xref: /linux/drivers/usb/host/ehci-sched.c (revision cc4589ebfae6f8dbb5cf880a0a67eedab3416492)
1 /*
2  * Copyright (c) 2001-2004 by David Brownell
3  * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation; either version 2 of the License, or (at your
8  * option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software Foundation,
17  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  */
19 
20 /* this file is part of ehci-hcd.c */
21 
22 /*-------------------------------------------------------------------------*/
23 
24 /*
25  * EHCI scheduled transaction support:  interrupt, iso, split iso
26  * These are called "periodic" transactions in the EHCI spec.
27  *
28  * Note that for interrupt transfers, the QH/QTD manipulation is shared
29  * with the "asynchronous" transaction support (control/bulk transfers).
30  * The only real difference is in how interrupt transfers are scheduled.
31  *
32  * For ISO, we make an "iso_stream" head to serve the same role as a QH.
33  * It keeps track of every ITD (or SITD) that's linked, and holds enough
34  * pre-calculated schedule data to make appending to the queue be quick.
35  */
36 
37 static int ehci_get_frame (struct usb_hcd *hcd);
38 
39 /*-------------------------------------------------------------------------*/
40 
41 /*
42  * periodic_next_shadow - return "next" pointer on shadow list
43  * @periodic: host pointer to qh/itd/sitd
44  * @tag: hardware tag for type of this record
45  */
46 static union ehci_shadow *
47 periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic,
48 		__hc32 tag)
49 {
50 	switch (hc32_to_cpu(ehci, tag)) {
51 	case Q_TYPE_QH:
52 		return &periodic->qh->qh_next;
53 	case Q_TYPE_FSTN:
54 		return &periodic->fstn->fstn_next;
55 	case Q_TYPE_ITD:
56 		return &periodic->itd->itd_next;
57 	// case Q_TYPE_SITD:
58 	default:
59 		return &periodic->sitd->sitd_next;
60 	}
61 }
62 
63 static __hc32 *
64 shadow_next_periodic(struct ehci_hcd *ehci, union ehci_shadow *periodic,
65 		__hc32 tag)
66 {
67 	switch (hc32_to_cpu(ehci, tag)) {
68 	/* our ehci_shadow.qh is actually software part */
69 	case Q_TYPE_QH:
70 		return &periodic->qh->hw->hw_next;
71 	/* others are hw parts */
72 	default:
73 		return periodic->hw_next;
74 	}
75 }
76 
77 /* caller must hold ehci->lock */
78 static void periodic_unlink (struct ehci_hcd *ehci, unsigned frame, void *ptr)
79 {
80 	union ehci_shadow	*prev_p = &ehci->pshadow[frame];
81 	__hc32			*hw_p = &ehci->periodic[frame];
82 	union ehci_shadow	here = *prev_p;
83 
84 	/* find predecessor of "ptr"; hw and shadow lists are in sync */
85 	while (here.ptr && here.ptr != ptr) {
86 		prev_p = periodic_next_shadow(ehci, prev_p,
87 				Q_NEXT_TYPE(ehci, *hw_p));
88 		hw_p = shadow_next_periodic(ehci, &here,
89 				Q_NEXT_TYPE(ehci, *hw_p));
90 		here = *prev_p;
91 	}
92 	/* an interrupt entry (at list end) could have been shared */
93 	if (!here.ptr)
94 		return;
95 
96 	/* update shadow and hardware lists ... the old "next" pointers
97 	 * from ptr may still be in use, the caller updates them.
98 	 */
99 	*prev_p = *periodic_next_shadow(ehci, &here,
100 			Q_NEXT_TYPE(ehci, *hw_p));
101 	*hw_p = *shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p));
102 }
103 
104 /* how many of the uframe's 125 usecs are allocated? */
105 static unsigned short
106 periodic_usecs (struct ehci_hcd *ehci, unsigned frame, unsigned uframe)
107 {
108 	__hc32			*hw_p = &ehci->periodic [frame];
109 	union ehci_shadow	*q = &ehci->pshadow [frame];
110 	unsigned		usecs = 0;
111 	struct ehci_qh_hw	*hw;
112 
113 	while (q->ptr) {
114 		switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
115 		case Q_TYPE_QH:
116 			hw = q->qh->hw;
117 			/* is it in the S-mask? */
118 			if (hw->hw_info2 & cpu_to_hc32(ehci, 1 << uframe))
119 				usecs += q->qh->usecs;
120 			/* ... or C-mask? */
121 			if (hw->hw_info2 & cpu_to_hc32(ehci,
122 					1 << (8 + uframe)))
123 				usecs += q->qh->c_usecs;
124 			hw_p = &hw->hw_next;
125 			q = &q->qh->qh_next;
126 			break;
127 		// case Q_TYPE_FSTN:
128 		default:
129 			/* for "save place" FSTNs, count the relevant INTR
130 			 * bandwidth from the previous frame
131 			 */
132 			if (q->fstn->hw_prev != EHCI_LIST_END(ehci)) {
133 				ehci_dbg (ehci, "ignoring FSTN cost ...\n");
134 			}
135 			hw_p = &q->fstn->hw_next;
136 			q = &q->fstn->fstn_next;
137 			break;
138 		case Q_TYPE_ITD:
139 			if (q->itd->hw_transaction[uframe])
140 				usecs += q->itd->stream->usecs;
141 			hw_p = &q->itd->hw_next;
142 			q = &q->itd->itd_next;
143 			break;
144 		case Q_TYPE_SITD:
145 			/* is it in the S-mask?  (count SPLIT, DATA) */
146 			if (q->sitd->hw_uframe & cpu_to_hc32(ehci,
147 					1 << uframe)) {
148 				if (q->sitd->hw_fullspeed_ep &
149 						cpu_to_hc32(ehci, 1<<31))
150 					usecs += q->sitd->stream->usecs;
151 				else	/* worst case for OUT start-split */
152 					usecs += HS_USECS_ISO (188);
153 			}
154 
155 			/* ... C-mask?  (count CSPLIT, DATA) */
156 			if (q->sitd->hw_uframe &
157 					cpu_to_hc32(ehci, 1 << (8 + uframe))) {
158 				/* worst case for IN complete-split */
159 				usecs += q->sitd->stream->c_usecs;
160 			}
161 
162 			hw_p = &q->sitd->hw_next;
163 			q = &q->sitd->sitd_next;
164 			break;
165 		}
166 	}
167 #ifdef	DEBUG
168 	if (usecs > 100)
169 		ehci_err (ehci, "uframe %d sched overrun: %d usecs\n",
170 			frame * 8 + uframe, usecs);
171 #endif
172 	return usecs;
173 }
174 
175 /*-------------------------------------------------------------------------*/
176 
177 static int same_tt (struct usb_device *dev1, struct usb_device *dev2)
178 {
179 	if (!dev1->tt || !dev2->tt)
180 		return 0;
181 	if (dev1->tt != dev2->tt)
182 		return 0;
183 	if (dev1->tt->multi)
184 		return dev1->ttport == dev2->ttport;
185 	else
186 		return 1;
187 }
188 
189 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
190 
191 /* Which uframe does the low/fullspeed transfer start in?
192  *
193  * The parameter is the mask of ssplits in "H-frame" terms
194  * and this returns the transfer start uframe in "B-frame" terms,
195  * which allows both to match, e.g. a ssplit in "H-frame" uframe 0
196  * will cause a transfer in "B-frame" uframe 0.  "B-frames" lag
197  * "H-frames" by 1 uframe.  See the EHCI spec sec 4.5 and figure 4.7.
198  */
199 static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask)
200 {
201 	unsigned char smask = QH_SMASK & hc32_to_cpu(ehci, mask);
202 	if (!smask) {
203 		ehci_err(ehci, "invalid empty smask!\n");
204 		/* uframe 7 can't have bw so this will indicate failure */
205 		return 7;
206 	}
207 	return ffs(smask) - 1;
208 }
209 
210 static const unsigned char
211 max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 };
212 
213 /* carryover low/fullspeed bandwidth that crosses uframe boundries */
214 static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8])
215 {
216 	int i;
217 	for (i=0; i<7; i++) {
218 		if (max_tt_usecs[i] < tt_usecs[i]) {
219 			tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i];
220 			tt_usecs[i] = max_tt_usecs[i];
221 		}
222 	}
223 }
224 
225 /* How many of the tt's periodic downstream 1000 usecs are allocated?
226  *
227  * While this measures the bandwidth in terms of usecs/uframe,
228  * the low/fullspeed bus has no notion of uframes, so any particular
229  * low/fullspeed transfer can "carry over" from one uframe to the next,
230  * since the TT just performs downstream transfers in sequence.
231  *
232  * For example two separate 100 usec transfers can start in the same uframe,
233  * and the second one would "carry over" 75 usecs into the next uframe.
234  */
235 static void
236 periodic_tt_usecs (
237 	struct ehci_hcd *ehci,
238 	struct usb_device *dev,
239 	unsigned frame,
240 	unsigned short tt_usecs[8]
241 )
242 {
243 	__hc32			*hw_p = &ehci->periodic [frame];
244 	union ehci_shadow	*q = &ehci->pshadow [frame];
245 	unsigned char		uf;
246 
247 	memset(tt_usecs, 0, 16);
248 
249 	while (q->ptr) {
250 		switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
251 		case Q_TYPE_ITD:
252 			hw_p = &q->itd->hw_next;
253 			q = &q->itd->itd_next;
254 			continue;
255 		case Q_TYPE_QH:
256 			if (same_tt(dev, q->qh->dev)) {
257 				uf = tt_start_uframe(ehci, q->qh->hw->hw_info2);
258 				tt_usecs[uf] += q->qh->tt_usecs;
259 			}
260 			hw_p = &q->qh->hw->hw_next;
261 			q = &q->qh->qh_next;
262 			continue;
263 		case Q_TYPE_SITD:
264 			if (same_tt(dev, q->sitd->urb->dev)) {
265 				uf = tt_start_uframe(ehci, q->sitd->hw_uframe);
266 				tt_usecs[uf] += q->sitd->stream->tt_usecs;
267 			}
268 			hw_p = &q->sitd->hw_next;
269 			q = &q->sitd->sitd_next;
270 			continue;
271 		// case Q_TYPE_FSTN:
272 		default:
273 			ehci_dbg(ehci, "ignoring periodic frame %d FSTN\n",
274 					frame);
275 			hw_p = &q->fstn->hw_next;
276 			q = &q->fstn->fstn_next;
277 		}
278 	}
279 
280 	carryover_tt_bandwidth(tt_usecs);
281 
282 	if (max_tt_usecs[7] < tt_usecs[7])
283 		ehci_err(ehci, "frame %d tt sched overrun: %d usecs\n",
284 			frame, tt_usecs[7] - max_tt_usecs[7]);
285 }
286 
287 /*
288  * Return true if the device's tt's downstream bus is available for a
289  * periodic transfer of the specified length (usecs), starting at the
290  * specified frame/uframe.  Note that (as summarized in section 11.19
291  * of the usb 2.0 spec) TTs can buffer multiple transactions for each
292  * uframe.
293  *
294  * The uframe parameter is when the fullspeed/lowspeed transfer
295  * should be executed in "B-frame" terms, which is the same as the
296  * highspeed ssplit's uframe (which is in "H-frame" terms).  For example
297  * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0.
298  * See the EHCI spec sec 4.5 and fig 4.7.
