xref: /linux/drivers/usb/host/oxu210hp-hcd.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it>
3  * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it>
4  *
5  * This code is *strongly* based on EHCI-HCD code by David Brownell since
6  * the chip is a quasi-EHCI compatible.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License as published by the
10  * Free Software Foundation; either version 2 of the License, or (at your
11  * option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/module.h>
24 #include <linux/pci.h>
25 #include <linux/dmapool.h>
26 #include <linux/kernel.h>
27 #include <linux/delay.h>
28 #include <linux/ioport.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/errno.h>
32 #include <linux/timer.h>
33 #include <linux/list.h>
34 #include <linux/interrupt.h>
35 #include <linux/usb.h>
36 #include <linux/usb/hcd.h>
37 #include <linux/moduleparam.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/io.h>
40 
41 #include <asm/irq.h>
42 #include <asm/unaligned.h>
43 
44 #include <linux/irq.h>
45 #include <linux/platform_device.h>
46 
47 #include "oxu210hp.h"
48 
49 #define DRIVER_VERSION "0.0.50"
50 
51 /*
52  * Main defines
53  */
54 
55 #define oxu_dbg(oxu, fmt, args...) \
56 		dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
57 #define oxu_err(oxu, fmt, args...) \
58 		dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
59 #define oxu_info(oxu, fmt, args...) \
60 		dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
61 
62 #ifdef CONFIG_DYNAMIC_DEBUG
63 #define DEBUG
64 #endif
65 
66 static inline struct usb_hcd *oxu_to_hcd(struct oxu_hcd *oxu)
67 {
68 	return container_of((void *) oxu, struct usb_hcd, hcd_priv);
69 }
70 
71 static inline struct oxu_hcd *hcd_to_oxu(struct usb_hcd *hcd)
72 {
73 	return (struct oxu_hcd *) (hcd->hcd_priv);
74 }
75 
76 /*
77  * Debug stuff
78  */
79 
80 #undef OXU_URB_TRACE
81 #undef OXU_VERBOSE_DEBUG
82 
83 #ifdef OXU_VERBOSE_DEBUG
84 #define oxu_vdbg			oxu_dbg
85 #else
86 #define oxu_vdbg(oxu, fmt, args...)	/* Nop */
87 #endif
88 
89 #ifdef DEBUG
90 
91 static int __attribute__((__unused__))
92 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
93 {
94 	return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
95 		label, label[0] ? " " : "", status,
96 		(status & STS_ASS) ? " Async" : "",
97 		(status & STS_PSS) ? " Periodic" : "",
98 		(status & STS_RECL) ? " Recl" : "",
99 		(status & STS_HALT) ? " Halt" : "",
100 		(status & STS_IAA) ? " IAA" : "",
101 		(status & STS_FATAL) ? " FATAL" : "",
102 		(status & STS_FLR) ? " FLR" : "",
103 		(status & STS_PCD) ? " PCD" : "",
104 		(status & STS_ERR) ? " ERR" : "",
105 		(status & STS_INT) ? " INT" : ""
106 		);
107 }
108 
109 static int __attribute__((__unused__))
110 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
111 {
112 	return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
113 		label, label[0] ? " " : "", enable,
114 		(enable & STS_IAA) ? " IAA" : "",
115 		(enable & STS_FATAL) ? " FATAL" : "",
116 		(enable & STS_FLR) ? " FLR" : "",
117 		(enable & STS_PCD) ? " PCD" : "",
118 		(enable & STS_ERR) ? " ERR" : "",
119 		(enable & STS_INT) ? " INT" : ""
120 		);
121 }
122 
123 static const char *const fls_strings[] =
124     { "1024", "512", "256", "??" };
125 
126 static int dbg_command_buf(char *buf, unsigned len,
127 				const char *label, u32 command)
128 {
129 	return scnprintf(buf, len,
130 		"%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s",
131 		label, label[0] ? " " : "", command,
132 		(command & CMD_PARK) ? "park" : "(park)",
133 		CMD_PARK_CNT(command),
134 		(command >> 16) & 0x3f,
135 		(command & CMD_LRESET) ? " LReset" : "",
136 		(command & CMD_IAAD) ? " IAAD" : "",
137 		(command & CMD_ASE) ? " Async" : "",
138 		(command & CMD_PSE) ? " Periodic" : "",
139 		fls_strings[(command >> 2) & 0x3],
140 		(command & CMD_RESET) ? " Reset" : "",
141 		(command & CMD_RUN) ? "RUN" : "HALT"
142 		);
143 }
144 
145 static int dbg_port_buf(char *buf, unsigned len, const char *label,
146 				int port, u32 status)
147 {
148 	char	*sig;
149 
150 	/* signaling state */
151 	switch (status & (3 << 10)) {
152 	case 0 << 10:
153 		sig = "se0";
154 		break;
155 	case 1 << 10:
156 		sig = "k";	/* low speed */
157 		break;
158 	case 2 << 10:
159 		sig = "j";
160 		break;
161 	default:
162 		sig = "?";
163 		break;
164 	}
165 
166 	return scnprintf(buf, len,
167 		"%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s",
168 		label, label[0] ? " " : "", port, status,
169 		(status & PORT_POWER) ? " POWER" : "",
170 		(status & PORT_OWNER) ? " OWNER" : "",
171 		sig,
172 		(status & PORT_RESET) ? " RESET" : "",
173 		(status & PORT_SUSPEND) ? " SUSPEND" : "",
174 		(status & PORT_RESUME) ? " RESUME" : "",
175 		(status & PORT_OCC) ? " OCC" : "",
176 		(status & PORT_OC) ? " OC" : "",
177 		(status & PORT_PEC) ? " PEC" : "",
178 		(status & PORT_PE) ? " PE" : "",
179 		(status & PORT_CSC) ? " CSC" : "",
180 		(status & PORT_CONNECT) ? " CONNECT" : ""
181 	    );
182 }
183 
184 #else
185 
186 static inline int __attribute__((__unused__))
187 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
188 { return 0; }
189 
190 static inline int __attribute__((__unused__))
191 dbg_command_buf(char *buf, unsigned len, const char *label, u32 command)
192 { return 0; }
193 
194 static inline int __attribute__((__unused__))
195 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
196 { return 0; }
197 
198 static inline int __attribute__((__unused__))
199 dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status)
200 { return 0; }
201 
202 #endif /* DEBUG */
203 
204 /* functions have the "wrong" filename when they're output... */
205 #define dbg_status(oxu, label, status) { \
206 	char _buf[80]; \
207 	dbg_status_buf(_buf, sizeof _buf, label, status); \
208 	oxu_dbg(oxu, "%s\n", _buf); \
209 }
210 
211 #define dbg_cmd(oxu, label, command) { \
212 	char _buf[80]; \
213 	dbg_command_buf(_buf, sizeof _buf, label, command); \
214 	oxu_dbg(oxu, "%s\n", _buf); \
215 }
216 
217 #define dbg_port(oxu, label, port, status) { \
218 	char _buf[80]; \
219 	dbg_port_buf(_buf, sizeof _buf, label, port, status); \
220 	oxu_dbg(oxu, "%s\n", _buf); \
221 }
222 
223 /*
224  * Module parameters
225  */
226 
227 /* Initial IRQ latency: faster than hw default */
228 static int log2_irq_thresh;			/* 0 to 6 */
229 module_param(log2_irq_thresh, int, S_IRUGO);
230 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
231 
232 /* Initial park setting: slower than hw default */
233 static unsigned park;
234 module_param(park, uint, S_IRUGO);
235 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
236 
237 /* For flakey hardware, ignore overcurrent indicators */
238 static bool ignore_oc;
239 module_param(ignore_oc, bool, S_IRUGO);
240 MODULE_PARM_DESC(ignore_oc, "ignore bogus hardware overcurrent indications");
241 
242 
243 static void ehci_work(struct oxu_hcd *oxu);
244 static int oxu_hub_control(struct usb_hcd *hcd,
245 				u16 typeReq, u16 wValue, u16 wIndex,
246 				char *buf, u16 wLength);
247 
248 /*
249  * Local functions
250  */
251 
252 /* Low level read/write registers functions */
253 static inline u32 oxu_readl(void *base, u32 reg)
254 {
255 	return readl(base + reg);
256 }
257 
258 static inline void oxu_writel(void *base, u32 reg, u32 val)
259 {
260 	writel(val, base + reg);
261 }
262 
263 static inline void timer_action_done(struct oxu_hcd *oxu,
264 					enum ehci_timer_action action)
265 {
266 	clear_bit(action, &oxu->actions);
267 }
268 
269 static inline void timer_action(struct oxu_hcd *oxu,
270 					enum ehci_timer_action action)
271 {
272 	if (!test_and_set_bit(action, &oxu->actions)) {
273 		unsigned long t;
274 
275 		switch (action) {
276 		case TIMER_IAA_WATCHDOG:
277 			t = EHCI_IAA_JIFFIES;
278 			break;
279 		case TIMER_IO_WATCHDOG:
280 			t = EHCI_IO_JIFFIES;
281 			break;
282 		case TIMER_ASYNC_OFF:
283 			t = EHCI_ASYNC_JIFFIES;
284 			break;
285 		case TIMER_ASYNC_SHRINK:
286 		default:
287 			t = EHCI_SHRINK_JIFFIES;
288 			break;
289 		}
290 		t += jiffies;
291 		/* all timings except IAA watchdog can be overridden.
292 		 * async queue SHRINK often precedes IAA.  while it's ready
293 		 * to go OFF neither can matter, and afterwards the IO
294 		 * watchdog stops unless there's still periodic traffic.
295 		 */
296 		if (action != TIMER_IAA_WATCHDOG
297 				&& t > oxu->watchdog.expires
298 				&& timer_pending(&oxu->watchdog))
299 			return;
300 		mod_timer(&oxu->watchdog, t);
301 	}
302 }
303 
304 /*
305  * handshake - spin reading hc until handshake completes or fails
306  * @ptr: address of hc register to be read
307  * @mask: bits to look at in result of read
308  * @done: value of those bits when handshake succeeds
309  * @usec: timeout in microseconds
310  *
311  * Returns negative errno, or zero on success
312  *
313  * Success happens when the "mask" bits have the specified value (hardware
314  * handshake done).  There are two failure modes:  "usec" have passed (major
315  * hardware flakeout), or the register reads as all-ones (hardware removed).
316  *
317  * That last failure should_only happen in cases like physical cardbus eject
318  * before driver shutdown. But it also seems to be caused by bugs in cardbus
319  * bridge shutdown:  shutting down the bridge before the devices using it.
320  */
321 static int handshake(struct oxu_hcd *oxu, void __iomem *ptr,
322 					u32 mask, u32 done, int usec)
323 {
324 	u32 result;
325 
326 	do {
327 		result = readl(ptr);
328 		if (result == ~(u32)0)		/* card removed */
329 			return -ENODEV;
330 		result &= mask;
331 		if (result == done)
332 			return 0;
333 		udelay(1);
334 		usec--;
335 	} while (usec > 0);
336 	return -ETIMEDOUT;
337 }
338 
339 /* Force HC to halt state from unknown (EHCI spec section 2.3) */
340 static int ehci_halt(struct oxu_hcd *oxu)
341 {
342 	u32	temp = readl(&oxu->regs->status);
343 
344 	/* disable any irqs left enabled by previous code */
345 	writel(0, &oxu->regs->intr_enable);
346 
347 	if ((temp & STS_HALT) != 0)
348 		return 0;
349 
350 	temp = readl(&oxu->regs->command);
351 	temp &= ~CMD_RUN;
352 	writel(temp, &oxu->regs->command);
353 	return handshake(oxu, &oxu->regs->status,
354 			  STS_HALT, STS_HALT, 16 * 125);
355 }
356 
357 /* Put TDI/ARC silicon into EHCI mode */
358 static void tdi_reset(struct oxu_hcd *oxu)
359 {
360 	u32 __iomem *reg_ptr;
361 	u32 tmp;
362 
363 	reg_ptr = (u32 __iomem *)(((u8 __iomem *)oxu->regs) + 0x68);
364 	tmp = readl(reg_ptr);
365 	tmp |= 0x3;
366 	writel(tmp, reg_ptr);
367 }
368 
369 /* Reset a non-running (STS_HALT == 1) controller */
370 static int ehci_reset(struct oxu_hcd *oxu)
371 {
372 	int	retval;
373 	u32	command = readl(&oxu->regs->command);
374 
375 	command |= CMD_RESET;
376 	dbg_cmd(oxu, "reset", command);
377 	writel(command, &oxu->regs->command);
378 	oxu_to_hcd(oxu)->state = HC_STATE_HALT;
379 	oxu->next_statechange = jiffies;
380 	retval = handshake(oxu, &oxu->regs->command,
381 			    CMD_RESET, 0, 250 * 1000);
382 
383 	if (retval)
384 		return retval;
385 
386 	tdi_reset(oxu);
387 
388 	return retval;
389 }
390 
391 /* Idle the controller (from running) */
392 static void ehci_quiesce(struct oxu_hcd *oxu)
393 {
394 	u32	temp;
395 
396 #ifdef DEBUG
397 	if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
398 		BUG();
399 #endif
400 
401 	/* wait for any schedule enables/disables to take effect */
402 	temp = readl(&oxu->regs->command) << 10;
403 	temp &= STS_ASS | STS_PSS;
404 	if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
405 				temp, 16 * 125) != 0) {
406 		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
407 		return;
408 	}
409 
410 	/* then disable anything that's still active */
411 	temp = readl(&oxu->regs->command);
412 	temp &= ~(CMD_ASE | CMD_IAAD | CMD_PSE);
413 	writel(temp, &oxu->regs->command);
414 
415 	/* hardware can take 16 microframes to turn off ... */
416 	if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
417 				0, 16 * 125) != 0) {
418 		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
419 		return;
420 	}
421 }
422 
423 static int check_reset_complete(struct oxu_hcd *oxu, int index,
424 				u32 __iomem *status_reg, int port_status)
425 {
426 	if (!(port_status & PORT_CONNECT)) {
427 		oxu->reset_done[index] = 0;
428 		return port_status;
429 	}
430 
431 	/* if reset finished and it's still not enabled -- handoff */
432 	if (!(port_status & PORT_PE)) {
433 		oxu_dbg(oxu, "Failed to enable port %d on root hub TT\n",
434 				index+1);
435 		return port_status;
436 	} else
437 		oxu_dbg(oxu, "port %d high speed\n", index + 1);
438 
439 	return port_status;
440 }
441 
442 static void ehci_hub_descriptor(struct oxu_hcd *oxu,
443 				struct usb_hub_descriptor *desc)
444 {
445 	int ports = HCS_N_PORTS(oxu->hcs_params);
446 	u16 temp;
447 
448 	desc->bDescriptorType = USB_DT_HUB;
449 	desc->bPwrOn2PwrGood = 10;	/* oxu 1.0, 2.3.9 says 20ms max */
450 	desc->bHubContrCurrent = 0;
451 
452 	desc->bNbrPorts = ports;
453 	temp = 1 + (ports / 8);
454 	desc->bDescLength = 7 + 2 * temp;
455 
456 	/* ports removable, and usb 1.0 legacy PortPwrCtrlMask */
457 	memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
458 	memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
459 
460 	temp = HUB_CHAR_INDV_PORT_OCPM;	/* per-port overcurrent reporting */
461 	if (HCS_PPC(oxu->hcs_params))
462 		temp |= HUB_CHAR_INDV_PORT_LPSM; /* per-port power control */
463 	else
464 		temp |= HUB_CHAR_NO_LPSM; /* no power switching */
465 	desc->wHubCharacteristics = (__force __u16)cpu_to_le16(temp);
466 }
467 
468 
469 /* Allocate an OXU210HP on-chip memory data buffer
470  *
471  * An on-chip memory data buffer is required for each OXU210HP USB transfer.
472  * Each transfer descriptor has one or more on-chip memory data buffers.
473  *
474  * Data buffers are allocated from a fix sized pool of data blocks.
475  * To minimise fragmentation and give reasonable memory utlisation,
476  * data buffers are allocated with sizes the power of 2 multiples of
477  * the block size, starting on an address a multiple of the allocated size.
478  *
479  * FIXME: callers of this function require a buffer to be allocated for
480  * len=0. This is a waste of on-chip memory and should be fix. Then this
481  * function should be changed to not allocate a buffer for len=0.
