xref: /linux/drivers/usb/host/oxu210hp-hcd.c (revision 6a35ddc5445a8291ced6247a67977e110275acde)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it>
4  * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it>
5  *
6  * This code is *strongly* based on EHCI-HCD code by David Brownell since
7  * the chip is a quasi-EHCI compatible.
8  */
9 
10 #include <linux/module.h>
11 #include <linux/pci.h>
12 #include <linux/dmapool.h>
13 #include <linux/kernel.h>
14 #include <linux/delay.h>
15 #include <linux/ioport.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/timer.h>
20 #include <linux/list.h>
21 #include <linux/interrupt.h>
22 #include <linux/usb.h>
23 #include <linux/usb/hcd.h>
24 #include <linux/moduleparam.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/io.h>
27 
28 #include <asm/irq.h>
29 #include <asm/unaligned.h>
30 
31 #include <linux/irq.h>
32 #include <linux/platform_device.h>
33 
34 #define DRIVER_VERSION "0.0.50"
35 
36 #define OXU_DEVICEID			0x00
37 	#define OXU_REV_MASK		0xffff0000
38 	#define OXU_REV_SHIFT		16
39 	#define OXU_REV_2100		0x2100
40 	#define OXU_BO_SHIFT		8
41 	#define OXU_BO_MASK		(0x3 << OXU_BO_SHIFT)
42 	#define OXU_MAJ_REV_SHIFT	4
43 	#define OXU_MAJ_REV_MASK	(0xf << OXU_MAJ_REV_SHIFT)
44 	#define OXU_MIN_REV_SHIFT	0
45 	#define OXU_MIN_REV_MASK	(0xf << OXU_MIN_REV_SHIFT)
46 #define OXU_HOSTIFCONFIG		0x04
47 #define OXU_SOFTRESET			0x08
48 	#define OXU_SRESET		(1 << 0)
49 
50 #define OXU_PIOBURSTREADCTRL		0x0C
51 
52 #define OXU_CHIPIRQSTATUS		0x10
53 #define OXU_CHIPIRQEN_SET		0x14
54 #define OXU_CHIPIRQEN_CLR		0x18
55 	#define OXU_USBSPHLPWUI		0x00000080
56 	#define OXU_USBOTGLPWUI		0x00000040
57 	#define OXU_USBSPHI		0x00000002
58 	#define OXU_USBOTGI		0x00000001
59 
60 #define OXU_CLKCTRL_SET			0x1C
61 	#define OXU_SYSCLKEN		0x00000008
62 	#define OXU_USBSPHCLKEN		0x00000002
63 	#define OXU_USBOTGCLKEN		0x00000001
64 
65 #define OXU_ASO				0x68
66 	#define OXU_SPHPOEN		0x00000100
67 	#define OXU_OVRCCURPUPDEN	0x00000800
68 	#define OXU_ASO_OP		(1 << 10)
69 	#define OXU_COMPARATOR		0x000004000
70 
71 #define OXU_USBMODE			0x1A8
72 	#define OXU_VBPS		0x00000020
73 	#define OXU_ES_LITTLE		0x00000000
74 	#define OXU_CM_HOST_ONLY	0x00000003
75 
76 /*
77  * Proper EHCI structs & defines
78  */
79 
80 /* Magic numbers that can affect system performance */
81 #define EHCI_TUNE_CERR		3	/* 0-3 qtd retries; 0 == don't stop */
82 #define EHCI_TUNE_RL_HS		4	/* nak throttle; see 4.9 */
83 #define EHCI_TUNE_RL_TT		0
84 #define EHCI_TUNE_MULT_HS	1	/* 1-3 transactions/uframe; 4.10.3 */
85 #define EHCI_TUNE_MULT_TT	1
86 #define EHCI_TUNE_FLS		2	/* (small) 256 frame schedule */
87 
88 struct oxu_hcd;
89 
90 /* EHCI register interface, corresponds to EHCI Revision 0.95 specification */
91 
92 /* Section 2.2 Host Controller Capability Registers */
93 struct ehci_caps {
94 	/* these fields are specified as 8 and 16 bit registers,
95 	 * but some hosts can't perform 8 or 16 bit PCI accesses.
96 	 */
97 	u32		hc_capbase;
98 #define HC_LENGTH(p)		(((p)>>00)&0x00ff)	/* bits 7:0 */
99 #define HC_VERSION(p)		(((p)>>16)&0xffff)	/* bits 31:16 */
100 	u32		hcs_params;     /* HCSPARAMS - offset 0x4 */
101 #define HCS_DEBUG_PORT(p)	(((p)>>20)&0xf)	/* bits 23:20, debug port? */
102 #define HCS_INDICATOR(p)	((p)&(1 << 16))	/* true: has port indicators */
103 #define HCS_N_CC(p)		(((p)>>12)&0xf)	/* bits 15:12, #companion HCs */
104 #define HCS_N_PCC(p)		(((p)>>8)&0xf)	/* bits 11:8, ports per CC */
105 #define HCS_PORTROUTED(p)	((p)&(1 << 7))	/* true: port routing */
106 #define HCS_PPC(p)		((p)&(1 << 4))	/* true: port power control */
107 #define HCS_N_PORTS(p)		(((p)>>0)&0xf)	/* bits 3:0, ports on HC */
108 
109 	u32		hcc_params;      /* HCCPARAMS - offset 0x8 */
110 #define HCC_EXT_CAPS(p)		(((p)>>8)&0xff)	/* for pci extended caps */
111 #define HCC_ISOC_CACHE(p)       ((p)&(1 << 7))  /* true: can cache isoc frame */
112 #define HCC_ISOC_THRES(p)       (((p)>>4)&0x7)  /* bits 6:4, uframes cached */
113 #define HCC_CANPARK(p)		((p)&(1 << 2))  /* true: can park on async qh */
114 #define HCC_PGM_FRAMELISTLEN(p) ((p)&(1 << 1))  /* true: periodic_size changes*/
115 #define HCC_64BIT_ADDR(p)       ((p)&(1))       /* true: can use 64-bit addr */
116 	u8		portroute[8];	 /* nibbles for routing - offset 0xC */
117 } __packed;
118 
119 
120 /* Section 2.3 Host Controller Operational Registers */
121 struct ehci_regs {
122 	/* USBCMD: offset 0x00 */
123 	u32		command;
124 /* 23:16 is r/w intr rate, in microframes; default "8" == 1/msec */
125 #define CMD_PARK	(1<<11)		/* enable "park" on async qh */
126 #define CMD_PARK_CNT(c)	(((c)>>8)&3)	/* how many transfers to park for */
127 #define CMD_LRESET	(1<<7)		/* partial reset (no ports, etc) */
128 #define CMD_IAAD	(1<<6)		/* "doorbell" interrupt async advance */
129 #define CMD_ASE		(1<<5)		/* async schedule enable */
130 #define CMD_PSE		(1<<4)		/* periodic schedule enable */
131 /* 3:2 is periodic frame list size */
132 #define CMD_RESET	(1<<1)		/* reset HC not bus */
133 #define CMD_RUN		(1<<0)		/* start/stop HC */
134 
135 	/* USBSTS: offset 0x04 */
136 	u32		status;
137 #define STS_ASS		(1<<15)		/* Async Schedule Status */
138 #define STS_PSS		(1<<14)		/* Periodic Schedule Status */
139 #define STS_RECL	(1<<13)		/* Reclamation */
140 #define STS_HALT	(1<<12)		/* Not running (any reason) */
141 /* some bits reserved */
142 	/* these STS_* flags are also intr_enable bits (USBINTR) */
143 #define STS_IAA		(1<<5)		/* Interrupted on async advance */
144 #define STS_FATAL	(1<<4)		/* such as some PCI access errors */
145 #define STS_FLR		(1<<3)		/* frame list rolled over */
146 #define STS_PCD		(1<<2)		/* port change detect */
147 #define STS_ERR		(1<<1)		/* "error" completion (overflow, ...) */
148 #define STS_INT		(1<<0)		/* "normal" completion (short, ...) */
149 
150 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
151 
152 	/* USBINTR: offset 0x08 */
153 	u32		intr_enable;
154 
155 	/* FRINDEX: offset 0x0C */
156 	u32		frame_index;	/* current microframe number */
157 	/* CTRLDSSEGMENT: offset 0x10 */
158 	u32		segment;	/* address bits 63:32 if needed */
159 	/* PERIODICLISTBASE: offset 0x14 */
160 	u32		frame_list;	/* points to periodic list */
161 	/* ASYNCLISTADDR: offset 0x18 */
162 	u32		async_next;	/* address of next async queue head */
163 
164 	u32		reserved[9];
165 
166 	/* CONFIGFLAG: offset 0x40 */
167 	u32		configured_flag;
168 #define FLAG_CF		(1<<0)		/* true: we'll support "high speed" */
169 
170 	/* PORTSC: offset 0x44 */
171 	u32		port_status[0];	/* up to N_PORTS */
172 /* 31:23 reserved */
173 #define PORT_WKOC_E	(1<<22)		/* wake on overcurrent (enable) */
174 #define PORT_WKDISC_E	(1<<21)		/* wake on disconnect (enable) */
175 #define PORT_WKCONN_E	(1<<20)		/* wake on connect (enable) */
176 /* 19:16 for port testing */
177 #define PORT_LED_OFF	(0<<14)
178 #define PORT_LED_AMBER	(1<<14)
179 #define PORT_LED_GREEN	(2<<14)
180 #define PORT_LED_MASK	(3<<14)
181 #define PORT_OWNER	(1<<13)		/* true: companion hc owns this port */
182 #define PORT_POWER	(1<<12)		/* true: has power (see PPC) */
183 #define PORT_USB11(x) (((x)&(3<<10)) == (1<<10))	/* USB 1.1 device */
184 /* 11:10 for detecting lowspeed devices (reset vs release ownership) */
185 /* 9 reserved */
186 #define PORT_RESET	(1<<8)		/* reset port */
187 #define PORT_SUSPEND	(1<<7)		/* suspend port */
188 #define PORT_RESUME	(1<<6)		/* resume it */
189 #define PORT_OCC	(1<<5)		/* over current change */
190 #define PORT_OC		(1<<4)		/* over current active */
191 #define PORT_PEC	(1<<3)		/* port enable change */
192 #define PORT_PE		(1<<2)		/* port enable */
193 #define PORT_CSC	(1<<1)		/* connect status change */
194 #define PORT_CONNECT	(1<<0)		/* device connected */
195 #define PORT_RWC_BITS   (PORT_CSC | PORT_PEC | PORT_OCC)
196 } __packed;
197 
198 /* Appendix C, Debug port ... intended for use with special "debug devices"
199  * that can help if there's no serial console.  (nonstandard enumeration.)
200  */
201 struct ehci_dbg_port {
202 	u32	control;
203 #define DBGP_OWNER	(1<<30)
204 #define DBGP_ENABLED	(1<<28)
205 #define DBGP_DONE	(1<<16)
206 #define DBGP_INUSE	(1<<10)
207 #define DBGP_ERRCODE(x)	(((x)>>7)&0x07)
208 #	define DBGP_ERR_BAD	1
209 #	define DBGP_ERR_SIGNAL	2
210 #define DBGP_ERROR	(1<<6)
211 #define DBGP_GO		(1<<5)
212 #define DBGP_OUT	(1<<4)
213 #define DBGP_LEN(x)	(((x)>>0)&0x0f)
214 	u32	pids;
215 #define DBGP_PID_GET(x)		(((x)>>16)&0xff)
216 #define DBGP_PID_SET(data, tok)	(((data)<<8)|(tok))
217 	u32	data03;
218 	u32	data47;
219 	u32	address;
220 #define DBGP_EPADDR(dev, ep)	(((dev)<<8)|(ep))
221 } __packed;
222 
223 #define	QTD_NEXT(dma)	cpu_to_le32((u32)dma)
224 
225 /*
226  * EHCI Specification 0.95 Section 3.5
227  * QTD: describe data transfer components (buffer, direction, ...)
228  * See Fig 3-6 "Queue Element Transfer Descriptor Block Diagram".
229  *
230  * These are associated only with "QH" (Queue Head) structures,
231  * used with control, bulk, and interrupt transfers.
232  */
233 struct ehci_qtd {
234 	/* first part defined by EHCI spec */
235 	__le32			hw_next;		/* see EHCI 3.5.1 */
236 	__le32			hw_alt_next;		/* see EHCI 3.5.2 */
237 	__le32			hw_token;		/* see EHCI 3.5.3 */
238 #define	QTD_TOGGLE	(1 << 31)	/* data toggle */
239 #define	QTD_LENGTH(tok)	(((tok)>>16) & 0x7fff)
240 #define	QTD_IOC		(1 << 15)	/* interrupt on complete */
241 #define	QTD_CERR(tok)	(((tok)>>10) & 0x3)
242 #define	QTD_PID(tok)	(((tok)>>8) & 0x3)
243 #define	QTD_STS_ACTIVE	(1 << 7)	/* HC may execute this */
244 #define	QTD_STS_HALT	(1 << 6)	/* halted on error */
245 #define	QTD_STS_DBE	(1 << 5)	/* data buffer error (in HC) */
246 #define	QTD_STS_BABBLE	(1 << 4)	/* device was babbling (qtd halted) */
247 #define	QTD_STS_XACT	(1 << 3)	/* device gave illegal response */
248 #define	QTD_STS_MMF	(1 << 2)	/* incomplete split transaction */
249 #define	QTD_STS_STS	(1 << 1)	/* split transaction state */
250 #define	QTD_STS_PING	(1 << 0)	/* issue PING? */
251 	__le32			hw_buf[5];		/* see EHCI 3.5.4 */
252 	__le32			hw_buf_hi[5];		/* Appendix B */
253 
254 	/* the rest is HCD-private */
255 	dma_addr_t		qtd_dma;		/* qtd address */
256 	struct list_head	qtd_list;		/* sw qtd list */
257 	struct urb		*urb;			/* qtd's urb */
258 	size_t			length;			/* length of buffer */
259 
260 	u32			qtd_buffer_len;
261 	void			*buffer;
262 	dma_addr_t		buffer_dma;
263 	void			*transfer_buffer;
264 	void			*transfer_dma;
265 } __aligned(32);
266 
267 /* mask NakCnt+T in qh->hw_alt_next */
268 #define QTD_MASK cpu_to_le32 (~0x1f)
269 
270 #define IS_SHORT_READ(token) (QTD_LENGTH(token) != 0 && QTD_PID(token) == 1)
271 
272 /* Type tag from {qh, itd, sitd, fstn}->hw_next */
273 #define Q_NEXT_TYPE(dma) ((dma) & cpu_to_le32 (3 << 1))
274 
275 /* values for that type tag */
276 #define Q_TYPE_QH	cpu_to_le32 (1 << 1)
277 
278 /* next async queue entry, or pointer to interrupt/periodic QH */
279 #define	QH_NEXT(dma)	(cpu_to_le32(((u32)dma)&~0x01f)|Q_TYPE_QH)
280 
281 /* for periodic/async schedules and qtd lists, mark end of list */
282 #define	EHCI_LIST_END	cpu_to_le32(1) /* "null pointer" to hw */
283 
284 /*
285  * Entries in periodic shadow table are pointers to one of four kinds
286  * of data structure.  That's dictated by the hardware; a type tag is
287  * encoded in the low bits of the hardware's periodic schedule.  Use
288  * Q_NEXT_TYPE to get the tag.
289  *
290  * For entries in the async schedule, the type tag always says "qh".
291  */
292 union ehci_shadow {
293 	struct ehci_qh		*qh;		/* Q_TYPE_QH */
294 	__le32			*hw_next;	/* (all types) */
295 	void			*ptr;
296 };
297 
298 /*
299  * EHCI Specification 0.95 Section 3.6
300  * QH: describes control/bulk/interrupt endpoints
301  * See Fig 3-7 "Queue Head Structure Layout".
302  *
303  * These appear in both the async and (for interrupt) periodic schedules.