299  *
300  * This checks if the full/lowspeed bus, at the specified starting uframe,
301  * has the specified bandwidth available, according to rules listed
302  * in USB 2.0 spec section 11.18.1 fig 11-60.
303  *
304  * This does not check if the transfer would exceed the max ssplit
305  * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4,
306  * since proper scheduling limits ssplits to less than 16 per uframe.
307  */
308 static int tt_available (
309 	struct ehci_hcd		*ehci,
310 	unsigned		period,
311 	struct usb_device	*dev,
312 	unsigned		frame,
313 	unsigned		uframe,
314 	u16			usecs
315 )
316 {
317 	if ((period == 0) || (uframe >= 7))	/* error */
318 		return 0;
319 
320 	for (; frame < ehci->periodic_size; frame += period) {
321 		unsigned short tt_usecs[8];
322 
323 		periodic_tt_usecs (ehci, dev, frame, tt_usecs);
324 
325 		ehci_vdbg(ehci, "tt frame %d check %d usecs start uframe %d in"
326 			" schedule %d/%d/%d/%d/%d/%d/%d/%d\n",
327 			frame, usecs, uframe,
328 			tt_usecs[0], tt_usecs[1], tt_usecs[2], tt_usecs[3],
329 			tt_usecs[4], tt_usecs[5], tt_usecs[6], tt_usecs[7]);
330 
331 		if (max_tt_usecs[uframe] <= tt_usecs[uframe]) {
332 			ehci_vdbg(ehci, "frame %d uframe %d fully scheduled\n",
333 				frame, uframe);
334 			return 0;
335 		}
336 
337 		/* special case for isoc transfers larger than 125us:
338 		 * the first and each subsequent fully used uframe
339 		 * must be empty, so as to not illegally delay
340 		 * already scheduled transactions
341 		 */
342 		if (125 < usecs) {
343 			int ufs = (usecs / 125);
344 			int i;
345 			for (i = uframe; i < (uframe + ufs) && i < 8; i++)
346 				if (0 < tt_usecs[i]) {
347 					ehci_vdbg(ehci,
348 						"multi-uframe xfer can't fit "
349 						"in frame %d uframe %d\n",
350 						frame, i);
351 					return 0;
352 				}
353 		}
354 
355 		tt_usecs[uframe] += usecs;
356 
357 		carryover_tt_bandwidth(tt_usecs);
358 
359 		/* fail if the carryover pushed bw past the last uframe's limit */
360 		if (max_tt_usecs[7] < tt_usecs[7]) {
361 			ehci_vdbg(ehci,
362 				"tt unavailable usecs %d frame %d uframe %d\n",
363 				usecs, frame, uframe);
364 			return 0;
365 		}
366 	}
367 
368 	return 1;
369 }
370 
371 #else
372 
373 /* return true iff the device's transaction translator is available
374  * for a periodic transfer starting at the specified frame, using
375  * all the uframes in the mask.
376  */
377 static int tt_no_collision (
378 	struct ehci_hcd		*ehci,
379 	unsigned		period,
380 	struct usb_device	*dev,
381 	unsigned		frame,
382 	u32			uf_mask
383 )
384 {
385 	if (period == 0)	/* error */
386 		return 0;
387 
388 	/* note bandwidth wastage:  split never follows csplit
389 	 * (different dev or endpoint) until the next uframe.
390 	 * calling convention doesn't make that distinction.
391 	 */
392 	for (; frame < ehci->periodic_size; frame += period) {
393 		union ehci_shadow	here;
394 		__hc32			type;
395 		struct ehci_qh_hw	*hw;
396 
397 		here = ehci->pshadow [frame];
398 		type = Q_NEXT_TYPE(ehci, ehci->periodic [frame]);
399 		while (here.ptr) {
400 			switch (hc32_to_cpu(ehci, type)) {
401 			case Q_TYPE_ITD:
402 				type = Q_NEXT_TYPE(ehci, here.itd->hw_next);
403 				here = here.itd->itd_next;
404 				continue;
405 			case Q_TYPE_QH:
406 				hw = here.qh->hw;
407 				if (same_tt (dev, here.qh->dev)) {
408 					u32		mask;
409 
410 					mask = hc32_to_cpu(ehci,
411 							hw->hw_info2);
412 					/* "knows" no gap is needed */
413 					mask |= mask >> 8;
414 					if (mask & uf_mask)
415 						break;
416 				}
417 				type = Q_NEXT_TYPE(ehci, hw->hw_next);
418 				here = here.qh->qh_next;
419 				continue;
420 			case Q_TYPE_SITD:
421 				if (same_tt (dev, here.sitd->urb->dev)) {
422 					u16		mask;
423 
424 					mask = hc32_to_cpu(ehci, here.sitd
425 								->hw_uframe);
426 					/* FIXME assumes no gap for IN! */
427 					mask |= mask >> 8;
428 					if (mask & uf_mask)
429 						break;
430 				}
431 				type = Q_NEXT_TYPE(ehci, here.sitd->hw_next);
432 				here = here.sitd->sitd_next;
433 				continue;
434 			// case Q_TYPE_FSTN:
435 			default:
436 				ehci_dbg (ehci,
437 					"periodic frame %d bogus type %d\n",
438 					frame, type);
439 			}
440 
441 			/* collision or error */
442 			return 0;
443 		}
444 	}
445 
446 	/* no collision */
447 	return 1;
448 }
449 
450 #endif /* CONFIG_USB_EHCI_TT_NEWSCHED */
451 
452 /*-------------------------------------------------------------------------*/
453 
454 static int enable_periodic (struct ehci_hcd *ehci)
455 {
456 	u32	cmd;
457 	int	status;
458 
459 	if (ehci->periodic_sched++)
460 		return 0;
461 
462 	/* did clearing PSE did take effect yet?
463 	 * takes effect only at frame boundaries...
464 	 */
465 	status = handshake_on_error_set_halt(ehci, &ehci->regs->status,
466 					     STS_PSS, 0, 9 * 125);
467 	if (status)
468 		return status;
469 
470 	cmd = ehci_readl(ehci, &ehci->regs->command) | CMD_PSE;
471 	ehci_writel(ehci, cmd, &ehci->regs->command);
472 	/* posted write ... PSS happens later */
473 	ehci_to_hcd(ehci)->state = HC_STATE_RUNNING;
474 
475 	/* make sure ehci_work scans these */
476 	ehci->next_uframe = ehci_readl(ehci, &ehci->regs->frame_index)
477 		% (ehci->periodic_size << 3);
478 	if (unlikely(ehci->broken_periodic))
479 		ehci->last_periodic_enable = ktime_get_real();
480 	return 0;
481 }
482 
483 static int disable_periodic (struct ehci_hcd *ehci)
484 {
485 	u32	cmd;
486 	int	status;
487 
488 	if (--ehci->periodic_sched)
489 		return 0;
490 
491 	if (unlikely(ehci->broken_periodic)) {
492 		/* delay experimentally determined */
493 		ktime_t safe = ktime_add_us(ehci->last_periodic_enable, 1000);
494 		ktime_t now = ktime_get_real();
495 		s64 delay = ktime_us_delta(safe, now);
496 
497 		if (unlikely(delay > 0))
498 			udelay(delay);
499 	}
500 
501 	/* did setting PSE not take effect yet?
502 	 * takes effect only at frame boundaries...
503 	 */
504 	status = handshake_on_error_set_halt(ehci, &ehci->regs->status,
505 					     STS_PSS, STS_PSS, 9 * 125);
506 	if (status)
507 		return status;
508 
509 	cmd = ehci_readl(ehci, &ehci->regs->command) & ~CMD_PSE;
510 	ehci_writel(ehci, cmd, &ehci->regs->command);
511 	/* posted write ... */
512 
513 	free_cached_lists(ehci);
514 
515 	ehci->next_uframe = -1;
516 	return 0;
517 }
518 
519 /*-------------------------------------------------------------------------*/
520 
521 /* periodic schedule slots have iso tds (normal or split) first, then a
522  * sparse tree for active interrupt transfers.
523  *
524  * this just links in a qh; caller guarantees uframe masks are set right.
525  * no FSTN support (yet; ehci 0.96+)
526  */
527 static int qh_link_periodic (struct ehci_hcd *ehci, struct ehci_qh *qh)
528 {
529 	unsigned	i;
530 	unsigned	period = qh->period;
531 
532 	dev_dbg (&qh->dev->dev,
533 		"link qh%d-%04x/%p start %d [%d/%d us]\n",
534 		period, hc32_to_cpup(ehci, &qh->hw->hw_info2)
535 			& (QH_CMASK | QH_SMASK),
536 		qh, qh->start, qh->usecs, qh->c_usecs);
537 
538 	/* high bandwidth, or otherwise every microframe */
539 	if (period == 0)
540 		period = 1;
541 
542 	for (i = qh->start; i < ehci->periodic_size; i += period) {
543 		union ehci_shadow	*prev = &ehci->pshadow[i];
544 		__hc32			*hw_p = &ehci->periodic[i];
545 		union ehci_shadow	here = *prev;
546 		__hc32			type = 0;
547 
548 		/* skip the iso nodes at list head */
549 		while (here.ptr) {
550 			type = Q_NEXT_TYPE(ehci, *hw_p);
551 			if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
552 				break;
553 			prev = periodic_next_shadow(ehci, prev, type);
554 			hw_p = shadow_next_periodic(ehci, &here, type);
555 			here = *prev;
556 		}
557 
558 		/* sorting each branch by period (slow-->fast)
559 		 * enables sharing interior tree nodes
560 		 */
561 		while (here.ptr && qh != here.qh) {
562 			if (qh->period > here.qh->period)
563 				break;
564 			prev = &here.qh->qh_next;
565 			hw_p = &here.qh->hw->hw_next;
566 			here = *prev;
567 		}
568 		/* link in this qh, unless some earlier pass did that */
569 		if (qh != here.qh) {
570 			qh->qh_next = here;
571 			if (here.qh)
572 				qh->hw->hw_next = *hw_p;
573 			wmb ();
574 			prev->qh = qh;
575 			*hw_p = QH_NEXT (ehci, qh->qh_dma);
576 		}
577 	}
578 	qh->qh_state = QH_STATE_LINKED;
579 	qh->xacterrs = 0;
580 	qh_get (qh);
581 
582 	/* update per-qh bandwidth for usbfs */
583 	ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->period
584 		? ((qh->usecs + qh->c_usecs) / qh->period)
585 		: (qh->usecs * 8);
586 
587 	/* maybe enable periodic schedule processing */
588 	return enable_periodic(ehci);
589 }
590 
591 static int qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
592 {
593 	unsigned	i;
594 	unsigned	period;
595 
596 	// FIXME:
597 	// IF this isn't high speed
598 	//   and this qh is active in the current uframe
599 	//   (and overlay token SplitXstate is false?)
