_make(struct oxu_hcd *oxu, 1756 struct urb *urb, gfp_t flags) 1757 { 1758 struct ehci_qh *qh = oxu_qh_alloc(oxu); 1759 u32 info1 = 0, info2 = 0; 1760 int is_input, type; 1761 int maxp = 0; 1762 1763 if (!qh) 1764 return qh; 1765 1766 /* 1767 * init endpoint/device data for this QH 1768 */ 1769 info1 |= usb_pipeendpoint(urb->pipe) << 8; 1770 info1 |= usb_pipedevice(urb->pipe) << 0; 1771 1772 is_input = usb_pipein(urb->pipe); 1773 type = usb_pipetype(urb->pipe); 1774 maxp = usb_maxpacket(urb->dev, urb->pipe); 1775 1776 /* Compute interrupt scheduling parameters just once, and save. 1777 * - allowing for high bandwidth, how many nsec/uframe are used? 1778 * - split transactions need a second CSPLIT uframe; same question 1779 * - splits also need a schedule gap (for full/low speed I/O) 1780 * - qh has a polling interval 1781 * 1782 * For control/bulk requests, the HC or TT handles these. 1783 */ 1784 if (type == PIPE_INTERRUPT) { 1785 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH, 1786 is_input, 0, 1787 hb_mult(maxp) * max_packet(maxp))); 1788 qh->start = NO_FRAME; 1789 1790 if (urb->dev->speed == USB_SPEED_HIGH) { 1791 qh->c_usecs = 0; 1792 qh->gap_uf = 0; 1793 1794 qh->period = urb->interval >> 3; 1795 if (qh->period == 0 && urb->interval != 1) { 1796 /* NOTE interval 2 or 4 uframes could work. 1797 * But interval 1 scheduling is simpler, and 1798 * includes high bandwidth. 1799 */ 1800 oxu_dbg(oxu, "intr period %d uframes, NYET!\n", 1801 urb->interval); 1802 goto done; 1803 } 1804 } else { 1805 struct usb_tt *tt = urb->dev->tt; 1806 int think_time; 1807 1808 /* gap is f(FS/LS transfer times) */ 1809 qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed, 1810 is_input, 0, maxp) / (125 * 1000); 1811 1812 /* FIXME this just approximates SPLIT/CSPLIT times */ 1813 if (is_input) { /* SPLIT, gap, CSPLIT+DATA */ 1814 qh->c_usecs = qh->usecs + HS_USECS(0); 1815 qh->usecs = HS_USECS(1); 1816 } else { /* SPLIT+DATA, gap, CSPLIT */ 1817 qh->usecs += HS_USECS(1); 1818 qh->c_usecs = HS_USECS(0); 1819 } 1820 1821 think_time = tt ? tt->think_time : 0; 1822 qh->tt_usecs = NS_TO_US(think_time + 1823 usb_calc_bus_time(urb->dev->speed, 1824 is_input, 0, max_packet(maxp))); 1825 qh->period = urb->interval; 1826 } 1827 } 1828 1829 /* support for tt scheduling, and access to toggles */ 1830 qh->dev = urb->dev; 1831 1832 /* using TT? */ 1833 switch (urb->dev->speed) { 1834 case USB_SPEED_LOW: 1835 info1 |= (1 << 12); /* EPS "low" */ 1836 fallthrough; 1837 1838 case USB_SPEED_FULL: 1839 /* EPS 0 means "full" */ 1840 if (type != PIPE_INTERRUPT) 1841 info1 |= (EHCI_TUNE_RL_TT << 28); 1842 if (type == PIPE_CONTROL) { 1843 info1 |= (1 << 27); /* for TT */ 1844 info1 |= 1 << 14; /* toggle from qtd */ 1845 } 1846 info1 |= maxp << 16; 1847 1848 info2 |= (EHCI_TUNE_MULT_TT << 30); 1849 info2 |= urb->dev->ttport << 23; 1850 1851 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */ 1852 1853 break; 1854 1855 case USB_SPEED_HIGH: /* no TT involved */ 1856 info1 |= (2 << 12); /* EPS "high" */ 1857 if (type == PIPE_CONTROL) { 1858 info1 |= (EHCI_TUNE_RL_HS << 28); 1859 info1 |= 64 << 16; /* usb2 fixed maxpacket */ 1860 info1 |= 1 << 14; /* toggle from qtd */ 1861 info2 |= (EHCI_TUNE_MULT_HS << 30); 1862 } else if (type == PIPE_BULK) { 1863 info1 |= (EHCI_TUNE_RL_HS << 28); 1864 info1 |= 512 << 16; /* usb2 fixed maxpacket */ 1865 info2 |= (EHCI_TUNE_MULT_HS << 30); 1866 } else { /* PIPE_INTERRUPT */ 1867 info1 |= max_packet(maxp) << 16; 1868 info2 |= hb_mult(maxp) << 30; 1869 } 1870 break; 1871 default: 1872 oxu_dbg(oxu, "bogus dev %p speed %d\n", urb->dev, urb->dev->speed); 1873 done: 1874 qh_put(qh); 1875 return NULL; 1876 } 1877 1878 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */ 1879 1880 /* init as live, toggle clear, advance to dummy */ 1881 qh->qh_state = QH_STATE_IDLE; 1882 qh->hw_info1 = cpu_to_le32(info1); 1883 qh->hw_info2 = cpu_to_le32(info2); 1884 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1); 1885 qh_refresh(oxu, qh); 1886 return qh; 1887 } 1888 1889 /* Move qh (and its qtds) onto async queue; maybe enable queue. 1890 */ 1891 static void qh_link_async(struct oxu_hcd *oxu, struct ehci_qh *qh) 1892 { 1893 __le32 dma = QH_NEXT(qh->qh_dma); 1894 struct ehci_qh *head; 1895 1896 /* (re)start the async schedule? */ 1897 head = oxu->async; 1898 timer_action_done(oxu, TIMER_ASYNC_OFF); 1899 if (!head->qh_next.qh) { 1900 u32 cmd = readl(&oxu->regs->command); 1901 1902 if (!(cmd & CMD_ASE)) { 1903 /* in case a clear of CMD_ASE didn't take yet */ 1904 (void)handshake(oxu, &oxu->regs->status, 1905 STS_ASS, 0, 150); 1906 cmd |= CMD_ASE | CMD_RUN; 1907 writel(cmd, &oxu->regs->command); 1908 oxu_to_hcd(oxu)->state = HC_STATE_RUNNING; 1909 /* posted write need not be known to HC yet ... */ 1910 } 1911 } 1912 1913 /* clear halt and/or toggle; and maybe recover from silicon quirk */ 1914 if (qh->qh_state == QH_STATE_IDLE) 1915 qh_refresh(oxu, qh); 1916 1917 /* splice right after start */ 1918 qh->qh_next = head->qh_next; 1919 qh->hw_next = head->hw_next; 1920 wmb(); 1921 1922 head->qh_next.qh = qh; 1923 head->hw_next = dma; 1924 1925 qh->qh_state = QH_STATE_LINKED; 1926 /* qtd completions reported later by interrupt */ 1927 } 1928 1929 #define QH_ADDR_MASK cpu_to_le32(0x7f) 1930 1931 /* 1932 * For control/bulk/interrupt, return QH with these TDs appended. 1933 * Allocates and initializes the QH if necessary. 1934 * Returns null if it can't allocate a QH it needs to. 1935 * If the QH has TDs (urbs) already, that's great. 1936 */ 1937 static struct ehci_qh *qh_append_tds(struct oxu_hcd *oxu, 1938 struct urb *urb, struct list_head *qtd_list, 1939 int epnum, void **ptr) 1940 { 1941 struct ehci_qh *qh = NULL; 1942 1943 qh = (struct ehci_qh *) *ptr; 1944 if (unlikely(qh == NULL)) { 1945 /* can't sleep here, we have oxu->lock... */ 1946 qh = qh_make(oxu, urb, GFP_ATOMIC); 1947 *ptr = qh; 1948 } 1949 if (likely(qh != NULL)) { 1950 struct ehci_qtd *qtd; 1951 1952 if (unlikely(list_empty(qtd_list))) 1953 qtd = NULL; 1954 else 1955 qtd = list_entry(qtd_list->next, struct ehci_qtd, 1956 qtd_list); 1957 1958 /* control qh may need patching ... */ 1959 if (unlikely(epnum == 0)) { 1960 1961 /* usb_reset_device() briefly reverts to address 0 */ 1962 if (usb_pipedevice(urb->pipe) == 0) 1963 qh->hw_info1 &= ~QH_ADDR_MASK; 1964 } 1965 1966 /* just one way to queue requests: swap with the dummy qtd. 1967 * only hc or qh_refresh() ever modify the overlay. 1968 */ 1969 if (likely(qtd != NULL)) { 1970 struct ehci_qtd *dummy; 1971 dma_addr_t dma; 1972 __le32 token; 1973 1974 /* to avoid racing the HC, use the dummy td instead of 1975 * the first td of our list (becomes new dummy). both 1976 * tds stay deactivated until we're done, when the 1977 * HC is allowed to fetch the old dummy (4.10.2). 1978 */ 1979 token = qtd->hw_token; 1980 qtd->hw_token = HALT_BIT; 1981 wmb(); 1982 dummy = qh->dummy; 1983 1984 dma = dummy->qtd_dma; 1985 *dummy = *qtd; 1986 dummy->qtd_dma = dma; 1987 1988 list_del(&qtd->qtd_list); 1989 list_add(&dummy->qtd_list, qtd_list); 1990 list_splice(qtd_list, qh->qtd_list.prev); 1991 1992 ehci_qtd_init(qtd, qtd->qtd_dma); 1993 qh->dummy = qtd; 1994 1995 /* hc must see the new dummy at list end */ 1996 dma = qtd->qtd_dma; 1997 qtd = list_entry(qh->qtd_list.prev, 1998 struct ehci_qtd, qtd_list); 1999 qtd->hw_next = QTD_NEXT(dma); 2000 2001 /* let the hc process these next qtds */ 2002 dummy->hw_token = (token & ~(0x80)); 2003 wmb(); 2004 dummy->hw_token = token; 2005 2006 urb->hcpriv = qh_get(qh); 2007 } 2008 } 2009 return qh; 2010 } 2011 2012 static int submit_async(struct oxu_hcd *oxu, struct urb *urb, 2013 struct list_head *qtd_list, gfp_t mem_flags) 2014 { 2015 int epnum = urb->ep->desc.bEndpointAddress; 2016 unsigned long flags; 2017 struct ehci_qh *qh = NULL; 2018 int rc = 0; 2019 #ifdef OXU_URB_TRACE 2020 struct ehci_qtd *qtd; 2021 2022 qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list); 2023 2024 oxu_dbg(oxu, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n", 2025 __func__, urb->dev->devpath, urb, 2026 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out", 2027 urb->transfer_buffer_length, 2028 qtd, urb->ep->hcpriv); 2029 #endif 2030 2031 spin_lock_irqsave(&oxu->lock, flags); 2032 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) { 2033 rc = -ESHUTDOWN; 2034 goto done; 2035 } 2036 2037 qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv); 2038 if (unlikely(qh == NULL)) { 2039 rc = -ENOMEM; 2040 goto done; 2041 } 2042 2043 /* Control/bulk operations through TTs don't need scheduling, 2044 * the HC and TT handle it when the TT has a buffer ready. 2045 */ 2046 if (likely(qh->qh_state == QH_STATE_IDLE)) 2047 qh_link_async(oxu, qh_get(qh)); 2048 done: 2049 spin_unlock_irqrestore(&oxu->lock, flags); 2050 if (unlikely(qh == NULL)) 2051 qtd_list_free(oxu, urb, qtd_list); 2052 return rc; 2053 } 2054 2055 /* The async qh for the qtds being reclaimed are now unlinked from the HC */ 2056 2057 static void end_unlink_async(struct oxu_hcd *oxu) 2058 { 2059 struct ehci_qh *qh = oxu->reclaim; 2060 struct ehci_qh *next; 2061 2062 timer_action_done(oxu, TIMER_IAA_WATCHDOG); 2063 2064 qh->qh_state = QH_STATE_IDLE; 2065 qh->qh_next.qh = NULL; 2066 qh_put(qh); /* refcount from reclaim */ 2067 2068 /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */ 2069 next = qh->reclaim; 2070 oxu->reclaim = next; 2071 oxu->reclaim_ready = 0; 2072 qh->reclaim = NULL; 2073 2074 qh_completions(oxu, qh); 2075 2076 if (!list_empty(&qh->qtd_list) 2077 && HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) 2078 qh_link_async(oxu, qh); 2079 else { 2080 qh_put(qh); /* refcount from async list */ 2081 2082 /* it's not free to turn the async schedule on/off; leave it 2083 * active but idle for a while once it empties. 