xref: /linux/drivers/usb/host/ehci-sched.c (revision 9dbbc3b9d09d6deba9f3b9e1d5b355032ed46a75)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (c) 2001-2004 by David Brownell
4  * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers
5  */
6 
7 /* this file is part of ehci-hcd.c */
8 
9 /*-------------------------------------------------------------------------*/
10 
11 /*
12  * EHCI scheduled transaction support:  interrupt, iso, split iso
13  * These are called "periodic" transactions in the EHCI spec.
14  *
15  * Note that for interrupt transfers, the QH/QTD manipulation is shared
16  * with the "asynchronous" transaction support (control/bulk transfers).
17  * The only real difference is in how interrupt transfers are scheduled.
18  *
19  * For ISO, we make an "iso_stream" head to serve the same role as a QH.
20  * It keeps track of every ITD (or SITD) that's linked, and holds enough
21  * pre-calculated schedule data to make appending to the queue be quick.
22  */
23 
24 static int ehci_get_frame(struct usb_hcd *hcd);
25 
26 /*
27  * periodic_next_shadow - return "next" pointer on shadow list
28  * @periodic: host pointer to qh/itd/sitd
29  * @tag: hardware tag for type of this record
30  */
31 static union ehci_shadow *
32 periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic,
33 		__hc32 tag)
34 {
35 	switch (hc32_to_cpu(ehci, tag)) {
36 	case Q_TYPE_QH:
37 		return &periodic->qh->qh_next;
38 	case Q_TYPE_FSTN:
39 		return &periodic->fstn->fstn_next;
40 	case Q_TYPE_ITD:
41 		return &periodic->itd->itd_next;
42 	/* case Q_TYPE_SITD: */
43 	default:
44 		return &periodic->sitd->sitd_next;
45 	}
46 }
47 
48 static __hc32 *
49 shadow_next_periodic(struct ehci_hcd *ehci, union ehci_shadow *periodic,
50 		__hc32 tag)
51 {
52 	switch (hc32_to_cpu(ehci, tag)) {
53 	/* our ehci_shadow.qh is actually software part */
54 	case Q_TYPE_QH:
55 		return &periodic->qh->hw->hw_next;
56 	/* others are hw parts */
57 	default:
58 		return periodic->hw_next;
59 	}
60 }
61 
62 /* caller must hold ehci->lock */
63 static void periodic_unlink(struct ehci_hcd *ehci, unsigned frame, void *ptr)
64 {
65 	union ehci_shadow	*prev_p = &ehci->pshadow[frame];
66 	__hc32			*hw_p = &ehci->periodic[frame];
67 	union ehci_shadow	here = *prev_p;
68 
69 	/* find predecessor of "ptr"; hw and shadow lists are in sync */
70 	while (here.ptr && here.ptr != ptr) {
71 		prev_p = periodic_next_shadow(ehci, prev_p,
72 				Q_NEXT_TYPE(ehci, *hw_p));
73 		hw_p = shadow_next_periodic(ehci, &here,
74 				Q_NEXT_TYPE(ehci, *hw_p));
75 		here = *prev_p;
76 	}
77 	/* an interrupt entry (at list end) could have been shared */
78 	if (!here.ptr)
79 		return;
80 
81 	/* update shadow and hardware lists ... the old "next" pointers
82 	 * from ptr may still be in use, the caller updates them.
83 	 */
84 	*prev_p = *periodic_next_shadow(ehci, &here,
85 			Q_NEXT_TYPE(ehci, *hw_p));
86 
87 	if (!ehci->use_dummy_qh ||
88 	    *shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p))
89 			!= EHCI_LIST_END(ehci))
90 		*hw_p = *shadow_next_periodic(ehci, &here,
91 				Q_NEXT_TYPE(ehci, *hw_p));
92 	else
93 		*hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma);
94 }
95 
96 /*-------------------------------------------------------------------------*/
97 
98 /* Bandwidth and TT management */
99 
100 /* Find the TT data structure for this device; create it if necessary */
101 static struct ehci_tt *find_tt(struct usb_device *udev)
102 {
103 	struct usb_tt		*utt = udev->tt;
104 	struct ehci_tt		*tt, **tt_index, **ptt;
105 	unsigned		port;
106 	bool			allocated_index = false;
107 
108 	if (!utt)
109 		return NULL;		/* Not below a TT */
110 
111 	/*
112 	 * Find/create our data structure.
113 	 * For hubs with a single TT, we get it directly.
114 	 * For hubs with multiple TTs, there's an extra level of pointers.
115 	 */
116 	tt_index = NULL;
117 	if (utt->multi) {
118 		tt_index = utt->hcpriv;
119 		if (!tt_index) {		/* Create the index array */
120 			tt_index = kcalloc(utt->hub->maxchild,
121 					   sizeof(*tt_index),
122 					   GFP_ATOMIC);
123 			if (!tt_index)
124 				return ERR_PTR(-ENOMEM);
125 			utt->hcpriv = tt_index;
126 			allocated_index = true;
127 		}
128 		port = udev->ttport - 1;
129 		ptt = &tt_index[port];
130 	} else {
131 		port = 0;
132 		ptt = (struct ehci_tt **) &utt->hcpriv;
133 	}
134 
135 	tt = *ptt;
136 	if (!tt) {				/* Create the ehci_tt */
137 		struct ehci_hcd		*ehci =
138 				hcd_to_ehci(bus_to_hcd(udev->bus));
139 
140 		tt = kzalloc(sizeof(*tt), GFP_ATOMIC);
141 		if (!tt) {
142 			if (allocated_index) {
143 				utt->hcpriv = NULL;
144 				kfree(tt_index);
145 			}
146 			return ERR_PTR(-ENOMEM);
147 		}
148 		list_add_tail(&tt->tt_list, &ehci->tt_list);
149 		INIT_LIST_HEAD(&tt->ps_list);
150 		tt->usb_tt = utt;
151 		tt->tt_port = port;
152 		*ptt = tt;
153 	}
154 
155 	return tt;
156 }
157 
158 /* Release the TT above udev, if it's not in use */
159 static void drop_tt(struct usb_device *udev)
160 {
161 	struct usb_tt		*utt = udev->tt;
162 	struct ehci_tt		*tt, **tt_index, **ptt;
163 	int			cnt, i;
164 
165 	if (!utt || !utt->hcpriv)
166 		return;		/* Not below a TT, or never allocated */
167 
168 	cnt = 0;
169 	if (utt->multi) {
170 		tt_index = utt->hcpriv;
171 		ptt = &tt_index[udev->ttport - 1];
172 
173 		/* How many entries are left in tt_index? */
174 		for (i = 0; i < utt->hub->maxchild; ++i)
175 			cnt += !!tt_index[i];
176 	} else {
177 		tt_index = NULL;
178 		ptt = (struct ehci_tt **) &utt->hcpriv;
179 	}
180 
181 	tt = *ptt;
182 	if (!tt || !list_empty(&tt->ps_list))
183 		return;		/* never allocated, or still in use */
184 
185 	list_del(&tt->tt_list);
186 	*ptt = NULL;
187 	kfree(tt);
188 	if (cnt == 1) {
189 		utt->hcpriv = NULL;
190 		kfree(tt_index);
191 	}
192 }
193 
194 static void bandwidth_dbg(struct ehci_hcd *ehci, int sign, char *type,
195 		struct ehci_per_sched *ps)
196 {
197 	dev_dbg(&ps->udev->dev,
198 			"ep %02x: %s %s @ %u+%u (%u.%u+%u) [%u/%u us] mask %04x\n",
199 			ps->ep->desc.bEndpointAddress,
200 			(sign >= 0 ? "reserve" : "release"), type,
201 			(ps->bw_phase << 3) + ps->phase_uf, ps->bw_uperiod,
202 			ps->phase, ps->phase_uf, ps->period,
203 			ps->usecs, ps->c_usecs, ps->cs_mask);
204 }
205 
206 static void reserve_release_intr_bandwidth(struct ehci_hcd *ehci,
207 		struct ehci_qh *qh, int sign)
208 {
209 	unsigned		start_uf;
210 	unsigned		i, j, m;
211 	int			usecs = qh->ps.usecs;
212 	int			c_usecs = qh->ps.c_usecs;
213 	int			tt_usecs = qh->ps.tt_usecs;
214 	struct ehci_tt		*tt;
215 
216 	if (qh->ps.phase == NO_FRAME)	/* Bandwidth wasn't reserved */
217 		return;
218 	start_uf = qh->ps.bw_phase << 3;
219 
220 	bandwidth_dbg(ehci, sign, "intr", &qh->ps);
221 
222 	if (sign < 0) {		/* Release bandwidth */
223 		usecs = -usecs;
224 		c_usecs = -c_usecs;
225 		tt_usecs = -tt_usecs;
226 	}
227 
228 	/* Entire transaction (high speed) or start-split (full/low speed) */
229 	for (i = start_uf + qh->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE;
230 			i += qh->ps.bw_uperiod)
231 		ehci->bandwidth[i] += usecs;
232 
233 	/* Complete-split (full/low speed) */
234 	if (qh->ps.c_usecs) {
235 		/* NOTE: adjustments needed for FSTN */
236 		for (i = start_uf; i < EHCI_BANDWIDTH_SIZE;
237 				i += qh->ps.bw_uperiod) {
238 			for ((j = 2, m = 1 << (j+8)); j < 8; (++j, m <<= 1)) {
239 				if (qh->ps.cs_mask & m)
240 					ehci->bandwidth[i+j] += c_usecs;
241 			}
242 		}
243 	}
244 
245 	/* FS/LS bus bandwidth */
246 	if (tt_usecs) {
247 		/*
248 		 * find_tt() will not return any error here as we have
249 		 * already called find_tt() before calling this function
250 		 * and checked for any error return. The previous call
251 		 * would have created the data structure.
252 		 */
253 		tt = find_tt(qh->ps.udev);
254 		if (sign > 0)
255 			list_add_tail(&qh->ps.ps_list, &tt->ps_list);
256 		else
257 			list_del(&qh->ps.ps_list);
258 
259 		for (i = start_uf >> 3; i < EHCI_BANDWIDTH_FRAMES;
260 				i += qh->ps.bw_period)
261 			tt->bandwidth[i] += tt_usecs;
262 	}
263 }
264 
265 /*-------------------------------------------------------------------------*/
266 
267 static void compute_tt_budget(u8 budget_table[EHCI_BANDWIDTH_SIZE],
268 		struct ehci_tt *tt)
269 {
270 	struct ehci_per_sched	*ps;
271 	unsigned		uframe, uf, x;
272 	u8			*budget_line;
273 
274 	if (!tt)
275 		return;
276 	memset(budget_table, 0, EHCI_BANDWIDTH_SIZE);
277 
278 	/* Add up the contributions from all the endpoints using this TT */
279 	list_for_each_entry(ps, &tt->ps_list, ps_list) {
280 		for (uframe = ps->bw_phase << 3; uframe < EHCI_BANDWIDTH_SIZE;
281 				uframe += ps->bw_uperiod) {
282 			budget_line = &budget_table[uframe];
283 			x = ps->tt_usecs;
284 
285 			/* propagate the time forward */
286 			for (uf = ps->phase_uf; uf < 8; ++uf) {
287 				x += budget_line[uf];
288 
289 				/* Each microframe lasts 125 us */
290 				if (x <= 125) {
291 					budget_line[uf] = x;
292 					break;
293 				}
294 				budget_line[uf] = 125;
295 				x -= 125;
296 			}
297 		}
298 	}
299 }
300 
301 static int __maybe_unused same_tt(struct usb_device *dev1,
302 		struct usb_device *dev2)
303 {
304 	if (!dev1->tt || !dev2->tt)
305 		return 0;
306 	if (dev1->tt != dev2->tt)
307 		return 0;
308 	if (dev1->tt->multi)
309 		return dev1->ttport == dev2->ttport;
310 	else
311 		return 1;
312 }
313 
314 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
315 
316 static const unsigned char
317 max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 };
318 
319 /* carryover low/fullspeed bandwidth that crosses uframe boundries */
320 static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8])
321 {
322 	int i;
323 
324 	for (i = 0; i < 7; i++) {
325 		if (max_tt_usecs[i] < tt_usecs[i]) {
326 			tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i];
327 			tt_usecs[i] = max_tt_usecs[i];
328 		}
329 	}
330 }
331 
332 /*
333  * Return true if the device's tt's downstream bus is available for a
334  * periodic transfer of the specified length (usecs), starting at the
335  * specified frame/uframe.  Note that (as summarized in section 11.19
336  * of the usb 2.0 spec) TTs can buffer multiple transactions for each
337  * uframe.