600 	// THEN
601 	//   qh->hw_info1 |= cpu_to_hc32(1 << 7 /* "ignore" */);
602 
603 	/* high bandwidth, or otherwise part of every microframe */
604 	if ((period = qh->period) == 0)
605 		period = 1;
606 
607 	for (i = qh->start; i < ehci->periodic_size; i += period)
608 		periodic_unlink (ehci, i, qh);
609 
610 	/* update per-qh bandwidth for usbfs */
611 	ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->period
612 		? ((qh->usecs + qh->c_usecs) / qh->period)
613 		: (qh->usecs * 8);
614 
615 	dev_dbg (&qh->dev->dev,
616 		"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
617 		qh->period,
618 		hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK),
619 		qh, qh->start, qh->usecs, qh->c_usecs);
620 
621 	/* qh->qh_next still "live" to HC */
622 	qh->qh_state = QH_STATE_UNLINK;
623 	qh->qh_next.ptr = NULL;
624 	qh_put (qh);
625 
626 	/* maybe turn off periodic schedule */
627 	return disable_periodic(ehci);
628 }
629 
630 static void intr_deschedule (struct ehci_hcd *ehci, struct ehci_qh *qh)
631 {
632 	unsigned		wait;
633 	struct ehci_qh_hw	*hw = qh->hw;
634 	int			rc;
635 
636 	/* If the QH isn't linked then there's nothing we can do
637 	 * unless we were called during a giveback, in which case
638 	 * qh_completions() has to deal with it.
639 	 */
640 	if (qh->qh_state != QH_STATE_LINKED) {
641 		if (qh->qh_state == QH_STATE_COMPLETING)
642 			qh->needs_rescan = 1;
643 		return;
644 	}
645 
646 	qh_unlink_periodic (ehci, qh);
647 
648 	/* simple/paranoid:  always delay, expecting the HC needs to read
649 	 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
650 	 * expect khubd to clean up after any CSPLITs we won't issue.
651 	 * active high speed queues may need bigger delays...
652 	 */
653 	if (list_empty (&qh->qtd_list)
654 			|| (cpu_to_hc32(ehci, QH_CMASK)
655 					& hw->hw_info2) != 0)
656 		wait = 2;
657 	else
658 		wait = 55;	/* worst case: 3 * 1024 */
659 
660 	udelay (wait);
661 	qh->qh_state = QH_STATE_IDLE;
662 	hw->hw_next = EHCI_LIST_END(ehci);
663 	wmb ();
664 
665 	qh_completions(ehci, qh);
666 
667 	/* reschedule QH iff another request is queued */
668 	if (!list_empty(&qh->qtd_list) &&
669 			HC_IS_RUNNING(ehci_to_hcd(ehci)->state)) {
670 		rc = qh_schedule(ehci, qh);
671 
672 		/* An error here likely indicates handshake failure
673 		 * or no space left in the schedule.  Neither fault
674 		 * should happen often ...
675 		 *
676 		 * FIXME kill the now-dysfunctional queued urbs
677 		 */
678 		if (rc != 0)
679 			ehci_err(ehci, "can't reschedule qh %p, err %d\n",
680 					qh, rc);
681 	}
682 }
683 
684 /*-------------------------------------------------------------------------*/
685 
686 static int check_period (
687 	struct ehci_hcd *ehci,
688 	unsigned	frame,
689 	unsigned	uframe,
690 	unsigned	period,
691 	unsigned	usecs
692 ) {
693 	int		claimed;
694 
695 	/* complete split running into next frame?
696 	 * given FSTN support, we could sometimes check...
697 	 */
698 	if (uframe >= 8)
699 		return 0;
700 
701 	/*
702 	 * 80% periodic == 100 usec/uframe available
703 	 * convert "usecs we need" to "max already claimed"
704 	 */
705 	usecs = 100 - usecs;
706 
707 	/* we "know" 2 and 4 uframe intervals were rejected; so
708 	 * for period 0, check _every_ microframe in the schedule.
709 	 */
710 	if (unlikely (period == 0)) {
711 		do {
712 			for (uframe = 0; uframe < 7; uframe++) {
713 				claimed = periodic_usecs (ehci, frame, uframe);
714 				if (claimed > usecs)
715 					return 0;
716 			}
717 		} while ((frame += 1) < ehci->periodic_size);
718 
719 	/* just check the specified uframe, at that period */
720 	} else {
721 		do {
722 			claimed = periodic_usecs (ehci, frame, uframe);
723 			if (claimed > usecs)
724 				return 0;
725 		} while ((frame += period) < ehci->periodic_size);
726 	}
727 
728 	// success!
729 	return 1;
730 }
731 
732 static int check_intr_schedule (
733 	struct ehci_hcd		*ehci,
734 	unsigned		frame,
735 	unsigned		uframe,
736 	const struct ehci_qh	*qh,
737 	__hc32			*c_maskp
738 )
739 {
740 	int		retval = -ENOSPC;
741 	u8		mask = 0;
742 
743 	if (qh->c_usecs && uframe >= 6)		/* FSTN territory? */
744 		goto done;
745 
746 	if (!check_period (ehci, frame, uframe, qh->period, qh->usecs))
747 		goto done;
748 	if (!qh->c_usecs) {
749 		retval = 0;
750 		*c_maskp = 0;
751 		goto done;
752 	}
753 
754 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
755 	if (tt_available (ehci, qh->period, qh->dev, frame, uframe,
756 				qh->tt_usecs)) {
757 		unsigned i;
758 
759 		/* TODO : this may need FSTN for SSPLIT in uframe 5. */
760 		for (i=uframe+1; i<8 && i<uframe+4; i++)
761 			if (!check_period (ehci, frame, i,
762 						qh->period, qh->c_usecs))
763 				goto done;
764 			else
765 				mask |= 1 << i;
766 
767 		retval = 0;
768 
769 		*c_maskp = cpu_to_hc32(ehci, mask << 8);
770 	}
771 #else
772 	/* Make sure this tt's buffer is also available for CSPLITs.
773 	 * We pessimize a bit; probably the typical full speed case
774 	 * doesn't need the second CSPLIT.
775 	 *
776 	 * NOTE:  both SPLIT and CSPLIT could be checked in just
777 	 * one smart pass...
778 	 */
779 	mask = 0x03 << (uframe + qh->gap_uf);
780 	*c_maskp = cpu_to_hc32(ehci, mask << 8);
781 
782 	mask |= 1 << uframe;
783 	if (tt_no_collision (ehci, qh->period, qh->dev, frame, mask)) {
784 		if (!check_period (ehci, frame, uframe + qh->gap_uf + 1,
785 					qh->period, qh->c_usecs))
786 			goto done;
787 		if (!check_period (ehci, frame, uframe + qh->gap_uf,
788 					qh->period, qh->c_usecs))
789 			goto done;
790 		retval = 0;
791 	}
792 #endif
793 done:
794 	return retval;
795 }
796 
797 /* "first fit" scheduling policy used the first time through,
798  * or when the previous schedule slot can't be re-used.
799  */
800 static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh)
801 {
802 	int		status;
803 	unsigned	uframe;
804 	__hc32		c_mask;
805 	unsigned	frame;		/* 0..(qh->period - 1), or NO_FRAME */
806 	struct ehci_qh_hw	*hw = qh->hw;
807 
808 	qh_refresh(ehci, qh);
809 	hw->hw_next = EHCI_LIST_END(ehci);
810 	frame = qh->start;
811 
812 	/* reuse the previous schedule slots, if we can */
813 	if (frame < qh->period) {
814 		uframe = ffs(hc32_to_cpup(ehci, &hw->hw_info2) & QH_SMASK);
815 		status = check_intr_schedule (ehci, frame, --uframe,
816 				qh, &c_mask);
817 	} else {
818 		uframe = 0;
819 		c_mask = 0;
820 		status = -ENOSPC;
821 	}
822 
823 	/* else scan the schedule to find a group of slots such that all
824 	 * uframes have enough periodic bandwidth available.
825 	 */
826 	if (status) {
827 		/* "normal" case, uframing flexible except with splits */
828 		if (qh->period) {
829 			int		i;
830 
831 			for (i = qh->period; status && i > 0; --i) {
832 				frame = ++ehci->random_frame % qh->period;
833 				for (uframe = 0; uframe < 8; uframe++) {
834 					status = check_intr_schedule (ehci,
835 							frame, uframe, qh,
836 							&c_mask);
837 					if (status == 0)
838 						break;
839 				}
840 			}
841 
842 		/* qh->period == 0 means every uframe */
843 		} else {
844 			frame = 0;
845 			status = check_intr_schedule (ehci, 0, 0, qh, &c_mask);
846 		}
847 		if (status)
848 			goto done;
849 		qh->start = frame;
850 
851 		/* reset S-frame and (maybe) C-frame masks */
852 		hw->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK));
853 		hw->hw_info2 |= qh->period
854 			? cpu_to_hc32(ehci, 1 << uframe)
855 			: cpu_to_hc32(ehci, QH_SMASK);
856 		hw->hw_info2 |= c_mask;
857 	} else
858 		ehci_dbg (ehci, "reused qh %p schedule\n", qh);
859 
860 	/* stuff into the periodic schedule */
861 	status = qh_link_periodic (ehci, qh);
862 done:
863 	return status;
864 }
865 
866 static int intr_submit (
867 	struct ehci_hcd		*ehci,
868 	struct urb		*urb,
869 	struct list_head	*qtd_list,
870 	gfp_t			mem_flags
871 ) {
872 	unsigned		epnum;
873 	unsigned long		flags;
874 	struct ehci_qh		*qh;
875 	int			status;
876 	struct list_head	empty;
877 
878 	/* get endpoint and transfer/schedule data */
879 	epnum = urb->ep->desc.bEndpointAddress;
880 
881 	spin_lock_irqsave (&ehci->lock, flags);
882 
883 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
884 		status = -ESHUTDOWN;
885 		goto done_not_linked;
886 	}
887 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
888 	if (unlikely(status))
889 		goto done_not_linked;
890 
891 	/* get qh and force any scheduling errors */
892 	INIT_LIST_HEAD (&empty);
893 	qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv);
894 	if (qh == NULL) {
895 		status = -ENOMEM;
896 		goto done;
897 	}
898 	if (qh->qh_state == QH_STATE_IDLE) {
899 		if ((status = qh_schedule (ehci, qh)) != 0)
900 			goto done;
901 	}
902 
903 	/* then queue the urb's tds to the qh */
904 	qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
905 	BUG_ON (qh == NULL);
906 
907 	/* ... update usbfs periodic stats */
908 	ehci_to_hcd(ehci)->self.bandwidth_int_reqs++;
909 
910 done:
911 	if (unlikely(status))
912 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
913 done_not_linked:
914 	spin_unlock_irqrestore (&ehci->lock, flags);
915 	if (status)
916 		qtd_list_free (ehci, urb, qtd_list);
917 
918 	return status;
919 }
920 
921 /*-------------------------------------------------------------------------*/
922 
923 /* ehci_iso_stream ops work with both ITD and SITD */
924 
925 static struct ehci_iso_stream *
926 iso_stream_alloc (gfp_t mem_flags)
927 {
928 	struct ehci_iso_stream *stream;
929 
930 	stream = kzalloc(sizeof *stream, mem_flags);
931 	if (likely (stream != NULL)) {
932 		INIT_LIST_HEAD(&stream->td_list);
933 		INIT_LIST_HEAD(&stream->free_list);
934 		stream->next_uframe = -1;
935 		stream->refcount = 1;
936 	}
937 	return stream;
938 }
939 
940 static void
941 iso_stream_init (
942 	struct ehci_hcd		*ehci,
943 	struct ehci_iso_stream	*stream,
944 	struct usb_device	*dev,
945 	int			pipe,
946 	unsigned		interval
947 )
948 {
949 	static const u8 smask_out [] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f };
950 
951 	u32			buf1;
952 	unsigned		epnum, maxp;
953 	int			is_input;
954 	long			bandwidth;
955 
956 	/*
957 	 * this might be a "high bandwidth" highspeed endpoint,
958 	 * as encoded in the ep descriptor's wMaxPacket field
959 	 */
960 	epnum = usb_pipeendpoint (pipe);
961 	is_input = usb_pipein (pipe) ? USB_DIR_IN : 0;
962 	maxp = usb_maxpacket(dev, pipe, !is_input);
963 	if (is_input) {
964 		buf1 = (1 << 11);
965 	} else {
966 		buf1 = 0;
967 	}
968 
969 	/* knows about ITD vs SITD */
970 	if (dev->speed == USB_SPEED_HIGH) {
971 		unsigned multi = hb_mult(maxp);
972 
973 		stream->highspeed = 1;
974 
975 		maxp = max_packet(maxp);
976 		buf1 |= maxp;
977 		maxp *= multi;
978 
979 		stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum);
980 		stream->buf1 = cpu_to_hc32(ehci, buf1);
981 		stream->buf2 = cpu_to_hc32(ehci, multi);
982 
983 		/* usbfs wants to report the average usecs per frame tied up
984 		 * when transfers on this endpoint are scheduled ...