2084 */ 2085 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) 2086 && oxu->async->qh_next.qh == NULL) 2087 timer_action(oxu, TIMER_ASYNC_OFF); 2088 } 2089 2090 if (next) { 2091 oxu->reclaim = NULL; 2092 start_unlink_async(oxu, next); 2093 } 2094 } 2095 2096 /* makes sure the async qh will become idle */ 2097 /* caller must own oxu->lock */ 2098 2099 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh) 2100 { 2101 int cmd = readl(&oxu->regs->command); 2102 struct ehci_qh *prev; 2103 2104 #ifdef DEBUG 2105 assert_spin_locked(&oxu->lock); 2106 BUG_ON(oxu->reclaim || (qh->qh_state != QH_STATE_LINKED 2107 && qh->qh_state != QH_STATE_UNLINK_WAIT)); 2108 #endif 2109 2110 /* stop async schedule right now? */ 2111 if (unlikely(qh == oxu->async)) { 2112 /* can't get here without STS_ASS set */ 2113 if (oxu_to_hcd(oxu)->state != HC_STATE_HALT 2114 && !oxu->reclaim) { 2115 /* ... and CMD_IAAD clear */ 2116 writel(cmd & ~CMD_ASE, &oxu->regs->command); 2117 wmb(); 2118 /* handshake later, if we need to */ 2119 timer_action_done(oxu, TIMER_ASYNC_OFF); 2120 } 2121 return; 2122 } 2123 2124 qh->qh_state = QH_STATE_UNLINK; 2125 oxu->reclaim = qh = qh_get(qh); 2126 2127 prev = oxu->async; 2128 while (prev->qh_next.qh != qh) 2129 prev = prev->qh_next.qh; 2130 2131 prev->hw_next = qh->hw_next; 2132 prev->qh_next = qh->qh_next; 2133 wmb(); 2134 2135 if (unlikely(oxu_to_hcd(oxu)->state == HC_STATE_HALT)) { 2136 /* if (unlikely(qh->reclaim != 0)) 2137 * this will recurse, probably not much 2138 */ 2139 end_unlink_async(oxu); 2140 return; 2141 } 2142 2143 oxu->reclaim_ready = 0; 2144 cmd |= CMD_IAAD; 2145 writel(cmd, &oxu->regs->command); 2146 (void) readl(&oxu->regs->command); 2147 timer_action(oxu, TIMER_IAA_WATCHDOG); 2148 } 2149 2150 static void scan_async(struct oxu_hcd *oxu) 2151 { 2152 struct ehci_qh *qh; 2153 enum ehci_timer_action action = TIMER_IO_WATCHDOG; 2154 2155 if (!++(oxu->stamp)) 2156 oxu->stamp++; 2157 timer_action_done(oxu, TIMER_ASYNC_SHRINK); 2158 rescan: 2159 qh = oxu->async->qh_next.qh; 2160 if (likely(qh != NULL)) { 2161 do { 2162 /* clean any finished work for this qh */ 2163 if (!list_empty(&qh->qtd_list) 2164 && qh->stamp != oxu->stamp) { 2165 int temp; 2166 2167 /* unlinks could happen here; completion 2168 * reporting drops the lock. rescan using 2169 * the latest schedule, but don't rescan 2170 * qhs we already finished (no looping). 2171 */ 2172 qh = qh_get(qh); 2173 qh->stamp = oxu->stamp; 2174 temp = qh_completions(oxu, qh); 2175 qh_put(qh); 2176 if (temp != 0) 2177 goto rescan; 2178 } 2179 2180 /* unlink idle entries, reducing HC PCI usage as well 2181 * as HCD schedule-scanning costs. delay for any qh 2182 * we just scanned, there's a not-unusual case that it 2183 * doesn't stay idle for long. 2184 * (plus, avoids some kind of re-activation race.) 2185 */ 2186 if (list_empty(&qh->qtd_list)) { 2187 if (qh->stamp == oxu->stamp) 2188 action = TIMER_ASYNC_SHRINK; 2189 else if (!oxu->reclaim 2190 && qh->qh_state == QH_STATE_LINKED) 2191 start_unlink_async(oxu, qh); 2192 } 2193 2194 qh = qh->qh_next.qh; 2195 } while (qh); 2196 } 2197 if (action == TIMER_ASYNC_SHRINK) 2198 timer_action(oxu, TIMER_ASYNC_SHRINK); 2199 } 2200 2201 /* 2202 * periodic_next_shadow - return "next" pointer on shadow list 2203 * @periodic: host pointer to qh/itd/sitd 2204 * @tag: hardware tag for type of this record 2205 */ 2206 static union ehci_shadow *periodic_next_shadow(union ehci_shadow *periodic, 2207 __le32 tag) 2208 { 2209 switch (tag) { 2210 default: 2211 case Q_TYPE_QH: 2212 return &periodic->qh->qh_next; 2213 } 2214 } 2215 2216 /* caller must hold oxu->lock */ 2217 static void periodic_unlink(struct oxu_hcd *oxu, unsigned frame, void *ptr) 2218 { 2219 union ehci_shadow *prev_p = &oxu->pshadow[frame]; 2220 __le32 *hw_p = &oxu->periodic[frame]; 2221 union ehci_shadow here = *prev_p; 2222 2223 /* find predecessor of "ptr"; hw and shadow lists are in sync */ 2224 while (here.ptr && here.ptr != ptr) { 2225 prev_p = periodic_next_shadow(prev_p, Q_NEXT_TYPE(*hw_p)); 2226 hw_p = here.hw_next; 2227 here = *prev_p; 2228 } 2229 /* an interrupt entry (at list end) could have been shared */ 2230 if (!here.ptr) 2231 return; 2232 2233 /* update shadow and hardware lists ... the old "next" pointers 2234 * from ptr may still be in use, the caller updates them. 2235 */ 2236 *prev_p = *periodic_next_shadow(&here, Q_NEXT_TYPE(*hw_p)); 2237 *hw_p = *here.hw_next; 2238 } 2239 2240 /* how many of the uframe's 125 usecs are allocated? */ 2241 static unsigned short periodic_usecs(struct oxu_hcd *oxu, 2242 unsigned frame, unsigned uframe) 2243 { 2244 __le32 *hw_p = &oxu->periodic[frame]; 2245 union ehci_shadow *q = &oxu->pshadow[frame]; 2246 unsigned usecs = 0; 2247 2248 while (q->ptr) { 2249 switch (Q_NEXT_TYPE(*hw_p)) { 2250 case Q_TYPE_QH: 2251 default: 2252 /* is it in the S-mask? */ 2253 if (q->qh->hw_info2 & cpu_to_le32(1 << uframe)) 2254 usecs += q->qh->usecs; 2255 /* ... or C-mask? */ 2256 if (q->qh->hw_info2 & cpu_to_le32(1 << (8 + uframe))) 2257 usecs += q->qh->c_usecs; 2258 hw_p = &q->qh->hw_next; 2259 q = &q->qh->qh_next; 2260 break; 2261 } 2262 } 2263 #ifdef DEBUG 2264 if (usecs > 100) 2265 oxu_err(oxu, "uframe %d sched overrun: %d usecs\n", 2266 frame * 8 + uframe, usecs); 2267 #endif 2268 return usecs; 2269 } 2270 2271 static int enable_periodic(struct oxu_hcd *oxu) 2272 { 2273 u32 cmd; 2274 int status; 2275 2276 /* did clearing PSE did take effect yet? 2277 * takes effect only at frame boundaries... 2278 */ 2279 status = handshake(oxu, &oxu->regs->status, STS_PSS, 0, 9 * 125); 2280 if (status != 0) { 2281 oxu_to_hcd(oxu)->state = HC_STATE_HALT; 2282 usb_hc_died(oxu_to_hcd(oxu)); 2283 return status; 2284 } 2285 2286 cmd = readl(&oxu->regs->command) | CMD_PSE; 2287 writel(cmd, &oxu->regs->command); 2288 /* posted write ... PSS happens later */ 2289 oxu_to_hcd(oxu)->state = HC_STATE_RUNNING; 2290 2291 /* make sure ehci_work scans these */ 2292 oxu->next_uframe = readl(&oxu->regs->frame_index) 2293 % (oxu->periodic_size << 3); 2294 return 0; 2295 } 2296 2297 static int disable_periodic(struct oxu_hcd *oxu) 2298 { 2299 u32 cmd; 2300 int status; 2301 2302 /* did setting PSE not take effect yet? 2303 * takes effect only at frame boundaries... 2304 */ 2305 status = handshake(oxu, &oxu->regs->status, STS_PSS, STS_PSS, 9 * 125); 2306 if (status != 0) { 2307 oxu_to_hcd(oxu)->state = HC_STATE_HALT; 2308 usb_hc_died(oxu_to_hcd(oxu)); 2309 return status; 2310 } 2311 2312 cmd = readl(&oxu->regs->command) & ~CMD_PSE; 2313 writel(cmd, &oxu->regs->command); 2314 /* posted write ... */ 2315 2316 oxu->next_uframe = -1; 2317 return 0; 2318 } 2319 2320 /* periodic schedule slots have iso tds (normal or split) first, then a 2321 * sparse tree for active interrupt transfers. 2322 * 2323 * this just links in a qh; caller guarantees uframe masks are set right. 2324 * no FSTN support (yet; oxu 0.96+) 2325 */ 2326 static int qh_link_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh) 2327 { 2328 unsigned i; 2329 unsigned period = qh->period; 2330 2331 dev_dbg(&qh->dev->dev, 2332 "link qh%d-%04x/%p start %d [%d/%d us]\n", 2333 period, le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK), 2334 qh, qh->start, qh->usecs, qh->c_usecs); 2335 2336 /* high bandwidth, or otherwise every microframe */ 2337 if (period == 0) 2338 period = 1; 2339 2340 for (i = qh->start; i < oxu->periodic_size; i += period) { 2341 union ehci_shadow *prev = &oxu->pshadow[i]; 2342 __le32 *hw_p = &oxu->periodic[i]; 2343 union ehci_shadow here = *prev; 2344 __le32 type = 0; 2345 2346 /* skip the iso nodes at list head */ 2347 while (here.ptr) { 2348 type = Q_NEXT_TYPE(*hw_p); 2349 if (type == Q_TYPE_QH) 2350 break; 2351 prev = periodic_next_shadow(prev, type); 2352 hw_p = &here.qh->hw_next; 2353 here = *prev; 2354 } 2355 2356 /* sorting each branch by period (slow-->fast) 2357 * enables sharing interior tree nodes 2358 */ 2359 while (here.ptr && qh != here.qh) { 2360 if (qh->period > here.qh->period) 2361 break; 2362 prev = &here.qh->qh_next; 2363 hw_p = &here.qh->hw_next; 2364 here = *prev; 2365 } 2366 /* link in this qh, unless some earlier pass did that */ 2367 if (qh != here.qh) { 2368 qh->qh_next = here; 2369 if (here.qh) 2370 qh->hw_next = *hw_p; 2371 wmb(); 2372 prev->qh = qh; 2373 *hw_p = QH_NEXT(qh->qh_dma); 2374 } 2375 } 2376 qh->qh_state = QH_STATE_LINKED; 2377 qh_get(qh); 2378 2379 /* update per-qh bandwidth for usbfs */ 2380 oxu_to_hcd(oxu)->self.bandwidth_allocated += qh->period 2381 ? ((qh->usecs + qh->c_usecs) / qh->period) 2382 : (qh->usecs * 8); 2383 2384 /* maybe enable periodic schedule processing */ 2385 if (!oxu->periodic_sched++) 2386 return enable_periodic(oxu); 2387 2388 return 0; 2389 } 2390 2391 static void qh_unlink_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh) 2392 { 2393 unsigned i; 2394 unsigned period; 2395 2396 /* FIXME: 2397 * IF this isn't high speed 2398 * and this qh is active in the current uframe 2399 * (and overlay token SplitXstate is false?) 