304  */
305 
306 struct ehci_qh {
307 	/* first part defined by EHCI spec */
308 	__le32			hw_next;	 /* see EHCI 3.6.1 */
309 	__le32			hw_info1;	/* see EHCI 3.6.2 */
310 #define	QH_HEAD		0x00008000
311 	__le32			hw_info2;	/* see EHCI 3.6.2 */
312 #define	QH_SMASK	0x000000ff
313 #define	QH_CMASK	0x0000ff00
314 #define	QH_HUBADDR	0x007f0000
315 #define	QH_HUBPORT	0x3f800000
316 #define	QH_MULT		0xc0000000
317 	__le32			hw_current;	 /* qtd list - see EHCI 3.6.4 */
318 
319 	/* qtd overlay (hardware parts of a struct ehci_qtd) */
320 	__le32			hw_qtd_next;
321 	__le32			hw_alt_next;
322 	__le32			hw_token;
323 	__le32			hw_buf[5];
324 	__le32			hw_buf_hi[5];
325 
326 	/* the rest is HCD-private */
327 	dma_addr_t		qh_dma;		/* address of qh */
328 	union ehci_shadow	qh_next;	/* ptr to qh; or periodic */
329 	struct list_head	qtd_list;	/* sw qtd list */
330 	struct ehci_qtd		*dummy;
331 	struct ehci_qh		*reclaim;	/* next to reclaim */
332 
333 	struct oxu_hcd		*oxu;
334 	struct kref		kref;
335 	unsigned int		stamp;
336 
337 	u8			qh_state;
338 #define	QH_STATE_LINKED		1		/* HC sees this */
339 #define	QH_STATE_UNLINK		2		/* HC may still see this */
340 #define	QH_STATE_IDLE		3		/* HC doesn't see this */
341 #define	QH_STATE_UNLINK_WAIT	4		/* LINKED and on reclaim q */
342 #define	QH_STATE_COMPLETING	5		/* don't touch token.HALT */
343 
344 	/* periodic schedule info */
345 	u8			usecs;		/* intr bandwidth */
346 	u8			gap_uf;		/* uframes split/csplit gap */
347 	u8			c_usecs;	/* ... split completion bw */
348 	u16			tt_usecs;	/* tt downstream bandwidth */
349 	unsigned short		period;		/* polling interval */
350 	unsigned short		start;		/* where polling starts */
351 #define NO_FRAME ((unsigned short)~0)			/* pick new start */
352 	struct usb_device	*dev;		/* access to TT */
353 } __aligned(32);
354 
355 /*
356  * Proper OXU210HP structs
357  */
358 
359 #define OXU_OTG_CORE_OFFSET	0x00400
360 #define OXU_OTG_CAP_OFFSET	(OXU_OTG_CORE_OFFSET + 0x100)
361 #define OXU_SPH_CORE_OFFSET	0x00800
362 #define OXU_SPH_CAP_OFFSET	(OXU_SPH_CORE_OFFSET + 0x100)
363 
364 #define OXU_OTG_MEM		0xE000
365 #define OXU_SPH_MEM		0x16000
366 
367 /* Only how many elements & element structure are specifies here. */
368 /* 2 host controllers are enabled - total size <= 28 kbytes */
369 #define	DEFAULT_I_TDPS		1024
370 #define QHEAD_NUM		16
371 #define QTD_NUM			32
372 #define SITD_NUM		8
373 #define MURB_NUM		8
374 
375 #define BUFFER_NUM		8
376 #define BUFFER_SIZE		512
377 
378 struct oxu_info {
379 	struct usb_hcd *hcd[2];
380 };
381 
382 struct oxu_buf {
383 	u8			buffer[BUFFER_SIZE];
384 } __aligned(BUFFER_SIZE);
385 
386 struct oxu_onchip_mem {
387 	struct oxu_buf		db_pool[BUFFER_NUM];
388 
389 	u32			frame_list[DEFAULT_I_TDPS];
390 	struct ehci_qh		qh_pool[QHEAD_NUM];
391 	struct ehci_qtd		qtd_pool[QTD_NUM];
392 } __aligned(4 << 10);
393 
394 #define	EHCI_MAX_ROOT_PORTS	15		/* see HCS_N_PORTS */
395 
396 struct oxu_murb {
397 	struct urb		urb;
398 	struct urb		*main;
399 	u8			last;
400 };
401 
402 struct oxu_hcd {				/* one per controller */
403 	unsigned int		is_otg:1;
404 
405 	u8			qh_used[QHEAD_NUM];
406 	u8			qtd_used[QTD_NUM];
407 	u8			db_used[BUFFER_NUM];
408 	u8			murb_used[MURB_NUM];
409 
410 	struct oxu_onchip_mem	__iomem *mem;
411 	spinlock_t		mem_lock;
412 
413 	struct timer_list	urb_timer;
414 
415 	struct ehci_caps __iomem *caps;
416 	struct ehci_regs __iomem *regs;
417 
418 	u32			hcs_params;	/* cached register copy */
419 	spinlock_t		lock;
420 
421 	/* async schedule support */
422 	struct ehci_qh		*async;
423 	struct ehci_qh		*reclaim;
424 	unsigned int		reclaim_ready:1;
425 	unsigned int		scanning:1;
426 
427 	/* periodic schedule support */
428 	unsigned int		periodic_size;
429 	__le32			*periodic;	/* hw periodic table */
430 	dma_addr_t		periodic_dma;
431 	unsigned int		i_thresh;	/* uframes HC might cache */
432 
433 	union ehci_shadow	*pshadow;	/* mirror hw periodic table */
434 	int			next_uframe;	/* scan periodic, start here */
435 	unsigned int		periodic_sched;	/* periodic activity count */
436 
437 	/* per root hub port */
438 	unsigned long		reset_done[EHCI_MAX_ROOT_PORTS];
439 	/* bit vectors (one bit per port) */
440 	unsigned long		bus_suspended;	/* which ports were
441 						 * already suspended at the
442 						 * start of a bus suspend
443 						 */
444 	unsigned long		companion_ports;/* which ports are dedicated
445 						 * to the companion controller
446 						 */
447 
448 	struct timer_list	watchdog;
449 	unsigned long		actions;
450 	unsigned int		stamp;
451 	unsigned long		next_statechange;
452 	u32			command;
453 
454 	/* SILICON QUIRKS */
455 	struct list_head	urb_list;	/* this is the head to urb
456 						 * queue that didn't get enough
457 						 * resources
458 						 */
459 	struct oxu_murb		*murb_pool;	/* murb per split big urb */
460 	unsigned int		urb_len;
461 
462 	u8			sbrn;		/* packed release number */
463 };
464 
465 #define EHCI_IAA_JIFFIES	(HZ/100)	/* arbitrary; ~10 msec */
466 #define EHCI_IO_JIFFIES		(HZ/10)		/* io watchdog > irq_thresh */
467 #define EHCI_ASYNC_JIFFIES      (HZ/20)		/* async idle timeout */
468 #define EHCI_SHRINK_JIFFIES     (HZ/200)	/* async qh unlink delay */
469 
470 enum ehci_timer_action {
471 	TIMER_IO_WATCHDOG,
472 	TIMER_IAA_WATCHDOG,
473 	TIMER_ASYNC_SHRINK,
474 	TIMER_ASYNC_OFF,
475 };
476 
477 /*
478  * Main defines
479  */
480 
481 #define oxu_dbg(oxu, fmt, args...) \
482 		dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
483 #define oxu_err(oxu, fmt, args...) \
484 		dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
485 #define oxu_info(oxu, fmt, args...) \
486 		dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
487 
488 #ifdef CONFIG_DYNAMIC_DEBUG
489 #define DEBUG
490 #endif
491 
492 static inline struct usb_hcd *oxu_to_hcd(struct oxu_hcd *oxu)
493 {
494 	return container_of((void *) oxu, struct usb_hcd, hcd_priv);
495 }
496 
497 static inline struct oxu_hcd *hcd_to_oxu(struct usb_hcd *hcd)
498 {
499 	return (struct oxu_hcd *) (hcd->hcd_priv);
500 }
501 
502 /*
503  * Debug stuff
504  */
505 
506 #undef OXU_URB_TRACE
507 #undef OXU_VERBOSE_DEBUG
508 
509 #ifdef OXU_VERBOSE_DEBUG
510 #define oxu_vdbg			oxu_dbg
511 #else
512 #define oxu_vdbg(oxu, fmt, args...)	/* Nop */
513 #endif
514 
515 #ifdef DEBUG
516 
517 static int __attribute__((__unused__))
518 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
519 {
520 	return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
521 		label, label[0] ? " " : "", status,
522 		(status & STS_ASS) ? " Async" : "",
523 		(status & STS_PSS) ? " Periodic" : "",
524 		(status & STS_RECL) ? " Recl" : "",
525 		(status & STS_HALT) ? " Halt" : "",
526 		(status & STS_IAA) ? " IAA" : "",
527 		(status & STS_FATAL) ? " FATAL" : "",
528 		(status & STS_FLR) ? " FLR" : "",
529 		(status & STS_PCD) ? " PCD" : "",
530 		(status & STS_ERR) ? " ERR" : "",
531 		(status & STS_INT) ? " INT" : ""
532 		);
533 }
534 
535 static int __attribute__((__unused__))
536 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
537 {
538 	return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
539 		label, label[0] ? " " : "", enable,
540 		(enable & STS_IAA) ? " IAA" : "",
541 		(enable & STS_FATAL) ? " FATAL" : "",
542 		(enable & STS_FLR) ? " FLR" : "",
543 		(enable & STS_PCD) ? " PCD" : "",
544 		(enable & STS_ERR) ? " ERR" : "",
545 		(enable & STS_INT) ? " INT" : ""
546 		);
547 }
548 
549 static const char *const fls_strings[] =
550     { "1024", "512", "256", "??" };
551 
552 static int dbg_command_buf(char *buf, unsigned len,
553 				const char *label, u32 command)
554 {
555 	return scnprintf(buf, len,
556 		"%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s",
557 		label, label[0] ? " " : "", command,
558 		(command & CMD_PARK) ? "park" : "(park)",
559 		CMD_PARK_CNT(command),
560 		(command >> 16) & 0x3f,
561 		(command & CMD_LRESET) ? " LReset" : "",
562 		(command & CMD_IAAD) ? " IAAD" : "",
563 		(command & CMD_ASE) ? " Async" : "",
564 		(command & CMD_PSE) ? " Periodic" : "",
565 		fls_strings[(command >> 2) & 0x3],
566 		(command & CMD_RESET) ? " Reset" : "",
567 		(command & CMD_RUN) ? "RUN" : "HALT"
568 		);
569 }
570 
571 static int dbg_port_buf(char *buf, unsigned len, const char *label,
572 				int port, u32 status)
573 {
574 	char	*sig;
575 
576 	/* signaling state */
577 	switch (status & (3 << 10)) {
578 	case 0 << 10:
579 		sig = "se0";
580 		break;
581 	case 1 << 10:
582 		sig = "k";	/* low speed */
583 		break;
584 	case 2 << 10:
585 		sig = "j";
586 		break;
587 	default:
588 		sig = "?";
589 		break;
590 	}
591 
592 	return scnprintf(buf, len,
593 		"%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s",
594 		label, label[0] ? " " : "", port, status,
595 		(status & PORT_POWER) ? " POWER" : "",
596 		(status & PORT_OWNER) ? " OWNER" : "",
597 		sig,
598 		(status & PORT_RESET) ? " RESET" : "",
599 		(status & PORT_SUSPEND) ? " SUSPEND" : "",
600 		(status & PORT_RESUME) ? " RESUME" : "",
601 		(status & PORT_OCC) ? " OCC" : "",
602 		(status & PORT_OC) ? " OC" : "",
603 		(status & PORT_PEC) ? " PEC" : "",
604 		(status & PORT_PE) ? " PE" : "",
605 		(status & PORT_CSC) ? " CSC" : "",
606 		(status & PORT_CONNECT) ? " CONNECT" : ""
607 	    );
608 }
609 
610 #else
611 
612 static inline int __attribute__((__unused__))
613 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
614 { return 0; }
615 
616 static inline int __attribute__((__unused__))
617 dbg_command_buf(char *buf, unsigned len, const char *label, u32 command)
618 { return 0; }
619 
620 static inline int __attribute__((__unused__))
621 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
622 { return 0; }
623 
624 static inline int __attribute__((__unused__))
625 dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status)
626 { return 0; }
627 
628 #endif /* DEBUG */
629 
630 /* functions have the "wrong" filename when they're output... */
631 #define dbg_status(oxu, label, status) { \
632 	char _buf[80]; \
633 	dbg_status_buf(_buf, sizeof _buf, label, status); \
634 	oxu_dbg(oxu, "%s\n", _buf); \
635 }
636 
637 #define dbg_cmd(oxu, label, command) { \
638 	char _buf[80]; \
639 	dbg_command_buf(_buf, sizeof _buf, label, command); \
640 	oxu_dbg(oxu, "%s\n", _buf); \
641 }
642 
643 #define dbg_port(oxu, label, port, status) { \
644 	char _buf[80]; \
645 	dbg_port_buf(_buf, sizeof _buf, label, port, status); \
646 	oxu_dbg(oxu, "%s\n", _buf); \
647 }
648 
649 /*
650  * Module parameters
651  */
652 
653 /* Initial IRQ latency: faster than hw default */
654 static int log2_irq_thresh;			/* 0 to 6 */
655 module_param(log2_irq_thresh, int, S_IRUGO);
656 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
657 
658 /* Initial park setting: slower than hw default */
659 static unsigned park;
660 module_param(park, uint, S_IRUGO);
661 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
662 
663 /* For flakey hardware, ignore overcurrent indicators */
664 static bool ignore_oc;
665 module_param(ignore_oc, bool, S_IRUGO);
666 MODULE_PARM_DESC(ignore_oc, "ignore bogus hardware overcurrent indications");
667 
668 
669 static void ehci_work(struct oxu_hcd *oxu);
670 static int oxu_hub_control(struct usb_hcd *hcd,
671 				u16 typeReq, u16 wValue, u16 wIndex,
672 				char *buf, u16 wLength);
673 
674 /*
675  * Local functions
676  */
677 
678 /* Low level read/write registers functions */
679 static inline u32 oxu_readl(void __iomem *base, u32 reg)
680 {
681 	return readl(base + reg);
682 }
683 
684 static inline void oxu_writel(void __iomem *base, u32 reg, u32 val)
685 {
686 	writel(val, base + reg);
687 }
688 
689 static inline void timer_action_done(struct oxu_hcd *oxu,
690 					enum ehci_timer_action action)
691 {
692 	clear_bit(action, &oxu->actions);
693 }
694 
695 static inline void timer_action(struct oxu_hcd *oxu,
696 					enum ehci_timer_action action)
697 {
698 	if (!test_and_set_bit(action, &oxu->actions)) {
699 		unsigned long t;
700 
701 		switch (action) {
702 		case TIMER_IAA_WATCHDOG:
703 			t = EHCI_IAA_JIFFIES;
704 			break;
705 		case TIMER_IO_WATCHDOG:
706 			t = EHCI_IO_JIFFIES;
707 			break;
708 		case TIMER_ASYNC_OFF:
709 			t = EHCI_ASYNC_JIFFIES;
710 			break;
711 		case TIMER_ASYNC_SHRINK:
712 		default:
713 			t = EHCI_SHRINK_JIFFIES;
714 			break;
715 		}
716 		t += jiffies;
717 		/* all timings except IAA watchdog can be overridden.
718 		 * async queue SHRINK often precedes IAA.  while it's ready
719 		 * to go OFF neither can matter, and afterwards the IO
720 		 * watchdog stops unless there's still periodic traffic.
721 		 */
722 		if (action != TIMER_IAA_WATCHDOG
723 				&& t > oxu->watchdog.expires
724 				&& timer_pending(&oxu->watchdog))
725 			return;
726 		mod_timer(&oxu->watchdog, t);
727 	}
728 }
729 
730 /*
731  * handshake - spin reading hc until handshake completes or fails
732  * @ptr: address of hc register to be read
733  * @mask: bits to look at in result of read
734  * @done: value of those bits when handshake succeeds
735  * @usec: timeout in microseconds
736  *
737  * Returns negative errno, or zero on success
738  *
739  * Success happens when the "mask" bits have the specified value (hardware
740  * handshake done).  There are two failure modes:  "usec" have passed (major
741  * hardware flakeout), or the register reads as all-ones (hardware removed).
742  *
743  * That last failure should_only happen in cases like physical cardbus eject
744  * before driver shutdown. But it also seems to be caused by bugs in cardbus
745  * bridge shutdown:  shutting down the bridge before the devices using it.
746  */
747 static int handshake(struct oxu_hcd *oxu, void __iomem *ptr,
748 					u32 mask, u32 done, int usec)
749 {
750 	u32 result;
751 
752 	do {
753 		result = readl(ptr);
754 		if (result == ~(u32)0)		/* card removed */
755 			return -ENODEV;
756 		result &= mask;
757 		if (result == done)
758 			return 0;
759 		udelay(1);
760 		usec--;
761 	} while (usec > 0);
762 	return -ETIMEDOUT;
763 }
764 
765 /* Force HC to halt state from unknown (EHCI spec section 2.3) */
766 static int ehci_halt(struct oxu_hcd *oxu)
767 {
768 	u32	temp = readl(&oxu->regs->status);
769 
770 	/* disable any irqs left enabled by previous code */
771 	writel(0, &oxu->regs->intr_enable);
772 
773 	if ((temp & STS_HALT) != 0)
774 		return 0;
775 
776 	temp = readl(&oxu->regs->command);
777 	temp &= ~CMD_RUN;
778 	writel(temp, &oxu->regs->command);
779 	return handshake(oxu, &oxu->regs->status,
780 			  STS_HALT, STS_HALT, 16 * 125);
781 }
782 
783 /* Put TDI/ARC silicon into EHCI mode */
784 static void tdi_reset(struct oxu_hcd *oxu)
785 {
786 	u32 __iomem *reg_ptr;
787 	u32 tmp;
788 
789 	reg_ptr = (u32 __iomem *)(((u8 __iomem *)oxu->regs) + 0x68);
790 	tmp = readl(reg_ptr);
791 	tmp |= 0x3;
792 	writel(tmp, reg_ptr);
793 }
794 
795 /* Reset a non-running (STS_HALT == 1) controller */
796 static int ehci_reset(struct oxu_hcd *oxu)
797 {
798 	int	retval;
799 	u32	command = readl(&oxu->regs->command);
800 
801 	command |= CMD_RESET;
802 	dbg_cmd(oxu, "reset", command);
803 	writel(command, &oxu->regs->command);
804 	oxu_to_hcd(oxu)->state = HC_STATE_HALT;
805 	oxu->next_statechange = jiffies;
806 	retval = handshake(oxu, &oxu->regs->command,
807 			    CMD_RESET, 0, 250 * 1000);
808 
809 	if (retval)
810 		return retval;
811 
812 	tdi_reset(oxu);
813 
814 	return retval;
815 }
816 
817 /* Idle the controller (from running) */
818 static void ehci_quiesce(struct oxu_hcd *oxu)
819 {
820 	u32	temp;
821 
822 #ifdef DEBUG
823 	BUG_ON(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state));
824 #endif
825 
826 	/* wait for any schedule enables/disables to take effect */
827 	temp = readl(&oxu->regs->command) << 10;
828 	temp &= STS_ASS | STS_PSS;
829 	if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
830 				temp, 16 * 125) != 0) {
831 		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
832 		return;
833 	}
834 
835 	/* then disable anything that's still active */
836 	temp = readl(&oxu->regs->command);
837 	temp &= ~(CMD_ASE | CMD_IAAD | CMD_PSE);
838 	writel(temp, &oxu->regs->command);
839 
840 	/* hardware can take 16 microframes to turn off ... */
841 	if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
842 				0, 16 * 125) != 0) {
843 		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
844 		return;
845 	}
846 }
847 
848 static int check_reset_complete(struct oxu_hcd *oxu, int index,
849 				u32 __iomem *status_reg, int port_status)
850 {
851 	if (!(port_status & PORT_CONNECT)) {
852 		oxu->reset_done[index] = 0;
853 		return port_status;
854 	}
855 
856 	/* if reset finished and it's still not enabled -- handoff */
857 	if (!(port_status & PORT_PE)) {
858 		oxu_dbg(oxu, "Failed to enable port %d on root hub TT\n",
859 				index+1);
860 		return port_status;
861 	} else
862 		oxu_dbg(oxu, "port %d high speed\n", index + 1);
863 
864 	return port_status;
865 }
866 
867 static void ehci_hub_descriptor(struct oxu_hcd *oxu,
868 				struct usb_hub_descriptor *desc)
869 {
870 	int ports = HCS_N_PORTS(oxu->hcs_params);
871 	u16 temp;
872 
873 	desc->bDescriptorType = USB_DT_HUB;
874 	desc->bPwrOn2PwrGood = 10;	/* oxu 1.0, 2.3.9 says 20ms max */
875 	desc->bHubContrCurrent = 0;
876 
877 	desc->bNbrPorts = ports;
878 	temp = 1 + (ports / 8);
879 	desc->bDescLength = 7 + 2 * temp;
880 
881 	/* ports removable, and usb 1.0 legacy PortPwrCtrlMask */
882 	memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
883 	memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
884 
885 	temp = HUB_CHAR_INDV_PORT_OCPM;	/* per-port overcurrent reporting */
886 	if (HCS_PPC(oxu->hcs_params))
887 		temp |= HUB_CHAR_INDV_PORT_LPSM; /* per-port power control */
888 	else
889 		temp |= HUB_CHAR_NO_LPSM; /* no power switching */
890 	desc->wHubCharacteristics = (__force __u16)cpu_to_le16(temp);
891 }
892 
893 
894 /* Allocate an OXU210HP on-chip memory data buffer
895  *
896  * An on-chip memory data buffer is required for each OXU210HP USB transfer.
897  * Each transfer descriptor has one or more on-chip memory data buffers.
898  *
899  * Data buffers are allocated from a fix sized pool of data blocks.
900  * To minimise fragmentation and give reasonable memory utlisation,
901  * data buffers are allocated with sizes the power of 2 multiples of
902  * the block size, starting on an address a multiple of the allocated size.
903  *
904  * FIXME: callers of this function require a buffer to be allocated for
905  * len=0. This is a waste of on-chip memory and should be fix. Then this
906  * function should be changed to not allocate a buffer for len=0.
907  */
908 static int oxu_buf_alloc(struct oxu_hcd *oxu, struct ehci_qtd *qtd, int len)
909 {
910 	int n_blocks;	/* minium blocks needed to hold len */
911 	int a_blocks;	/* blocks allocated */
912 	int i, j;
913 
914 	/* Don't allocte bigger than supported */
915 	if (len > BUFFER_SIZE * BUFFER_NUM) {
916 		oxu_err(oxu, "buffer too big (%d)\n", len);
917 		return -ENOMEM;
918 	}
919 
920 	spin_lock(&oxu->mem_lock);
921 
922 	/* Number of blocks needed to hold len */
923 	n_blocks = (len + BUFFER_SIZE - 1) / BUFFER_SIZE;
924 
925 	/* Round the number of blocks up to the power of 2 */
926 	for (a_blocks = 1; a_blocks < n_blocks; a_blocks <<= 1)
927 		;
928 
929 	/* Find a suitable available data buffer */
930 	for (i = 0; i < BUFFER_NUM;
931 			i += max(a_blocks, (int)oxu->db_used[i])) {
932 
933 		/* Check all the required blocks are available */
934 		for (j = 0; j < a_blocks; j++)
935 			if (oxu->db_used[i + j])
936 				break;
937 
938 		if (j != a_blocks)
939 			continue;
940 
941 		/* Allocate blocks found! */
942 		qtd->buffer = (void *) &oxu->mem->db_pool[i];
943 		qtd->buffer_dma = virt_to_phys(qtd->buffer);
944 
945 		qtd->qtd_buffer_len = BUFFER_SIZE * a_blocks;
946 		oxu->db_used[i] = a_blocks;
947 
948 		spin_unlock(&oxu->mem_lock);
949 
950 		return 0;
951 	}
952 
953 	/* Failed */
954 
955 	spin_unlock(&oxu->mem_lock);
956 
957 	return -ENOMEM;
958 }
959 
960 static void oxu_buf_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
961 {
962 	int index;
963 
964 	spin_lock(&oxu->mem_lock);
965 
966 	index = (qtd->buffer - (void *) &oxu->mem->db_pool[0])
967 							 / BUFFER_SIZE;
968 	oxu->db_used[index] = 0;
969 	qtd->qtd_buffer_len = 0;
970 	qtd->buffer_dma = 0;
971 	qtd->buffer = NULL;
972 
973 	spin_unlock(&oxu->mem_lock);
974 }
975 
976 static inline void ehci_qtd_init(struct ehci_qtd *qtd, dma_addr_t dma)
977 {
978 	memset(qtd, 0, sizeof *qtd);
979 	qtd->qtd_dma = dma;
980 	qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
981 	qtd->hw_next = EHCI_LIST_END;
982 	qtd->hw_alt_next = EHCI_LIST_END;
983 	INIT_LIST_HEAD(&qtd->qtd_list);
984 }
985 
986 static inline void oxu_qtd_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
987 {
988 	int index;
989 
990 	if (qtd->buffer)
991 		oxu_buf_free(oxu, qtd);
992 
993 	spin_lock(&oxu->mem_lock);
994 
995 	index = qtd - &oxu->mem->qtd_pool[0];
996 	oxu->qtd_used[index] = 0;
997 
998 	spin_unlock(&oxu->mem_lock);
999 }
1000 
1001 static struct ehci_qtd *ehci_qtd_alloc(struct oxu_hcd *oxu)
1002 {
1003 	int i;
1004 	struct ehci_qtd *qtd = NULL;
1005 
1006 	spin_lock(&oxu->mem_lock);
1007 
1008 	for (i = 0; i < QTD_NUM; i++)
1009 		if (!oxu->qtd_used[i])
1010 			break;
1011 
1012 	if (i < QTD_NUM) {
1013 		qtd = (struct ehci_qtd *) &oxu->mem->qtd_pool[i];
1014 		memset(qtd, 0, sizeof *qtd);
1015 
1016 		qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
1017 		qtd->hw_next = EHCI_LIST_END;
1018 		qtd->hw_alt_next = EHCI_LIST_END;
1019 		INIT_LIST_HEAD(&qtd->qtd_list);
1020 
1021 		qtd->qtd_dma = virt_to_phys(qtd);
1022 
1023 		oxu->qtd_used[i] = 1;
1024 	}
1025 
1026 	spin_unlock(&oxu->mem_lock);
1027 
1028 	return qtd;
1029 }
1030 
1031 static void oxu_qh_free(struct oxu_hcd *oxu, struct ehci_qh *qh)
1032 {
1033 	int index;
1034 
1035 	spin_lock(&oxu->mem_lock);
1036 
1037 	index = qh - &oxu->mem->qh_pool[0];
1038 	oxu->qh_used[index] = 0;
1039 
1040 	spin_unlock(&oxu->mem_lock);
1041 }
1042 
1043 static void qh_destroy(struct kref *kref)
1044 {
1045 	struct ehci_qh *qh = container_of(kref, struct ehci_qh, kref);
1046 	struct oxu_hcd *oxu = qh->oxu;
1047 
1048 	/* clean qtds first, and know this is not linked */
1049 	if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1050 		oxu_dbg(oxu, "unused qh not empty!\n");
1051 		BUG();
1052 	}
1053 	if (qh->dummy)
1054 		oxu_qtd_free(oxu, qh->dummy);
1055 	oxu_qh_free(oxu, qh);
1056 }
1057 
1058 static struct ehci_qh *oxu_qh_alloc(struct oxu_hcd *oxu)
1059 {
1060 	int i;
1061 	struct ehci_qh *qh = NULL;
1062 
1063 	spin_lock(&oxu->mem_lock);
1064 
1065 	for (i = 0; i < QHEAD_NUM; i++)
1066 		if (!oxu->qh_used[i])
1067 			break;
1068 
1069 	if (i < QHEAD_NUM) {
1070 		qh = (struct ehci_qh *) &oxu->mem->qh_pool[i];
1071 		memset(qh, 0, sizeof *qh);
1072 
1073 		kref_init(&qh->kref);
1074 		qh->oxu = oxu;
1075 		qh->qh_dma = virt_to_phys(qh);
1076 		INIT_LIST_HEAD(&qh->qtd_list);
1077 
1078 		/* dummy td enables safe urb queuing */
1079 		qh->dummy = ehci_qtd_alloc(oxu);
1080 		if (qh->dummy == NULL) {
1081 			oxu_dbg(oxu, "no dummy td\n");
1082 			oxu->qh_used[i] = 0;
1083 			qh = NULL;
1084 			goto unlock;
1085 		}
1086 
1087 		oxu->qh_used[i] = 1;
1088 	}
1089 unlock:
1090 	spin_unlock(&oxu->mem_lock);
1091 
1092 	return qh;
1093 }
1094 
1095 /* to share a qh (cpu threads, or hc) */
1096 static inline struct ehci_qh *qh_get(struct ehci_qh *qh)
1097 {
1098 	kref_get(&qh->kref);
1099 	return qh;
1100 }
1101 
1102 static inline void qh_put(struct ehci_qh *qh)
1103 {
1104 	kref_put(&qh->kref, qh_destroy);
1105 }
1106 
1107 static void oxu_murb_free(struct oxu_hcd *oxu, struct oxu_murb *murb)
1108 {
1109 	int index;
1110 
1111 	spin_lock(&oxu->mem_lock);
1112 
1113 	index = murb - &oxu->murb_pool[0];
1114 	oxu->murb_used[index] = 0;
1115 
1116 	spin_unlock(&oxu->mem_lock);
1117 }
1118 
1119 static struct oxu_murb *oxu_murb_alloc(struct oxu_hcd *oxu)
1120 
1121 {
1122 	int i;
1123 	struct oxu_murb *murb = NULL;
1124 
1125 	spin_lock(&oxu->mem_lock);
1126 
1127 	for (i = 0; i < MURB_NUM; i++)
1128 		if (!oxu->murb_used[i])
1129 			break;
1130 
1131 	if (i < MURB_NUM) {
1132 		murb = &(oxu->murb_pool)[i];
1133 
1134 		oxu->murb_used[i] = 1;
1135 	}
1136 
1137 	spin_unlock(&oxu->mem_lock);
1138 
1139 	return murb;
1140 }
1141 
1142 /* The queue heads and transfer descriptors are managed from pools tied
1143  * to each of the "per device" structures.