985 		 */
986 		stream->usecs = HS_USECS_ISO (maxp);
987 		bandwidth = stream->usecs * 8;
988 		bandwidth /= interval;
989 
990 	} else {
991 		u32		addr;
992 		int		think_time;
993 		int		hs_transfers;
994 
995 		addr = dev->ttport << 24;
996 		if (!ehci_is_TDI(ehci)
997 				|| (dev->tt->hub !=
998 					ehci_to_hcd(ehci)->self.root_hub))
999 			addr |= dev->tt->hub->devnum << 16;
1000 		addr |= epnum << 8;
1001 		addr |= dev->devnum;
1002 		stream->usecs = HS_USECS_ISO (maxp);
1003 		think_time = dev->tt ? dev->tt->think_time : 0;
1004 		stream->tt_usecs = NS_TO_US (think_time + usb_calc_bus_time (
1005 				dev->speed, is_input, 1, maxp));
1006 		hs_transfers = max (1u, (maxp + 187) / 188);
1007 		if (is_input) {
1008 			u32	tmp;
1009 
1010 			addr |= 1 << 31;
1011 			stream->c_usecs = stream->usecs;
1012 			stream->usecs = HS_USECS_ISO (1);
1013 			stream->raw_mask = 1;
1014 
1015 			/* c-mask as specified in USB 2.0 11.18.4 3.c */
1016 			tmp = (1 << (hs_transfers + 2)) - 1;
1017 			stream->raw_mask |= tmp << (8 + 2);
1018 		} else
1019 			stream->raw_mask = smask_out [hs_transfers - 1];
1020 		bandwidth = stream->usecs + stream->c_usecs;
1021 		bandwidth /= interval << 3;
1022 
1023 		/* stream->splits gets created from raw_mask later */
1024 		stream->address = cpu_to_hc32(ehci, addr);
1025 	}
1026 	stream->bandwidth = bandwidth;
1027 
1028 	stream->udev = dev;
1029 
1030 	stream->bEndpointAddress = is_input | epnum;
1031 	stream->interval = interval;
1032 	stream->maxp = maxp;
1033 }
1034 
1035 static void
1036 iso_stream_put(struct ehci_hcd *ehci, struct ehci_iso_stream *stream)
1037 {
1038 	stream->refcount--;
1039 
1040 	/* free whenever just a dev->ep reference remains.
1041 	 * not like a QH -- no persistent state (toggle, halt)
1042 	 */
1043 	if (stream->refcount == 1) {
1044 		int		is_in;
1045 
1046 		// BUG_ON (!list_empty(&stream->td_list));
1047 
1048 		while (!list_empty (&stream->free_list)) {
1049 			struct list_head	*entry;
1050 
1051 			entry = stream->free_list.next;
1052 			list_del (entry);
1053 
1054 			/* knows about ITD vs SITD */
1055 			if (stream->highspeed) {
1056 				struct ehci_itd		*itd;
1057 
1058 				itd = list_entry (entry, struct ehci_itd,
1059 						itd_list);
1060 				dma_pool_free (ehci->itd_pool, itd,
1061 						itd->itd_dma);
1062 			} else {
1063 				struct ehci_sitd	*sitd;
1064 
1065 				sitd = list_entry (entry, struct ehci_sitd,
1066 						sitd_list);
1067 				dma_pool_free (ehci->sitd_pool, sitd,
1068 						sitd->sitd_dma);
1069 			}
1070 		}
1071 
1072 		is_in = (stream->bEndpointAddress & USB_DIR_IN) ? 0x10 : 0;
1073 		stream->bEndpointAddress &= 0x0f;
1074 		if (stream->ep)
1075 			stream->ep->hcpriv = NULL;
1076 
1077 		kfree(stream);
1078 	}
1079 }
1080 
1081 static inline struct ehci_iso_stream *
1082 iso_stream_get (struct ehci_iso_stream *stream)
1083 {
1084 	if (likely (stream != NULL))
1085 		stream->refcount++;
1086 	return stream;
1087 }
1088 
1089 static struct ehci_iso_stream *
1090 iso_stream_find (struct ehci_hcd *ehci, struct urb *urb)
1091 {
1092 	unsigned		epnum;
1093 	struct ehci_iso_stream	*stream;
1094 	struct usb_host_endpoint *ep;
1095 	unsigned long		flags;
1096 
1097 	epnum = usb_pipeendpoint (urb->pipe);
1098 	if (usb_pipein(urb->pipe))
1099 		ep = urb->dev->ep_in[epnum];
1100 	else
1101 		ep = urb->dev->ep_out[epnum];
1102 
1103 	spin_lock_irqsave (&ehci->lock, flags);
1104 	stream = ep->hcpriv;
1105 
1106 	if (unlikely (stream == NULL)) {
1107 		stream = iso_stream_alloc(GFP_ATOMIC);
1108 		if (likely (stream != NULL)) {
1109 			/* dev->ep owns the initial refcount */
1110 			ep->hcpriv = stream;
1111 			stream->ep = ep;
1112 			iso_stream_init(ehci, stream, urb->dev, urb->pipe,
1113 					urb->interval);
1114 		}
1115 
1116 	/* if dev->ep [epnum] is a QH, hw is set */
1117 	} else if (unlikely (stream->hw != NULL)) {
1118 		ehci_dbg (ehci, "dev %s ep%d%s, not iso??\n",
1119 			urb->dev->devpath, epnum,
1120 			usb_pipein(urb->pipe) ? "in" : "out");
1121 		stream = NULL;
1122 	}
1123 
1124 	/* caller guarantees an eventual matching iso_stream_put */
1125 	stream = iso_stream_get (stream);
1126 
1127 	spin_unlock_irqrestore (&ehci->lock, flags);
1128 	return stream;
1129 }
1130 
1131 /*-------------------------------------------------------------------------*/
1132 
1133 /* ehci_iso_sched ops can be ITD-only or SITD-only */
1134 
1135 static struct ehci_iso_sched *
1136 iso_sched_alloc (unsigned packets, gfp_t mem_flags)
1137 {
1138 	struct ehci_iso_sched	*iso_sched;
1139 	int			size = sizeof *iso_sched;
1140 
1141 	size += packets * sizeof (struct ehci_iso_packet);
1142 	iso_sched = kzalloc(size, mem_flags);
1143 	if (likely (iso_sched != NULL)) {
1144 		INIT_LIST_HEAD (&iso_sched->td_list);
1145 	}
1146 	return iso_sched;
1147 }
1148 
1149 static inline void
1150 itd_sched_init(
1151 	struct ehci_hcd		*ehci,
1152 	struct ehci_iso_sched	*iso_sched,
1153 	struct ehci_iso_stream	*stream,
1154 	struct urb		*urb
1155 )
1156 {
1157 	unsigned	i;
1158 	dma_addr_t	dma = urb->transfer_dma;
1159 
1160 	/* how many uframes are needed for these transfers */
1161 	iso_sched->span = urb->number_of_packets * stream->interval;
1162 
1163 	/* figure out per-uframe itd fields that we'll need later
1164 	 * when we fit new itds into the schedule.
1165 	 */
1166 	for (i = 0; i < urb->number_of_packets; i++) {
1167 		struct ehci_iso_packet	*uframe = &iso_sched->packet [i];
1168 		unsigned		length;
1169 		dma_addr_t		buf;
1170 		u32			trans;
1171 
1172 		length = urb->iso_frame_desc [i].length;
1173 		buf = dma + urb->iso_frame_desc [i].offset;
1174 
1175 		trans = EHCI_ISOC_ACTIVE;
1176 		trans |= buf & 0x0fff;
1177 		if (unlikely (((i + 1) == urb->number_of_packets))
1178 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
1179 			trans |= EHCI_ITD_IOC;
1180 		trans |= length << 16;
1181 		uframe->transaction = cpu_to_hc32(ehci, trans);
1182 
1183 		/* might need to cross a buffer page within a uframe */
1184 		uframe->bufp = (buf & ~(u64)0x0fff);
1185 		buf += length;
1186 		if (unlikely ((uframe->bufp != (buf & ~(u64)0x0fff))))
1187 			uframe->cross = 1;
1188 	}
1189 }
1190 
1191 static void
1192 iso_sched_free (
1193 	struct ehci_iso_stream	*stream,
1194 	struct ehci_iso_sched	*iso_sched
1195 )
1196 {
1197 	if (!iso_sched)
1198 		return;
1199 	// caller must hold ehci->lock!
1200 	list_splice (&iso_sched->td_list, &stream->free_list);
1201 	kfree (iso_sched);
1202 }
1203 
1204 static int
1205 itd_urb_transaction (
1206 	struct ehci_iso_stream	*stream,
1207 	struct ehci_hcd		*ehci,
1208 	struct urb		*urb,
1209 	gfp_t			mem_flags
1210 )
1211 {
1212 	struct ehci_itd		*itd;
1213 	dma_addr_t		itd_dma;
1214 	int			i;
1215 	unsigned		num_itds;
1216 	struct ehci_iso_sched	*sched;
1217 	unsigned long		flags;
1218 
1219 	sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1220 	if (unlikely (sched == NULL))
1221 		return -ENOMEM;
1222 
1223 	itd_sched_init(ehci, sched, stream, urb);
1224 
1225 	if (urb->interval < 8)
1226 		num_itds = 1 + (sched->span + 7) / 8;
1227 	else
1228 		num_itds = urb->number_of_packets;
1229 
1230 	/* allocate/init ITDs */
1231 	spin_lock_irqsave (&ehci->lock, flags);
1232 	for (i = 0; i < num_itds; i++) {
1233 
1234 		/* free_list.next might be cache-hot ... but maybe
1235 		 * the HC caches it too. avoid that issue for now.
