1 /* 2 * Copyright (C) 2001-2004 by David Brownell 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License as published by the 6 * Free Software Foundation; either version 2 of the License, or (at your 7 * option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, but 10 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 11 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software Foundation, 16 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 17 */ 18 19 /* this file is part of ehci-hcd.c */ 20 21 /*-------------------------------------------------------------------------*/ 22 23 /* 24 * EHCI hardware queue manipulation ... the core. QH/QTD manipulation. 25 * 26 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd" 27 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned 28 * buffers needed for the larger number). We use one QH per endpoint, queue 29 * multiple urbs (all three types) per endpoint. URBs may need several qtds. 30 * 31 * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with 32 * interrupts) needs careful scheduling. Performance improvements can be 33 * an ongoing challenge. That's in "ehci-sched.c". 34 * 35 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs, 36 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using 37 * (b) special fields in qh entries or (c) split iso entries. TTs will 38 * buffer low/full speed data so the host collects it at high speed. 39 */ 40 41 /*-------------------------------------------------------------------------*/ 42 43 /* fill a qtd, returning how much of the buffer we were able to queue up */ 44 45 static int 46 qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf, 47 size_t len, int token, int maxpacket) 48 { 49 int i, count; 50 u64 addr = buf; 51 52 /* one buffer entry per 4K ... first might be short or unaligned */ 53 qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32)addr); 54 qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32)(addr >> 32)); 55 count = 0x1000 - (buf & 0x0fff); /* rest of that page */ 56 if (likely (len < count)) /* ... iff needed */ 57 count = len; 58 else { 59 buf += 0x1000; 60 buf &= ~0x0fff; 61 62 /* per-qtd limit: from 16K to 20K (best alignment) */ 63 for (i = 1; count < len && i < 5; i++) { 64 addr = buf; 65 qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32)addr); 66 qtd->hw_buf_hi[i] = cpu_to_hc32(ehci, 67 (u32)(addr >> 32)); 68 buf += 0x1000; 69 if ((count + 0x1000) < len) 70 count += 0x1000; 71 else 72 count = len; 73 } 74 75 /* short packets may only terminate transfers */ 76 if (count != len) 77 count -= (count % maxpacket); 78 } 79 qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token); 80 qtd->length = count; 81 82 return count; 83 } 84 85 /*-------------------------------------------------------------------------*/ 86 87 static inline void 88 qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd) 89 { 90 struct ehci_qh_hw *hw = qh->hw; 91 92 /* writes to an active overlay are unsafe */ 93 BUG_ON(qh->qh_state != QH_STATE_IDLE); 94 95 hw->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma); 96 hw->hw_alt_next = EHCI_LIST_END(ehci); 97 98 /* Except for control endpoints, we make hardware maintain data 99 * toggle (like OHCI) ... here (re)initialize the toggle in the QH, 100 * and set the pseudo-toggle in udev. Only usb_clear_halt() will 101 * ever clear it. 102 */ 103 if (!