2400 * THEN 2401 * qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore"); 2402 */ 2403 2404 /* high bandwidth, or otherwise part of every microframe */ 2405 period = qh->period; 2406 if (period == 0) 2407 period = 1; 2408 2409 for (i = qh->start; i < oxu->periodic_size; i += period) 2410 periodic_unlink(oxu, i, qh); 2411 2412 /* update per-qh bandwidth for usbfs */ 2413 oxu_to_hcd(oxu)->self.bandwidth_allocated -= qh->period 2414 ? ((qh->usecs + qh->c_usecs) / qh->period) 2415 : (qh->usecs * 8); 2416 2417 dev_dbg(&qh->dev->dev, 2418 "unlink qh%d-%04x/%p start %d [%d/%d us]\n", 2419 qh->period, 2420 le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK), 2421 qh, qh->start, qh->usecs, qh->c_usecs); 2422 2423 /* qh->qh_next still "live" to HC */ 2424 qh->qh_state = QH_STATE_UNLINK; 2425 qh->qh_next.ptr = NULL; 2426 qh_put(qh); 2427 2428 /* maybe turn off periodic schedule */ 2429 oxu->periodic_sched--; 2430 if (!oxu->periodic_sched) 2431 (void) disable_periodic(oxu); 2432 } 2433 2434 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh) 2435 { 2436 unsigned wait; 2437 2438 qh_unlink_periodic(oxu, qh); 2439 2440 /* simple/paranoid: always delay, expecting the HC needs to read 2441 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and 2442 * expect hub_wq to clean up after any CSPLITs we won't issue. 2443 * active high speed queues may need bigger delays... 2444 */ 2445 if (list_empty(&qh->qtd_list) 2446 || (cpu_to_le32(QH_CMASK) & qh->hw_info2) != 0) 2447 wait = 2; 2448 else 2449 wait = 55; /* worst case: 3 * 1024 */ 2450 2451 udelay(wait); 2452 qh->qh_state = QH_STATE_IDLE; 2453 qh->hw_next = EHCI_LIST_END; 2454 wmb(); 2455 } 2456 2457 static int check_period(struct oxu_hcd *oxu, 2458 unsigned frame, unsigned uframe, 2459 unsigned period, unsigned usecs) 2460 { 2461 int claimed; 2462 2463 /* complete split running into next frame? 2464 * given FSTN support, we could sometimes check... 2465 */ 2466 if (uframe >= 8) 2467 return 0; 2468 2469 /* 2470 * 80% periodic == 100 usec/uframe available 2471 * convert "usecs we need" to "max already claimed" 2472 */ 2473 usecs = 100 - usecs; 2474 2475 /* we "know" 2 and 4 uframe intervals were rejected; so 2476 * for period 0, check _every_ microframe in the schedule. 2477 */ 2478 if (unlikely(period == 0)) { 2479 do { 2480 for (uframe = 0; uframe < 7; uframe++) { 2481 claimed = periodic_usecs(oxu, frame, uframe); 2482 if (claimed > usecs) 2483 return 0; 2484 } 2485 } while ((frame += 1) < oxu->periodic_size); 2486 2487 /* just check the specified uframe, at that period */ 2488 } else { 2489 do { 2490 claimed = periodic_usecs(oxu, frame, uframe); 2491 if (claimed > usecs) 2492 return 0; 2493 } while ((frame += period) < oxu->periodic_size); 2494 } 2495 2496 return 1; 2497 } 2498 2499 static int check_intr_schedule(struct oxu_hcd *oxu, 2500 unsigned frame, unsigned uframe, 2501 const struct ehci_qh *qh, __le32 *c_maskp) 2502 { 2503 int retval = -ENOSPC; 2504 2505 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */ 2506 goto done; 2507 2508 if (!check_period(oxu, frame, uframe, qh->period, qh->usecs)) 2509 goto done; 2510 if (!qh->c_usecs) { 2511 retval = 0; 2512 *c_maskp = 0; 2513 goto done; 2514 } 2515 2516 done: 2517 return retval; 2518 } 2519 2520 /* "first fit" scheduling policy used the first time through, 2521 * or when the previous schedule slot can't be re-used. 2522 */ 2523 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh) 2524 { 2525 int status; 2526 unsigned uframe; 2527 __le32 c_mask; 2528 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */ 2529 2530 qh_refresh(oxu, qh); 2531 qh->hw_next = EHCI_LIST_END; 2532 frame = qh->start; 2533 2534 /* reuse the previous schedule slots, if we can */ 2535 if (frame < qh->period) { 2536 uframe = ffs(le32_to_cpup(&qh->hw_info2) & QH_SMASK); 2537 status = check_intr_schedule(oxu, frame, --uframe, 2538 qh, &c_mask); 2539 } else { 2540 uframe = 0; 2541 c_mask = 0; 2542 status = -ENOSPC; 2543 } 2544 2545 /* else scan the schedule to find a group of slots such that all 2546 * uframes have enough periodic bandwidth available. 2547 */ 2548 if (status) { 2549 /* "normal" case, uframing flexible except with splits */ 2550 if (qh->period) { 2551 frame = qh->period - 1; 2552 do { 2553 for (uframe = 0; uframe < 8; uframe++) { 2554 status = check_intr_schedule(oxu, 2555 frame, uframe, qh, 2556 &c_mask); 2557 if (status == 0) 2558 break; 2559 } 2560 } while (status && frame--); 2561 2562 /* qh->period == 0 means every uframe */ 2563 } else { 2564 frame = 0; 2565 status = check_intr_schedule(oxu, 0, 0, qh, &c_mask); 2566 } 2567 if (status) 2568 goto done; 2569 qh->start = frame; 2570 2571 /* reset S-frame and (maybe) C-frame masks */ 2572 qh->hw_info2 &= cpu_to_le32(~(QH_CMASK | QH_SMASK)); 2573 qh->hw_info2 |= qh->period 2574 ? cpu_to_le32(1 << uframe) 2575 : cpu_to_le32(QH_SMASK); 2576 qh->hw_info2 |= c_mask; 2577 } else 2578 oxu_dbg(oxu, "reused qh %p schedule\n", qh); 2579 2580 /* stuff into the periodic schedule */ 2581 status = qh_link_periodic(oxu, qh); 2582 done: 2583 return status; 2584 } 2585 2586 static int intr_submit(struct oxu_hcd *oxu, struct urb *urb, 2587 struct list_head *qtd_list, gfp_t mem_flags) 2588 { 2589 unsigned epnum; 2590 unsigned long flags; 2591 struct ehci_qh *qh; 2592 int status = 0; 2593 struct list_head empty; 2594 2595 /* get endpoint and transfer/schedule data */ 2596 epnum = urb->ep->desc.bEndpointAddress; 2597 2598 spin_lock_irqsave(&oxu->lock, flags); 2599 2600 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) { 2601 status = -ESHUTDOWN; 2602 goto done; 2603 } 2604 2605 /* get qh and force any scheduling errors */ 2606 INIT_LIST_HEAD(&empty); 2607 qh = qh_append_tds(oxu, urb, &empty, epnum, &urb->ep->hcpriv); 2608 if (qh == NULL) { 2609 status = -ENOMEM; 2610 goto done; 2611 } 2612 if (qh->qh_state == QH_STATE_IDLE) { 2613 status = qh_schedule(oxu, qh); 2614 if (status != 0) 2615 goto done; 2616 } 2617 2618 /* then queue the urb's tds to the qh */ 2619 qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv); 2620 BUG_ON(qh == NULL); 2621 2622 /* ... update usbfs periodic stats */ 2623 oxu_to_hcd(oxu)->self.bandwidth_int_reqs++; 2624 2625 done: 2626 spin_unlock_irqrestore(&oxu->lock, flags); 2627 if (status) 2628 qtd_list_free(oxu, urb, qtd_list); 2629 2630 return status; 2631 } 2632 2633 static inline int itd_submit(struct oxu_hcd *oxu, struct urb *urb, 2634 gfp_t mem_flags) 2635 { 2636 oxu_dbg(oxu, "iso support is missing!\n"); 2637 return -ENOSYS; 2638 } 2639 2640 static inline int sitd_submit(struct oxu_hcd *oxu, struct urb *urb, 2641 gfp_t mem_flags) 2642 { 2643 oxu_dbg(oxu, "split iso support is missing!\n"); 2644 return -ENOSYS; 2645 } 2646 2647 static void scan_periodic(struct oxu_hcd *oxu) 2648 { 2649 unsigned frame, clock, now_uframe, mod; 2650 unsigned modified; 2651 2652 mod = oxu->periodic_size << 3; 2653 2654 /* 2655 * When running, scan from last scan point up to "now" 2656 * else clean up by scanning everything that's left. 2657 * Touches as few pages as possible: cache-friendly. 2658 */ 2659 now_uframe = oxu->next_uframe; 2660 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) 2661 clock = readl(&oxu->regs->frame_index); 2662 else 2663 clock = now_uframe + mod - 1; 2664 clock %= mod; 2665 2666 for (;;) { 2667 union ehci_shadow q, *q_p; 2668 __le32 type, *hw_p; 2669 2670 /* don't scan past the live uframe */ 2671 frame = now_uframe >> 3; 2672 if (frame != (clock >> 3)) { 2673 /* safe to scan the whole frame at once */ 2674 now_uframe |= 0x07; 2675 } 2676 2677 restart: 2678 /* scan each element in frame's queue for completions */ 2679 q_p = &oxu->pshadow[frame]; 2680 hw_p = &oxu->periodic[frame]; 2681 q.ptr = q_p->ptr; 2682 type = Q_NEXT_TYPE(*hw_p); 2683 modified = 0; 2684 2685 while (q.ptr != NULL) { 2686 union ehci_shadow temp; 2687 2688 switch (type) { 2689 case Q_TYPE_QH: 2690 /* handle any completions */ 2691 temp.qh = qh_get(q.qh); 2692 type = Q_NEXT_TYPE(q.qh->hw_next); 2693 q = q.qh->qh_next; 2694 modified = qh_completions(oxu, temp.qh); 2695 if (unlikely(list_empty(&temp.qh->qtd_list))) 2696 intr_deschedule(oxu, temp.qh); 2697 qh_put(temp.qh); 2698 break; 2699 default: 2700 oxu_dbg(oxu, "corrupt type %d frame %d shadow %p\n", 2701 type, frame, q.ptr); 2702 q.ptr = NULL; 2703 } 2704 2705 /* assume completion callbacks modify the queue */ 2706 if (unlikely(modified)) 2707 goto restart; 2708 } 2709 2710 /* Stop when we catch up to the HC */ 2711 2712 /* FIXME: this assumes we won't get lapped when 2713 * latencies climb; that should be rare, but... 2714 * detect it, and just go all the way around. 2715 * FLR might help detect this case, so long as latencies 2716 * don't exceed periodic_size msec (default 1.024 sec). 