482  */
483 static int oxu_buf_alloc(struct oxu_hcd *oxu, struct ehci_qtd *qtd, int len)
484 {
485 	int n_blocks;	/* minium blocks needed to hold len */
486 	int a_blocks;	/* blocks allocated */
487 	int i, j;
488 
489 	/* Don't allocte bigger than supported */
490 	if (len > BUFFER_SIZE * BUFFER_NUM) {
491 		oxu_err(oxu, "buffer too big (%d)\n", len);
492 		return -ENOMEM;
493 	}
494 
495 	spin_lock(&oxu->mem_lock);
496 
497 	/* Number of blocks needed to hold len */
498 	n_blocks = (len + BUFFER_SIZE - 1) / BUFFER_SIZE;
499 
500 	/* Round the number of blocks up to the power of 2 */
501 	for (a_blocks = 1; a_blocks < n_blocks; a_blocks <<= 1)
502 		;
503 
504 	/* Find a suitable available data buffer */
505 	for (i = 0; i < BUFFER_NUM;
506 			i += max(a_blocks, (int)oxu->db_used[i])) {
507 
508 		/* Check all the required blocks are available */
509 		for (j = 0; j < a_blocks; j++)
510 			if (oxu->db_used[i + j])
511 				break;
512 
513 		if (j != a_blocks)
514 			continue;
515 
516 		/* Allocate blocks found! */
517 		qtd->buffer = (void *) &oxu->mem->db_pool[i];
518 		qtd->buffer_dma = virt_to_phys(qtd->buffer);
519 
520 		qtd->qtd_buffer_len = BUFFER_SIZE * a_blocks;
521 		oxu->db_used[i] = a_blocks;
522 
523 		spin_unlock(&oxu->mem_lock);
524 
525 		return 0;
526 	}
527 
528 	/* Failed */
529 
530 	spin_unlock(&oxu->mem_lock);
531 
532 	return -ENOMEM;
533 }
534 
535 static void oxu_buf_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
536 {
537 	int index;
538 
539 	spin_lock(&oxu->mem_lock);
540 
541 	index = (qtd->buffer - (void *) &oxu->mem->db_pool[0])
542 							 / BUFFER_SIZE;
543 	oxu->db_used[index] = 0;
544 	qtd->qtd_buffer_len = 0;
545 	qtd->buffer_dma = 0;
546 	qtd->buffer = NULL;
547 
548 	spin_unlock(&oxu->mem_lock);
549 }
550 
551 static inline void ehci_qtd_init(struct ehci_qtd *qtd, dma_addr_t dma)
552 {
553 	memset(qtd, 0, sizeof *qtd);
554 	qtd->qtd_dma = dma;
555 	qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
556 	qtd->hw_next = EHCI_LIST_END;
557 	qtd->hw_alt_next = EHCI_LIST_END;
558 	INIT_LIST_HEAD(&qtd->qtd_list);
559 }
560 
561 static inline void oxu_qtd_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
562 {
563 	int index;
564 
565 	if (qtd->buffer)
566 		oxu_buf_free(oxu, qtd);
567 
568 	spin_lock(&oxu->mem_lock);
569 
570 	index = qtd - &oxu->mem->qtd_pool[0];
571 	oxu->qtd_used[index] = 0;
572 
573 	spin_unlock(&oxu->mem_lock);
574 }
575 
576 static struct ehci_qtd *ehci_qtd_alloc(struct oxu_hcd *oxu)
577 {
578 	int i;
579 	struct ehci_qtd *qtd = NULL;
580 
581 	spin_lock(&oxu->mem_lock);
582 
583 	for (i = 0; i < QTD_NUM; i++)
584 		if (!oxu->qtd_used[i])
585 			break;
586 
587 	if (i < QTD_NUM) {
588 		qtd = (struct ehci_qtd *) &oxu->mem->qtd_pool[i];
589 		memset(qtd, 0, sizeof *qtd);
590 
591 		qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
592 		qtd->hw_next = EHCI_LIST_END;
593 		qtd->hw_alt_next = EHCI_LIST_END;
594 		INIT_LIST_HEAD(&qtd->qtd_list);
595 
596 		qtd->qtd_dma = virt_to_phys(qtd);
597 
598 		oxu->qtd_used[i] = 1;
599 	}
600 
601 	spin_unlock(&oxu->mem_lock);
602 
603 	return qtd;
604 }
605 
606 static void oxu_qh_free(struct oxu_hcd *oxu, struct ehci_qh *qh)
607 {
608 	int index;
609 
610 	spin_lock(&oxu->mem_lock);
611 
612 	index = qh - &oxu->mem->qh_pool[0];
613 	oxu->qh_used[index] = 0;
614 
615 	spin_unlock(&oxu->mem_lock);
616 }
617 
618 static void qh_destroy(struct kref *kref)
619 {
620 	struct ehci_qh *qh = container_of(kref, struct ehci_qh, kref);
621 	struct oxu_hcd *oxu = qh->oxu;
622 
623 	/* clean qtds first, and know this is not linked */
624 	if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
625 		oxu_dbg(oxu, "unused qh not empty!\n");
626 		BUG();
627 	}
628 	if (qh->dummy)
629 		oxu_qtd_free(oxu, qh->dummy);
630 	oxu_qh_free(oxu, qh);
631 }
632 
633 static struct ehci_qh *oxu_qh_alloc(struct oxu_hcd *oxu)
634 {
635 	int i;
636 	struct ehci_qh *qh = NULL;
637 
638 	spin_lock(&oxu->mem_lock);
639 
640 	for (i = 0; i < QHEAD_NUM; i++)
641 		if (!oxu->qh_used[i])
642 			break;
643 
644 	if (i < QHEAD_NUM) {
645 		qh = (struct ehci_qh *) &oxu->mem->qh_pool[i];
646 		memset(qh, 0, sizeof *qh);
647 
648 		kref_init(&qh->kref);
649 		qh->oxu = oxu;
650 		qh->qh_dma = virt_to_phys(qh);
651 		INIT_LIST_HEAD(&qh->qtd_list);
652 
653 		/* dummy td enables safe urb queuing */
654 		qh->dummy = ehci_qtd_alloc(oxu);
655 		if (qh->dummy == NULL) {
656 			oxu_dbg(oxu, "no dummy td\n");
657 			oxu->qh_used[i] = 0;
658 			qh = NULL;
659 			goto unlock;
660 		}
661 
662 		oxu->qh_used[i] = 1;
663 	}
664 unlock:
665 	spin_unlock(&oxu->mem_lock);
666 
667 	return qh;
668 }
669 
670 /* to share a qh (cpu threads, or hc) */
671 static inline struct ehci_qh *qh_get(struct ehci_qh *qh)
672 {
673 	kref_get(&qh->kref);
674 	return qh;
675 }
676 
677 static inline void qh_put(struct ehci_qh *qh)
678 {
679 	kref_put(&qh->kref, qh_destroy);
680 }
681 
682 static void oxu_murb_free(struct oxu_hcd *oxu, struct oxu_murb *murb)
683 {
684 	int index;
685 
686 	spin_lock(&oxu->mem_lock);
687 
688 	index = murb - &oxu->murb_pool[0];
689 	oxu->murb_used[index] = 0;
690 
691 	spin_unlock(&oxu->mem_lock);
692 }
693 
694 static struct oxu_murb *oxu_murb_alloc(struct oxu_hcd *oxu)
695 
696 {
697 	int i;
698 	struct oxu_murb *murb = NULL;
699 
700 	spin_lock(&oxu->mem_lock);
701 
702 	for (i = 0; i < MURB_NUM; i++)
703 		if (!oxu->murb_used[i])
704 			break;
705 
706 	if (i < MURB_NUM) {
707 		murb = &(oxu->murb_pool)[i];
708 
709 		oxu->murb_used[i] = 1;
710 	}
711 
712 	spin_unlock(&oxu->mem_lock);
713 
714 	return murb;
715 }
716 
717 /* The queue heads and transfer descriptors are managed from pools tied
718  * to each of the "per device" structures.
719  * This is the initialisation and cleanup code.
720  */
721 static void ehci_mem_cleanup(struct oxu_hcd *oxu)
722 {
723 	kfree(oxu->murb_pool);
724 	oxu->murb_pool = NULL;
725 
726 	if (oxu->async)
727 		qh_put(oxu->async);
728 	oxu->async = NULL;
729 
730 	del_timer(&oxu->urb_timer);
731 
732 	oxu->periodic = NULL;
733 
734 	/* shadow periodic table */
735 	kfree(oxu->pshadow);
736 	oxu->pshadow = NULL;
737 }
738 
739 /* Remember to add cleanup code (above) if you add anything here.
740  */
741 static int ehci_mem_init(struct oxu_hcd *oxu, gfp_t flags)
742 {
743 	int i;
744 
745 	for (i = 0; i < oxu->periodic_size; i++)
746 		oxu->mem->frame_list[i] = EHCI_LIST_END;
747 	for (i = 0; i < QHEAD_NUM; i++)
748 		oxu->qh_used[i] = 0;
749 	for (i = 0; i < QTD_NUM; i++)
750 		oxu->qtd_used[i] = 0;
751 
752 	oxu->murb_pool = kcalloc(MURB_NUM, sizeof(struct oxu_murb), flags);
753 	if (!oxu->murb_pool)
754 		goto fail;
755 
756 	for (i = 0; i < MURB_NUM; i++)
757 		oxu->murb_used[i] = 0;
758 
759 	oxu->async = oxu_qh_alloc(oxu);
760 	if (!oxu->async)
761 		goto fail;
762 
763 	oxu->periodic = (__le32 *) &oxu->mem->frame_list;
764 	oxu->periodic_dma = virt_to_phys(oxu->periodic);
765 
766 	for (i = 0; i < oxu->periodic_size; i++)
767 		oxu->periodic[i] = EHCI_LIST_END;
768 
769 	/* software shadow of hardware table */
770 	oxu->pshadow = kcalloc(oxu->periodic_size, sizeof(void *), flags);
771 	if (oxu->pshadow != NULL)
772 		return 0;
773 
774 fail:
775 	oxu_dbg(oxu, "couldn't init memory\n");
776 	ehci_mem_cleanup(oxu);
777 	return -ENOMEM;
778 }
779 
780 /* Fill a qtd, returning how much of the buffer we were able to queue up.
781  */
782 static int qtd_fill(struct ehci_qtd *qtd, dma_addr_t buf, size_t len,
783 				int token, int maxpacket)
784 {
785 	int i, count;
786 	u64 addr = buf;
787 
788 	/* one buffer entry per 4K ... first might be short or unaligned */
789 	qtd->hw_buf[0] = cpu_to_le32((u32)addr);
790 	qtd->hw_buf_hi[0] = cpu_to_le32((u32)(addr >> 32));
791 	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
792 	if (likely(len < count))		/* ... iff needed */
793 		count = len;
794 	else {
795 		buf +=  0x1000;
796 		buf &= ~0x0fff;
797 
798 		/* per-qtd limit: from 16K to 20K (best alignment) */
799 		for (i = 1; count < len && i < 5; i++) {
800 			addr = buf;
801 			qtd->hw_buf[i] = cpu_to_le32((u32)addr);
802 			qtd->hw_buf_hi[i] = cpu_to_le32((u32)(addr >> 32));
803 			buf += 0x1000;
804 			if ((count + 0x1000) < len)
805 				count += 0x1000;
806 			else
807 				count = len;
808 		}
809 
810 		/* short packets may only terminate transfers */
811 		if (count != len)
812 			count -= (count % maxpacket);
813 	}
814 	qtd->hw_token = cpu_to_le32((count << 16) | token);
815 	qtd->length = count;
816 
817 	return count;
818 }
819 
820 static inline void qh_update(struct oxu_hcd *oxu,
821 				struct ehci_qh *qh, struct ehci_qtd *qtd)
822 {
823 	/* writes to an active overlay are unsafe */
824 	BUG_ON(qh->qh_state != QH_STATE_IDLE);
825 
826 	qh->hw_qtd_next = QTD_NEXT(qtd->qtd_dma);
827 	qh->hw_alt_next = EHCI_LIST_END;
828 
829 	/* Except for control endpoints, we make hardware maintain data
830 	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
831 	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
832 	 * ever clear it.
833 	 */
834 	if (!(qh->hw_info1 & cpu_to_le32(1 << 14))) {
835 		unsigned	is_out, epnum;
836 
837 		is_out = !(qtd->hw_token & cpu_to_le32(1 << 8));
838 		epnum = (le32_to_cpup(&qh->hw_info1) >> 8) & 0x0f;
839 		if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
840 			qh->hw_token &= ~cpu_to_le32(QTD_TOGGLE);
841 			usb_settoggle(qh->dev, epnum, is_out, 1);
842 		}
843 	}
844 
845 	/* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
846 	wmb();
847 	qh->hw_token &= cpu_to_le32(QTD_TOGGLE | QTD_STS_PING);
848 }
849 
850 /* If it weren't for a common silicon quirk (writing the dummy into the qh
851  * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
852  * recovery (including urb dequeue) would need software changes to a QH...
853  */
854 static void qh_refresh(struct oxu_hcd *oxu, struct ehci_qh *qh)
855 {
856 	struct ehci_qtd *qtd;
857 
858 	if (list_empty(&qh->qtd_list))
859 		qtd = qh->dummy;
860 	else {
861 		qtd = list_entry(qh->qtd_list.next,
862 				struct ehci_qtd, qtd_list);
863 		/* first qtd may already be partially processed */
864 		if (cpu_to_le32(qtd->qtd_dma) == qh->hw_current)
865 			qtd = NULL;
866 	}
867 
868 	if (qtd)
869 		qh_update(oxu, qh, qtd);
870 }
871 
872 static void qtd_copy_status(struct oxu_hcd *oxu, struct urb *urb,
873 				size_t length, u32 token)
874 {
875 	/* count IN/OUT bytes, not SETUP (even short packets) */
876 	if (likely(QTD_PID(token) != 2))
877 		urb->actual_length += length - QTD_LENGTH(token);
878 
879 	/* don't modify error codes */
880 	if (unlikely(urb->status != -EINPROGRESS))
881 		return;
882 
883 	/* force cleanup after short read; not always an error */
884 	if (unlikely(IS_SHORT_READ(token)))
885 		urb->status = -EREMOTEIO;
886 
887 	/* serious "can't proceed" faults reported by the hardware */
888 	if (token & QTD_STS_HALT) {
889 		if (token & QTD_STS_BABBLE) {
890 			/* FIXME "must" disable babbling device's port too */
891 			urb->status = -EOVERFLOW;
892 		} else if (token & QTD_STS_MMF) {
893 			/* fs/ls interrupt xfer missed the complete-split */
894 			urb->status = -EPROTO;
895 		} else if (token & QTD_STS_DBE) {
896 			urb->status = (QTD_PID(token) == 1) /* IN ? */
897 				? -ENOSR  /* hc couldn't read data */
898 				: -ECOMM; /* hc couldn't write data */
899 		} else if (token & QTD_STS_XACT) {
900 			/* timeout, bad crc, wrong PID, etc; retried */
901 			if (QTD_CERR(token))
902 				urb->status = -EPIPE;
903 			else {
904 				oxu_dbg(oxu, "devpath %s ep%d%s 3strikes\n",
905 					urb->dev->devpath,
906 					usb_pipeendpoint(urb->pipe),
907 					usb_pipein(urb->pipe) ? "in" : "out");
908 				urb->status = -EPROTO;
909 			}
910 		/* CERR nonzero + no errors + halt --> stall */
911 		} else if (QTD_CERR(token))
912 			urb->status = -EPIPE;
913 		else	/* unknown */
914 			urb->status = -EPROTO;
915 
916 		oxu_vdbg(oxu, "dev%d ep%d%s qtd token %08x --> status %d\n",
917 			usb_pipedevice(urb->pipe),
918 			usb_pipeendpoint(urb->pipe),
919 			usb_pipein(urb->pipe) ? "in" : "out",
920 			token, urb->status);
921 	}
922 }
923 
924 static void ehci_urb_done(struct oxu_hcd *oxu, struct urb *urb)
925 __releases(oxu->lock)
926 __acquires(oxu->lock)
927 {
928 	if (likely(urb->hcpriv != NULL)) {
929 		struct ehci_qh	*qh = (struct ehci_qh *) urb->hcpriv;
930 
931 		/* S-mask in a QH means it's an interrupt urb */
932 		if ((qh->hw_info2 & cpu_to_le32(QH_SMASK)) != 0) {
933 
934 			/* ... update hc-wide periodic stats (for usbfs) */
935 			oxu_to_hcd(oxu)->self.bandwidth_int_reqs--;
936 		}
937 		qh_put(qh);
938 	}
939 
940 	urb->hcpriv = NULL;
941 	switch (urb->status) {
942 	case -EINPROGRESS:		/* success */
943 		urb->status = 0;
944 	default:			/* fault */
945 		break;
946 	case -EREMOTEIO:		/* fault or normal */
947 		if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
948 			urb->status = 0;
949 		break;
950 	case -ECONNRESET:		/* canceled */
951 	case -ENOENT:
952 		break;
953 	}
954 
955 #ifdef OXU_URB_TRACE
956 	oxu_dbg(oxu, "%s %s urb %p ep%d%s status %d len %d/%d\n",
957 		__func__, urb->dev->devpath, urb,
958 		usb_pipeendpoint(urb->pipe),
959 		usb_pipein(urb->pipe) ? "in" : "out",
960 		urb->status,
961 		urb->actual_length, urb->transfer_buffer_length);
962 #endif
963 
964 	/* complete() can reenter this HCD */
965 	spin_unlock(&oxu->lock);
966 	usb_hcd_giveback_urb(oxu_to_hcd(oxu), urb, urb->status);
967 	spin_lock(&oxu->lock);
968 }
969 
970 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
971 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
972 
973 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
974 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
975 
976 #define HALT_BIT cpu_to_le32(QTD_STS_HALT)
977 
978 /* Process and free completed qtds for a qh, returning URBs to drivers.
979  * Chases up to qh->hw_current.  Returns number of completions called,
980  * indicating how much "real" work we did.
981  */
982 static unsigned qh_completions(struct oxu_hcd *oxu, struct ehci_qh *qh)
983 {
984 	struct ehci_qtd *last = NULL, *end = qh->dummy;
985 	struct list_head *entry, *tmp;
986 	int stopped;
987 	unsigned count = 0;
988 	int do_status = 0;
989 	u8 state;
990 	struct oxu_murb *murb = NULL;
991 
992 	if (unlikely(list_empty(&qh->qtd_list)))
993 		return count;
994 
995 	/* completions (or tasks on other cpus) must never clobber HALT
996 	 * till we've gone through and cleaned everything up, even when
997 	 * they add urbs to this qh's queue or mark them for unlinking.
998 	 *
999 	 * NOTE:  unlinking expects to be done in queue order.
1000 	 */
1001 	state = qh->qh_state;
1002 	qh->qh_state = QH_STATE_COMPLETING;
1003 	stopped = (state == QH_STATE_IDLE);
1004 
1005 	/* remove de-activated QTDs from front of queue.
1006 	 * after faults (including short reads), cleanup this urb
1007 	 * then let the queue advance.
1008 	 * if queue is stopped, handles unlinks.
1009 	 */
1010 	list_for_each_safe(entry, tmp, &qh->qtd_list) {
1011 		struct ehci_qtd	*qtd;
1012 		struct urb *urb;
1013 		u32 token = 0;
1014 
1015 		qtd = list_entry(entry, struct ehci_qtd, qtd_list);
1016 		urb = qtd->urb;
1017 
1018 		/* Clean up any state from previous QTD ...*/
1019 		if (last) {
1020 			if (likely(last->urb != urb)) {
1021 				if (last->urb->complete == NULL) {
1022 					murb = (struct oxu_murb *) last->urb;
1023 					last->urb = murb->main;
1024 					if (murb->last) {
1025 						ehci_urb_done(oxu, last->urb);
1026 						count++;
1027 					}
1028 					oxu_murb_free(oxu, murb);
1029 				} else {
1030 					ehci_urb_done(oxu, last->urb);
1031 					count++;
1032 				}
1033 			}
1034 			oxu_qtd_free(oxu, last);
1035 			last = NULL;
1036 		}
1037 
1038 		/* ignore urbs submitted during completions we reported */
1039 		if (qtd == end)
1040 			break;
1041 
1042 		/* hardware copies qtd out of qh overlay */
1043 		rmb();
1044 		token = le32_to_cpu(qtd->hw_token);
1045 
1046 		/* always clean up qtds the hc de-activated */
1047 		if ((token & QTD_STS_ACTIVE) == 0) {
1048 
1049 			if ((token & QTD_STS_HALT) != 0) {
1050 				stopped = 1;
1051 
1052 			/* magic dummy for some short reads; qh won't advance.
1053 			 * that silicon quirk can kick in with this dummy too.
