1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (c) 2001-2004 by David Brownell 4 * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers 5 */ 6 7 /* this file is part of ehci-hcd.c */ 8 9 /*-------------------------------------------------------------------------*/ 10 11 /* 12 * EHCI scheduled transaction support: interrupt, iso, split iso 13 * These are called "periodic" transactions in the EHCI spec. 14 * 15 * Note that for interrupt transfers, the QH/QTD manipulation is shared 16 * with the "asynchronous" transaction support (control/bulk transfers). 17 * The only real difference is in how interrupt transfers are scheduled. 18 * 19 * For ISO, we make an "iso_stream" head to serve the same role as a QH. 20 * It keeps track of every ITD (or SITD) that's linked, and holds enough 21 * pre-calculated schedule data to make appending to the queue be quick. 22 */ 23 24 static int ehci_get_frame(struct usb_hcd *hcd); 25 26 /* 27 * periodic_next_shadow - return "next" pointer on shadow list 28 * @periodic: host pointer to qh/itd/sitd 29 * @tag: hardware tag for type of this record 30 */ 31 static union ehci_shadow * 32 periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic, 33 __hc32 tag) 34 { 35 switch (hc32_to_cpu(ehci, tag)) { 36 case Q_TYPE_QH: 37 return &periodic->qh->qh_next; 38 case Q_TYPE_FSTN: 39 return &periodic->fstn->fstn_next; 40 case Q_TYPE_ITD: 41 return &periodic->itd->itd_next; 42 /* case Q_TYPE_SITD: */ 43 default: 44 return &periodic->sitd->sitd_next; 45 } 46 } 47 48 static __hc32 * 49 shadow_next_periodic(struct ehci_hcd *ehci, union ehci_shadow *periodic, 50 __hc32 tag) 51 { 52 switch (hc32_to_cpu(ehci, tag)) { 53 /* our ehci_shadow.qh is actually software part */ 54 case Q_TYPE_QH: 55 return &periodic->qh->hw->hw_next; 56 /* others are hw parts */ 57 default: 58 return periodic->hw_next; 59 } 60 } 61 62 /* caller must hold ehci->lock */ 63 static void periodic_unlink(struct ehci_hcd *ehci, unsigned frame, void *ptr) 64 { 65 union ehci_shadow *prev_p = &ehci->pshadow[frame]; 66 __hc32 *hw_p = &ehci->periodic[frame]; 67 union ehci_shadow here = *prev_p; 68 69 /* find predecessor of "ptr"; hw and shadow lists are in sync */ 70 while (here.ptr && here.ptr != ptr) { 71 prev_p = periodic_next_shadow(ehci, prev_p, 72 Q_NEXT_TYPE(ehci, *hw_p)); 73 hw_p = shadow_next_periodic(ehci, &here, 74 Q_NEXT_TYPE(ehci, *hw_p)); 75 here = *prev_p; 76 } 77 /* an interrupt entry (at list end) could have been shared */ 78 if (!here.ptr) 79 return; 80 81 /* update shadow and hardware lists ... the old "next" pointers 82 * from ptr may still be in use, the caller updates them. 83 */ 84 *prev_p = *periodic_next_shadow(ehci, &here, 85 Q_NEXT_TYPE(ehci, *hw_p)); 86 87 if (!ehci->use_dummy_qh || 88 *shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p)) 89 != EHCI_LIST_END(ehci)) 90 *hw_p = *shadow_next_periodic(ehci, &here, 91 Q_NEXT_TYPE(ehci, *hw_p)); 92 else 93 *hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma); 94 } 95 96 /*-------------------------------------------------------------------------*/ 97 98 /* Bandwidth and TT management */ 99 100 /* Find the TT data structure for this device; create it if necessary */ 101 static struct ehci_tt *find_tt(struct usb_device *udev) 102 { 103 struct usb_tt *utt = udev->tt; 104 struct ehci_tt *tt, **tt_index, **ptt; 105 unsigned port; 106 bool allocated_index = false; 107 108 if (!utt) 109 return NULL; /* Not below a TT */ 110 111 /* 112 * Find/create our data structure. 113 * For hubs with a single TT, we get it directly. 114 * For hubs with multiple TTs, there's an extra level of pointers. 115 */ 116 tt_index = NULL; 117 if (utt->multi) { 118 tt_index = utt->hcpriv; 119 if (!tt_index) { /* Create the index array */ 120 tt_index = kcalloc(utt->hub->maxchild, 121 sizeof(*tt_index), 122 GFP_ATOMIC); 123 if (!tt_index) 124 return ERR_PTR(-ENOMEM); 125 utt->hcpriv = tt_index; 126 allocated_index = true; 127 } 128 port = udev->ttport - 1; 129 ptt = &tt_index[port]; 130 } else { 131 port = 0; 132 ptt = (struct ehci_tt **) &utt->hcpriv; 133 } 134 135 tt = *ptt; 136 if (!tt) { /* Create the ehci_tt */ 137 struct ehci_hcd *ehci = 138 hcd_to_ehci(bus_to_hcd(udev->bus)); 139 140 tt = kzalloc(sizeof(*tt), GFP_ATOMIC); 141 if (!tt) { 142 if (allocated_index) { 143 utt->hcpriv = NULL; 144 kfree(tt_index); 145 } 146 return ERR_PTR(-ENOMEM); 147 } 148 list_add_tail(&tt->tt_list, &ehci->tt_list); 149 INIT_LIST_HEAD(&tt->ps_list); 150 tt->usb_tt = utt; 151 tt->tt_port = port; 152 *ptt = tt; 153 } 154 155 return tt; 156 } 157 158 /* Release the TT above udev, if it's not in use */ 159 static void drop_tt(struct usb_device *udev) 160 { 161 struct usb_tt *utt = udev->tt; 162 struct ehci_tt *tt, **tt_index, **ptt; 163 int cnt, i; 164 165 if (!utt || !utt->hcpriv) 166 return; /* Not below a TT, or never allocated */ 167 168 cnt = 0; 169 if (utt->multi) { 170 tt_index = utt->hcpriv; 171 ptt = &tt_index[udev->ttport - 1]; 172 173 /* How many entries are left in tt_index? */ 174 for (i = 0; i < utt->hub->maxchild; ++i) 175 cnt += !!tt_index[i]; 176 } else { 177 tt_index = NULL; 178 ptt = (struct ehci_tt **) &utt->hcpriv; 179 } 180 181 tt = *ptt; 182 if (!tt || !list_empty(&tt->ps_list)) 183 return; /* never allocated, or still in use */ 184 185 list_del(&tt->tt_list); 186 *ptt = NULL; 187 kfree(tt); 188 if (cnt == 1) { 189 utt->hcpriv = NULL; 190 kfree(tt_index); 191 } 192 } 193 194 static void bandwidth_dbg(struct ehci_hcd *ehci, int sign, char *type, 195 struct ehci_per_sched *ps) 196 { 197 dev_dbg(&ps->udev->dev, 198 "ep %02x: %s %s @ %u+%u (%u.%u+%u) [%u/%u us] mask %04x\n", 199 ps->ep->desc.bEndpointAddress, 200 (sign >= 0 ? "reserve" : "release"), type, 201 (ps->bw_phase << 3) + ps->phase_uf, ps->bw_uperiod, 202 ps->phase, ps->phase_uf, ps->period, 203 ps->usecs, ps->c_usecs, ps->cs_mask); 204 } 205 206 static void reserve_release_intr_bandwidth(struct ehci_hcd *ehci, 207 struct ehci_qh *qh, int sign) 208 { 209 unsigned start_uf; 210 unsigned i, j, m; 211 int usecs = qh->ps.usecs; 212 int c_usecs = qh->ps.c_usecs; 213 int tt_usecs = qh->ps.tt_usecs; 214 struct ehci_tt *tt; 215 216 if (qh->ps.phase == NO_FRAME) /* Bandwidth wasn't reserved */ 217 return; 218 start_uf = qh->ps.bw_phase << 3; 219 220 bandwidth_dbg(ehci, sign, "intr", &qh->ps); 221 222 if (sign < 0) { /* Release bandwidth */ 223 usecs = -usecs; 224 c_usecs = -c_usecs; 225 tt_usecs = -tt_usecs; 226 } 227 228 /* Entire transaction (high speed) or start-split (full/low speed) */ 229 for (i = start_uf + qh->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE; 230 i += qh->ps.bw_uperiod) 231 ehci->bandwidth[i] += usecs; 232 233 /* Complete-split (full/low speed) */ 234 if (qh->ps.c_usecs) { 235 /* NOTE: adjustments needed for FSTN */ 236 for (i = start_uf; i < EHCI_BANDWIDTH_SIZE; 237 i += qh->ps.bw_uperiod) { 238 for ((j = 2, m = 1 << (j+8)); j < 8; (++j, m <<= 1)) { 239 if (qh->ps.cs_mask & m) 240 ehci->bandwidth[i+j] += c_usecs; 241 } 242 } 243 } 244 245 /* FS/LS bus bandwidth */ 246 if (tt_usecs) { 247 /* 248 * find_tt() will not return any error here as we have 249 * already called find_tt() before calling this function 250 * and checked for any error return. The previous call 251 * would have created the data structure. 252 */ 253 tt = find_tt(qh->ps.udev); 254 if (sign > 0) 255 list_add_tail(&qh->ps.ps_list, &tt->ps_list); 256 else 257 list_del(&qh->ps.ps_list); 258 259 for (i = start_uf >> 3; i < EHCI_BANDWIDTH_FRAMES; 260 i += qh->ps.bw_period) 261 tt->bandwidth[i] += tt_usecs; 262 } 263 } 264 265 /*-------------------------------------------------------------------------*/ 266 267 static void compute_tt_budget(u8 budget_table[EHCI_BANDWIDTH_SIZE], 268 struct ehci_tt *tt) 269 { 270 struct ehci_per_sched *ps; 271 unsigned uframe, uf, x; 272 u8 *budget_line; 273 274 if (!tt) 275 return; 276 memset(budget_table, 0, EHCI_BANDWIDTH_SIZE); 277 278 /* Add up the contributions from all the endpoints using this TT */ 279 list_for_each_entry(ps, &tt->ps_list, ps_list) { 280 for (uframe = ps->bw_phase << 3; uframe < EHCI_BANDWIDTH_SIZE; 281 uframe += ps->bw_uperiod) { 282 budget_line = &budget_table[uframe]; 283 x = ps->tt_usecs; 284 285 /* propagate the time forward */ 286 for (uf = ps->phase_uf; uf < 8; ++uf) { 287 x += budget_line[uf]; 288 289 /* Each microframe lasts 125 us */ 290 if (x <= 125) { 291 budget_line[uf] = x; 292 break; 293 } 294 budget_line[uf] = 125; 295 x -= 125; 296 } 297 } 298 } 299 } 300 301 static int __maybe_unused same_tt(struct usb_device *dev1, 302 struct usb_device *dev2) 303 { 304 if (!dev1->tt || !dev2->tt) 305 return 0; 306 if (dev1->tt != dev2->tt) 307 return 0; 308 if (dev1->tt->multi) 309 return dev1->ttport == dev2->ttport; 310 else 311 return 1; 312 } 313 314 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED 315 316 static const unsigned char 317 max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 }; 318 319 /* carryover low/fullspeed bandwidth that crosses uframe boundries */ 320 static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8]) 321 { 322 int i; 323 324 for (i = 0; i < 7; i++) { 325 if (max_tt_usecs[i] < tt_usecs[i]) { 326 tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i]; 327 tt_usecs[i] = max_tt_usecs[i]; 328 } 329 } 330 } 331 332 /* 333 * Return true if the device's tt's downstream bus is available for a 334 * periodic transfer of the specified length (usecs), starting at the 335 * specified frame/uframe. Note that (as summarized in section 11.19 336 * of the usb 2.0 spec) TTs can buffer multiple transactions for each 337 * uframe. 