2717 */ 2718 2719 /* FIXME: likewise assumes HC doesn't halt mid-scan */ 2720 2721 if (now_uframe == clock) { 2722 unsigned now; 2723 2724 if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) 2725 break; 2726 oxu->next_uframe = now_uframe; 2727 now = readl(&oxu->regs->frame_index) % mod; 2728 if (now_uframe == now) 2729 break; 2730 2731 /* rescan the rest of this frame, then ... */ 2732 clock = now; 2733 } else { 2734 now_uframe++; 2735 now_uframe %= mod; 2736 } 2737 } 2738 } 2739 2740 /* On some systems, leaving remote wakeup enabled prevents system shutdown. 2741 * The firmware seems to think that powering off is a wakeup event! 2742 * This routine turns off remote wakeup and everything else, on all ports. 2743 */ 2744 static void ehci_turn_off_all_ports(struct oxu_hcd *oxu) 2745 { 2746 int port = HCS_N_PORTS(oxu->hcs_params); 2747 2748 while (port--) 2749 writel(PORT_RWC_BITS, &oxu->regs->port_status[port]); 2750 } 2751 2752 static void ehci_port_power(struct oxu_hcd *oxu, int is_on) 2753 { 2754 unsigned port; 2755 2756 if (!HCS_PPC(oxu->hcs_params)) 2757 return; 2758 2759 oxu_dbg(oxu, "...power%s ports...\n", is_on ? "up" : "down"); 2760 for (port = HCS_N_PORTS(oxu->hcs_params); port > 0; ) { 2761 if (is_on) 2762 oxu_hub_control(oxu_to_hcd(oxu), SetPortFeature, 2763 USB_PORT_FEAT_POWER, port--, NULL, 0); 2764 else 2765 oxu_hub_control(oxu_to_hcd(oxu), ClearPortFeature, 2766 USB_PORT_FEAT_POWER, port--, NULL, 0); 2767 } 2768 2769 msleep(20); 2770 } 2771 2772 /* Called from some interrupts, timers, and so on. 2773 * It calls driver completion functions, after dropping oxu->lock. 2774 */ 2775 static void ehci_work(struct oxu_hcd *oxu) 2776 { 2777 timer_action_done(oxu, TIMER_IO_WATCHDOG); 2778 if (oxu->reclaim_ready) 2779 end_unlink_async(oxu); 2780 2781 /* another CPU may drop oxu->lock during a schedule scan while 2782 * it reports urb completions. this flag guards against bogus 2783 * attempts at re-entrant schedule scanning. 2784 */ 2785 if (oxu->scanning) 2786 return; 2787 oxu->scanning = 1; 2788 scan_async(oxu); 2789 if (oxu->next_uframe != -1) 2790 scan_periodic(oxu); 2791 oxu->scanning = 0; 2792 2793 /* the IO watchdog guards against hardware or driver bugs that 2794 * misplace IRQs, and should let us run completely without IRQs. 2795 * such lossage has been observed on both VT6202 and VT8235. 2796 */ 2797 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && 2798 (oxu->async->qh_next.ptr != NULL || 2799 oxu->periodic_sched != 0)) 2800 timer_action(oxu, TIMER_IO_WATCHDOG); 2801 } 2802 2803 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh) 2804 { 2805 /* if we need to use IAA and it's busy, defer */ 2806 if (qh->qh_state == QH_STATE_LINKED 2807 && oxu->reclaim 2808 && HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) { 2809 struct ehci_qh *last; 2810 2811 for (last = oxu->reclaim; 2812 last->reclaim; 2813 last = last->reclaim) 2814 continue; 2815 qh->qh_state = QH_STATE_UNLINK_WAIT; 2816 last->reclaim = qh; 2817 2818 /* bypass IAA if the hc can't care */ 2819 } else if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && oxu->reclaim) 2820 end_unlink_async(oxu); 2821 2822 /* something else might have unlinked the qh by now */ 2823 if (qh->qh_state == QH_STATE_LINKED) 2824 start_unlink_async(oxu, qh); 2825 } 2826 2827 /* 2828 * USB host controller methods 2829 */ 2830 2831 static irqreturn_t oxu210_hcd_irq(struct usb_hcd *hcd) 2832 { 2833 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2834 u32 status, pcd_status = 0; 2835 int bh; 2836 2837 spin_lock(&oxu->lock); 2838 2839 status = readl(&oxu->regs->status); 2840 2841 /* e.g. cardbus physical eject */ 2842 if (status == ~(u32) 0) { 2843 oxu_dbg(oxu, "device removed\n"); 2844 goto dead; 2845 } 2846 2847 /* Shared IRQ? */ 2848 status &= INTR_MASK; 2849 if (!status || unlikely(hcd->state == HC_STATE_HALT)) { 2850 spin_unlock(&oxu->lock); 2851 return IRQ_NONE; 2852 } 2853 2854 /* clear (just) interrupts */ 2855 writel(status, &oxu->regs->status); 2856 readl(&oxu->regs->command); /* unblock posted write */ 2857 bh = 0; 2858 2859 #ifdef OXU_VERBOSE_DEBUG 2860 /* unrequested/ignored: Frame List Rollover */ 2861 dbg_status(oxu, "irq", status); 2862 #endif 2863 2864 /* INT, ERR, and IAA interrupt rates can be throttled */ 2865 2866 /* normal [4.15.1.2] or error [4.15.1.1] completion */ 2867 if (likely((status & (STS_INT|STS_ERR)) != 0)) 2868 bh = 1; 2869 2870 /* complete the unlinking of some qh [4.15.2.3] */ 2871 if (status & STS_IAA) { 2872 oxu->reclaim_ready = 1; 2873 bh = 1; 2874 } 2875 2876 /* remote wakeup [4.3.1] */ 2877 if (status & STS_PCD) { 2878 unsigned i = HCS_N_PORTS(oxu->hcs_params); 2879 pcd_status = status; 2880 2881 /* resume root hub? */ 2882 if (!(readl(&oxu->regs->command) & CMD_RUN)) 2883 usb_hcd_resume_root_hub(hcd); 2884 2885 while (i--) { 2886 int pstatus = readl(&oxu->regs->port_status[i]); 2887 2888 if (pstatus & PORT_OWNER) 2889 continue; 2890 if (!(pstatus & PORT_RESUME) 2891 || oxu->reset_done[i] != 0) 2892 continue; 2893 2894 /* start USB_RESUME_TIMEOUT resume signaling from this 2895 * port, and make hub_wq collect PORT_STAT_C_SUSPEND to 2896 * stop that signaling. 2897 */ 2898 oxu->reset_done[i] = jiffies + 2899 msecs_to_jiffies(USB_RESUME_TIMEOUT); 2900 oxu_dbg(oxu, "port %d remote wakeup\n", i + 1); 2901 mod_timer(&hcd->rh_timer, oxu->reset_done[i]); 2902 } 2903 } 2904 2905 /* PCI errors [4.15.2.4] */ 2906 if (unlikely((status & STS_FATAL) != 0)) { 2907 /* bogus "fatal" IRQs appear on some chips... why? */ 2908 status = readl(&oxu->regs->status); 2909 dbg_cmd(oxu, "fatal", readl(&oxu->regs->command)); 2910 dbg_status(oxu, "fatal", status); 2911 if (status & STS_HALT) { 2912 oxu_err(oxu, "fatal error\n"); 2913 dead: 2914 ehci_reset(oxu); 2915 writel(0, &oxu->regs->configured_flag); 2916 usb_hc_died(hcd); 2917 /* generic layer kills/unlinks all urbs, then 2918 * uses oxu_stop to clean up the rest 2919 */ 2920 bh = 1; 2921 } 2922 } 2923 2924 if (bh) 2925 ehci_work(oxu); 2926 spin_unlock(&oxu->lock); 2927 if (pcd_status & STS_PCD) 2928 usb_hcd_poll_rh_status(hcd); 2929 return IRQ_HANDLED; 2930 } 2931 2932 static irqreturn_t oxu_irq(struct usb_hcd *hcd) 2933 { 2934 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2935 int ret = IRQ_HANDLED; 2936 2937 u32 status = oxu_readl(hcd->regs, OXU_CHIPIRQSTATUS); 2938 u32 enable = oxu_readl(hcd->regs, OXU_CHIPIRQEN_SET); 2939 2940 /* Disable all interrupt */ 2941 oxu_writel(hcd->regs, OXU_CHIPIRQEN_CLR, enable); 2942 2943 if ((oxu->is_otg && (status & OXU_USBOTGI)) || 2944 (!oxu->is_otg && (status & OXU_USBSPHI))) 2945 oxu210_hcd_irq(hcd); 2946 else 2947 ret = IRQ_NONE; 2948 2949 /* Enable all interrupt back */ 2950 oxu_writel(hcd->regs, OXU_CHIPIRQEN_SET, enable); 2951 2952 return ret; 2953 } 2954 2955 static void oxu_watchdog(struct timer_list *t) 2956 { 2957 struct oxu_hcd *oxu = from_timer(oxu, t, watchdog); 2958 unsigned long flags; 2959 2960 spin_lock_irqsave(&oxu->lock, flags); 2961 2962 /* lost IAA irqs wedge things badly; seen with a vt8235 */ 2963 if (oxu->reclaim) { 2964 u32 status = readl(&oxu->regs->status); 2965 if (status & STS_IAA) { 2966 oxu_vdbg(oxu, "lost IAA\n"); 2967 writel(STS_IAA, &oxu->regs->status); 2968 oxu->reclaim_ready = 1; 2969 } 2970 } 2971 2972 /* stop async processing after it's idled a bit */ 2973 if (test_bit(TIMER_ASYNC_OFF, &oxu->actions)) 2974 start_unlink_async(oxu, oxu->async); 2975 2976 /* oxu could run by timer, without IRQs ... */ 2977 ehci_work(oxu); 2978 2979 spin_unlock_irqrestore(&oxu->lock, flags); 2980 } 2981 2982 /* One-time init, only for memory state. 2983 */ 2984 static int oxu_hcd_init(struct usb_hcd *hcd) 2985 { 2986 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2987 u32 temp; 2988 int retval; 2989 u32 hcc_params; 2990 2991 spin_lock_init(&oxu->lock); 2992 2993 timer_setup(&oxu->watchdog, oxu_watchdog, 0); 2994 2995 /* 2996 * hw default: 1K periodic list heads, one per frame. 2997 * periodic_size can shrink by USBCMD update if hcc_params allows. 2998 */ 2999 oxu->periodic_size = DEFAULT_I_TDPS; 3000 retval = ehci_mem_init(oxu, GFP_KERNEL); 3001 if (retval < 0) 3002 return retval; 3003 3004 /* controllers may cache some of the periodic schedule ... */ 3005 hcc_params = readl(&oxu->caps->hcc_params); 3006 if (HCC_ISOC_CACHE(hcc_params)) /* full frame cache */ 3007 oxu->i_thresh = 8; 3008 else /* N microframes cached */ 3009 oxu->i_thresh = 2 + HCC_ISOC_THRES(hcc_params); 3010 3011 oxu->reclaim = NULL; 3012 oxu->reclaim_ready = 0; 3013 oxu->next_uframe = -1; 3014 3015 /* 3016 * dedicate a qh for the async ring head, since we couldn't unlink 3017 * a 'real' qh without stopping the async schedule [4.8]. use it 3018 * as the 'reclamation list head' too. 3019 * its dummy is used in hw_alt_next of many tds, to prevent the qh 3020 * from automatically advancing to the next td after short reads. 3021 */ 3022 oxu->async->qh_next.qh = NULL; 3023 oxu->async->hw_next = QH_NEXT(oxu->async->qh_dma); 3024 oxu->async->hw_info1 = cpu_to_le32(QH_HEAD); 3025 oxu->async->hw_token = cpu_to_le32(QTD_STS_HALT); 3026 oxu->async->hw_qtd_next = EHCI_LIST_END; 3027 oxu->async->qh_state = QH_STATE_LINKED; 3028 oxu->async->hw_alt_next = QTD_NEXT(oxu->async->dummy->qtd_dma); 3029 3030 /* clear interrupt enables, set irq latency */ 3031 if (log2_irq_thresh < 0 || log2_irq_thresh > 6) 3032 log2_irq_thresh = 0; 3033 temp = 1 << (16 + log2_irq_thresh); 3034 if (HCC_CANPARK(hcc_params)) { 3035 /* HW default park == 3, on hardware that supports it (like 3036 * NVidia and ALI silicon), maximizes throughput on the async 3037 * schedule by avoiding QH fetches between transfers. 