1144  * This is the initialisation and cleanup code.
1145  */
1146 static void ehci_mem_cleanup(struct oxu_hcd *oxu)
1147 {
1148 	kfree(oxu->murb_pool);
1149 	oxu->murb_pool = NULL;
1150 
1151 	if (oxu->async)
1152 		qh_put(oxu->async);
1153 	oxu->async = NULL;
1154 
1155 	del_timer(&oxu->urb_timer);
1156 
1157 	oxu->periodic = NULL;
1158 
1159 	/* shadow periodic table */
1160 	kfree(oxu->pshadow);
1161 	oxu->pshadow = NULL;
1162 }
1163 
1164 /* Remember to add cleanup code (above) if you add anything here.
1165  */
1166 static int ehci_mem_init(struct oxu_hcd *oxu, gfp_t flags)
1167 {
1168 	int i;
1169 
1170 	for (i = 0; i < oxu->periodic_size; i++)
1171 		oxu->mem->frame_list[i] = EHCI_LIST_END;
1172 	for (i = 0; i < QHEAD_NUM; i++)
1173 		oxu->qh_used[i] = 0;
1174 	for (i = 0; i < QTD_NUM; i++)
1175 		oxu->qtd_used[i] = 0;
1176 
1177 	oxu->murb_pool = kcalloc(MURB_NUM, sizeof(struct oxu_murb), flags);
1178 	if (!oxu->murb_pool)
1179 		goto fail;
1180 
1181 	for (i = 0; i < MURB_NUM; i++)
1182 		oxu->murb_used[i] = 0;
1183 
1184 	oxu->async = oxu_qh_alloc(oxu);
1185 	if (!oxu->async)
1186 		goto fail;
1187 
1188 	oxu->periodic = (__le32 *) &oxu->mem->frame_list;
1189 	oxu->periodic_dma = virt_to_phys(oxu->periodic);
1190 
1191 	for (i = 0; i < oxu->periodic_size; i++)
1192 		oxu->periodic[i] = EHCI_LIST_END;
1193 
1194 	/* software shadow of hardware table */
1195 	oxu->pshadow = kcalloc(oxu->periodic_size, sizeof(void *), flags);
1196 	if (oxu->pshadow != NULL)
1197 		return 0;
1198 
1199 fail:
1200 	oxu_dbg(oxu, "couldn't init memory\n");
1201 	ehci_mem_cleanup(oxu);
1202 	return -ENOMEM;
1203 }
1204 
1205 /* Fill a qtd, returning how much of the buffer we were able to queue up.
1206  */
1207 static int qtd_fill(struct ehci_qtd *qtd, dma_addr_t buf, size_t len,
1208 				int token, int maxpacket)
1209 {
1210 	int i, count;
1211 	u64 addr = buf;
1212 
1213 	/* one buffer entry per 4K ... first might be short or unaligned */
1214 	qtd->hw_buf[0] = cpu_to_le32((u32)addr);
1215 	qtd->hw_buf_hi[0] = cpu_to_le32((u32)(addr >> 32));
1216 	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
1217 	if (likely(len < count))		/* ... iff needed */
1218 		count = len;
1219 	else {
1220 		buf +=  0x1000;
1221 		buf &= ~0x0fff;
1222 
1223 		/* per-qtd limit: from 16K to 20K (best alignment) */
1224 		for (i = 1; count < len && i < 5; i++) {
1225 			addr = buf;
1226 			qtd->hw_buf[i] = cpu_to_le32((u32)addr);
1227 			qtd->hw_buf_hi[i] = cpu_to_le32((u32)(addr >> 32));
1228 			buf += 0x1000;
1229 			if ((count + 0x1000) < len)
1230 				count += 0x1000;
1231 			else
1232 				count = len;
1233 		}
1234 
1235 		/* short packets may only terminate transfers */
1236 		if (count != len)
1237 			count -= (count % maxpacket);
1238 	}
1239 	qtd->hw_token = cpu_to_le32((count << 16) | token);
1240 	qtd->length = count;
1241 
1242 	return count;
1243 }
1244 
1245 static inline void qh_update(struct oxu_hcd *oxu,
1246 				struct ehci_qh *qh, struct ehci_qtd *qtd)
1247 {
1248 	/* writes to an active overlay are unsafe */
1249 	BUG_ON(qh->qh_state != QH_STATE_IDLE);
1250 
1251 	qh->hw_qtd_next = QTD_NEXT(qtd->qtd_dma);
1252 	qh->hw_alt_next = EHCI_LIST_END;
1253 
1254 	/* Except for control endpoints, we make hardware maintain data
1255 	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
1256 	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
1257 	 * ever clear it.
1258 	 */
1259 	if (!(qh->hw_info1 & cpu_to_le32(1 << 14))) {
1260 		unsigned	is_out, epnum;
1261 
1262 		is_out = !(qtd->hw_token & cpu_to_le32(1 << 8));
1263 		epnum = (le32_to_cpup(&qh->hw_info1) >> 8) & 0x0f;
1264 		if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
1265 			qh->hw_token &= ~cpu_to_le32(QTD_TOGGLE);
1266 			usb_settoggle(qh->dev, epnum, is_out, 1);
1267 		}
1268 	}
1269 
1270 	/* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
1271 	wmb();
1272 	qh->hw_token &= cpu_to_le32(QTD_TOGGLE | QTD_STS_PING);
1273 }
1274 
1275 /* If it weren't for a common silicon quirk (writing the dummy into the qh
1276  * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
1277  * recovery (including urb dequeue) would need software changes to a QH...
1278  */
1279 static void qh_refresh(struct oxu_hcd *oxu, struct ehci_qh *qh)
1280 {
1281 	struct ehci_qtd *qtd;
1282 
1283 	if (list_empty(&qh->qtd_list))
1284 		qtd = qh->dummy;
1285 	else {
1286 		qtd = list_entry(qh->qtd_list.next,
1287 				struct ehci_qtd, qtd_list);
1288 		/* first qtd may already be partially processed */
1289 		if (cpu_to_le32(qtd->qtd_dma) == qh->hw_current)
1290 			qtd = NULL;
1291 	}
1292 
1293 	if (qtd)
1294 		qh_update(oxu, qh, qtd);
1295 }
1296 
1297 static void qtd_copy_status(struct oxu_hcd *oxu, struct urb *urb,
1298 				size_t length, u32 token)
1299 {
1300 	/* count IN/OUT bytes, not SETUP (even short packets) */
1301 	if (likely(QTD_PID(token) != 2))
1302 		urb->actual_length += length - QTD_LENGTH(token);
1303 
1304 	/* don't modify error codes */
1305 	if (unlikely(urb->status != -EINPROGRESS))
1306 		return;
1307 
1308 	/* force cleanup after short read; not always an error */
1309 	if (unlikely(IS_SHORT_READ(token)))
1310 		urb->status = -EREMOTEIO;
1311 
1312 	/* serious "can't proceed" faults reported by the hardware */
1313 	if (token & QTD_STS_HALT) {
1314 		if (token & QTD_STS_BABBLE) {
1315 			/* FIXME "must" disable babbling device's port too */
1316 			urb->status = -EOVERFLOW;
1317 		} else if (token & QTD_STS_MMF) {
1318 			/* fs/ls interrupt xfer missed the complete-split */
1319 			urb->status = -EPROTO;
1320 		} else if (token & QTD_STS_DBE) {
1321 			urb->status = (QTD_PID(token) == 1) /* IN ? */
1322 				? -ENOSR  /* hc couldn't read data */
1323 				: -ECOMM; /* hc couldn't write data */
1324 		} else if (token & QTD_STS_XACT) {
1325 			/* timeout, bad crc, wrong PID, etc; retried */
1326 			if (QTD_CERR(token))
1327 				urb->status = -EPIPE;
1328 			else {
1329 				oxu_dbg(oxu, "devpath %s ep%d%s 3strikes\n",
1330 					urb->dev->devpath,
1331 					usb_pipeendpoint(urb->pipe),
1332 					usb_pipein(urb->pipe) ? "in" : "out");
1333 				urb->status = -EPROTO;
1334 			}
1335 		/* CERR nonzero + no errors + halt --> stall */
1336 		} else if (QTD_CERR(token))
1337 			urb->status = -EPIPE;
1338 		else	/* unknown */
1339 			urb->status = -EPROTO;
1340 
1341 		oxu_vdbg(oxu, "dev%d ep%d%s qtd token %08x --> status %d\n",
1342 			usb_pipedevice(urb->pipe),
1343 			usb_pipeendpoint(urb->pipe),
1344 			usb_pipein(urb->pipe) ? "in" : "out",
1345 			token, urb->status);
1346 	}
1347 }
1348 
1349 static void ehci_urb_done(struct oxu_hcd *oxu, struct urb *urb)
1350 __releases(oxu->lock)
1351 __acquires(oxu->lock)
1352 {
1353 	if (likely(urb->hcpriv != NULL)) {
1354 		struct ehci_qh	*qh = (struct ehci_qh *) urb->hcpriv;
1355 
1356 		/* S-mask in a QH means it's an interrupt urb */
1357 		if ((qh->hw_info2 & cpu_to_le32(QH_SMASK)) != 0) {
1358 
1359 			/* ... update hc-wide periodic stats (for usbfs) */
1360 			oxu_to_hcd(oxu)->self.bandwidth_int_reqs--;
1361 		}
1362 		qh_put(qh);
1363 	}
1364 
1365 	urb->hcpriv = NULL;
1366 	switch (urb->status) {
1367 	case -EINPROGRESS:		/* success */
1368 		urb->status = 0;
1369 	default:			/* fault */
1370 		break;
1371 	case -EREMOTEIO:		/* fault or normal */
1372 		if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
1373 			urb->status = 0;
1374 		break;
1375 	case -ECONNRESET:		/* canceled */
1376 	case -ENOENT:
1377 		break;
1378 	}
1379 
1380 #ifdef OXU_URB_TRACE
1381 	oxu_dbg(oxu, "%s %s urb %p ep%d%s status %d len %d/%d\n",
1382 		__func__, urb->dev->devpath, urb,
1383 		usb_pipeendpoint(urb->pipe),
1384 		usb_pipein(urb->pipe) ? "in" : "out",
1385 		urb->status,
1386 		urb->actual_length, urb->transfer_buffer_length);
1387 #endif
1388 
1389 	/* complete() can reenter this HCD */
1390 	spin_unlock(&oxu->lock);
1391 	usb_hcd_giveback_urb(oxu_to_hcd(oxu), urb, urb->status);
1392 	spin_lock(&oxu->lock);
1393 }
1394 
1395 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
1396 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
1397 
1398 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
1399 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
1400 
1401 #define HALT_BIT cpu_to_le32(QTD_STS_HALT)
1402 
1403 /* Process and free completed qtds for a qh, returning URBs to drivers.
1404  * Chases up to qh->hw_current.  Returns number of completions called,
1405  * indicating how much "real" work we did.
1406  */
1407 static unsigned qh_completions(struct oxu_hcd *oxu, struct ehci_qh *qh)
1408 {
1409 	struct ehci_qtd *last = NULL, *end = qh->dummy;
1410 	struct ehci_qtd	*qtd, *tmp;
1411 	int stopped;
1412 	unsigned count = 0;
1413 	int do_status = 0;
1414 	u8 state;
1415 	struct oxu_murb *murb = NULL;
1416 
1417 	if (unlikely(list_empty(&qh->qtd_list)))
1418 		return count;
1419 
1420 	/* completions (or tasks on other cpus) must never clobber HALT
1421 	 * till we've gone through and cleaned everything up, even when
1422 	 * they add urbs to this qh's queue or mark them for unlinking.
1423 	 *
1424 	 * NOTE:  unlinking expects to be done in queue order.
1425 	 */
1426 	state = qh->qh_state;
1427 	qh->qh_state = QH_STATE_COMPLETING;
1428 	stopped = (state == QH_STATE_IDLE);
1429 
1430 	/* remove de-activated QTDs from front of queue.
1431 	 * after faults (including short reads), cleanup this urb
1432 	 * then let the queue advance.
1433 	 * if queue is stopped, handles unlinks.
1434 	 */
1435 	list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
1436 		struct urb *urb;
1437 		u32 token = 0;
1438 
1439 		urb = qtd->urb;
1440 
1441 		/* Clean up any state from previous QTD ...*/
1442 		if (last) {
1443 			if (likely(last->urb != urb)) {
1444 				if (last->urb->complete == NULL) {
1445 					murb = (struct oxu_murb *) last->urb;
1446 					last->urb = murb->main;
1447 					if (murb->last) {
1448 						ehci_urb_done(oxu, last->urb);
1449 						count++;
1450 					}
1451 					oxu_murb_free(oxu, murb);
1452 				} else {
1453 					ehci_urb_done(oxu, last->urb);
1454 					count++;
1455 				}
1456 			}
1457 			oxu_qtd_free(oxu, last);
1458 			last = NULL;
1459 		}
1460 
1461 		/* ignore urbs submitted during completions we reported */
1462 		if (qtd == end)
1463 			break;
1464 
1465 		/* hardware copies qtd out of qh overlay */
1466 		rmb();
1467 		token = le32_to_cpu(qtd->hw_token);
1468 
1469 		/* always clean up qtds the hc de-activated */
1470 		if ((token & QTD_STS_ACTIVE) == 0) {
1471 
1472 			if ((token & QTD_STS_HALT) != 0) {
1473 				stopped = 1;
1474 
1475 			/* magic dummy for some short reads; qh won't advance.
1476 			 * that silicon quirk can kick in with this dummy too.
1477 			 */
1478 			} else if (IS_SHORT_READ(token) &&
1479 					!(qtd->hw_alt_next & EHCI_LIST_END)) {
1480 				stopped = 1;
1481 				goto halt;
1482 			}
1483 
1484 		/* stop scanning when we reach qtds the hc is using */
1485 		} else if (likely(!stopped &&
1486 				HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) {
1487 			break;
1488 
1489 		} else {
1490 			stopped = 1;
1491 
1492 			if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)))
1493 				urb->status = -ESHUTDOWN;
1494 
1495 			/* ignore active urbs unless some previous qtd
1496 			 * for the urb faulted (including short read) or
1497 			 * its urb was canceled.  we may patch qh or qtds.
1498 			 */
1499 			if (likely(urb->status == -EINPROGRESS))
1500 				continue;
1501 
1502 			/* issue status after short control reads */
1503 			if (unlikely(do_status != 0)
1504 					&& QTD_PID(token) == 0 /* OUT */) {
1505 				do_status = 0;
1506 				continue;
1507 			}
1508 
1509 			/* token in overlay may be most current */
1510 			if (state == QH_STATE_IDLE
1511 					&& cpu_to_le32(qtd->qtd_dma)
1512 						== qh->hw_current)
1513 				token = le32_to_cpu(qh->hw_token);
1514 
1515 			/* force halt for unlinked or blocked qh, so we'll
1516 			 * patch the qh later and so that completions can't
1517 			 * activate it while we "know" it's stopped.
1518 			 */
1519 			if ((HALT_BIT & qh->hw_token) == 0) {
1520 halt:
1521 				qh->hw_token |= HALT_BIT;
1522 				wmb();
1523 			}
1524 		}
1525 
1526 		/* Remove it from the queue */
1527 		qtd_copy_status(oxu, urb->complete ?
1528 					urb : ((struct oxu_murb *) urb)->main,
1529 				qtd->length, token);
1530 		if ((usb_pipein(qtd->urb->pipe)) &&
1531 				(NULL != qtd->transfer_buffer))
1532 			memcpy(qtd->transfer_buffer, qtd->buffer, qtd->length);
1533 		do_status = (urb->status == -EREMOTEIO)
1534 				&& usb_pipecontrol(urb->pipe);
1535 
1536 		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
1537 			last = list_entry(qtd->qtd_list.prev,
1538 					struct ehci_qtd, qtd_list);
1539 			last->hw_next = qtd->hw_next;
1540 		}
1541 		list_del(&qtd->qtd_list);
1542 		last = qtd;
1543 	}
1544 
1545 	/* last urb's completion might still need calling */
1546 	if (likely(last != NULL)) {
1547 		if (last->urb->complete == NULL) {
1548 			murb = (struct oxu_murb *) last->urb;
1549 			last->urb = murb->main;
1550 			if (murb->last) {
1551 				ehci_urb_done(oxu, last->urb);
1552 				count++;
1553 			}
1554 			oxu_murb_free(oxu, murb);
1555 		} else {
1556 			ehci_urb_done(oxu, last->urb);
1557 			count++;
1558 		}
1559 		oxu_qtd_free(oxu, last);
1560 	}
1561 
1562 	/* restore original state; caller must unlink or relink */
1563 	qh->qh_state = state;
1564 
1565 	/* be sure the hardware's done with the qh before refreshing
1566 	 * it after fault cleanup, or recovering from silicon wrongly
1567 	 * overlaying the dummy qtd (which reduces DMA chatter).
1568 	 */
1569 	if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END) {
1570 		switch (state) {
1571 		case QH_STATE_IDLE:
1572 			qh_refresh(oxu, qh);
1573 			break;
1574 		case QH_STATE_LINKED:
1575 			/* should be rare for periodic transfers,
1576 			 * except maybe high bandwidth ...