338 * 339 * The uframe parameter is when the fullspeed/lowspeed transfer 340 * should be executed in "B-frame" terms, which is the same as the 341 * highspeed ssplit's uframe (which is in "H-frame" terms). For example 342 * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0. 343 * See the EHCI spec sec 4.5 and fig 4.7. 344 * 345 * This checks if the full/lowspeed bus, at the specified starting uframe, 346 * has the specified bandwidth available, according to rules listed 347 * in USB 2.0 spec section 11.18.1 fig 11-60. 348 * 349 * This does not check if the transfer would exceed the max ssplit 350 * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4, 351 * since proper scheduling limits ssplits to less than 16 per uframe. 352 */ 353 static int tt_available( 354 struct ehci_hcd *ehci, 355 struct ehci_per_sched *ps, 356 struct ehci_tt *tt, 357 unsigned frame, 358 unsigned uframe 359 ) 360 { 361 unsigned period = ps->bw_period; 362 unsigned usecs = ps->tt_usecs; 363 364 if ((period == 0) || (uframe >= 7)) /* error */ 365 return 0; 366 367 for (frame &= period - 1; frame < EHCI_BANDWIDTH_FRAMES; 368 frame += period) { 369 unsigned i, uf; 370 unsigned short tt_usecs[8]; 371 372 if (tt->bandwidth[frame] + usecs > 900) 373 return 0; 374 375 uf = frame << 3; 376 for (i = 0; i < 8; (++i, ++uf)) 377 tt_usecs[i] = ehci->tt_budget[uf]; 378 379 if (max_tt_usecs[uframe] <= tt_usecs[uframe]) 380 return 0; 381 382 /* special case for isoc transfers larger than 125us: 383 * the first and each subsequent fully used uframe 384 * must be empty, so as to not illegally delay 385 * already scheduled transactions 386 */ 387 if (usecs > 125) { 388 int ufs = (usecs / 125); 389 390 for (i = uframe; i < (uframe + ufs) && i < 8; i++) 391 if (tt_usecs[i] > 0) 392 return 0; 393 } 394 395 tt_usecs[uframe] += usecs; 396 397 carryover_tt_bandwidth(tt_usecs); 398 399 /* fail if the carryover pushed bw past the last uframe's limit */ 400 if (max_tt_usecs[7] < tt_usecs[7]) 401 return 0; 402 } 403 404 return 1; 405 } 406 407 #else 408 409 /* return true iff the device's transaction translator is available 410 * for a periodic transfer starting at the specified frame, using 411 * all the uframes in the mask. 412 */ 413 static int tt_no_collision( 414 struct ehci_hcd *ehci, 415 unsigned period, 416 struct usb_device *dev, 417 unsigned frame, 418 u32 uf_mask 419 ) 420 { 421 if (period == 0) /* error */ 422 return 0; 423 424 /* note bandwidth wastage: split never follows csplit 425 * (different dev or endpoint) until the next uframe. 426 * calling convention doesn't make that distinction. 427 */ 428 for (; frame < ehci->periodic_size; frame += period) { 429 union ehci_shadow here; 430 __hc32 type; 431 struct ehci_qh_hw *hw; 432 433 here = ehci->pshadow[frame]; 434 type = Q_NEXT_TYPE(ehci, ehci->periodic[frame]); 435 while (here.ptr) { 436 switch (hc32_to_cpu(ehci, type)) { 437 case Q_TYPE_ITD: 438 type = Q_NEXT_TYPE(ehci, here.itd->hw_next); 439 here = here.itd->itd_next; 440 continue; 441 case Q_TYPE_QH: 442 hw = here.qh->hw; 443 if (same_tt(dev, here.qh->ps.udev)) { 444 u32 mask; 445 446 mask = hc32_to_cpu(ehci, 447 hw->hw_info2); 448 /* "knows" no gap is needed */ 449 mask |= mask >> 8; 450 if (mask & uf_mask) 451 break; 452 } 453 type = Q_NEXT_TYPE(ehci, hw->hw_next); 454 here = here.qh->qh_next; 455 continue; 456 case Q_TYPE_SITD: 457 if (same_tt(dev, here.sitd->urb->dev)) { 458 u16 mask; 459 460 mask = hc32_to_cpu(ehci, here.sitd 461 ->hw_uframe); 462 /* FIXME assumes no gap for IN! */ 463 mask |= mask >> 8; 464 if (mask & uf_mask) 465 break; 466 } 467 type = Q_NEXT_TYPE(ehci, here.sitd->hw_next); 468 here = here.sitd->sitd_next; 469 continue; 470 /* case Q_TYPE_FSTN: */ 471 default: 472 ehci_dbg(ehci, 473 "periodic frame %d bogus type %d\n", 474 frame, type); 475 } 476 477 /* collision or error */ 478 return 0; 479 } 480 } 481 482 /* no collision */ 483 return 1; 484 } 485 486 #endif /* CONFIG_USB_EHCI_TT_NEWSCHED */ 487 488 /*-------------------------------------------------------------------------*/ 489 490 static void enable_periodic(struct ehci_hcd *ehci) 491 { 492 if (ehci->periodic_count++) 493 goto out; 494 495 /* Stop waiting to turn off the periodic schedule */ 496 ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_PERIODIC); 497 498 /* Don't start the schedule until PSS is 0 */ 499 ehci_poll_PSS(ehci); 500 out: 501 turn_on_io_watchdog(ehci); 502 } 503 504 static void disable_periodic(struct ehci_hcd *ehci) 505 { 506 if (--ehci->periodic_count) 507 return; 508 509 /* Don't turn off the schedule until PSS is 1 */ 510 ehci_poll_PSS(ehci); 511 } 512 513 /*-------------------------------------------------------------------------*/ 514 515 /* periodic schedule slots have iso tds (normal or split) first, then a 516 * sparse tree for active interrupt transfers. 517 * 518 * this just links in a qh; caller guarantees uframe masks are set right. 519 * no FSTN support (yet; ehci 0.96+) 520 */ 521 static void qh_link_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh) 522 { 523 unsigned i; 524 unsigned period = qh->ps.period; 525 526 dev_dbg(&qh->ps.udev->dev, 527 "link qh%d-%04x/%p start %d [%d/%d us]\n", 528 period, hc32_to_cpup(ehci, &qh->hw->hw_info2) 529 & (QH_CMASK | QH_SMASK), 530 qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs); 531 532 /* high bandwidth, or otherwise every microframe */ 533 if (period == 0) 534 period = 1; 535 536 for (i = qh->ps.phase; i < ehci->periodic_size; i += period) { 537 union ehci_shadow *prev = &ehci->pshadow[i]; 538 __hc32 *hw_p = &ehci->periodic[i]; 539 union ehci_shadow here = *prev; 540 __hc32 type = 0; 541 542 /* skip the iso nodes at list head */ 543 while (here.ptr) { 544 type = Q_NEXT_TYPE(ehci, *hw_p); 545 if (type == cpu_to_hc32(ehci, Q_TYPE_QH)) 546 break; 547 prev = periodic_next_shadow(ehci, prev, type); 548 hw_p = shadow_next_periodic(ehci, &here, type); 549 here = *prev; 550 } 551 552 /* sorting each branch by period (slow-->fast) 553 * enables sharing interior tree nodes 554 */ 555 while (here.ptr && qh != here.qh) { 556 if (qh->ps.period > here.qh->ps.period) 557 break; 558 prev = &here.qh->qh_next; 559 hw_p = &here.qh->hw->hw_next; 560 here = *prev; 561 } 562 /* link in this qh, unless some earlier pass did that */ 563 if (qh != here.qh) { 564 qh->qh_next = here; 565 if (here.qh) 566 qh->hw->hw_next = *hw_p; 567 wmb(); 568 prev->qh = qh; 569 *hw_p = QH_NEXT(ehci, qh->qh_dma); 570 } 571 } 572 qh->qh_state = QH_STATE_LINKED; 573 qh->xacterrs = 0; 574 qh->unlink_reason = 0; 575 576 /* update per-qh bandwidth for debugfs */ 577 ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->ps.bw_period 578 ? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period) 579 : (qh->ps.usecs * 8); 580 581 list_add(&qh->intr_node, &ehci->intr_qh_list); 582 583 /* maybe enable periodic schedule processing */ 584 ++ehci->intr_count; 585 enable_periodic(ehci); 586 } 587 588 static void qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh) 589 { 590 unsigned i; 591 unsigned period; 592 593 /* 594 * If qh is for a low/full-speed device, simply unlinking it 595 * could interfere with an ongoing split transaction. To unlink 596 * it safely would require setting the QH_INACTIVATE bit and 597 * waiting at least one frame, as described in EHCI 4.12.2.5. 598 * 599 * We won't bother with any of this. Instead, we assume that the 600 * only reason for unlinking an interrupt QH while the current URB 601 * is still active is to dequeue all the URBs (flush the whole 602 * endpoint queue). 603 * 604 * If rebalancing the periodic schedule is ever implemented, this 605 * approach will no longer be valid. 606 */ 607 608 /* high bandwidth, or otherwise part of every microframe */ 609 period = qh->ps.period ? : 1; 610 611 for (i = qh->ps.phase; i < ehci->periodic_size; i += period) 612 periodic_unlink(ehci, i, qh); 613 614 /* update per-qh bandwidth for debugfs */ 615 ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->ps.bw_period 616 ? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period) 617 : (qh->ps.usecs * 8); 618 619 dev_dbg(&qh->ps.udev->dev, 620 "unlink qh%d-%04x/%p start %d [%d/%d us]\n", 621 qh->ps.period, 622 hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK), 623 qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs); 624 625 /* qh->qh_next still "live" to HC */ 626 qh->qh_state = QH_STATE_UNLINK; 627 qh->qh_next.ptr = NULL; 628 629 if (ehci->qh_scan_next == qh) 630 ehci->qh_scan_next = list_entry(qh->intr_node.next, 631 struct ehci_qh, intr_node); 632 list_del(&qh->intr_node); 633 } 634 635 static void cancel_unlink_wait_intr(struct ehci_hcd *ehci, struct ehci_qh *qh) 636 { 637 if (qh->qh_state != QH_STATE_LINKED || 638 list_empty(&qh->unlink_node)) 639 return; 640 641 list_del_init(&qh->unlink_node); 642 643 /* 644 * TODO: disable the event of EHCI_HRTIMER_START_UNLINK_INTR for 645 * avoiding unnecessary CPU wakeup 646 */ 647 } 648 649 static void start_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh) 650 { 651 /* If the QH isn't linked then there's nothing we can do. */ 652 if (qh->qh_state != QH_STATE_LINKED) 653 return; 654 655 /* if the qh is waiting for unlink, cancel it now */ 656 cancel_unlink_wait_intr(ehci, qh); 657 658 qh_unlink_periodic(ehci, qh); 659 660 /* Make sure the unlinks are visible before starting the timer */ 661 wmb(); 662 663 /* 664 * The EHCI spec doesn't say how long it takes the controller to 665 * stop accessing an unlinked interrupt QH. The timer delay is 666 * 9 uframes; presumably that will be long enough. 667 */ 668 qh->unlink_cycle = ehci->intr_unlink_cycle; 669 670 /* New entries go at the end of the intr_unlink list */ 671 list_add_tail(&qh->unlink_node, &ehci->intr_unlink); 672 673 if (ehci->intr_unlinking) 674 ; /* Avoid recursive calls */ 675 else if (ehci->rh_state < EHCI_RH_RUNNING) 676 ehci_handle_intr_unlinks(ehci); 677 else if (ehci->intr_unlink.next == &qh->unlink_node) { 678 ehci_enable_event(ehci, EHCI_HRTIMER_UNLINK_INTR, true); 679 ++ehci->intr_unlink_cycle; 680 } 681 } 682 683 /* 684 * It is common only one intr URB is scheduled on one qh, and 685 * given complete() is run in tasklet context, introduce a bit 686 * delay to avoid unlink qh too early. 687 */ 688 static void start_unlink_intr_wait(struct ehci_hcd *ehci, 689 struct ehci_qh *qh) 690 { 691 qh->unlink_cycle = ehci->intr_unlink_wait_cycle; 692 693 /* New entries go at the end of the intr_unlink_wait list */ 694 list_add_tail(&qh->unlink_node, &ehci->intr_unlink_wait); 695 696 if (ehci->rh_state < EHCI_RH_RUNNING) 697 ehci_handle_start_intr_unlinks(ehci); 698 else if (ehci->intr_unlink_wait.next == &qh->unlink_node) { 699 ehci_enable_event(ehci, EHCI_HRTIMER_START_UNLINK_INTR, true); 700 ++ehci->intr_unlink_wait_cycle; 701 } 702 } 703 704 static void end_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh) 705 { 706 struct ehci_qh_hw *hw = qh->hw; 707 int rc; 708 709 qh->qh_state = QH_STATE_IDLE; 710 hw->hw_next = EHCI_LIST_END(ehci); 711 712 if (!list_empty(&qh->qtd_list)) 713 qh_completions(ehci, qh); 714 715 /* reschedule QH iff another request is queued */ 716 if (!list_empty(&qh->qtd_list) && ehci->rh_state == EHCI_RH_RUNNING) { 717 rc = qh_schedule(ehci, qh); 718 if (rc == 0) { 719 qh_refresh(ehci, qh); 720 qh_link_periodic(ehci, qh); 721 } 722 723 /* An error here likely indicates handshake failure 724 * or no space left in the schedule. Neither fault 725 * should happen often ... 726 * 727 * FIXME kill the now-dysfunctional queued urbs 728 */ 729 else { 730 ehci_err(ehci, "can't reschedule qh %p, err %d\n", 731 qh, rc); 732 } 733 } 734 735 /* maybe turn off periodic schedule */ 736 --ehci->intr_count; 737 disable_periodic(ehci); 738 } 739 740 /*-------------------------------------------------------------------------*/ 741 742 static int check_period( 743 struct ehci_hcd *ehci, 744 unsigned frame, 745 unsigned uframe, 746 unsigned uperiod, 747 unsigned usecs 748 ) { 749 /* complete split running into next frame? 750 * given FSTN support, we could sometimes check... 751 */ 752 if (uframe >= 8) 753 return 0; 754 755 /* convert "usecs we need" to "max already claimed" */ 756 usecs = ehci->uframe_periodic_max - usecs; 757 758 for (uframe += frame << 3; uframe < EHCI_BANDWIDTH_SIZE; 759 uframe += uperiod) { 760 if (ehci->bandwidth[uframe] > usecs) 761 return 0; 762 } 763 764 /* success! */ 765 return 1; 766 } 767 768 static int check_intr_schedule( 769 struct ehci_hcd *ehci, 770 unsigned frame, 771 unsigned uframe, 772 struct ehci_qh *qh, 773 unsigned *c_maskp, 774 struct ehci_tt *tt 775 ) 776 { 777 int retval = -ENOSPC; 778 u8 mask = 0; 779 780 if (qh->ps.c_usecs && uframe >= 6) /* FSTN territory? */ 781 goto done; 782 783 if (!check_period(ehci, frame, uframe, qh->ps.bw_uperiod, qh->ps.usecs)) 784 goto done; 785 if (!qh->ps.c_usecs) { 786 retval = 0; 787 *c_maskp = 0; 788 goto done; 789 } 790 791 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED 792 if (tt_available(ehci, &qh->ps, tt, frame, uframe)) { 793 unsigned i; 794 795 /* TODO : this may need FSTN for SSPLIT in uframe 5. */ 796 for (i = uframe+2; i < 8 && i <= uframe+4; i++) 797 if (!check_period(ehci, frame, i, 798 qh->ps.bw_uperiod, qh->ps.c_usecs)) 799 goto done; 800 else 801 mask |= 1 << i; 802 803 retval = 0; 804 805 *c_maskp = mask; 806 } 807 #else 808 /* Make sure this tt's buffer is also available for CSPLITs. 809 * We pessimize a bit; probably the typical full speed case 810 * doesn't need the second CSPLIT. 811 * 812 * NOTE: both SPLIT and CSPLIT could be checked in just 813 * one smart pass... 814 */ 815 mask = 0x03 << (uframe + qh->gap_uf); 816 *c_maskp = mask; 817 818 mask |= 1 << uframe; 819 if (tt_no_collision(ehci, qh->ps.bw_period, qh->ps.udev, frame, mask)) { 820 if (!check_period(ehci, frame, uframe + qh->gap_uf + 1, 821 qh->ps.bw_uperiod, qh->ps.c_usecs)) 822 goto done; 823 if (!check_period(ehci, frame, uframe + qh->gap_uf, 824 qh->ps.bw_uperiod, qh->ps.c_usecs)) 825 goto done; 826 retval = 0; 827 } 828 #endif 829 done: 830 return retval; 831 } 832 833 /* "first fit" scheduling policy used the first time through, 834 * or when the previous schedule slot can't be re-used. 835 */ 836 static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh) 837 { 838 int status = 0; 839 unsigned uframe; 840 unsigned c_mask; 841 struct ehci_qh_hw *hw = qh->hw; 842 struct ehci_tt *tt; 843 844 hw->hw_next = EHCI_LIST_END(ehci); 845 846 /* reuse the previous schedule slots, if we can */ 847 if (qh->ps.phase != NO_FRAME) { 848 ehci_dbg(ehci, "reused qh %p schedule\n", qh); 849 return 0; 850 } 851 852 uframe = 0; 853 c_mask = 0; 854 tt = find_tt(qh->ps.udev); 855 if (IS_ERR(tt)) { 856 status = PTR_ERR(tt); 857 goto done; 858 } 859 compute_tt_budget(ehci->tt_budget, tt); 860 861 /* else scan the schedule to find a group of slots such that all 862 * uframes have enough periodic bandwidth available. 863 */ 864 /* "normal" case, uframing flexible except with splits */ 865 if (qh->ps.bw_period) { 866 int i; 867 unsigned frame; 868 869 for (i = qh->ps.bw_period; i > 0; --i) { 870 frame = ++ehci->random_frame & (qh->ps.bw_period - 1); 871 for (uframe = 0; uframe < 8; uframe++) { 872 status = check_intr_schedule(ehci, 873 frame, uframe, qh, &c_mask, tt); 874 if (status == 0) 875 goto got_it; 876 } 877 } 878 879 /* qh->ps.bw_period == 0 means every uframe */ 880 } else { 881 status = check_intr_schedule(ehci, 0, 0, qh, &c_mask, tt); 882 } 883 if (status) 884 goto done; 885 886 got_it: 887 qh->ps.phase = (qh->ps.period ? ehci->random_frame & 888 (qh->ps.period - 1) : 0); 889 qh->ps.bw_phase = qh->ps.phase & (qh->ps.bw_period - 1); 890 qh->ps.phase_uf = uframe; 891 qh->ps.cs_mask = qh->ps.period ? 892 (c_mask << 8) | (1 << uframe) : 893 QH_SMASK; 894 895 /* reset S-frame and (maybe) C-frame masks */ 896 hw->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK)); 897 hw->hw_info2 |= cpu_to_hc32(ehci, qh->ps.cs_mask); 898 reserve_release_intr_bandwidth(ehci, qh, 1); 899 900 done: 901 return status; 902 } 903 904 static int intr_submit( 905 struct ehci_hcd *ehci, 906 struct urb *urb, 907 struct list_head *qtd_list, 908 gfp_t mem_flags 909 ) { 910 unsigned epnum; 911 unsigned long flags; 912 struct ehci_qh *qh; 913 int status; 914 struct list_head empty; 915 916 /* get endpoint and transfer/schedule data */ 917 epnum = urb->ep->desc.bEndpointAddress; 918 919 spin_lock_irqsave(&ehci->lock, flags); 920 921 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) { 922 status = -ESHUTDOWN; 923 goto done_not_linked; 924 } 925 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb); 926 if (unlikely(status)) 927 goto done_not_linked; 928 929 /* get qh and force any scheduling errors */ 930 INIT_LIST_HEAD(&empty); 931 qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv); 932 if (qh == NULL) { 933 status = -ENOMEM; 934 goto done; 935 } 936 if (qh->qh_state == QH_STATE_IDLE) { 937 status = qh_schedule(ehci, qh); 938 if (status) 939 goto done; 940 } 941 942 /* then queue the urb's tds to the qh */ 943 qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv); 944 BUG_ON(qh == NULL); 945 946 /* stuff into the periodic schedule */ 947 if (qh->qh_state == QH_STATE_IDLE) { 948 qh_refresh(ehci, qh); 949 qh_link_periodic(ehci, qh); 950 } else { 951 /* cancel unlink wait for the qh */ 952 cancel_unlink_wait_intr(ehci, qh); 953 } 954 955 /* ... update usbfs periodic stats */ 956 ehci_to_hcd(ehci)->self.bandwidth_int_reqs++; 957 958 done: 959 if (unlikely(status)) 960 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); 961 done_not_linked: 962 spin_unlock_irqrestore(&ehci->lock, flags); 963 if (status) 964 qtd_list_free(ehci, urb, qtd_list); 965 966 return status; 967 } 968 969 static void scan_intr(struct ehci_hcd *ehci) 970 { 971 struct ehci_qh *qh; 972 973 list_for_each_entry_safe(qh, ehci->qh_scan_next, &ehci->intr_qh_list, 974 intr_node) { 975 976 /* clean any finished work for this qh */ 977 if (!list_empty(&qh->qtd_list)) { 978 int temp; 979 980 /* 981 * Unlinks could happen here; completion reporting 982 * drops the lock. That's why ehci->qh_scan_next 983 * always holds the next qh to scan; if the next qh 984 * gets unlinked then ehci->qh_scan_next is adjusted 985 * in qh_unlink_periodic(). 