3038 * 3039 * With fast usb storage devices and NForce2, "park" seems to 3040 * make problems: throughput reduction (!), data errors... 3041 */ 3042 if (park) { 3043 park = min_t(unsigned int, park, 3); 3044 temp |= CMD_PARK; 3045 temp |= park << 8; 3046 } 3047 oxu_dbg(oxu, "park %d\n", park); 3048 } 3049 if (HCC_PGM_FRAMELISTLEN(hcc_params)) { 3050 /* periodic schedule size can be smaller than default */ 3051 temp &= ~(3 << 2); 3052 temp |= (EHCI_TUNE_FLS << 2); 3053 } 3054 oxu->command = temp; 3055 3056 return 0; 3057 } 3058 3059 /* Called during probe() after chip reset completes. 3060 */ 3061 static int oxu_reset(struct usb_hcd *hcd) 3062 { 3063 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3064 3065 spin_lock_init(&oxu->mem_lock); 3066 INIT_LIST_HEAD(&oxu->urb_list); 3067 oxu->urb_len = 0; 3068 3069 if (oxu->is_otg) { 3070 oxu->caps = hcd->regs + OXU_OTG_CAP_OFFSET; 3071 oxu->regs = hcd->regs + OXU_OTG_CAP_OFFSET + \ 3072 HC_LENGTH(readl(&oxu->caps->hc_capbase)); 3073 3074 oxu->mem = hcd->regs + OXU_SPH_MEM; 3075 } else { 3076 oxu->caps = hcd->regs + OXU_SPH_CAP_OFFSET; 3077 oxu->regs = hcd->regs + OXU_SPH_CAP_OFFSET + \ 3078 HC_LENGTH(readl(&oxu->caps->hc_capbase)); 3079 3080 oxu->mem = hcd->regs + OXU_OTG_MEM; 3081 } 3082 3083 oxu->hcs_params = readl(&oxu->caps->hcs_params); 3084 oxu->sbrn = 0x20; 3085 3086 return oxu_hcd_init(hcd); 3087 } 3088 3089 static int oxu_run(struct usb_hcd *hcd) 3090 { 3091 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3092 int retval; 3093 u32 temp, hcc_params; 3094 3095 hcd->uses_new_polling = 1; 3096 3097 /* EHCI spec section 4.1 */ 3098 retval = ehci_reset(oxu); 3099 if (retval != 0) { 3100 ehci_mem_cleanup(oxu); 3101 return retval; 3102 } 3103 writel(oxu->periodic_dma, &oxu->regs->frame_list); 3104 writel((u32) oxu->async->qh_dma, &oxu->regs->async_next); 3105 3106 /* hcc_params controls whether oxu->regs->segment must (!!!) 3107 * be used; it constrains QH/ITD/SITD and QTD locations. 3108 * dma_pool consistent memory always uses segment zero. 3109 * streaming mappings for I/O buffers, like dma_map_single(), 3110 * can return segments above 4GB, if the device allows. 3111 * 3112 * NOTE: the dma mask is visible through dev->dma_mask, so 3113 * drivers can pass this info along ... like NETIF_F_HIGHDMA, 3114 * Scsi_Host.highmem_io, and so forth. It's readonly to all 3115 * host side drivers though. 3116 */ 3117 hcc_params = readl(&oxu->caps->hcc_params); 3118 if (HCC_64BIT_ADDR(hcc_params)) 3119 writel(0, &oxu->regs->segment); 3120 3121 oxu->command &= ~(CMD_LRESET | CMD_IAAD | CMD_PSE | 3122 CMD_ASE | CMD_RESET); 3123 oxu->command |= CMD_RUN; 3124 writel(oxu->command, &oxu->regs->command); 3125 dbg_cmd(oxu, "init", oxu->command); 3126 3127 /* 3128 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices 3129 * are explicitly handed to companion controller(s), so no TT is 3130 * involved with the root hub. (Except where one is integrated, 3131 * and there's no companion controller unless maybe for USB OTG.) 3132 */ 3133 hcd->state = HC_STATE_RUNNING; 3134 writel(FLAG_CF, &oxu->regs->configured_flag); 3135 readl(&oxu->regs->command); /* unblock posted writes */ 3136 3137 temp = HC_VERSION(readl(&oxu->caps->hc_capbase)); 3138 oxu_info(oxu, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n", 3139 ((oxu->sbrn & 0xf0)>>4), (oxu->sbrn & 0x0f), 3140 temp >> 8, temp & 0xff, DRIVER_VERSION, 3141 ignore_oc ? ", overcurrent ignored" : ""); 3142 3143 writel(INTR_MASK, &oxu->regs->intr_enable); /* Turn On Interrupts */ 3144 3145 return 0; 3146 } 3147 3148 static void oxu_stop(struct usb_hcd *hcd) 3149 { 3150 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3151 3152 /* Turn off port power on all root hub ports. */ 3153 ehci_port_power(oxu, 0); 3154 3155 /* no more interrupts ... */ 3156 del_timer_sync(&oxu->watchdog); 3157 3158 spin_lock_irq(&oxu->lock); 3159 if (HC_IS_RUNNING(hcd->state)) 3160 ehci_quiesce(oxu); 3161 3162 ehci_reset(oxu); 3163 writel(0, &oxu->regs->intr_enable); 3164 spin_unlock_irq(&oxu->lock); 3165 3166 /* let companion controllers work when we aren't */ 3167 writel(0, &oxu->regs->configured_flag); 3168 3169 /* root hub is shut down separately (first, when possible) */ 3170 spin_lock_irq(&oxu->lock); 3171 if (oxu->async) 3172 ehci_work(oxu); 3173 spin_unlock_irq(&oxu->lock); 3174 ehci_mem_cleanup(oxu); 3175 3176 dbg_status(oxu, "oxu_stop completed", readl(&oxu->regs->status)); 3177 } 3178 3179 /* Kick in for silicon on any bus (not just pci, etc). 3180 * This forcibly disables dma and IRQs, helping kexec and other cases 3181 * where the next system software may expect clean state. 3182 */ 3183 static void oxu_shutdown(struct usb_hcd *hcd) 3184 { 3185 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3186 3187 (void) ehci_halt(oxu); 3188 ehci_turn_off_all_ports(oxu); 3189 3190 /* make BIOS/etc use companion controller during reboot */ 3191 writel(0, &oxu->regs->configured_flag); 3192 3193 /* unblock posted writes */ 3194 readl(&oxu->regs->configured_flag); 3195 } 3196 3197 /* Non-error returns are a promise to giveback() the urb later 3198 * we drop ownership so next owner (or urb unlink) can get it 3199 * 3200 * urb + dev is in hcd.self.controller.urb_list 3201 * we're queueing TDs onto software and hardware lists 3202 * 3203 * hcd-specific init for hcpriv hasn't been done yet 3204 * 3205 * NOTE: control, bulk, and interrupt share the same code to append TDs 3206 * to a (possibly active) QH, and the same QH scanning code. 3207 */ 3208 static int __oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, 3209 gfp_t mem_flags) 3210 { 3211 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3212 struct list_head qtd_list; 3213 3214 INIT_LIST_HEAD(&qtd_list); 3215 3216 switch (usb_pipetype(urb->pipe)) { 3217 case PIPE_CONTROL: 3218 case PIPE_BULK: 3219 default: 3220 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags)) 3221 return -ENOMEM; 3222 return submit_async(oxu, urb, &qtd_list, mem_flags); 3223 3224 case PIPE_INTERRUPT: 3225 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags)) 3226 return -ENOMEM; 3227 return intr_submit(oxu, urb, &qtd_list, mem_flags); 3228 3229 case PIPE_ISOCHRONOUS: 3230 if (urb->dev->speed == USB_SPEED_HIGH) 3231 return itd_submit(oxu, urb, mem_flags); 3232 else 3233 return sitd_submit(oxu, urb, mem_flags); 3234 } 3235 } 3236 3237 /* This function is responsible for breaking URBs with big data size 3238 * into smaller size and processing small urbs in sequence. 3239 */ 3240 static int oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, 3241 gfp_t mem_flags) 3242 { 3243 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3244 int num, rem; 3245 void *transfer_buffer; 3246 struct urb *murb; 3247 int i, ret; 3248 3249 /* If not bulk pipe just enqueue the URB */ 3250 if (!usb_pipebulk(urb->pipe)) 3251 return __oxu_urb_enqueue(hcd, urb, mem_flags); 3252 3253 /* Otherwise we should verify the USB transfer buffer size! */ 3254 transfer_buffer = urb->transfer_buffer; 3255 3256 num = urb->transfer_buffer_length / 4096; 3257 rem = urb->transfer_buffer_length % 4096; 3258 if (rem != 0) 3259 num++; 3260 3261 /* If URB is smaller than 4096 bytes just enqueue it! */ 3262 if (num == 1) 3263 return __oxu_urb_enqueue(hcd, urb, mem_flags); 3264 3265 /* Ok, we have more job to do! :) */ 3266 3267 for (i = 0; i < num - 1; i++) { 3268 /* Get free micro URB poll till a free urb is received */ 3269 3270 do { 3271 murb = (struct urb *) oxu_murb_alloc(oxu); 3272 if (!murb) 3273 schedule(); 3274 } while (!murb); 3275 3276 /* Coping the urb */ 3277 memcpy(murb, urb, sizeof(struct urb)); 3278 3279 murb->transfer_buffer_length = 4096; 3280 murb->transfer_buffer = transfer_buffer + i * 4096; 3281 3282 /* Null pointer for the encodes that this is a micro urb */ 3283 murb->complete = NULL; 3284 3285 ((struct oxu_murb *) murb)->main = urb; 3286 ((struct oxu_murb *) murb)->last = 0; 3287 3288 /* This loop is to guarantee urb to be processed when there's 3289 * not enough resources at a particular time by retrying. 3290 */ 3291 do { 3292 ret = __oxu_urb_enqueue(hcd, murb, mem_flags); 3293 if (ret) 3294 schedule(); 3295 } while (ret); 3296 } 3297 3298 /* Last urb requires special handling */ 3299 3300 /* Get free micro URB poll till a free urb is received */ 3301 do { 3302 murb = (struct urb *) oxu_murb_alloc(oxu); 3303 if (!murb) 3304 schedule(); 3305 } while (!murb); 3306 3307 /* Coping the urb */ 3308 memcpy(murb, urb, sizeof(struct urb)); 3309 3310 murb->transfer_buffer_length = rem > 0 ? rem : 4096; 3311 murb->transfer_buffer = transfer_buffer + (num - 1) * 4096; 3312 3313 /* Null pointer for the encodes that this is a micro urb */ 3314 murb->complete = NULL; 3315 3316 ((struct oxu_murb *) murb)->main = urb; 3317 ((struct oxu_murb *) murb)->last = 1; 3318 3319 do { 3320 ret = __oxu_urb_enqueue(hcd, murb, mem_flags); 3321 if (ret) 3322 schedule(); 3323 } while (ret); 3324 3325 return ret; 3326 } 3327 3328 /* Remove from hardware lists. 