1577 			 */
1578 			if ((cpu_to_le32(QH_SMASK)
1579 					& qh->hw_info2) != 0) {
1580 				intr_deschedule(oxu, qh);
1581 				(void) qh_schedule(oxu, qh);
1582 			} else
1583 				unlink_async(oxu, qh);
1584 			break;
1585 		/* otherwise, unlink already started */
1586 		}
1587 	}
1588 
1589 	return count;
1590 }
1591 
1592 /* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */
1593 #define hb_mult(wMaxPacketSize)		(1 + (((wMaxPacketSize) >> 11) & 0x03))
1594 /* ... and packet size, for any kind of endpoint descriptor */
1595 #define max_packet(wMaxPacketSize)	((wMaxPacketSize) & 0x07ff)
1596 
1597 /* Reverse of qh_urb_transaction: free a list of TDs.
1598  * used for cleanup after errors, before HC sees an URB's TDs.
1599  */
1600 static void qtd_list_free(struct oxu_hcd *oxu,
1601 				struct urb *urb, struct list_head *head)
1602 {
1603 	struct ehci_qtd	*qtd, *temp;
1604 
1605 	list_for_each_entry_safe(qtd, temp, head, qtd_list) {
1606 		list_del(&qtd->qtd_list);
1607 		oxu_qtd_free(oxu, qtd);
1608 	}
1609 }
1610 
1611 /* Create a list of filled qtds for this URB; won't link into qh.
1612  */
1613 static struct list_head *qh_urb_transaction(struct oxu_hcd *oxu,
1614 						struct urb *urb,
1615 						struct list_head *head,
1616 						gfp_t flags)
1617 {
1618 	struct ehci_qtd	*qtd, *qtd_prev;
1619 	dma_addr_t buf;
1620 	int len, maxpacket;
1621 	int is_input;
1622 	u32 token;
1623 	void *transfer_buf = NULL;
1624 	int ret;
1625 
1626 	/*
1627 	 * URBs map to sequences of QTDs: one logical transaction
1628 	 */
1629 	qtd = ehci_qtd_alloc(oxu);
1630 	if (unlikely(!qtd))
1631 		return NULL;
1632 	list_add_tail(&qtd->qtd_list, head);
1633 	qtd->urb = urb;
1634 
1635 	token = QTD_STS_ACTIVE;
1636 	token |= (EHCI_TUNE_CERR << 10);
1637 	/* for split transactions, SplitXState initialized to zero */
1638 
1639 	len = urb->transfer_buffer_length;
1640 	is_input = usb_pipein(urb->pipe);
1641 	if (!urb->transfer_buffer && urb->transfer_buffer_length && is_input)
1642 		urb->transfer_buffer = phys_to_virt(urb->transfer_dma);
1643 
1644 	if (usb_pipecontrol(urb->pipe)) {
1645 		/* SETUP pid */
1646 		ret = oxu_buf_alloc(oxu, qtd, sizeof(struct usb_ctrlrequest));
1647 		if (ret)
1648 			goto cleanup;
1649 
1650 		qtd_fill(qtd, qtd->buffer_dma, sizeof(struct usb_ctrlrequest),
1651 				token | (2 /* "setup" */ << 8), 8);
1652 		memcpy(qtd->buffer, qtd->urb->setup_packet,
1653 				sizeof(struct usb_ctrlrequest));
1654 
1655 		/* ... and always at least one more pid */
1656 		token ^= QTD_TOGGLE;
1657 		qtd_prev = qtd;
1658 		qtd = ehci_qtd_alloc(oxu);
1659 		if (unlikely(!qtd))
1660 			goto cleanup;
1661 		qtd->urb = urb;
1662 		qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1663 		list_add_tail(&qtd->qtd_list, head);
1664 
1665 		/* for zero length DATA stages, STATUS is always IN */
1666 		if (len == 0)
1667 			token |= (1 /* "in" */ << 8);
1668 	}
1669 
1670 	/*
1671 	 * Data transfer stage: buffer setup
1672 	 */
1673 
1674 	ret = oxu_buf_alloc(oxu, qtd, len);
1675 	if (ret)
1676 		goto cleanup;
1677 
1678 	buf = qtd->buffer_dma;
1679 	transfer_buf = urb->transfer_buffer;
1680 
1681 	if (!is_input)
1682 		memcpy(qtd->buffer, qtd->urb->transfer_buffer, len);
1683 
1684 	if (is_input)
1685 		token |= (1 /* "in" */ << 8);
1686 	/* else it's already initted to "out" pid (0 << 8) */
1687 
1688 	maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
1689 
1690 	/*
1691 	 * buffer gets wrapped in one or more qtds;
1692 	 * last one may be "short" (including zero len)
1693 	 * and may serve as a control status ack
1694 	 */
1695 	for (;;) {
1696 		int this_qtd_len;
1697 
1698 		this_qtd_len = qtd_fill(qtd, buf, len, token, maxpacket);
1699 		qtd->transfer_buffer = transfer_buf;
1700 		len -= this_qtd_len;
1701 		buf += this_qtd_len;
1702 		transfer_buf += this_qtd_len;
1703 		if (is_input)
1704 			qtd->hw_alt_next = oxu->async->hw_alt_next;
1705 
1706 		/* qh makes control packets use qtd toggle; maybe switch it */
1707 		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
1708 			token ^= QTD_TOGGLE;
1709 
1710 		if (likely(len <= 0))
1711 			break;
1712 
1713 		qtd_prev = qtd;
1714 		qtd = ehci_qtd_alloc(oxu);
1715 		if (unlikely(!qtd))
1716 			goto cleanup;
1717 		if (likely(len > 0)) {
1718 			ret = oxu_buf_alloc(oxu, qtd, len);
1719 			if (ret)
1720 				goto cleanup;
1721 		}
1722 		qtd->urb = urb;
1723 		qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1724 		list_add_tail(&qtd->qtd_list, head);
1725 	}
1726 
1727 	/* unless the bulk/interrupt caller wants a chance to clean
1728 	 * up after short reads, hc should advance qh past this urb
1729 	 */
1730 	if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
1731 				|| usb_pipecontrol(urb->pipe)))
1732 		qtd->hw_alt_next = EHCI_LIST_END;
1733 
1734 	/*
1735 	 * control requests may need a terminating data "status" ack;
1736 	 * bulk ones may need a terminating short packet (zero length).
1737 	 */
1738 	if (likely(urb->transfer_buffer_length != 0)) {
1739 		int	one_more = 0;
1740 
1741 		if (usb_pipecontrol(urb->pipe)) {
1742 			one_more = 1;
1743 			token ^= 0x0100;	/* "in" <--> "out"  */
1744 			token |= QTD_TOGGLE;	/* force DATA1 */
1745 		} else if (usb_pipebulk(urb->pipe)
1746 				&& (urb->transfer_flags & URB_ZERO_PACKET)
1747 				&& !(urb->transfer_buffer_length % maxpacket)) {
1748 			one_more = 1;
1749 		}
1750 		if (one_more) {
1751 			qtd_prev = qtd;
1752 			qtd = ehci_qtd_alloc(oxu);
1753 			if (unlikely(!qtd))
1754 				goto cleanup;
1755 			qtd->urb = urb;
1756 			qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1757 			list_add_tail(&qtd->qtd_list, head);
1758 
1759 			/* never any data in such packets */
1760 			qtd_fill(qtd, 0, 0, token, 0);
1761 		}
1762 	}
1763 
1764 	/* by default, enable interrupt on urb completion */
1765 	qtd->hw_token |= cpu_to_le32(QTD_IOC);
1766 	return head;
1767 
1768 cleanup:
1769 	qtd_list_free(oxu, urb, head);
1770 	return NULL;
1771 }
1772 
1773 /* Each QH holds a qtd list; a QH is used for everything except iso.
1774  *
1775  * For interrupt urbs, the scheduler must set the microframe scheduling
1776  * mask(s) each time the QH gets scheduled.  For highspeed, that's
1777  * just one microframe in the s-mask.  For split interrupt transactions
1778  * there are additional complications: c-mask, maybe FSTNs.
1779  */
1780 static struct ehci_qh *qh_make(struct oxu_hcd *oxu,
1781 				struct urb *urb, gfp_t flags)
1782 {
1783 	struct ehci_qh *qh = oxu_qh_alloc(oxu);
1784 	u32 info1 = 0, info2 = 0;
1785 	int is_input, type;
1786 	int maxp = 0;
1787 
1788 	if (!qh)
1789 		return qh;
1790 
1791 	/*
1792 	 * init endpoint/device data for this QH
1793 	 */
1794 	info1 |= usb_pipeendpoint(urb->pipe) << 8;
1795 	info1 |= usb_pipedevice(urb->pipe) << 0;
1796 
1797 	is_input = usb_pipein(urb->pipe);
1798 	type = usb_pipetype(urb->pipe);
1799 	maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
1800 
1801 	/* Compute interrupt scheduling parameters just once, and save.
1802 	 * - allowing for high bandwidth, how many nsec/uframe are used?
1803 	 * - split transactions need a second CSPLIT uframe; same question
1804 	 * - splits also need a schedule gap (for full/low speed I/O)
1805 	 * - qh has a polling interval
1806 	 *
1807 	 * For control/bulk requests, the HC or TT handles these.
1808 	 */
1809 	if (type == PIPE_INTERRUPT) {
1810 		qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
1811 								is_input, 0,
1812 				hb_mult(maxp) * max_packet(maxp)));
1813 		qh->start = NO_FRAME;
1814 
1815 		if (urb->dev->speed == USB_SPEED_HIGH) {
1816 			qh->c_usecs = 0;
1817 			qh->gap_uf = 0;
1818 
1819 			qh->period = urb->interval >> 3;
1820 			if (qh->period == 0 && urb->interval != 1) {
1821 				/* NOTE interval 2 or 4 uframes could work.
1822 				 * But interval 1 scheduling is simpler, and
1823 				 * includes high bandwidth.
1824 				 */
1825 				oxu_dbg(oxu, "intr period %d uframes, NYET!\n",
1826 					urb->interval);
1827 				goto done;
1828 			}
1829 		} else {
1830 			struct usb_tt	*tt = urb->dev->tt;
1831 			int		think_time;
1832 
1833 			/* gap is f(FS/LS transfer times) */
1834 			qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
1835 					is_input, 0, maxp) / (125 * 1000);
1836 
1837 			/* FIXME this just approximates SPLIT/CSPLIT times */
1838 			if (is_input) {		/* SPLIT, gap, CSPLIT+DATA */
1839 				qh->c_usecs = qh->usecs + HS_USECS(0);
1840 				qh->usecs = HS_USECS(1);
1841 			} else {		/* SPLIT+DATA, gap, CSPLIT */
1842 				qh->usecs += HS_USECS(1);
1843 				qh->c_usecs = HS_USECS(0);
1844 			}
1845 
1846 			think_time = tt ? tt->think_time : 0;
1847 			qh->tt_usecs = NS_TO_US(think_time +
1848 					usb_calc_bus_time(urb->dev->speed,
1849 					is_input, 0, max_packet(maxp)));
1850 			qh->period = urb->interval;
1851 		}
1852 	}
1853 
1854 	/* support for tt scheduling, and access to toggles */
1855 	qh->dev = urb->dev;
1856 
1857 	/* using TT? */
1858 	switch (urb->dev->speed) {
1859 	case USB_SPEED_LOW:
1860 		info1 |= (1 << 12);	/* EPS "low" */
1861 		/* FALL THROUGH */
1862 
1863 	case USB_SPEED_FULL:
1864 		/* EPS 0 means "full" */
1865 		if (type != PIPE_INTERRUPT)
1866 			info1 |= (EHCI_TUNE_RL_TT << 28);
1867 		if (type == PIPE_CONTROL) {
1868 			info1 |= (1 << 27);	/* for TT */
1869 			info1 |= 1 << 14;	/* toggle from qtd */
1870 		}
1871 		info1 |= maxp << 16;
1872 
1873 		info2 |= (EHCI_TUNE_MULT_TT << 30);
1874 		info2 |= urb->dev->ttport << 23;
1875 
1876 		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
1877 
1878 		break;
1879 
1880 	case USB_SPEED_HIGH:		/* no TT involved */
1881 		info1 |= (2 << 12);	/* EPS "high" */
1882 		if (type == PIPE_CONTROL) {
1883 			info1 |= (EHCI_TUNE_RL_HS << 28);
1884 			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
1885 			info1 |= 1 << 14;	/* toggle from qtd */
1886 			info2 |= (EHCI_TUNE_MULT_HS << 30);
1887 		} else if (type == PIPE_BULK) {
1888 			info1 |= (EHCI_TUNE_RL_HS << 28);
1889 			info1 |= 512 << 16;	/* usb2 fixed maxpacket */
1890 			info2 |= (EHCI_TUNE_MULT_HS << 30);
1891 		} else {		/* PIPE_INTERRUPT */
1892 			info1 |= max_packet(maxp) << 16;
1893 			info2 |= hb_mult(maxp) << 30;
1894 		}
1895 		break;
1896 	default:
1897 		oxu_dbg(oxu, "bogus dev %p speed %d\n", urb->dev, urb->dev->speed);
1898 done:
1899 		qh_put(qh);
1900 		return NULL;
1901 	}
1902 
1903 	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
1904 
1905 	/* init as live, toggle clear, advance to dummy */
1906 	qh->qh_state = QH_STATE_IDLE;
1907 	qh->hw_info1 = cpu_to_le32(info1);
1908 	qh->hw_info2 = cpu_to_le32(info2);
1909 	usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
1910 	qh_refresh(oxu, qh);
1911 	return qh;
1912 }
1913 
1914 /* Move qh (and its qtds) onto async queue; maybe enable queue.
1915  */
1916 static void qh_link_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
1917 {
1918 	__le32 dma = QH_NEXT(qh->qh_dma);
1919 	struct ehci_qh *head;
1920 
1921 	/* (re)start the async schedule? */
1922 	head = oxu->async;
1923 	timer_action_done(oxu, TIMER_ASYNC_OFF);
1924 	if (!head->qh_next.qh) {
1925 		u32	cmd = readl(&oxu->regs->command);
1926 
1927 		if (!(cmd & CMD_ASE)) {
1928 			/* in case a clear of CMD_ASE didn't take yet */
1929 			(void)handshake(oxu, &oxu->regs->status,
1930 					STS_ASS, 0, 150);
1931 			cmd |= CMD_ASE | CMD_RUN;
1932 			writel(cmd, &oxu->regs->command);
1933 			oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
1934 			/* posted write need not be known to HC yet ... */
1935 		}
1936 	}
1937 
1938 	/* clear halt and/or toggle; and maybe recover from silicon quirk */
1939 	if (qh->qh_state == QH_STATE_IDLE)
1940 		qh_refresh(oxu, qh);
1941 
1942 	/* splice right after start */
1943 	qh->qh_next = head->qh_next;
1944 	qh->hw_next = head->hw_next;
1945 	wmb();
1946 
1947 	head->qh_next.qh = qh;
1948 	head->hw_next = dma;
1949 
1950 	qh->qh_state = QH_STATE_LINKED;
1951 	/* qtd completions reported later by interrupt */
1952 }
1953 
1954 #define	QH_ADDR_MASK	cpu_to_le32(0x7f)
1955 
1956 /*
1957  * For control/bulk/interrupt, return QH with these TDs appended.
1958  * Allocates and initializes the QH if necessary.
1959  * Returns null if it can't allocate a QH it needs to.
1960  * If the QH has TDs (urbs) already, that's great.
1961  */
1962 static struct ehci_qh *qh_append_tds(struct oxu_hcd *oxu,
1963 				struct urb *urb, struct list_head *qtd_list,
1964 				int epnum, void	**ptr)
1965 {
1966 	struct ehci_qh *qh = NULL;
1967 
1968 	qh = (struct ehci_qh *) *ptr;
1969 	if (unlikely(qh == NULL)) {
1970 		/* can't sleep here, we have oxu->lock... */
1971 		qh = qh_make(oxu, urb, GFP_ATOMIC);
1972 		*ptr = qh;
1973 	}
1974 	if (likely(qh != NULL)) {
1975 		struct ehci_qtd	*qtd;
1976 
1977 		if (unlikely(list_empty(qtd_list)))
1978 			qtd = NULL;
1979 		else
1980 			qtd = list_entry(qtd_list->next, struct ehci_qtd,
1981 					qtd_list);
1982 
1983 		/* control qh may need patching ... */
1984 		if (unlikely(epnum == 0)) {
1985 
1986 			/* usb_reset_device() briefly reverts to address 0 */
1987 			if (usb_pipedevice(urb->pipe) == 0)
1988 				qh->hw_info1 &= ~QH_ADDR_MASK;
1989 		}
1990 
1991 		/* just one way to queue requests: swap with the dummy qtd.
1992 		 * only hc or qh_refresh() ever modify the overlay.
1993 		 */
1994 		if (likely(qtd != NULL)) {
1995 			struct ehci_qtd	*dummy;
1996 			dma_addr_t dma;
1997 			__le32 token;
1998 
1999 			/* to avoid racing the HC, use the dummy td instead of
2000 			 * the first td of our list (becomes new dummy).  both
2001 			 * tds stay deactivated until we're done, when the
2002 			 * HC is allowed to fetch the old dummy (4.10.2).
2003 			 */
2004 			token = qtd->hw_token;
2005 			qtd->hw_token = HALT_BIT;
2006 			wmb();
2007 			dummy = qh->dummy;
2008 
2009 			dma = dummy->qtd_dma;
2010 			*dummy = *qtd;
2011 			dummy->qtd_dma = dma;
2012 
2013 			list_del(&qtd->qtd_list);
2014 			list_add(&dummy->qtd_list, qtd_list);
2015 			list_splice(qtd_list, qh->qtd_list.prev);
2016 
2017 			ehci_qtd_init(qtd, qtd->qtd_dma);
2018 			qh->dummy = qtd;
2019 
2020 			/* hc must see the new dummy at list end */
2021 			dma = qtd->qtd_dma;
2022 			qtd = list_entry(qh->qtd_list.prev,
2023 					struct ehci_qtd, qtd_list);
2024 			qtd->hw_next = QTD_NEXT(dma);
2025 
2026 			/* let the hc process these next qtds */
2027 			dummy->hw_token = (token & ~(0x80));
2028 			wmb();
2029 			dummy->hw_token = token;
2030 
2031 			urb->hcpriv = qh_get(qh);
2032 		}
2033 	}
2034 	return qh;
2035 }
2036 
2037 static int submit_async(struct oxu_hcd	*oxu, struct urb *urb,
2038 			struct list_head *qtd_list, gfp_t mem_flags)
2039 {
2040 	struct ehci_qtd	*qtd;
2041 	int epnum;
2042 	unsigned long flags;
2043 	struct ehci_qh *qh = NULL;
2044 	int rc = 0;
2045 
2046 	qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
2047 	epnum = urb->ep->desc.bEndpointAddress;
2048 
2049 #ifdef OXU_URB_TRACE
2050 	oxu_dbg(oxu, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2051 		__func__, urb->dev->devpath, urb,
2052 		epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
2053 		urb->transfer_buffer_length,
2054 		qtd, urb->ep->hcpriv);
2055 #endif
2056 
2057 	spin_lock_irqsave(&oxu->lock, flags);
2058 	if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
2059 		rc = -ESHUTDOWN;
2060 		goto done;
2061 	}
2062 
2063 	qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
2064 	if (unlikely(qh == NULL)) {
2065 		rc = -ENOMEM;
2066 		goto done;
2067 	}
2068 
2069 	/* Control/bulk operations through TTs don't need scheduling,
2070 	 * the HC and TT handle it when the TT has a buffer ready.
2071 	 */
2072 	if (likely(qh->qh_state == QH_STATE_IDLE))
2073 		qh_link_async(oxu, qh_get(qh));
2074 done:
2075 	spin_unlock_irqrestore(&oxu->lock, flags);
2076 	if (unlikely(qh == NULL))
2077 		qtd_list_free(oxu, urb, qtd_list);
2078 	return rc;
2079 }
2080 
2081 /* The async qh for the qtds being reclaimed are now unlinked from the HC */
2082 
2083 static void end_unlink_async(struct oxu_hcd *oxu)
2084 {
2085 	struct ehci_qh *qh = oxu->reclaim;
2086 	struct ehci_qh *next;
2087 
2088 	timer_action_done(oxu, TIMER_IAA_WATCHDOG);
2089 
2090 	qh->qh_state = QH_STATE_IDLE;
2091 	qh->qh_next.qh = NULL;
2092 	qh_put(qh);			/* refcount from reclaim */
2093 
2094 	/* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
2095 	next = qh->reclaim;
2096 	oxu->reclaim = next;
2097 	oxu->reclaim_ready = 0;
2098 	qh->reclaim = NULL;
2099 
2100 	qh_completions(oxu, qh);
2101 
2102 	if (!list_empty(&qh->qtd_list)
2103 			&& HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2104 		qh_link_async(oxu, qh);
2105 	else {
2106 		qh_put(qh);		/* refcount from async list */
2107 
2108 		/* it's not free to turn the async schedule on/off; leave it
2109 		 * active but idle for a while once it empties.