338  *
339  * The uframe parameter is when the fullspeed/lowspeed transfer
340  * should be executed in "B-frame" terms, which is the same as the
341  * highspeed ssplit's uframe (which is in "H-frame" terms).  For example
342  * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0.
343  * See the EHCI spec sec 4.5 and fig 4.7.
344  *
345  * This checks if the full/lowspeed bus, at the specified starting uframe,
346  * has the specified bandwidth available, according to rules listed
347  * in USB 2.0 spec section 11.18.1 fig 11-60.
348  *
349  * This does not check if the transfer would exceed the max ssplit
350  * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4,
351  * since proper scheduling limits ssplits to less than 16 per uframe.
352  */
353 static int tt_available(
354 	struct ehci_hcd		*ehci,
355 	struct ehci_per_sched	*ps,
356 	struct ehci_tt		*tt,
357 	unsigned		frame,
358 	unsigned		uframe
359 )
360 {
361 	unsigned		period = ps->bw_period;
362 	unsigned		usecs = ps->tt_usecs;
363 
364 	if ((period == 0) || (uframe >= 7))	/* error */
365 		return 0;
366 
367 	for (frame &= period - 1; frame < EHCI_BANDWIDTH_FRAMES;
368 			frame += period) {
369 		unsigned	i, uf;
370 		unsigned short	tt_usecs[8];
371 
372 		if (tt->bandwidth[frame] + usecs > 900)
373 			return 0;
374 
375 		uf = frame << 3;
376 		for (i = 0; i < 8; (++i, ++uf))
377 			tt_usecs[i] = ehci->tt_budget[uf];
378 
379 		if (max_tt_usecs[uframe] <= tt_usecs[uframe])
380 			return 0;
381 
382 		/* special case for isoc transfers larger than 125us:
383 		 * the first and each subsequent fully used uframe
384 		 * must be empty, so as to not illegally delay
385 		 * already scheduled transactions
386 		 */
387 		if (usecs > 125) {
388 			int ufs = (usecs / 125);
389 
390 			for (i = uframe; i < (uframe + ufs) && i < 8; i++)
391 				if (tt_usecs[i] > 0)
392 					return 0;
393 		}
394 
395 		tt_usecs[uframe] += usecs;
396 
397 		carryover_tt_bandwidth(tt_usecs);
398 
399 		/* fail if the carryover pushed bw past the last uframe's limit */
400 		if (max_tt_usecs[7] < tt_usecs[7])
401 			return 0;
402 	}
403 
404 	return 1;
405 }
406 
407 #else
408 
409 /* return true iff the device's transaction translator is available
410  * for a periodic transfer starting at the specified frame, using
411  * all the uframes in the mask.
412  */
413 static int tt_no_collision(
414 	struct ehci_hcd		*ehci,
415 	unsigned		period,
416 	struct usb_device	*dev,
417 	unsigned		frame,
418 	u32			uf_mask
419 )
420 {
421 	if (period == 0)	/* error */
422 		return 0;
423 
424 	/* note bandwidth wastage:  split never follows csplit
425 	 * (different dev or endpoint) until the next uframe.
426 	 * calling convention doesn't make that distinction.
427 	 */
428 	for (; frame < ehci->periodic_size; frame += period) {
429 		union ehci_shadow	here;
430 		__hc32			type;
431 		struct ehci_qh_hw	*hw;
432 
433 		here = ehci->pshadow[frame];
434 		type = Q_NEXT_TYPE(ehci, ehci->periodic[frame]);
435 		while (here.ptr) {
436 			switch (hc32_to_cpu(ehci, type)) {
437 			case Q_TYPE_ITD:
438 				type = Q_NEXT_TYPE(ehci, here.itd->hw_next);
439 				here = here.itd->itd_next;
440 				continue;
441 			case Q_TYPE_QH:
442 				hw = here.qh->hw;
443 				if (same_tt(dev, here.qh->ps.udev)) {
444 					u32		mask;
445 
446 					mask = hc32_to_cpu(ehci,
447 							hw->hw_info2);
448 					/* "knows" no gap is needed */
449 					mask |= mask >> 8;
450 					if (mask & uf_mask)
451 						break;
452 				}
453 				type = Q_NEXT_TYPE(ehci, hw->hw_next);
454 				here = here.qh->qh_next;
455 				continue;
456 			case Q_TYPE_SITD:
457 				if (same_tt(dev, here.sitd->urb->dev)) {
458 					u16		mask;
459 
460 					mask = hc32_to_cpu(ehci, here.sitd
461 								->hw_uframe);
462 					/* FIXME assumes no gap for IN! */
463 					mask |= mask >> 8;
464 					if (mask & uf_mask)
465 						break;
466 				}
467 				type = Q_NEXT_TYPE(ehci, here.sitd->hw_next);
468 				here = here.sitd->sitd_next;
469 				continue;
470 			/* case Q_TYPE_FSTN: */
471 			default:
472 				ehci_dbg(ehci,
473 					"periodic frame %d bogus type %d\n",
474 					frame, type);
475 			}
476 
477 			/* collision or error */
478 			return 0;
479 		}
480 	}
481 
482 	/* no collision */
483 	return 1;
484 }
485 
486 #endif /* CONFIG_USB_EHCI_TT_NEWSCHED */
487 
488 /*-------------------------------------------------------------------------*/
489 
490 static void enable_periodic(struct ehci_hcd *ehci)
491 {
492 	if (ehci->periodic_count++)
493 		return;
494 
495 	/* Stop waiting to turn off the periodic schedule */
496 	ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_PERIODIC);
497 
498 	/* Don't start the schedule until PSS is 0 */
499 	ehci_poll_PSS(ehci);
500 	turn_on_io_watchdog(ehci);
501 }
502 
503 static void disable_periodic(struct ehci_hcd *ehci)
504 {
505 	if (--ehci->periodic_count)
506 		return;
507 
508 	/* Don't turn off the schedule until PSS is 1 */
509 	ehci_poll_PSS(ehci);
510 }
511 
512 /*-------------------------------------------------------------------------*/
513 
514 /* periodic schedule slots have iso tds (normal or split) first, then a
515  * sparse tree for active interrupt transfers.
516  *
517  * this just links in a qh; caller guarantees uframe masks are set right.
518  * no FSTN support (yet; ehci 0.96+)
519  */
520 static void qh_link_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
521 {
522 	unsigned	i;
523 	unsigned	period = qh->ps.period;
524 
525 	dev_dbg(&qh->ps.udev->dev,
526 		"link qh%d-%04x/%p start %d [%d/%d us]\n",
527 		period, hc32_to_cpup(ehci, &qh->hw->hw_info2)
528 			& (QH_CMASK | QH_SMASK),
529 		qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs);
530 
531 	/* high bandwidth, or otherwise every microframe */
532 	if (period == 0)
533 		period = 1;
534 
535 	for (i = qh->ps.phase; i < ehci->periodic_size; i += period) {
536 		union ehci_shadow	*prev = &ehci->pshadow[i];
537 		__hc32			*hw_p = &ehci->periodic[i];
538 		union ehci_shadow	here = *prev;
539 		__hc32			type = 0;
540 
541 		/* skip the iso nodes at list head */
542 		while (here.ptr) {
543 			type = Q_NEXT_TYPE(ehci, *hw_p);
544 			if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
545 				break;
546 			prev = periodic_next_shadow(ehci, prev, type);
547 			hw_p = shadow_next_periodic(ehci, &here, type);
548 			here = *prev;
549 		}
550 
551 		/* sorting each branch by period (slow-->fast)
552 		 * enables sharing interior tree nodes
553 		 */
554 		while (here.ptr && qh != here.qh) {
555 			if (qh->ps.period > here.qh->ps.period)
556 				break;
557 			prev = &here.qh->qh_next;
558 			hw_p = &here.qh->hw->hw_next;
559 			here = *prev;
560 		}
561 		/* link in this qh, unless some earlier pass did that */
562 		if (qh != here.qh) {
563 			qh->qh_next = here;
564 			if (here.qh)
565 				qh->hw->hw_next = *hw_p;
566 			wmb();
567 			prev->qh = qh;
568 			*hw_p = QH_NEXT(ehci, qh->qh_dma);
569 		}
570 	}
571 	qh->qh_state = QH_STATE_LINKED;
572 	qh->xacterrs = 0;
573 	qh->unlink_reason = 0;
574 
575 	/* update per-qh bandwidth for debugfs */
576 	ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->ps.bw_period
577 		? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period)
578 		: (qh->ps.usecs * 8);
579 
580 	list_add(&qh->intr_node, &ehci->intr_qh_list);
581 
582 	/* maybe enable periodic schedule processing */
583 	++ehci->intr_count;
584 	enable_periodic(ehci);
585 }
586 
587 static void qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
588 {
589 	unsigned	i;
590 	unsigned	period;
591 
592 	/*
593 	 * If qh is for a low/full-speed device, simply unlinking it
594 	 * could interfere with an ongoing split transaction.  To unlink
595 	 * it safely would require setting the QH_INACTIVATE bit and
596 	 * waiting at least one frame, as described in EHCI 4.12.2.5.
597 	 *
598 	 * We won't bother with any of this.  Instead, we assume that the
599 	 * only reason for unlinking an interrupt QH while the current URB
600 	 * is still active is to dequeue all the URBs (flush the whole
601 	 * endpoint queue).
602 	 *
603 	 * If rebalancing the periodic schedule is ever implemented, this
604 	 * approach will no longer be valid.
605 	 */
606 
607 	/* high bandwidth, or otherwise part of every microframe */
608 	period = qh->ps.period ? : 1;
609 
610 	for (i = qh->ps.phase; i < ehci->periodic_size; i += period)
611 		periodic_unlink(ehci, i, qh);
612 
613 	/* update per-qh bandwidth for debugfs */
614 	ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->ps.bw_period
615 		? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period)
616 		: (qh->ps.usecs * 8);
617 
618 	dev_dbg(&qh->ps.udev->dev,
619 		"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
620 		qh->ps.period,
621 		hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK),
622 		qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs);
623 
624 	/* qh->qh_next still "live" to HC */
625 	qh->qh_state = QH_STATE_UNLINK;
626 	qh->qh_next.ptr = NULL;
627 
628 	if (ehci->qh_scan_next == qh)
629 		ehci->qh_scan_next = list_entry(qh->intr_node.next,
630 				struct ehci_qh, intr_node);
631 	list_del(&qh->intr_node);
632 }
633 
634 static void cancel_unlink_wait_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
635 {
636 	if (qh->qh_state != QH_STATE_LINKED ||
637 			list_empty(&qh->unlink_node))
638 		return;
639 
640 	list_del_init(&qh->unlink_node);
641 
642 	/*
643 	 * TODO: disable the event of EHCI_HRTIMER_START_UNLINK_INTR for
644 	 * avoiding unnecessary CPU wakeup
645 	 */
646 }
647 
648 static void start_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
649 {
650 	/* If the QH isn't linked then there's nothing we can do. */
651 	if (qh->qh_state != QH_STATE_LINKED)
652 		return;
653 
654 	/* if the qh is waiting for unlink, cancel it now */
655 	cancel_unlink_wait_intr(ehci, qh);
656 
657 	qh_unlink_periodic(ehci, qh);
658 
659 	/* Make sure the unlinks are visible before starting the timer */
660 	wmb();
661 
662 	/*
663 	 * The EHCI spec doesn't say how long it takes the controller to
664 	 * stop accessing an unlinked interrupt QH.  The timer delay is
665 	 * 9 uframes; presumably that will be long enough.