986 */ 987 temp = qh_completions(ehci, qh); 988 if (unlikely(temp)) 989 start_unlink_intr(ehci, qh); 990 else if (unlikely(list_empty(&qh->qtd_list) && 991 qh->qh_state == QH_STATE_LINKED)) 992 start_unlink_intr_wait(ehci, qh); 993 } 994 } 995 } 996 997 /*-------------------------------------------------------------------------*/ 998 999 /* ehci_iso_stream ops work with both ITD and SITD */ 1000 1001 static struct ehci_iso_stream * 1002 iso_stream_alloc(gfp_t mem_flags) 1003 { 1004 struct ehci_iso_stream *stream; 1005 1006 stream = kzalloc(sizeof(*stream), mem_flags); 1007 if (likely(stream != NULL)) { 1008 INIT_LIST_HEAD(&stream->td_list); 1009 INIT_LIST_HEAD(&stream->free_list); 1010 stream->next_uframe = NO_FRAME; 1011 stream->ps.phase = NO_FRAME; 1012 } 1013 return stream; 1014 } 1015 1016 static void 1017 iso_stream_init( 1018 struct ehci_hcd *ehci, 1019 struct ehci_iso_stream *stream, 1020 struct urb *urb 1021 ) 1022 { 1023 static const u8 smask_out[] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f }; 1024 1025 struct usb_device *dev = urb->dev; 1026 u32 buf1; 1027 unsigned epnum, maxp; 1028 int is_input; 1029 unsigned tmp; 1030 1031 /* 1032 * this might be a "high bandwidth" highspeed endpoint, 1033 * as encoded in the ep descriptor's wMaxPacket field 1034 */ 1035 epnum = usb_pipeendpoint(urb->pipe); 1036 is_input = usb_pipein(urb->pipe) ? USB_DIR_IN : 0; 1037 maxp = usb_endpoint_maxp(&urb->ep->desc); 1038 buf1 = is_input ? 1 << 11 : 0; 1039 1040 /* knows about ITD vs SITD */ 1041 if (dev->speed == USB_SPEED_HIGH) { 1042 unsigned multi = usb_endpoint_maxp_mult(&urb->ep->desc); 1043 1044 stream->highspeed = 1; 1045 1046 buf1 |= maxp; 1047 maxp *= multi; 1048 1049 stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum); 1050 stream->buf1 = cpu_to_hc32(ehci, buf1); 1051 stream->buf2 = cpu_to_hc32(ehci, multi); 1052 1053 /* usbfs wants to report the average usecs per frame tied up 1054 * when transfers on this endpoint are scheduled ... 1055 */ 1056 stream->ps.usecs = HS_USECS_ISO(maxp); 1057 1058 /* period for bandwidth allocation */ 1059 tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE, 1060 1 << (urb->ep->desc.bInterval - 1)); 1061 1062 /* Allow urb->interval to override */ 1063 stream->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval); 1064 1065 stream->uperiod = urb->interval; 1066 stream->ps.period = urb->interval >> 3; 1067 stream->bandwidth = stream->ps.usecs * 8 / 1068 stream->ps.bw_uperiod; 1069 1070 } else { 1071 u32 addr; 1072 int think_time; 1073 int hs_transfers; 1074 1075 addr = dev->ttport << 24; 1076 if (!ehci_is_TDI(ehci) 1077 || (dev->tt->hub != 1078 ehci_to_hcd(ehci)->self.root_hub)) 1079 addr |= dev->tt->hub->devnum << 16; 1080 addr |= epnum << 8; 1081 addr |= dev->devnum; 1082 stream->ps.usecs = HS_USECS_ISO(maxp); 1083 think_time = dev->tt->think_time; 1084 stream->ps.tt_usecs = NS_TO_US(think_time + usb_calc_bus_time( 1085 dev->speed, is_input, 1, maxp)); 1086 hs_transfers = max(1u, (maxp + 187) / 188); 1087 if (is_input) { 1088 u32 tmp; 1089 1090 addr |= 1 << 31; 1091 stream->ps.c_usecs = stream->ps.usecs; 1092 stream->ps.usecs = HS_USECS_ISO(1); 1093 stream->ps.cs_mask = 1; 1094 1095 /* c-mask as specified in USB 2.0 11.18.4 3.c */ 1096 tmp = (1 << (hs_transfers + 2)) - 1; 1097 stream->ps.cs_mask |= tmp << (8 + 2); 1098 } else 1099 stream->ps.cs_mask = smask_out[hs_transfers - 1]; 1100 1101 /* period for bandwidth allocation */ 1102 tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES, 1103 1 << (urb->ep->desc.bInterval - 1)); 1104 1105 /* Allow urb->interval to override */ 1106 stream->ps.bw_period = min_t(unsigned, tmp, urb->interval); 1107 stream->ps.bw_uperiod = stream->ps.bw_period << 3; 1108 1109 stream->ps.period = urb->interval; 1110 stream->uperiod = urb->interval << 3; 1111 stream->bandwidth = (stream->ps.usecs + stream->ps.c_usecs) / 1112 stream->ps.bw_period; 1113 1114 /* stream->splits gets created from cs_mask later */ 1115 stream->address = cpu_to_hc32(ehci, addr); 1116 } 1117 1118 stream->ps.udev = dev; 1119 stream->ps.ep = urb->ep; 1120 1121 stream->bEndpointAddress = is_input | epnum; 1122 stream->maxp = maxp; 1123 } 1124 1125 static struct ehci_iso_stream * 1126 iso_stream_find(struct ehci_hcd *ehci, struct urb *urb) 1127 { 1128 unsigned epnum; 1129 struct ehci_iso_stream *stream; 1130 struct usb_host_endpoint *ep; 1131 unsigned long flags; 1132 1133 epnum = usb_pipeendpoint (urb->pipe); 1134 if (usb_pipein(urb->pipe)) 1135 ep = urb->dev->ep_in[epnum]; 1136 else 1137 ep = urb->dev->ep_out[epnum]; 1138 1139 spin_lock_irqsave(&ehci->lock, flags); 1140 stream = ep->hcpriv; 1141 1142 if (unlikely(stream == NULL)) { 1143 stream = iso_stream_alloc(GFP_ATOMIC); 1144 if (likely(stream != NULL)) { 1145 ep->hcpriv = stream; 1146 iso_stream_init(ehci, stream, urb); 1147 } 1148 1149 /* if dev->ep [epnum] is a QH, hw is set */ 1150 } else if (unlikely(stream->hw != NULL)) { 1151 ehci_dbg(ehci, "dev %s ep%d%s, not iso??\n", 1152 urb->dev->devpath, epnum, 1153 usb_pipein(urb->pipe) ? "in" : "out"); 1154 stream = NULL; 1155 } 1156 1157 spin_unlock_irqrestore(&ehci->lock, flags); 1158 return stream; 1159 } 1160 1161 /*-------------------------------------------------------------------------*/ 1162 1163 /* ehci_iso_sched ops can be ITD-only or SITD-only */ 1164 1165 static struct ehci_iso_sched * 1166 iso_sched_alloc(unsigned packets, gfp_t mem_flags) 1167 { 1168 struct ehci_iso_sched *iso_sched; 1169 1170 iso_sched = kzalloc(struct_size(iso_sched, packet, packets), mem_flags); 1171 if (likely(iso_sched != NULL)) 1172 INIT_LIST_HEAD(&iso_sched->td_list); 1173 1174 return iso_sched; 1175 } 1176 1177 static inline void 1178 itd_sched_init( 1179 struct ehci_hcd *ehci, 1180 struct ehci_iso_sched *iso_sched, 1181 struct ehci_iso_stream *stream, 1182 struct urb *urb 1183 ) 1184 { 1185 unsigned i; 1186 dma_addr_t dma = urb->transfer_dma; 1187 1188 /* how many uframes are needed for these transfers */ 1189 iso_sched->span = urb->number_of_packets * stream->uperiod; 1190 1191 /* figure out per-uframe itd fields that we'll need later 1192 * when we fit new itds into the schedule. 1193 */ 1194 for (i = 0; i < urb->number_of_packets; i++) { 1195 struct ehci_iso_packet *uframe = &iso_sched->packet[i]; 1196 unsigned length; 1197 dma_addr_t buf; 1198 u32 trans; 1199 1200 length = urb->iso_frame_desc[i].length; 1201 buf = dma + urb->iso_frame_desc[i].offset; 1202 1203 trans = EHCI_ISOC_ACTIVE; 1204 trans |= buf & 0x0fff; 1205 if (unlikely(((i + 1) == urb->number_of_packets)) 1206 && !(urb->transfer_flags & URB_NO_INTERRUPT)) 1207 trans |= EHCI_ITD_IOC; 1208 trans |= length << 16; 1209 uframe->transaction = cpu_to_hc32(ehci, trans); 1210 1211 /* might need to cross a buffer page within a uframe */ 1212 uframe->bufp = (buf & ~(u64)0x0fff); 1213 buf += length; 1214 if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff)))) 1215 uframe->cross = 1; 1216 } 1217 } 1218 1219 static void 1220 iso_sched_free( 1221 struct ehci_iso_stream *stream, 1222 struct ehci_iso_sched *iso_sched 1223 ) 1224 { 1225 if (!iso_sched) 1226 return; 1227 /* caller must hold ehci->lock! */ 1228 list_splice(&iso_sched->td_list, &stream->free_list); 1229 kfree(iso_sched); 1230 } 1231 1232 static int 1233 itd_urb_transaction( 1234 struct ehci_iso_stream *stream, 1235 struct ehci_hcd *ehci, 1236 struct urb *urb, 1237 gfp_t mem_flags 1238 ) 1239 { 1240 struct ehci_itd *itd; 1241 dma_addr_t itd_dma; 1242 int i; 1243 unsigned num_itds; 1244 struct ehci_iso_sched *sched; 1245 unsigned long flags; 1246 1247 sched = iso_sched_alloc(urb->number_of_packets, mem_flags); 1248 if (unlikely(sched == NULL)) 1249 return -ENOMEM; 1250 1251 itd_sched_init(ehci, sched, stream, urb); 1252 1253 if (urb->interval < 8) 1254 num_itds = 1 + (sched->span + 7) / 8; 1255 else 1256 num_itds = urb->number_of_packets; 1257 1258 /* allocate/init ITDs */ 1259 spin_lock_irqsave(&ehci->lock, flags); 1260 for (i = 0; i < num_itds; i++) { 1261 1262 /* 1263 * Use iTDs from the free list, but not iTDs that may 1264 * still be in use by the hardware. 