1054 			 */
1055 			} else if (IS_SHORT_READ(token) &&
1056 					!(qtd->hw_alt_next & EHCI_LIST_END)) {
1057 				stopped = 1;
1058 				goto halt;
1059 			}
1060 
1061 		/* stop scanning when we reach qtds the hc is using */
1062 		} else if (likely(!stopped &&
1063 				HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) {
1064 			break;
1065 
1066 		} else {
1067 			stopped = 1;
1068 
1069 			if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)))
1070 				urb->status = -ESHUTDOWN;
1071 
1072 			/* ignore active urbs unless some previous qtd
1073 			 * for the urb faulted (including short read) or
1074 			 * its urb was canceled.  we may patch qh or qtds.
1075 			 */
1076 			if (likely(urb->status == -EINPROGRESS))
1077 				continue;
1078 
1079 			/* issue status after short control reads */
1080 			if (unlikely(do_status != 0)
1081 					&& QTD_PID(token) == 0 /* OUT */) {
1082 				do_status = 0;
1083 				continue;
1084 			}
1085 
1086 			/* token in overlay may be most current */
1087 			if (state == QH_STATE_IDLE
1088 					&& cpu_to_le32(qtd->qtd_dma)
1089 						== qh->hw_current)
1090 				token = le32_to_cpu(qh->hw_token);
1091 
1092 			/* force halt for unlinked or blocked qh, so we'll
1093 			 * patch the qh later and so that completions can't
1094 			 * activate it while we "know" it's stopped.
1095 			 */
1096 			if ((HALT_BIT & qh->hw_token) == 0) {
1097 halt:
1098 				qh->hw_token |= HALT_BIT;
1099 				wmb();
1100 			}
1101 		}
1102 
1103 		/* Remove it from the queue */
1104 		qtd_copy_status(oxu, urb->complete ?
1105 					urb : ((struct oxu_murb *) urb)->main,
1106 				qtd->length, token);
1107 		if ((usb_pipein(qtd->urb->pipe)) &&
1108 				(NULL != qtd->transfer_buffer))
1109 			memcpy(qtd->transfer_buffer, qtd->buffer, qtd->length);
1110 		do_status = (urb->status == -EREMOTEIO)
1111 				&& usb_pipecontrol(urb->pipe);
1112 
1113 		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
1114 			last = list_entry(qtd->qtd_list.prev,
1115 					struct ehci_qtd, qtd_list);
1116 			last->hw_next = qtd->hw_next;
1117 		}
1118 		list_del(&qtd->qtd_list);
1119 		last = qtd;
1120 	}
1121 
1122 	/* last urb's completion might still need calling */
1123 	if (likely(last != NULL)) {
1124 		if (last->urb->complete == NULL) {
1125 			murb = (struct oxu_murb *) last->urb;
1126 			last->urb = murb->main;
1127 			if (murb->last) {
1128 				ehci_urb_done(oxu, last->urb);
1129 				count++;
1130 			}
1131 			oxu_murb_free(oxu, murb);
1132 		} else {
1133 			ehci_urb_done(oxu, last->urb);
1134 			count++;
1135 		}
1136 		oxu_qtd_free(oxu, last);
1137 	}
1138 
1139 	/* restore original state; caller must unlink or relink */
1140 	qh->qh_state = state;
1141 
1142 	/* be sure the hardware's done with the qh before refreshing
1143 	 * it after fault cleanup, or recovering from silicon wrongly
1144 	 * overlaying the dummy qtd (which reduces DMA chatter).
1145 	 */
1146 	if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END) {
1147 		switch (state) {
1148 		case QH_STATE_IDLE:
1149 			qh_refresh(oxu, qh);
1150 			break;
1151 		case QH_STATE_LINKED:
1152 			/* should be rare for periodic transfers,
1153 			 * except maybe high bandwidth ...
1154 			 */
1155 			if ((cpu_to_le32(QH_SMASK)
1156 					& qh->hw_info2) != 0) {
1157 				intr_deschedule(oxu, qh);
1158 				(void) qh_schedule(oxu, qh);
1159 			} else
1160 				unlink_async(oxu, qh);
1161 			break;
1162 		/* otherwise, unlink already started */
1163 		}
1164 	}
1165 
1166 	return count;
1167 }
1168 
1169 /* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */
1170 #define hb_mult(wMaxPacketSize)		(1 + (((wMaxPacketSize) >> 11) & 0x03))
1171 /* ... and packet size, for any kind of endpoint descriptor */
1172 #define max_packet(wMaxPacketSize)	((wMaxPacketSize) & 0x07ff)
1173 
1174 /* Reverse of qh_urb_transaction: free a list of TDs.
1175  * used for cleanup after errors, before HC sees an URB's TDs.
1176  */
1177 static void qtd_list_free(struct oxu_hcd *oxu,
1178 				struct urb *urb, struct list_head *qtd_list)
1179 {
1180 	struct list_head *entry, *temp;
1181 
1182 	list_for_each_safe(entry, temp, qtd_list) {
1183 		struct ehci_qtd	*qtd;
1184 
1185 		qtd = list_entry(entry, struct ehci_qtd, qtd_list);
1186 		list_del(&qtd->qtd_list);
1187 		oxu_qtd_free(oxu, qtd);
1188 	}
1189 }
1190 
1191 /* Create a list of filled qtds for this URB; won't link into qh.
1192  */
1193 static struct list_head *qh_urb_transaction(struct oxu_hcd *oxu,
1194 						struct urb *urb,
1195 						struct list_head *head,
1196 						gfp_t flags)
1197 {
1198 	struct ehci_qtd	*qtd, *qtd_prev;
1199 	dma_addr_t buf;
1200 	int len, maxpacket;
1201 	int is_input;
1202 	u32 token;
1203 	void *transfer_buf = NULL;
1204 	int ret;
1205 
1206 	/*
1207 	 * URBs map to sequences of QTDs: one logical transaction
1208 	 */
1209 	qtd = ehci_qtd_alloc(oxu);
1210 	if (unlikely(!qtd))
1211 		return NULL;
1212 	list_add_tail(&qtd->qtd_list, head);
1213 	qtd->urb = urb;
1214 
1215 	token = QTD_STS_ACTIVE;
1216 	token |= (EHCI_TUNE_CERR << 10);
1217 	/* for split transactions, SplitXState initialized to zero */
1218 
1219 	len = urb->transfer_buffer_length;
1220 	is_input = usb_pipein(urb->pipe);
1221 	if (!urb->transfer_buffer && urb->transfer_buffer_length && is_input)
1222 		urb->transfer_buffer = phys_to_virt(urb->transfer_dma);
1223 
1224 	if (usb_pipecontrol(urb->pipe)) {
1225 		/* SETUP pid */
1226 		ret = oxu_buf_alloc(oxu, qtd, sizeof(struct usb_ctrlrequest));
1227 		if (ret)
1228 			goto cleanup;
1229 
1230 		qtd_fill(qtd, qtd->buffer_dma, sizeof(struct usb_ctrlrequest),
1231 				token | (2 /* "setup" */ << 8), 8);
1232 		memcpy(qtd->buffer, qtd->urb->setup_packet,
1233 				sizeof(struct usb_ctrlrequest));
1234 
1235 		/* ... and always at least one more pid */
1236 		token ^= QTD_TOGGLE;
1237 		qtd_prev = qtd;
1238 		qtd = ehci_qtd_alloc(oxu);
1239 		if (unlikely(!qtd))
1240 			goto cleanup;
1241 		qtd->urb = urb;
1242 		qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1243 		list_add_tail(&qtd->qtd_list, head);
1244 
1245 		/* for zero length DATA stages, STATUS is always IN */
1246 		if (len == 0)
1247 			token |= (1 /* "in" */ << 8);
1248 	}
1249 
1250 	/*
1251 	 * Data transfer stage: buffer setup
1252 	 */
1253 
1254 	ret = oxu_buf_alloc(oxu, qtd, len);
1255 	if (ret)
1256 		goto cleanup;
1257 
1258 	buf = qtd->buffer_dma;
1259 	transfer_buf = urb->transfer_buffer;
1260 
1261 	if (!is_input)
1262 		memcpy(qtd->buffer, qtd->urb->transfer_buffer, len);
1263 
1264 	if (is_input)
1265 		token |= (1 /* "in" */ << 8);
1266 	/* else it's already initted to "out" pid (0 << 8) */
1267 
1268 	maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
1269 
1270 	/*
1271 	 * buffer gets wrapped in one or more qtds;
1272 	 * last one may be "short" (including zero len)
1273 	 * and may serve as a control status ack
1274 	 */
1275 	for (;;) {
1276 		int this_qtd_len;
1277 
1278 		this_qtd_len = qtd_fill(qtd, buf, len, token, maxpacket);
1279 		qtd->transfer_buffer = transfer_buf;
1280 		len -= this_qtd_len;
1281 		buf += this_qtd_len;
1282 		transfer_buf += this_qtd_len;
1283 		if (is_input)
1284 			qtd->hw_alt_next = oxu->async->hw_alt_next;
1285 
1286 		/* qh makes control packets use qtd toggle; maybe switch it */
1287 		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
1288 			token ^= QTD_TOGGLE;
1289 
1290 		if (likely(len <= 0))
1291 			break;
1292 
1293 		qtd_prev = qtd;
1294 		qtd = ehci_qtd_alloc(oxu);
1295 		if (unlikely(!qtd))
1296 			goto cleanup;
1297 		if (likely(len > 0)) {
1298 			ret = oxu_buf_alloc(oxu, qtd, len);
1299 			if (ret)
1300 				goto cleanup;
1301 		}
1302 		qtd->urb = urb;
1303 		qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1304 		list_add_tail(&qtd->qtd_list, head);
1305 	}
1306 
1307 	/* unless the bulk/interrupt caller wants a chance to clean
1308 	 * up after short reads, hc should advance qh past this urb
1309 	 */
1310 	if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
1311 				|| usb_pipecontrol(urb->pipe)))
1312 		qtd->hw_alt_next = EHCI_LIST_END;
1313 
1314 	/*
1315 	 * control requests may need a terminating data "status" ack;
1316 	 * bulk ones may need a terminating short packet (zero length).
1317 	 */
1318 	if (likely(urb->transfer_buffer_length != 0)) {
1319 		int	one_more = 0;
1320 
1321 		if (usb_pipecontrol(urb->pipe)) {
1322 			one_more = 1;
1323 			token ^= 0x0100;	/* "in" <--> "out"  */
1324 			token |= QTD_TOGGLE;	/* force DATA1 */
1325 		} else if (usb_pipebulk(urb->pipe)
1326 				&& (urb->transfer_flags & URB_ZERO_PACKET)
1327 				&& !(urb->transfer_buffer_length % maxpacket)) {
1328 			one_more = 1;
1329 		}
1330 		if (one_more) {
1331 			qtd_prev = qtd;
1332 			qtd = ehci_qtd_alloc(oxu);
1333 			if (unlikely(!qtd))
1334 				goto cleanup;
1335 			qtd->urb = urb;
1336 			qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1337 			list_add_tail(&qtd->qtd_list, head);
1338 
1339 			/* never any data in such packets */
1340 			qtd_fill(qtd, 0, 0, token, 0);
1341 		}
1342 	}
1343 
1344 	/* by default, enable interrupt on urb completion */
1345 		qtd->hw_token |= cpu_to_le32(QTD_IOC);
1346 	return head;
1347 
1348 cleanup:
1349 	qtd_list_free(oxu, urb, head);
1350 	return NULL;
1351 }
1352 
1353 /* Each QH holds a qtd list; a QH is used for everything except iso.
1354  *
1355  * For interrupt urbs, the scheduler must set the microframe scheduling
1356  * mask(s) each time the QH gets scheduled.  For highspeed, that's
1357  * just one microframe in the s-mask.  For split interrupt transactions
1358  * there are additional complications: c-mask, maybe FSTNs.
1359  */
1360 static struct ehci_qh *qh_make(struct oxu_hcd *oxu,
1361 				struct urb *urb, gfp_t flags)
1362 {
1363 	struct ehci_qh *qh = oxu_qh_alloc(oxu);
1364 	u32 info1 = 0, info2 = 0;
1365 	int is_input, type;
1366 	int maxp = 0;
1367 
1368 	if (!qh)
1369 		return qh;
1370 
1371 	/*
1372 	 * init endpoint/device data for this QH
1373 	 */
1374 	info1 |= usb_pipeendpoint(urb->pipe) << 8;
1375 	info1 |= usb_pipedevice(urb->pipe) << 0;
1376 
1377 	is_input = usb_pipein(urb->pipe);
1378 	type = usb_pipetype(urb->pipe);
1379 	maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
1380 
1381 	/* Compute interrupt scheduling parameters just once, and save.
1382 	 * - allowing for high bandwidth, how many nsec/uframe are used?
1383 	 * - split transactions need a second CSPLIT uframe; same question
1384 	 * - splits also need a schedule gap (for full/low speed I/O)
1385 	 * - qh has a polling interval
1386 	 *
1387 	 * For control/bulk requests, the HC or TT handles these.
1388 	 */
1389 	if (type == PIPE_INTERRUPT) {
1390 		qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
1391 								is_input, 0,
1392 				hb_mult(maxp) * max_packet(maxp)));
1393 		qh->start = NO_FRAME;
1394 
1395 		if (urb->dev->speed == USB_SPEED_HIGH) {
1396 			qh->c_usecs = 0;
1397 			qh->gap_uf = 0;
1398 
1399 			qh->period = urb->interval >> 3;
1400 			if (qh->period == 0 && urb->interval != 1) {
1401 				/* NOTE interval 2 or 4 uframes could work.
1402 				 * But interval 1 scheduling is simpler, and
1403 				 * includes high bandwidth.
1404 				 */
1405 				oxu_dbg(oxu, "intr period %d uframes, NYET!\n",
1406 					urb->interval);
1407 				goto done;
1408 			}
1409 		} else {
1410 			struct usb_tt	*tt = urb->dev->tt;
1411 			int		think_time;
1412 
1413 			/* gap is f(FS/LS transfer times) */
1414 			qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
1415 					is_input, 0, maxp) / (125 * 1000);
1416 
1417 			/* FIXME this just approximates SPLIT/CSPLIT times */
1418 			if (is_input) {		/* SPLIT, gap, CSPLIT+DATA */
1419 				qh->c_usecs = qh->usecs + HS_USECS(0);
1420 				qh->usecs = HS_USECS(1);
1421 			} else {		/* SPLIT+DATA, gap, CSPLIT */
1422 				qh->usecs += HS_USECS(1);
1423 				qh->c_usecs = HS_USECS(0);
1424 			}
1425 
1426 			think_time = tt ? tt->think_time : 0;
1427 			qh->tt_usecs = NS_TO_US(think_time +
1428 					usb_calc_bus_time(urb->dev->speed,
1429 					is_input, 0, max_packet(maxp)));
1430 			qh->period = urb->interval;
1431 		}
1432 	}
1433 
1434 	/* support for tt scheduling, and access to toggles */
1435 	qh->dev = urb->dev;
1436 
1437 	/* using TT? */
1438 	switch (urb->dev->speed) {
1439 	case USB_SPEED_LOW:
1440 		info1 |= (1 << 12);	/* EPS "low" */
1441 		/* FALL THROUGH */
1442 
1443 	case USB_SPEED_FULL:
1444 		/* EPS 0 means "full" */
1445 		if (type != PIPE_INTERRUPT)
1446 			info1 |= (EHCI_TUNE_RL_TT << 28);
1447 		if (type == PIPE_CONTROL) {
1448 			info1 |= (1 << 27);	/* for TT */
1449 			info1 |= 1 << 14;	/* toggle from qtd */
1450 		}
1451 		info1 |= maxp << 16;
1452 
1453 		info2 |= (EHCI_TUNE_MULT_TT << 30);
1454 		info2 |= urb->dev->ttport << 23;
1455 
1456 		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
1457 
1458 		break;
1459 
1460 	case USB_SPEED_HIGH:		/* no TT involved */
1461 		info1 |= (2 << 12);	/* EPS "high" */
1462 		if (type == PIPE_CONTROL) {
1463 			info1 |= (EHCI_TUNE_RL_HS << 28);
1464 			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
1465 			info1 |= 1 << 14;	/* toggle from qtd */
1466 			info2 |= (EHCI_TUNE_MULT_HS << 30);
1467 		} else if (type == PIPE_BULK) {
1468 			info1 |= (EHCI_TUNE_RL_HS << 28);
1469 			info1 |= 512 << 16;	/* usb2 fixed maxpacket */
1470 			info2 |= (EHCI_TUNE_MULT_HS << 30);
1471 		} else {		/* PIPE_INTERRUPT */
1472 			info1 |= max_packet(maxp) << 16;
1473 			info2 |= hb_mult(maxp) << 30;
1474 		}
1475 		break;
1476 	default:
1477 		oxu_dbg(oxu, "bogus dev %p speed %d\n", urb->dev, urb->dev->speed);
1478 done:
1479 		qh_put(qh);
1480 		return NULL;
1481 	}
1482 
1483 	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
1484 
1485 	/* init as live, toggle clear, advance to dummy */
1486 	qh->qh_state = QH_STATE_IDLE;
1487 	qh->hw_info1 = cpu_to_le32(info1);
1488 	qh->hw_info2 = cpu_to_le32(info2);
1489 	usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
1490 	qh_refresh(oxu, qh);
1491 	return qh;
1492 }
1493 
1494 /* Move qh (and its qtds) onto async queue; maybe enable queue.
1495  */
1496 static void qh_link_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
1497 {
1498 	__le32 dma = QH_NEXT(qh->qh_dma);
1499 	struct ehci_qh *head;
1500 
1501 	/* (re)start the async schedule? */
1502 	head = oxu->async;
1503 	timer_action_done(oxu, TIMER_ASYNC_OFF);
1504 	if (!head->qh_next.qh) {
1505 		u32	cmd = readl(&oxu->regs->command);
1506 
1507 		if (!(cmd & CMD_ASE)) {
1508 			/* in case a clear of CMD_ASE didn't take yet */
1509 			(void)handshake(oxu, &oxu->regs->status,
1510 					STS_ASS, 0, 150);
1511 			cmd |= CMD_ASE | CMD_RUN;
1512 			writel(cmd, &oxu->regs->command);
1513 			oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
1514 			/* posted write need not be known to HC yet ... */
1515 		}
1516 	}
1517 
1518 	/* clear halt and/or toggle; and maybe recover from silicon quirk */
1519 	if (qh->qh_state == QH_STATE_IDLE)
1520 		qh_refresh(oxu, qh);
1521 
1522 	/* splice right after start */
1523 	qh->qh_next = head->qh_next;
1524 	qh->hw_next = head->hw_next;
1525 	wmb();
1526 
1527 	head->qh_next.qh = qh;
1528 	head->hw_next = dma;
1529 
1530 	qh->qh_state = QH_STATE_LINKED;
1531 	/* qtd completions reported later by interrupt */
1532 }
1533 
1534 #define	QH_ADDR_MASK	cpu_to_le32(0x7f)
1535 
1536 /*
1537  * For control/bulk/interrupt, return QH with these TDs appended.