666 	 */
667 	qh->unlink_cycle = ehci->intr_unlink_cycle;
668 
669 	/* New entries go at the end of the intr_unlink list */
670 	list_add_tail(&qh->unlink_node, &ehci->intr_unlink);
671 
672 	if (ehci->intr_unlinking)
673 		;	/* Avoid recursive calls */
674 	else if (ehci->rh_state < EHCI_RH_RUNNING)
675 		ehci_handle_intr_unlinks(ehci);
676 	else if (ehci->intr_unlink.next == &qh->unlink_node) {
677 		ehci_enable_event(ehci, EHCI_HRTIMER_UNLINK_INTR, true);
678 		++ehci->intr_unlink_cycle;
679 	}
680 }
681 
682 /*
683  * It is common only one intr URB is scheduled on one qh, and
684  * given complete() is run in tasklet context, introduce a bit
685  * delay to avoid unlink qh too early.
686  */
687 static void start_unlink_intr_wait(struct ehci_hcd *ehci,
688 				   struct ehci_qh *qh)
689 {
690 	qh->unlink_cycle = ehci->intr_unlink_wait_cycle;
691 
692 	/* New entries go at the end of the intr_unlink_wait list */
693 	list_add_tail(&qh->unlink_node, &ehci->intr_unlink_wait);
694 
695 	if (ehci->rh_state < EHCI_RH_RUNNING)
696 		ehci_handle_start_intr_unlinks(ehci);
697 	else if (ehci->intr_unlink_wait.next == &qh->unlink_node) {
698 		ehci_enable_event(ehci, EHCI_HRTIMER_START_UNLINK_INTR, true);
699 		++ehci->intr_unlink_wait_cycle;
700 	}
701 }
702 
703 static void end_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
704 {
705 	struct ehci_qh_hw	*hw = qh->hw;
706 	int			rc;
707 
708 	qh->qh_state = QH_STATE_IDLE;
709 	hw->hw_next = EHCI_LIST_END(ehci);
710 
711 	if (!list_empty(&qh->qtd_list))
712 		qh_completions(ehci, qh);
713 
714 	/* reschedule QH iff another request is queued */
715 	if (!list_empty(&qh->qtd_list) && ehci->rh_state == EHCI_RH_RUNNING) {
716 		rc = qh_schedule(ehci, qh);
717 		if (rc == 0) {
718 			qh_refresh(ehci, qh);
719 			qh_link_periodic(ehci, qh);
720 		}
721 
722 		/* An error here likely indicates handshake failure
723 		 * or no space left in the schedule.  Neither fault
724 		 * should happen often ...
725 		 *
726 		 * FIXME kill the now-dysfunctional queued urbs
727 		 */
728 		else {
729 			ehci_err(ehci, "can't reschedule qh %p, err %d\n",
730 					qh, rc);
731 		}
732 	}
733 
734 	/* maybe turn off periodic schedule */
735 	--ehci->intr_count;
736 	disable_periodic(ehci);
737 }
738 
739 /*-------------------------------------------------------------------------*/
740 
741 static int check_period(
742 	struct ehci_hcd *ehci,
743 	unsigned	frame,
744 	unsigned	uframe,
745 	unsigned	uperiod,
746 	unsigned	usecs
747 ) {
748 	/* complete split running into next frame?
749 	 * given FSTN support, we could sometimes check...
750 	 */
751 	if (uframe >= 8)
752 		return 0;
753 
754 	/* convert "usecs we need" to "max already claimed" */
755 	usecs = ehci->uframe_periodic_max - usecs;
756 
757 	for (uframe += frame << 3; uframe < EHCI_BANDWIDTH_SIZE;
758 			uframe += uperiod) {
759 		if (ehci->bandwidth[uframe] > usecs)
760 			return 0;
761 	}
762 
763 	/* success! */
764 	return 1;
765 }
766 
767 static int check_intr_schedule(
768 	struct ehci_hcd		*ehci,
769 	unsigned		frame,
770 	unsigned		uframe,
771 	struct ehci_qh		*qh,
772 	unsigned		*c_maskp,
773 	struct ehci_tt		*tt
774 )
775 {
776 	int		retval = -ENOSPC;
777 	u8		mask = 0;
778 
779 	if (qh->ps.c_usecs && uframe >= 6)	/* FSTN territory? */
780 		goto done;
781 
782 	if (!check_period(ehci, frame, uframe, qh->ps.bw_uperiod, qh->ps.usecs))
783 		goto done;
784 	if (!qh->ps.c_usecs) {
785 		retval = 0;
786 		*c_maskp = 0;
787 		goto done;
788 	}
789 
790 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
791 	if (tt_available(ehci, &qh->ps, tt, frame, uframe)) {
792 		unsigned i;
793 
794 		/* TODO : this may need FSTN for SSPLIT in uframe 5. */
795 		for (i = uframe+2; i < 8 && i <= uframe+4; i++)
796 			if (!check_period(ehci, frame, i,
797 					qh->ps.bw_uperiod, qh->ps.c_usecs))
798 				goto done;
799 			else
800 				mask |= 1 << i;
801 
802 		retval = 0;
803 
804 		*c_maskp = mask;
805 	}
806 #else
807 	/* Make sure this tt's buffer is also available for CSPLITs.
808 	 * We pessimize a bit; probably the typical full speed case
809 	 * doesn't need the second CSPLIT.
810 	 *
811 	 * NOTE:  both SPLIT and CSPLIT could be checked in just
812 	 * one smart pass...
813 	 */
814 	mask = 0x03 << (uframe + qh->gap_uf);
815 	*c_maskp = mask;
816 
817 	mask |= 1 << uframe;
818 	if (tt_no_collision(ehci, qh->ps.bw_period, qh->ps.udev, frame, mask)) {
819 		if (!check_period(ehci, frame, uframe + qh->gap_uf + 1,
820 				qh->ps.bw_uperiod, qh->ps.c_usecs))
821 			goto done;
822 		if (!check_period(ehci, frame, uframe + qh->gap_uf,
823 				qh->ps.bw_uperiod, qh->ps.c_usecs))
824 			goto done;
825 		retval = 0;
826 	}
827 #endif
828 done:
829 	return retval;
830 }
831 
832 /* "first fit" scheduling policy used the first time through,
833  * or when the previous schedule slot can't be re-used.
834  */
835 static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh)
836 {
837 	int		status = 0;
838 	unsigned	uframe;
839 	unsigned	c_mask;
840 	struct ehci_qh_hw	*hw = qh->hw;
841 	struct ehci_tt		*tt;
842 
843 	hw->hw_next = EHCI_LIST_END(ehci);
844 
845 	/* reuse the previous schedule slots, if we can */
846 	if (qh->ps.phase != NO_FRAME) {
847 		ehci_dbg(ehci, "reused qh %p schedule\n", qh);
848 		return 0;
849 	}
850 
851 	uframe = 0;
852 	c_mask = 0;
853 	tt = find_tt(qh->ps.udev);
854 	if (IS_ERR(tt)) {
855 		status = PTR_ERR(tt);
856 		goto done;
857 	}
858 	compute_tt_budget(ehci->tt_budget, tt);
859 
860 	/* else scan the schedule to find a group of slots such that all
861 	 * uframes have enough periodic bandwidth available.
862 	 */
863 	/* "normal" case, uframing flexible except with splits */
864 	if (qh->ps.bw_period) {
865 		int		i;
866 		unsigned	frame;
867 
868 		for (i = qh->ps.bw_period; i > 0; --i) {
869 			frame = ++ehci->random_frame & (qh->ps.bw_period - 1);
870 			for (uframe = 0; uframe < 8; uframe++) {
871 				status = check_intr_schedule(ehci,
872 						frame, uframe, qh, &c_mask, tt);
873 				if (status == 0)
874 					goto got_it;
875 			}
876 		}
877 
878 	/* qh->ps.bw_period == 0 means every uframe */
879 	} else {
880 		status = check_intr_schedule(ehci, 0, 0, qh, &c_mask, tt);
881 	}
882 	if (status)
883 		goto done;
884 
885  got_it:
886 	qh->ps.phase = (qh->ps.period ? ehci->random_frame &
887 			(qh->ps.period - 1) : 0);
888 	qh->ps.bw_phase = qh->ps.phase & (qh->ps.bw_period - 1);
889 	qh->ps.phase_uf = uframe;
890 	qh->ps.cs_mask = qh->ps.period ?
891 			(c_mask << 8) | (1 << uframe) :
892 			QH_SMASK;
893 
894 	/* reset S-frame and (maybe) C-frame masks */
895 	hw->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK));
896 	hw->hw_info2 |= cpu_to_hc32(ehci, qh->ps.cs_mask);
897 	reserve_release_intr_bandwidth(ehci, qh, 1);
898 
899 done:
900 	return status;
901 }
902 
903 static int intr_submit(
904 	struct ehci_hcd		*ehci,
905 	struct urb		*urb,
906 	struct list_head	*qtd_list,
907 	gfp_t			mem_flags
908 ) {
909 	unsigned		epnum;
910 	unsigned long		flags;
911 	struct ehci_qh		*qh;
912 	int			status;
913 	struct list_head	empty;
914 
915 	/* get endpoint and transfer/schedule data */
916 	epnum = urb->ep->desc.bEndpointAddress;
917 
918 	spin_lock_irqsave(&ehci->lock, flags);
919 
920 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
921 		status = -ESHUTDOWN;
922 		goto done_not_linked;
923 	}
924 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
925 	if (unlikely(status))
926 		goto done_not_linked;
927 
928 	/* get qh and force any scheduling errors */
929 	INIT_LIST_HEAD(&empty);
930 	qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv);
931 	if (qh == NULL) {
932 		status = -ENOMEM;
933 		goto done;
934 	}
935 	if (qh->qh_state == QH_STATE_IDLE) {
936 		status = qh_schedule(ehci, qh);
937 		if (status)
938 			goto done;
939 	}
940 
941 	/* then queue the urb's tds to the qh */
942 	qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
943 	BUG_ON(qh == NULL);
944 
945 	/* stuff into the periodic schedule */
946 	if (qh->qh_state == QH_STATE_IDLE) {
947 		qh_refresh(ehci, qh);
948 		qh_link_periodic(ehci, qh);
949 	} else {
950 		/* cancel unlink wait for the qh */
951 		cancel_unlink_wait_intr(ehci, qh);
952 	}
953 
954 	/* ... update usbfs periodic stats */
955 	ehci_to_hcd(ehci)->self.bandwidth_int_reqs++;
956 
957 done:
958 	if (unlikely(status))
959 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
960 done_not_linked:
961 	spin_unlock_irqrestore(&ehci->lock, flags);
962 	if (status)
963 		qtd_list_free(ehci, urb, qtd_list);
964 
965 	return status;
966 }
967 
968 static void scan_intr(struct ehci_hcd *ehci)
969 {
970 	struct ehci_qh		*qh;
971 
972 	list_for_each_entry_safe(qh, ehci->qh_scan_next, &ehci->intr_qh_list,
973 			intr_node) {
974 
975 		/* clean any finished work for this qh */
976 		if (!list_empty(&qh->qtd_list)) {
977 			int temp;
978 
979 			/*
980 			 * Unlinks could happen here; completion reporting
981 			 * drops the lock.  That's why ehci->qh_scan_next
982 			 * always holds the next qh to scan; if the next qh
983 			 * gets unlinked then ehci->qh_scan_next is adjusted
984 			 * in qh_unlink_periodic().