3329 * Completions normally happen asynchronously 3330 */ 3331 static int oxu_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 3332 { 3333 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3334 struct ehci_qh *qh; 3335 unsigned long flags; 3336 3337 spin_lock_irqsave(&oxu->lock, flags); 3338 switch (usb_pipetype(urb->pipe)) { 3339 case PIPE_CONTROL: 3340 case PIPE_BULK: 3341 default: 3342 qh = (struct ehci_qh *) urb->hcpriv; 3343 if (!qh) 3344 break; 3345 unlink_async(oxu, qh); 3346 break; 3347 3348 case PIPE_INTERRUPT: 3349 qh = (struct ehci_qh *) urb->hcpriv; 3350 if (!qh) 3351 break; 3352 switch (qh->qh_state) { 3353 case QH_STATE_LINKED: 3354 intr_deschedule(oxu, qh); 3355 fallthrough; 3356 case QH_STATE_IDLE: 3357 qh_completions(oxu, qh); 3358 break; 3359 default: 3360 oxu_dbg(oxu, "bogus qh %p state %d\n", 3361 qh, qh->qh_state); 3362 goto done; 3363 } 3364 3365 /* reschedule QH iff another request is queued */ 3366 if (!list_empty(&qh->qtd_list) 3367 && HC_IS_RUNNING(hcd->state)) { 3368 int status; 3369 3370 status = qh_schedule(oxu, qh); 3371 spin_unlock_irqrestore(&oxu->lock, flags); 3372 3373 if (status != 0) { 3374 /* shouldn't happen often, but ... 3375 * FIXME kill those tds' urbs 3376 */ 3377 dev_err(hcd->self.controller, 3378 "can't reschedule qh %p, err %d\n", qh, 3379 status); 3380 } 3381 return status; 3382 } 3383 break; 3384 } 3385 done: 3386 spin_unlock_irqrestore(&oxu->lock, flags); 3387 return 0; 3388 } 3389 3390 /* Bulk qh holds the data toggle */ 3391 static void oxu_endpoint_disable(struct usb_hcd *hcd, 3392 struct usb_host_endpoint *ep) 3393 { 3394 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3395 unsigned long flags; 3396 struct ehci_qh *qh, *tmp; 3397 3398 /* ASSERT: any requests/urbs are being unlinked */ 3399 /* ASSERT: nobody can be submitting urbs for this any more */ 3400 3401 rescan: 3402 spin_lock_irqsave(&oxu->lock, flags); 3403 qh = ep->hcpriv; 3404 if (!qh) 3405 goto done; 3406 3407 /* endpoints can be iso streams. for now, we don't 3408 * accelerate iso completions ... so spin a while. 3409 */ 3410 if (qh->hw_info1 == 0) { 3411 oxu_vdbg(oxu, "iso delay\n"); 3412 goto idle_timeout; 3413 } 3414 3415 if (!HC_IS_RUNNING(hcd->state)) 3416 qh->qh_state = QH_STATE_IDLE; 3417 switch (qh->qh_state) { 3418 case QH_STATE_LINKED: 3419 for (tmp = oxu->async->qh_next.qh; 3420 tmp && tmp != qh; 3421 tmp = tmp->qh_next.qh) 3422 continue; 3423 /* periodic qh self-unlinks on empty */ 3424 if (!tmp) 3425 goto nogood; 3426 unlink_async(oxu, qh); 3427 fallthrough; 3428 case QH_STATE_UNLINK: /* wait for hw to finish? */ 3429 idle_timeout: 3430 spin_unlock_irqrestore(&oxu->lock, flags); 3431 schedule_timeout_uninterruptible(1); 3432 goto rescan; 3433 case QH_STATE_IDLE: /* fully unlinked */ 3434 if (list_empty(&qh->qtd_list)) { 3435 qh_put(qh); 3436 break; 3437 } 3438 fallthrough; 3439 default: 3440 nogood: 3441 /* caller was supposed to have unlinked any requests; 3442 * that's not our job. just leak this memory. 3443 */ 3444 oxu_err(oxu, "qh %p (#%02x) state %d%s\n", 3445 qh, ep->desc.bEndpointAddress, qh->qh_state, 3446 list_empty(&qh->qtd_list) ? "" : "(has tds)"); 3447 break; 3448 } 3449 ep->hcpriv = NULL; 3450 done: 3451 spin_unlock_irqrestore(&oxu->lock, flags); 3452 } 3453 3454 static int oxu_get_frame(struct usb_hcd *hcd) 3455 { 3456 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3457 3458 return (readl(&oxu->regs->frame_index) >> 3) % 3459 oxu->periodic_size; 3460 } 3461 3462 /* Build "status change" packet (one or two bytes) from HC registers */ 3463 static int oxu_hub_status_data(struct usb_hcd *hcd, char *buf) 3464 { 3465 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3466 u32 temp, mask, status = 0; 3467 int ports, i, retval = 1; 3468 unsigned long flags; 3469 3470 /* if !PM, root hub timers won't get shut down ... */ 3471 if (!HC_IS_RUNNING(hcd->state)) 3472 return 0; 3473 3474 /* init status to no-changes */ 3475 buf[0] = 0; 3476 ports = HCS_N_PORTS(oxu->hcs_params); 3477 if (ports > 7) { 3478 buf[1] = 0; 3479 retval++; 3480 } 3481 3482 /* Some boards (mostly VIA?) report bogus overcurrent indications, 3483 * causing massive log spam unless we completely ignore them. It 3484 * may be relevant that VIA VT8235 controllers, where PORT_POWER is 3485 * always set, seem to clear PORT_OCC and PORT_CSC when writing to 3486 * PORT_POWER; that's surprising, but maybe within-spec. 3487 */ 3488 if (!ignore_oc) 3489 mask = PORT_CSC | PORT_PEC | PORT_OCC; 3490 else 3491 mask = PORT_CSC | PORT_PEC; 3492 3493 /* no hub change reports (bit 0) for now (power, ...) */ 3494 3495 /* port N changes (bit N)? */ 3496 spin_lock_irqsave(&oxu->lock, flags); 3497 for (i = 0; i < ports; i++) { 3498 temp = readl(&oxu->regs->port_status[i]); 3499 3500 /* 3501 * Return status information even for ports with OWNER set. 3502 * Otherwise hub_wq wouldn't see the disconnect event when a 3503 * high-speed device is switched over to the companion 3504 * controller by the user. 3505 */ 3506 3507 if (!(temp & PORT_CONNECT)) 3508 oxu->reset_done[i] = 0; 3509 if ((temp & mask) != 0 || ((temp & PORT_RESUME) != 0 && 3510 time_after_eq(jiffies, oxu->reset_done[i]))) { 3511 if (i < 7) 3512 buf[0] |= 1 << (i + 1); 3513 else 3514 buf[1] |= 1 << (i - 7); 3515 status = STS_PCD; 3516 } 3517 } 3518 /* FIXME autosuspend idle root hubs */ 3519 spin_unlock_irqrestore(&oxu->lock, flags); 3520 return status ? retval : 0; 3521 } 3522 3523 /* Returns the speed of a device attached to a port on the root hub. */ 3524 static inline unsigned int oxu_port_speed(struct oxu_hcd *oxu, 3525 unsigned int portsc) 3526 { 3527 switch ((portsc >> 26) & 3) { 3528 case 0: 3529 return 0; 3530 case 1: 3531 return USB_PORT_STAT_LOW_SPEED; 3532 case 2: 3533 default: 3534 return USB_PORT_STAT_HIGH_SPEED; 3535 } 3536 } 3537 3538 #define PORT_WAKE_BITS (PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E) 3539 static int oxu_hub_control(struct usb_hcd *hcd, u16 typeReq, 3540 u16 wValue, u16 wIndex, char *buf, u16 wLength) 3541 { 3542 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3543 int ports = HCS_N_PORTS(oxu->hcs_params); 3544 u32 __iomem *status_reg = &oxu->regs->port_status[wIndex - 1]; 3545 u32 temp, status; 3546 unsigned long flags; 3547 int retval = 0; 3548 unsigned selector; 3549 3550 /* 3551 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR. 3552 * HCS_INDICATOR may say we can change LEDs to off/amber/green. 3553 * (track current state ourselves) ... blink for diagnostics, 3554 * power, "this is the one", etc. EHCI spec supports this. 3555 */ 3556 3557 spin_lock_irqsave(&oxu->lock, flags); 3558 switch (typeReq) { 3559 case ClearHubFeature: 3560 switch (wValue) { 3561 case C_HUB_LOCAL_POWER: 3562 case C_HUB_OVER_CURRENT: 3563 /* no hub-wide feature/status flags */ 3564 break; 3565 default: 3566 goto error; 3567 } 3568 break; 3569 case ClearPortFeature: 3570 if (!wIndex || wIndex > ports) 3571 goto error; 3572 wIndex--; 3573 temp = readl(status_reg); 3574 3575 /* 3576 * Even if OWNER is set, so the port is owned by the 3577 * companion controller, hub_wq needs to be able to clear 3578 * the port-change status bits (especially 3579 * USB_PORT_STAT_C_CONNECTION). 3580 */ 3581 3582 switch (wValue) { 3583 case USB_PORT_FEAT_ENABLE: 3584 writel(temp & ~PORT_PE, status_reg); 3585 break; 3586 case USB_PORT_FEAT_C_ENABLE: 3587 writel((temp & ~PORT_RWC_BITS) | PORT_PEC, status_reg); 3588 break; 3589 case USB_PORT_FEAT_SUSPEND: 3590 if (temp & PORT_RESET) 3591 goto error; 3592 if (temp & PORT_SUSPEND) { 3593 if ((temp & PORT_PE) == 0) 3594 goto error; 3595 /* resume signaling for 20 msec */ 3596 temp &= ~(PORT_RWC_BITS | PORT_WAKE_BITS); 3597 writel(temp | PORT_RESUME, status_reg); 3598 oxu->reset_done[wIndex] = jiffies 3599 + msecs_to_jiffies(20); 3600 } 3601 break; 3602 case USB_PORT_FEAT_C_SUSPEND: 3603 /* we auto-clear this feature */ 3604 break; 3605 case USB_PORT_FEAT_POWER: 3606 if (HCS_PPC(oxu->hcs_params)) 3607 writel(temp & ~(PORT_RWC_BITS | PORT_POWER), 3608 status_reg); 3609 break; 3610 case USB_PORT_FEAT_C_CONNECTION: 3611 writel((temp & ~PORT_RWC_BITS) | PORT_CSC, status_reg); 3612 break; 3613 case USB_PORT_FEAT_C_OVER_CURRENT: 3614 writel((temp & ~PORT_RWC_BITS) | PORT_OCC, status_reg); 3615 break; 3616 case USB_PORT_FEAT_C_RESET: 3617 /* GetPortStatus clears reset */ 3618 break; 3619 default: 3620 goto error; 3621 } 3622 readl(&oxu->regs->command); /* unblock posted write */ 3623 break; 3624 case GetHubDescriptor: 3625 ehci_hub_descriptor(oxu, (struct usb_hub_descriptor *) 3626 buf); 3627 break; 3628 case GetHubStatus: 3629 /* no hub-wide feature/status flags */ 3630 memset(buf, 0, 4); 3631 break; 3632 case GetPortStatus: 3633 if (!wIndex || wIndex > ports) 3634 goto error; 3635 wIndex--; 3636 status = 0; 3637 temp = readl(status_reg); 3638 3639 /* wPortChange bits */ 3640 if (temp & PORT_CSC) 3641 status |= USB_PORT_STAT_C_CONNECTION << 16; 3642 if (temp & PORT_PEC) 3643 status |= USB_PORT_STAT_C_ENABLE << 16; 3644 if ((temp & PORT_OCC) && !ignore_oc) 3645 status |= USB_PORT_STAT_C_OVERCURRENT << 16; 3646 3647 /* whoever resumes must GetPortStatus to complete it!! */ 3648 if (temp & PORT_RESUME) { 3649 3650 /* Remote Wakeup received? */ 3651 if (!oxu->reset_done[wIndex]) { 3652 /* resume signaling for 20 msec */ 3653 oxu->reset_done[wIndex] = jiffies 3654 + msecs_to_jiffies(20); 3655 /* check the port again */ 3656 mod_timer(&oxu_to_hcd(oxu)->rh_timer, 3657 oxu->reset_done[wIndex]); 3658 } 3659 3660 /* resume completed? */ 3661 else if (time_after_eq(jiffies, 3662 oxu->reset_done[wIndex])) { 3663 status |= USB_PORT_STAT_C_SUSPEND << 16; 3664 oxu->reset_done[wIndex] = 0; 3665 3666 /* stop resume signaling */ 3667 temp = readl(status_reg); 3668 writel(temp & ~(PORT_RWC_BITS | PORT_RESUME), 3669 status_reg); 3670 retval = handshake(oxu, status_reg, 3671 PORT_RESUME, 0, 2000 /* 2msec */); 3672 if (retval != 0) { 3673 oxu_err(oxu, 3674 "port %d resume error %d\n", 3675 wIndex + 1, retval); 3676 goto error; 3677 } 3678 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10)); 3679 } 3680 } 3681 3682 /* whoever resets must GetPortStatus to complete it!! */ 3683 if ((temp & PORT_RESET) 3684 && time_after_eq(jiffies, 3685 oxu->reset_done[wIndex])) { 3686 status |= USB_PORT_STAT_C_RESET << 16; 3687 oxu->reset_done[wIndex] = 0; 3688 3689 /* force reset to complete */ 3690 writel(temp & ~(PORT_RWC_BITS | PORT_RESET), 3691 status_reg); 3692 /* REVISIT: some hardware needs 550+ usec to clear 3693 * this bit; seems too long to spin routinely... 