2110 		 */
2111 		if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state)
2112 				&& oxu->async->qh_next.qh == NULL)
2113 			timer_action(oxu, TIMER_ASYNC_OFF);
2114 	}
2115 
2116 	if (next) {
2117 		oxu->reclaim = NULL;
2118 		start_unlink_async(oxu, next);
2119 	}
2120 }
2121 
2122 /* makes sure the async qh will become idle */
2123 /* caller must own oxu->lock */
2124 
2125 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
2126 {
2127 	int cmd = readl(&oxu->regs->command);
2128 	struct ehci_qh *prev;
2129 
2130 #ifdef DEBUG
2131 	assert_spin_locked(&oxu->lock);
2132 	BUG_ON(oxu->reclaim || (qh->qh_state != QH_STATE_LINKED
2133 				&& qh->qh_state != QH_STATE_UNLINK_WAIT));
2134 #endif
2135 
2136 	/* stop async schedule right now? */
2137 	if (unlikely(qh == oxu->async)) {
2138 		/* can't get here without STS_ASS set */
2139 		if (oxu_to_hcd(oxu)->state != HC_STATE_HALT
2140 				&& !oxu->reclaim) {
2141 			/* ... and CMD_IAAD clear */
2142 			writel(cmd & ~CMD_ASE, &oxu->regs->command);
2143 			wmb();
2144 			/* handshake later, if we need to */
2145 			timer_action_done(oxu, TIMER_ASYNC_OFF);
2146 		}
2147 		return;
2148 	}
2149 
2150 	qh->qh_state = QH_STATE_UNLINK;
2151 	oxu->reclaim = qh = qh_get(qh);
2152 
2153 	prev = oxu->async;
2154 	while (prev->qh_next.qh != qh)
2155 		prev = prev->qh_next.qh;
2156 
2157 	prev->hw_next = qh->hw_next;
2158 	prev->qh_next = qh->qh_next;
2159 	wmb();
2160 
2161 	if (unlikely(oxu_to_hcd(oxu)->state == HC_STATE_HALT)) {
2162 		/* if (unlikely(qh->reclaim != 0))
2163 		 *	this will recurse, probably not much
2164 		 */
2165 		end_unlink_async(oxu);
2166 		return;
2167 	}
2168 
2169 	oxu->reclaim_ready = 0;
2170 	cmd |= CMD_IAAD;
2171 	writel(cmd, &oxu->regs->command);
2172 	(void) readl(&oxu->regs->command);
2173 	timer_action(oxu, TIMER_IAA_WATCHDOG);
2174 }
2175 
2176 static void scan_async(struct oxu_hcd *oxu)
2177 {
2178 	struct ehci_qh *qh;
2179 	enum ehci_timer_action action = TIMER_IO_WATCHDOG;
2180 
2181 	if (!++(oxu->stamp))
2182 		oxu->stamp++;
2183 	timer_action_done(oxu, TIMER_ASYNC_SHRINK);
2184 rescan:
2185 	qh = oxu->async->qh_next.qh;
2186 	if (likely(qh != NULL)) {
2187 		do {
2188 			/* clean any finished work for this qh */
2189 			if (!list_empty(&qh->qtd_list)
2190 					&& qh->stamp != oxu->stamp) {
2191 				int temp;
2192 
2193 				/* unlinks could happen here; completion
2194 				 * reporting drops the lock.  rescan using
2195 				 * the latest schedule, but don't rescan
2196 				 * qhs we already finished (no looping).
2197 				 */
2198 				qh = qh_get(qh);
2199 				qh->stamp = oxu->stamp;
2200 				temp = qh_completions(oxu, qh);
2201 				qh_put(qh);
2202 				if (temp != 0)
2203 					goto rescan;
2204 			}
2205 
2206 			/* unlink idle entries, reducing HC PCI usage as well
2207 			 * as HCD schedule-scanning costs.  delay for any qh
2208 			 * we just scanned, there's a not-unusual case that it
2209 			 * doesn't stay idle for long.
2210 			 * (plus, avoids some kind of re-activation race.)
2211 			 */
2212 			if (list_empty(&qh->qtd_list)) {
2213 				if (qh->stamp == oxu->stamp)
2214 					action = TIMER_ASYNC_SHRINK;
2215 				else if (!oxu->reclaim
2216 					    && qh->qh_state == QH_STATE_LINKED)
2217 					start_unlink_async(oxu, qh);
2218 			}
2219 
2220 			qh = qh->qh_next.qh;
2221 		} while (qh);
2222 	}
2223 	if (action == TIMER_ASYNC_SHRINK)
2224 		timer_action(oxu, TIMER_ASYNC_SHRINK);
2225 }
2226 
2227 /*
2228  * periodic_next_shadow - return "next" pointer on shadow list
2229  * @periodic: host pointer to qh/itd/sitd
2230  * @tag: hardware tag for type of this record
2231  */
2232 static union ehci_shadow *periodic_next_shadow(union ehci_shadow *periodic,
2233 						__le32 tag)
2234 {
2235 	switch (tag) {
2236 	default:
2237 	case Q_TYPE_QH:
2238 		return &periodic->qh->qh_next;
2239 	}
2240 }
2241 
2242 /* caller must hold oxu->lock */
2243 static void periodic_unlink(struct oxu_hcd *oxu, unsigned frame, void *ptr)
2244 {
2245 	union ehci_shadow *prev_p = &oxu->pshadow[frame];
2246 	__le32 *hw_p = &oxu->periodic[frame];
2247 	union ehci_shadow here = *prev_p;
2248 
2249 	/* find predecessor of "ptr"; hw and shadow lists are in sync */
2250 	while (here.ptr && here.ptr != ptr) {
2251 		prev_p = periodic_next_shadow(prev_p, Q_NEXT_TYPE(*hw_p));
2252 		hw_p = here.hw_next;
2253 		here = *prev_p;
2254 	}
2255 	/* an interrupt entry (at list end) could have been shared */
2256 	if (!here.ptr)
2257 		return;
2258 
2259 	/* update shadow and hardware lists ... the old "next" pointers
2260 	 * from ptr may still be in use, the caller updates them.
2261 	 */
2262 	*prev_p = *periodic_next_shadow(&here, Q_NEXT_TYPE(*hw_p));
2263 	*hw_p = *here.hw_next;
2264 }
2265 
2266 /* how many of the uframe's 125 usecs are allocated? */
2267 static unsigned short periodic_usecs(struct oxu_hcd *oxu,
2268 					unsigned frame, unsigned uframe)
2269 {
2270 	__le32 *hw_p = &oxu->periodic[frame];
2271 	union ehci_shadow *q = &oxu->pshadow[frame];
2272 	unsigned usecs = 0;
2273 
2274 	while (q->ptr) {
2275 		switch (Q_NEXT_TYPE(*hw_p)) {
2276 		case Q_TYPE_QH:
2277 		default:
2278 			/* is it in the S-mask? */
2279 			if (q->qh->hw_info2 & cpu_to_le32(1 << uframe))
2280 				usecs += q->qh->usecs;
2281 			/* ... or C-mask? */
2282 			if (q->qh->hw_info2 & cpu_to_le32(1 << (8 + uframe)))
2283 				usecs += q->qh->c_usecs;
2284 			hw_p = &q->qh->hw_next;
2285 			q = &q->qh->qh_next;
2286 			break;
2287 		}
2288 	}
2289 #ifdef DEBUG
2290 	if (usecs > 100)
2291 		oxu_err(oxu, "uframe %d sched overrun: %d usecs\n",
2292 						frame * 8 + uframe, usecs);
2293 #endif
2294 	return usecs;
2295 }
2296 
2297 static int enable_periodic(struct oxu_hcd *oxu)
2298 {
2299 	u32 cmd;
2300 	int status;
2301 
2302 	/* did clearing PSE did take effect yet?
2303 	 * takes effect only at frame boundaries...
2304 	 */
2305 	status = handshake(oxu, &oxu->regs->status, STS_PSS, 0, 9 * 125);
2306 	if (status != 0) {
2307 		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
2308 		usb_hc_died(oxu_to_hcd(oxu));
2309 		return status;
2310 	}
2311 
2312 	cmd = readl(&oxu->regs->command) | CMD_PSE;
2313 	writel(cmd, &oxu->regs->command);
2314 	/* posted write ... PSS happens later */
2315 	oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
2316 
2317 	/* make sure ehci_work scans these */
2318 	oxu->next_uframe = readl(&oxu->regs->frame_index)
2319 		% (oxu->periodic_size << 3);
2320 	return 0;
2321 }
2322 
2323 static int disable_periodic(struct oxu_hcd *oxu)
2324 {
2325 	u32 cmd;
2326 	int status;
2327 
2328 	/* did setting PSE not take effect yet?
2329 	 * takes effect only at frame boundaries...
2330 	 */
2331 	status = handshake(oxu, &oxu->regs->status, STS_PSS, STS_PSS, 9 * 125);
2332 	if (status != 0) {
2333 		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
2334 		usb_hc_died(oxu_to_hcd(oxu));
2335 		return status;
2336 	}
2337 
2338 	cmd = readl(&oxu->regs->command) & ~CMD_PSE;
2339 	writel(cmd, &oxu->regs->command);
2340 	/* posted write ... */
2341 
2342 	oxu->next_uframe = -1;
2343 	return 0;
2344 }
2345 
2346 /* periodic schedule slots have iso tds (normal or split) first, then a
2347  * sparse tree for active interrupt transfers.
2348  *
2349  * this just links in a qh; caller guarantees uframe masks are set right.
2350  * no FSTN support (yet; oxu 0.96+)
2351  */
2352 static int qh_link_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
2353 {
2354 	unsigned i;
2355 	unsigned period = qh->period;
2356 
2357 	dev_dbg(&qh->dev->dev,
2358 		"link qh%d-%04x/%p start %d [%d/%d us]\n",
2359 		period, le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
2360 		qh, qh->start, qh->usecs, qh->c_usecs);
2361 
2362 	/* high bandwidth, or otherwise every microframe */
2363 	if (period == 0)
2364 		period = 1;
2365 
2366 	for (i = qh->start; i < oxu->periodic_size; i += period) {
2367 		union ehci_shadow	*prev = &oxu->pshadow[i];
2368 		__le32			*hw_p = &oxu->periodic[i];
2369 		union ehci_shadow	here = *prev;
2370 		__le32			type = 0;
2371 
2372 		/* skip the iso nodes at list head */
2373 		while (here.ptr) {
2374 			type = Q_NEXT_TYPE(*hw_p);
2375 			if (type == Q_TYPE_QH)
2376 				break;
2377 			prev = periodic_next_shadow(prev, type);
2378 			hw_p = &here.qh->hw_next;
2379 			here = *prev;
2380 		}
2381 
2382 		/* sorting each branch by period (slow-->fast)
2383 		 * enables sharing interior tree nodes
2384 		 */
2385 		while (here.ptr && qh != here.qh) {
2386 			if (qh->period > here.qh->period)
2387 				break;
2388 			prev = &here.qh->qh_next;
2389 			hw_p = &here.qh->hw_next;
2390 			here = *prev;
2391 		}
2392 		/* link in this qh, unless some earlier pass did that */
2393 		if (qh != here.qh) {
2394 			qh->qh_next = here;
2395 			if (here.qh)
2396 				qh->hw_next = *hw_p;
2397 			wmb();
2398 			prev->qh = qh;
2399 			*hw_p = QH_NEXT(qh->qh_dma);
2400 		}
2401 	}
2402 	qh->qh_state = QH_STATE_LINKED;
2403 	qh_get(qh);
2404 
2405 	/* update per-qh bandwidth for usbfs */
2406 	oxu_to_hcd(oxu)->self.bandwidth_allocated += qh->period
2407 		? ((qh->usecs + qh->c_usecs) / qh->period)
2408 		: (qh->usecs * 8);
2409 
2410 	/* maybe enable periodic schedule processing */
2411 	if (!oxu->periodic_sched++)
2412 		return enable_periodic(oxu);
2413 
2414 	return 0;
2415 }
2416 
2417 static void qh_unlink_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
2418 {
2419 	unsigned i;
2420 	unsigned period;
2421 
2422 	/* FIXME:
2423 	 *   IF this isn't high speed
2424 	 *   and this qh is active in the current uframe
2425 	 *   (and overlay token SplitXstate is false?)
2426 	 * THEN
2427 	 *   qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore");
2428 	 */
2429 
2430 	/* high bandwidth, or otherwise part of every microframe */
2431 	period = qh->period;
2432 	if (period == 0)
2433 		period = 1;
2434 
2435 	for (i = qh->start; i < oxu->periodic_size; i += period)
2436 		periodic_unlink(oxu, i, qh);
2437 
2438 	/* update per-qh bandwidth for usbfs */
2439 	oxu_to_hcd(oxu)->self.bandwidth_allocated -= qh->period
2440 		? ((qh->usecs + qh->c_usecs) / qh->period)
2441 		: (qh->usecs * 8);
2442 
2443 	dev_dbg(&qh->dev->dev,
2444 		"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
2445 		qh->period,
2446 		le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
2447 		qh, qh->start, qh->usecs, qh->c_usecs);
2448 
2449 	/* qh->qh_next still "live" to HC */
2450 	qh->qh_state = QH_STATE_UNLINK;
2451 	qh->qh_next.ptr = NULL;
2452 	qh_put(qh);
2453 
2454 	/* maybe turn off periodic schedule */
2455 	oxu->periodic_sched--;
2456 	if (!oxu->periodic_sched)
2457 		(void) disable_periodic(oxu);
2458 }
2459 
2460 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2461 {
2462 	unsigned wait;
2463 
2464 	qh_unlink_periodic(oxu, qh);
2465 
2466 	/* simple/paranoid:  always delay, expecting the HC needs to read
2467 	 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
2468 	 * expect hub_wq to clean up after any CSPLITs we won't issue.
2469 	 * active high speed queues may need bigger delays...
2470 	 */
2471 	if (list_empty(&qh->qtd_list)
2472 		|| (cpu_to_le32(QH_CMASK) & qh->hw_info2) != 0)
2473 		wait = 2;
2474 	else
2475 		wait = 55;	/* worst case: 3 * 1024 */
2476 
2477 	udelay(wait);
2478 	qh->qh_state = QH_STATE_IDLE;
2479 	qh->hw_next = EHCI_LIST_END;
2480 	wmb();
2481 }
2482 
2483 static int check_period(struct oxu_hcd *oxu,
2484 			unsigned frame, unsigned uframe,
2485 			unsigned period, unsigned usecs)
2486 {
2487 	int claimed;
2488 
2489 	/* complete split running into next frame?
2490 	 * given FSTN support, we could sometimes check...
2491 	 */
2492 	if (uframe >= 8)
2493 		return 0;
2494 
2495 	/*
2496 	 * 80% periodic == 100 usec/uframe available
2497 	 * convert "usecs we need" to "max already claimed"
2498 	 */
2499 	usecs = 100 - usecs;
2500 
2501 	/* we "know" 2 and 4 uframe intervals were rejected; so
2502 	 * for period 0, check _every_ microframe in the schedule.
2503 	 */
2504 	if (unlikely(period == 0)) {
2505 		do {
2506 			for (uframe = 0; uframe < 7; uframe++) {
2507 				claimed = periodic_usecs(oxu, frame, uframe);
2508 				if (claimed > usecs)
2509 					return 0;
2510 			}
2511 		} while ((frame += 1) < oxu->periodic_size);
2512 
2513 	/* just check the specified uframe, at that period */
2514 	} else {
2515 		do {
2516 			claimed = periodic_usecs(oxu, frame, uframe);
2517 			if (claimed > usecs)
2518 				return 0;
2519 		} while ((frame += period) < oxu->periodic_size);
2520 	}
2521 
2522 	return 1;
2523 }
2524 
2525 static int check_intr_schedule(struct oxu_hcd	*oxu,
2526 				unsigned frame, unsigned uframe,
2527 				const struct ehci_qh *qh, __le32 *c_maskp)
2528 {
2529 	int retval = -ENOSPC;
2530 
2531 	if (qh->c_usecs && uframe >= 6)		/* FSTN territory? */
2532 		goto done;
2533 
2534 	if (!check_period(oxu, frame, uframe, qh->period, qh->usecs))
2535 		goto done;
2536 	if (!qh->c_usecs) {
2537 		retval = 0;
2538 		*c_maskp = 0;
2539 		goto done;
2540 	}
2541 
2542 done:
2543 	return retval;
2544 }
2545 
2546 /* "first fit" scheduling policy used the first time through,
2547  * or when the previous schedule slot can't be re-used.
2548  */
2549 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2550 {
2551 	int		status;
2552 	unsigned	uframe;
2553 	__le32		c_mask;
2554 	unsigned	frame;		/* 0..(qh->period - 1), or NO_FRAME */
2555 
2556 	qh_refresh(oxu, qh);
2557 	qh->hw_next = EHCI_LIST_END;
2558 	frame = qh->start;
2559 
2560 	/* reuse the previous schedule slots, if we can */
2561 	if (frame < qh->period) {
2562 		uframe = ffs(le32_to_cpup(&qh->hw_info2) & QH_SMASK);
2563 		status = check_intr_schedule(oxu, frame, --uframe,
2564 				qh, &c_mask);
2565 	} else {
2566 		uframe = 0;
2567 		c_mask = 0;
2568 		status = -ENOSPC;
2569 	}
2570 
2571 	/* else scan the schedule to find a group of slots such that all
2572 	 * uframes have enough periodic bandwidth available.
2573 	 */
2574 	if (status) {
2575 		/* "normal" case, uframing flexible except with splits */
2576 		if (qh->period) {
2577 			frame = qh->period - 1;
2578 			do {
2579 				for (uframe = 0; uframe < 8; uframe++) {
2580 					status = check_intr_schedule(oxu,
2581 							frame, uframe, qh,
2582 							&c_mask);
2583 					if (status == 0)
2584 						break;
2585 				}
2586 			} while (status && frame--);
2587 
2588 		/* qh->period == 0 means every uframe */
2589 		} else {
2590 			frame = 0;
2591 			status = check_intr_schedule(oxu, 0, 0, qh, &c_mask);
2592 		}
2593 		if (status)
2594 			goto done;
2595 		qh->start = frame;
2596 
2597 		/* reset S-frame and (maybe) C-frame masks */
2598 		qh->hw_info2 &= cpu_to_le32(~(QH_CMASK | QH_SMASK));
2599 		qh->hw_info2 |= qh->period
2600 			? cpu_to_le32(1 << uframe)
2601 			: cpu_to_le32(QH_SMASK);
2602 		qh->hw_info2 |= c_mask;
2603 	} else
2604 		oxu_dbg(oxu, "reused qh %p schedule\n", qh);
2605 
2606 	/* stuff into the periodic schedule */
2607 	status = qh_link_periodic(oxu, qh);
2608 done:
2609 	return status;
2610 }
2611 
2612 static int intr_submit(struct oxu_hcd *oxu, struct urb *urb,
2613 			struct list_head *qtd_list, gfp_t mem_flags)
2614 {
2615 	unsigned epnum;
2616 	unsigned long flags;
2617 	struct ehci_qh *qh;
2618 	int status = 0;
2619 	struct list_head	empty;
2620 
2621 	/* get endpoint and transfer/schedule data */
2622 	epnum = urb->ep->desc.bEndpointAddress;
2623 
2624 	spin_lock_irqsave(&oxu->lock, flags);
2625 
2626 	if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
2627 		status = -ESHUTDOWN;
2628 		goto done;
2629 	}
2630 
2631 	/* get qh and force any scheduling errors */
2632 	INIT_LIST_HEAD(&empty);
2633 	qh = qh_append_tds(oxu, urb, &empty, epnum, &urb->ep->hcpriv);
2634 	if (qh == NULL) {
2635 		status = -ENOMEM;
2636 		goto done;
2637 	}
2638 	if (qh->qh_state == QH_STATE_IDLE) {
2639 		status = qh_schedule(oxu, qh);
2640 		if (status != 0)
2641 			goto done;
2642 	}
2643 
2644 	/* then queue the urb's tds to the qh */
2645 	qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
2646 	BUG_ON(qh == NULL);
2647 
2648 	/* ... update usbfs periodic stats */
2649 	oxu_to_hcd(oxu)->self.bandwidth_int_reqs++;
2650 
2651 done:
2652 	spin_unlock_irqrestore(&oxu->lock, flags);
2653 	if (status)
2654 		qtd_list_free(oxu, urb, qtd_list);
2655 
2656 	return status;
2657 }
2658 
2659 static inline int itd_submit(struct oxu_hcd *oxu, struct urb *urb,
2660 						gfp_t mem_flags)
2661 {
2662 	oxu_dbg(oxu, "iso support is missing!\n");
2663 	return -ENOSYS;
2664 }
2665 
2666 static inline int sitd_submit(struct oxu_hcd *oxu, struct urb *urb,
2667 						gfp_t mem_flags)
2668 {
2669 	oxu_dbg(oxu, "split iso support is missing!\n");
2670 	return -ENOSYS;
2671 }
2672 
2673 static void scan_periodic(struct oxu_hcd *oxu)
2674 {
2675 	unsigned frame, clock, now_uframe, mod;
2676 	unsigned modified;
2677 
2678 	mod = oxu->periodic_size << 3;
2679 
2680 	/*
2681 	 * When running, scan from last scan point up to "now"
2682 	 * else clean up by scanning everything that's left.
2683 	 * Touches as few pages as possible:  cache-friendly.