1265 */ 1266 if (likely(!list_empty(&stream->free_list))) { 1267 itd = list_first_entry(&stream->free_list, 1268 struct ehci_itd, itd_list); 1269 if (itd->frame == ehci->now_frame) 1270 goto alloc_itd; 1271 list_del(&itd->itd_list); 1272 itd_dma = itd->itd_dma; 1273 } else { 1274 alloc_itd: 1275 spin_unlock_irqrestore(&ehci->lock, flags); 1276 itd = dma_pool_alloc(ehci->itd_pool, mem_flags, 1277 &itd_dma); 1278 spin_lock_irqsave(&ehci->lock, flags); 1279 if (!itd) { 1280 iso_sched_free(stream, sched); 1281 spin_unlock_irqrestore(&ehci->lock, flags); 1282 return -ENOMEM; 1283 } 1284 } 1285 1286 memset(itd, 0, sizeof(*itd)); 1287 itd->itd_dma = itd_dma; 1288 itd->frame = NO_FRAME; 1289 list_add(&itd->itd_list, &sched->td_list); 1290 } 1291 spin_unlock_irqrestore(&ehci->lock, flags); 1292 1293 /* temporarily store schedule info in hcpriv */ 1294 urb->hcpriv = sched; 1295 urb->error_count = 0; 1296 return 0; 1297 } 1298 1299 /*-------------------------------------------------------------------------*/ 1300 1301 static void reserve_release_iso_bandwidth(struct ehci_hcd *ehci, 1302 struct ehci_iso_stream *stream, int sign) 1303 { 1304 unsigned uframe; 1305 unsigned i, j; 1306 unsigned s_mask, c_mask, m; 1307 int usecs = stream->ps.usecs; 1308 int c_usecs = stream->ps.c_usecs; 1309 int tt_usecs = stream->ps.tt_usecs; 1310 struct ehci_tt *tt; 1311 1312 if (stream->ps.phase == NO_FRAME) /* Bandwidth wasn't reserved */ 1313 return; 1314 uframe = stream->ps.bw_phase << 3; 1315 1316 bandwidth_dbg(ehci, sign, "iso", &stream->ps); 1317 1318 if (sign < 0) { /* Release bandwidth */ 1319 usecs = -usecs; 1320 c_usecs = -c_usecs; 1321 tt_usecs = -tt_usecs; 1322 } 1323 1324 if (!stream->splits) { /* High speed */ 1325 for (i = uframe + stream->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE; 1326 i += stream->ps.bw_uperiod) 1327 ehci->bandwidth[i] += usecs; 1328 1329 } else { /* Full speed */ 1330 s_mask = stream->ps.cs_mask; 1331 c_mask = s_mask >> 8; 1332 1333 /* NOTE: adjustment needed for frame overflow */ 1334 for (i = uframe; i < EHCI_BANDWIDTH_SIZE; 1335 i += stream->ps.bw_uperiod) { 1336 for ((j = stream->ps.phase_uf, m = 1 << j); j < 8; 1337 (++j, m <<= 1)) { 1338 if (s_mask & m) 1339 ehci->bandwidth[i+j] += usecs; 1340 else if (c_mask & m) 1341 ehci->bandwidth[i+j] += c_usecs; 1342 } 1343 } 1344 1345 /* 1346 * find_tt() will not return any error here as we have 1347 * already called find_tt() before calling this function 1348 * and checked for any error return. The previous call 1349 * would have created the data structure. 1350 */ 1351 tt = find_tt(stream->ps.udev); 1352 if (sign > 0) 1353 list_add_tail(&stream->ps.ps_list, &tt->ps_list); 1354 else 1355 list_del(&stream->ps.ps_list); 1356 1357 for (i = uframe >> 3; i < EHCI_BANDWIDTH_FRAMES; 1358 i += stream->ps.bw_period) 1359 tt->bandwidth[i] += tt_usecs; 1360 } 1361 } 1362 1363 static inline int 1364 itd_slot_ok( 1365 struct ehci_hcd *ehci, 1366 struct ehci_iso_stream *stream, 1367 unsigned uframe 1368 ) 1369 { 1370 unsigned usecs; 1371 1372 /* convert "usecs we need" to "max already claimed" */ 1373 usecs = ehci->uframe_periodic_max - stream->ps.usecs; 1374 1375 for (uframe &= stream->ps.bw_uperiod - 1; uframe < EHCI_BANDWIDTH_SIZE; 1376 uframe += stream->ps.bw_uperiod) { 1377 if (ehci->bandwidth[uframe] > usecs) 1378 return 0; 1379 } 1380 return 1; 1381 } 1382 1383 static inline int 1384 sitd_slot_ok( 1385 struct ehci_hcd *ehci, 1386 struct ehci_iso_stream *stream, 1387 unsigned uframe, 1388 struct ehci_iso_sched *sched, 1389 struct ehci_tt *tt 1390 ) 1391 { 1392 unsigned mask, tmp; 1393 unsigned frame, uf; 1394 1395 mask = stream->ps.cs_mask << (uframe & 7); 1396 1397 /* for OUT, don't wrap SSPLIT into H-microframe 7 */ 1398 if (((stream->ps.cs_mask & 0xff) << (uframe & 7)) >= (1 << 7)) 1399 return 0; 1400 1401 /* for IN, don't wrap CSPLIT into the next frame */ 1402 if (mask & ~0xffff) 1403 return 0; 1404 1405 /* check bandwidth */ 1406 uframe &= stream->ps.bw_uperiod - 1; 1407 frame = uframe >> 3; 1408 1409 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED 1410 /* The tt's fullspeed bus bandwidth must be available. 1411 * tt_available scheduling guarantees 10+% for control/bulk. 1412 */ 1413 uf = uframe & 7; 1414 if (!tt_available(ehci, &stream->ps, tt, frame, uf)) 1415 return 0; 1416 #else 1417 /* tt must be idle for start(s), any gap, and csplit. 1418 * assume scheduling slop leaves 10+% for control/bulk. 1419 */ 1420 if (!tt_no_collision(ehci, stream->ps.bw_period, 1421 stream->ps.udev, frame, mask)) 1422 return 0; 1423 #endif 1424 1425 do { 1426 unsigned max_used; 1427 unsigned i; 1428 1429 /* check starts (OUT uses more than one) */ 1430 uf = uframe; 1431 max_used = ehci->uframe_periodic_max - stream->ps.usecs; 1432 for (tmp = stream->ps.cs_mask & 0xff; tmp; tmp >>= 1, uf++) { 1433 if (ehci->bandwidth[uf] > max_used) 1434 return 0; 1435 } 1436 1437 /* for IN, check CSPLIT */ 1438 if (stream->ps.c_usecs) { 1439 max_used = ehci->uframe_periodic_max - 1440 stream->ps.c_usecs; 1441 uf = uframe & ~7; 1442 tmp = 1 << (2+8); 1443 for (i = (uframe & 7) + 2; i < 8; (++i, tmp <<= 1)) { 1444 if ((stream->ps.cs_mask & tmp) == 0) 1445 continue; 1446 if (ehci->bandwidth[uf+i] > max_used) 1447 return 0; 1448 } 1449 } 1450 1451 uframe += stream->ps.bw_uperiod; 1452 } while (uframe < EHCI_BANDWIDTH_SIZE); 1453 1454 stream->ps.cs_mask <<= uframe & 7; 1455 stream->splits = cpu_to_hc32(ehci, stream->ps.cs_mask); 1456 return 1; 1457 } 1458 1459 /* 1460 * This scheduler plans almost as far into the future as it has actual 1461 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to 1462 * "as small as possible" to be cache-friendlier.) That limits the size 1463 * transfers you can stream reliably; avoid more than 64 msec per urb. 1464 * Also avoid queue depths of less than ehci's worst irq latency (affected 1465 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter, 1466 * and other factors); or more than about 230 msec total (for portability, 1467 * given EHCI_TUNE_FLS and the slop). Or, write a smarter scheduler! 1468 */ 1469 1470 static int 1471 iso_stream_schedule( 1472 struct ehci_hcd *ehci, 1473 struct urb *urb, 1474 struct ehci_iso_stream *stream 1475 ) 1476 { 1477 u32 now, base, next, start, period, span, now2; 1478 u32 wrap = 0, skip = 0; 1479 int status = 0; 1480 unsigned mod = ehci->periodic_size << 3; 1481 struct ehci_iso_sched *sched = urb->hcpriv; 1482 bool empty = list_empty(&stream->td_list); 1483 bool new_stream = false; 1484 1485 period = stream->uperiod; 1486 span = sched->span; 1487 if (!stream->highspeed) 1488 span <<= 3; 1489 1490 /* Start a new isochronous stream? */ 1491 if (unlikely(empty && !hcd_periodic_completion_in_progress( 1492 ehci_to_hcd(ehci), urb->ep))) { 1493 1494 /* Schedule the endpoint */ 1495 if (stream->ps.phase == NO_FRAME) { 1496 int done = 0; 1497 struct ehci_tt *tt = find_tt(stream->ps.udev); 1498 1499 if (IS_ERR(tt)) { 1500 status = PTR_ERR(tt); 1501 goto fail; 1502 } 1503 compute_tt_budget(ehci->tt_budget, tt); 1504 1505 start = ((-(++ehci->random_frame)) << 3) & (period - 1); 1506 1507 /* find a uframe slot with enough bandwidth. 1508 * Early uframes are more precious because full-speed 1509 * iso IN transfers can't use late uframes, 1510 * and therefore they should be allocated last. 1511 */ 1512 next = start; 1513 start += period; 1514 do { 1515 start--; 1516 /* check schedule: enough space? */ 1517 if (stream->highspeed) { 1518 if (itd_slot_ok(ehci, stream, start)) 1519 done = 1; 1520 } else { 1521 if ((start % 8) >= 6) 1522 continue; 1523 if (sitd_slot_ok(ehci, stream, start, 1524 sched, tt)) 1525 done = 1; 1526 } 1527 } while (start > next && !done); 1528 1529 /* no room in the schedule */ 1530 if (!done) { 1531 ehci_dbg(ehci, "iso sched full %p", urb); 1532 status = -ENOSPC; 1533 goto fail; 1534 } 1535 stream->ps.phase = (start >> 3) & 1536 (stream->ps.period - 1); 1537 stream->ps.bw_phase = stream->ps.phase & 1538 (stream->ps.bw_period - 1); 1539 stream->ps.phase_uf = start & 7; 1540 reserve_release_iso_bandwidth(ehci, stream, 1); 1541 } 1542 1543 /* New stream is already scheduled; use the upcoming slot */ 1544 else { 1545 start = (stream->ps.phase << 3) + stream->ps.phase_uf; 1546 } 1547 1548 stream->next_uframe = start; 1549 new_stream = true; 1550 } 1551 1552 now = ehci_read_frame_index(ehci) & (mod - 1); 1553 1554 /* Take the isochronous scheduling threshold into account */ 1555 if (ehci->i_thresh) 1556 next = now + ehci->i_thresh; /* uframe cache */ 1557 else 1558 next = (now + 2 + 7) & ~0x07; /* full frame cache */ 1559 1560 /* If needed, initialize last_iso_frame so that this URB will be seen */ 1561 if (ehci->isoc_count == 0) 1562 ehci->last_iso_frame = now >> 3; 1563 1564 /* 1565 * Use ehci->last_iso_frame as the base. There can't be any 1566 * TDs scheduled for earlier than that. 1567 */ 1568 base = ehci->last_iso_frame << 3; 1569 next = (next - base) & (mod - 1); 1570 start = (stream->next_uframe - base) & (mod - 1); 1571 1572 if (unlikely(new_stream)) 1573 goto do_ASAP; 1574 1575 /* 1576 * Typical case: reuse current schedule, stream may still be active. 