(hw->hw_info1 & cpu_to_hc32(ehci, QH_TOGGLE_CTL))) { 104 unsigned is_out, epnum; 105 106 is_out = qh->is_out; 107 epnum = (hc32_to_cpup(ehci, &hw->hw_info1) >> 8) & 0x0f; 108 if (unlikely (!usb_gettoggle (qh->dev, epnum, is_out))) { 109 hw->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE); 110 usb_settoggle (qh->dev, epnum, is_out, 1); 111 } 112 } 113 114 hw->hw_token &= cpu_to_hc32(ehci, QTD_TOGGLE | QTD_STS_PING); 115 } 116 117 /* if it weren't for a common silicon quirk (writing the dummy into the qh 118 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault 119 * recovery (including urb dequeue) would need software changes to a QH... 120 */ 121 static void 122 qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh) 123 { 124 struct ehci_qtd *qtd; 125 126 if (list_empty (&qh->qtd_list)) 127 qtd = qh->dummy; 128 else { 129 qtd = list_entry (qh->qtd_list.next, 130 struct ehci_qtd, qtd_list); 131 /* 132 * first qtd may already be partially processed. 133 * If we come here during unlink, the QH overlay region 134 * might have reference to the just unlinked qtd. The 135 * qtd is updated in qh_completions(). Update the QH 136 * overlay here. 137 */ 138 if (cpu_to_hc32(ehci, qtd->qtd_dma) == qh->hw->hw_current) { 139 qh->hw->hw_qtd_next = qtd->hw_next; 140 qtd = NULL; 141 } 142 } 143 144 if (qtd) 145 qh_update (ehci, qh, qtd); 146 } 147 148 /*-------------------------------------------------------------------------*/ 149 150 static void qh_link_async(struct ehci_hcd *ehci, struct ehci_qh *qh); 151 152 static void ehci_clear_tt_buffer_complete(struct usb_hcd *hcd, 153 struct usb_host_endpoint *ep) 154 { 155 struct ehci_hcd *ehci = hcd_to_ehci(hcd); 156 struct ehci_qh *qh = ep->hcpriv; 157 unsigned long flags; 158 159 spin_lock_irqsave(&ehci->lock, flags); 160 qh->clearing_tt = 0; 161 if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list) 162 && ehci->rh_state == EHCI_RH_RUNNING) 163 qh_link_async(ehci, qh); 164 spin_unlock_irqrestore(&ehci->lock, flags); 165 } 166 167 static void ehci_clear_tt_buffer(struct ehci_hcd *ehci, struct ehci_qh *qh, 168 struct urb *urb, u32 token) 169 { 170 171 /* If an async split transaction gets an error or is unlinked, 172 * the TT buffer may be left in an indeterminate state. We 173 * have to clear the TT buffer. 174 * 175 * Note: this routine is never called for Isochronous transfers. 176 */ 177 if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) { 178 #ifdef DEBUG 179 struct usb_device *tt = urb->dev->tt->hub; 180 dev_dbg(&tt->dev, 181 "clear tt buffer port %d, a%d ep%d t%08x\n", 182 urb->dev->ttport, urb->dev->devnum, 183 usb_pipeendpoint(urb->pipe), token); 184 #endif /* DEBUG */ 185 if (!ehci_is_TDI(ehci) 186 || urb->dev->tt->hub != 187 ehci_to_hcd(ehci)->self.root_hub) { 188 if (usb_hub_clear_tt_buffer(urb) == 0) 189 qh->clearing_tt = 1; 190 } else { 191 192 /* REVISIT ARC-derived cores don't clear the root 193 * hub TT buffer in this way... 194 */ 195 } 196 } 197 } 198 199 static int qtd_copy_status ( 200 struct ehci_hcd *ehci, 201 struct urb *urb, 202 size_t length, 203 u32 token 204 ) 205 { 206 int status = -EINPROGRESS; 207 208 /* count IN/OUT bytes, not SETUP (even short packets) */ 209 if (likely (QTD_PID (token) != 2)) 210 urb->actual_length += length - QTD_LENGTH (token); 211 212 /* don't modify error codes */ 213 if (unlikely(urb->unlinked)) 214 return status; 215 216 /* force cleanup after short read; not always an error */ 217 if (unlikely (IS_SHORT_READ (token))) 218 status = -EREMOTEIO; 219 220 /* serious "can't proceed" faults reported by the hardware */ 221 if (token & QTD_STS_HALT) { 222 if (token & QTD_STS_BABBLE) { 223 /* FIXME "must" disable babbling device's port too */ 224 status = -EOVERFLOW; 225 /* CERR nonzero + halt --> stall */ 226 } else if (QTD_CERR(token)) { 227 status = -EPIPE; 228 229 /* In theory, more than one of the following bits can be set 230 * since they are sticky and the transaction is retried. 231 * Which to test first is rather arbitrary. 