3694 */ 3695 retval = handshake(oxu, status_reg, 3696 PORT_RESET, 0, 750); 3697 if (retval != 0) { 3698 oxu_err(oxu, "port %d reset error %d\n", 3699 wIndex + 1, retval); 3700 goto error; 3701 } 3702 3703 /* see what we found out */ 3704 temp = check_reset_complete(oxu, wIndex, status_reg, 3705 readl(status_reg)); 3706 } 3707 3708 /* transfer dedicated ports to the companion hc */ 3709 if ((temp & PORT_CONNECT) && 3710 test_bit(wIndex, &oxu->companion_ports)) { 3711 temp &= ~PORT_RWC_BITS; 3712 temp |= PORT_OWNER; 3713 writel(temp, status_reg); 3714 oxu_dbg(oxu, "port %d --> companion\n", wIndex + 1); 3715 temp = readl(status_reg); 3716 } 3717 3718 /* 3719 * Even if OWNER is set, there's no harm letting hub_wq 3720 * see the wPortStatus values (they should all be 0 except 3721 * for PORT_POWER anyway). 3722 */ 3723 3724 if (temp & PORT_CONNECT) { 3725 status |= USB_PORT_STAT_CONNECTION; 3726 /* status may be from integrated TT */ 3727 status |= oxu_port_speed(oxu, temp); 3728 } 3729 if (temp & PORT_PE) 3730 status |= USB_PORT_STAT_ENABLE; 3731 if (temp & (PORT_SUSPEND|PORT_RESUME)) 3732 status |= USB_PORT_STAT_SUSPEND; 3733 if (temp & PORT_OC) 3734 status |= USB_PORT_STAT_OVERCURRENT; 3735 if (temp & PORT_RESET) 3736 status |= USB_PORT_STAT_RESET; 3737 if (temp & PORT_POWER) 3738 status |= USB_PORT_STAT_POWER; 3739 3740 #ifndef OXU_VERBOSE_DEBUG 3741 if (status & ~0xffff) /* only if wPortChange is interesting */ 3742 #endif 3743 dbg_port(oxu, "GetStatus", wIndex + 1, temp); 3744 put_unaligned(cpu_to_le32(status), (__le32 *) buf); 3745 break; 3746 case SetHubFeature: 3747 switch (wValue) { 3748 case C_HUB_LOCAL_POWER: 3749 case C_HUB_OVER_CURRENT: 3750 /* no hub-wide feature/status flags */ 3751 break; 3752 default: 3753 goto error; 3754 } 3755 break; 3756 case SetPortFeature: 3757 selector = wIndex >> 8; 3758 wIndex &= 0xff; 3759 if (!wIndex || wIndex > ports) 3760 goto error; 3761 wIndex--; 3762 temp = readl(status_reg); 3763 if (temp & PORT_OWNER) 3764 break; 3765 3766 temp &= ~PORT_RWC_BITS; 3767 switch (wValue) { 3768 case USB_PORT_FEAT_SUSPEND: 3769 if ((temp & PORT_PE) == 0 3770 || (temp & PORT_RESET) != 0) 3771 goto error; 3772 if (device_may_wakeup(&hcd->self.root_hub->dev)) 3773 temp |= PORT_WAKE_BITS; 3774 writel(temp | PORT_SUSPEND, status_reg); 3775 break; 3776 case USB_PORT_FEAT_POWER: 3777 if (HCS_PPC(oxu->hcs_params)) 3778 writel(temp | PORT_POWER, status_reg); 3779 break; 3780 case USB_PORT_FEAT_RESET: 3781 if (temp & PORT_RESUME) 3782 goto error; 3783 /* line status bits may report this as low speed, 3784 * which can be fine if this root hub has a 3785 * transaction translator built in. 3786 */ 3787 oxu_vdbg(oxu, "port %d reset\n", wIndex + 1); 3788 temp |= PORT_RESET; 3789 temp &= ~PORT_PE; 3790 3791 /* 3792 * caller must wait, then call GetPortStatus 3793 * usb 2.0 spec says 50 ms resets on root 3794 */ 3795 oxu->reset_done[wIndex] = jiffies 3796 + msecs_to_jiffies(50); 3797 writel(temp, status_reg); 3798 break; 3799 3800 /* For downstream facing ports (these): one hub port is put 3801 * into test mode according to USB2 11.24.2.13, then the hub 3802 * must be reset (which for root hub now means rmmod+modprobe, 3803 * or else system reboot). See EHCI 2.3.9 and 4.14 for info 3804 * about the EHCI-specific stuff. 3805 */ 3806 case USB_PORT_FEAT_TEST: 3807 if (!selector || selector > 5) 3808 goto error; 3809 ehci_quiesce(oxu); 3810 ehci_halt(oxu); 3811 temp |= selector << 16; 3812 writel(temp, status_reg); 3813 break; 3814 3815 default: 3816 goto error; 3817 } 3818 readl(&oxu->regs->command); /* unblock posted writes */ 3819 break; 3820 3821 default: 3822 error: 3823 /* "stall" on error */ 3824 retval = -EPIPE; 3825 } 3826 spin_unlock_irqrestore(&oxu->lock, flags); 3827 return retval; 3828 } 3829 3830 #ifdef CONFIG_PM 3831 3832 static int oxu_bus_suspend(struct usb_hcd *hcd) 3833 { 3834 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3835 int port; 3836 int mask; 3837 3838 oxu_dbg(oxu, "suspend root hub\n"); 3839 3840 if (time_before(jiffies, oxu->next_statechange)) 3841 msleep(5); 3842 3843 port = HCS_N_PORTS(oxu->hcs_params); 3844 spin_lock_irq(&oxu->lock); 3845 3846 /* stop schedules, clean any completed work */ 3847 if (HC_IS_RUNNING(hcd->state)) { 3848 ehci_quiesce(oxu); 3849 hcd->state = HC_STATE_QUIESCING; 3850 } 3851 oxu->command = readl(&oxu->regs->command); 3852 if (oxu->reclaim) 3853 oxu->reclaim_ready = 1; 3854 ehci_work(oxu); 3855 3856 /* Unlike other USB host controller types, EHCI doesn't have 3857 * any notion of "global" or bus-wide suspend. The driver has 3858 * to manually suspend all the active unsuspended ports, and 3859 * then manually resume them in the bus_resume() routine. 3860 */ 3861 oxu->bus_suspended = 0; 3862 while (port--) { 3863 u32 __iomem *reg = &oxu->regs->port_status[port]; 3864 u32 t1 = readl(reg) & ~PORT_RWC_BITS; 3865 u32 t2 = t1; 3866 3867 /* keep track of which ports we suspend */ 3868 if ((t1 & PORT_PE) && !(t1 & PORT_OWNER) && 3869 !(t1 & PORT_SUSPEND)) { 3870 t2 |= PORT_SUSPEND; 3871 set_bit(port, &oxu->bus_suspended); 3872 } 3873 3874 /* enable remote wakeup on all ports */ 3875 if (device_may_wakeup(&hcd->self.root_hub->dev)) 3876 t2 |= PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E; 3877 else 3878 t2 &= ~(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E); 3879 3880 if (t1 != t2) { 3881 oxu_vdbg(oxu, "port %d, %08x -> %08x\n", 3882 port + 1, t1, t2); 3883 writel(t2, reg); 3884 } 3885 } 3886 3887 spin_unlock_irq(&oxu->lock); 3888 /* turn off now-idle HC */ 3889 del_timer_sync(&oxu->watchdog); 3890 spin_lock_irq(&oxu->lock); 3891 ehci_halt(oxu); 3892 hcd->state = HC_STATE_SUSPENDED; 3893 3894 /* allow remote wakeup */ 3895 mask = INTR_MASK; 3896 if (!device_may_wakeup(&hcd->self.root_hub->dev)) 3897 mask &= ~STS_PCD; 3898 writel(mask, &oxu->regs->intr_enable); 3899 readl(&oxu->regs->intr_enable); 3900 3901 oxu->next_statechange = jiffies + msecs_to_jiffies(10); 3902 spin_unlock_irq(&oxu->lock); 3903 return 0; 3904 } 3905 3906 /* Caller has locked the root hub, and should reset/reinit on error */ 3907 static int oxu_bus_resume(struct usb_hcd *hcd) 3908 { 3909 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3910 u32 temp; 3911 int i; 3912 3913 if (time_before(jiffies, oxu->next_statechange)) 3914 msleep(5); 3915 spin_lock_irq(&oxu->lock); 3916 3917 /* Ideally and we've got a real resume here, and no port's power 3918 * was lost. (For PCI, that means Vaux was maintained.) But we 3919 * could instead be restoring a swsusp snapshot -- so that BIOS was 3920 * the last user of the controller, not reset/pm hardware keeping 3921 * state we gave to it. 3922 */ 3923 temp = readl(&oxu->regs->intr_enable); 3924 oxu_dbg(oxu, "resume root hub%s\n", temp ? "" : " after power loss"); 3925 3926 /* at least some APM implementations will try to deliver 3927 * IRQs right away, so delay them until we're ready. 