1577 * Hopefully there are no gaps from the host falling behind 1578 * (irq delays etc). If there are, the behavior depends on 1579 * whether URB_ISO_ASAP is set. 1580 */ 1581 now2 = (now - base) & (mod - 1); 1582 1583 /* Is the schedule about to wrap around? */ 1584 if (unlikely(!empty && start < period)) { 1585 ehci_dbg(ehci, "request %p would overflow (%u-%u < %u mod %u)\n", 1586 urb, stream->next_uframe, base, period, mod); 1587 status = -EFBIG; 1588 goto fail; 1589 } 1590 1591 /* Is the next packet scheduled after the base time? */ 1592 if (likely(!empty || start <= now2 + period)) { 1593 1594 /* URB_ISO_ASAP: make sure that start >= next */ 1595 if (unlikely(start < next && 1596 (urb->transfer_flags & URB_ISO_ASAP))) 1597 goto do_ASAP; 1598 1599 /* Otherwise use start, if it's not in the past */ 1600 if (likely(start >= now2)) 1601 goto use_start; 1602 1603 /* Otherwise we got an underrun while the queue was empty */ 1604 } else { 1605 if (urb->transfer_flags & URB_ISO_ASAP) 1606 goto do_ASAP; 1607 wrap = mod; 1608 now2 += mod; 1609 } 1610 1611 /* How many uframes and packets do we need to skip? */ 1612 skip = (now2 - start + period - 1) & -period; 1613 if (skip >= span) { /* Entirely in the past? */ 1614 ehci_dbg(ehci, "iso underrun %p (%u+%u < %u) [%u]\n", 1615 urb, start + base, span - period, now2 + base, 1616 base); 1617 1618 /* Try to keep the last TD intact for scanning later */ 1619 skip = span - period; 1620 1621 /* Will it come before the current scan position? */ 1622 if (empty) { 1623 skip = span; /* Skip the entire URB */ 1624 status = 1; /* and give it back immediately */ 1625 iso_sched_free(stream, sched); 1626 sched = NULL; 1627 } 1628 } 1629 urb->error_count = skip / period; 1630 if (sched) 1631 sched->first_packet = urb->error_count; 1632 goto use_start; 1633 1634 do_ASAP: 1635 /* Use the first slot after "next" */ 1636 start = next + ((start - next) & (period - 1)); 1637 1638 use_start: 1639 /* Tried to schedule too far into the future? */ 1640 if (unlikely(start + span - period >= mod + wrap)) { 1641 ehci_dbg(ehci, "request %p would overflow (%u+%u >= %u)\n", 1642 urb, start, span - period, mod + wrap); 1643 status = -EFBIG; 1644 goto fail; 1645 } 1646 1647 start += base; 1648 stream->next_uframe = (start + skip) & (mod - 1); 1649 1650 /* report high speed start in uframes; full speed, in frames */ 1651 urb->start_frame = start & (mod - 1); 1652 if (!stream->highspeed) 1653 urb->start_frame >>= 3; 1654 return status; 1655 1656 fail: 1657 iso_sched_free(stream, sched); 1658 urb->hcpriv = NULL; 1659 return status; 1660 } 1661 1662 /*-------------------------------------------------------------------------*/ 1663 1664 static inline void 1665 itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream, 1666 struct ehci_itd *itd) 1667 { 1668 int i; 1669 1670 /* it's been recently zeroed */ 1671 itd->hw_next = EHCI_LIST_END(ehci); 1672 itd->hw_bufp[0] = stream->buf0; 1673 itd->hw_bufp[1] = stream->buf1; 1674 itd->hw_bufp[2] = stream->buf2; 1675 1676 for (i = 0; i < 8; i++) 1677 itd->index[i] = -1; 1678 1679 /* All other fields are filled when scheduling */ 1680 } 1681 1682 static inline void 1683 itd_patch( 1684 struct ehci_hcd *ehci, 1685 struct ehci_itd *itd, 1686 struct ehci_iso_sched *iso_sched, 1687 unsigned index, 1688 u16 uframe 1689 ) 1690 { 1691 struct ehci_iso_packet *uf = &iso_sched->packet[index]; 1692 unsigned pg = itd->pg; 1693 1694 /* BUG_ON(pg == 6 && uf->cross); */ 1695 1696 uframe &= 0x07; 1697 itd->index[uframe] = index; 1698 1699 itd->hw_transaction[uframe] = uf->transaction; 1700 itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12); 1701 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0); 1702 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32)); 1703 1704 /* iso_frame_desc[].offset must be strictly increasing */ 1705 if (unlikely(uf->cross)) { 1706 u64 bufp = uf->bufp + 4096; 1707 1708 itd->pg = ++pg; 1709 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0); 1710 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32)); 1711 } 1712 } 1713 1714 static inline void 1715 itd_link(struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd) 1716 { 1717 union ehci_shadow *prev = &ehci->pshadow[frame]; 1718 __hc32 *hw_p = &ehci->periodic[frame]; 1719 union ehci_shadow here = *prev; 1720 __hc32 type = 0; 1721 1722 /* skip any iso nodes which might belong to previous microframes */ 1723 while (here.ptr) { 1724 type = Q_NEXT_TYPE(ehci, *hw_p); 1725 if (type == cpu_to_hc32(ehci, Q_TYPE_QH)) 1726 break; 1727 prev = periodic_next_shadow(ehci, prev, type); 1728 hw_p = shadow_next_periodic(ehci, &here, type); 1729 here = *prev; 1730 } 1731 1732 itd->itd_next = here; 1733 itd->hw_next = *hw_p; 1734 prev->itd = itd; 1735 itd->frame = frame; 1736 wmb(); 1737 *hw_p = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD); 1738 } 1739 1740 /* fit urb's itds into the selected schedule slot; activate as needed */ 1741 static void itd_link_urb( 1742 struct ehci_hcd *ehci, 1743 struct urb *urb, 1744 unsigned mod, 1745 struct ehci_iso_stream *stream 1746 ) 1747 { 1748 int packet; 1749 unsigned next_uframe, uframe, frame; 1750 struct ehci_iso_sched *iso_sched = urb->hcpriv; 1751 struct ehci_itd *itd; 1752 1753 next_uframe = stream->next_uframe & (mod - 1); 1754 1755 if (unlikely(list_empty(&stream->td_list))) 1756 ehci_to_hcd(ehci)->self.bandwidth_allocated 1757 += stream->bandwidth; 1758 1759 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) { 1760 if (ehci->amd_pll_fix == 1) 1761 usb_amd_quirk_pll_disable(); 1762 } 1763 1764 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++; 1765 1766 /* fill iTDs uframe by uframe */ 1767 for (packet = iso_sched->first_packet, itd = NULL; 1768 packet < urb->number_of_packets;) { 1769 if (itd == NULL) { 1770 /* ASSERT: we have all necessary itds */ 1771 /* BUG_ON(list_empty(&iso_sched->td_list)); */ 1772 1773 /* ASSERT: no itds for this endpoint in this uframe */ 1774 1775 itd = list_entry(iso_sched->td_list.next, 1776 struct ehci_itd, itd_list); 1777 list_move_tail(&itd->itd_list, &stream->td_list); 1778 itd->stream = stream; 1779 itd->urb = urb; 1780 itd_init(ehci, stream, itd); 1781 } 1782 1783 uframe = next_uframe & 0x07; 1784 frame = next_uframe >> 3; 1785 1786 itd_patch(ehci, itd, iso_sched, packet, uframe); 1787 1788 next_uframe += stream->uperiod; 1789 next_uframe &= mod - 1; 1790 packet++; 1791 1792 /* link completed itds into the schedule */ 1793 if (((next_uframe >> 3) != frame) 1794 || packet == urb->number_of_packets) { 1795 itd_link(ehci, frame & (ehci->periodic_size - 1), itd); 1796 itd = NULL; 1797 } 1798 } 1799 stream->next_uframe = next_uframe; 1800 1801 /* don't need that schedule data any more */ 1802 iso_sched_free(stream, iso_sched); 1803 urb->hcpriv = stream; 1804 1805 ++ehci->isoc_count; 1806 enable_periodic(ehci); 1807 } 1808 1809 #define ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR) 1810 1811 /* Process and recycle a completed ITD. Return true iff its urb completed, 1812 * and hence its completion callback probably added things to the hardware 1813 * schedule. 1814 * 1815 * Note that we carefully avoid recycling this descriptor until after any 1816 * completion callback runs, so that it won't be reused quickly. That is, 1817 * assuming (a) no more than two urbs per frame on this endpoint, and also 1818 * (b) only this endpoint's completions submit URBs. It seems some silicon 1819 * corrupts things if you reuse completed descriptors very quickly... 1820 */ 1821 static bool itd_complete(struct ehci_hcd *ehci, struct ehci_itd *itd) 1822 { 1823 struct urb *urb = itd->urb; 1824 struct usb_iso_packet_descriptor *desc; 1825 u32 t; 1826 unsigned uframe; 1827 int urb_index = -1; 1828 struct ehci_iso_stream *stream = itd->stream; 1829 bool retval = false; 1830 1831 /* for each uframe with a packet */ 1832 for (uframe = 0; uframe < 8; uframe++) { 1833 if (likely(itd->index[uframe] == -1)) 1834 continue; 1835 urb_index = itd->index[uframe]; 1836 desc = &urb->iso_frame_desc[urb_index]; 1837 1838 t = hc32_to_cpup(ehci, &itd->hw_transaction[uframe]); 1839 itd->hw_transaction[uframe] = 0; 1840 1841 /* report transfer status */ 1842 if (unlikely(t & ISO_ERRS)) { 1843 urb->error_count++; 1844 if (t & EHCI_ISOC_BUF_ERR) 1845 desc->status = usb_pipein(urb->pipe) 1846 ? -ENOSR /* hc couldn't read */ 1847 : -ECOMM; /* hc couldn't write */ 1848 else if (t & EHCI_ISOC_BABBLE) 1849 desc->status = -EOVERFLOW; 1850 else /* (t & EHCI_ISOC_XACTERR) */ 1851 desc->status = -EPROTO; 1852 1853 /* HC need not update length with this error */ 1854 if (!