232 */ 233 } else if (token & QTD_STS_MMF) { 234 /* fs/ls interrupt xfer missed the complete-split */ 235 status = -EPROTO; 236 } else if (token & QTD_STS_DBE) { 237 status = (QTD_PID (token) == 1) /* IN ? */ 238 ? -ENOSR /* hc couldn't read data */ 239 : -ECOMM; /* hc couldn't write data */ 240 } else if (token & QTD_STS_XACT) { 241 /* timeout, bad CRC, wrong PID, etc */ 242 ehci_dbg(ehci, "devpath %s ep%d%s 3strikes\n", 243 urb->dev->devpath, 244 usb_pipeendpoint(urb->pipe), 245 usb_pipein(urb->pipe) ? "in" : "out"); 246 status = -EPROTO; 247 } else { /* unknown */ 248 status = -EPROTO; 249 } 250 251 ehci_vdbg (ehci, 252 "dev%d ep%d%s qtd token %08x --> status %d\n", 253 usb_pipedevice (urb->pipe), 254 usb_pipeendpoint (urb->pipe), 255 usb_pipein (urb->pipe) ? "in" : "out", 256 token, status); 257 } 258 259 return status; 260 } 261 262 static void 263 ehci_urb_done(struct ehci_hcd *ehci, struct urb *urb, int status) 264 __releases(ehci->lock) 265 __acquires(ehci->lock) 266 { 267 if (likely (urb->hcpriv != NULL)) { 268 struct ehci_qh *qh = (struct ehci_qh *) urb->hcpriv; 269 270 /* S-mask in a QH means it's an interrupt urb */ 271 if ((qh->hw->hw_info2 & cpu_to_hc32(ehci, QH_SMASK)) != 0) { 272 273 /* ... update hc-wide periodic stats (for usbfs) */ 274 ehci_to_hcd(ehci)->self.bandwidth_int_reqs--; 275 } 276 } 277 278 if (unlikely(urb->unlinked)) { 279 COUNT(ehci->stats.unlink); 280 } else { 281 /* report non-error and short read status as zero */ 282 if (status == -EINPROGRESS || status == -EREMOTEIO) 283 status = 0; 284 COUNT(ehci->stats.complete); 285 } 286 287 #ifdef EHCI_URB_TRACE 288 ehci_dbg (ehci, 289 "%s %s urb %p ep%d%s status %d len %d/%d\n", 290 __func__, urb->dev->devpath, urb, 291 usb_pipeendpoint (urb->pipe), 292 usb_pipein (urb->pipe) ? "in" : "out", 293 status, 294 urb->actual_length, urb->transfer_buffer_length); 295 #endif 296 297 /* complete() can reenter this HCD */ 298 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); 299 spin_unlock (&ehci->lock); 300 usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb, status); 301 spin_lock (&ehci->lock); 302 } 303 304 static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh); 305 306 /* 307 * Process and free completed qtds for a qh, returning URBs to drivers. 308 * Chases up to qh->hw_current. Returns number of completions called, 309 * indicating how much "real" work we did. 310 */ 311 static unsigned 312 qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh) 313 { 314 struct ehci_qtd *last, *end = qh->dummy; 315 struct list_head *entry, *tmp; 316 int last_status; 317 int stopped; 318 unsigned count = 0; 319 u8 state; 320 struct ehci_qh_hw *hw = qh->hw; 321 322 if (unlikely (list_empty (&qh->qtd_list))) 323 return count; 324 325 /* completions (or tasks on other cpus) must never clobber HALT 326 * till we've gone through and cleaned everything up, even when 327 * they add urbs to this qh's queue or mark them for unlinking. 328 * 329 * NOTE: unlinking expects to be done in queue order. 330 * 331 * It's a bug for qh->qh_state to be anything other than 332 * QH_STATE_IDLE, unless our caller is scan_async() or 333 * scan_intr(). 334 */ 335 state = qh->qh_state; 336 qh->qh_state = QH_STATE_COMPLETING; 337 stopped = (state == QH_STATE_IDLE); 338 339 rescan: 340 last = NULL; 341 last_status = -EINPROGRESS; 342 qh->needs_rescan = 0; 343 344 /* remove de-activated QTDs from front of queue. 345 * after faults (including short reads), cleanup this urb 346 * then let the queue advance. 347 * if queue is stopped, handles unlinks. 348 */ 349 list_for_each_safe (entry, tmp, &qh->qtd_list) { 350 struct ehci_qtd *qtd; 351 struct urb *urb; 352 u32 token = 0; 353 354 qtd = list_entry (entry, struct ehci_qtd, qtd_list); 355 urb = qtd->urb; 356 357 /* clean up any state from previous QTD ...