1538  * Allocates and initializes the QH if necessary.
1539  * Returns null if it can't allocate a QH it needs to.
1540  * If the QH has TDs (urbs) already, that's great.
1541  */
1542 static struct ehci_qh *qh_append_tds(struct oxu_hcd *oxu,
1543 				struct urb *urb, struct list_head *qtd_list,
1544 				int epnum, void	**ptr)
1545 {
1546 	struct ehci_qh *qh = NULL;
1547 
1548 	qh = (struct ehci_qh *) *ptr;
1549 	if (unlikely(qh == NULL)) {
1550 		/* can't sleep here, we have oxu->lock... */
1551 		qh = qh_make(oxu, urb, GFP_ATOMIC);
1552 		*ptr = qh;
1553 	}
1554 	if (likely(qh != NULL)) {
1555 		struct ehci_qtd	*qtd;
1556 
1557 		if (unlikely(list_empty(qtd_list)))
1558 			qtd = NULL;
1559 		else
1560 			qtd = list_entry(qtd_list->next, struct ehci_qtd,
1561 					qtd_list);
1562 
1563 		/* control qh may need patching ... */
1564 		if (unlikely(epnum == 0)) {
1565 
1566 			/* usb_reset_device() briefly reverts to address 0 */
1567 			if (usb_pipedevice(urb->pipe) == 0)
1568 				qh->hw_info1 &= ~QH_ADDR_MASK;
1569 		}
1570 
1571 		/* just one way to queue requests: swap with the dummy qtd.
1572 		 * only hc or qh_refresh() ever modify the overlay.
1573 		 */
1574 		if (likely(qtd != NULL)) {
1575 			struct ehci_qtd	*dummy;
1576 			dma_addr_t dma;
1577 			__le32 token;
1578 
1579 			/* to avoid racing the HC, use the dummy td instead of
1580 			 * the first td of our list (becomes new dummy).  both
1581 			 * tds stay deactivated until we're done, when the
1582 			 * HC is allowed to fetch the old dummy (4.10.2).
1583 			 */
1584 			token = qtd->hw_token;
1585 			qtd->hw_token = HALT_BIT;
1586 			wmb();
1587 			dummy = qh->dummy;
1588 
1589 			dma = dummy->qtd_dma;
1590 			*dummy = *qtd;
1591 			dummy->qtd_dma = dma;
1592 
1593 			list_del(&qtd->qtd_list);
1594 			list_add(&dummy->qtd_list, qtd_list);
1595 			list_splice(qtd_list, qh->qtd_list.prev);
1596 
1597 			ehci_qtd_init(qtd, qtd->qtd_dma);
1598 			qh->dummy = qtd;
1599 
1600 			/* hc must see the new dummy at list end */
1601 			dma = qtd->qtd_dma;
1602 			qtd = list_entry(qh->qtd_list.prev,
1603 					struct ehci_qtd, qtd_list);
1604 			qtd->hw_next = QTD_NEXT(dma);
1605 
1606 			/* let the hc process these next qtds */
1607 			dummy->hw_token = (token & ~(0x80));
1608 			wmb();
1609 			dummy->hw_token = token;
1610 
1611 			urb->hcpriv = qh_get(qh);
1612 		}
1613 	}
1614 	return qh;
1615 }
1616 
1617 static int submit_async(struct oxu_hcd	*oxu, struct urb *urb,
1618 			struct list_head *qtd_list, gfp_t mem_flags)
1619 {
1620 	struct ehci_qtd	*qtd;
1621 	int epnum;
1622 	unsigned long flags;
1623 	struct ehci_qh *qh = NULL;
1624 	int rc = 0;
1625 
1626 	qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
1627 	epnum = urb->ep->desc.bEndpointAddress;
1628 
1629 #ifdef OXU_URB_TRACE
1630 	oxu_dbg(oxu, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1631 		__func__, urb->dev->devpath, urb,
1632 		epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
1633 		urb->transfer_buffer_length,
1634 		qtd, urb->ep->hcpriv);
1635 #endif
1636 
1637 	spin_lock_irqsave(&oxu->lock, flags);
1638 	if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
1639 		rc = -ESHUTDOWN;
1640 		goto done;
1641 	}
1642 
1643 	qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
1644 	if (unlikely(qh == NULL)) {
1645 		rc = -ENOMEM;
1646 		goto done;
1647 	}
1648 
1649 	/* Control/bulk operations through TTs don't need scheduling,
1650 	 * the HC and TT handle it when the TT has a buffer ready.
1651 	 */
1652 	if (likely(qh->qh_state == QH_STATE_IDLE))
1653 		qh_link_async(oxu, qh_get(qh));
1654 done:
1655 	spin_unlock_irqrestore(&oxu->lock, flags);
1656 	if (unlikely(qh == NULL))
1657 		qtd_list_free(oxu, urb, qtd_list);
1658 	return rc;
1659 }
1660 
1661 /* The async qh for the qtds being reclaimed are now unlinked from the HC */
1662 
1663 static void end_unlink_async(struct oxu_hcd *oxu)
1664 {
1665 	struct ehci_qh *qh = oxu->reclaim;
1666 	struct ehci_qh *next;
1667 
1668 	timer_action_done(oxu, TIMER_IAA_WATCHDOG);
1669 
1670 	qh->qh_state = QH_STATE_IDLE;
1671 	qh->qh_next.qh = NULL;
1672 	qh_put(qh);			/* refcount from reclaim */
1673 
1674 	/* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
1675 	next = qh->reclaim;
1676 	oxu->reclaim = next;
1677 	oxu->reclaim_ready = 0;
1678 	qh->reclaim = NULL;
1679 
1680 	qh_completions(oxu, qh);
1681 
1682 	if (!list_empty(&qh->qtd_list)
1683 			&& HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
1684 		qh_link_async(oxu, qh);
1685 	else {
1686 		qh_put(qh);		/* refcount from async list */
1687 
1688 		/* it's not free to turn the async schedule on/off; leave it
1689 		 * active but idle for a while once it empties.
1690 		 */
1691 		if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state)
1692 				&& oxu->async->qh_next.qh == NULL)
1693 			timer_action(oxu, TIMER_ASYNC_OFF);
1694 	}
1695 
1696 	if (next) {
1697 		oxu->reclaim = NULL;
1698 		start_unlink_async(oxu, next);
1699 	}
1700 }
1701 
1702 /* makes sure the async qh will become idle */
1703 /* caller must own oxu->lock */
1704 
1705 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
1706 {
1707 	int cmd = readl(&oxu->regs->command);
1708 	struct ehci_qh *prev;
1709 
1710 #ifdef DEBUG
1711 	assert_spin_locked(&oxu->lock);
1712 	if (oxu->reclaim || (qh->qh_state != QH_STATE_LINKED
1713 				&& qh->qh_state != QH_STATE_UNLINK_WAIT))
1714 		BUG();
1715 #endif
1716 
1717 	/* stop async schedule right now? */
1718 	if (unlikely(qh == oxu->async)) {
1719 		/* can't get here without STS_ASS set */
1720 		if (oxu_to_hcd(oxu)->state != HC_STATE_HALT
1721 				&& !oxu->reclaim) {
1722 			/* ... and CMD_IAAD clear */
1723 			writel(cmd & ~CMD_ASE, &oxu->regs->command);
1724 			wmb();
1725 			/* handshake later, if we need to */
1726 			timer_action_done(oxu, TIMER_ASYNC_OFF);
1727 		}
1728 		return;
1729 	}
1730 
1731 	qh->qh_state = QH_STATE_UNLINK;
1732 	oxu->reclaim = qh = qh_get(qh);
1733 
1734 	prev = oxu->async;
1735 	while (prev->qh_next.qh != qh)
1736 		prev = prev->qh_next.qh;
1737 
1738 	prev->hw_next = qh->hw_next;
1739 	prev->qh_next = qh->qh_next;
1740 	wmb();
1741 
1742 	if (unlikely(oxu_to_hcd(oxu)->state == HC_STATE_HALT)) {
1743 		/* if (unlikely(qh->reclaim != 0))
1744 		 *	this will recurse, probably not much
1745 		 */
1746 		end_unlink_async(oxu);
1747 		return;
1748 	}
1749 
1750 	oxu->reclaim_ready = 0;
1751 	cmd |= CMD_IAAD;
1752 	writel(cmd, &oxu->regs->command);
1753 	(void) readl(&oxu->regs->command);
1754 	timer_action(oxu, TIMER_IAA_WATCHDOG);
1755 }
1756 
1757 static void scan_async(struct oxu_hcd *oxu)
1758 {
1759 	struct ehci_qh *qh;
1760 	enum ehci_timer_action action = TIMER_IO_WATCHDOG;
1761 
1762 	if (!++(oxu->stamp))
1763 		oxu->stamp++;
1764 	timer_action_done(oxu, TIMER_ASYNC_SHRINK);
1765 rescan:
1766 	qh = oxu->async->qh_next.qh;
1767 	if (likely(qh != NULL)) {
1768 		do {
1769 			/* clean any finished work for this qh */
1770 			if (!list_empty(&qh->qtd_list)
1771 					&& qh->stamp != oxu->stamp) {
1772 				int temp;
1773 
1774 				/* unlinks could happen here; completion
1775 				 * reporting drops the lock.  rescan using
1776 				 * the latest schedule, but don't rescan
1777 				 * qhs we already finished (no looping).
1778 				 */
1779 				qh = qh_get(qh);
1780 				qh->stamp = oxu->stamp;
1781 				temp = qh_completions(oxu, qh);
1782 				qh_put(qh);
1783 				if (temp != 0)
1784 					goto rescan;
1785 			}
1786 
1787 			/* unlink idle entries, reducing HC PCI usage as well
1788 			 * as HCD schedule-scanning costs.  delay for any qh
1789 			 * we just scanned, there's a not-unusual case that it
1790 			 * doesn't stay idle for long.
1791 			 * (plus, avoids some kind of re-activation race.)
1792 			 */
1793 			if (list_empty(&qh->qtd_list)) {
1794 				if (qh->stamp == oxu->stamp)
1795 					action = TIMER_ASYNC_SHRINK;
1796 				else if (!oxu->reclaim
1797 					    && qh->qh_state == QH_STATE_LINKED)
1798 					start_unlink_async(oxu, qh);
1799 			}
1800 
1801 			qh = qh->qh_next.qh;
1802 		} while (qh);
1803 	}
1804 	if (action == TIMER_ASYNC_SHRINK)
1805 		timer_action(oxu, TIMER_ASYNC_SHRINK);
1806 }
1807 
1808 /*
1809  * periodic_next_shadow - return "next" pointer on shadow list
1810  * @periodic: host pointer to qh/itd/sitd
1811  * @tag: hardware tag for type of this record
1812  */
1813 static union ehci_shadow *periodic_next_shadow(union ehci_shadow *periodic,
1814 						__le32 tag)
1815 {
1816 	switch (tag) {
1817 	default:
1818 	case Q_TYPE_QH:
1819 		return &periodic->qh->qh_next;
1820 	}
1821 }
1822 
1823 /* caller must hold oxu->lock */
1824 static void periodic_unlink(struct oxu_hcd *oxu, unsigned frame, void *ptr)
1825 {
1826 	union ehci_shadow *prev_p = &oxu->pshadow[frame];
1827 	__le32 *hw_p = &oxu->periodic[frame];
1828 	union ehci_shadow here = *prev_p;
1829 
1830 	/* find predecessor of "ptr"; hw and shadow lists are in sync */
1831 	while (here.ptr && here.ptr != ptr) {
1832 		prev_p = periodic_next_shadow(prev_p, Q_NEXT_TYPE(*hw_p));
1833 		hw_p = here.hw_next;
1834 		here = *prev_p;
1835 	}
1836 	/* an interrupt entry (at list end) could have been shared */
1837 	if (!here.ptr)
1838 		return;
1839 
1840 	/* update shadow and hardware lists ... the old "next" pointers
1841 	 * from ptr may still be in use, the caller updates them.
1842 	 */
1843 	*prev_p = *periodic_next_shadow(&here, Q_NEXT_TYPE(*hw_p));
1844 	*hw_p = *here.hw_next;
1845 }
1846 
1847 /* how many of the uframe's 125 usecs are allocated? */
1848 static unsigned short periodic_usecs(struct oxu_hcd *oxu,
1849 					unsigned frame, unsigned uframe)
1850 {
1851 	__le32 *hw_p = &oxu->periodic[frame];
1852 	union ehci_shadow *q = &oxu->pshadow[frame];
1853 	unsigned usecs = 0;
1854 
1855 	while (q->ptr) {
1856 		switch (Q_NEXT_TYPE(*hw_p)) {
1857 		case Q_TYPE_QH:
1858 		default:
1859 			/* is it in the S-mask? */
1860 			if (q->qh->hw_info2 & cpu_to_le32(1 << uframe))
1861 				usecs += q->qh->usecs;
1862 			/* ... or C-mask? */
1863 			if (q->qh->hw_info2 & cpu_to_le32(1 << (8 + uframe)))
1864 				usecs += q->qh->c_usecs;
1865 			hw_p = &q->qh->hw_next;
1866 			q = &q->qh->qh_next;
1867 			break;
1868 		}
1869 	}
1870 #ifdef DEBUG
1871 	if (usecs > 100)
1872 		oxu_err(oxu, "uframe %d sched overrun: %d usecs\n",
1873 						frame * 8 + uframe, usecs);
1874 #endif
1875 	return usecs;
1876 }
1877 
1878 static int enable_periodic(struct oxu_hcd *oxu)
1879 {
1880 	u32 cmd;
1881 	int status;
1882 
1883 	/* did clearing PSE did take effect yet?
1884 	 * takes effect only at frame boundaries...
1885 	 */
1886 	status = handshake(oxu, &oxu->regs->status, STS_PSS, 0, 9 * 125);
1887 	if (status != 0) {
1888 		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
1889 		usb_hc_died(oxu_to_hcd(oxu));
1890 		return status;
1891 	}
1892 
1893 	cmd = readl(&oxu->regs->command) | CMD_PSE;
1894 	writel(cmd, &oxu->regs->command);
1895 	/* posted write ... PSS happens later */
1896 	oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
1897 
1898 	/* make sure ehci_work scans these */
1899 	oxu->next_uframe = readl(&oxu->regs->frame_index)
1900 		% (oxu->periodic_size << 3);
1901 	return 0;
1902 }
1903 
1904 static int disable_periodic(struct oxu_hcd *oxu)
1905 {
1906 	u32 cmd;
1907 	int status;
1908 
1909 	/* did setting PSE not take effect yet?
1910 	 * takes effect only at frame boundaries...
1911 	 */
1912 	status = handshake(oxu, &oxu->regs->status, STS_PSS, STS_PSS, 9 * 125);
1913 	if (status != 0) {
1914 		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
1915 		usb_hc_died(oxu_to_hcd(oxu));
1916 		return status;
1917 	}
1918 
1919 	cmd = readl(&oxu->regs->command) & ~CMD_PSE;
1920 	writel(cmd, &oxu->regs->command);
1921 	/* posted write ... */
1922 
1923 	oxu->next_uframe = -1;
1924 	return 0;
1925 }
1926 
1927 /* periodic schedule slots have iso tds (normal or split) first, then a
1928  * sparse tree for active interrupt transfers.
1929  *
1930  * this just links in a qh; caller guarantees uframe masks are set right.
1931  * no FSTN support (yet; oxu 0.96+)
1932  */
1933 static int qh_link_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
1934 {
1935 	unsigned i;
1936 	unsigned period = qh->period;
1937 
1938 	dev_dbg(&qh->dev->dev,
1939 		"link qh%d-%04x/%p start %d [%d/%d us]\n",
1940 		period, le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
1941 		qh, qh->start, qh->usecs, qh->c_usecs);
1942 
1943 	/* high bandwidth, or otherwise every microframe */
1944 	if (period == 0)
1945 		period = 1;
1946 
1947 	for (i = qh->start; i < oxu->periodic_size; i += period) {
1948 		union ehci_shadow	*prev = &oxu->pshadow[i];
1949 		__le32			*hw_p = &oxu->periodic[i];
1950 		union ehci_shadow	here = *prev;
1951 		__le32			type = 0;
1952 
1953 		/* skip the iso nodes at list head */
1954 		while (here.ptr) {
1955 			type = Q_NEXT_TYPE(*hw_p);
1956 			if (type == Q_TYPE_QH)
1957 				break;
1958 			prev = periodic_next_shadow(prev, type);
1959 			hw_p = &here.qh->hw_next;
1960 			here = *prev;
1961 		}
1962 
1963 		/* sorting each branch by period (slow-->fast)
1964 		 * enables sharing interior tree nodes
1965 		 */
1966 		while (here.ptr && qh != here.qh) {
1967 			if (qh->period > here.qh->period)
1968 				break;
1969 			prev = &here.qh->qh_next;
1970 			hw_p = &here.qh->hw_next;
1971 			here = *prev;
1972 		}
1973 		/* link in this qh, unless some earlier pass did that */
1974 		if (qh != here.qh) {
1975 			qh->qh_next = here;
1976 			if (here.qh)
1977 				qh->hw_next = *hw_p;
1978 			wmb();
1979 			prev->qh = qh;
1980 			*hw_p = QH_NEXT(qh->qh_dma);
1981 		}
1982 	}
1983 	qh->qh_state = QH_STATE_LINKED;
1984 	qh_get(qh);
1985 
1986 	/* update per-qh bandwidth for usbfs */
1987 	oxu_to_hcd(oxu)->self.bandwidth_allocated += qh->period
1988 		? ((qh->usecs + qh->c_usecs) / qh->period)
1989 		: (qh->usecs * 8);
1990 
1991 	/* maybe enable periodic schedule processing */
1992 	if (!oxu->periodic_sched++)
1993 		return enable_periodic(oxu);
1994 
1995 	return 0;
1996 }
1997 
1998 static void qh_unlink_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
1999 {
2000 	unsigned i;
2001 	unsigned period;
2002 
2003 	/* FIXME:
2004 	 *   IF this isn't high speed
2005 	 *   and this qh is active in the current uframe
2006 	 *   (and overlay token SplitXstate is false?)