985 			 */
986 			temp = qh_completions(ehci, qh);
987 			if (unlikely(temp))
988 				start_unlink_intr(ehci, qh);
989 			else if (unlikely(list_empty(&qh->qtd_list) &&
990 					qh->qh_state == QH_STATE_LINKED))
991 				start_unlink_intr_wait(ehci, qh);
992 		}
993 	}
994 }
995 
996 /*-------------------------------------------------------------------------*/
997 
998 /* ehci_iso_stream ops work with both ITD and SITD */
999 
1000 static struct ehci_iso_stream *
1001 iso_stream_alloc(gfp_t mem_flags)
1002 {
1003 	struct ehci_iso_stream *stream;
1004 
1005 	stream = kzalloc(sizeof(*stream), mem_flags);
1006 	if (likely(stream != NULL)) {
1007 		INIT_LIST_HEAD(&stream->td_list);
1008 		INIT_LIST_HEAD(&stream->free_list);
1009 		stream->next_uframe = NO_FRAME;
1010 		stream->ps.phase = NO_FRAME;
1011 	}
1012 	return stream;
1013 }
1014 
1015 static void
1016 iso_stream_init(
1017 	struct ehci_hcd		*ehci,
1018 	struct ehci_iso_stream	*stream,
1019 	struct urb		*urb
1020 )
1021 {
1022 	static const u8 smask_out[] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f };
1023 
1024 	struct usb_device	*dev = urb->dev;
1025 	u32			buf1;
1026 	unsigned		epnum, maxp;
1027 	int			is_input;
1028 	unsigned		tmp;
1029 
1030 	/*
1031 	 * this might be a "high bandwidth" highspeed endpoint,
1032 	 * as encoded in the ep descriptor's wMaxPacket field
1033 	 */
1034 	epnum = usb_pipeendpoint(urb->pipe);
1035 	is_input = usb_pipein(urb->pipe) ? USB_DIR_IN : 0;
1036 	maxp = usb_endpoint_maxp(&urb->ep->desc);
1037 	buf1 = is_input ? 1 << 11 : 0;
1038 
1039 	/* knows about ITD vs SITD */
1040 	if (dev->speed == USB_SPEED_HIGH) {
1041 		unsigned multi = usb_endpoint_maxp_mult(&urb->ep->desc);
1042 
1043 		stream->highspeed = 1;
1044 
1045 		buf1 |= maxp;
1046 		maxp *= multi;
1047 
1048 		stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum);
1049 		stream->buf1 = cpu_to_hc32(ehci, buf1);
1050 		stream->buf2 = cpu_to_hc32(ehci, multi);
1051 
1052 		/* usbfs wants to report the average usecs per frame tied up
1053 		 * when transfers on this endpoint are scheduled ...
1054 		 */
1055 		stream->ps.usecs = HS_USECS_ISO(maxp);
1056 
1057 		/* period for bandwidth allocation */
1058 		tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE,
1059 				1 << (urb->ep->desc.bInterval - 1));
1060 
1061 		/* Allow urb->interval to override */
1062 		stream->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval);
1063 
1064 		stream->uperiod = urb->interval;
1065 		stream->ps.period = urb->interval >> 3;
1066 		stream->bandwidth = stream->ps.usecs * 8 /
1067 				stream->ps.bw_uperiod;
1068 
1069 	} else {
1070 		u32		addr;
1071 		int		think_time;
1072 		int		hs_transfers;
1073 
1074 		addr = dev->ttport << 24;
1075 		if (!ehci_is_TDI(ehci)
1076 				|| (dev->tt->hub !=
1077 					ehci_to_hcd(ehci)->self.root_hub))
1078 			addr |= dev->tt->hub->devnum << 16;
1079 		addr |= epnum << 8;
1080 		addr |= dev->devnum;
1081 		stream->ps.usecs = HS_USECS_ISO(maxp);
1082 		think_time = dev->tt->think_time;
1083 		stream->ps.tt_usecs = NS_TO_US(think_time + usb_calc_bus_time(
1084 				dev->speed, is_input, 1, maxp));
1085 		hs_transfers = max(1u, (maxp + 187) / 188);
1086 		if (is_input) {
1087 			u32	tmp;
1088 
1089 			addr |= 1 << 31;
1090 			stream->ps.c_usecs = stream->ps.usecs;
1091 			stream->ps.usecs = HS_USECS_ISO(1);
1092 			stream->ps.cs_mask = 1;
1093 
1094 			/* c-mask as specified in USB 2.0 11.18.4 3.c */
1095 			tmp = (1 << (hs_transfers + 2)) - 1;
1096 			stream->ps.cs_mask |= tmp << (8 + 2);
1097 		} else
1098 			stream->ps.cs_mask = smask_out[hs_transfers - 1];
1099 
1100 		/* period for bandwidth allocation */
1101 		tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES,
1102 				1 << (urb->ep->desc.bInterval - 1));
1103 
1104 		/* Allow urb->interval to override */
1105 		stream->ps.bw_period = min_t(unsigned, tmp, urb->interval);
1106 		stream->ps.bw_uperiod = stream->ps.bw_period << 3;
1107 
1108 		stream->ps.period = urb->interval;
1109 		stream->uperiod = urb->interval << 3;
1110 		stream->bandwidth = (stream->ps.usecs + stream->ps.c_usecs) /
1111 				stream->ps.bw_period;
1112 
1113 		/* stream->splits gets created from cs_mask later */
1114 		stream->address = cpu_to_hc32(ehci, addr);
1115 	}
1116 
1117 	stream->ps.udev = dev;
1118 	stream->ps.ep = urb->ep;
1119 
1120 	stream->bEndpointAddress = is_input | epnum;
1121 	stream->maxp = maxp;
1122 }
1123 
1124 static struct ehci_iso_stream *
1125 iso_stream_find(struct ehci_hcd *ehci, struct urb *urb)
1126 {
1127 	unsigned		epnum;
1128 	struct ehci_iso_stream	*stream;
1129 	struct usb_host_endpoint *ep;
1130 	unsigned long		flags;
1131 
1132 	epnum = usb_pipeendpoint (urb->pipe);
1133 	if (usb_pipein(urb->pipe))
1134 		ep = urb->dev->ep_in[epnum];
1135 	else
1136 		ep = urb->dev->ep_out[epnum];
1137 
1138 	spin_lock_irqsave(&ehci->lock, flags);
1139 	stream = ep->hcpriv;
1140 
1141 	if (unlikely(stream == NULL)) {
1142 		stream = iso_stream_alloc(GFP_ATOMIC);
1143 		if (likely(stream != NULL)) {
1144 			ep->hcpriv = stream;
1145 			iso_stream_init(ehci, stream, urb);
1146 		}
1147 
1148 	/* if dev->ep [epnum] is a QH, hw is set */
1149 	} else if (unlikely(stream->hw != NULL)) {
1150 		ehci_dbg(ehci, "dev %s ep%d%s, not iso??\n",
1151 			urb->dev->devpath, epnum,
1152 			usb_pipein(urb->pipe) ? "in" : "out");
1153 		stream = NULL;
1154 	}
1155 
1156 	spin_unlock_irqrestore(&ehci->lock, flags);
1157 	return stream;
1158 }
1159 
1160 /*-------------------------------------------------------------------------*/
1161 
1162 /* ehci_iso_sched ops can be ITD-only or SITD-only */
1163 
1164 static struct ehci_iso_sched *
1165 iso_sched_alloc(unsigned packets, gfp_t mem_flags)
1166 {
1167 	struct ehci_iso_sched	*iso_sched;
1168 	int			size = sizeof(*iso_sched);
1169 
1170 	size += packets * sizeof(struct ehci_iso_packet);
1171 	iso_sched = kzalloc(size, mem_flags);
1172 	if (likely(iso_sched != NULL))
1173 		INIT_LIST_HEAD(&iso_sched->td_list);
1174 
1175 	return iso_sched;
1176 }
1177 
1178 static inline void
1179 itd_sched_init(
1180 	struct ehci_hcd		*ehci,
1181 	struct ehci_iso_sched	*iso_sched,
1182 	struct ehci_iso_stream	*stream,
1183 	struct urb		*urb
1184 )
1185 {
1186 	unsigned	i;
1187 	dma_addr_t	dma = urb->transfer_dma;
1188 
1189 	/* how many uframes are needed for these transfers */
1190 	iso_sched->span = urb->number_of_packets * stream->uperiod;
1191 
1192 	/* figure out per-uframe itd fields that we'll need later
1193 	 * when we fit new itds into the schedule.
1194 	 */
1195 	for (i = 0; i < urb->number_of_packets; i++) {
1196 		struct ehci_iso_packet	*uframe = &iso_sched->packet[i];
1197 		unsigned		length;
1198 		dma_addr_t		buf;
1199 		u32			trans;
1200 
1201 		length = urb->iso_frame_desc[i].length;
1202 		buf = dma + urb->iso_frame_desc[i].offset;
1203 
1204 		trans = EHCI_ISOC_ACTIVE;
1205 		trans |= buf & 0x0fff;
1206 		if (unlikely(((i + 1) == urb->number_of_packets))
1207 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
1208 			trans |= EHCI_ITD_IOC;
1209 		trans |= length << 16;
1210 		uframe->transaction = cpu_to_hc32(ehci, trans);
1211 
1212 		/* might need to cross a buffer page within a uframe */
1213 		uframe->bufp = (buf & ~(u64)0x0fff);
1214 		buf += length;
1215 		if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
1216 			uframe->cross = 1;
1217 	}
1218 }
1219 
1220 static void
1221 iso_sched_free(
1222 	struct ehci_iso_stream	*stream,
1223 	struct ehci_iso_sched	*iso_sched
1224 )
1225 {
1226 	if (!iso_sched)
1227 		return;
1228 	/* caller must hold ehci->lock! */
1229 	list_splice(&iso_sched->td_list, &stream->free_list);
1230 	kfree(iso_sched);
1231 }
1232 
1233 static int
1234 itd_urb_transaction(
1235 	struct ehci_iso_stream	*stream,
1236 	struct ehci_hcd		*ehci,
1237 	struct urb		*urb,
1238 	gfp_t			mem_flags
1239 )
1240 {
1241 	struct ehci_itd		*itd;
1242 	dma_addr_t		itd_dma;
1243 	int			i;
1244 	unsigned		num_itds;
1245 	struct ehci_iso_sched	*sched;
1246 	unsigned long		flags;
1247 
1248 	sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
1249 	if (unlikely(sched == NULL))
1250 		return -ENOMEM;
1251 
1252 	itd_sched_init(ehci, sched, stream, urb);
1253 
1254 	if (urb->interval < 8)
1255 		num_itds = 1 + (sched->span + 7) / 8;
1256 	else
1257 		num_itds = urb->number_of_packets;
1258 
1259 	/* allocate/init ITDs */
1260 	spin_lock_irqsave(&ehci->lock, flags);
1261 	for (i = 0; i < num_itds; i++) {
1262 
1263 		/*
1264 		 * Use iTDs from the free list, but not iTDs that may
1265 		 * still be in use by the hardware.