1236 		 */
1237 
1238 		/* prefer previously-allocated itds */
1239 		if (likely (!list_empty(&stream->free_list))) {
1240 			itd = list_entry (stream->free_list.prev,
1241 					struct ehci_itd, itd_list);
1242 			list_del (&itd->itd_list);
1243 			itd_dma = itd->itd_dma;
1244 		} else {
1245 			spin_unlock_irqrestore (&ehci->lock, flags);
1246 			itd = dma_pool_alloc (ehci->itd_pool, mem_flags,
1247 					&itd_dma);
1248 			spin_lock_irqsave (&ehci->lock, flags);
1249 			if (!itd) {
1250 				iso_sched_free(stream, sched);
1251 				spin_unlock_irqrestore(&ehci->lock, flags);
1252 				return -ENOMEM;
1253 			}
1254 		}
1255 
1256 		memset (itd, 0, sizeof *itd);
1257 		itd->itd_dma = itd_dma;
1258 		list_add (&itd->itd_list, &sched->td_list);
1259 	}
1260 	spin_unlock_irqrestore (&ehci->lock, flags);
1261 
1262 	/* temporarily store schedule info in hcpriv */
1263 	urb->hcpriv = sched;
1264 	urb->error_count = 0;
1265 	return 0;
1266 }
1267 
1268 /*-------------------------------------------------------------------------*/
1269 
1270 static inline int
1271 itd_slot_ok (
1272 	struct ehci_hcd		*ehci,
1273 	u32			mod,
1274 	u32			uframe,
1275 	u8			usecs,
1276 	u32			period
1277 )
1278 {
1279 	uframe %= period;
1280 	do {
1281 		/* can't commit more than 80% periodic == 100 usec */
1282 		if (periodic_usecs (ehci, uframe >> 3, uframe & 0x7)
1283 				> (100 - usecs))
1284 			return 0;
1285 
1286 		/* we know urb->interval is 2^N uframes */
1287 		uframe += period;
1288 	} while (uframe < mod);
1289 	return 1;
1290 }
1291 
1292 static inline int
1293 sitd_slot_ok (
1294 	struct ehci_hcd		*ehci,
1295 	u32			mod,
1296 	struct ehci_iso_stream	*stream,
1297 	u32			uframe,
1298 	struct ehci_iso_sched	*sched,
1299 	u32			period_uframes
1300 )
1301 {
1302 	u32			mask, tmp;
1303 	u32			frame, uf;
1304 
1305 	mask = stream->raw_mask << (uframe & 7);
1306 
1307 	/* for IN, don't wrap CSPLIT into the next frame */
1308 	if (mask & ~0xffff)
1309 		return 0;
1310 
1311 	/* this multi-pass logic is simple, but performance may
1312 	 * suffer when the schedule data isn't cached.
1313 	 */
1314 
1315 	/* check bandwidth */
1316 	uframe %= period_uframes;
1317 	do {
1318 		u32		max_used;
1319 
1320 		frame = uframe >> 3;
1321 		uf = uframe & 7;
1322 
1323 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
1324 		/* The tt's fullspeed bus bandwidth must be available.
1325 		 * tt_available scheduling guarantees 10+% for control/bulk.
1326 		 */
1327 		if (!tt_available (ehci, period_uframes << 3,
1328 				stream->udev, frame, uf, stream->tt_usecs))
1329 			return 0;
1330 #else
1331 		/* tt must be idle for start(s), any gap, and csplit.
1332 		 * assume scheduling slop leaves 10+% for control/bulk.
1333 		 */
1334 		if (!tt_no_collision (ehci, period_uframes << 3,
1335 				stream->udev, frame, mask))
1336 			return 0;
1337 #endif
1338 
1339 		/* check starts (OUT uses more than one) */
1340 		max_used = 100 - stream->usecs;
1341 		for (tmp = stream->raw_mask & 0xff; tmp; tmp >>= 1, uf++) {
1342 			if (periodic_usecs (ehci, frame, uf) > max_used)
1343 				return 0;
1344 		}
1345 
1346 		/* for IN, check CSPLIT */
1347 		if (stream->c_usecs) {
1348 			uf = uframe & 7;
1349 			max_used = 100 - stream->c_usecs;
1350 			do {
1351 				tmp = 1 << uf;
1352 				tmp <<= 8;
1353 				if ((stream->raw_mask & tmp) == 0)
1354 					continue;
1355 				if (periodic_usecs (ehci, frame, uf)
1356 						> max_used)
1357 					return 0;
1358 			} while (++uf < 8);
1359 		}
1360 
1361 		/* we know urb->interval is 2^N uframes */
1362 		uframe += period_uframes;
1363 	} while (uframe < mod);
1364 
1365 	stream->splits = cpu_to_hc32(ehci, stream->raw_mask << (uframe & 7));
1366 	return 1;
1367 }
1368 
1369 /*
1370  * This scheduler plans almost as far into the future as it has actual
1371  * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
1372  * "as small as possible" to be cache-friendlier.)  That limits the size
1373  * transfers you can stream reliably; avoid more than 64 msec per urb.
1374  * Also avoid queue depths of less than ehci's worst irq latency (affected
1375  * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
1376  * and other factors); or more than about 230 msec total (for portability,
1377  * given EHCI_TUNE_FLS and the slop).  Or, write a smarter scheduler!
1378  */
1379 
1380 #define SCHEDULE_SLOP	80	/* microframes */
1381 
1382 static int
1383 iso_stream_schedule (
1384 	struct ehci_hcd		*ehci,
1385 	struct urb		*urb,
1386 	struct ehci_iso_stream	*stream
1387 )
1388 {
1389 	u32			now, next, start, period, span;
1390 	int			status;
1391 	unsigned		mod = ehci->periodic_size << 3;
1392 	struct ehci_iso_sched	*sched = urb->hcpriv;
1393 
1394 	period = urb->interval;
1395 	span = sched->span;
1396 	if (!stream->highspeed) {
1397 		period <<= 3;
1398 		span <<= 3;
1399 	}
1400 
1401 	if (span > mod - SCHEDULE_SLOP) {
1402 		ehci_dbg (ehci, "iso request %p too long\n", urb);
1403 		status = -EFBIG;
1404 		goto fail;
1405 	}
1406 
1407 	now = ehci_readl(ehci, &ehci->regs->frame_index) & (mod - 1);
1408 
1409 	/* Typical case: reuse current schedule, stream is still active.
1410 	 * Hopefully there are no gaps from the host falling behind
1411 	 * (irq delays etc), but if there are we'll take the next
1412 	 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
1413 	 */
1414 	if (likely (!list_empty (&stream->td_list))) {
1415 		u32	excess;
1416 
1417 		/* For high speed devices, allow scheduling within the
1418 		 * isochronous scheduling threshold.  For full speed devices
1419 		 * and Intel PCI-based controllers, don't (work around for
1420 		 * Intel ICH9 bug).
1421 		 */
1422 		if (!stream->highspeed && ehci->fs_i_thresh)
1423 			next = now + ehci->i_thresh;
1424 		else
1425 			next = now;
1426 
1427 		/* Fell behind (by up to twice the slop amount)?
1428 		 * We decide based on the time of the last currently-scheduled
1429 		 * slot, not the time of the next available slot.
1430 		 */
1431 		excess = (stream->next_uframe - period - next) & (mod - 1);
1432 		if (excess >= mod - 2 * SCHEDULE_SLOP)
1433 			start = next + excess - mod + period *
1434 					DIV_ROUND_UP(mod - excess, period);
1435 		else
1436 			start = next + excess + period;
1437 		if (start - now >= mod) {
1438 			ehci_dbg(ehci, "request %p would overflow (%d+%d >= %d)\n",
1439 					urb, start - now - period, period,
1440 					mod);
1441 			status = -EFBIG;
1442 			goto fail;
1443 		}
1444 	}
1445 
1446 	/* need to schedule; when's the next (u)frame we could start?
1447 	 * this is bigger than ehci->i_thresh allows; scheduling itself
1448 	 * isn't free, the slop should handle reasonably slow cpus.  it
1449 	 * can also help high bandwidth if the dma and irq loads don't
1450 	 * jump until after the queue is primed.
1451 	 */
1452 	else {
1453 		start = SCHEDULE_SLOP + (now & ~0x07);
1454 
1455 		/* NOTE:  assumes URB_ISO_ASAP, to limit complexity/bugs */
1456 
1457 		/* find a uframe slot with enough bandwidth */
1458 		next = start + period;
1459 		for (; start < next; start++) {
1460 
1461 			/* check schedule: enough space? */
1462 			if (stream->highspeed) {
1463 				if (itd_slot_ok(ehci, mod, start,
1464 						stream->usecs, period))
1465 					break;
1466 			} else {
1467 				if ((start % 8) >= 6)
1468 					continue;
1469 				if (sitd_slot_ok(ehci, mod, stream,
1470 						start, sched, period))
1471 					break;
1472 			}
1473 		}
1474 
1475 		/* no room in the schedule */
1476 		if (start == next) {
1477 			ehci_dbg(ehci, "iso resched full %p (now %d max %d)\n",
1478 				urb, now, now + mod);
1479 			status = -ENOSPC;
1480 			goto fail;
1481 		}
1482 	}
1483 
1484 	/* Tried to schedule too far into the future? */
1485 	if (unlikely(start - now + span - period
1486 				>= mod - 2 * SCHEDULE_SLOP)) {
1487 		ehci_dbg(ehci, "request %p would overflow (%d+%d >= %d)\n",
1488 				urb, start - now, span - period,
1489 				mod - 2 * SCHEDULE_SLOP);
1490 		status = -EFBIG;
1491 		goto fail;
1492 	}
1493 
1494 	stream->next_uframe = start & (mod - 1);
1495 
1496 	/* report high speed start in uframes; full speed, in frames */
1497 	urb->start_frame = stream->next_uframe;
1498 	if (!stream->highspeed)
1499 		urb->start_frame >>= 3;
1500 	return 0;
1501 
1502  fail:
1503 	iso_sched_free(stream, sched);
1504 	urb->hcpriv = NULL;
1505 	return status;
1506 }
1507 
1508 /*-------------------------------------------------------------------------*/
1509 
1510 static inline void
1511 itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream,
1512 		struct ehci_itd *itd)
1513 {
1514 	int i;
1515 
1516 	/* it's been recently zeroed */
1517 	itd->hw_next = EHCI_LIST_END(ehci);
1518 	itd->hw_bufp [0] = stream->buf0;
1519 	itd->hw_bufp [1] = stream->buf1;
1520 	itd->hw_bufp [2] = stream->buf2;
1521 
1522 	for (i = 0; i < 8; i++)
1523 		itd->index[i] = -1;
1524 
1525 	/* All other fields are filled when scheduling */
1526 }
1527 
1528 static inline void
1529 itd_patch(
1530 	struct ehci_hcd		*ehci,
1531 	struct ehci_itd		*itd,
1532 	struct ehci_iso_sched	*iso_sched,
1533 	unsigned		index,
1534 	u16			uframe
1535 )
1536 {
1537 	struct ehci_iso_packet	*uf = &iso_sched->packet [index];
1538 	unsigned		pg = itd->pg;
1539 
1540 	// BUG_ON (pg == 6 && uf->cross);
1541 
1542 	uframe &= 0x07;
1543 	itd->index [uframe] = index;
1544 
1545 	itd->hw_transaction[uframe] = uf->transaction;
1546 	itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12);
1547 	itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0);
1548 	itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32));
1549 
1550 	/* iso_frame_desc[].offset must be strictly increasing */
1551 	if (unlikely (uf->cross)) {
1552 		u64	bufp = uf->bufp + 4096;
1553 
1554 		itd->pg = ++pg;
1555 		itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0);
1556 		itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32));