2007 	 * THEN
2008 	 *   qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore");
2009 	 */
2010 
2011 	/* high bandwidth, or otherwise part of every microframe */
2012 	period = qh->period;
2013 	if (period == 0)
2014 		period = 1;
2015 
2016 	for (i = qh->start; i < oxu->periodic_size; i += period)
2017 		periodic_unlink(oxu, i, qh);
2018 
2019 	/* update per-qh bandwidth for usbfs */
2020 	oxu_to_hcd(oxu)->self.bandwidth_allocated -= qh->period
2021 		? ((qh->usecs + qh->c_usecs) / qh->period)
2022 		: (qh->usecs * 8);
2023 
2024 	dev_dbg(&qh->dev->dev,
2025 		"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
2026 		qh->period,
2027 		le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
2028 		qh, qh->start, qh->usecs, qh->c_usecs);
2029 
2030 	/* qh->qh_next still "live" to HC */
2031 	qh->qh_state = QH_STATE_UNLINK;
2032 	qh->qh_next.ptr = NULL;
2033 	qh_put(qh);
2034 
2035 	/* maybe turn off periodic schedule */
2036 	oxu->periodic_sched--;
2037 	if (!oxu->periodic_sched)
2038 		(void) disable_periodic(oxu);
2039 }
2040 
2041 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2042 {
2043 	unsigned wait;
2044 
2045 	qh_unlink_periodic(oxu, qh);
2046 
2047 	/* simple/paranoid:  always delay, expecting the HC needs to read
2048 	 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
2049 	 * expect hub_wq to clean up after any CSPLITs we won't issue.
2050 	 * active high speed queues may need bigger delays...
2051 	 */
2052 	if (list_empty(&qh->qtd_list)
2053 		|| (cpu_to_le32(QH_CMASK) & qh->hw_info2) != 0)
2054 		wait = 2;
2055 	else
2056 		wait = 55;	/* worst case: 3 * 1024 */
2057 
2058 	udelay(wait);
2059 	qh->qh_state = QH_STATE_IDLE;
2060 	qh->hw_next = EHCI_LIST_END;
2061 	wmb();
2062 }
2063 
2064 static int check_period(struct oxu_hcd *oxu,
2065 			unsigned frame, unsigned uframe,
2066 			unsigned period, unsigned usecs)
2067 {
2068 	int claimed;
2069 
2070 	/* complete split running into next frame?
2071 	 * given FSTN support, we could sometimes check...
2072 	 */
2073 	if (uframe >= 8)
2074 		return 0;
2075 
2076 	/*
2077 	 * 80% periodic == 100 usec/uframe available
2078 	 * convert "usecs we need" to "max already claimed"
2079 	 */
2080 	usecs = 100 - usecs;
2081 
2082 	/* we "know" 2 and 4 uframe intervals were rejected; so
2083 	 * for period 0, check _every_ microframe in the schedule.
2084 	 */
2085 	if (unlikely(period == 0)) {
2086 		do {
2087 			for (uframe = 0; uframe < 7; uframe++) {
2088 				claimed = periodic_usecs(oxu, frame, uframe);
2089 				if (claimed > usecs)
2090 					return 0;
2091 			}
2092 		} while ((frame += 1) < oxu->periodic_size);
2093 
2094 	/* just check the specified uframe, at that period */
2095 	} else {
2096 		do {
2097 			claimed = periodic_usecs(oxu, frame, uframe);
2098 			if (claimed > usecs)
2099 				return 0;
2100 		} while ((frame += period) < oxu->periodic_size);
2101 	}
2102 
2103 	return 1;
2104 }
2105 
2106 static int check_intr_schedule(struct oxu_hcd	*oxu,
2107 				unsigned frame, unsigned uframe,
2108 				const struct ehci_qh *qh, __le32 *c_maskp)
2109 {
2110 	int retval = -ENOSPC;
2111 
2112 	if (qh->c_usecs && uframe >= 6)		/* FSTN territory? */
2113 		goto done;
2114 
2115 	if (!check_period(oxu, frame, uframe, qh->period, qh->usecs))
2116 		goto done;
2117 	if (!qh->c_usecs) {
2118 		retval = 0;
2119 		*c_maskp = 0;
2120 		goto done;
2121 	}
2122 
2123 done:
2124 	return retval;
2125 }
2126 
2127 /* "first fit" scheduling policy used the first time through,
2128  * or when the previous schedule slot can't be re-used.
2129  */
2130 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2131 {
2132 	int		status;
2133 	unsigned	uframe;
2134 	__le32		c_mask;
2135 	unsigned	frame;		/* 0..(qh->period - 1), or NO_FRAME */
2136 
2137 	qh_refresh(oxu, qh);
2138 	qh->hw_next = EHCI_LIST_END;
2139 	frame = qh->start;
2140 
2141 	/* reuse the previous schedule slots, if we can */
2142 	if (frame < qh->period) {
2143 		uframe = ffs(le32_to_cpup(&qh->hw_info2) & QH_SMASK);
2144 		status = check_intr_schedule(oxu, frame, --uframe,
2145 				qh, &c_mask);
2146 	} else {
2147 		uframe = 0;
2148 		c_mask = 0;
2149 		status = -ENOSPC;
2150 	}
2151 
2152 	/* else scan the schedule to find a group of slots such that all
2153 	 * uframes have enough periodic bandwidth available.
2154 	 */
2155 	if (status) {
2156 		/* "normal" case, uframing flexible except with splits */
2157 		if (qh->period) {
2158 			frame = qh->period - 1;
2159 			do {
2160 				for (uframe = 0; uframe < 8; uframe++) {
2161 					status = check_intr_schedule(oxu,
2162 							frame, uframe, qh,
2163 							&c_mask);
2164 					if (status == 0)
2165 						break;
2166 				}
2167 			} while (status && frame--);
2168 
2169 		/* qh->period == 0 means every uframe */
2170 		} else {
2171 			frame = 0;
2172 			status = check_intr_schedule(oxu, 0, 0, qh, &c_mask);
2173 		}
2174 		if (status)
2175 			goto done;
2176 		qh->start = frame;
2177 
2178 		/* reset S-frame and (maybe) C-frame masks */
2179 		qh->hw_info2 &= cpu_to_le32(~(QH_CMASK | QH_SMASK));
2180 		qh->hw_info2 |= qh->period
2181 			? cpu_to_le32(1 << uframe)
2182 			: cpu_to_le32(QH_SMASK);
2183 		qh->hw_info2 |= c_mask;
2184 	} else
2185 		oxu_dbg(oxu, "reused qh %p schedule\n", qh);
2186 
2187 	/* stuff into the periodic schedule */
2188 	status = qh_link_periodic(oxu, qh);
2189 done:
2190 	return status;
2191 }
2192 
2193 static int intr_submit(struct oxu_hcd *oxu, struct urb *urb,
2194 			struct list_head *qtd_list, gfp_t mem_flags)
2195 {
2196 	unsigned epnum;
2197 	unsigned long flags;
2198 	struct ehci_qh *qh;
2199 	int status = 0;
2200 	struct list_head	empty;
2201 
2202 	/* get endpoint and transfer/schedule data */
2203 	epnum = urb->ep->desc.bEndpointAddress;
2204 
2205 	spin_lock_irqsave(&oxu->lock, flags);
2206 
2207 	if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
2208 		status = -ESHUTDOWN;
2209 		goto done;
2210 	}
2211 
2212 	/* get qh and force any scheduling errors */
2213 	INIT_LIST_HEAD(&empty);
2214 	qh = qh_append_tds(oxu, urb, &empty, epnum, &urb->ep->hcpriv);
2215 	if (qh == NULL) {
2216 		status = -ENOMEM;
2217 		goto done;
2218 	}
2219 	if (qh->qh_state == QH_STATE_IDLE) {
2220 		status = qh_schedule(oxu, qh);
2221 		if (status != 0)
2222 			goto done;
2223 	}
2224 
2225 	/* then queue the urb's tds to the qh */
2226 	qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
2227 	BUG_ON(qh == NULL);
2228 
2229 	/* ... update usbfs periodic stats */
2230 	oxu_to_hcd(oxu)->self.bandwidth_int_reqs++;
2231 
2232 done:
2233 	spin_unlock_irqrestore(&oxu->lock, flags);
2234 	if (status)
2235 		qtd_list_free(oxu, urb, qtd_list);
2236 
2237 	return status;
2238 }
2239 
2240 static inline int itd_submit(struct oxu_hcd *oxu, struct urb *urb,
2241 						gfp_t mem_flags)
2242 {
2243 	oxu_dbg(oxu, "iso support is missing!\n");
2244 	return -ENOSYS;
2245 }
2246 
2247 static inline int sitd_submit(struct oxu_hcd *oxu, struct urb *urb,
2248 						gfp_t mem_flags)
2249 {
2250 	oxu_dbg(oxu, "split iso support is missing!\n");
2251 	return -ENOSYS;
2252 }
2253 
2254 static void scan_periodic(struct oxu_hcd *oxu)
2255 {
2256 	unsigned frame, clock, now_uframe, mod;
2257 	unsigned modified;
2258 
2259 	mod = oxu->periodic_size << 3;
2260 
2261 	/*
2262 	 * When running, scan from last scan point up to "now"
2263 	 * else clean up by scanning everything that's left.
2264 	 * Touches as few pages as possible:  cache-friendly.
2265 	 */
2266 	now_uframe = oxu->next_uframe;
2267 	if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2268 		clock = readl(&oxu->regs->frame_index);
2269 	else
2270 		clock = now_uframe + mod - 1;
2271 	clock %= mod;
2272 
2273 	for (;;) {
2274 		union ehci_shadow	q, *q_p;
2275 		__le32			type, *hw_p;
2276 		unsigned		uframes;
2277 
2278 		/* don't scan past the live uframe */
2279 		frame = now_uframe >> 3;
2280 		if (frame == (clock >> 3))
2281 			uframes = now_uframe & 0x07;
2282 		else {
2283 			/* safe to scan the whole frame at once */
2284 			now_uframe |= 0x07;
2285 			uframes = 8;
2286 		}
2287 
2288 restart:
2289 		/* scan each element in frame's queue for completions */
2290 		q_p = &oxu->pshadow[frame];
2291 		hw_p = &oxu->periodic[frame];
2292 		q.ptr = q_p->ptr;
2293 		type = Q_NEXT_TYPE(*hw_p);
2294 		modified = 0;
2295 
2296 		while (q.ptr != NULL) {
2297 			union ehci_shadow temp;
2298 			int live;
2299 
2300 			live = HC_IS_RUNNING(oxu_to_hcd(oxu)->state);
2301 			switch (type) {
2302 			case Q_TYPE_QH:
2303 				/* handle any completions */
2304 				temp.qh = qh_get(q.qh);
2305 				type = Q_NEXT_TYPE(q.qh->hw_next);
2306 				q = q.qh->qh_next;
2307 				modified = qh_completions(oxu, temp.qh);
2308 				if (unlikely(list_empty(&temp.qh->qtd_list)))
2309 					intr_deschedule(oxu, temp.qh);
2310 				qh_put(temp.qh);
2311 				break;
2312 			default:
2313 				oxu_dbg(oxu, "corrupt type %d frame %d shadow %p\n",
2314 					type, frame, q.ptr);
2315 				q.ptr = NULL;
2316 			}
2317 
2318 			/* assume completion callbacks modify the queue */
2319 			if (unlikely(modified))
2320 				goto restart;
2321 		}
2322 
2323 		/* Stop when we catch up to the HC */
2324 
2325 		/* FIXME:  this assumes we won't get lapped when
2326 		 * latencies climb; that should be rare, but...
2327 		 * detect it, and just go all the way around.
2328 		 * FLR might help detect this case, so long as latencies
2329 		 * don't exceed periodic_size msec (default 1.024 sec).
2330 		 */
2331 
2332 		/* FIXME: likewise assumes HC doesn't halt mid-scan */
2333 
2334 		if (now_uframe == clock) {
2335 			unsigned	now;
2336 
2337 			if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2338 				break;
2339 			oxu->next_uframe = now_uframe;
2340 			now = readl(&oxu->regs->frame_index) % mod;
2341 			if (now_uframe == now)
2342 				break;
2343 
2344 			/* rescan the rest of this frame, then ... */
2345 			clock = now;
2346 		} else {
2347 			now_uframe++;
2348 			now_uframe %= mod;
2349 		}
2350 	}
2351 }
2352 
2353 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
2354  * The firmware seems to think that powering off is a wakeup event!
2355  * This routine turns off remote wakeup and everything else, on all ports.
2356  */
2357 static void ehci_turn_off_all_ports(struct oxu_hcd *oxu)
2358 {
2359 	int port = HCS_N_PORTS(oxu->hcs_params);
2360 
2361 	while (port--)
2362 		writel(PORT_RWC_BITS, &oxu->regs->port_status[port]);
2363 }
2364 
2365 static void ehci_port_power(struct oxu_hcd *oxu, int is_on)
2366 {
2367 	unsigned port;
2368 
2369 	if (!HCS_PPC(oxu->hcs_params))
2370 		return;
2371 
2372 	oxu_dbg(oxu, "...power%s ports...\n", is_on ? "up" : "down");
2373 	for (port = HCS_N_PORTS(oxu->hcs_params); port > 0; )
2374 		(void) oxu_hub_control(oxu_to_hcd(oxu),
2375 				is_on ? SetPortFeature : ClearPortFeature,
2376 				USB_PORT_FEAT_POWER,
2377 				port--, NULL, 0);
2378 	msleep(20);
2379 }
2380 
2381 /* Called from some interrupts, timers, and so on.
2382  * It calls driver completion functions, after dropping oxu->lock.
2383  */
2384 static void ehci_work(struct oxu_hcd *oxu)
2385 {
2386 	timer_action_done(oxu, TIMER_IO_WATCHDOG);
2387 	if (oxu->reclaim_ready)
2388 		end_unlink_async(oxu);
2389 
2390 	/* another CPU may drop oxu->lock during a schedule scan while
2391 	 * it reports urb completions.  this flag guards against bogus
2392 	 * attempts at re-entrant schedule scanning.
2393 	 */
2394 	if (oxu->scanning)
2395 		return;
2396 	oxu->scanning = 1;
2397 	scan_async(oxu);
2398 	if (oxu->next_uframe != -1)
2399 		scan_periodic(oxu);
2400 	oxu->scanning = 0;
2401 
2402 	/* the IO watchdog guards against hardware or driver bugs that
2403 	 * misplace IRQs, and should let us run completely without IRQs.
2404 	 * such lossage has been observed on both VT6202 and VT8235.
2405 	 */
2406 	if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) &&
2407 			(oxu->async->qh_next.ptr != NULL ||
2408 			 oxu->periodic_sched != 0))
2409 		timer_action(oxu, TIMER_IO_WATCHDOG);
2410 }
2411 
2412 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
2413 {
2414 	/* if we need to use IAA and it's busy, defer */
2415 	if (qh->qh_state == QH_STATE_LINKED
2416 			&& oxu->reclaim
2417 			&& HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) {
2418 		struct ehci_qh		*last;
2419 
2420 		for (last = oxu->reclaim;
2421 				last->reclaim;
2422 				last = last->reclaim)
2423 			continue;
2424 		qh->qh_state = QH_STATE_UNLINK_WAIT;
2425 		last->reclaim = qh;
2426 
2427 	/* bypass IAA if the hc can't care */
2428 	} else if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && oxu->reclaim)
2429 		end_unlink_async(oxu);
2430 
2431 	/* something else might have unlinked the qh by now */
2432 	if (qh->qh_state == QH_STATE_LINKED)
2433 		start_unlink_async(oxu, qh);
2434 }
2435 
2436 /*
2437  * USB host controller methods
2438  */
2439 
2440 static irqreturn_t oxu210_hcd_irq(struct usb_hcd *hcd)
2441 {
2442 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2443 	u32 status, pcd_status = 0;
2444 	int bh;
2445 
2446 	spin_lock(&oxu->lock);
2447 
2448 	status = readl(&oxu->regs->status);
2449 
2450 	/* e.g. cardbus physical eject */
2451 	if (status == ~(u32) 0) {
2452 		oxu_dbg(oxu, "device removed\n");
2453 		goto dead;
2454 	}
2455 
2456 	/* Shared IRQ? */
2457 	status &= INTR_MASK;
2458 	if (!status || unlikely(hcd->state == HC_STATE_HALT)) {
2459 		spin_unlock(&oxu->lock);
2460 		return IRQ_NONE;
2461 	}
2462 
2463 	/* clear (just) interrupts */
2464 	writel(status, &oxu->regs->status);
2465 	readl(&oxu->regs->command);	/* unblock posted write */
2466 	bh = 0;
2467 
2468 #ifdef OXU_VERBOSE_DEBUG
2469 	/* unrequested/ignored: Frame List Rollover */
2470 	dbg_status(oxu, "irq", status);
2471 #endif
2472 
2473 	/* INT, ERR, and IAA interrupt rates can be throttled */
2474 
2475 	/* normal [4.15.1.2] or error [4.15.1.1] completion */
2476 	if (likely((status & (STS_INT|STS_ERR)) != 0))
2477 		bh = 1;
2478 
2479 	/* complete the unlinking of some qh [4.15.2.3] */
2480 	if (status & STS_IAA) {
2481 		oxu->reclaim_ready = 1;
2482 		bh = 1;
2483 	}
2484 
2485 	/* remote wakeup [4.3.1] */
2486 	if (status & STS_PCD) {
2487 		unsigned i = HCS_N_PORTS(oxu->hcs_params);
2488 		pcd_status = status;
2489 
2490 		/* resume root hub? */
2491 		if (!(readl(&oxu->regs->command) & CMD_RUN))
2492 			usb_hcd_resume_root_hub(hcd);
2493 
2494 		while (i--) {
2495 			int pstatus = readl(&oxu->regs->port_status[i]);
2496 
2497 			if (pstatus & PORT_OWNER)
2498 				continue;
2499 			if (!(pstatus & PORT_RESUME)
2500 					|| oxu->reset_done[i] != 0)
2501 				continue;
2502 
2503 			/* start USB_RESUME_TIMEOUT resume signaling from this
2504 			 * port, and make hub_wq collect PORT_STAT_C_SUSPEND to
2505 			 * stop that signaling.