1266 		 */
1267 		if (likely(!list_empty(&stream->free_list))) {
1268 			itd = list_first_entry(&stream->free_list,
1269 					struct ehci_itd, itd_list);
1270 			if (itd->frame == ehci->now_frame)
1271 				goto alloc_itd;
1272 			list_del(&itd->itd_list);
1273 			itd_dma = itd->itd_dma;
1274 		} else {
1275  alloc_itd:
1276 			spin_unlock_irqrestore(&ehci->lock, flags);
1277 			itd = dma_pool_alloc(ehci->itd_pool, mem_flags,
1278 					&itd_dma);
1279 			spin_lock_irqsave(&ehci->lock, flags);
1280 			if (!itd) {
1281 				iso_sched_free(stream, sched);
1282 				spin_unlock_irqrestore(&ehci->lock, flags);
1283 				return -ENOMEM;
1284 			}
1285 		}
1286 
1287 		memset(itd, 0, sizeof(*itd));
1288 		itd->itd_dma = itd_dma;
1289 		itd->frame = NO_FRAME;
1290 		list_add(&itd->itd_list, &sched->td_list);
1291 	}
1292 	spin_unlock_irqrestore(&ehci->lock, flags);
1293 
1294 	/* temporarily store schedule info in hcpriv */
1295 	urb->hcpriv = sched;
1296 	urb->error_count = 0;
1297 	return 0;
1298 }
1299 
1300 /*-------------------------------------------------------------------------*/
1301 
1302 static void reserve_release_iso_bandwidth(struct ehci_hcd *ehci,
1303 		struct ehci_iso_stream *stream, int sign)
1304 {
1305 	unsigned		uframe;
1306 	unsigned		i, j;
1307 	unsigned		s_mask, c_mask, m;
1308 	int			usecs = stream->ps.usecs;
1309 	int			c_usecs = stream->ps.c_usecs;
1310 	int			tt_usecs = stream->ps.tt_usecs;
1311 	struct ehci_tt		*tt;
1312 
1313 	if (stream->ps.phase == NO_FRAME)	/* Bandwidth wasn't reserved */
1314 		return;
1315 	uframe = stream->ps.bw_phase << 3;
1316 
1317 	bandwidth_dbg(ehci, sign, "iso", &stream->ps);
1318 
1319 	if (sign < 0) {		/* Release bandwidth */
1320 		usecs = -usecs;
1321 		c_usecs = -c_usecs;
1322 		tt_usecs = -tt_usecs;
1323 	}
1324 
1325 	if (!stream->splits) {		/* High speed */
1326 		for (i = uframe + stream->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE;
1327 				i += stream->ps.bw_uperiod)
1328 			ehci->bandwidth[i] += usecs;
1329 
1330 	} else {			/* Full speed */
1331 		s_mask = stream->ps.cs_mask;
1332 		c_mask = s_mask >> 8;
1333 
1334 		/* NOTE: adjustment needed for frame overflow */
1335 		for (i = uframe; i < EHCI_BANDWIDTH_SIZE;
1336 				i += stream->ps.bw_uperiod) {
1337 			for ((j = stream->ps.phase_uf, m = 1 << j); j < 8;
1338 					(++j, m <<= 1)) {
1339 				if (s_mask & m)
1340 					ehci->bandwidth[i+j] += usecs;
1341 				else if (c_mask & m)
1342 					ehci->bandwidth[i+j] += c_usecs;
1343 			}
1344 		}
1345 
1346 		/*
1347 		 * find_tt() will not return any error here as we have
1348 		 * already called find_tt() before calling this function
1349 		 * and checked for any error return. The previous call
1350 		 * would have created the data structure.
1351 		 */
1352 		tt = find_tt(stream->ps.udev);
1353 		if (sign > 0)
1354 			list_add_tail(&stream->ps.ps_list, &tt->ps_list);
1355 		else
1356 			list_del(&stream->ps.ps_list);
1357 
1358 		for (i = uframe >> 3; i < EHCI_BANDWIDTH_FRAMES;
1359 				i += stream->ps.bw_period)
1360 			tt->bandwidth[i] += tt_usecs;
1361 	}
1362 }
1363 
1364 static inline int
1365 itd_slot_ok(
1366 	struct ehci_hcd		*ehci,
1367 	struct ehci_iso_stream	*stream,
1368 	unsigned		uframe
1369 )
1370 {
1371 	unsigned		usecs;
1372 
1373 	/* convert "usecs we need" to "max already claimed" */
1374 	usecs = ehci->uframe_periodic_max - stream->ps.usecs;
1375 
1376 	for (uframe &= stream->ps.bw_uperiod - 1; uframe < EHCI_BANDWIDTH_SIZE;
1377 			uframe += stream->ps.bw_uperiod) {
1378 		if (ehci->bandwidth[uframe] > usecs)
1379 			return 0;
1380 	}
1381 	return 1;
1382 }
1383 
1384 static inline int
1385 sitd_slot_ok(
1386 	struct ehci_hcd		*ehci,
1387 	struct ehci_iso_stream	*stream,
1388 	unsigned		uframe,
1389 	struct ehci_iso_sched	*sched,
1390 	struct ehci_tt		*tt
1391 )
1392 {
1393 	unsigned		mask, tmp;
1394 	unsigned		frame, uf;
1395 
1396 	mask = stream->ps.cs_mask << (uframe & 7);
1397 
1398 	/* for OUT, don't wrap SSPLIT into H-microframe 7 */
1399 	if (((stream->ps.cs_mask & 0xff) << (uframe & 7)) >= (1 << 7))
1400 		return 0;
1401 
1402 	/* for IN, don't wrap CSPLIT into the next frame */
1403 	if (mask & ~0xffff)
1404 		return 0;
1405 
1406 	/* check bandwidth */
1407 	uframe &= stream->ps.bw_uperiod - 1;
1408 	frame = uframe >> 3;
1409 
1410 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
1411 	/* The tt's fullspeed bus bandwidth must be available.
1412 	 * tt_available scheduling guarantees 10+% for control/bulk.
1413 	 */
1414 	uf = uframe & 7;
1415 	if (!tt_available(ehci, &stream->ps, tt, frame, uf))
1416 		return 0;
1417 #else
1418 	/* tt must be idle for start(s), any gap, and csplit.
1419 	 * assume scheduling slop leaves 10+% for control/bulk.
1420 	 */
1421 	if (!tt_no_collision(ehci, stream->ps.bw_period,
1422 			stream->ps.udev, frame, mask))
1423 		return 0;
1424 #endif
1425 
1426 	do {
1427 		unsigned	max_used;
1428 		unsigned	i;
1429 
1430 		/* check starts (OUT uses more than one) */
1431 		uf = uframe;
1432 		max_used = ehci->uframe_periodic_max - stream->ps.usecs;
1433 		for (tmp = stream->ps.cs_mask & 0xff; tmp; tmp >>= 1, uf++) {
1434 			if (ehci->bandwidth[uf] > max_used)
1435 				return 0;
1436 		}
1437 
1438 		/* for IN, check CSPLIT */
1439 		if (stream->ps.c_usecs) {
1440 			max_used = ehci->uframe_periodic_max -
1441 					stream->ps.c_usecs;
1442 			uf = uframe & ~7;
1443 			tmp = 1 << (2+8);
1444 			for (i = (uframe & 7) + 2; i < 8; (++i, tmp <<= 1)) {
1445 				if ((stream->ps.cs_mask & tmp) == 0)
1446 					continue;
1447 				if (ehci->bandwidth[uf+i] > max_used)
1448 					return 0;
1449 			}
1450 		}
1451 
1452 		uframe += stream->ps.bw_uperiod;
1453 	} while (uframe < EHCI_BANDWIDTH_SIZE);
1454 
1455 	stream->ps.cs_mask <<= uframe & 7;
1456 	stream->splits = cpu_to_hc32(ehci, stream->ps.cs_mask);
1457 	return 1;
1458 }
1459 
1460 /*
1461  * This scheduler plans almost as far into the future as it has actual
1462  * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
1463  * "as small as possible" to be cache-friendlier.)  That limits the size
1464  * transfers you can stream reliably; avoid more than 64 msec per urb.
1465  * Also avoid queue depths of less than ehci's worst irq latency (affected
1466  * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
1467  * and other factors); or more than about 230 msec total (for portability,
1468  * given EHCI_TUNE_FLS and the slop).  Or, write a smarter scheduler!
1469  */
1470 
1471 static int
1472 iso_stream_schedule(
1473 	struct ehci_hcd		*ehci,
1474 	struct urb		*urb,
1475 	struct ehci_iso_stream	*stream
1476 )
1477 {
1478 	u32			now, base, next, start, period, span, now2;
1479 	u32			wrap = 0, skip = 0;
1480 	int			status = 0;
1481 	unsigned		mod = ehci->periodic_size << 3;
1482 	struct ehci_iso_sched	*sched = urb->hcpriv;
1483 	bool			empty = list_empty(&stream->td_list);
1484 	bool			new_stream = false;
1485 
1486 	period = stream->uperiod;
1487 	span = sched->span;
1488 	if (!stream->highspeed)
1489 		span <<= 3;
1490 
1491 	/* Start a new isochronous stream? */
1492 	if (unlikely(empty && !hcd_periodic_completion_in_progress(
1493 			ehci_to_hcd(ehci), urb->ep))) {
1494 
1495 		/* Schedule the endpoint */
1496 		if (stream->ps.phase == NO_FRAME) {
1497 			int		done = 0;
1498 			struct ehci_tt	*tt = find_tt(stream->ps.udev);
1499 
1500 			if (IS_ERR(tt)) {
1501 				status = PTR_ERR(tt);
1502 				goto fail;
1503 			}
1504 			compute_tt_budget(ehci->tt_budget, tt);
1505 
1506 			start = ((-(++ehci->random_frame)) << 3) & (period - 1);
1507 
1508 			/* find a uframe slot with enough bandwidth.
1509 			 * Early uframes are more precious because full-speed
1510 			 * iso IN transfers can't use late uframes,
1511 			 * and therefore they should be allocated last.
1512 			 */
1513 			next = start;
1514 			start += period;
1515 			do {
1516 				start--;
1517 				/* check schedule: enough space? */
1518 				if (stream->highspeed) {
1519 					if (itd_slot_ok(ehci, stream, start))
1520 						done = 1;
1521 				} else {
1522 					if ((start % 8) >= 6)
1523 						continue;
1524 					if (sitd_slot_ok(ehci, stream, start,
1525 							sched, tt))
1526 						done = 1;
1527 				}
1528 			} while (start > next && !done);
1529 
1530 			/* no room in the schedule */
1531 			if (!done) {
1532 				ehci_dbg(ehci, "iso sched full %p", urb);
1533 				status = -ENOSPC;
1534 				goto fail;
1535 			}
1536 			stream->ps.phase = (start >> 3) &
1537 					(stream->ps.period - 1);
1538 			stream->ps.bw_phase = stream->ps.phase &
1539 					(stream->ps.bw_period - 1);
1540 			stream->ps.phase_uf = start & 7;
1541 			reserve_release_iso_bandwidth(ehci, stream, 1);
1542 		}
1543 
1544 		/* New stream is already scheduled; use the upcoming slot */
1545 		else {
1546 			start = (stream->ps.phase << 3) + stream->ps.phase_uf;
1547 		}
1548 
1549 		stream->next_uframe = start;
1550 		new_stream = true;
1551 	}
1552 
1553 	now = ehci_read_frame_index(ehci) & (mod - 1);
1554 
1555 	/* Take the isochronous scheduling threshold into account */
1556 	if (ehci->i_thresh)
1557 		next = now + ehci->i_thresh;	/* uframe cache */
1558 	else
1559 		next = (now + 2 + 7) & ~0x07;	/* full frame cache */
1560 
1561 	/* If needed, initialize last_iso_frame so that this URB will be seen */
1562 	if (ehci->isoc_count == 0)
1563 		ehci->last_iso_frame = now >> 3;
1564 
1565 	/*
1566 	 * Use ehci->last_iso_frame as the base.  There can't be any
1567 	 * TDs scheduled for earlier than that.