1557 	}
1558 }
1559 
1560 static inline void
1561 itd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd)
1562 {
1563 	union ehci_shadow	*prev = &ehci->pshadow[frame];
1564 	__hc32			*hw_p = &ehci->periodic[frame];
1565 	union ehci_shadow	here = *prev;
1566 	__hc32			type = 0;
1567 
1568 	/* skip any iso nodes which might belong to previous microframes */
1569 	while (here.ptr) {
1570 		type = Q_NEXT_TYPE(ehci, *hw_p);
1571 		if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
1572 			break;
1573 		prev = periodic_next_shadow(ehci, prev, type);
1574 		hw_p = shadow_next_periodic(ehci, &here, type);
1575 		here = *prev;
1576 	}
1577 
1578 	itd->itd_next = here;
1579 	itd->hw_next = *hw_p;
1580 	prev->itd = itd;
1581 	itd->frame = frame;
1582 	wmb ();
1583 	*hw_p = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD);
1584 }
1585 
1586 /* fit urb's itds into the selected schedule slot; activate as needed */
1587 static int
1588 itd_link_urb (
1589 	struct ehci_hcd		*ehci,
1590 	struct urb		*urb,
1591 	unsigned		mod,
1592 	struct ehci_iso_stream	*stream
1593 )
1594 {
1595 	int			packet;
1596 	unsigned		next_uframe, uframe, frame;
1597 	struct ehci_iso_sched	*iso_sched = urb->hcpriv;
1598 	struct ehci_itd		*itd;
1599 
1600 	next_uframe = stream->next_uframe & (mod - 1);
1601 
1602 	if (unlikely (list_empty(&stream->td_list))) {
1603 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1604 				+= stream->bandwidth;
1605 		ehci_vdbg (ehci,
1606 			"schedule devp %s ep%d%s-iso period %d start %d.%d\n",
1607 			urb->dev->devpath, stream->bEndpointAddress & 0x0f,
1608 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
1609 			urb->interval,
1610 			next_uframe >> 3, next_uframe & 0x7);
1611 	}
1612 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1613 
1614 	/* fill iTDs uframe by uframe */
1615 	for (packet = 0, itd = NULL; packet < urb->number_of_packets; ) {
1616 		if (itd == NULL) {
1617 			/* ASSERT:  we have all necessary itds */
1618 			// BUG_ON (list_empty (&iso_sched->td_list));
1619 
1620 			/* ASSERT:  no itds for this endpoint in this uframe */
1621 
1622 			itd = list_entry (iso_sched->td_list.next,
1623 					struct ehci_itd, itd_list);
1624 			list_move_tail (&itd->itd_list, &stream->td_list);
1625 			itd->stream = iso_stream_get (stream);
1626 			itd->urb = urb;
1627 			itd_init (ehci, stream, itd);
1628 		}
1629 
1630 		uframe = next_uframe & 0x07;
1631 		frame = next_uframe >> 3;
1632 
1633 		itd_patch(ehci, itd, iso_sched, packet, uframe);
1634 
1635 		next_uframe += stream->interval;
1636 		next_uframe &= mod - 1;
1637 		packet++;
1638 
1639 		/* link completed itds into the schedule */
1640 		if (((next_uframe >> 3) != frame)
1641 				|| packet == urb->number_of_packets) {
1642 			itd_link(ehci, frame & (ehci->periodic_size - 1), itd);
1643 			itd = NULL;
1644 		}
1645 	}
1646 	stream->next_uframe = next_uframe;
1647 
1648 	/* don't need that schedule data any more */
1649 	iso_sched_free (stream, iso_sched);
1650 	urb->hcpriv = NULL;
1651 
1652 	timer_action (ehci, TIMER_IO_WATCHDOG);
1653 	return enable_periodic(ehci);
1654 }
1655 
1656 #define	ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR)
1657 
1658 /* Process and recycle a completed ITD.  Return true iff its urb completed,
1659  * and hence its completion callback probably added things to the hardware
1660  * schedule.
1661  *
1662  * Note that we carefully avoid recycling this descriptor until after any
1663  * completion callback runs, so that it won't be reused quickly.  That is,
1664  * assuming (a) no more than two urbs per frame on this endpoint, and also
1665  * (b) only this endpoint's completions submit URBs.  It seems some silicon
1666  * corrupts things if you reuse completed descriptors very quickly...
1667  */
1668 static unsigned
1669 itd_complete (
1670 	struct ehci_hcd	*ehci,
1671 	struct ehci_itd	*itd
1672 ) {
1673 	struct urb				*urb = itd->urb;
1674 	struct usb_iso_packet_descriptor	*desc;
1675 	u32					t;
1676 	unsigned				uframe;
1677 	int					urb_index = -1;
1678 	struct ehci_iso_stream			*stream = itd->stream;
1679 	struct usb_device			*dev;
1680 	unsigned				retval = false;
1681 
1682 	/* for each uframe with a packet */
1683 	for (uframe = 0; uframe < 8; uframe++) {
1684 		if (likely (itd->index[uframe] == -1))
1685 			continue;
1686 		urb_index = itd->index[uframe];
1687 		desc = &urb->iso_frame_desc [urb_index];
1688 
1689 		t = hc32_to_cpup(ehci, &itd->hw_transaction [uframe]);
1690 		itd->hw_transaction [uframe] = 0;
1691 
1692 		/* report transfer status */
1693 		if (unlikely (t & ISO_ERRS)) {
1694 			urb->error_count++;
1695 			if (t & EHCI_ISOC_BUF_ERR)
1696 				desc->status = usb_pipein (urb->pipe)
1697 					? -ENOSR  /* hc couldn't read */
1698 					: -ECOMM; /* hc couldn't write */
1699 			else if (t & EHCI_ISOC_BABBLE)
1700 				desc->status = -EOVERFLOW;
1701 			else /* (t & EHCI_ISOC_XACTERR) */
1702 				desc->status = -EPROTO;
1703 
1704 			/* HC need not update length with this error */
1705 			if (!(t & EHCI_ISOC_BABBLE)) {
1706 				desc->actual_length = EHCI_ITD_LENGTH(t);
1707 				urb->actual_length += desc->actual_length;
1708 			}
1709 		} else if (likely ((t & EHCI_ISOC_ACTIVE) == 0)) {
1710 			desc->status = 0;
1711 			desc->actual_length = EHCI_ITD_LENGTH(t);
1712 			urb->actual_length += desc->actual_length;
1713 		} else {
1714 			/* URB was too late */
1715 			desc->status = -EXDEV;
1716 		}
1717 	}
1718 
1719 	/* handle completion now? */
1720 	if (likely ((urb_index + 1) != urb->number_of_packets))
1721 		goto done;
1722 
1723 	/* ASSERT: it's really the last itd for this urb
1724 	list_for_each_entry (itd, &stream->td_list, itd_list)
1725 		BUG_ON (itd->urb == urb);
1726 	 */
1727 
1728 	/* give urb back to the driver; completion often (re)submits */
1729 	dev = urb->dev;
1730 	ehci_urb_done(ehci, urb, 0);
1731 	retval = true;
1732 	urb = NULL;
1733 	(void) disable_periodic(ehci);
1734 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
1735 
1736 	if (unlikely(list_is_singular(&stream->td_list))) {
1737 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1738 				-= stream->bandwidth;
1739 		ehci_vdbg (ehci,
1740 			"deschedule devp %s ep%d%s-iso\n",
1741 			dev->devpath, stream->bEndpointAddress & 0x0f,
1742 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
1743 	}
1744 	iso_stream_put (ehci, stream);
1745 
1746 done:
1747 	itd->urb = NULL;
1748 	if (ehci->clock_frame != itd->frame || itd->index[7] != -1) {
1749 		/* OK to recycle this ITD now. */
1750 		itd->stream = NULL;
1751 		list_move(&itd->itd_list, &stream->free_list);
1752 		iso_stream_put(ehci, stream);
1753 	} else {
1754 		/* HW might remember this ITD, so we can't recycle it yet.
1755 		 * Move it to a safe place until a new frame starts.
1756 		 */
1757 		list_move(&itd->itd_list, &ehci->cached_itd_list);
1758 		if (stream->refcount == 2) {
1759 			/* If iso_stream_put() were called here, stream
1760 			 * would be freed.  Instead, just prevent reuse.
1761 			 */
1762 			stream->ep->hcpriv = NULL;
1763 			stream->ep = NULL;
1764 		}
1765 	}
1766 	return retval;
1767 }
1768 
1769 /*-------------------------------------------------------------------------*/
1770 
1771 static int itd_submit (struct ehci_hcd *ehci, struct urb *urb,
1772 	gfp_t mem_flags)
1773 {
1774 	int			status = -EINVAL;
1775 	unsigned long		flags;
1776 	struct ehci_iso_stream	*stream;
1777 
1778 	/* Get iso_stream head */
1779 	stream = iso_stream_find (ehci, urb);
1780 	if (unlikely (stream == NULL)) {
1781 		ehci_dbg (ehci, "can't get iso stream\n");
1782 		return -ENOMEM;
1783 	}
1784 	if (unlikely (urb->interval != stream->interval)) {
1785 		ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
1786 			stream->interval, urb->interval);
1787 		goto done;
1788 	}
1789 
1790 #ifdef EHCI_URB_TRACE
1791 	ehci_dbg (ehci,
1792 		"%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n",
1793 		__func__, urb->dev->devpath, urb,
1794 		usb_pipeendpoint (urb->pipe),
1795 		usb_pipein (urb->pipe) ? "in" : "out",
1796 		urb->transfer_buffer_length,
1797 		urb->number_of_packets, urb->interval,
1798 		stream);
1799 #endif
1800 
1801 	/* allocate ITDs w/o locking anything */
1802 	status = itd_urb_transaction (stream, ehci, urb, mem_flags);
1803 	if (unlikely (status < 0)) {
1804 		ehci_dbg (ehci, "can't init itds\n");
1805 		goto done;
1806 	}
1807 
1808 	/* schedule ... need to lock */
1809 	spin_lock_irqsave (&ehci->lock, flags);
1810 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1811 		status = -ESHUTDOWN;
1812 		goto done_not_linked;
1813 	}
1814 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1815 	if (unlikely(status))
1816 		goto done_not_linked;
1817 	status = iso_stream_schedule(ehci, urb, stream);
1818 	if (likely (status == 0))
1819 		itd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
1820 	else
1821 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1822 done_not_linked:
1823 	spin_unlock_irqrestore (&ehci->lock, flags);
1824 
1825 done:
1826 	if (unlikely (status < 0))
1827 		iso_stream_put (ehci, stream);
1828 	return status;
1829 }
1830 
1831 /*-------------------------------------------------------------------------*/
1832 
1833 /*
1834  * "Split ISO TDs" ... used for USB 1.1 devices going through the
1835  * TTs in USB 2.0 hubs.  These need microframe scheduling.
1836  */
1837 
1838 static inline void
1839 sitd_sched_init(
1840 	struct ehci_hcd		*ehci,
1841 	struct ehci_iso_sched	*iso_sched,
1842 	struct ehci_iso_stream	*stream,
1843 	struct urb		*urb
1844 )
1845 {
1846 	unsigned	i;
1847 	dma_addr_t	dma = urb->transfer_dma;
1848 
1849 	/* how many frames are needed for these transfers */
1850 	iso_sched->span = urb->number_of_packets * stream->interval;
1851 
1852 	/* figure out per-frame sitd fields that we'll need later
1853 	 * when we fit new sitds into the schedule.