2684 	 */
2685 	now_uframe = oxu->next_uframe;
2686 	if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2687 		clock = readl(&oxu->regs->frame_index);
2688 	else
2689 		clock = now_uframe + mod - 1;
2690 	clock %= mod;
2691 
2692 	for (;;) {
2693 		union ehci_shadow	q, *q_p;
2694 		__le32			type, *hw_p;
2695 
2696 		/* don't scan past the live uframe */
2697 		frame = now_uframe >> 3;
2698 		if (frame != (clock >> 3)) {
2699 			/* safe to scan the whole frame at once */
2700 			now_uframe |= 0x07;
2701 		}
2702 
2703 restart:
2704 		/* scan each element in frame's queue for completions */
2705 		q_p = &oxu->pshadow[frame];
2706 		hw_p = &oxu->periodic[frame];
2707 		q.ptr = q_p->ptr;
2708 		type = Q_NEXT_TYPE(*hw_p);
2709 		modified = 0;
2710 
2711 		while (q.ptr != NULL) {
2712 			union ehci_shadow temp;
2713 
2714 			switch (type) {
2715 			case Q_TYPE_QH:
2716 				/* handle any completions */
2717 				temp.qh = qh_get(q.qh);
2718 				type = Q_NEXT_TYPE(q.qh->hw_next);
2719 				q = q.qh->qh_next;
2720 				modified = qh_completions(oxu, temp.qh);
2721 				if (unlikely(list_empty(&temp.qh->qtd_list)))
2722 					intr_deschedule(oxu, temp.qh);
2723 				qh_put(temp.qh);
2724 				break;
2725 			default:
2726 				oxu_dbg(oxu, "corrupt type %d frame %d shadow %p\n",
2727 					type, frame, q.ptr);
2728 				q.ptr = NULL;
2729 			}
2730 
2731 			/* assume completion callbacks modify the queue */
2732 			if (unlikely(modified))
2733 				goto restart;
2734 		}
2735 
2736 		/* Stop when we catch up to the HC */
2737 
2738 		/* FIXME:  this assumes we won't get lapped when
2739 		 * latencies climb; that should be rare, but...
2740 		 * detect it, and just go all the way around.
2741 		 * FLR might help detect this case, so long as latencies
2742 		 * don't exceed periodic_size msec (default 1.024 sec).
2743 		 */
2744 
2745 		/* FIXME: likewise assumes HC doesn't halt mid-scan */
2746 
2747 		if (now_uframe == clock) {
2748 			unsigned	now;
2749 
2750 			if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2751 				break;
2752 			oxu->next_uframe = now_uframe;
2753 			now = readl(&oxu->regs->frame_index) % mod;
2754 			if (now_uframe == now)
2755 				break;
2756 
2757 			/* rescan the rest of this frame, then ... */
2758 			clock = now;
2759 		} else {
2760 			now_uframe++;
2761 			now_uframe %= mod;
2762 		}
2763 	}
2764 }
2765 
2766 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
2767  * The firmware seems to think that powering off is a wakeup event!
2768  * This routine turns off remote wakeup and everything else, on all ports.
2769  */
2770 static void ehci_turn_off_all_ports(struct oxu_hcd *oxu)
2771 {
2772 	int port = HCS_N_PORTS(oxu->hcs_params);
2773 
2774 	while (port--)
2775 		writel(PORT_RWC_BITS, &oxu->regs->port_status[port]);
2776 }
2777 
2778 static void ehci_port_power(struct oxu_hcd *oxu, int is_on)
2779 {
2780 	unsigned port;
2781 
2782 	if (!HCS_PPC(oxu->hcs_params))
2783 		return;
2784 
2785 	oxu_dbg(oxu, "...power%s ports...\n", is_on ? "up" : "down");
2786 	for (port = HCS_N_PORTS(oxu->hcs_params); port > 0; )
2787 		(void) oxu_hub_control(oxu_to_hcd(oxu),
2788 				is_on ? SetPortFeature : ClearPortFeature,
2789 				USB_PORT_FEAT_POWER,
2790 				port--, NULL, 0);
2791 	msleep(20);
2792 }
2793 
2794 /* Called from some interrupts, timers, and so on.
2795  * It calls driver completion functions, after dropping oxu->lock.
2796  */
2797 static void ehci_work(struct oxu_hcd *oxu)
2798 {
2799 	timer_action_done(oxu, TIMER_IO_WATCHDOG);
2800 	if (oxu->reclaim_ready)
2801 		end_unlink_async(oxu);
2802 
2803 	/* another CPU may drop oxu->lock during a schedule scan while
2804 	 * it reports urb completions.  this flag guards against bogus
2805 	 * attempts at re-entrant schedule scanning.
2806 	 */
2807 	if (oxu->scanning)
2808 		return;
2809 	oxu->scanning = 1;
2810 	scan_async(oxu);
2811 	if (oxu->next_uframe != -1)
2812 		scan_periodic(oxu);
2813 	oxu->scanning = 0;
2814 
2815 	/* the IO watchdog guards against hardware or driver bugs that
2816 	 * misplace IRQs, and should let us run completely without IRQs.
2817 	 * such lossage has been observed on both VT6202 and VT8235.
2818 	 */
2819 	if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) &&
2820 			(oxu->async->qh_next.ptr != NULL ||
2821 			 oxu->periodic_sched != 0))
2822 		timer_action(oxu, TIMER_IO_WATCHDOG);
2823 }
2824 
2825 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
2826 {
2827 	/* if we need to use IAA and it's busy, defer */
2828 	if (qh->qh_state == QH_STATE_LINKED
2829 			&& oxu->reclaim
2830 			&& HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) {
2831 		struct ehci_qh		*last;
2832 
2833 		for (last = oxu->reclaim;
2834 				last->reclaim;
2835 				last = last->reclaim)
2836 			continue;
2837 		qh->qh_state = QH_STATE_UNLINK_WAIT;
2838 		last->reclaim = qh;
2839 
2840 	/* bypass IAA if the hc can't care */
2841 	} else if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && oxu->reclaim)
2842 		end_unlink_async(oxu);
2843 
2844 	/* something else might have unlinked the qh by now */
2845 	if (qh->qh_state == QH_STATE_LINKED)
2846 		start_unlink_async(oxu, qh);
2847 }
2848 
2849 /*
2850  * USB host controller methods
2851  */
2852 
2853 static irqreturn_t oxu210_hcd_irq(struct usb_hcd *hcd)
2854 {
2855 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2856 	u32 status, pcd_status = 0;
2857 	int bh;
2858 
2859 	spin_lock(&oxu->lock);
2860 
2861 	status = readl(&oxu->regs->status);
2862 
2863 	/* e.g. cardbus physical eject */
2864 	if (status == ~(u32) 0) {
2865 		oxu_dbg(oxu, "device removed\n");
2866 		goto dead;
2867 	}
2868 
2869 	/* Shared IRQ? */
2870 	status &= INTR_MASK;
2871 	if (!status || unlikely(hcd->state == HC_STATE_HALT)) {
2872 		spin_unlock(&oxu->lock);
2873 		return IRQ_NONE;
2874 	}
2875 
2876 	/* clear (just) interrupts */
2877 	writel(status, &oxu->regs->status);
2878 	readl(&oxu->regs->command);	/* unblock posted write */
2879 	bh = 0;
2880 
2881 #ifdef OXU_VERBOSE_DEBUG
2882 	/* unrequested/ignored: Frame List Rollover */
2883 	dbg_status(oxu, "irq", status);
2884 #endif
2885 
2886 	/* INT, ERR, and IAA interrupt rates can be throttled */
2887 
2888 	/* normal [4.15.1.2] or error [4.15.1.1] completion */
2889 	if (likely((status & (STS_INT|STS_ERR)) != 0))
2890 		bh = 1;
2891 
2892 	/* complete the unlinking of some qh [4.15.2.3] */
2893 	if (status & STS_IAA) {
2894 		oxu->reclaim_ready = 1;
2895 		bh = 1;
2896 	}
2897 
2898 	/* remote wakeup [4.3.1] */
2899 	if (status & STS_PCD) {
2900 		unsigned i = HCS_N_PORTS(oxu->hcs_params);
2901 		pcd_status = status;
2902 
2903 		/* resume root hub? */
2904 		if (!(readl(&oxu->regs->command) & CMD_RUN))
2905 			usb_hcd_resume_root_hub(hcd);
2906 
2907 		while (i--) {
2908 			int pstatus = readl(&oxu->regs->port_status[i]);
2909 
2910 			if (pstatus & PORT_OWNER)
2911 				continue;
2912 			if (!(pstatus & PORT_RESUME)
2913 					|| oxu->reset_done[i] != 0)
2914 				continue;
2915 
2916 			/* start USB_RESUME_TIMEOUT resume signaling from this
2917 			 * port, and make hub_wq collect PORT_STAT_C_SUSPEND to
2918 			 * stop that signaling.
2919 			 */
2920 			oxu->reset_done[i] = jiffies +
2921 				msecs_to_jiffies(USB_RESUME_TIMEOUT);
2922 			oxu_dbg(oxu, "port %d remote wakeup\n", i + 1);
2923 			mod_timer(&hcd->rh_timer, oxu->reset_done[i]);
2924 		}
2925 	}
2926 
2927 	/* PCI errors [4.15.2.4] */
2928 	if (unlikely((status & STS_FATAL) != 0)) {
2929 		/* bogus "fatal" IRQs appear on some chips... why?  */
2930 		status = readl(&oxu->regs->status);
2931 		dbg_cmd(oxu, "fatal", readl(&oxu->regs->command));
2932 		dbg_status(oxu, "fatal", status);
2933 		if (status & STS_HALT) {
2934 			oxu_err(oxu, "fatal error\n");
2935 dead:
2936 			ehci_reset(oxu);
2937 			writel(0, &oxu->regs->configured_flag);
2938 			usb_hc_died(hcd);
2939 			/* generic layer kills/unlinks all urbs, then
2940 			 * uses oxu_stop to clean up the rest
2941 			 */
2942 			bh = 1;
2943 		}
2944 	}
2945 
2946 	if (bh)
2947 		ehci_work(oxu);
2948 	spin_unlock(&oxu->lock);
2949 	if (pcd_status & STS_PCD)
2950 		usb_hcd_poll_rh_status(hcd);
2951 	return IRQ_HANDLED;
2952 }
2953 
2954 static irqreturn_t oxu_irq(struct usb_hcd *hcd)
2955 {
2956 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2957 	int ret = IRQ_HANDLED;
2958 
2959 	u32 status = oxu_readl(hcd->regs, OXU_CHIPIRQSTATUS);
2960 	u32 enable = oxu_readl(hcd->regs, OXU_CHIPIRQEN_SET);
2961 
2962 	/* Disable all interrupt */
2963 	oxu_writel(hcd->regs, OXU_CHIPIRQEN_CLR, enable);
2964 
2965 	if ((oxu->is_otg && (status & OXU_USBOTGI)) ||
2966 		(!oxu->is_otg && (status & OXU_USBSPHI)))
2967 		oxu210_hcd_irq(hcd);
2968 	else
2969 		ret = IRQ_NONE;
2970 
2971 	/* Enable all interrupt back */
2972 	oxu_writel(hcd->regs, OXU_CHIPIRQEN_SET, enable);
2973 
2974 	return ret;
2975 }
2976 
2977 static void oxu_watchdog(struct timer_list *t)
2978 {
2979 	struct oxu_hcd	*oxu = from_timer(oxu, t, watchdog);
2980 	unsigned long flags;
2981 
2982 	spin_lock_irqsave(&oxu->lock, flags);
2983 
2984 	/* lost IAA irqs wedge things badly; seen with a vt8235 */
2985 	if (oxu->reclaim) {
2986 		u32 status = readl(&oxu->regs->status);
2987 		if (status & STS_IAA) {
2988 			oxu_vdbg(oxu, "lost IAA\n");
2989 			writel(STS_IAA, &oxu->regs->status);
2990 			oxu->reclaim_ready = 1;
2991 		}
2992 	}
2993 
2994 	/* stop async processing after it's idled a bit */
2995 	if (test_bit(TIMER_ASYNC_OFF, &oxu->actions))
2996 		start_unlink_async(oxu, oxu->async);
2997 
2998 	/* oxu could run by timer, without IRQs ... */
2999 	ehci_work(oxu);
3000 
3001 	spin_unlock_irqrestore(&oxu->lock, flags);
3002 }
3003 
3004 /* One-time init, only for memory state.
3005  */
3006 static int oxu_hcd_init(struct usb_hcd *hcd)
3007 {
3008 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3009 	u32 temp;
3010 	int retval;
3011 	u32 hcc_params;
3012 
3013 	spin_lock_init(&oxu->lock);
3014 
3015 	timer_setup(&oxu->watchdog, oxu_watchdog, 0);
3016 
3017 	/*
3018 	 * hw default: 1K periodic list heads, one per frame.
3019 	 * periodic_size can shrink by USBCMD update if hcc_params allows.
3020 	 */
3021 	oxu->periodic_size = DEFAULT_I_TDPS;
3022 	retval = ehci_mem_init(oxu, GFP_KERNEL);
3023 	if (retval < 0)
3024 		return retval;
3025 
3026 	/* controllers may cache some of the periodic schedule ... */
3027 	hcc_params = readl(&oxu->caps->hcc_params);
3028 	if (HCC_ISOC_CACHE(hcc_params))		/* full frame cache */
3029 		oxu->i_thresh = 8;
3030 	else					/* N microframes cached */
3031 		oxu->i_thresh = 2 + HCC_ISOC_THRES(hcc_params);
3032 
3033 	oxu->reclaim = NULL;
3034 	oxu->reclaim_ready = 0;
3035 	oxu->next_uframe = -1;
3036 
3037 	/*
3038 	 * dedicate a qh for the async ring head, since we couldn't unlink
3039 	 * a 'real' qh without stopping the async schedule [4.8].  use it
3040 	 * as the 'reclamation list head' too.
3041 	 * its dummy is used in hw_alt_next of many tds, to prevent the qh
3042 	 * from automatically advancing to the next td after short reads.
3043 	 */
3044 	oxu->async->qh_next.qh = NULL;
3045 	oxu->async->hw_next = QH_NEXT(oxu->async->qh_dma);
3046 	oxu->async->hw_info1 = cpu_to_le32(QH_HEAD);
3047 	oxu->async->hw_token = cpu_to_le32(QTD_STS_HALT);
3048 	oxu->async->hw_qtd_next = EHCI_LIST_END;
3049 	oxu->async->qh_state = QH_STATE_LINKED;
3050 	oxu->async->hw_alt_next = QTD_NEXT(oxu->async->dummy->qtd_dma);
3051 
3052 	/* clear interrupt enables, set irq latency */
3053 	if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
3054 		log2_irq_thresh = 0;
3055 	temp = 1 << (16 + log2_irq_thresh);
3056 	if (HCC_CANPARK(hcc_params)) {
3057 		/* HW default park == 3, on hardware that supports it (like
3058 		 * NVidia and ALI silicon), maximizes throughput on the async
3059 		 * schedule by avoiding QH fetches between transfers.
3060 		 *
3061 		 * With fast usb storage devices and NForce2, "park" seems to
3062 		 * make problems:  throughput reduction (!), data errors...
3063 		 */
3064 		if (park) {
3065 			park = min(park, (unsigned) 3);
3066 			temp |= CMD_PARK;
3067 			temp |= park << 8;
3068 		}
3069 		oxu_dbg(oxu, "park %d\n", park);
3070 	}
3071 	if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
3072 		/* periodic schedule size can be smaller than default */
3073 		temp &= ~(3 << 2);
3074 		temp |= (EHCI_TUNE_FLS << 2);
3075 	}
3076 	oxu->command = temp;
3077 
3078 	return 0;
3079 }
3080 
3081 /* Called during probe() after chip reset completes.
3082  */
3083 static int oxu_reset(struct usb_hcd *hcd)
3084 {
3085 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3086 
3087 	spin_lock_init(&oxu->mem_lock);
3088 	INIT_LIST_HEAD(&oxu->urb_list);
3089 	oxu->urb_len = 0;
3090 
3091 	if (oxu->is_otg) {
3092 		oxu->caps = hcd->regs + OXU_OTG_CAP_OFFSET;
3093 		oxu->regs = hcd->regs + OXU_OTG_CAP_OFFSET + \
3094 			HC_LENGTH(readl(&oxu->caps->hc_capbase));
3095 
3096 		oxu->mem = hcd->regs + OXU_SPH_MEM;
3097 	} else {
3098 		oxu->caps = hcd->regs + OXU_SPH_CAP_OFFSET;
3099 		oxu->regs = hcd->regs + OXU_SPH_CAP_OFFSET + \
3100 			HC_LENGTH(readl(&oxu->caps->hc_capbase));
3101 
3102 		oxu->mem = hcd->regs + OXU_OTG_MEM;
3103 	}
3104 
3105 	oxu->hcs_params = readl(&oxu->caps->hcs_params);
3106 	oxu->sbrn = 0x20;
3107 
3108 	return oxu_hcd_init(hcd);
3109 }
3110 
3111 static int oxu_run(struct usb_hcd *hcd)
3112 {
3113 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3114 	int retval;
3115 	u32 temp, hcc_params;
3116 
3117 	hcd->uses_new_polling = 1;
3118 
3119 	/* EHCI spec section 4.1 */
3120 	retval = ehci_reset(oxu);
3121 	if (retval != 0) {
3122 		ehci_mem_cleanup(oxu);
3123 		return retval;
3124 	}
3125 	writel(oxu->periodic_dma, &oxu->regs->frame_list);
3126 	writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
3127 
3128 	/* hcc_params controls whether oxu->regs->segment must (!!!)
3129 	 * be used; it constrains QH/ITD/SITD and QTD locations.
3130 	 * dma_pool consistent memory always uses segment zero.
3131 	 * streaming mappings for I/O buffers, like pci_map_single(),
3132 	 * can return segments above 4GB, if the device allows.
3133 	 *
3134 	 * NOTE:  the dma mask is visible through dev->dma_mask, so
3135 	 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
3136 	 * Scsi_Host.highmem_io, and so forth.  It's readonly to all
3137 	 * host side drivers though.
3138 	 */
3139 	hcc_params = readl(&oxu->caps->hcc_params);
3140 	if (HCC_64BIT_ADDR(hcc_params))
3141 		writel(0, &oxu->regs->segment);
3142 
3143 	oxu->command &= ~(CMD_LRESET | CMD_IAAD | CMD_PSE |
3144 				CMD_ASE | CMD_RESET);
3145 	oxu->command |= CMD_RUN;
3146 	writel(oxu->command, &oxu->regs->command);
3147 	dbg_cmd(oxu, "init", oxu->command);
3148 
3149 	/*
3150 	 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
3151 	 * are explicitly handed to companion controller(s), so no TT is
3152 	 * involved with the root hub.  (Except where one is integrated,
3153 	 * and there's no companion controller unless maybe for USB OTG.)
3154 	 */
3155 	hcd->state = HC_STATE_RUNNING;
3156 	writel(FLAG_CF, &oxu->regs->configured_flag);
3157 	readl(&oxu->regs->command);	/* unblock posted writes */
3158 
3159 	temp = HC_VERSION(readl(&oxu->caps->hc_capbase));
3160 	oxu_info(oxu, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n",
3161 		((oxu->sbrn & 0xf0)>>4), (oxu->sbrn & 0x0f),
3162 		temp >> 8, temp & 0xff, DRIVER_VERSION,
3163 		ignore_oc ? ", overcurrent ignored" : "");
3164 
3165 	writel(INTR_MASK, &oxu->regs->intr_enable); /* Turn On Interrupts */
3166 
3167 	return 0;
3168 }
3169 
3170 static void oxu_stop(struct usb_hcd *hcd)
3171 {
3172 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3173 
3174 	/* Turn off port power on all root hub ports. */
3175 	ehci_port_power(oxu, 0);
3176 
3177 	/* no more interrupts ... */
3178 	del_timer_sync(&oxu->watchdog);
3179 
3180 	spin_lock_irq(&oxu->lock);
3181 	if (HC_IS_RUNNING(hcd->state))
3182 		ehci_quiesce(oxu);
3183 
3184 	ehci_reset(oxu);
3185 	writel(0, &oxu->regs->intr_enable);
3186 	spin_unlock_irq(&oxu->lock);
3187 
3188 	/* let companion controllers work when we aren't */
3189 	writel(0, &oxu->regs->configured_flag);
3190 
3191 	/* root hub is shut down separately (first, when possible) */
3192 	spin_lock_irq(&oxu->lock);
3193 	if (oxu->async)
3194 		ehci_work(oxu);
3195 	spin_unlock_irq(&oxu->lock);
3196 	ehci_mem_cleanup(oxu);
3197 
3198 	dbg_status(oxu, "oxu_stop completed", readl(&oxu->regs->status));
3199 }
3200 
3201 /* Kick in for silicon on any bus (not just pci, etc).
3202  * This forcibly disables dma and IRQs, helping kexec and other cases
3203  * where the next system software may expect clean state.
3204  */
3205 static void oxu_shutdown(struct usb_hcd *hcd)
3206 {
3207 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3208 
3209 	(void) ehci_halt(oxu);
3210 	ehci_turn_off_all_ports(oxu);
3211 
3212 	/* make BIOS/etc use companion controller during reboot */
3213 	writel(0, &oxu->regs->configured_flag);
3214 
3215 	/* unblock posted writes */
3216 	readl(&oxu->regs->configured_flag);
3217 }
3218 
3219 /* Non-error returns are a promise to giveback() the urb later
3220  * we drop ownership so next owner (or urb unlink) can get it
3221  *
3222  * urb + dev is in hcd.self.controller.urb_list
3223  * we're queueing TDs onto software and hardware lists
3224  *
3225  * hcd-specific init for hcpriv hasn't been done yet
3226  *
3227  * NOTE:  control, bulk, and interrupt share the same code to append TDs
3228  * to a (possibly active) QH, and the same QH scanning code.