1568 	 */
1569 	base = ehci->last_iso_frame << 3;
1570 	next = (next - base) & (mod - 1);
1571 	start = (stream->next_uframe - base) & (mod - 1);
1572 
1573 	if (unlikely(new_stream))
1574 		goto do_ASAP;
1575 
1576 	/*
1577 	 * Typical case: reuse current schedule, stream may still be active.
1578 	 * Hopefully there are no gaps from the host falling behind
1579 	 * (irq delays etc).  If there are, the behavior depends on
1580 	 * whether URB_ISO_ASAP is set.
1581 	 */
1582 	now2 = (now - base) & (mod - 1);
1583 
1584 	/* Is the schedule about to wrap around? */
1585 	if (unlikely(!empty && start < period)) {
1586 		ehci_dbg(ehci, "request %p would overflow (%u-%u < %u mod %u)\n",
1587 				urb, stream->next_uframe, base, period, mod);
1588 		status = -EFBIG;
1589 		goto fail;
1590 	}
1591 
1592 	/* Is the next packet scheduled after the base time? */
1593 	if (likely(!empty || start <= now2 + period)) {
1594 
1595 		/* URB_ISO_ASAP: make sure that start >= next */
1596 		if (unlikely(start < next &&
1597 				(urb->transfer_flags & URB_ISO_ASAP)))
1598 			goto do_ASAP;
1599 
1600 		/* Otherwise use start, if it's not in the past */
1601 		if (likely(start >= now2))
1602 			goto use_start;
1603 
1604 	/* Otherwise we got an underrun while the queue was empty */
1605 	} else {
1606 		if (urb->transfer_flags & URB_ISO_ASAP)
1607 			goto do_ASAP;
1608 		wrap = mod;
1609 		now2 += mod;
1610 	}
1611 
1612 	/* How many uframes and packets do we need to skip? */
1613 	skip = (now2 - start + period - 1) & -period;
1614 	if (skip >= span) {		/* Entirely in the past? */
1615 		ehci_dbg(ehci, "iso underrun %p (%u+%u < %u) [%u]\n",
1616 				urb, start + base, span - period, now2 + base,
1617 				base);
1618 
1619 		/* Try to keep the last TD intact for scanning later */
1620 		skip = span - period;
1621 
1622 		/* Will it come before the current scan position? */
1623 		if (empty) {
1624 			skip = span;	/* Skip the entire URB */
1625 			status = 1;	/* and give it back immediately */
1626 			iso_sched_free(stream, sched);
1627 			sched = NULL;
1628 		}
1629 	}
1630 	urb->error_count = skip / period;
1631 	if (sched)
1632 		sched->first_packet = urb->error_count;
1633 	goto use_start;
1634 
1635  do_ASAP:
1636 	/* Use the first slot after "next" */
1637 	start = next + ((start - next) & (period - 1));
1638 
1639  use_start:
1640 	/* Tried to schedule too far into the future? */
1641 	if (unlikely(start + span - period >= mod + wrap)) {
1642 		ehci_dbg(ehci, "request %p would overflow (%u+%u >= %u)\n",
1643 				urb, start, span - period, mod + wrap);
1644 		status = -EFBIG;
1645 		goto fail;
1646 	}
1647 
1648 	start += base;
1649 	stream->next_uframe = (start + skip) & (mod - 1);
1650 
1651 	/* report high speed start in uframes; full speed, in frames */
1652 	urb->start_frame = start & (mod - 1);
1653 	if (!stream->highspeed)
1654 		urb->start_frame >>= 3;
1655 	return status;
1656 
1657  fail:
1658 	iso_sched_free(stream, sched);
1659 	urb->hcpriv = NULL;
1660 	return status;
1661 }
1662 
1663 /*-------------------------------------------------------------------------*/
1664 
1665 static inline void
1666 itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream,
1667 		struct ehci_itd *itd)
1668 {
1669 	int i;
1670 
1671 	/* it's been recently zeroed */
1672 	itd->hw_next = EHCI_LIST_END(ehci);
1673 	itd->hw_bufp[0] = stream->buf0;
1674 	itd->hw_bufp[1] = stream->buf1;
1675 	itd->hw_bufp[2] = stream->buf2;
1676 
1677 	for (i = 0; i < 8; i++)
1678 		itd->index[i] = -1;
1679 
1680 	/* All other fields are filled when scheduling */
1681 }
1682 
1683 static inline void
1684 itd_patch(
1685 	struct ehci_hcd		*ehci,
1686 	struct ehci_itd		*itd,
1687 	struct ehci_iso_sched	*iso_sched,
1688 	unsigned		index,
1689 	u16			uframe
1690 )
1691 {
1692 	struct ehci_iso_packet	*uf = &iso_sched->packet[index];
1693 	unsigned		pg = itd->pg;
1694 
1695 	/* BUG_ON(pg == 6 && uf->cross); */
1696 
1697 	uframe &= 0x07;
1698 	itd->index[uframe] = index;
1699 
1700 	itd->hw_transaction[uframe] = uf->transaction;
1701 	itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12);
1702 	itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0);
1703 	itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32));
1704 
1705 	/* iso_frame_desc[].offset must be strictly increasing */
1706 	if (unlikely(uf->cross)) {
1707 		u64	bufp = uf->bufp + 4096;
1708 
1709 		itd->pg = ++pg;
1710 		itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0);
1711 		itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32));
1712 	}
1713 }
1714 
1715 static inline void
1716 itd_link(struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd)
1717 {
1718 	union ehci_shadow	*prev = &ehci->pshadow[frame];
1719 	__hc32			*hw_p = &ehci->periodic[frame];
1720 	union ehci_shadow	here = *prev;
1721 	__hc32			type = 0;
1722 
1723 	/* skip any iso nodes which might belong to previous microframes */
1724 	while (here.ptr) {
1725 		type = Q_NEXT_TYPE(ehci, *hw_p);
1726 		if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
1727 			break;
1728 		prev = periodic_next_shadow(ehci, prev, type);
1729 		hw_p = shadow_next_periodic(ehci, &here, type);
1730 		here = *prev;
1731 	}
1732 
1733 	itd->itd_next = here;
1734 	itd->hw_next = *hw_p;
1735 	prev->itd = itd;
1736 	itd->frame = frame;
1737 	wmb();
1738 	*hw_p = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD);
1739 }
1740 
1741 /* fit urb's itds into the selected schedule slot; activate as needed */
1742 static void itd_link_urb(
1743 	struct ehci_hcd		*ehci,
1744 	struct urb		*urb,
1745 	unsigned		mod,
1746 	struct ehci_iso_stream	*stream
1747 )
1748 {
1749 	int			packet;
1750 	unsigned		next_uframe, uframe, frame;
1751 	struct ehci_iso_sched	*iso_sched = urb->hcpriv;
1752 	struct ehci_itd		*itd;
1753 
1754 	next_uframe = stream->next_uframe & (mod - 1);
1755 
1756 	if (unlikely(list_empty(&stream->td_list)))
1757 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1758 				+= stream->bandwidth;
1759 
1760 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1761 		if (ehci->amd_pll_fix == 1)
1762 			usb_amd_quirk_pll_disable();
1763 	}
1764 
1765 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1766 
1767 	/* fill iTDs uframe by uframe */
1768 	for (packet = iso_sched->first_packet, itd = NULL;
1769 			packet < urb->number_of_packets;) {
1770 		if (itd == NULL) {
1771 			/* ASSERT:  we have all necessary itds */
1772 			/* BUG_ON(list_empty(&iso_sched->td_list)); */
1773 
1774 			/* ASSERT:  no itds for this endpoint in this uframe */
1775 
1776 			itd = list_entry(iso_sched->td_list.next,
1777 					struct ehci_itd, itd_list);
1778 			list_move_tail(&itd->itd_list, &stream->td_list);
1779 			itd->stream = stream;
1780 			itd->urb = urb;
1781 			itd_init(ehci, stream, itd);
1782 		}
1783 
1784 		uframe = next_uframe & 0x07;
1785 		frame = next_uframe >> 3;
1786 
1787 		itd_patch(ehci, itd, iso_sched, packet, uframe);
1788 
1789 		next_uframe += stream->uperiod;
1790 		next_uframe &= mod - 1;
1791 		packet++;
1792 
1793 		/* link completed itds into the schedule */
1794 		if (((next_uframe >> 3) != frame)
1795 				|| packet == urb->number_of_packets) {
1796 			itd_link(ehci, frame & (ehci->periodic_size - 1), itd);
1797 			itd = NULL;
1798 		}
1799 	}
1800 	stream->next_uframe = next_uframe;
1801 
1802 	/* don't need that schedule data any more */
1803 	iso_sched_free(stream, iso_sched);
1804 	urb->hcpriv = stream;
1805 
1806 	++ehci->isoc_count;
1807 	enable_periodic(ehci);
1808 }
1809 
1810 #define	ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR)
1811 
1812 /* Process and recycle a completed ITD.  Return true iff its urb completed,
1813  * and hence its completion callback probably added things to the hardware
1814  * schedule.
1815  *
1816  * Note that we carefully avoid recycling this descriptor until after any
1817  * completion callback runs, so that it won't be reused quickly.  That is,
1818  * assuming (a) no more than two urbs per frame on this endpoint, and also
1819  * (b) only this endpoint's completions submit URBs.  It seems some silicon
1820  * corrupts things if you reuse completed descriptors very quickly...