1854 	 */
1855 	for (i = 0; i < urb->number_of_packets; i++) {
1856 		struct ehci_iso_packet	*packet = &iso_sched->packet [i];
1857 		unsigned		length;
1858 		dma_addr_t		buf;
1859 		u32			trans;
1860 
1861 		length = urb->iso_frame_desc [i].length & 0x03ff;
1862 		buf = dma + urb->iso_frame_desc [i].offset;
1863 
1864 		trans = SITD_STS_ACTIVE;
1865 		if (((i + 1) == urb->number_of_packets)
1866 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
1867 			trans |= SITD_IOC;
1868 		trans |= length << 16;
1869 		packet->transaction = cpu_to_hc32(ehci, trans);
1870 
1871 		/* might need to cross a buffer page within a td */
1872 		packet->bufp = buf;
1873 		packet->buf1 = (buf + length) & ~0x0fff;
1874 		if (packet->buf1 != (buf & ~(u64)0x0fff))
1875 			packet->cross = 1;
1876 
1877 		/* OUT uses multiple start-splits */
1878 		if (stream->bEndpointAddress & USB_DIR_IN)
1879 			continue;
1880 		length = (length + 187) / 188;
1881 		if (length > 1) /* BEGIN vs ALL */
1882 			length |= 1 << 3;
1883 		packet->buf1 |= length;
1884 	}
1885 }
1886 
1887 static int
1888 sitd_urb_transaction (
1889 	struct ehci_iso_stream	*stream,
1890 	struct ehci_hcd		*ehci,
1891 	struct urb		*urb,
1892 	gfp_t			mem_flags
1893 )
1894 {
1895 	struct ehci_sitd	*sitd;
1896 	dma_addr_t		sitd_dma;
1897 	int			i;
1898 	struct ehci_iso_sched	*iso_sched;
1899 	unsigned long		flags;
1900 
1901 	iso_sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1902 	if (iso_sched == NULL)
1903 		return -ENOMEM;
1904 
1905 	sitd_sched_init(ehci, iso_sched, stream, urb);
1906 
1907 	/* allocate/init sITDs */
1908 	spin_lock_irqsave (&ehci->lock, flags);
1909 	for (i = 0; i < urb->number_of_packets; i++) {
1910 
1911 		/* NOTE:  for now, we don't try to handle wraparound cases
1912 		 * for IN (using sitd->hw_backpointer, like a FSTN), which
1913 		 * means we never need two sitds for full speed packets.
1914 		 */
1915 
1916 		/* free_list.next might be cache-hot ... but maybe
1917 		 * the HC caches it too. avoid that issue for now.
1918 		 */
1919 
1920 		/* prefer previously-allocated sitds */
1921 		if (!list_empty(&stream->free_list)) {
1922 			sitd = list_entry (stream->free_list.prev,
1923 					 struct ehci_sitd, sitd_list);
1924 			list_del (&sitd->sitd_list);
1925 			sitd_dma = sitd->sitd_dma;
1926 		} else {
1927 			spin_unlock_irqrestore (&ehci->lock, flags);
1928 			sitd = dma_pool_alloc (ehci->sitd_pool, mem_flags,
1929 					&sitd_dma);
1930 			spin_lock_irqsave (&ehci->lock, flags);
1931 			if (!sitd) {
1932 				iso_sched_free(stream, iso_sched);
1933 				spin_unlock_irqrestore(&ehci->lock, flags);
1934 				return -ENOMEM;
1935 			}
1936 		}
1937 
1938 		memset (sitd, 0, sizeof *sitd);
1939 		sitd->sitd_dma = sitd_dma;
1940 		list_add (&sitd->sitd_list, &iso_sched->td_list);
1941 	}
1942 
1943 	/* temporarily store schedule info in hcpriv */
1944 	urb->hcpriv = iso_sched;
1945 	urb->error_count = 0;
1946 
1947 	spin_unlock_irqrestore (&ehci->lock, flags);
1948 	return 0;
1949 }
1950 
1951 /*-------------------------------------------------------------------------*/
1952 
1953 static inline void
1954 sitd_patch(
1955 	struct ehci_hcd		*ehci,
1956 	struct ehci_iso_stream	*stream,
1957 	struct ehci_sitd	*sitd,
1958 	struct ehci_iso_sched	*iso_sched,
1959 	unsigned		index
1960 )
1961 {
1962 	struct ehci_iso_packet	*uf = &iso_sched->packet [index];
1963 	u64			bufp = uf->bufp;
1964 
1965 	sitd->hw_next = EHCI_LIST_END(ehci);
1966 	sitd->hw_fullspeed_ep = stream->address;
1967 	sitd->hw_uframe = stream->splits;
1968 	sitd->hw_results = uf->transaction;
1969 	sitd->hw_backpointer = EHCI_LIST_END(ehci);
1970 
1971 	bufp = uf->bufp;
1972 	sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp);
1973 	sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32);
1974 
1975 	sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1);
1976 	if (uf->cross)
1977 		bufp += 4096;
1978 	sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32);
1979 	sitd->index = index;
1980 }
1981 
1982 static inline void
1983 sitd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd)
1984 {
1985 	/* note: sitd ordering could matter (CSPLIT then SSPLIT) */
1986 	sitd->sitd_next = ehci->pshadow [frame];
1987 	sitd->hw_next = ehci->periodic [frame];
1988 	ehci->pshadow [frame].sitd = sitd;
1989 	sitd->frame = frame;
1990 	wmb ();
1991 	ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD);
1992 }
1993 
1994 /* fit urb's sitds into the selected schedule slot; activate as needed */
1995 static int
1996 sitd_link_urb (
1997 	struct ehci_hcd		*ehci,
1998 	struct urb		*urb,
1999 	unsigned		mod,
2000 	struct ehci_iso_stream	*stream
2001 )
2002 {
2003 	int			packet;
2004 	unsigned		next_uframe;
2005 	struct ehci_iso_sched	*sched = urb->hcpriv;
2006 	struct ehci_sitd	*sitd;
2007 
2008 	next_uframe = stream->next_uframe;
2009 
2010 	if (list_empty(&stream->td_list)) {
2011 		/* usbfs ignores TT bandwidth */
2012 		ehci_to_hcd(ehci)->self.bandwidth_allocated
2013 				+= stream->bandwidth;
2014 		ehci_vdbg (ehci,
2015 			"sched devp %s ep%d%s-iso [%d] %dms/%04x\n",
2016 			urb->dev->devpath, stream->bEndpointAddress & 0x0f,
2017 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
2018 			(next_uframe >> 3) & (ehci->periodic_size - 1),
2019 			stream->interval, hc32_to_cpu(ehci, stream->splits));
2020 	}
2021 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
2022 
2023 	/* fill sITDs frame by frame */
2024 	for (packet = 0, sitd = NULL;
2025 			packet < urb->number_of_packets;
2026 			packet++) {
2027 
2028 		/* ASSERT:  we have all necessary sitds */
2029 		BUG_ON (list_empty (&sched->td_list));
2030 
2031 		/* ASSERT:  no itds for this endpoint in this frame */
2032 
2033 		sitd = list_entry (sched->td_list.next,
2034 				struct ehci_sitd, sitd_list);
2035 		list_move_tail (&sitd->sitd_list, &stream->td_list);
2036 		sitd->stream = iso_stream_get (stream);
2037 		sitd->urb = urb;
2038 
2039 		sitd_patch(ehci, stream, sitd, sched, packet);
2040 		sitd_link(ehci, (next_uframe >> 3) & (ehci->periodic_size - 1),
2041 				sitd);
2042 
2043 		next_uframe += stream->interval << 3;
2044 	}
2045 	stream->next_uframe = next_uframe & (mod - 1);
2046 
2047 	/* don't need that schedule data any more */
2048 	iso_sched_free (stream, sched);
2049 	urb->hcpriv = NULL;
2050 
2051 	timer_action (ehci, TIMER_IO_WATCHDOG);
2052 	return enable_periodic(ehci);
2053 }
2054 
2055 /*-------------------------------------------------------------------------*/
2056 
2057 #define	SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \
2058 				| SITD_STS_XACT | SITD_STS_MMF)
2059 
2060 /* Process and recycle a completed SITD.  Return true iff its urb completed,
2061  * and hence its completion callback probably added things to the hardware
2062  * schedule.
2063  *
2064  * Note that we carefully avoid recycling this descriptor until after any
2065  * completion callback runs, so that it won't be reused quickly.  That is,
2066  * assuming (a) no more than two urbs per frame on this endpoint, and also
2067  * (b) only this endpoint's completions submit URBs.  It seems some silicon
2068  * corrupts things if you reuse completed descriptors very quickly...
2069  */
2070 static unsigned
2071 sitd_complete (
2072 	struct ehci_hcd		*ehci,
2073 	struct ehci_sitd	*sitd
2074 ) {
2075 	struct urb				*urb = sitd->urb;
2076 	struct usb_iso_packet_descriptor	*desc;
2077 	u32					t;
2078 	int					urb_index = -1;
2079 	struct ehci_iso_stream			*stream = sitd->stream;
2080 	struct usb_device			*dev;
2081 	unsigned				retval = false;
2082 
2083 	urb_index = sitd->index;
2084 	desc = &urb->iso_frame_desc [urb_index];
2085 	t = hc32_to_cpup(ehci, &sitd->hw_results);
2086 
2087 	/* report transfer status */
2088 	if (t & SITD_ERRS) {
2089 		urb->error_count++;
2090 		if (t & SITD_STS_DBE)
2091 			desc->status = usb_pipein (urb->pipe)
2092 				? -ENOSR  /* hc couldn't read */
2093 				: -ECOMM; /* hc couldn't write */
2094 		else if (t & SITD_STS_BABBLE)
2095 			desc->status = -EOVERFLOW;
2096 		else /* XACT, MMF, etc */
2097 			desc->status = -EPROTO;
2098 	} else {
2099 		desc->status = 0;
2100 		desc->actual_length = desc->length - SITD_LENGTH(t);
2101 		urb->actual_length += desc->actual_length;
2102 	}
2103 
2104 	/* handle completion now? */
2105 	if ((urb_index + 1) != urb->number_of_packets)
2106 		goto done;
2107 
2108 	/* ASSERT: it's really the last sitd for this urb
2109 	list_for_each_entry (sitd, &stream->td_list, sitd_list)
2110 		BUG_ON (sitd->urb == urb);
2111 	 */
2112 
2113 	/* give urb back to the driver; completion often (re)submits */
2114 	dev = urb->dev;
2115 	ehci_urb_done(ehci, urb, 0);
2116 	retval = true;
2117 	urb = NULL;
2118 	(void) disable_periodic(ehci);
2119 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
2120 
2121 	if (list_is_singular(&stream->td_list)) {
2122 		ehci_to_hcd(ehci)->self.bandwidth_allocated
2123 				-= stream->bandwidth;
2124 		ehci_vdbg (ehci,
2125 			"deschedule devp %s ep%d%s-iso\n",
2126 			dev->devpath, stream->bEndpointAddress & 0x0f,
2127 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
2128 	}
2129 	iso_stream_put (ehci, stream);
2130 
2131 done:
2132 	sitd->urb = NULL;
2133 	if (ehci->clock_frame != sitd->frame) {
2134 		/* OK to recycle this SITD now. */
2135 		sitd->stream = NULL;
2136 		list_move(&sitd->sitd_list, &stream->free_list);
2137 		iso_stream_put(ehci, stream);
2138 	} else {
2139 		/* HW might remember this SITD, so we can't recycle it yet.