2506 			 */
2507 			oxu->reset_done[i] = jiffies +
2508 				msecs_to_jiffies(USB_RESUME_TIMEOUT);
2509 			oxu_dbg(oxu, "port %d remote wakeup\n", i + 1);
2510 			mod_timer(&hcd->rh_timer, oxu->reset_done[i]);
2511 		}
2512 	}
2513 
2514 	/* PCI errors [4.15.2.4] */
2515 	if (unlikely((status & STS_FATAL) != 0)) {
2516 		/* bogus "fatal" IRQs appear on some chips... why?  */
2517 		status = readl(&oxu->regs->status);
2518 		dbg_cmd(oxu, "fatal", readl(&oxu->regs->command));
2519 		dbg_status(oxu, "fatal", status);
2520 		if (status & STS_HALT) {
2521 			oxu_err(oxu, "fatal error\n");
2522 dead:
2523 			ehci_reset(oxu);
2524 			writel(0, &oxu->regs->configured_flag);
2525 			usb_hc_died(hcd);
2526 			/* generic layer kills/unlinks all urbs, then
2527 			 * uses oxu_stop to clean up the rest
2528 			 */
2529 			bh = 1;
2530 		}
2531 	}
2532 
2533 	if (bh)
2534 		ehci_work(oxu);
2535 	spin_unlock(&oxu->lock);
2536 	if (pcd_status & STS_PCD)
2537 		usb_hcd_poll_rh_status(hcd);
2538 	return IRQ_HANDLED;
2539 }
2540 
2541 static irqreturn_t oxu_irq(struct usb_hcd *hcd)
2542 {
2543 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2544 	int ret = IRQ_HANDLED;
2545 
2546 	u32 status = oxu_readl(hcd->regs, OXU_CHIPIRQSTATUS);
2547 	u32 enable = oxu_readl(hcd->regs, OXU_CHIPIRQEN_SET);
2548 
2549 	/* Disable all interrupt */
2550 	oxu_writel(hcd->regs, OXU_CHIPIRQEN_CLR, enable);
2551 
2552 	if ((oxu->is_otg && (status & OXU_USBOTGI)) ||
2553 		(!oxu->is_otg && (status & OXU_USBSPHI)))
2554 		oxu210_hcd_irq(hcd);
2555 	else
2556 		ret = IRQ_NONE;
2557 
2558 	/* Enable all interrupt back */
2559 	oxu_writel(hcd->regs, OXU_CHIPIRQEN_SET, enable);
2560 
2561 	return ret;
2562 }
2563 
2564 static void oxu_watchdog(unsigned long param)
2565 {
2566 	struct oxu_hcd	*oxu = (struct oxu_hcd *) param;
2567 	unsigned long flags;
2568 
2569 	spin_lock_irqsave(&oxu->lock, flags);
2570 
2571 	/* lost IAA irqs wedge things badly; seen with a vt8235 */
2572 	if (oxu->reclaim) {
2573 		u32 status = readl(&oxu->regs->status);
2574 		if (status & STS_IAA) {
2575 			oxu_vdbg(oxu, "lost IAA\n");
2576 			writel(STS_IAA, &oxu->regs->status);
2577 			oxu->reclaim_ready = 1;
2578 		}
2579 	}
2580 
2581 	/* stop async processing after it's idled a bit */
2582 	if (test_bit(TIMER_ASYNC_OFF, &oxu->actions))
2583 		start_unlink_async(oxu, oxu->async);
2584 
2585 	/* oxu could run by timer, without IRQs ... */
2586 	ehci_work(oxu);
2587 
2588 	spin_unlock_irqrestore(&oxu->lock, flags);
2589 }
2590 
2591 /* One-time init, only for memory state.
2592  */
2593 static int oxu_hcd_init(struct usb_hcd *hcd)
2594 {
2595 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2596 	u32 temp;
2597 	int retval;
2598 	u32 hcc_params;
2599 
2600 	spin_lock_init(&oxu->lock);
2601 
2602 	setup_timer(&oxu->watchdog, oxu_watchdog, (unsigned long)oxu);
2603 
2604 	/*
2605 	 * hw default: 1K periodic list heads, one per frame.
2606 	 * periodic_size can shrink by USBCMD update if hcc_params allows.
2607 	 */
2608 	oxu->periodic_size = DEFAULT_I_TDPS;
2609 	retval = ehci_mem_init(oxu, GFP_KERNEL);
2610 	if (retval < 0)
2611 		return retval;
2612 
2613 	/* controllers may cache some of the periodic schedule ... */
2614 	hcc_params = readl(&oxu->caps->hcc_params);
2615 	if (HCC_ISOC_CACHE(hcc_params))		/* full frame cache */
2616 		oxu->i_thresh = 8;
2617 	else					/* N microframes cached */
2618 		oxu->i_thresh = 2 + HCC_ISOC_THRES(hcc_params);
2619 
2620 	oxu->reclaim = NULL;
2621 	oxu->reclaim_ready = 0;
2622 	oxu->next_uframe = -1;
2623 
2624 	/*
2625 	 * dedicate a qh for the async ring head, since we couldn't unlink
2626 	 * a 'real' qh without stopping the async schedule [4.8].  use it
2627 	 * as the 'reclamation list head' too.
2628 	 * its dummy is used in hw_alt_next of many tds, to prevent the qh
2629 	 * from automatically advancing to the next td after short reads.
2630 	 */
2631 	oxu->async->qh_next.qh = NULL;
2632 	oxu->async->hw_next = QH_NEXT(oxu->async->qh_dma);
2633 	oxu->async->hw_info1 = cpu_to_le32(QH_HEAD);
2634 	oxu->async->hw_token = cpu_to_le32(QTD_STS_HALT);
2635 	oxu->async->hw_qtd_next = EHCI_LIST_END;
2636 	oxu->async->qh_state = QH_STATE_LINKED;
2637 	oxu->async->hw_alt_next = QTD_NEXT(oxu->async->dummy->qtd_dma);
2638 
2639 	/* clear interrupt enables, set irq latency */
2640 	if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
2641 		log2_irq_thresh = 0;
2642 	temp = 1 << (16 + log2_irq_thresh);
2643 	if (HCC_CANPARK(hcc_params)) {
2644 		/* HW default park == 3, on hardware that supports it (like
2645 		 * NVidia and ALI silicon), maximizes throughput on the async
2646 		 * schedule by avoiding QH fetches between transfers.
2647 		 *
2648 		 * With fast usb storage devices and NForce2, "park" seems to
2649 		 * make problems:  throughput reduction (!), data errors...
2650 		 */
2651 		if (park) {
2652 			park = min(park, (unsigned) 3);
2653 			temp |= CMD_PARK;
2654 			temp |= park << 8;
2655 		}
2656 		oxu_dbg(oxu, "park %d\n", park);
2657 	}
2658 	if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
2659 		/* periodic schedule size can be smaller than default */
2660 		temp &= ~(3 << 2);
2661 		temp |= (EHCI_TUNE_FLS << 2);
2662 	}
2663 	oxu->command = temp;
2664 
2665 	return 0;
2666 }
2667 
2668 /* Called during probe() after chip reset completes.
2669  */
2670 static int oxu_reset(struct usb_hcd *hcd)
2671 {
2672 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2673 	int ret;
2674 
2675 	spin_lock_init(&oxu->mem_lock);
2676 	INIT_LIST_HEAD(&oxu->urb_list);
2677 	oxu->urb_len = 0;
2678 
2679 	/* FIMXE */
2680 	hcd->self.controller->dma_mask = NULL;
2681 
2682 	if (oxu->is_otg) {
2683 		oxu->caps = hcd->regs + OXU_OTG_CAP_OFFSET;
2684 		oxu->regs = hcd->regs + OXU_OTG_CAP_OFFSET + \
2685 			HC_LENGTH(readl(&oxu->caps->hc_capbase));
2686 
2687 		oxu->mem = hcd->regs + OXU_SPH_MEM;
2688 	} else {
2689 		oxu->caps = hcd->regs + OXU_SPH_CAP_OFFSET;
2690 		oxu->regs = hcd->regs + OXU_SPH_CAP_OFFSET + \
2691 			HC_LENGTH(readl(&oxu->caps->hc_capbase));
2692 
2693 		oxu->mem = hcd->regs + OXU_OTG_MEM;
2694 	}
2695 
2696 	oxu->hcs_params = readl(&oxu->caps->hcs_params);
2697 	oxu->sbrn = 0x20;
2698 
2699 	ret = oxu_hcd_init(hcd);
2700 	if (ret)
2701 		return ret;
2702 
2703 	return 0;
2704 }
2705 
2706 static int oxu_run(struct usb_hcd *hcd)
2707 {
2708 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2709 	int retval;
2710 	u32 temp, hcc_params;
2711 
2712 	hcd->uses_new_polling = 1;
2713 
2714 	/* EHCI spec section 4.1 */
2715 	retval = ehci_reset(oxu);
2716 	if (retval != 0) {
2717 		ehci_mem_cleanup(oxu);
2718 		return retval;
2719 	}
2720 	writel(oxu->periodic_dma, &oxu->regs->frame_list);
2721 	writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
2722 
2723 	/* hcc_params controls whether oxu->regs->segment must (!!!)
2724 	 * be used; it constrains QH/ITD/SITD and QTD locations.
2725 	 * pci_pool consistent memory always uses segment zero.
2726 	 * streaming mappings for I/O buffers, like pci_map_single(),
2727 	 * can return segments above 4GB, if the device allows.
2728 	 *
2729 	 * NOTE:  the dma mask is visible through dma_supported(), so
2730 	 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
2731 	 * Scsi_Host.highmem_io, and so forth.  It's readonly to all
2732 	 * host side drivers though.
2733 	 */
2734 	hcc_params = readl(&oxu->caps->hcc_params);
2735 	if (HCC_64BIT_ADDR(hcc_params))
2736 		writel(0, &oxu->regs->segment);
2737 
2738 	oxu->command &= ~(CMD_LRESET | CMD_IAAD | CMD_PSE |
2739 				CMD_ASE | CMD_RESET);
2740 	oxu->command |= CMD_RUN;
2741 	writel(oxu->command, &oxu->regs->command);
2742 	dbg_cmd(oxu, "init", oxu->command);
2743 
2744 	/*
2745 	 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
2746 	 * are explicitly handed to companion controller(s), so no TT is
2747 	 * involved with the root hub.  (Except where one is integrated,
2748 	 * and there's no companion controller unless maybe for USB OTG.)
2749 	 */
2750 	hcd->state = HC_STATE_RUNNING;
2751 	writel(FLAG_CF, &oxu->regs->configured_flag);
2752 	readl(&oxu->regs->command);	/* unblock posted writes */
2753 
2754 	temp = HC_VERSION(readl(&oxu->caps->hc_capbase));
2755 	oxu_info(oxu, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n",
2756 		((oxu->sbrn & 0xf0)>>4), (oxu->sbrn & 0x0f),
2757 		temp >> 8, temp & 0xff, DRIVER_VERSION,
2758 		ignore_oc ? ", overcurrent ignored" : "");
2759 
2760 	writel(INTR_MASK, &oxu->regs->intr_enable); /* Turn On Interrupts */
2761 
2762 	return 0;
2763 }
2764 
2765 static void oxu_stop(struct usb_hcd *hcd)
2766 {
2767 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2768 
2769 	/* Turn off port power on all root hub ports. */
2770 	ehci_port_power(oxu, 0);
2771 
2772 	/* no more interrupts ... */
2773 	del_timer_sync(&oxu->watchdog);
2774 
2775 	spin_lock_irq(&oxu->lock);
2776 	if (HC_IS_RUNNING(hcd->state))
2777 		ehci_quiesce(oxu);
2778 
2779 	ehci_reset(oxu);
2780 	writel(0, &oxu->regs->intr_enable);
2781 	spin_unlock_irq(&oxu->lock);
2782 
2783 	/* let companion controllers work when we aren't */
2784 	writel(0, &oxu->regs->configured_flag);
2785 
2786 	/* root hub is shut down separately (first, when possible) */
2787 	spin_lock_irq(&oxu->lock);
2788 	if (oxu->async)
2789 		ehci_work(oxu);
2790 	spin_unlock_irq(&oxu->lock);
2791 	ehci_mem_cleanup(oxu);
2792 
2793 	dbg_status(oxu, "oxu_stop completed", readl(&oxu->regs->status));
2794 }
2795 
2796 /* Kick in for silicon on any bus (not just pci, etc).
2797  * This forcibly disables dma and IRQs, helping kexec and other cases
2798  * where the next system software may expect clean state.
2799  */
2800 static void oxu_shutdown(struct usb_hcd *hcd)
2801 {
2802 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2803 
2804 	(void) ehci_halt(oxu);
2805 	ehci_turn_off_all_ports(oxu);
2806 
2807 	/* make BIOS/etc use companion controller during reboot */
2808 	writel(0, &oxu->regs->configured_flag);
2809 
2810 	/* unblock posted writes */
2811 	readl(&oxu->regs->configured_flag);
2812 }
2813 
2814 /* Non-error returns are a promise to giveback() the urb later
2815  * we drop ownership so next owner (or urb unlink) can get it
2816  *
2817  * urb + dev is in hcd.self.controller.urb_list
2818  * we're queueing TDs onto software and hardware lists
2819  *
2820  * hcd-specific init for hcpriv hasn't been done yet
2821  *
2822  * NOTE:  control, bulk, and interrupt share the same code to append TDs
2823  * to a (possibly active) QH, and the same QH scanning code.
2824  */
2825 static int __oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
2826 				gfp_t mem_flags)
2827 {
2828 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2829 	struct list_head qtd_list;
2830 
2831 	INIT_LIST_HEAD(&qtd_list);
2832 
2833 	switch (usb_pipetype(urb->pipe)) {
2834 	case PIPE_CONTROL:
2835 	case PIPE_BULK:
2836 	default:
2837 		if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
2838 			return -ENOMEM;
2839 		return submit_async(oxu, urb, &qtd_list, mem_flags);
2840 
2841 	case PIPE_INTERRUPT:
2842 		if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
2843 			return -ENOMEM;
2844 		return intr_submit(oxu, urb, &qtd_list, mem_flags);
2845 
2846 	case PIPE_ISOCHRONOUS:
2847 		if (urb->dev->speed == USB_SPEED_HIGH)
2848 			return itd_submit(oxu, urb, mem_flags);
2849 		else
2850 			return sitd_submit(oxu, urb, mem_flags);
2851 	}
2852 }
2853 
2854 /* This function is responsible for breaking URBs with big data size
2855  * into smaller size and processing small urbs in sequence.
2856  */
2857 static int oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
2858 				gfp_t mem_flags)
2859 {
2860 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2861 	int num, rem;
2862 	int transfer_buffer_length;
2863 	void *transfer_buffer;
2864 	struct urb *murb;
2865 	int i, ret;
2866 
2867 	/* If not bulk pipe just enqueue the URB */
2868 	if (!usb_pipebulk(urb->pipe))
2869 		return __oxu_urb_enqueue(hcd, urb, mem_flags);
2870 
2871 	/* Otherwise we should verify the USB transfer buffer size! */
2872 	transfer_buffer = urb->transfer_buffer;
2873 	transfer_buffer_length = urb->transfer_buffer_length;
2874 
2875 	num = urb->transfer_buffer_length / 4096;
2876 	rem = urb->transfer_buffer_length % 4096;
2877 	if (rem != 0)
2878 		num++;
2879 
2880 	/* If URB is smaller than 4096 bytes just enqueue it! */
2881 	if (num == 1)
2882 		return __oxu_urb_enqueue(hcd, urb, mem_flags);
2883 
2884 	/* Ok, we have more job to do! :) */
2885 
2886 	for (i = 0; i < num - 1; i++) {
2887 		/* Get free micro URB poll till a free urb is received */
2888 
2889 		do {
2890 			murb = (struct urb *) oxu_murb_alloc(oxu);
2891 			if (!murb)
2892 				schedule();
2893 		} while (!murb);
2894 
2895 		/* Coping the urb */
2896 		memcpy(murb, urb, sizeof(struct urb));
2897 
2898 		murb->transfer_buffer_length = 4096;
2899 		murb->transfer_buffer = transfer_buffer + i * 4096;
2900 
2901 		/* Null pointer for the encodes that this is a micro urb */
2902 		murb->complete = NULL;
2903 
2904 		((struct oxu_murb *) murb)->main = urb;
2905 		((struct oxu_murb *) murb)->last = 0;
2906 
2907 		/* This loop is to guarantee urb to be processed when there's
2908 		 * not enough resources at a particular time by retrying.
2909 		 */
2910 		do {
2911 			ret  = __oxu_urb_enqueue(hcd, murb, mem_flags);
2912 			if (ret)
2913 				schedule();
2914 		} while (ret);
2915 	}
2916 
2917 	/* Last urb requires special handling  */
2918 
2919 	/* Get free micro URB poll till a free urb is received */
2920 	do {
2921 		murb = (struct urb *) oxu_murb_alloc(oxu);
2922 		if (!murb)
2923 			schedule();
2924 	} while (!murb);
2925 
2926 	/* Coping the urb */
2927 	memcpy(murb, urb, sizeof(struct urb));
2928 
2929 	murb->transfer_buffer_length = rem > 0 ? rem : 4096;
2930 	murb->transfer_buffer = transfer_buffer + (num - 1) * 4096;
2931 
2932 	/* Null pointer for the encodes that this is a micro urb */
2933 	murb->complete = NULL;
2934 
2935 	((struct oxu_murb *) murb)->main = urb;
2936 	((struct oxu_murb *) murb)->last = 1;
2937 
2938 	do {
2939 		ret = __oxu_urb_enqueue(hcd, murb, mem_flags);
2940 		if (ret)
2941 			schedule();
2942 	} while (ret);
2943 
2944 	return ret;
2945 }
2946 
2947 /* Remove from hardware lists.
2948  * Completions normally happen asynchronously
2949  */
2950 static int oxu_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
2951 {
2952 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2953 	struct ehci_qh *qh;
2954 	unsigned long flags;
2955 
2956 	spin_lock_irqsave(&oxu->lock, flags);
2957 	switch (usb_pipetype(urb->pipe)) {
2958 	case PIPE_CONTROL:
2959 	case PIPE_BULK:
2960 	default:
2961 		qh = (struct ehci_qh *) urb->hcpriv;
2962 		if (!qh)
2963 			break;
2964 		unlink_async(oxu, qh);
2965 		break;
2966 
2967 	case PIPE_INTERRUPT:
2968 		qh = (struct ehci_qh *) urb->hcpriv;
2969 		if (!qh)
2970 			break;
2971 		switch (qh->qh_state) {
2972 		case QH_STATE_LINKED:
2973 			intr_deschedule(oxu, qh);
2974 			/* FALL THROUGH */
2975 		case QH_STATE_IDLE:
2976 			qh_completions(oxu, qh);
2977 			break;
2978 		default:
2979 			oxu_dbg(oxu, "bogus qh %p state %d\n",
2980 					qh, qh->qh_state);
2981 			goto done;
2982 		}
2983 
2984 		/* reschedule QH iff another request is queued */
2985 		if (!list_empty(&qh->qtd_list)
2986 				&& HC_IS_RUNNING(hcd->state)) {
2987 			int status;
2988 
2989 			status = qh_schedule(oxu, qh);
2990 			spin_unlock_irqrestore(&oxu->lock, flags);
2991 
2992 			if (status != 0) {
2993 				/* shouldn't happen often, but ...