3928 */ 3929 writel(0, &oxu->regs->intr_enable); 3930 3931 /* re-init operational registers */ 3932 writel(0, &oxu->regs->segment); 3933 writel(oxu->periodic_dma, &oxu->regs->frame_list); 3934 writel((u32) oxu->async->qh_dma, &oxu->regs->async_next); 3935 3936 /* restore CMD_RUN, framelist size, and irq threshold */ 3937 writel(oxu->command, &oxu->regs->command); 3938 3939 /* Some controller/firmware combinations need a delay during which 3940 * they set up the port statuses. See Bugzilla #8190. */ 3941 mdelay(8); 3942 3943 /* manually resume the ports we suspended during bus_suspend() */ 3944 i = HCS_N_PORTS(oxu->hcs_params); 3945 while (i--) { 3946 temp = readl(&oxu->regs->port_status[i]); 3947 temp &= ~(PORT_RWC_BITS 3948 | PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E); 3949 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) { 3950 oxu->reset_done[i] = jiffies + msecs_to_jiffies(20); 3951 temp |= PORT_RESUME; 3952 } 3953 writel(temp, &oxu->regs->port_status[i]); 3954 } 3955 i = HCS_N_PORTS(oxu->hcs_params); 3956 mdelay(20); 3957 while (i--) { 3958 temp = readl(&oxu->regs->port_status[i]); 3959 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) { 3960 temp &= ~(PORT_RWC_BITS | PORT_RESUME); 3961 writel(temp, &oxu->regs->port_status[i]); 3962 oxu_vdbg(oxu, "resumed port %d\n", i + 1); 3963 } 3964 } 3965 (void) readl(&oxu->regs->command); 3966 3967 /* maybe re-activate the schedule(s) */ 3968 temp = 0; 3969 if (oxu->async->qh_next.qh) 3970 temp |= CMD_ASE; 3971 if (oxu->periodic_sched) 3972 temp |= CMD_PSE; 3973 if (temp) { 3974 oxu->command |= temp; 3975 writel(oxu->command, &oxu->regs->command); 3976 } 3977 3978 oxu->next_statechange = jiffies + msecs_to_jiffies(5); 3979 hcd->state = HC_STATE_RUNNING; 3980 3981 /* Now we can safely re-enable irqs */ 3982 writel(INTR_MASK, &oxu->regs->intr_enable); 3983 3984 spin_unlock_irq(&oxu->lock); 3985 return 0; 3986 } 3987 3988 #else 3989 3990 static int oxu_bus_suspend(struct usb_hcd *hcd) 3991 { 3992 return 0; 3993 } 3994 3995 static int oxu_bus_resume(struct usb_hcd *hcd) 3996 { 3997 return 0; 3998 } 3999 4000 #endif /* CONFIG_PM */ 4001 4002 static const struct hc_driver oxu_hc_driver = { 4003 .description = "oxu210hp_hcd", 4004 .product_desc = "oxu210hp HCD", 4005 .hcd_priv_size = sizeof(struct oxu_hcd), 4006 4007 /* 4008 * Generic hardware linkage 4009 */ 4010 .irq = oxu_irq, 4011 .flags = HCD_MEMORY | HCD_USB2, 4012 4013 /* 4014 * Basic lifecycle operations 4015 */ 4016 .reset = oxu_reset, 4017 .start = oxu_run, 4018 .stop = oxu_stop, 4019 .shutdown = oxu_shutdown, 4020 4021 /* 4022 * Managing i/o requests and associated device resources 4023 */ 4024 .urb_enqueue = oxu_urb_enqueue, 4025 .urb_dequeue = oxu_urb_dequeue, 4026 .endpoint_disable = oxu_endpoint_disable, 4027 4028 /* 4029 * Scheduling support 4030 */ 4031 .get_frame_number = oxu_get_frame, 4032 4033 /* 4034 * Root hub support 4035 */ 4036 .hub_status_data = oxu_hub_status_data, 4037 .hub_control = oxu_hub_control, 4038 .bus_suspend = oxu_bus_suspend, 4039 .bus_resume = oxu_bus_resume, 4040 }; 4041 4042 /* 4043 * Module stuff 4044 */ 4045 4046 static void oxu_configuration(struct platform_device *pdev, void __iomem *base) 4047 { 4048 u32 tmp; 4049 4050 /* Initialize top level registers. 4051 * First write ever 4052 */ 4053 oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D); 4054 oxu_writel(base, OXU_SOFTRESET, OXU_SRESET); 4055 oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D); 4056 4057 tmp = oxu_readl(base, OXU_PIOBURSTREADCTRL); 4058 oxu_writel(base, OXU_PIOBURSTREADCTRL, tmp | 0x0040); 4059 4060 oxu_writel(base, OXU_ASO, OXU_SPHPOEN | OXU_OVRCCURPUPDEN | 4061 OXU_COMPARATOR | OXU_ASO_OP); 4062 4063 tmp = oxu_readl(base, OXU_CLKCTRL_SET); 4064 oxu_writel(base, OXU_CLKCTRL_SET, tmp | OXU_SYSCLKEN | OXU_USBOTGCLKEN); 4065 4066 /* Clear all top interrupt enable */ 4067 oxu_writel(base, OXU_CHIPIRQEN_CLR, 0xff); 4068 4069 /* Clear all top interrupt status */ 4070 oxu_writel(base, OXU_CHIPIRQSTATUS, 0xff); 4071 4072 /* Enable all needed top interrupt except OTG SPH core */ 4073 oxu_writel(base, OXU_CHIPIRQEN_SET, OXU_USBSPHLPWUI | OXU_USBOTGLPWUI); 4074 } 4075 4076 static int oxu_verify_id(struct platform_device *pdev, void __iomem *base) 4077 { 4078 u32 id; 4079 static const char * const bo[] = { 4080 "reserved", 4081 "128-pin LQFP", 4082 "84-pin TFBGA", 4083 "reserved", 4084 }; 4085 4086 /* Read controller signature register to find a match */ 4087 id = oxu_readl(base, OXU_DEVICEID); 4088 dev_info(&pdev->dev, "device ID %x\n", id); 4089 if ((id & OXU_REV_MASK) != (OXU_REV_2100 << OXU_REV_SHIFT)) 4090 return -1; 4091 4092 dev_info(&pdev->dev, "found device %x %s (%04x:%04x)\n", 4093 id >> OXU_REV_SHIFT, 4094 bo[(id & OXU_BO_MASK) >> OXU_BO_SHIFT], 4095 (id & OXU_MAJ_REV_MASK) >> OXU_MAJ_REV_SHIFT, 4096 (id & OXU_MIN_REV_MASK) >> OXU_MIN_REV_SHIFT); 4097 4098 return 0; 4099 } 4100 4101 static const struct hc_driver oxu_hc_driver; 4102 static struct usb_hcd *oxu_create(struct platform_device *pdev, 4103 unsigned long memstart, unsigned long memlen, 4104 void __iomem *base, int irq, int otg) 4105 { 4106 struct device *dev = &pdev->dev; 4107 4108 struct usb_hcd *hcd; 4109 struct oxu_hcd *oxu; 4110 int ret; 4111 4112 /* Set endian mode and host mode */ 4113 oxu_writel(base + (otg ? OXU_OTG_CORE_OFFSET : OXU_SPH_CORE_OFFSET), 4114 OXU_USBMODE, 4115 OXU_CM_HOST_ONLY | OXU_ES_LITTLE | OXU_VBPS); 4116 4117 hcd = usb_create_hcd(&oxu_hc_driver, dev, 4118 otg ? "oxu210hp_otg" : "oxu210hp_sph"); 4119 if (!hcd) 4120 return ERR_PTR(-ENOMEM); 4121 4122 hcd->rsrc_start = memstart; 4123 hcd->rsrc_len = memlen; 4124 hcd->regs = base; 4125 hcd->irq = irq; 4126 hcd->state = HC_STATE_HALT; 4127 4128 oxu = hcd_to_oxu(hcd); 4129 oxu->is_otg = otg; 4130 4131 ret = usb_add_hcd(hcd, irq, IRQF_SHARED); 4132 if (ret < 0) { 4133 usb_put_hcd(hcd); 4134 return ERR_PTR(ret); 4135 } 4136 4137 device_wakeup_enable(hcd->self.controller); 4138 return hcd; 4139 } 4140 4141 static int oxu_init(struct platform_device *pdev, 4142 unsigned long memstart, unsigned long memlen, 4143 void __iomem *base, int irq) 4144 { 4145 struct oxu_info *info = platform_get_drvdata(pdev); 4146 struct usb_hcd *hcd; 4147 int ret; 4148 4149 /* First time configuration at start up */ 4150 oxu_configuration(pdev, base); 4151 4152 ret = oxu_verify_id(pdev, base); 4153 if (ret) { 4154 dev_err(&pdev->dev, "no devices found!\n"); 4155 return -ENODEV; 4156 } 4157 4158 /* Create the OTG controller */ 4159 hcd = oxu_create(pdev, memstart, memlen, base, irq, 1); 4160 if (IS_ERR(hcd)) { 4161 dev_err(&pdev->dev, "cannot create OTG controller!\n"); 4162 ret = PTR_ERR(hcd); 4163 goto error_create_otg; 4164 } 4165 info->hcd[0] = hcd; 4166 4167 /* Create the SPH host controller */ 4168 hcd = oxu_create(pdev, memstart, memlen, base, irq, 0); 4169 if (IS_ERR(hcd)) { 4170 dev_err(&pdev->dev, "cannot create SPH controller!\n"); 4171 ret = PTR_ERR(hcd); 4172 goto error_create_sph; 4173 } 4174 info->hcd[1] = hcd; 4175 4176 oxu_writel(base, OXU_CHIPIRQEN_SET, 4177 oxu_readl(base, OXU_CHIPIRQEN_SET) | 3); 4178 4179 return 0; 4180 4181 error_create_sph: 4182 usb_remove_hcd(info->hcd[0]); 4183 usb_put_hcd(info->hcd[0]); 4184 4185 error_create_otg: 4186 return ret; 4187 } 4188 4189 static int oxu_drv_probe(struct platform_device *pdev) 4190 { 4191 struct resource *res; 4192 void __iomem *base; 4193 unsigned long memstart, memlen; 4194 int irq, ret; 4195 struct oxu_info *info; 4196 4197 if (usb_disabled()) 4198 return -ENODEV; 4199 4200 /* 4201 * Get the platform resources 4202 */ 4203 irq = platform_get_irq(pdev, 0); 4204 if (irq < 0) 4205 return irq; 4206 dev_dbg(&pdev->dev, "IRQ resource %d\n", irq); 4207 4208 base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 4209 if (IS_ERR(base)) { 4210 ret = PTR_ERR(base); 4211 goto error; 4212 } 4213 memstart = res->start; 4214 memlen = resource_size(res); 4215 4216 ret = irq_set_irq_type(irq, IRQF_TRIGGER_FALLING); 4217 if (ret) { 4218 dev_err(&pdev->dev, "error setting irq type\n"); 4219 ret = -EFAULT; 4220 goto error; 4221 } 4222 4223 /* Allocate a driver data struct to hold useful info for both 4224 * SPH & OTG devices 4225 */ 4226 info = devm_kzalloc(&pdev->dev, sizeof(struct oxu_info), GFP_KERNEL); 4227 if (!info) { 4228 ret = -EFAULT; 4229 goto error; 4230 } 4231 platform_set_drvdata(pdev, info); 4232 4233 ret = oxu_init(pdev, memstart, memlen, base, irq); 4234 if (ret < 0) { 4235 dev_dbg(&pdev->dev, "cannot init USB devices\n"); 4236 goto error; 4237 } 4238 4239 dev_info(&pdev->dev, "devices enabled and running\n"); 4240 platform_set_drvdata(pdev, info); 4241 4242 return 0; 4243 4244 error: 4245 dev_err(&pdev->dev, "init %s fail, %d\n", dev_name(&pdev->dev), ret); 4246 return ret; 4247 } 4248 4249 static void oxu_remove(struct platform_device *pdev, struct usb_hcd *hcd) 4250 { 4251 usb_remove_hcd(hcd); 4252 usb_put_hcd(hcd); 4253 } 4254 4255 static void oxu_drv_remove(struct platform_device *pdev) 4256 { 4257 struct oxu_info *info = platform_get_drvdata(pdev); 4258 4259 oxu_remove(pdev, info->hcd[0]); 4260 oxu_remove(pdev, info->hcd[1]); 4261 } 4262 4263 static void oxu_drv_shutdown(struct platform_device *pdev) 4264 { 4265 oxu_drv_remove(pdev); 4266 } 4267 4268 #if 0 4269 /* FIXME: TODO */ 4270 static int oxu_drv_suspend(struct device *dev) 4271 { 4272 struct platform_device *pdev = to_platform_device(dev); 4273 struct usb_hcd *hcd = dev_get_drvdata(dev); 4274 4275 return 0; 4276 } 4277 4278 static int oxu_drv_resume(struct device *dev) 4279 { 4280 struct platform_device *pdev = to_platform_device(dev); 4281 struct usb_hcd *hcd = dev_get_drvdata(dev); 4282 4283 return 0; 4284 } 4285 #else 4286 #define oxu_drv_suspend NULL 4287 #define oxu_drv_resume NULL 4288 #endif 4289 4290 static struct platform_driver oxu_driver = { 4291 .probe = oxu_drv_probe, 4292 .remove = oxu_drv_remove, 4293 .shutdown = oxu_drv_shutdown, 4294 .suspend = oxu_drv_suspend, 4295 .resume = oxu_drv_resume, 4296 .driver = { 4297 .name = "oxu210hp-hcd", 4298 .bus = &platform_bus_type 4299 } 4300 }; 4301 4302 module_platform_driver(oxu_driver); 4303 4304 MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION); 4305 MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>"); 4306 MODULE_LICENSE("GPL"); 4307