2140 		 * Move it to a safe place until a new frame starts.
2141 		 */
2142 		list_move(&sitd->sitd_list, &ehci->cached_sitd_list);
2143 		if (stream->refcount == 2) {
2144 			/* If iso_stream_put() were called here, stream
2145 			 * would be freed.  Instead, just prevent reuse.
2146 			 */
2147 			stream->ep->hcpriv = NULL;
2148 			stream->ep = NULL;
2149 		}
2150 	}
2151 	return retval;
2152 }
2153 
2154 
2155 static int sitd_submit (struct ehci_hcd *ehci, struct urb *urb,
2156 	gfp_t mem_flags)
2157 {
2158 	int			status = -EINVAL;
2159 	unsigned long		flags;
2160 	struct ehci_iso_stream	*stream;
2161 
2162 	/* Get iso_stream head */
2163 	stream = iso_stream_find (ehci, urb);
2164 	if (stream == NULL) {
2165 		ehci_dbg (ehci, "can't get iso stream\n");
2166 		return -ENOMEM;
2167 	}
2168 	if (urb->interval != stream->interval) {
2169 		ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
2170 			stream->interval, urb->interval);
2171 		goto done;
2172 	}
2173 
2174 #ifdef EHCI_URB_TRACE
2175 	ehci_dbg (ehci,
2176 		"submit %p dev%s ep%d%s-iso len %d\n",
2177 		urb, urb->dev->devpath,
2178 		usb_pipeendpoint (urb->pipe),
2179 		usb_pipein (urb->pipe) ? "in" : "out",
2180 		urb->transfer_buffer_length);
2181 #endif
2182 
2183 	/* allocate SITDs */
2184 	status = sitd_urb_transaction (stream, ehci, urb, mem_flags);
2185 	if (status < 0) {
2186 		ehci_dbg (ehci, "can't init sitds\n");
2187 		goto done;
2188 	}
2189 
2190 	/* schedule ... need to lock */
2191 	spin_lock_irqsave (&ehci->lock, flags);
2192 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
2193 		status = -ESHUTDOWN;
2194 		goto done_not_linked;
2195 	}
2196 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
2197 	if (unlikely(status))
2198 		goto done_not_linked;
2199 	status = iso_stream_schedule(ehci, urb, stream);
2200 	if (status == 0)
2201 		sitd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
2202 	else
2203 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
2204 done_not_linked:
2205 	spin_unlock_irqrestore (&ehci->lock, flags);
2206 
2207 done:
2208 	if (status < 0)
2209 		iso_stream_put (ehci, stream);
2210 	return status;
2211 }
2212 
2213 /*-------------------------------------------------------------------------*/
2214 
2215 static void free_cached_lists(struct ehci_hcd *ehci)
2216 {
2217 	struct ehci_itd *itd, *n;
2218 	struct ehci_sitd *sitd, *sn;
2219 
2220 	list_for_each_entry_safe(itd, n, &ehci->cached_itd_list, itd_list) {
2221 		struct ehci_iso_stream	*stream = itd->stream;
2222 		itd->stream = NULL;
2223 		list_move(&itd->itd_list, &stream->free_list);
2224 		iso_stream_put(ehci, stream);
2225 	}
2226 
2227 	list_for_each_entry_safe(sitd, sn, &ehci->cached_sitd_list, sitd_list) {
2228 		struct ehci_iso_stream	*stream = sitd->stream;
2229 		sitd->stream = NULL;
2230 		list_move(&sitd->sitd_list, &stream->free_list);
2231 		iso_stream_put(ehci, stream);
2232 	}
2233 }
2234 
2235 /*-------------------------------------------------------------------------*/
2236 
2237 static void
2238 scan_periodic (struct ehci_hcd *ehci)
2239 {
2240 	unsigned	now_uframe, frame, clock, clock_frame, mod;
2241 	unsigned	modified;
2242 
2243 	mod = ehci->periodic_size << 3;
2244 
2245 	/*
2246 	 * When running, scan from last scan point up to "now"
2247 	 * else clean up by scanning everything that's left.
2248 	 * Touches as few pages as possible:  cache-friendly.
2249 	 */
2250 	now_uframe = ehci->next_uframe;
2251 	if (HC_IS_RUNNING(ehci_to_hcd(ehci)->state)) {
2252 		clock = ehci_readl(ehci, &ehci->regs->frame_index);
2253 		clock_frame = (clock >> 3) & (ehci->periodic_size - 1);
2254 	} else  {
2255 		clock = now_uframe + mod - 1;
2256 		clock_frame = -1;
2257 	}
2258 	if (ehci->clock_frame != clock_frame) {
2259 		free_cached_lists(ehci);
2260 		ehci->clock_frame = clock_frame;
2261 	}
2262 	clock &= mod - 1;
2263 	clock_frame = clock >> 3;
2264 
2265 	for (;;) {
2266 		union ehci_shadow	q, *q_p;
2267 		__hc32			type, *hw_p;
2268 		unsigned		incomplete = false;
2269 
2270 		frame = now_uframe >> 3;
2271 
2272 restart:
2273 		/* scan each element in frame's queue for completions */
2274 		q_p = &ehci->pshadow [frame];
2275 		hw_p = &ehci->periodic [frame];
2276 		q.ptr = q_p->ptr;
2277 		type = Q_NEXT_TYPE(ehci, *hw_p);
2278 		modified = 0;
2279 
2280 		while (q.ptr != NULL) {
2281 			unsigned		uf;
2282 			union ehci_shadow	temp;
2283 			int			live;
2284 
2285 			live = HC_IS_RUNNING (ehci_to_hcd(ehci)->state);
2286 			switch (hc32_to_cpu(ehci, type)) {
2287 			case Q_TYPE_QH:
2288 				/* handle any completions */
2289 				temp.qh = qh_get (q.qh);
2290 				type = Q_NEXT_TYPE(ehci, q.qh->hw->hw_next);
2291 				q = q.qh->qh_next;
2292 				modified = qh_completions (ehci, temp.qh);
2293 				if (unlikely(list_empty(&temp.qh->qtd_list) ||
2294 						temp.qh->needs_rescan))
2295 					intr_deschedule (ehci, temp.qh);
2296 				qh_put (temp.qh);
2297 				break;
2298 			case Q_TYPE_FSTN:
2299 				/* for "save place" FSTNs, look at QH entries
2300 				 * in the previous frame for completions.
2301 				 */
2302 				if (q.fstn->hw_prev != EHCI_LIST_END(ehci)) {
2303 					dbg ("ignoring completions from FSTNs");
2304 				}
2305 				type = Q_NEXT_TYPE(ehci, q.fstn->hw_next);
2306 				q = q.fstn->fstn_next;
2307 				break;
2308 			case Q_TYPE_ITD:
2309 				/* If this ITD is still active, leave it for
2310 				 * later processing ... check the next entry.
2311 				 * No need to check for activity unless the
2312 				 * frame is current.
2313 				 */
2314 				if (frame == clock_frame && live) {
2315 					rmb();
2316 					for (uf = 0; uf < 8; uf++) {
2317 						if (q.itd->hw_transaction[uf] &
2318 							    ITD_ACTIVE(ehci))
2319 							break;
2320 					}
2321 					if (uf < 8) {
2322 						incomplete = true;
2323 						q_p = &q.itd->itd_next;
2324 						hw_p = &q.itd->hw_next;
2325 						type = Q_NEXT_TYPE(ehci,
2326 							q.itd->hw_next);
2327 						q = *q_p;
2328 						break;
2329 					}
2330 				}
2331 
2332 				/* Take finished ITDs out of the schedule
2333 				 * and process them:  recycle, maybe report
2334 				 * URB completion.  HC won't cache the
2335 				 * pointer for much longer, if at all.
2336 				 */
2337 				*q_p = q.itd->itd_next;
2338 				*hw_p = q.itd->hw_next;
2339 				type = Q_NEXT_TYPE(ehci, q.itd->hw_next);
2340 				wmb();
2341 				modified = itd_complete (ehci, q.itd);
2342 				q = *q_p;
2343 				break;
2344 			case Q_TYPE_SITD:
2345 				/* If this SITD is still active, leave it for
2346 				 * later processing ... check the next entry.
2347 				 * No need to check for activity unless the
2348 				 * frame is current.
2349 				 */
2350 				if (((frame == clock_frame) ||
2351 				     (((frame + 1) & (ehci->periodic_size - 1))
2352 				      == clock_frame))
2353 				    && live
2354 				    && (q.sitd->hw_results &
2355 					SITD_ACTIVE(ehci))) {
2356 
2357 					incomplete = true;
2358 					q_p = &q.sitd->sitd_next;
2359 					hw_p = &q.sitd->hw_next;
2360 					type = Q_NEXT_TYPE(ehci,
2361 							q.sitd->hw_next);
2362 					q = *q_p;
2363 					break;
2364 				}
2365 
2366 				/* Take finished SITDs out of the schedule
2367 				 * and process them:  recycle, maybe report
2368 				 * URB completion.
2369 				 */
2370 				*q_p = q.sitd->sitd_next;
2371 				*hw_p = q.sitd->hw_next;
2372 				type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2373 				wmb();
2374 				modified = sitd_complete (ehci, q.sitd);
2375 				q = *q_p;
2376 				break;
2377 			default:
2378 				dbg ("corrupt type %d frame %d shadow %p",
2379 					type, frame, q.ptr);
2380 				// BUG ();
2381 				q.ptr = NULL;
2382 			}
2383 
2384 			/* assume completion callbacks modify the queue */
2385 			if (unlikely (modified)) {
2386 				if (likely(ehci->periodic_sched > 0))
2387 					goto restart;
2388 				/* short-circuit this scan */
2389 				now_uframe = clock;
2390 				break;
2391 			}
2392 		}
2393 
2394 		/* If we can tell we caught up to the hardware, stop now.
2395 		 * We can't advance our scan without collecting the ISO
2396 		 * transfers that are still pending in this frame.
2397 		 */
2398 		if (incomplete && HC_IS_RUNNING(ehci_to_hcd(ehci)->state)) {
2399 			ehci->next_uframe = now_uframe;
2400 			break;
2401 		}
2402 
2403 		// FIXME:  this assumes we won't get lapped when
2404 		// latencies climb; that should be rare, but...
2405 		// detect it, and just go all the way around.
2406 		// FLR might help detect this case, so long as latencies
2407 		// don't exceed periodic_size msec (default 1.024 sec).
2408 
2409 		// FIXME:  likewise assumes HC doesn't halt mid-scan
2410 
2411 		if (now_uframe == clock) {
2412 			unsigned	now;
2413 
2414 			if (!HC_IS_RUNNING (ehci_to_hcd(ehci)->state)
2415 					|| ehci->periodic_sched == 0)
2416 				break;
2417 			ehci->next_uframe = now_uframe;
2418 			now = ehci_readl(ehci, &ehci->regs->frame_index) &
2419 					(mod - 1);
2420 			if (now_uframe == now)
2421 				break;
2422 
2423 			/* rescan the rest of this frame, then ... */
2424 			clock = now;
2425 			clock_frame = clock >> 3;
2426 			if (ehci->clock_frame != clock_frame) {
2427 				free_cached_lists(ehci);
2428 				ehci->clock_frame = clock_frame;
2429 			}
2430 		} else {
2431 			now_uframe++;
2432 			now_uframe &= mod - 1;
2433 		}
2434 	}
2435 }
2436