2994 				 * FIXME kill those tds' urbs
2995 				 */
2996 				dev_err(hcd->self.controller,
2997 					"can't reschedule qh %p, err %d\n", qh,
2998 					status);
2999 			}
3000 			return status;
3001 		}
3002 		break;
3003 	}
3004 done:
3005 	spin_unlock_irqrestore(&oxu->lock, flags);
3006 	return 0;
3007 }
3008 
3009 /* Bulk qh holds the data toggle */
3010 static void oxu_endpoint_disable(struct usb_hcd *hcd,
3011 					struct usb_host_endpoint *ep)
3012 {
3013 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3014 	unsigned long		flags;
3015 	struct ehci_qh		*qh, *tmp;
3016 
3017 	/* ASSERT:  any requests/urbs are being unlinked */
3018 	/* ASSERT:  nobody can be submitting urbs for this any more */
3019 
3020 rescan:
3021 	spin_lock_irqsave(&oxu->lock, flags);
3022 	qh = ep->hcpriv;
3023 	if (!qh)
3024 		goto done;
3025 
3026 	/* endpoints can be iso streams.  for now, we don't
3027 	 * accelerate iso completions ... so spin a while.
3028 	 */
3029 	if (qh->hw_info1 == 0) {
3030 		oxu_vdbg(oxu, "iso delay\n");
3031 		goto idle_timeout;
3032 	}
3033 
3034 	if (!HC_IS_RUNNING(hcd->state))
3035 		qh->qh_state = QH_STATE_IDLE;
3036 	switch (qh->qh_state) {
3037 	case QH_STATE_LINKED:
3038 		for (tmp = oxu->async->qh_next.qh;
3039 				tmp && tmp != qh;
3040 				tmp = tmp->qh_next.qh)
3041 			continue;
3042 		/* periodic qh self-unlinks on empty */
3043 		if (!tmp)
3044 			goto nogood;
3045 		unlink_async(oxu, qh);
3046 		/* FALL THROUGH */
3047 	case QH_STATE_UNLINK:		/* wait for hw to finish? */
3048 idle_timeout:
3049 		spin_unlock_irqrestore(&oxu->lock, flags);
3050 		schedule_timeout_uninterruptible(1);
3051 		goto rescan;
3052 	case QH_STATE_IDLE:		/* fully unlinked */
3053 		if (list_empty(&qh->qtd_list)) {
3054 			qh_put(qh);
3055 			break;
3056 		}
3057 		/* else FALL THROUGH */
3058 	default:
3059 nogood:
3060 		/* caller was supposed to have unlinked any requests;
3061 		 * that's not our job.  just leak this memory.
3062 		 */
3063 		oxu_err(oxu, "qh %p (#%02x) state %d%s\n",
3064 			qh, ep->desc.bEndpointAddress, qh->qh_state,
3065 			list_empty(&qh->qtd_list) ? "" : "(has tds)");
3066 		break;
3067 	}
3068 	ep->hcpriv = NULL;
3069 done:
3070 	spin_unlock_irqrestore(&oxu->lock, flags);
3071 }
3072 
3073 static int oxu_get_frame(struct usb_hcd *hcd)
3074 {
3075 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3076 
3077 	return (readl(&oxu->regs->frame_index) >> 3) %
3078 		oxu->periodic_size;
3079 }
3080 
3081 /* Build "status change" packet (one or two bytes) from HC registers */
3082 static int oxu_hub_status_data(struct usb_hcd *hcd, char *buf)
3083 {
3084 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3085 	u32 temp, mask, status = 0;
3086 	int ports, i, retval = 1;
3087 	unsigned long flags;
3088 
3089 	/* if !PM, root hub timers won't get shut down ... */
3090 	if (!HC_IS_RUNNING(hcd->state))
3091 		return 0;
3092 
3093 	/* init status to no-changes */
3094 	buf[0] = 0;
3095 	ports = HCS_N_PORTS(oxu->hcs_params);
3096 	if (ports > 7) {
3097 		buf[1] = 0;
3098 		retval++;
3099 	}
3100 
3101 	/* Some boards (mostly VIA?) report bogus overcurrent indications,
3102 	 * causing massive log spam unless we completely ignore them.  It
3103 	 * may be relevant that VIA VT8235 controllers, where PORT_POWER is
3104 	 * always set, seem to clear PORT_OCC and PORT_CSC when writing to
3105 	 * PORT_POWER; that's surprising, but maybe within-spec.
3106 	 */
3107 	if (!ignore_oc)
3108 		mask = PORT_CSC | PORT_PEC | PORT_OCC;
3109 	else
3110 		mask = PORT_CSC | PORT_PEC;
3111 
3112 	/* no hub change reports (bit 0) for now (power, ...) */
3113 
3114 	/* port N changes (bit N)? */
3115 	spin_lock_irqsave(&oxu->lock, flags);
3116 	for (i = 0; i < ports; i++) {
3117 		temp = readl(&oxu->regs->port_status[i]);
3118 
3119 		/*
3120 		 * Return status information even for ports with OWNER set.
3121 		 * Otherwise hub_wq wouldn't see the disconnect event when a
3122 		 * high-speed device is switched over to the companion
3123 		 * controller by the user.
3124 		 */
3125 
3126 		if (!(temp & PORT_CONNECT))
3127 			oxu->reset_done[i] = 0;
3128 		if ((temp & mask) != 0 || ((temp & PORT_RESUME) != 0 &&
3129 				time_after_eq(jiffies, oxu->reset_done[i]))) {
3130 			if (i < 7)
3131 				buf[0] |= 1 << (i + 1);
3132 			else
3133 				buf[1] |= 1 << (i - 7);
3134 			status = STS_PCD;
3135 		}
3136 	}
3137 	/* FIXME autosuspend idle root hubs */
3138 	spin_unlock_irqrestore(&oxu->lock, flags);
3139 	return status ? retval : 0;
3140 }
3141 
3142 /* Returns the speed of a device attached to a port on the root hub. */
3143 static inline unsigned int oxu_port_speed(struct oxu_hcd *oxu,
3144 						unsigned int portsc)
3145 {
3146 	switch ((portsc >> 26) & 3) {
3147 	case 0:
3148 		return 0;
3149 	case 1:
3150 		return USB_PORT_STAT_LOW_SPEED;
3151 	case 2:
3152 	default:
3153 		return USB_PORT_STAT_HIGH_SPEED;
3154 	}
3155 }
3156 
3157 #define	PORT_WAKE_BITS	(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E)
3158 static int oxu_hub_control(struct usb_hcd *hcd, u16 typeReq,
3159 				u16 wValue, u16 wIndex, char *buf, u16 wLength)
3160 {
3161 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3162 	int ports = HCS_N_PORTS(oxu->hcs_params);
3163 	u32 __iomem *status_reg = &oxu->regs->port_status[wIndex - 1];
3164 	u32 temp, status;
3165 	unsigned long	flags;
3166 	int retval = 0;
3167 	unsigned selector;
3168 
3169 	/*
3170 	 * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
3171 	 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
3172 	 * (track current state ourselves) ... blink for diagnostics,
3173 	 * power, "this is the one", etc.  EHCI spec supports this.
3174 	 */
3175 
3176 	spin_lock_irqsave(&oxu->lock, flags);
3177 	switch (typeReq) {
3178 	case ClearHubFeature:
3179 		switch (wValue) {
3180 		case C_HUB_LOCAL_POWER:
3181 		case C_HUB_OVER_CURRENT:
3182 			/* no hub-wide feature/status flags */
3183 			break;
3184 		default:
3185 			goto error;
3186 		}
3187 		break;
3188 	case ClearPortFeature:
3189 		if (!wIndex || wIndex > ports)
3190 			goto error;
3191 		wIndex--;
3192 		temp = readl(status_reg);
3193 
3194 		/*
3195 		 * Even if OWNER is set, so the port is owned by the
3196 		 * companion controller, hub_wq needs to be able to clear
3197 		 * the port-change status bits (especially
3198 		 * USB_PORT_STAT_C_CONNECTION).
3199 		 */
3200 
3201 		switch (wValue) {
3202 		case USB_PORT_FEAT_ENABLE:
3203 			writel(temp & ~PORT_PE, status_reg);
3204 			break;
3205 		case USB_PORT_FEAT_C_ENABLE:
3206 			writel((temp & ~PORT_RWC_BITS) | PORT_PEC, status_reg);
3207 			break;
3208 		case USB_PORT_FEAT_SUSPEND:
3209 			if (temp & PORT_RESET)
3210 				goto error;
3211 			if (temp & PORT_SUSPEND) {
3212 				if ((temp & PORT_PE) == 0)
3213 					goto error;
3214 				/* resume signaling for 20 msec */
3215 				temp &= ~(PORT_RWC_BITS | PORT_WAKE_BITS);
3216 				writel(temp | PORT_RESUME, status_reg);
3217 				oxu->reset_done[wIndex] = jiffies
3218 						+ msecs_to_jiffies(20);
3219 			}
3220 			break;
3221 		case USB_PORT_FEAT_C_SUSPEND:
3222 			/* we auto-clear this feature */
3223 			break;
3224 		case USB_PORT_FEAT_POWER:
3225 			if (HCS_PPC(oxu->hcs_params))
3226 				writel(temp & ~(PORT_RWC_BITS | PORT_POWER),
3227 					  status_reg);
3228 			break;
3229 		case USB_PORT_FEAT_C_CONNECTION:
3230 			writel((temp & ~PORT_RWC_BITS) | PORT_CSC, status_reg);
3231 			break;
3232 		case USB_PORT_FEAT_C_OVER_CURRENT:
3233 			writel((temp & ~PORT_RWC_BITS) | PORT_OCC, status_reg);
3234 			break;
3235 		case USB_PORT_FEAT_C_RESET:
3236 			/* GetPortStatus clears reset */
3237 			break;
3238 		default:
3239 			goto error;
3240 		}
3241 		readl(&oxu->regs->command);	/* unblock posted write */
3242 		break;
3243 	case GetHubDescriptor:
3244 		ehci_hub_descriptor(oxu, (struct usb_hub_descriptor *)
3245 			buf);
3246 		break;
3247 	case GetHubStatus:
3248 		/* no hub-wide feature/status flags */
3249 		memset(buf, 0, 4);
3250 		break;
3251 	case GetPortStatus:
3252 		if (!wIndex || wIndex > ports)
3253 			goto error;
3254 		wIndex--;
3255 		status = 0;
3256 		temp = readl(status_reg);
3257 
3258 		/* wPortChange bits */
3259 		if (temp & PORT_CSC)
3260 			status |= USB_PORT_STAT_C_CONNECTION << 16;
3261 		if (temp & PORT_PEC)
3262 			status |= USB_PORT_STAT_C_ENABLE << 16;
3263 		if ((temp & PORT_OCC) && !ignore_oc)
3264 			status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3265 
3266 		/* whoever resumes must GetPortStatus to complete it!! */
3267 		if (temp & PORT_RESUME) {
3268 
3269 			/* Remote Wakeup received? */
3270 			if (!oxu->reset_done[wIndex]) {
3271 				/* resume signaling for 20 msec */
3272 				oxu->reset_done[wIndex] = jiffies
3273 						+ msecs_to_jiffies(20);
3274 				/* check the port again */
3275 				mod_timer(&oxu_to_hcd(oxu)->rh_timer,
3276 						oxu->reset_done[wIndex]);
3277 			}
3278 
3279 			/* resume completed? */
3280 			else if (time_after_eq(jiffies,
3281 					oxu->reset_done[wIndex])) {
3282 				status |= USB_PORT_STAT_C_SUSPEND << 16;
3283 				oxu->reset_done[wIndex] = 0;
3284 
3285 				/* stop resume signaling */
3286 				temp = readl(status_reg);
3287 				writel(temp & ~(PORT_RWC_BITS | PORT_RESUME),
3288 					status_reg);
3289 				retval = handshake(oxu, status_reg,
3290 					   PORT_RESUME, 0, 2000 /* 2msec */);
3291 				if (retval != 0) {
3292 					oxu_err(oxu,
3293 						"port %d resume error %d\n",
3294 						wIndex + 1, retval);
3295 					goto error;
3296 				}
3297 				temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
3298 			}
3299 		}
3300 
3301 		/* whoever resets must GetPortStatus to complete it!! */
3302 		if ((temp & PORT_RESET)
3303 				&& time_after_eq(jiffies,
3304 					oxu->reset_done[wIndex])) {
3305 			status |= USB_PORT_STAT_C_RESET << 16;
3306 			oxu->reset_done[wIndex] = 0;
3307 
3308 			/* force reset to complete */
3309 			writel(temp & ~(PORT_RWC_BITS | PORT_RESET),
3310 					status_reg);
3311 			/* REVISIT:  some hardware needs 550+ usec to clear
3312 			 * this bit; seems too long to spin routinely...
3313 			 */
3314 			retval = handshake(oxu, status_reg,
3315 					PORT_RESET, 0, 750);
3316 			if (retval != 0) {
3317 				oxu_err(oxu, "port %d reset error %d\n",
3318 					wIndex + 1, retval);
3319 				goto error;
3320 			}
3321 
3322 			/* see what we found out */
3323 			temp = check_reset_complete(oxu, wIndex, status_reg,
3324 					readl(status_reg));
3325 		}
3326 
3327 		/* transfer dedicated ports to the companion hc */
3328 		if ((temp & PORT_CONNECT) &&
3329 				test_bit(wIndex, &oxu->companion_ports)) {
3330 			temp &= ~PORT_RWC_BITS;
3331 			temp |= PORT_OWNER;
3332 			writel(temp, status_reg);
3333 			oxu_dbg(oxu, "port %d --> companion\n", wIndex + 1);
3334 			temp = readl(status_reg);
3335 		}
3336 
3337 		/*
3338 		 * Even if OWNER is set, there's no harm letting hub_wq
3339 		 * see the wPortStatus values (they should all be 0 except
3340 		 * for PORT_POWER anyway).
3341 		 */
3342 
3343 		if (temp & PORT_CONNECT) {
3344 			status |= USB_PORT_STAT_CONNECTION;
3345 			/* status may be from integrated TT */
3346 			status |= oxu_port_speed(oxu, temp);
3347 		}
3348 		if (temp & PORT_PE)
3349 			status |= USB_PORT_STAT_ENABLE;
3350 		if (temp & (PORT_SUSPEND|PORT_RESUME))
3351 			status |= USB_PORT_STAT_SUSPEND;
3352 		if (temp & PORT_OC)
3353 			status |= USB_PORT_STAT_OVERCURRENT;
3354 		if (temp & PORT_RESET)
3355 			status |= USB_PORT_STAT_RESET;
3356 		if (temp & PORT_POWER)
3357 			status |= USB_PORT_STAT_POWER;
3358 
3359 #ifndef	OXU_VERBOSE_DEBUG
3360 	if (status & ~0xffff)	/* only if wPortChange is interesting */
3361 #endif
3362 		dbg_port(oxu, "GetStatus", wIndex + 1, temp);
3363 		put_unaligned(cpu_to_le32(status), (__le32 *) buf);
3364 		break;
3365 	case SetHubFeature:
3366 		switch (wValue) {
3367 		case C_HUB_LOCAL_POWER:
3368 		case C_HUB_OVER_CURRENT:
3369 			/* no hub-wide feature/status flags */
3370 			break;
3371 		default:
3372 			goto error;
3373 		}
3374 		break;
3375 	case SetPortFeature:
3376 		selector = wIndex >> 8;
3377 		wIndex &= 0xff;
3378 		if (!wIndex || wIndex > ports)
3379 			goto error;
3380 		wIndex--;
3381 		temp = readl(status_reg);
3382 		if (temp & PORT_OWNER)
3383 			break;
3384 
3385 		temp &= ~PORT_RWC_BITS;
3386 		switch (wValue) {
3387 		case USB_PORT_FEAT_SUSPEND:
3388 			if ((temp & PORT_PE) == 0
3389 					|| (temp & PORT_RESET) != 0)
3390 				goto error;
3391 			if (device_may_wakeup(&hcd->self.root_hub->dev))
3392 				temp |= PORT_WAKE_BITS;
3393 			writel(temp | PORT_SUSPEND, status_reg);
3394 			break;
3395 		case USB_PORT_FEAT_POWER:
3396 			if (HCS_PPC(oxu->hcs_params))
3397 				writel(temp | PORT_POWER, status_reg);
3398 			break;
3399 		case USB_PORT_FEAT_RESET:
3400 			if (temp & PORT_RESUME)
3401 				goto error;
3402 			/* line status bits may report this as low speed,
3403 			 * which can be fine if this root hub has a
3404 			 * transaction translator built in.
3405 			 */
3406 			oxu_vdbg(oxu, "port %d reset\n", wIndex + 1);
3407 			temp |= PORT_RESET;
3408 			temp &= ~PORT_PE;
3409 
3410 			/*
3411 			 * caller must wait, then call GetPortStatus
3412 			 * usb 2.0 spec says 50 ms resets on root
3413 			 */
3414 			oxu->reset_done[wIndex] = jiffies
3415 					+ msecs_to_jiffies(50);
3416 			writel(temp, status_reg);
3417 			break;
3418 
3419 		/* For downstream facing ports (these):  one hub port is put
3420 		 * into test mode according to USB2 11.24.2.13, then the hub
3421 		 * must be reset (which for root hub now means rmmod+modprobe,
3422 		 * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
3423 		 * about the EHCI-specific stuff.