1821  */
1822 static bool itd_complete(struct ehci_hcd *ehci, struct ehci_itd *itd)
1823 {
1824 	struct urb				*urb = itd->urb;
1825 	struct usb_iso_packet_descriptor	*desc;
1826 	u32					t;
1827 	unsigned				uframe;
1828 	int					urb_index = -1;
1829 	struct ehci_iso_stream			*stream = itd->stream;
1830 	bool					retval = false;
1831 
1832 	/* for each uframe with a packet */
1833 	for (uframe = 0; uframe < 8; uframe++) {
1834 		if (likely(itd->index[uframe] == -1))
1835 			continue;
1836 		urb_index = itd->index[uframe];
1837 		desc = &urb->iso_frame_desc[urb_index];
1838 
1839 		t = hc32_to_cpup(ehci, &itd->hw_transaction[uframe]);
1840 		itd->hw_transaction[uframe] = 0;
1841 
1842 		/* report transfer status */
1843 		if (unlikely(t & ISO_ERRS)) {
1844 			urb->error_count++;
1845 			if (t & EHCI_ISOC_BUF_ERR)
1846 				desc->status = usb_pipein(urb->pipe)
1847 					? -ENOSR  /* hc couldn't read */
1848 					: -ECOMM; /* hc couldn't write */
1849 			else if (t & EHCI_ISOC_BABBLE)
1850 				desc->status = -EOVERFLOW;
1851 			else /* (t & EHCI_ISOC_XACTERR) */
1852 				desc->status = -EPROTO;
1853 
1854 			/* HC need not update length with this error */
1855 			if (!(t & EHCI_ISOC_BABBLE)) {
1856 				desc->actual_length = EHCI_ITD_LENGTH(t);
1857 				urb->actual_length += desc->actual_length;
1858 			}
1859 		} else if (likely((t & EHCI_ISOC_ACTIVE) == 0)) {
1860 			desc->status = 0;
1861 			desc->actual_length = EHCI_ITD_LENGTH(t);
1862 			urb->actual_length += desc->actual_length;
1863 		} else {
1864 			/* URB was too late */
1865 			urb->error_count++;
1866 		}
1867 	}
1868 
1869 	/* handle completion now? */
1870 	if (likely((urb_index + 1) != urb->number_of_packets))
1871 		goto done;
1872 
1873 	/*
1874 	 * ASSERT: it's really the last itd for this urb
1875 	 * list_for_each_entry (itd, &stream->td_list, itd_list)
1876 	 *	 BUG_ON(itd->urb == urb);
1877 	 */
1878 
1879 	/* give urb back to the driver; completion often (re)submits */
1880 	ehci_urb_done(ehci, urb, 0);
1881 	retval = true;
1882 	urb = NULL;
1883 
1884 	--ehci->isoc_count;
1885 	disable_periodic(ehci);
1886 
1887 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
1888 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1889 		if (ehci->amd_pll_fix == 1)
1890 			usb_amd_quirk_pll_enable();
1891 	}
1892 
1893 	if (unlikely(list_is_singular(&stream->td_list)))
1894 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1895 				-= stream->bandwidth;
1896 
1897 done:
1898 	itd->urb = NULL;
1899 
1900 	/* Add to the end of the free list for later reuse */
1901 	list_move_tail(&itd->itd_list, &stream->free_list);
1902 
1903 	/* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
1904 	if (list_empty(&stream->td_list)) {
1905 		list_splice_tail_init(&stream->free_list,
1906 				&ehci->cached_itd_list);
1907 		start_free_itds(ehci);
1908 	}
1909 
1910 	return retval;
1911 }
1912 
1913 /*-------------------------------------------------------------------------*/
1914 
1915 static int itd_submit(struct ehci_hcd *ehci, struct urb *urb,
1916 	gfp_t mem_flags)
1917 {
1918 	int			status = -EINVAL;
1919 	unsigned long		flags;
1920 	struct ehci_iso_stream	*stream;
1921 
1922 	/* Get iso_stream head */
1923 	stream = iso_stream_find(ehci, urb);
1924 	if (unlikely(stream == NULL)) {
1925 		ehci_dbg(ehci, "can't get iso stream\n");
1926 		return -ENOMEM;
1927 	}
1928 	if (unlikely(urb->interval != stream->uperiod)) {
1929 		ehci_dbg(ehci, "can't change iso interval %d --> %d\n",
1930 			stream->uperiod, urb->interval);
1931 		goto done;
1932 	}
1933 
1934 #ifdef EHCI_URB_TRACE
1935 	ehci_dbg(ehci,
1936 		"%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n",
1937 		__func__, urb->dev->devpath, urb,
1938 		usb_pipeendpoint(urb->pipe),
1939 		usb_pipein(urb->pipe) ? "in" : "out",
1940 		urb->transfer_buffer_length,
1941 		urb->number_of_packets, urb->interval,
1942 		stream);
1943 #endif
1944 
1945 	/* allocate ITDs w/o locking anything */
1946 	status = itd_urb_transaction(stream, ehci, urb, mem_flags);
1947 	if (unlikely(status < 0)) {
1948 		ehci_dbg(ehci, "can't init itds\n");
1949 		goto done;
1950 	}
1951 
1952 	/* schedule ... need to lock */
1953 	spin_lock_irqsave(&ehci->lock, flags);
1954 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1955 		status = -ESHUTDOWN;
1956 		goto done_not_linked;
1957 	}
1958 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1959 	if (unlikely(status))
1960 		goto done_not_linked;
1961 	status = iso_stream_schedule(ehci, urb, stream);
1962 	if (likely(status == 0)) {
1963 		itd_link_urb(ehci, urb, ehci->periodic_size << 3, stream);
1964 	} else if (status > 0) {
1965 		status = 0;
1966 		ehci_urb_done(ehci, urb, 0);
1967 	} else {
1968 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1969 	}
1970  done_not_linked:
1971 	spin_unlock_irqrestore(&ehci->lock, flags);
1972  done:
1973 	return status;
1974 }
1975 
1976 /*-------------------------------------------------------------------------*/
1977 
1978 /*
1979  * "Split ISO TDs" ... used for USB 1.1 devices going through the
1980  * TTs in USB 2.0 hubs.  These need microframe scheduling.
1981  */
1982 
1983 static inline void
1984 sitd_sched_init(
1985 	struct ehci_hcd		*ehci,
1986 	struct ehci_iso_sched	*iso_sched,
1987 	struct ehci_iso_stream	*stream,
1988 	struct urb		*urb
1989 )
1990 {
1991 	unsigned	i;
1992 	dma_addr_t	dma = urb->transfer_dma;
1993 
1994 	/* how many frames are needed for these transfers */
1995 	iso_sched->span = urb->number_of_packets * stream->ps.period;
1996 
1997 	/* figure out per-frame sitd fields that we'll need later
1998 	 * when we fit new sitds into the schedule.
1999 	 */
2000 	for (i = 0; i < urb->number_of_packets; i++) {
2001 		struct ehci_iso_packet	*packet = &iso_sched->packet[i];
2002 		unsigned		length;
2003 		dma_addr_t		buf;
2004 		u32			trans;
2005 
2006 		length = urb->iso_frame_desc[i].length & 0x03ff;
2007 		buf = dma + urb->iso_frame_desc[i].offset;
2008 
2009 		trans = SITD_STS_ACTIVE;
2010 		if (((i + 1) == urb->number_of_packets)
2011 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
2012 			trans |= SITD_IOC;
2013 		trans |= length << 16;
2014 		packet->transaction = cpu_to_hc32(ehci, trans);
2015 
2016 		/* might need to cross a buffer page within a td */
2017 		packet->bufp = buf;
2018 		packet->buf1 = (buf + length) & ~0x0fff;
2019 		if (packet->buf1 != (buf & ~(u64)0x0fff))
2020 			packet->cross = 1;
2021 
2022 		/* OUT uses multiple start-splits */
2023 		if (stream->bEndpointAddress & USB_DIR_IN)
2024 			continue;
2025 		length = (length + 187) / 188;
2026 		if (length > 1) /* BEGIN vs ALL */
2027 			length |= 1 << 3;
2028 		packet->buf1 |= length;
2029 	}
2030 }
2031 
2032 static int
2033 sitd_urb_transaction(
2034 	struct ehci_iso_stream	*stream,
2035 	struct ehci_hcd		*ehci,
2036 	struct urb		*urb,
2037 	gfp_t			mem_flags
2038 )
2039 {
2040 	struct ehci_sitd	*sitd;
2041 	dma_addr_t		sitd_dma;
2042 	int			i;
2043 	struct ehci_iso_sched	*iso_sched;
2044 	unsigned long		flags;
2045 
2046 	iso_sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
2047 	if (iso_sched == NULL)
2048 		return -ENOMEM;
2049 
2050 	sitd_sched_init(ehci, iso_sched, stream, urb);
2051 
2052 	/* allocate/init sITDs */
2053 	spin_lock_irqsave(&ehci->lock, flags);
2054 	for (i = 0; i < urb->number_of_packets; i++) {
2055 
2056 		/* NOTE:  for now, we don't try to handle wraparound cases
2057 		 * for IN (using sitd->hw_backpointer, like a FSTN), which
2058 		 * means we never need two sitds for full speed packets.
2059 		 */
2060 
2061 		/*
2062 		 * Use siTDs from the free list, but not siTDs that may
2063 		 * still be in use by the hardware.
2064 		 */
2065 		if (likely(!list_empty(&stream->free_list))) {
2066 			sitd = list_first_entry(&stream->free_list,
2067 					 struct ehci_sitd, sitd_list);
2068 			if (sitd->frame == ehci->now_frame)
2069 				goto alloc_sitd;
2070 			list_del(&sitd->sitd_list);
2071 			sitd_dma = sitd->sitd_dma;
2072 		} else {
2073  alloc_sitd:
2074 			spin_unlock_irqrestore(&ehci->lock, flags);
2075 			sitd = dma_pool_alloc(ehci->sitd_pool, mem_flags,
2076 					&sitd_dma);
2077 			spin_lock_irqsave(&ehci->lock, flags);
2078 			if (!sitd) {
2079 				iso_sched_free(stream, iso_sched);
2080 				spin_unlock_irqrestore(&ehci->lock, flags);
2081 				return -ENOMEM;
2082 			}
2083 		}
2084 
2085 		memset(sitd, 0, sizeof(*sitd));
2086 		sitd->sitd_dma = sitd_dma;
2087 		sitd->frame = NO_FRAME;
2088 		list_add(&sitd->sitd_list, &iso_sched->td_list);
2089 	}
2090 
2091 	/* temporarily store schedule info in hcpriv */
2092 	urb->hcpriv = iso_sched;
2093 	urb->error_count = 0;
2094 
2095 	spin_unlock_irqrestore(&ehci->lock, flags);
2096 	return 0;
2097 }
2098 
2099 /*-------------------------------------------------------------------------*/
2100 
2101 static inline void
2102 sitd_patch(
2103 	struct ehci_hcd		*ehci,
2104 	struct ehci_iso_stream	*stream,
2105 	struct ehci_sitd	*sitd,
2106 	struct ehci_iso_sched	*iso_sched,
2107 	unsigned		index
2108 )
2109 {
2110 	struct ehci_iso_packet	*uf = &iso_sched->packet[index];
2111 	u64			bufp;
2112 
2113 	sitd->hw_next = EHCI_LIST_END(ehci);
2114 	sitd->hw_fullspeed_ep = stream->address;
2115 	sitd->hw_uframe = stream->splits;
2116 	sitd->hw_results = uf->transaction;
2117 	sitd->hw_backpointer = EHCI_LIST_END(ehci);
2118 
2119 	bufp = uf->bufp;
2120 	sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp);
2121 	sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32);
2122 
2123 	sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1);
2124 	if (uf->cross)
2125 		bufp += 4096;
2126 	sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32);
2127 	sitd->index = index;
2128 }
2129 
2130 static inline void
2131 sitd_link(struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd)
2132 {
2133 	/* note: sitd ordering could matter (CSPLIT then SSPLIT) */
2134 	sitd->sitd_next = ehci->pshadow[frame];
2135 	sitd->hw_next = ehci->periodic[frame];
2136 	ehci->pshadow[frame].sitd = sitd;
2137 	sitd->frame = frame;
2138 	wmb();
2139 	ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD);
2140 }
2141 
2142 /* fit urb's sitds into the selected schedule slot; activate as needed */
2143 static void sitd_link_urb(
2144 	struct ehci_hcd		*ehci,
2145 	struct urb		*urb,
2146 	unsigned		mod,
2147 	struct ehci_iso_stream	*stream
2148 )
2149 {
2150 	int			packet;
2151 	unsigned		next_uframe;
2152 	struct ehci_iso_sched	*sched = urb->hcpriv;
2153 	struct ehci_sitd	*sitd;
2154 
2155 	next_uframe = stream->next_uframe;
2156 
2157 	if (list_empty(&stream->td_list))
2158 		/* usbfs ignores TT bandwidth */
2159 		ehci_to_hcd(ehci)->self.bandwidth_allocated
2160 				+= stream->bandwidth;
2161 
2162 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2163 		if (ehci->amd_pll_fix == 1)
2164 			usb_amd_quirk_pll_disable();
2165 	}
2166 
2167 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
2168 
2169 	/* fill sITDs frame by frame */
2170 	for (packet = sched->first_packet, sitd = NULL;
2171 			packet < urb->number_of_packets;
2172 			packet++) {
2173 
2174 		/* ASSERT:  we have all necessary sitds */
2175 		BUG_ON(list_empty(&sched->td_list));
2176 
2177 		/* ASSERT:  no itds for this endpoint in this frame */
2178 
2179 		sitd = list_entry(sched->td_list.next,
2180 				struct ehci_sitd, sitd_list);
2181 		list_move_tail(&sitd->sitd_list, &stream->td_list);
2182 		sitd->stream = stream;
2183 		sitd->urb = urb;
2184 
2185 		sitd_patch(ehci, stream, sitd, sched, packet);
2186 		sitd_link(ehci, (next_uframe >> 3) & (ehci->periodic_size - 1),
2187 				sitd);
2188 
2189 		next_uframe += stream->uperiod;
2190 	}
2191 	stream->next_uframe = next_uframe & (mod - 1);
2192 
2193 	/* don't need that schedule data any more */
2194 	iso_sched_free(stream, sched);
2195 	urb->hcpriv = stream;
2196 
2197 	++ehci->isoc_count;
2198 	enable_periodic(ehci);
2199 }
2200 
2201 /*-------------------------------------------------------------------------*/
2202 
2203 #define	SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \
2204 				| SITD_STS_XACT | SITD_STS_MMF)
2205 
2206 /* Process and recycle a completed SITD.  Return true iff its urb completed,
2207  * and hence its completion callback probably added things to the hardware
2208  * schedule.