(t & EHCI_ISOC_BABBLE)) { 1855 desc->actual_length = EHCI_ITD_LENGTH(t); 1856 urb->actual_length += desc->actual_length; 1857 } 1858 } else if (likely((t & EHCI_ISOC_ACTIVE) == 0)) { 1859 desc->status = 0; 1860 desc->actual_length = EHCI_ITD_LENGTH(t); 1861 urb->actual_length += desc->actual_length; 1862 } else { 1863 /* URB was too late */ 1864 urb->error_count++; 1865 } 1866 } 1867 1868 /* handle completion now? */ 1869 if (likely((urb_index + 1) != urb->number_of_packets)) 1870 goto done; 1871 1872 /* 1873 * ASSERT: it's really the last itd for this urb 1874 * list_for_each_entry (itd, &stream->td_list, itd_list) 1875 * BUG_ON(itd->urb == urb); 1876 */ 1877 1878 /* give urb back to the driver; completion often (re)submits */ 1879 ehci_urb_done(ehci, urb, 0); 1880 retval = true; 1881 urb = NULL; 1882 1883 --ehci->isoc_count; 1884 disable_periodic(ehci); 1885 1886 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--; 1887 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) { 1888 if (ehci->amd_pll_fix == 1) 1889 usb_amd_quirk_pll_enable(); 1890 } 1891 1892 if (unlikely(list_is_singular(&stream->td_list))) 1893 ehci_to_hcd(ehci)->self.bandwidth_allocated 1894 -= stream->bandwidth; 1895 1896 done: 1897 itd->urb = NULL; 1898 1899 /* Add to the end of the free list for later reuse */ 1900 list_move_tail(&itd->itd_list, &stream->free_list); 1901 1902 /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */ 1903 if (list_empty(&stream->td_list)) { 1904 list_splice_tail_init(&stream->free_list, 1905 &ehci->cached_itd_list); 1906 start_free_itds(ehci); 1907 } 1908 1909 return retval; 1910 } 1911 1912 /*-------------------------------------------------------------------------*/ 1913 1914 static int itd_submit(struct ehci_hcd *ehci, struct urb *urb, 1915 gfp_t mem_flags) 1916 { 1917 int status = -EINVAL; 1918 unsigned long flags; 1919 struct ehci_iso_stream *stream; 1920 1921 /* Get iso_stream head */ 1922 stream = iso_stream_find(ehci, urb); 1923 if (unlikely(stream == NULL)) { 1924 ehci_dbg(ehci, "can't get iso stream\n"); 1925 return -ENOMEM; 1926 } 1927 if (unlikely(urb->interval != stream->uperiod)) { 1928 ehci_dbg(ehci, "can't change iso interval %d --> %d\n", 1929 stream->uperiod, urb->interval); 1930 goto done; 1931 } 1932 1933 #ifdef EHCI_URB_TRACE 1934 ehci_dbg(ehci, 1935 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n", 1936 __func__, urb->dev->devpath, urb, 1937 usb_pipeendpoint(urb->pipe), 1938 usb_pipein(urb->pipe) ? "in" : "out", 1939 urb->transfer_buffer_length, 1940 urb->number_of_packets, urb->interval, 1941 stream); 1942 #endif 1943 1944 /* allocate ITDs w/o locking anything */ 1945 status = itd_urb_transaction(stream, ehci, urb, mem_flags); 1946 if (unlikely(status < 0)) { 1947 ehci_dbg(ehci, "can't init itds\n"); 1948 goto done; 1949 } 1950 1951 /* schedule ... need to lock */ 1952 spin_lock_irqsave(&ehci->lock, flags); 1953 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) { 1954 status = -ESHUTDOWN; 1955 goto done_not_linked; 1956 } 1957 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb); 1958 if (unlikely(status)) 1959 goto done_not_linked; 1960 status = iso_stream_schedule(ehci, urb, stream); 1961 if (likely(status == 0)) { 1962 itd_link_urb(ehci, urb, ehci->periodic_size << 3, stream); 1963 } else if (status > 0) { 1964 status = 0; 1965 ehci_urb_done(ehci, urb, 0); 1966 } else { 1967 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); 1968 } 1969 done_not_linked: 1970 spin_unlock_irqrestore(&ehci->lock, flags); 1971 done: 1972 return status; 1973 } 1974 1975 /*-------------------------------------------------------------------------*/ 1976 1977 /* 1978 * "Split ISO TDs" ... used for USB 1.1 devices going through the 1979 * TTs in USB 2.0 hubs. These need microframe scheduling. 1980 */ 1981 1982 static inline void 1983 sitd_sched_init( 1984 struct ehci_hcd *ehci, 1985 struct ehci_iso_sched *iso_sched, 1986 struct ehci_iso_stream *stream, 1987 struct urb *urb 1988 ) 1989 { 1990 unsigned i; 1991 dma_addr_t dma = urb->transfer_dma; 1992 1993 /* how many frames are needed for these transfers */ 1994 iso_sched->span = urb->number_of_packets * stream->ps.period; 1995 1996 /* figure out per-frame sitd fields that we'll need later 1997 * when we fit new sitds into the schedule. 1998 */ 1999 for (i = 0; i < urb->number_of_packets; i++) { 2000 struct ehci_iso_packet *packet = &iso_sched->packet[i]; 2001 unsigned length; 2002 dma_addr_t buf; 2003 u32 trans; 2004 2005 length = urb->iso_frame_desc[i].length & 0x03ff; 2006 buf = dma + urb->iso_frame_desc[i].offset; 2007 2008 trans = SITD_STS_ACTIVE; 2009 if (((i + 1) == urb->number_of_packets) 2010 && !(urb->transfer_flags & URB_NO_INTERRUPT)) 2011 trans |= SITD_IOC; 2012 trans |= length << 16; 2013 packet->transaction = cpu_to_hc32(ehci, trans); 2014 2015 /* might need to cross a buffer page within a td */ 2016 packet->bufp = buf; 2017 packet->buf1 = (buf + length) & ~0x0fff; 2018 if (packet->buf1 != (buf & ~(u64)0x0fff)) 2019 packet->cross = 1; 2020 2021 /* OUT uses multiple start-splits */ 2022 if (stream->bEndpointAddress & USB_DIR_IN) 2023 continue; 2024 length = (length + 187) / 188; 2025 if (length > 1) /* BEGIN vs ALL */ 2026 length |= 1 << 3; 2027 packet->buf1 |= length; 2028 } 2029 } 2030 2031 static int 2032 sitd_urb_transaction( 2033 struct ehci_iso_stream *stream, 2034 struct ehci_hcd *ehci, 2035 struct urb *urb, 2036 gfp_t mem_flags 2037 ) 2038 { 2039 struct ehci_sitd *sitd; 2040 dma_addr_t sitd_dma; 2041 int i; 2042 struct ehci_iso_sched *iso_sched; 2043 unsigned long flags; 2044 2045 iso_sched = iso_sched_alloc(urb->number_of_packets, mem_flags); 2046 if (iso_sched == NULL) 2047 return -ENOMEM; 2048 2049 sitd_sched_init(ehci, iso_sched, stream, urb); 2050 2051 /* allocate/init sITDs */ 2052 spin_lock_irqsave(&ehci->lock, flags); 2053 for (i = 0; i < urb->number_of_packets; i++) { 2054 2055 /* NOTE: for now, we don't try to handle wraparound cases 2056 * for IN (using sitd->hw_backpointer, like a FSTN), which 2057 * means we never need two sitds for full speed packets. 2058 */ 2059 2060 /* 2061 * Use siTDs from the free list, but not siTDs that may 2062 * still be in use by the hardware. 2063 */ 2064 if (likely(!list_empty(&stream->free_list))) { 2065 sitd = list_first_entry(&stream->free_list, 2066 struct ehci_sitd, sitd_list); 2067 if (sitd->frame == ehci->now_frame) 2068 goto alloc_sitd; 2069 list_del(&sitd->sitd_list); 2070 sitd_dma = sitd->sitd_dma; 2071 } else { 2072 alloc_sitd: 2073 spin_unlock_irqrestore(&ehci->lock, flags); 2074 sitd = dma_pool_alloc(ehci->sitd_pool, mem_flags, 2075 &sitd_dma); 2076 spin_lock_irqsave(&ehci->lock, flags); 2077 if (!sitd) { 2078 iso_sched_free(stream, iso_sched); 2079 spin_unlock_irqrestore(&ehci->lock, flags); 2080 return -ENOMEM; 2081 } 2082 } 2083 2084 memset(sitd, 0, sizeof(*sitd)); 2085 sitd->sitd_dma = sitd_dma; 2086 sitd->frame = NO_FRAME; 2087 list_add(&sitd->sitd_list, &iso_sched->td_list); 2088 } 2089 2090 /* temporarily store schedule info in hcpriv */ 2091 urb->hcpriv = iso_sched; 2092 urb->error_count = 0; 2093 2094 spin_unlock_irqrestore(&ehci->lock, flags); 2095 return 0; 2096 } 2097 2098 /*-------------------------------------------------------------------------*/ 2099 2100 static inline void 2101 sitd_patch( 2102 struct ehci_hcd *ehci, 2103 struct ehci_iso_stream *stream, 2104 struct ehci_sitd *sitd, 2105 struct ehci_iso_sched *iso_sched, 2106 unsigned index 2107 ) 2108 { 2109 struct ehci_iso_packet *uf = &iso_sched->packet[index]; 2110 u64 bufp; 2111 2112 sitd->hw_next = EHCI_LIST_END(ehci); 2113 sitd->hw_fullspeed_ep = stream->address; 2114 sitd->hw_uframe = stream->splits; 2115 sitd->hw_results = uf->transaction; 2116 sitd->hw_backpointer = EHCI_LIST_END(ehci); 2117 2118 bufp = uf->bufp; 2119 sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp); 2120 sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32); 2121 2122 sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1); 2123 if (uf->cross) 2124 bufp += 4096; 2125 sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32); 2126 sitd->index = index; 2127 } 2128 2129 static inline void 2130 sitd_link(struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd) 2131 { 2132 /* note: sitd ordering could matter (CSPLIT then SSPLIT) */ 2133 sitd->sitd_next = ehci->pshadow[frame]; 2134 sitd->hw_next = ehci->periodic[frame]; 2135 ehci->pshadow[frame].sitd = sitd; 2136 sitd->frame = frame; 2137 wmb(); 2138 ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD); 2139 } 2140 2141 /* fit urb's sitds into the selected schedule slot; activate as needed */ 2142 static void sitd_link_urb( 2143 struct ehci_hcd *ehci, 2144 struct urb *urb, 2145 unsigned mod, 2146 struct ehci_iso_stream *stream 2147 ) 2148 { 2149 int packet; 2150 unsigned next_uframe; 2151 struct ehci_iso_sched *sched = urb->hcpriv; 2152 struct ehci_sitd *sitd; 2153 2154 next_uframe = stream->next_uframe; 2155 2156 if (list_empty(&stream->td_list)) 2157 /* usbfs ignores TT bandwidth */ 2158 ehci_to_hcd(ehci)->self.bandwidth_allocated 2159 += stream->bandwidth; 2160 2161 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) { 2162 if (ehci->amd_pll_fix == 1) 2163 usb_amd_quirk_pll_disable(); 2164 } 2165 2166 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++; 2167 2168 /* fill sITDs frame by frame */ 2169 for (packet = sched->first_packet, sitd = NULL; 2170 packet < urb->number_of_packets; 2171 packet++) { 2172 2173 /* ASSERT: we have all necessary sitds */ 2174 BUG_ON(list_empty(&sched->td_list)); 2175 2176 /* ASSERT: no itds for this endpoint in this frame */ 2177 2178 sitd = list_entry(sched->td_list.next, 2179 struct ehci_sitd, sitd_list); 2180 list_move_tail(&sitd->sitd_list, &stream->td_list); 2181 sitd->stream = stream; 2182 sitd->urb = urb; 2183 2184 sitd_patch(ehci, stream, sitd, sched, packet); 2185 sitd_link(ehci, (next_uframe >> 3) & (ehci->periodic_size - 1), 2186 sitd); 2187 2188 next_uframe += stream->uperiod; 2189 } 2190 stream->next_uframe = next_uframe & (mod - 1); 2191 2192 /* don't need that schedule data any more */ 2193 iso_sched_free(stream, sched); 2194 urb->hcpriv = stream; 2195 2196 ++ehci->isoc_count; 2197 enable_periodic(ehci); 2198 } 2199 2200 /*-------------------------------------------------------------------------*/ 2201 2202 #define SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \ 2203 | SITD_STS_XACT | SITD_STS_MMF) 2204 2205 /* Process and recycle a completed SITD. Return true iff its urb completed, 2206 * and hence its completion callback probably added things to the hardware 2207 * schedule. 