3229  */
3230 static int __oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
3231 				gfp_t mem_flags)
3232 {
3233 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3234 	struct list_head qtd_list;
3235 
3236 	INIT_LIST_HEAD(&qtd_list);
3237 
3238 	switch (usb_pipetype(urb->pipe)) {
3239 	case PIPE_CONTROL:
3240 	case PIPE_BULK:
3241 	default:
3242 		if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
3243 			return -ENOMEM;
3244 		return submit_async(oxu, urb, &qtd_list, mem_flags);
3245 
3246 	case PIPE_INTERRUPT:
3247 		if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
3248 			return -ENOMEM;
3249 		return intr_submit(oxu, urb, &qtd_list, mem_flags);
3250 
3251 	case PIPE_ISOCHRONOUS:
3252 		if (urb->dev->speed == USB_SPEED_HIGH)
3253 			return itd_submit(oxu, urb, mem_flags);
3254 		else
3255 			return sitd_submit(oxu, urb, mem_flags);
3256 	}
3257 }
3258 
3259 /* This function is responsible for breaking URBs with big data size
3260  * into smaller size and processing small urbs in sequence.
3261  */
3262 static int oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
3263 				gfp_t mem_flags)
3264 {
3265 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3266 	int num, rem;
3267 	void *transfer_buffer;
3268 	struct urb *murb;
3269 	int i, ret;
3270 
3271 	/* If not bulk pipe just enqueue the URB */
3272 	if (!usb_pipebulk(urb->pipe))
3273 		return __oxu_urb_enqueue(hcd, urb, mem_flags);
3274 
3275 	/* Otherwise we should verify the USB transfer buffer size! */
3276 	transfer_buffer = urb->transfer_buffer;
3277 
3278 	num = urb->transfer_buffer_length / 4096;
3279 	rem = urb->transfer_buffer_length % 4096;
3280 	if (rem != 0)
3281 		num++;
3282 
3283 	/* If URB is smaller than 4096 bytes just enqueue it! */
3284 	if (num == 1)
3285 		return __oxu_urb_enqueue(hcd, urb, mem_flags);
3286 
3287 	/* Ok, we have more job to do! :) */
3288 
3289 	for (i = 0; i < num - 1; i++) {
3290 		/* Get free micro URB poll till a free urb is received */
3291 
3292 		do {
3293 			murb = (struct urb *) oxu_murb_alloc(oxu);
3294 			if (!murb)
3295 				schedule();
3296 		} while (!murb);
3297 
3298 		/* Coping the urb */
3299 		memcpy(murb, urb, sizeof(struct urb));
3300 
3301 		murb->transfer_buffer_length = 4096;
3302 		murb->transfer_buffer = transfer_buffer + i * 4096;
3303 
3304 		/* Null pointer for the encodes that this is a micro urb */
3305 		murb->complete = NULL;
3306 
3307 		((struct oxu_murb *) murb)->main = urb;
3308 		((struct oxu_murb *) murb)->last = 0;
3309 
3310 		/* This loop is to guarantee urb to be processed when there's
3311 		 * not enough resources at a particular time by retrying.
3312 		 */
3313 		do {
3314 			ret  = __oxu_urb_enqueue(hcd, murb, mem_flags);
3315 			if (ret)
3316 				schedule();
3317 		} while (ret);
3318 	}
3319 
3320 	/* Last urb requires special handling  */
3321 
3322 	/* Get free micro URB poll till a free urb is received */
3323 	do {
3324 		murb = (struct urb *) oxu_murb_alloc(oxu);
3325 		if (!murb)
3326 			schedule();
3327 	} while (!murb);
3328 
3329 	/* Coping the urb */
3330 	memcpy(murb, urb, sizeof(struct urb));
3331 
3332 	murb->transfer_buffer_length = rem > 0 ? rem : 4096;
3333 	murb->transfer_buffer = transfer_buffer + (num - 1) * 4096;
3334 
3335 	/* Null pointer for the encodes that this is a micro urb */
3336 	murb->complete = NULL;
3337 
3338 	((struct oxu_murb *) murb)->main = urb;
3339 	((struct oxu_murb *) murb)->last = 1;
3340 
3341 	do {
3342 		ret = __oxu_urb_enqueue(hcd, murb, mem_flags);
3343 		if (ret)
3344 			schedule();
3345 	} while (ret);
3346 
3347 	return ret;
3348 }
3349 
3350 /* Remove from hardware lists.
3351  * Completions normally happen asynchronously
3352  */
3353 static int oxu_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
3354 {
3355 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3356 	struct ehci_qh *qh;
3357 	unsigned long flags;
3358 
3359 	spin_lock_irqsave(&oxu->lock, flags);
3360 	switch (usb_pipetype(urb->pipe)) {
3361 	case PIPE_CONTROL:
3362 	case PIPE_BULK:
3363 	default:
3364 		qh = (struct ehci_qh *) urb->hcpriv;
3365 		if (!qh)
3366 			break;
3367 		unlink_async(oxu, qh);
3368 		break;
3369 
3370 	case PIPE_INTERRUPT:
3371 		qh = (struct ehci_qh *) urb->hcpriv;
3372 		if (!qh)
3373 			break;
3374 		switch (qh->qh_state) {
3375 		case QH_STATE_LINKED:
3376 			intr_deschedule(oxu, qh);
3377 			/* FALL THROUGH */
3378 		case QH_STATE_IDLE:
3379 			qh_completions(oxu, qh);
3380 			break;
3381 		default:
3382 			oxu_dbg(oxu, "bogus qh %p state %d\n",
3383 					qh, qh->qh_state);
3384 			goto done;
3385 		}
3386 
3387 		/* reschedule QH iff another request is queued */
3388 		if (!list_empty(&qh->qtd_list)
3389 				&& HC_IS_RUNNING(hcd->state)) {
3390 			int status;
3391 
3392 			status = qh_schedule(oxu, qh);
3393 			spin_unlock_irqrestore(&oxu->lock, flags);
3394 
3395 			if (status != 0) {
3396 				/* shouldn't happen often, but ...
3397 				 * FIXME kill those tds' urbs
3398 				 */
3399 				dev_err(hcd->self.controller,
3400 					"can't reschedule qh %p, err %d\n", qh,
3401 					status);
3402 			}
3403 			return status;
3404 		}
3405 		break;
3406 	}
3407 done:
3408 	spin_unlock_irqrestore(&oxu->lock, flags);
3409 	return 0;
3410 }
3411 
3412 /* Bulk qh holds the data toggle */
3413 static void oxu_endpoint_disable(struct usb_hcd *hcd,
3414 					struct usb_host_endpoint *ep)
3415 {
3416 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3417 	unsigned long		flags;
3418 	struct ehci_qh		*qh, *tmp;
3419 
3420 	/* ASSERT:  any requests/urbs are being unlinked */
3421 	/* ASSERT:  nobody can be submitting urbs for this any more */
3422 
3423 rescan:
3424 	spin_lock_irqsave(&oxu->lock, flags);
3425 	qh = ep->hcpriv;
3426 	if (!qh)
3427 		goto done;
3428 
3429 	/* endpoints can be iso streams.  for now, we don't
3430 	 * accelerate iso completions ... so spin a while.
3431 	 */
3432 	if (qh->hw_info1 == 0) {
3433 		oxu_vdbg(oxu, "iso delay\n");
3434 		goto idle_timeout;
3435 	}
3436 
3437 	if (!HC_IS_RUNNING(hcd->state))
3438 		qh->qh_state = QH_STATE_IDLE;
3439 	switch (qh->qh_state) {
3440 	case QH_STATE_LINKED:
3441 		for (tmp = oxu->async->qh_next.qh;
3442 				tmp && tmp != qh;
3443 				tmp = tmp->qh_next.qh)
3444 			continue;
3445 		/* periodic qh self-unlinks on empty */
3446 		if (!tmp)
3447 			goto nogood;
3448 		unlink_async(oxu, qh);
3449 		/* FALL THROUGH */
3450 	case QH_STATE_UNLINK:		/* wait for hw to finish? */
3451 idle_timeout:
3452 		spin_unlock_irqrestore(&oxu->lock, flags);
3453 		schedule_timeout_uninterruptible(1);
3454 		goto rescan;
3455 	case QH_STATE_IDLE:		/* fully unlinked */
3456 		if (list_empty(&qh->qtd_list)) {
3457 			qh_put(qh);
3458 			break;
3459 		}
3460 		/* fall through */
3461 	default:
3462 nogood:
3463 		/* caller was supposed to have unlinked any requests;
3464 		 * that's not our job.  just leak this memory.
3465 		 */
3466 		oxu_err(oxu, "qh %p (#%02x) state %d%s\n",
3467 			qh, ep->desc.bEndpointAddress, qh->qh_state,
3468 			list_empty(&qh->qtd_list) ? "" : "(has tds)");
3469 		break;
3470 	}
3471 	ep->hcpriv = NULL;
3472 done:
3473 	spin_unlock_irqrestore(&oxu->lock, flags);
3474 }
3475 
3476 static int oxu_get_frame(struct usb_hcd *hcd)
3477 {
3478 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3479 
3480 	return (readl(&oxu->regs->frame_index) >> 3) %
3481 		oxu->periodic_size;
3482 }
3483 
3484 /* Build "status change" packet (one or two bytes) from HC registers */
3485 static int oxu_hub_status_data(struct usb_hcd *hcd, char *buf)
3486 {
3487 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3488 	u32 temp, mask, status = 0;
3489 	int ports, i, retval = 1;
3490 	unsigned long flags;
3491 
3492 	/* if !PM, root hub timers won't get shut down ... */
3493 	if (!HC_IS_RUNNING(hcd->state))
3494 		return 0;
3495 
3496 	/* init status to no-changes */
3497 	buf[0] = 0;
3498 	ports = HCS_N_PORTS(oxu->hcs_params);
3499 	if (ports > 7) {
3500 		buf[1] = 0;
3501 		retval++;
3502 	}
3503 
3504 	/* Some boards (mostly VIA?) report bogus overcurrent indications,
3505 	 * causing massive log spam unless we completely ignore them.  It
3506 	 * may be relevant that VIA VT8235 controllers, where PORT_POWER is
3507 	 * always set, seem to clear PORT_OCC and PORT_CSC when writing to
3508 	 * PORT_POWER; that's surprising, but maybe within-spec.
3509 	 */
3510 	if (!ignore_oc)
3511 		mask = PORT_CSC | PORT_PEC | PORT_OCC;
3512 	else
3513 		mask = PORT_CSC | PORT_PEC;
3514 
3515 	/* no hub change reports (bit 0) for now (power, ...) */
3516 
3517 	/* port N changes (bit N)? */
3518 	spin_lock_irqsave(&oxu->lock, flags);
3519 	for (i = 0; i < ports; i++) {
3520 		temp = readl(&oxu->regs->port_status[i]);
3521 
3522 		/*
3523 		 * Return status information even for ports with OWNER set.
3524 		 * Otherwise hub_wq wouldn't see the disconnect event when a
3525 		 * high-speed device is switched over to the companion
3526 		 * controller by the user.
3527 		 */
3528 
3529 		if (!(temp & PORT_CONNECT))
3530 			oxu->reset_done[i] = 0;
3531 		if ((temp & mask) != 0 || ((temp & PORT_RESUME) != 0 &&
3532 				time_after_eq(jiffies, oxu->reset_done[i]))) {
3533 			if (i < 7)
3534 				buf[0] |= 1 << (i + 1);
3535 			else
3536 				buf[1] |= 1 << (i - 7);
3537 			status = STS_PCD;
3538 		}
3539 	}
3540 	/* FIXME autosuspend idle root hubs */
3541 	spin_unlock_irqrestore(&oxu->lock, flags);
3542 	return status ? retval : 0;
3543 }
3544 
3545 /* Returns the speed of a device attached to a port on the root hub. */
3546 static inline unsigned int oxu_port_speed(struct oxu_hcd *oxu,
3547 						unsigned int portsc)
3548 {
3549 	switch ((portsc >> 26) & 3) {
3550 	case 0:
3551 		return 0;
3552 	case 1:
3553 		return USB_PORT_STAT_LOW_SPEED;
3554 	case 2:
3555 	default:
3556 		return USB_PORT_STAT_HIGH_SPEED;
3557 	}
3558 }
3559 
3560 #define	PORT_WAKE_BITS	(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E)
3561 static int oxu_hub_control(struct usb_hcd *hcd, u16 typeReq,
3562 				u16 wValue, u16 wIndex, char *buf, u16 wLength)
3563 {
3564 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3565 	int ports = HCS_N_PORTS(oxu->hcs_params);
3566 	u32 __iomem *status_reg = &oxu->regs->port_status[wIndex - 1];
3567 	u32 temp, status;
3568 	unsigned long	flags;
3569 	int retval = 0;
3570 	unsigned selector;
3571 
3572 	/*
3573 	 * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
3574 	 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
3575 	 * (track current state ourselves) ... blink for diagnostics,
3576 	 * power, "this is the one", etc.  EHCI spec supports this.
3577 	 */
3578 
3579 	spin_lock_irqsave(&oxu->lock, flags);
3580 	switch (typeReq) {
3581 	case ClearHubFeature:
3582 		switch (wValue) {
3583 		case C_HUB_LOCAL_POWER:
3584 		case C_HUB_OVER_CURRENT:
3585 			/* no hub-wide feature/status flags */
3586 			break;
3587 		default:
3588 			goto error;
3589 		}
3590 		break;
3591 	case ClearPortFeature:
3592 		if (!wIndex || wIndex > ports)
3593 			goto error;
3594 		wIndex--;
3595 		temp = readl(status_reg);
3596 
3597 		/*
3598 		 * Even if OWNER is set, so the port is owned by the
3599 		 * companion controller, hub_wq needs to be able to clear
3600 		 * the port-change status bits (especially
3601 		 * USB_PORT_STAT_C_CONNECTION).
3602 		 */
3603 
3604 		switch (wValue) {
3605 		case USB_PORT_FEAT_ENABLE:
3606 			writel(temp & ~PORT_PE, status_reg);
3607 			break;
3608 		case USB_PORT_FEAT_C_ENABLE:
3609 			writel((temp & ~PORT_RWC_BITS) | PORT_PEC, status_reg);
3610 			break;
3611 		case USB_PORT_FEAT_SUSPEND:
3612 			if (temp & PORT_RESET)
3613 				goto error;
3614 			if (temp & PORT_SUSPEND) {
3615 				if ((temp & PORT_PE) == 0)
3616 					goto error;
3617 				/* resume signaling for 20 msec */
3618 				temp &= ~(PORT_RWC_BITS | PORT_WAKE_BITS);
3619 				writel(temp | PORT_RESUME, status_reg);
3620 				oxu->reset_done[wIndex] = jiffies
3621 						+ msecs_to_jiffies(20);
3622 			}
3623 			break;
3624 		case USB_PORT_FEAT_C_SUSPEND:
3625 			/* we auto-clear this feature */
3626 			break;
3627 		case USB_PORT_FEAT_POWER:
3628 			if (HCS_PPC(oxu->hcs_params))
3629 				writel(temp & ~(PORT_RWC_BITS | PORT_POWER),
3630 					  status_reg);
3631 			break;
3632 		case USB_PORT_FEAT_C_CONNECTION:
3633 			writel((temp & ~PORT_RWC_BITS) | PORT_CSC, status_reg);
3634 			break;
3635 		case USB_PORT_FEAT_C_OVER_CURRENT:
3636 			writel((temp & ~PORT_RWC_BITS) | PORT_OCC, status_reg);
3637 			break;
3638 		case USB_PORT_FEAT_C_RESET:
3639 			/* GetPortStatus clears reset */
3640 			break;
3641 		default:
3642 			goto error;
3643 		}
3644 		readl(&oxu->regs->command);	/* unblock posted write */
3645 		break;
3646 	case GetHubDescriptor:
3647 		ehci_hub_descriptor(oxu, (struct usb_hub_descriptor *)
3648 			buf);
3649 		break;
3650 	case GetHubStatus:
3651 		/* no hub-wide feature/status flags */
3652 		memset(buf, 0, 4);
3653 		break;
3654 	case GetPortStatus:
3655 		if (!wIndex || wIndex > ports)
3656 			goto error;
3657 		wIndex--;
3658 		status = 0;
3659 		temp = readl(status_reg);
3660 
3661 		/* wPortChange bits */
3662 		if (temp & PORT_CSC)
3663 			status |= USB_PORT_STAT_C_CONNECTION << 16;
3664 		if (temp & PORT_PEC)
3665 			status |= USB_PORT_STAT_C_ENABLE << 16;
3666 		if ((temp & PORT_OCC) && !ignore_oc)
3667 			status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3668 
3669 		/* whoever resumes must GetPortStatus to complete it!! */
3670 		if (temp & PORT_RESUME) {
3671 
3672 			/* Remote Wakeup received? */
3673 			if (!oxu->reset_done[wIndex]) {
3674 				/* resume signaling for 20 msec */
3675 				oxu->reset_done[wIndex] = jiffies
3676 						+ msecs_to_jiffies(20);
3677 				/* check the port again */
3678 				mod_timer(&oxu_to_hcd(oxu)->rh_timer,
3679 						oxu->reset_done[wIndex]);
3680 			}
3681 
3682 			/* resume completed? */
3683 			else if (time_after_eq(jiffies,
3684 					oxu->reset_done[wIndex])) {
3685 				status |= USB_PORT_STAT_C_SUSPEND << 16;
3686 				oxu->reset_done[wIndex] = 0;
3687 
3688 				/* stop resume signaling */
3689 				temp = readl(status_reg);
3690 				writel(temp & ~(PORT_RWC_BITS | PORT_RESUME),
3691 					status_reg);
3692 				retval = handshake(oxu, status_reg,
3693 					   PORT_RESUME, 0, 2000 /* 2msec */);
3694 				if (retval != 0) {
3695 					oxu_err(oxu,
3696 						"port %d resume error %d\n",
3697 						wIndex + 1, retval);
3698 					goto error;
3699 				}
3700 				temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
3701 			}
3702 		}
3703 
3704 		/* whoever resets must GetPortStatus to complete it!! */
3705 		if ((temp & PORT_RESET)
3706 				&& time_after_eq(jiffies,
3707 					oxu->reset_done[wIndex])) {
3708 			status |= USB_PORT_STAT_C_RESET << 16;
3709 			oxu->reset_done[wIndex] = 0;
3710 
3711 			/* force reset to complete */
3712 			writel(temp & ~(PORT_RWC_BITS | PORT_RESET),
3713 					status_reg);
3714 			/* REVISIT:  some hardware needs 550+ usec to clear
3715 			 * this bit; seems too long to spin routinely...
3716 			 */
3717 			retval = handshake(oxu, status_reg,
3718 					PORT_RESET, 0, 750);
3719 			if (retval != 0) {
3720 				oxu_err(oxu, "port %d reset error %d\n",
3721 					wIndex + 1, retval);
3722 				goto error;
3723 			}
3724 
3725 			/* see what we found out */
3726 			temp = check_reset_complete(oxu, wIndex, status_reg,
3727 					readl(status_reg));
3728 		}
3729 
3730 		/* transfer dedicated ports to the companion hc */
3731 		if ((temp & PORT_CONNECT) &&
3732 				test_bit(wIndex, &oxu->companion_ports)) {
3733 			temp &= ~PORT_RWC_BITS;
3734 			temp |= PORT_OWNER;
3735 			writel(temp, status_reg);
3736 			oxu_dbg(oxu, "port %d --> companion\n", wIndex + 1);
3737 			temp = readl(status_reg);
3738 		}
3739 
3740 		/*
3741 		 * Even if OWNER is set, there's no harm letting hub_wq
3742 		 * see the wPortStatus values (they should all be 0 except
3743 		 * for PORT_POWER anyway).
3744 		 */
3745 
3746 		if (temp & PORT_CONNECT) {
3747 			status |= USB_PORT_STAT_CONNECTION;
3748 			/* status may be from integrated TT */
3749 			status |= oxu_port_speed(oxu, temp);
3750 		}
3751 		if (temp & PORT_PE)
3752 			status |= USB_PORT_STAT_ENABLE;
3753 		if (temp & (PORT_SUSPEND|PORT_RESUME))
3754 			status |= USB_PORT_STAT_SUSPEND;
3755 		if (temp & PORT_OC)
3756 			status |= USB_PORT_STAT_OVERCURRENT;
3757 		if (temp & PORT_RESET)
3758 			status |= USB_PORT_STAT_RESET;
3759 		if (temp & PORT_POWER)
3760 			status |= USB_PORT_STAT_POWER;
3761 
3762 #ifndef	OXU_VERBOSE_DEBUG
3763 	if (status & ~0xffff)	/* only if wPortChange is interesting */
3764 #endif
3765 		dbg_port(oxu, "GetStatus", wIndex + 1, temp);
3766 		put_unaligned(cpu_to_le32(status), (__le32 *) buf);
3767 		break;
3768 	case SetHubFeature:
3769 		switch (wValue) {
3770 		case C_HUB_LOCAL_POWER:
3771 		case C_HUB_OVER_CURRENT:
3772 			/* no hub-wide feature/status flags */
3773 			break;
3774 		default:
3775 			goto error;
3776 		}
3777 		break;
3778 	case SetPortFeature:
3779 		selector = wIndex >> 8;
3780 		wIndex &= 0xff;
3781 		if (!wIndex || wIndex > ports)
3782 			goto error;
3783 		wIndex--;
3784 		temp = readl(status_reg);
3785 		if (temp & PORT_OWNER)
3786 			break;
3787 
3788 		temp &= ~PORT_RWC_BITS;
3789 		switch (wValue) {
3790 		case USB_PORT_FEAT_SUSPEND:
3791 			if ((temp & PORT_PE) == 0
3792 					|| (temp & PORT_RESET) != 0)
3793 				goto error;
3794 			if (device_may_wakeup(&hcd->self.root_hub->dev))
3795 				temp |= PORT_WAKE_BITS;
3796 			writel(temp | PORT_SUSPEND, status_reg);
3797 			break;
3798 		case USB_PORT_FEAT_POWER:
3799 			if (HCS_PPC(oxu->hcs_params))
3800 				writel(temp | PORT_POWER, status_reg);
3801 			break;
3802 		case USB_PORT_FEAT_RESET:
3803 			if (temp & PORT_RESUME)
3804 				goto error;
3805 			/* line status bits may report this as low speed,
3806 			 * which can be fine if this root hub has a
3807 			 * transaction translator built in.