2209  *
2210  * Note that we carefully avoid recycling this descriptor until after any
2211  * completion callback runs, so that it won't be reused quickly.  That is,
2212  * assuming (a) no more than two urbs per frame on this endpoint, and also
2213  * (b) only this endpoint's completions submit URBs.  It seems some silicon
2214  * corrupts things if you reuse completed descriptors very quickly...
2215  */
2216 static bool sitd_complete(struct ehci_hcd *ehci, struct ehci_sitd *sitd)
2217 {
2218 	struct urb				*urb = sitd->urb;
2219 	struct usb_iso_packet_descriptor	*desc;
2220 	u32					t;
2221 	int					urb_index;
2222 	struct ehci_iso_stream			*stream = sitd->stream;
2223 	bool					retval = false;
2224 
2225 	urb_index = sitd->index;
2226 	desc = &urb->iso_frame_desc[urb_index];
2227 	t = hc32_to_cpup(ehci, &sitd->hw_results);
2228 
2229 	/* report transfer status */
2230 	if (unlikely(t & SITD_ERRS)) {
2231 		urb->error_count++;
2232 		if (t & SITD_STS_DBE)
2233 			desc->status = usb_pipein(urb->pipe)
2234 				? -ENOSR  /* hc couldn't read */
2235 				: -ECOMM; /* hc couldn't write */
2236 		else if (t & SITD_STS_BABBLE)
2237 			desc->status = -EOVERFLOW;
2238 		else /* XACT, MMF, etc */
2239 			desc->status = -EPROTO;
2240 	} else if (unlikely(t & SITD_STS_ACTIVE)) {
2241 		/* URB was too late */
2242 		urb->error_count++;
2243 	} else {
2244 		desc->status = 0;
2245 		desc->actual_length = desc->length - SITD_LENGTH(t);
2246 		urb->actual_length += desc->actual_length;
2247 	}
2248 
2249 	/* handle completion now? */
2250 	if ((urb_index + 1) != urb->number_of_packets)
2251 		goto done;
2252 
2253 	/*
2254 	 * ASSERT: it's really the last sitd for this urb
2255 	 * list_for_each_entry (sitd, &stream->td_list, sitd_list)
2256 	 *	 BUG_ON(sitd->urb == urb);
2257 	 */
2258 
2259 	/* give urb back to the driver; completion often (re)submits */
2260 	ehci_urb_done(ehci, urb, 0);
2261 	retval = true;
2262 	urb = NULL;
2263 
2264 	--ehci->isoc_count;
2265 	disable_periodic(ehci);
2266 
2267 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
2268 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2269 		if (ehci->amd_pll_fix == 1)
2270 			usb_amd_quirk_pll_enable();
2271 	}
2272 
2273 	if (list_is_singular(&stream->td_list))
2274 		ehci_to_hcd(ehci)->self.bandwidth_allocated
2275 				-= stream->bandwidth;
2276 
2277 done:
2278 	sitd->urb = NULL;
2279 
2280 	/* Add to the end of the free list for later reuse */
2281 	list_move_tail(&sitd->sitd_list, &stream->free_list);
2282 
2283 	/* Recycle the siTDs when the pipeline is empty (ep no longer in use) */
2284 	if (list_empty(&stream->td_list)) {
2285 		list_splice_tail_init(&stream->free_list,
2286 				&ehci->cached_sitd_list);
2287 		start_free_itds(ehci);
2288 	}
2289 
2290 	return retval;
2291 }
2292 
2293 
2294 static int sitd_submit(struct ehci_hcd *ehci, struct urb *urb,
2295 	gfp_t mem_flags)
2296 {
2297 	int			status = -EINVAL;
2298 	unsigned long		flags;
2299 	struct ehci_iso_stream	*stream;
2300 
2301 	/* Get iso_stream head */
2302 	stream = iso_stream_find(ehci, urb);
2303 	if (stream == NULL) {
2304 		ehci_dbg(ehci, "can't get iso stream\n");
2305 		return -ENOMEM;
2306 	}
2307 	if (urb->interval != stream->ps.period) {
2308 		ehci_dbg(ehci, "can't change iso interval %d --> %d\n",
2309 			stream->ps.period, urb->interval);
2310 		goto done;
2311 	}
2312 
2313 #ifdef EHCI_URB_TRACE
2314 	ehci_dbg(ehci,
2315 		"submit %p dev%s ep%d%s-iso len %d\n",
2316 		urb, urb->dev->devpath,
2317 		usb_pipeendpoint(urb->pipe),
2318 		usb_pipein(urb->pipe) ? "in" : "out",
2319 		urb->transfer_buffer_length);
2320 #endif
2321 
2322 	/* allocate SITDs */
2323 	status = sitd_urb_transaction(stream, ehci, urb, mem_flags);
2324 	if (status < 0) {
2325 		ehci_dbg(ehci, "can't init sitds\n");
2326 		goto done;
2327 	}
2328 
2329 	/* schedule ... need to lock */
2330 	spin_lock_irqsave(&ehci->lock, flags);
2331 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
2332 		status = -ESHUTDOWN;
2333 		goto done_not_linked;
2334 	}
2335 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
2336 	if (unlikely(status))
2337 		goto done_not_linked;
2338 	status = iso_stream_schedule(ehci, urb, stream);
2339 	if (likely(status == 0)) {
2340 		sitd_link_urb(ehci, urb, ehci->periodic_size << 3, stream);
2341 	} else if (status > 0) {
2342 		status = 0;
2343 		ehci_urb_done(ehci, urb, 0);
2344 	} else {
2345 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
2346 	}
2347  done_not_linked:
2348 	spin_unlock_irqrestore(&ehci->lock, flags);
2349  done:
2350 	return status;
2351 }
2352 
2353 /*-------------------------------------------------------------------------*/
2354 
2355 static void scan_isoc(struct ehci_hcd *ehci)
2356 {
2357 	unsigned		uf, now_frame, frame;
2358 	unsigned		fmask = ehci->periodic_size - 1;
2359 	bool			modified, live;
2360 	union ehci_shadow	q, *q_p;
2361 	__hc32			type, *hw_p;
2362 
2363 	/*
2364 	 * When running, scan from last scan point up to "now"
2365 	 * else clean up by scanning everything that's left.
2366 	 * Touches as few pages as possible:  cache-friendly.
2367 	 */
2368 	if (ehci->rh_state >= EHCI_RH_RUNNING) {
2369 		uf = ehci_read_frame_index(ehci);
2370 		now_frame = (uf >> 3) & fmask;
2371 		live = true;
2372 	} else  {
2373 		now_frame = (ehci->last_iso_frame - 1) & fmask;
2374 		live = false;
2375 	}
2376 	ehci->now_frame = now_frame;
2377 
2378 	frame = ehci->last_iso_frame;
2379 
2380 restart:
2381 	/* Scan each element in frame's queue for completions */
2382 	q_p = &ehci->pshadow[frame];
2383 	hw_p = &ehci->periodic[frame];
2384 	q.ptr = q_p->ptr;
2385 	type = Q_NEXT_TYPE(ehci, *hw_p);
2386 	modified = false;
2387 
2388 	while (q.ptr != NULL) {
2389 		switch (hc32_to_cpu(ehci, type)) {
2390 		case Q_TYPE_ITD:
2391 			/*
2392 			 * If this ITD is still active, leave it for
2393 			 * later processing ... check the next entry.
2394 			 * No need to check for activity unless the
2395 			 * frame is current.
2396 			 */
2397 			if (frame == now_frame && live) {
2398 				rmb();
2399 				for (uf = 0; uf < 8; uf++) {
2400 					if (q.itd->hw_transaction[uf] &
2401 							ITD_ACTIVE(ehci))
2402 						break;
2403 				}
2404 				if (uf < 8) {
2405 					q_p = &q.itd->itd_next;
2406 					hw_p = &q.itd->hw_next;
2407 					type = Q_NEXT_TYPE(ehci,
2408 							q.itd->hw_next);
2409 					q = *q_p;
2410 					break;
2411 				}
2412 			}
2413 
2414 			/*
2415 			 * Take finished ITDs out of the schedule
2416 			 * and process them:  recycle, maybe report
2417 			 * URB completion.  HC won't cache the
2418 			 * pointer for much longer, if at all.
2419 			 */
2420 			*q_p = q.itd->itd_next;
2421 			if (!ehci->use_dummy_qh ||
2422 					q.itd->hw_next != EHCI_LIST_END(ehci))
2423 				*hw_p = q.itd->hw_next;
2424 			else
2425 				*hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma);
2426 			type = Q_NEXT_TYPE(ehci, q.itd->hw_next);
2427 			wmb();
2428 			modified = itd_complete(ehci, q.itd);
2429 			q = *q_p;
2430 			break;
2431 		case Q_TYPE_SITD:
2432 			/*
2433 			 * If this SITD is still active, leave it for
2434 			 * later processing ... check the next entry.
2435 			 * No need to check for activity unless the
2436 			 * frame is current.
2437 			 */
2438 			if (((frame == now_frame) ||
2439 					(((frame + 1) & fmask) == now_frame))
2440 				&& live
2441 				&& (q.sitd->hw_results & SITD_ACTIVE(ehci))) {
2442 
2443 				q_p = &q.sitd->sitd_next;
2444 				hw_p = &q.sitd->hw_next;
2445 				type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2446 				q = *q_p;
2447 				break;
2448 			}
2449 
2450 			/*
2451 			 * Take finished SITDs out of the schedule
2452 			 * and process them:  recycle, maybe report
2453 			 * URB completion.
2454 			 */
2455 			*q_p = q.sitd->sitd_next;
2456 			if (!ehci->use_dummy_qh ||
2457 					q.sitd->hw_next != EHCI_LIST_END(ehci))
2458 				*hw_p = q.sitd->hw_next;
2459 			else
2460 				*hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma);
2461 			type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2462 			wmb();
2463 			modified = sitd_complete(ehci, q.sitd);
2464 			q = *q_p;
2465 			break;
2466 		default:
2467 			ehci_dbg(ehci, "corrupt type %d frame %d shadow %p\n",
2468 					type, frame, q.ptr);
2469 			/* BUG(); */
2470 			fallthrough;
2471 		case Q_TYPE_QH:
2472 		case Q_TYPE_FSTN:
2473 			/* End of the iTDs and siTDs */
2474 			q.ptr = NULL;
2475 			break;
2476 		}
2477 
2478 		/* Assume completion callbacks modify the queue */
2479 		if (unlikely(modified && ehci->isoc_count > 0))
2480 			goto restart;
2481 	}
2482 
2483 	/* Stop when we have reached the current frame */
2484 	if (frame == now_frame)
2485 		return;
2486 
2487 	/* The last frame may still have active siTDs */
2488 	ehci->last_iso_frame = frame;
2489 	frame = (frame + 1) & fmask;
2490 
2491 	goto restart;
2492 }
2493