3424 		 */
3425 		case USB_PORT_FEAT_TEST:
3426 			if (!selector || selector > 5)
3427 				goto error;
3428 			ehci_quiesce(oxu);
3429 			ehci_halt(oxu);
3430 			temp |= selector << 16;
3431 			writel(temp, status_reg);
3432 			break;
3433 
3434 		default:
3435 			goto error;
3436 		}
3437 		readl(&oxu->regs->command);	/* unblock posted writes */
3438 		break;
3439 
3440 	default:
3441 error:
3442 		/* "stall" on error */
3443 		retval = -EPIPE;
3444 	}
3445 	spin_unlock_irqrestore(&oxu->lock, flags);
3446 	return retval;
3447 }
3448 
3449 #ifdef CONFIG_PM
3450 
3451 static int oxu_bus_suspend(struct usb_hcd *hcd)
3452 {
3453 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3454 	int port;
3455 	int mask;
3456 
3457 	oxu_dbg(oxu, "suspend root hub\n");
3458 
3459 	if (time_before(jiffies, oxu->next_statechange))
3460 		msleep(5);
3461 
3462 	port = HCS_N_PORTS(oxu->hcs_params);
3463 	spin_lock_irq(&oxu->lock);
3464 
3465 	/* stop schedules, clean any completed work */
3466 	if (HC_IS_RUNNING(hcd->state)) {
3467 		ehci_quiesce(oxu);
3468 		hcd->state = HC_STATE_QUIESCING;
3469 	}
3470 	oxu->command = readl(&oxu->regs->command);
3471 	if (oxu->reclaim)
3472 		oxu->reclaim_ready = 1;
3473 	ehci_work(oxu);
3474 
3475 	/* Unlike other USB host controller types, EHCI doesn't have
3476 	 * any notion of "global" or bus-wide suspend.  The driver has
3477 	 * to manually suspend all the active unsuspended ports, and
3478 	 * then manually resume them in the bus_resume() routine.
3479 	 */
3480 	oxu->bus_suspended = 0;
3481 	while (port--) {
3482 		u32 __iomem *reg = &oxu->regs->port_status[port];
3483 		u32 t1 = readl(reg) & ~PORT_RWC_BITS;
3484 		u32 t2 = t1;
3485 
3486 		/* keep track of which ports we suspend */
3487 		if ((t1 & PORT_PE) && !(t1 & PORT_OWNER) &&
3488 				!(t1 & PORT_SUSPEND)) {
3489 			t2 |= PORT_SUSPEND;
3490 			set_bit(port, &oxu->bus_suspended);
3491 		}
3492 
3493 		/* enable remote wakeup on all ports */
3494 		if (device_may_wakeup(&hcd->self.root_hub->dev))
3495 			t2 |= PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E;
3496 		else
3497 			t2 &= ~(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E);
3498 
3499 		if (t1 != t2) {
3500 			oxu_vdbg(oxu, "port %d, %08x -> %08x\n",
3501 				port + 1, t1, t2);
3502 			writel(t2, reg);
3503 		}
3504 	}
3505 
3506 	/* turn off now-idle HC */
3507 	del_timer_sync(&oxu->watchdog);
3508 	ehci_halt(oxu);
3509 	hcd->state = HC_STATE_SUSPENDED;
3510 
3511 	/* allow remote wakeup */
3512 	mask = INTR_MASK;
3513 	if (!device_may_wakeup(&hcd->self.root_hub->dev))
3514 		mask &= ~STS_PCD;
3515 	writel(mask, &oxu->regs->intr_enable);
3516 	readl(&oxu->regs->intr_enable);
3517 
3518 	oxu->next_statechange = jiffies + msecs_to_jiffies(10);
3519 	spin_unlock_irq(&oxu->lock);
3520 	return 0;
3521 }
3522 
3523 /* Caller has locked the root hub, and should reset/reinit on error */
3524 static int oxu_bus_resume(struct usb_hcd *hcd)
3525 {
3526 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3527 	u32 temp;
3528 	int i;
3529 
3530 	if (time_before(jiffies, oxu->next_statechange))
3531 		msleep(5);
3532 	spin_lock_irq(&oxu->lock);
3533 
3534 	/* Ideally and we've got a real resume here, and no port's power
3535 	 * was lost.  (For PCI, that means Vaux was maintained.)  But we
3536 	 * could instead be restoring a swsusp snapshot -- so that BIOS was
3537 	 * the last user of the controller, not reset/pm hardware keeping
3538 	 * state we gave to it.
3539 	 */
3540 	temp = readl(&oxu->regs->intr_enable);
3541 	oxu_dbg(oxu, "resume root hub%s\n", temp ? "" : " after power loss");
3542 
3543 	/* at least some APM implementations will try to deliver
3544 	 * IRQs right away, so delay them until we're ready.
3545 	 */
3546 	writel(0, &oxu->regs->intr_enable);
3547 
3548 	/* re-init operational registers */
3549 	writel(0, &oxu->regs->segment);
3550 	writel(oxu->periodic_dma, &oxu->regs->frame_list);
3551 	writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
3552 
3553 	/* restore CMD_RUN, framelist size, and irq threshold */
3554 	writel(oxu->command, &oxu->regs->command);
3555 
3556 	/* Some controller/firmware combinations need a delay during which
3557 	 * they set up the port statuses.  See Bugzilla #8190. */
3558 	mdelay(8);
3559 
3560 	/* manually resume the ports we suspended during bus_suspend() */
3561 	i = HCS_N_PORTS(oxu->hcs_params);
3562 	while (i--) {
3563 		temp = readl(&oxu->regs->port_status[i]);
3564 		temp &= ~(PORT_RWC_BITS
3565 			| PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E);
3566 		if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3567 			oxu->reset_done[i] = jiffies + msecs_to_jiffies(20);
3568 			temp |= PORT_RESUME;
3569 		}
3570 		writel(temp, &oxu->regs->port_status[i]);
3571 	}
3572 	i = HCS_N_PORTS(oxu->hcs_params);
3573 	mdelay(20);
3574 	while (i--) {
3575 		temp = readl(&oxu->regs->port_status[i]);
3576 		if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3577 			temp &= ~(PORT_RWC_BITS | PORT_RESUME);
3578 			writel(temp, &oxu->regs->port_status[i]);
3579 			oxu_vdbg(oxu, "resumed port %d\n", i + 1);
3580 		}
3581 	}
3582 	(void) readl(&oxu->regs->command);
3583 
3584 	/* maybe re-activate the schedule(s) */
3585 	temp = 0;
3586 	if (oxu->async->qh_next.qh)
3587 		temp |= CMD_ASE;
3588 	if (oxu->periodic_sched)
3589 		temp |= CMD_PSE;
3590 	if (temp) {
3591 		oxu->command |= temp;
3592 		writel(oxu->command, &oxu->regs->command);
3593 	}
3594 
3595 	oxu->next_statechange = jiffies + msecs_to_jiffies(5);
3596 	hcd->state = HC_STATE_RUNNING;
3597 
3598 	/* Now we can safely re-enable irqs */
3599 	writel(INTR_MASK, &oxu->regs->intr_enable);
3600 
3601 	spin_unlock_irq(&oxu->lock);
3602 	return 0;
3603 }
3604 
3605 #else
3606 
3607 static int oxu_bus_suspend(struct usb_hcd *hcd)
3608 {
3609 	return 0;
3610 }
3611 
3612 static int oxu_bus_resume(struct usb_hcd *hcd)
3613 {
3614 	return 0;
3615 }
3616 
3617 #endif	/* CONFIG_PM */
3618 
3619 static const struct hc_driver oxu_hc_driver = {
3620 	.description =		"oxu210hp_hcd",
3621 	.product_desc =		"oxu210hp HCD",
3622 	.hcd_priv_size =	sizeof(struct oxu_hcd),
3623 
3624 	/*
3625 	 * Generic hardware linkage
3626 	 */
3627 	.irq =			oxu_irq,
3628 	.flags =		HCD_MEMORY | HCD_USB2,
3629 
3630 	/*
3631 	 * Basic lifecycle operations
3632 	 */
3633 	.reset =		oxu_reset,
3634 	.start =		oxu_run,
3635 	.stop =			oxu_stop,
3636 	.shutdown =		oxu_shutdown,
3637 
3638 	/*
3639 	 * Managing i/o requests and associated device resources
3640 	 */
3641 	.urb_enqueue =		oxu_urb_enqueue,
3642 	.urb_dequeue =		oxu_urb_dequeue,
3643 	.endpoint_disable =	oxu_endpoint_disable,
3644 
3645 	/*
3646 	 * Scheduling support
3647 	 */
3648 	.get_frame_number =	oxu_get_frame,
3649 
3650 	/*
3651 	 * Root hub support
3652 	 */
3653 	.hub_status_data =	oxu_hub_status_data,
3654 	.hub_control =		oxu_hub_control,
3655 	.bus_suspend =		oxu_bus_suspend,
3656 	.bus_resume =		oxu_bus_resume,
3657 };
3658 
3659 /*
3660  * Module stuff
3661  */
3662 
3663 static void oxu_configuration(struct platform_device *pdev, void *base)
3664 {
3665 	u32 tmp;
3666 
3667 	/* Initialize top level registers.
3668 	 * First write ever
3669 	 */
3670 	oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
3671 	oxu_writel(base, OXU_SOFTRESET, OXU_SRESET);
3672 	oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
3673 
3674 	tmp = oxu_readl(base, OXU_PIOBURSTREADCTRL);
3675 	oxu_writel(base, OXU_PIOBURSTREADCTRL, tmp | 0x0040);
3676 
3677 	oxu_writel(base, OXU_ASO, OXU_SPHPOEN | OXU_OVRCCURPUPDEN |
3678 					OXU_COMPARATOR | OXU_ASO_OP);
3679 
3680 	tmp = oxu_readl(base, OXU_CLKCTRL_SET);
3681 	oxu_writel(base, OXU_CLKCTRL_SET, tmp | OXU_SYSCLKEN | OXU_USBOTGCLKEN);
3682 
3683 	/* Clear all top interrupt enable */
3684 	oxu_writel(base, OXU_CHIPIRQEN_CLR, 0xff);
3685 
3686 	/* Clear all top interrupt status */
3687 	oxu_writel(base, OXU_CHIPIRQSTATUS, 0xff);
3688 
3689 	/* Enable all needed top interrupt except OTG SPH core */
3690 	oxu_writel(base, OXU_CHIPIRQEN_SET, OXU_USBSPHLPWUI | OXU_USBOTGLPWUI);
3691 }
3692 
3693 static int oxu_verify_id(struct platform_device *pdev, void *base)
3694 {
3695 	u32 id;
3696 	static const char * const bo[] = {
3697 		"reserved",
3698 		"128-pin LQFP",
3699 		"84-pin TFBGA",
3700 		"reserved",
3701 	};
3702 
3703 	/* Read controller signature register to find a match */
3704 	id = oxu_readl(base, OXU_DEVICEID);
3705 	dev_info(&pdev->dev, "device ID %x\n", id);
3706 	if ((id & OXU_REV_MASK) != (OXU_REV_2100 << OXU_REV_SHIFT))
3707 		return -1;
3708 
3709 	dev_info(&pdev->dev, "found device %x %s (%04x:%04x)\n",
3710 		id >> OXU_REV_SHIFT,
3711 		bo[(id & OXU_BO_MASK) >> OXU_BO_SHIFT],
3712 		(id & OXU_MAJ_REV_MASK) >> OXU_MAJ_REV_SHIFT,
3713 		(id & OXU_MIN_REV_MASK) >> OXU_MIN_REV_SHIFT);
3714 
3715 	return 0;
3716 }
3717 
3718 static const struct hc_driver oxu_hc_driver;
3719 static struct usb_hcd *oxu_create(struct platform_device *pdev,
3720 				unsigned long memstart, unsigned long memlen,
3721 				void *base, int irq, int otg)
3722 {
3723 	struct device *dev = &pdev->dev;
3724 
3725 	struct usb_hcd *hcd;
3726 	struct oxu_hcd *oxu;
3727 	int ret;
3728 
3729 	/* Set endian mode and host mode */
3730 	oxu_writel(base + (otg ? OXU_OTG_CORE_OFFSET : OXU_SPH_CORE_OFFSET),
3731 				OXU_USBMODE,
3732 				OXU_CM_HOST_ONLY | OXU_ES_LITTLE | OXU_VBPS);
3733 
3734 	hcd = usb_create_hcd(&oxu_hc_driver, dev,
3735 				otg ? "oxu210hp_otg" : "oxu210hp_sph");
3736 	if (!hcd)
3737 		return ERR_PTR(-ENOMEM);
3738 
3739 	hcd->rsrc_start = memstart;
3740 	hcd->rsrc_len = memlen;
3741 	hcd->regs = base;
3742 	hcd->irq = irq;
3743 	hcd->state = HC_STATE_HALT;
3744 
3745 	oxu = hcd_to_oxu(hcd);
3746 	oxu->is_otg = otg;
3747 
3748 	ret = usb_add_hcd(hcd, irq, IRQF_SHARED);
3749 	if (ret < 0)
3750 		return ERR_PTR(ret);
3751 
3752 	device_wakeup_enable(hcd->self.controller);
3753 	return hcd;
3754 }
3755 
3756 static int oxu_init(struct platform_device *pdev,
3757 				unsigned long memstart, unsigned long memlen,
3758 				void *base, int irq)
3759 {
3760 	struct oxu_info *info = platform_get_drvdata(pdev);
3761 	struct usb_hcd *hcd;
3762 	int ret;
3763 
3764 	/* First time configuration at start up */
3765 	oxu_configuration(pdev, base);
3766 
3767 	ret = oxu_verify_id(pdev, base);
3768 	if (ret) {
3769 		dev_err(&pdev->dev, "no devices found!\n");
3770 		return -ENODEV;
3771 	}
3772 
3773 	/* Create the OTG controller */
3774 	hcd = oxu_create(pdev, memstart, memlen, base, irq, 1);
3775 	if (IS_ERR(hcd)) {
3776 		dev_err(&pdev->dev, "cannot create OTG controller!\n");
3777 		ret = PTR_ERR(hcd);
3778 		goto error_create_otg;
3779 	}
3780 	info->hcd[0] = hcd;
3781 
3782 	/* Create the SPH host controller */
3783 	hcd = oxu_create(pdev, memstart, memlen, base, irq, 0);
3784 	if (IS_ERR(hcd)) {
3785 		dev_err(&pdev->dev, "cannot create SPH controller!\n");
3786 		ret = PTR_ERR(hcd);
3787 		goto error_create_sph;
3788 	}
3789 	info->hcd[1] = hcd;
3790 
3791 	oxu_writel(base, OXU_CHIPIRQEN_SET,
3792 		oxu_readl(base, OXU_CHIPIRQEN_SET) | 3);
3793 
3794 	return 0;
3795 
3796 error_create_sph:
3797 	usb_remove_hcd(info->hcd[0]);
3798 	usb_put_hcd(info->hcd[0]);
3799 
3800 error_create_otg:
3801 	return ret;
3802 }
3803 
3804 static int oxu_drv_probe(struct platform_device *pdev)
3805 {
3806 	struct resource *res;
3807 	void *base;
3808 	unsigned long memstart, memlen;
3809 	int irq, ret;
3810 	struct oxu_info *info;
3811 
3812 	if (usb_disabled())
3813 		return -ENODEV;
3814 
3815 	/*
3816 	 * Get the platform resources
3817 	 */
3818 	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
3819 	if (!res) {
3820 		dev_err(&pdev->dev,
3821 			"no IRQ! Check %s setup!\n", dev_name(&pdev->dev));
3822 		return -ENODEV;
3823 	}
3824 	irq = res->start;
3825 	dev_dbg(&pdev->dev, "IRQ resource %d\n", irq);
3826 
3827 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3828 	base = devm_ioremap_resource(&pdev->dev, res);
3829 	if (IS_ERR(base)) {
3830 		ret = PTR_ERR(base);
3831 		goto error;
3832 	}
3833 	memstart = res->start;
3834 	memlen = resource_size(res);
3835 
3836 	ret = irq_set_irq_type(irq, IRQF_TRIGGER_FALLING);
3837 	if (ret) {
3838 		dev_err(&pdev->dev, "error setting irq type\n");
3839 		ret = -EFAULT;
3840 		goto error;
3841 	}
3842 
3843 	/* Allocate a driver data struct to hold useful info for both
3844 	 * SPH & OTG devices
3845 	 */
3846 	info = devm_kzalloc(&pdev->dev, sizeof(struct oxu_info), GFP_KERNEL);
3847 	if (!info) {
3848 		ret = -EFAULT;
3849 		goto error;
3850 	}
3851 	platform_set_drvdata(pdev, info);
3852 
3853 	ret = oxu_init(pdev, memstart, memlen, base, irq);
3854 	if (ret < 0) {
3855 		dev_dbg(&pdev->dev, "cannot init USB devices\n");
3856 		goto error;
3857 	}
3858 
3859 	dev_info(&pdev->dev, "devices enabled and running\n");
3860 	platform_set_drvdata(pdev, info);
3861 
3862 	return 0;
3863 
3864 error:
3865 	dev_err(&pdev->dev, "init %s fail, %d\n", dev_name(&pdev->dev), ret);
3866 	return ret;
3867 }
3868 
3869 static void oxu_remove(struct platform_device *pdev, struct usb_hcd *hcd)
3870 {
3871 	usb_remove_hcd(hcd);
3872 	usb_put_hcd(hcd);
3873 }
3874 
3875 static int oxu_drv_remove(struct platform_device *pdev)
3876 {
3877 	struct oxu_info *info = platform_get_drvdata(pdev);
3878 
3879 	oxu_remove(pdev, info->hcd[0]);
3880 	oxu_remove(pdev, info->hcd[1]);
3881 
3882 	return 0;
3883 }
3884 
3885 static void oxu_drv_shutdown(struct platform_device *pdev)
3886 {
3887 	oxu_drv_remove(pdev);
3888 }
3889 
3890 #if 0
3891 /* FIXME: TODO */
3892 static int oxu_drv_suspend(struct device *dev)
3893 {
3894 	struct platform_device *pdev = to_platform_device(dev);
3895 	struct usb_hcd *hcd = dev_get_drvdata(dev);
3896 
3897 	return 0;
3898 }
3899 
3900 static int oxu_drv_resume(struct device *dev)
3901 {
3902 	struct platform_device *pdev = to_platform_device(dev);
3903 	struct usb_hcd *hcd = dev_get_drvdata(dev);
3904 
3905 	return 0;
3906 }
3907 #else
3908 #define oxu_drv_suspend	NULL
3909 #define oxu_drv_resume	NULL
3910 #endif
3911 
3912 static struct platform_driver oxu_driver = {
3913 	.probe		= oxu_drv_probe,
3914 	.remove		= oxu_drv_remove,
3915 	.shutdown	= oxu_drv_shutdown,
3916 	.suspend	= oxu_drv_suspend,
3917 	.resume		= oxu_drv_resume,
3918 	.driver = {
3919 		.name = "oxu210hp-hcd",
3920 		.bus = &platform_bus_type
3921 	}
3922 };
3923 
3924 module_platform_driver(oxu_driver);
3925 
3926 MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION);
3927 MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
3928 MODULE_LICENSE("GPL");
3929