3808 			 */
3809 			oxu_vdbg(oxu, "port %d reset\n", wIndex + 1);
3810 			temp |= PORT_RESET;
3811 			temp &= ~PORT_PE;
3812 
3813 			/*
3814 			 * caller must wait, then call GetPortStatus
3815 			 * usb 2.0 spec says 50 ms resets on root
3816 			 */
3817 			oxu->reset_done[wIndex] = jiffies
3818 					+ msecs_to_jiffies(50);
3819 			writel(temp, status_reg);
3820 			break;
3821 
3822 		/* For downstream facing ports (these):  one hub port is put
3823 		 * into test mode according to USB2 11.24.2.13, then the hub
3824 		 * must be reset (which for root hub now means rmmod+modprobe,
3825 		 * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
3826 		 * about the EHCI-specific stuff.
3827 		 */
3828 		case USB_PORT_FEAT_TEST:
3829 			if (!selector || selector > 5)
3830 				goto error;
3831 			ehci_quiesce(oxu);
3832 			ehci_halt(oxu);
3833 			temp |= selector << 16;
3834 			writel(temp, status_reg);
3835 			break;
3836 
3837 		default:
3838 			goto error;
3839 		}
3840 		readl(&oxu->regs->command);	/* unblock posted writes */
3841 		break;
3842 
3843 	default:
3844 error:
3845 		/* "stall" on error */
3846 		retval = -EPIPE;
3847 	}
3848 	spin_unlock_irqrestore(&oxu->lock, flags);
3849 	return retval;
3850 }
3851 
3852 #ifdef CONFIG_PM
3853 
3854 static int oxu_bus_suspend(struct usb_hcd *hcd)
3855 {
3856 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3857 	int port;
3858 	int mask;
3859 
3860 	oxu_dbg(oxu, "suspend root hub\n");
3861 
3862 	if (time_before(jiffies, oxu->next_statechange))
3863 		msleep(5);
3864 
3865 	port = HCS_N_PORTS(oxu->hcs_params);
3866 	spin_lock_irq(&oxu->lock);
3867 
3868 	/* stop schedules, clean any completed work */
3869 	if (HC_IS_RUNNING(hcd->state)) {
3870 		ehci_quiesce(oxu);
3871 		hcd->state = HC_STATE_QUIESCING;
3872 	}
3873 	oxu->command = readl(&oxu->regs->command);
3874 	if (oxu->reclaim)
3875 		oxu->reclaim_ready = 1;
3876 	ehci_work(oxu);
3877 
3878 	/* Unlike other USB host controller types, EHCI doesn't have
3879 	 * any notion of "global" or bus-wide suspend.  The driver has
3880 	 * to manually suspend all the active unsuspended ports, and
3881 	 * then manually resume them in the bus_resume() routine.
3882 	 */
3883 	oxu->bus_suspended = 0;
3884 	while (port--) {
3885 		u32 __iomem *reg = &oxu->regs->port_status[port];
3886 		u32 t1 = readl(reg) & ~PORT_RWC_BITS;
3887 		u32 t2 = t1;
3888 
3889 		/* keep track of which ports we suspend */
3890 		if ((t1 & PORT_PE) && !(t1 & PORT_OWNER) &&
3891 				!(t1 & PORT_SUSPEND)) {
3892 			t2 |= PORT_SUSPEND;
3893 			set_bit(port, &oxu->bus_suspended);
3894 		}
3895 
3896 		/* enable remote wakeup on all ports */
3897 		if (device_may_wakeup(&hcd->self.root_hub->dev))
3898 			t2 |= PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E;
3899 		else
3900 			t2 &= ~(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E);
3901 
3902 		if (t1 != t2) {
3903 			oxu_vdbg(oxu, "port %d, %08x -> %08x\n",
3904 				port + 1, t1, t2);
3905 			writel(t2, reg);
3906 		}
3907 	}
3908 
3909 	/* turn off now-idle HC */
3910 	del_timer_sync(&oxu->watchdog);
3911 	ehci_halt(oxu);
3912 	hcd->state = HC_STATE_SUSPENDED;
3913 
3914 	/* allow remote wakeup */
3915 	mask = INTR_MASK;
3916 	if (!device_may_wakeup(&hcd->self.root_hub->dev))
3917 		mask &= ~STS_PCD;
3918 	writel(mask, &oxu->regs->intr_enable);
3919 	readl(&oxu->regs->intr_enable);
3920 
3921 	oxu->next_statechange = jiffies + msecs_to_jiffies(10);
3922 	spin_unlock_irq(&oxu->lock);
3923 	return 0;
3924 }
3925 
3926 /* Caller has locked the root hub, and should reset/reinit on error */
3927 static int oxu_bus_resume(struct usb_hcd *hcd)
3928 {
3929 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3930 	u32 temp;
3931 	int i;
3932 
3933 	if (time_before(jiffies, oxu->next_statechange))
3934 		msleep(5);
3935 	spin_lock_irq(&oxu->lock);
3936 
3937 	/* Ideally and we've got a real resume here, and no port's power
3938 	 * was lost.  (For PCI, that means Vaux was maintained.)  But we
3939 	 * could instead be restoring a swsusp snapshot -- so that BIOS was
3940 	 * the last user of the controller, not reset/pm hardware keeping
3941 	 * state we gave to it.
3942 	 */
3943 	temp = readl(&oxu->regs->intr_enable);
3944 	oxu_dbg(oxu, "resume root hub%s\n", temp ? "" : " after power loss");
3945 
3946 	/* at least some APM implementations will try to deliver
3947 	 * IRQs right away, so delay them until we're ready.
3948 	 */
3949 	writel(0, &oxu->regs->intr_enable);
3950 
3951 	/* re-init operational registers */
3952 	writel(0, &oxu->regs->segment);
3953 	writel(oxu->periodic_dma, &oxu->regs->frame_list);
3954 	writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
3955 
3956 	/* restore CMD_RUN, framelist size, and irq threshold */
3957 	writel(oxu->command, &oxu->regs->command);
3958 
3959 	/* Some controller/firmware combinations need a delay during which
3960 	 * they set up the port statuses.  See Bugzilla #8190. */
3961 	mdelay(8);
3962 
3963 	/* manually resume the ports we suspended during bus_suspend() */
3964 	i = HCS_N_PORTS(oxu->hcs_params);
3965 	while (i--) {
3966 		temp = readl(&oxu->regs->port_status[i]);
3967 		temp &= ~(PORT_RWC_BITS
3968 			| PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E);
3969 		if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3970 			oxu->reset_done[i] = jiffies + msecs_to_jiffies(20);
3971 			temp |= PORT_RESUME;
3972 		}
3973 		writel(temp, &oxu->regs->port_status[i]);
3974 	}
3975 	i = HCS_N_PORTS(oxu->hcs_params);
3976 	mdelay(20);
3977 	while (i--) {
3978 		temp = readl(&oxu->regs->port_status[i]);
3979 		if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3980 			temp &= ~(PORT_RWC_BITS | PORT_RESUME);
3981 			writel(temp, &oxu->regs->port_status[i]);
3982 			oxu_vdbg(oxu, "resumed port %d\n", i + 1);
3983 		}
3984 	}
3985 	(void) readl(&oxu->regs->command);
3986 
3987 	/* maybe re-activate the schedule(s) */
3988 	temp = 0;
3989 	if (oxu->async->qh_next.qh)
3990 		temp |= CMD_ASE;
3991 	if (oxu->periodic_sched)
3992 		temp |= CMD_PSE;
3993 	if (temp) {
3994 		oxu->command |= temp;
3995 		writel(oxu->command, &oxu->regs->command);
3996 	}
3997 
3998 	oxu->next_statechange = jiffies + msecs_to_jiffies(5);
3999 	hcd->state = HC_STATE_RUNNING;
4000 
4001 	/* Now we can safely re-enable irqs */
4002 	writel(INTR_MASK, &oxu->regs->intr_enable);
4003 
4004 	spin_unlock_irq(&oxu->lock);
4005 	return 0;
4006 }
4007 
4008 #else
4009 
4010 static int oxu_bus_suspend(struct usb_hcd *hcd)
4011 {
4012 	return 0;
4013 }
4014 
4015 static int oxu_bus_resume(struct usb_hcd *hcd)
4016 {
4017 	return 0;
4018 }
4019 
4020 #endif	/* CONFIG_PM */
4021 
4022 static const struct hc_driver oxu_hc_driver = {
4023 	.description =		"oxu210hp_hcd",
4024 	.product_desc =		"oxu210hp HCD",
4025 	.hcd_priv_size =	sizeof(struct oxu_hcd),
4026 
4027 	/*
4028 	 * Generic hardware linkage
4029 	 */
4030 	.irq =			oxu_irq,
4031 	.flags =		HCD_MEMORY | HCD_USB2,
4032 
4033 	/*
4034 	 * Basic lifecycle operations
4035 	 */
4036 	.reset =		oxu_reset,
4037 	.start =		oxu_run,
4038 	.stop =			oxu_stop,
4039 	.shutdown =		oxu_shutdown,
4040 
4041 	/*
4042 	 * Managing i/o requests and associated device resources
4043 	 */
4044 	.urb_enqueue =		oxu_urb_enqueue,
4045 	.urb_dequeue =		oxu_urb_dequeue,
4046 	.endpoint_disable =	oxu_endpoint_disable,
4047 
4048 	/*
4049 	 * Scheduling support
4050 	 */
4051 	.get_frame_number =	oxu_get_frame,
4052 
4053 	/*
4054 	 * Root hub support
4055 	 */
4056 	.hub_status_data =	oxu_hub_status_data,
4057 	.hub_control =		oxu_hub_control,
4058 	.bus_suspend =		oxu_bus_suspend,
4059 	.bus_resume =		oxu_bus_resume,
4060 };
4061 
4062 /*
4063  * Module stuff
4064  */
4065 
4066 static void oxu_configuration(struct platform_device *pdev, void __iomem *base)
4067 {
4068 	u32 tmp;
4069 
4070 	/* Initialize top level registers.
4071 	 * First write ever
4072 	 */
4073 	oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
4074 	oxu_writel(base, OXU_SOFTRESET, OXU_SRESET);
4075 	oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
4076 
4077 	tmp = oxu_readl(base, OXU_PIOBURSTREADCTRL);
4078 	oxu_writel(base, OXU_PIOBURSTREADCTRL, tmp | 0x0040);
4079 
4080 	oxu_writel(base, OXU_ASO, OXU_SPHPOEN | OXU_OVRCCURPUPDEN |
4081 					OXU_COMPARATOR | OXU_ASO_OP);
4082 
4083 	tmp = oxu_readl(base, OXU_CLKCTRL_SET);
4084 	oxu_writel(base, OXU_CLKCTRL_SET, tmp | OXU_SYSCLKEN | OXU_USBOTGCLKEN);
4085 
4086 	/* Clear all top interrupt enable */
4087 	oxu_writel(base, OXU_CHIPIRQEN_CLR, 0xff);
4088 
4089 	/* Clear all top interrupt status */
4090 	oxu_writel(base, OXU_CHIPIRQSTATUS, 0xff);
4091 
4092 	/* Enable all needed top interrupt except OTG SPH core */
4093 	oxu_writel(base, OXU_CHIPIRQEN_SET, OXU_USBSPHLPWUI | OXU_USBOTGLPWUI);
4094 }
4095 
4096 static int oxu_verify_id(struct platform_device *pdev, void __iomem *base)
4097 {
4098 	u32 id;
4099 	static const char * const bo[] = {
4100 		"reserved",
4101 		"128-pin LQFP",
4102 		"84-pin TFBGA",
4103 		"reserved",
4104 	};
4105 
4106 	/* Read controller signature register to find a match */
4107 	id = oxu_readl(base, OXU_DEVICEID);
4108 	dev_info(&pdev->dev, "device ID %x\n", id);
4109 	if ((id & OXU_REV_MASK) != (OXU_REV_2100 << OXU_REV_SHIFT))
4110 		return -1;
4111 
4112 	dev_info(&pdev->dev, "found device %x %s (%04x:%04x)\n",
4113 		id >> OXU_REV_SHIFT,
4114 		bo[(id & OXU_BO_MASK) >> OXU_BO_SHIFT],
4115 		(id & OXU_MAJ_REV_MASK) >> OXU_MAJ_REV_SHIFT,
4116 		(id & OXU_MIN_REV_MASK) >> OXU_MIN_REV_SHIFT);
4117 
4118 	return 0;
4119 }
4120 
4121 static const struct hc_driver oxu_hc_driver;
4122 static struct usb_hcd *oxu_create(struct platform_device *pdev,
4123 				unsigned long memstart, unsigned long memlen,
4124 				void __iomem *base, int irq, int otg)
4125 {
4126 	struct device *dev = &pdev->dev;
4127 
4128 	struct usb_hcd *hcd;
4129 	struct oxu_hcd *oxu;
4130 	int ret;
4131 
4132 	/* Set endian mode and host mode */
4133 	oxu_writel(base + (otg ? OXU_OTG_CORE_OFFSET : OXU_SPH_CORE_OFFSET),
4134 				OXU_USBMODE,
4135 				OXU_CM_HOST_ONLY | OXU_ES_LITTLE | OXU_VBPS);
4136 
4137 	hcd = usb_create_hcd(&oxu_hc_driver, dev,
4138 				otg ? "oxu210hp_otg" : "oxu210hp_sph");
4139 	if (!hcd)
4140 		return ERR_PTR(-ENOMEM);
4141 
4142 	hcd->rsrc_start = memstart;
4143 	hcd->rsrc_len = memlen;
4144 	hcd->regs = base;
4145 	hcd->irq = irq;
4146 	hcd->state = HC_STATE_HALT;
4147 
4148 	oxu = hcd_to_oxu(hcd);
4149 	oxu->is_otg = otg;
4150 
4151 	ret = usb_add_hcd(hcd, irq, IRQF_SHARED);
4152 	if (ret < 0)
4153 		return ERR_PTR(ret);
4154 
4155 	device_wakeup_enable(hcd->self.controller);
4156 	return hcd;
4157 }
4158 
4159 static int oxu_init(struct platform_device *pdev,
4160 				unsigned long memstart, unsigned long memlen,
4161 				void __iomem *base, int irq)
4162 {
4163 	struct oxu_info *info = platform_get_drvdata(pdev);
4164 	struct usb_hcd *hcd;
4165 	int ret;
4166 
4167 	/* First time configuration at start up */
4168 	oxu_configuration(pdev, base);
4169 
4170 	ret = oxu_verify_id(pdev, base);
4171 	if (ret) {
4172 		dev_err(&pdev->dev, "no devices found!\n");
4173 		return -ENODEV;
4174 	}
4175 
4176 	/* Create the OTG controller */
4177 	hcd = oxu_create(pdev, memstart, memlen, base, irq, 1);
4178 	if (IS_ERR(hcd)) {
4179 		dev_err(&pdev->dev, "cannot create OTG controller!\n");
4180 		ret = PTR_ERR(hcd);
4181 		goto error_create_otg;
4182 	}
4183 	info->hcd[0] = hcd;
4184 
4185 	/* Create the SPH host controller */
4186 	hcd = oxu_create(pdev, memstart, memlen, base, irq, 0);
4187 	if (IS_ERR(hcd)) {
4188 		dev_err(&pdev->dev, "cannot create SPH controller!\n");
4189 		ret = PTR_ERR(hcd);
4190 		goto error_create_sph;
4191 	}
4192 	info->hcd[1] = hcd;
4193 
4194 	oxu_writel(base, OXU_CHIPIRQEN_SET,
4195 		oxu_readl(base, OXU_CHIPIRQEN_SET) | 3);
4196 
4197 	return 0;
4198 
4199 error_create_sph:
4200 	usb_remove_hcd(info->hcd[0]);
4201 	usb_put_hcd(info->hcd[0]);
4202 
4203 error_create_otg:
4204 	return ret;
4205 }
4206 
4207 static int oxu_drv_probe(struct platform_device *pdev)
4208 {
4209 	struct resource *res;
4210 	void __iomem *base;
4211 	unsigned long memstart, memlen;
4212 	int irq, ret;
4213 	struct oxu_info *info;
4214 
4215 	if (usb_disabled())
4216 		return -ENODEV;
4217 
4218 	/*
4219 	 * Get the platform resources
4220 	 */
4221 	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
4222 	if (!res) {
4223 		dev_err(&pdev->dev,
4224 			"no IRQ! Check %s setup!\n", dev_name(&pdev->dev));
4225 		return -ENODEV;
4226 	}
4227 	irq = res->start;
4228 	dev_dbg(&pdev->dev, "IRQ resource %d\n", irq);
4229 
4230 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4231 	base = devm_ioremap_resource(&pdev->dev, res);
4232 	if (IS_ERR(base)) {
4233 		ret = PTR_ERR(base);
4234 		goto error;
4235 	}
4236 	memstart = res->start;
4237 	memlen = resource_size(res);
4238 
4239 	ret = irq_set_irq_type(irq, IRQF_TRIGGER_FALLING);
4240 	if (ret) {
4241 		dev_err(&pdev->dev, "error setting irq type\n");
4242 		ret = -EFAULT;
4243 		goto error;
4244 	}
4245 
4246 	/* Allocate a driver data struct to hold useful info for both
4247 	 * SPH & OTG devices
4248 	 */
4249 	info = devm_kzalloc(&pdev->dev, sizeof(struct oxu_info), GFP_KERNEL);
4250 	if (!info) {
4251 		ret = -EFAULT;
4252 		goto error;
4253 	}
4254 	platform_set_drvdata(pdev, info);
4255 
4256 	ret = oxu_init(pdev, memstart, memlen, base, irq);
4257 	if (ret < 0) {
4258 		dev_dbg(&pdev->dev, "cannot init USB devices\n");
4259 		goto error;
4260 	}
4261 
4262 	dev_info(&pdev->dev, "devices enabled and running\n");
4263 	platform_set_drvdata(pdev, info);
4264 
4265 	return 0;
4266 
4267 error:
4268 	dev_err(&pdev->dev, "init %s fail, %d\n", dev_name(&pdev->dev), ret);
4269 	return ret;
4270 }
4271 
4272 static void oxu_remove(struct platform_device *pdev, struct usb_hcd *hcd)
4273 {
4274 	usb_remove_hcd(hcd);
4275 	usb_put_hcd(hcd);
4276 }
4277 
4278 static int oxu_drv_remove(struct platform_device *pdev)
4279 {
4280 	struct oxu_info *info = platform_get_drvdata(pdev);
4281 
4282 	oxu_remove(pdev, info->hcd[0]);
4283 	oxu_remove(pdev, info->hcd[1]);
4284 
4285 	return 0;
4286 }
4287 
4288 static void oxu_drv_shutdown(struct platform_device *pdev)
4289 {
4290 	oxu_drv_remove(pdev);
4291 }
4292 
4293 #if 0
4294 /* FIXME: TODO */
4295 static int oxu_drv_suspend(struct device *dev)
4296 {
4297 	struct platform_device *pdev = to_platform_device(dev);
4298 	struct usb_hcd *hcd = dev_get_drvdata(dev);
4299 
4300 	return 0;
4301 }
4302 
4303 static int oxu_drv_resume(struct device *dev)
4304 {
4305 	struct platform_device *pdev = to_platform_device(dev);
4306 	struct usb_hcd *hcd = dev_get_drvdata(dev);
4307 
4308 	return 0;
4309 }
4310 #else
4311 #define oxu_drv_suspend	NULL
4312 #define oxu_drv_resume	NULL
4313 #endif
4314 
4315 static struct platform_driver oxu_driver = {
4316 	.probe		= oxu_drv_probe,
4317 	.remove		= oxu_drv_remove,
4318 	.shutdown	= oxu_drv_shutdown,
4319 	.suspend	= oxu_drv_suspend,
4320 	.resume		= oxu_drv_resume,
4321 	.driver = {
4322 		.name = "oxu210hp-hcd",
4323 		.bus = &platform_bus_type
4324 	}
4325 };
4326 
4327 module_platform_driver(oxu_driver);
4328 
4329 MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION);
4330 MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
4331 MODULE_LICENSE("GPL");
4332