2208 * 2209 * Note that we carefully avoid recycling this descriptor until after any 2210 * completion callback runs, so that it won't be reused quickly. That is, 2211 * assuming (a) no more than two urbs per frame on this endpoint, and also 2212 * (b) only this endpoint's completions submit URBs. It seems some silicon 2213 * corrupts things if you reuse completed descriptors very quickly... 2214 */ 2215 static bool sitd_complete(struct ehci_hcd *ehci, struct ehci_sitd *sitd) 2216 { 2217 struct urb *urb = sitd->urb; 2218 struct usb_iso_packet_descriptor *desc; 2219 u32 t; 2220 int urb_index; 2221 struct ehci_iso_stream *stream = sitd->stream; 2222 bool retval = false; 2223 2224 urb_index = sitd->index; 2225 desc = &urb->iso_frame_desc[urb_index]; 2226 t = hc32_to_cpup(ehci, &sitd->hw_results); 2227 2228 /* report transfer status */ 2229 if (unlikely(t & SITD_ERRS)) { 2230 urb->error_count++; 2231 if (t & SITD_STS_DBE) 2232 desc->status = usb_pipein(urb->pipe) 2233 ? -ENOSR /* hc couldn't read */ 2234 : -ECOMM; /* hc couldn't write */ 2235 else if (t & SITD_STS_BABBLE) 2236 desc->status = -EOVERFLOW; 2237 else /* XACT, MMF, etc */ 2238 desc->status = -EPROTO; 2239 } else if (unlikely(t & SITD_STS_ACTIVE)) { 2240 /* URB was too late */ 2241 urb->error_count++; 2242 } else { 2243 desc->status = 0; 2244 desc->actual_length = desc->length - SITD_LENGTH(t); 2245 urb->actual_length += desc->actual_length; 2246 } 2247 2248 /* handle completion now? */ 2249 if ((urb_index + 1) != urb->number_of_packets) 2250 goto done; 2251 2252 /* 2253 * ASSERT: it's really the last sitd for this urb 2254 * list_for_each_entry (sitd, &stream->td_list, sitd_list) 2255 * BUG_ON(sitd->urb == urb); 2256 */ 2257 2258 /* give urb back to the driver; completion often (re)submits */ 2259 ehci_urb_done(ehci, urb, 0); 2260 retval = true; 2261 urb = NULL; 2262 2263 --ehci->isoc_count; 2264 disable_periodic(ehci); 2265 2266 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--; 2267 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) { 2268 if (ehci->amd_pll_fix == 1) 2269 usb_amd_quirk_pll_enable(); 2270 } 2271 2272 if (list_is_singular(&stream->td_list)) 2273 ehci_to_hcd(ehci)->self.bandwidth_allocated 2274 -= stream->bandwidth; 2275 2276 done: 2277 sitd->urb = NULL; 2278 2279 /* Add to the end of the free list for later reuse */ 2280 list_move_tail(&sitd->sitd_list, &stream->free_list); 2281 2282 /* Recycle the siTDs when the pipeline is empty (ep no longer in use) */ 2283 if (list_empty(&stream->td_list)) { 2284 list_splice_tail_init(&stream->free_list, 2285 &ehci->cached_sitd_list); 2286 start_free_itds(ehci); 2287 } 2288 2289 return retval; 2290 } 2291 2292 2293 static int sitd_submit(struct ehci_hcd *ehci, struct urb *urb, 2294 gfp_t mem_flags) 2295 { 2296 int status = -EINVAL; 2297 unsigned long flags; 2298 struct ehci_iso_stream *stream; 2299 2300 /* Get iso_stream head */ 2301 stream = iso_stream_find(ehci, urb); 2302 if (stream == NULL) { 2303 ehci_dbg(ehci, "can't get iso stream\n"); 2304 return -ENOMEM; 2305 } 2306 if (urb->interval != stream->ps.period) { 2307 ehci_dbg(ehci, "can't change iso interval %d --> %d\n", 2308 stream->ps.period, urb->interval); 2309 goto done; 2310 } 2311 2312 #ifdef EHCI_URB_TRACE 2313 ehci_dbg(ehci, 2314 "submit %p dev%s ep%d%s-iso len %d\n", 2315 urb, urb->dev->devpath, 2316 usb_pipeendpoint(urb->pipe), 2317 usb_pipein(urb->pipe) ? "in" : "out", 2318 urb->transfer_buffer_length); 2319 #endif 2320 2321 /* allocate SITDs */ 2322 status = sitd_urb_transaction(stream, ehci, urb, mem_flags); 2323 if (status < 0) { 2324 ehci_dbg(ehci, "can't init sitds\n"); 2325 goto done; 2326 } 2327 2328 /* schedule ... need to lock */ 2329 spin_lock_irqsave(&ehci->lock, flags); 2330 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) { 2331 status = -ESHUTDOWN; 2332 goto done_not_linked; 2333 } 2334 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb); 2335 if (unlikely(status)) 2336 goto done_not_linked; 2337 status = iso_stream_schedule(ehci, urb, stream); 2338 if (likely(status == 0)) { 2339 sitd_link_urb(ehci, urb, ehci->periodic_size << 3, stream); 2340 } else if (status > 0) { 2341 status = 0; 2342 ehci_urb_done(ehci, urb, 0); 2343 } else { 2344 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); 2345 } 2346 done_not_linked: 2347 spin_unlock_irqrestore(&ehci->lock, flags); 2348 done: 2349 return status; 2350 } 2351 2352 /*-------------------------------------------------------------------------*/ 2353 2354 static void scan_isoc(struct ehci_hcd *ehci) 2355 { 2356 unsigned uf, now_frame, frame; 2357 unsigned fmask = ehci->periodic_size - 1; 2358 bool modified, live; 2359 union ehci_shadow q, *q_p; 2360 __hc32 type, *hw_p; 2361 2362 /* 2363 * When running, scan from last scan point up to "now" 2364 * else clean up by scanning everything that's left. 2365 * Touches as few pages as possible: cache-friendly. 2366 */ 2367 if (ehci->rh_state >= EHCI_RH_RUNNING) { 2368 uf = ehci_read_frame_index(ehci); 2369 now_frame = (uf >> 3) & fmask; 2370 live = true; 2371 } else { 2372 now_frame = (ehci->last_iso_frame - 1) & fmask; 2373 live = false; 2374 } 2375 ehci->now_frame = now_frame; 2376 2377 frame = ehci->last_iso_frame; 2378 2379 restart: 2380 /* Scan each element in frame's queue for completions */ 2381 q_p = &ehci->pshadow[frame]; 2382 hw_p = &ehci->periodic[frame]; 2383 q.ptr = q_p->ptr; 2384 type = Q_NEXT_TYPE(ehci, *hw_p); 2385 modified = false; 2386 2387 while (q.ptr != NULL) { 2388 switch (hc32_to_cpu(ehci, type)) { 2389 case Q_TYPE_ITD: 2390 /* 2391 * If this ITD is still active, leave it for 2392 * later processing ... check the next entry. 2393 * No need to check for activity unless the 2394 * frame is current. 2395 */ 2396 if (frame == now_frame && live) { 2397 rmb(); 2398 for (uf = 0; uf < 8; uf++) { 2399 if (q.itd->hw_transaction[uf] & 2400 ITD_ACTIVE(ehci)) 2401 break; 2402 } 2403 if (uf < 8) { 2404 q_p = &q.itd->itd_next; 2405 hw_p = &q.itd->hw_next; 2406 type = Q_NEXT_TYPE(ehci, 2407 q.itd->hw_next); 2408 q = *q_p; 2409 break; 2410 } 2411 } 2412 2413 /* 2414 * Take finished ITDs out of the schedule 2415 * and process them: recycle, maybe report 2416 * URB completion. HC won't cache the 2417 * pointer for much longer, if at all. 2418 */ 2419 *q_p = q.itd->itd_next; 2420 if (!ehci->use_dummy_qh || 2421 q.itd->hw_next != EHCI_LIST_END(ehci)) 2422 *hw_p = q.itd->hw_next; 2423 else 2424 *hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma); 2425 type = Q_NEXT_TYPE(ehci, q.itd->hw_next); 2426 wmb(); 2427 modified = itd_complete(ehci, q.itd); 2428 q = *q_p; 2429 break; 2430 case Q_TYPE_SITD: 2431 /* 2432 * If this SITD is still active, leave it for 2433 * later processing ... check the next entry. 2434 * No need to check for activity unless the 2435 * frame is current. 2436 */ 2437 if (((frame == now_frame) || 2438 (((frame + 1) & fmask) == now_frame)) 2439 && live 2440 && (q.sitd->hw_results & SITD_ACTIVE(ehci))) { 2441 2442 q_p = &q.sitd->sitd_next; 2443 hw_p = &q.sitd->hw_next; 2444 type = Q_NEXT_TYPE(ehci, q.sitd->hw_next); 2445 q = *q_p; 2446 break; 2447 } 2448 2449 /* 2450 * Take finished SITDs out of the schedule 2451 * and process them: recycle, maybe report 2452 * URB completion. 2453 */ 2454 *q_p = q.sitd->sitd_next; 2455 if (!ehci->use_dummy_qh || 2456 q.sitd->hw_next != EHCI_LIST_END(ehci)) 2457 *hw_p = q.sitd->hw_next; 2458 else 2459 *hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma); 2460 type = Q_NEXT_TYPE(ehci, q.sitd->hw_next); 2461 wmb(); 2462 modified = sitd_complete(ehci, q.sitd); 2463 q = *q_p; 2464 break; 2465 default: 2466 ehci_dbg(ehci, "corrupt type %d frame %d shadow %p\n", 2467 type, frame, q.ptr); 2468 /* BUG(); */ 2469 fallthrough; 2470 case Q_TYPE_QH: 2471 case Q_TYPE_FSTN: 2472 /* End of the iTDs and siTDs */ 2473 q.ptr = NULL; 2474 break; 2475 } 2476 2477 /* Assume completion callbacks modify the queue */ 2478 if (unlikely(modified && ehci->isoc_count > 0)) 2479 goto restart; 2480 } 2481 2482 /* Stop when we have reached the current frame */ 2483 if (frame == now_frame) 2484 return; 2485 2486 /* The last frame may still have active siTDs */ 2487 ehci->last_iso_frame = frame; 2488 frame = (frame + 1) & fmask; 2489 2490 goto restart; 2491 } 2492