*/ 358 if (last) { 359 if (likely (last->urb != urb)) { 360 ehci_urb_done(ehci, last->urb, last_status); 361 count++; 362 last_status = -EINPROGRESS; 363 } 364 ehci_qtd_free (ehci, last); 365 last = NULL; 366 } 367 368 /* ignore urbs submitted during completions we reported */ 369 if (qtd == end) 370 break; 371 372 /* hardware copies qtd out of qh overlay */ 373 rmb (); 374 token = hc32_to_cpu(ehci, qtd->hw_token); 375 376 /* always clean up qtds the hc de-activated */ 377 retry_xacterr: 378 if ((token & QTD_STS_ACTIVE) == 0) { 379 380 /* Report Data Buffer Error: non-fatal but useful */ 381 if (token & QTD_STS_DBE) 382 ehci_dbg(ehci, 383 "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n", 384 urb, 385 usb_endpoint_num(&urb->ep->desc), 386 usb_endpoint_dir_in(&urb->ep->desc) ? "in" : "out", 387 urb->transfer_buffer_length, 388 qtd, 389 qh); 390 391 /* on STALL, error, and short reads this urb must 392 * complete and all its qtds must be recycled. 393 */ 394 if ((token & QTD_STS_HALT) != 0) { 395 396 /* retry transaction errors until we 397 * reach the software xacterr limit 398 */ 399 if ((token & QTD_STS_XACT) && 400 QTD_CERR(token) == 0 && 401 ++qh->xacterrs < QH_XACTERR_MAX && 402 !urb->unlinked) { 403 ehci_dbg(ehci, 404 "detected XactErr len %zu/%zu retry %d\n", 405 qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs); 406 407 /* reset the token in the qtd and the 408 * qh overlay (which still contains 409 * the qtd) so that we pick up from 410 * where we left off 411 */ 412 token &= ~QTD_STS_HALT; 413 token |= QTD_STS_ACTIVE | 414 (EHCI_TUNE_CERR << 10); 415 qtd->hw_token = cpu_to_hc32(ehci, 416 token); 417 wmb(); 418 hw->hw_token = cpu_to_hc32(ehci, 419 token); 420 goto retry_xacterr; 421 } 422 stopped = 1; 423 424 /* magic dummy for some short reads; qh won't advance. 425 * that silicon quirk can kick in with this dummy too. 426 * 427 * other short reads won't stop the queue, including 428 * control transfers (status stage handles that) or 429 * most other single-qtd reads ... the queue stops if 430 * URB_SHORT_NOT_OK was set so the driver submitting 431 * the urbs could clean it up. 432 */ 433 } else if (IS_SHORT_READ (token) 434 && !(qtd->hw_alt_next 435 & EHCI_LIST_END(ehci))) { 436 stopped = 1; 437 } 438 439 /* stop scanning when we reach qtds the hc is using */ 440 } else if (likely (!stopped 441 && ehci->rh_state >= EHCI_RH_RUNNING)) { 442 break; 443 444 /* scan the whole queue for unlinks whenever it stops */ 445 } else { 446 stopped = 1; 447 448 /* cancel everything if we halt, suspend, etc */ 449 if (ehci->rh_state < EHCI_RH_RUNNING) 450 last_status = -ESHUTDOWN; 451 452 /* this qtd is active; skip it unless a previous qtd 453 * for its urb faulted, or its urb was canceled. 454 */ 455 else if (last_status == -EINPROGRESS && !urb->unlinked) 456 continue; 457 458 /* qh unlinked; token in overlay may be most current */ 459 if (state == QH_STATE_IDLE 460 && cpu_to_hc32(ehci, qtd->qtd_dma) 461 == hw->hw_current) { 462 token = hc32_to_cpu(ehci, hw->hw_token); 463 464 /* An unlink may leave an incomplete 465 * async transaction in the TT buffer. 466 * We have to clear it. 467 */ 468 ehci_clear_tt_buffer(ehci, qh, urb, token); 469 } 470 } 471 472 /* unless we already know the urb's status, collect qtd status 473 * and update count of bytes transferred. in common short read 474 * cases with only one data qtd (including control transfers), 475 * queue processing won't halt. but with two or more qtds (for 476 * example, with a 32 KB transfer), when the first qtd gets a 477 * short read the second must be removed by hand. 478 */ 479 if (last_status == -EINPROGRESS) { 480 last_status = qtd_copy_status(ehci, urb, 481 qtd->length, token); 482 if (last_status == -EREMOTEIO 483 && (qtd->hw_alt_next 484 & EHCI_LIST_END(ehci))) 485 last_status = -EINPROGRESS; 486 487 /* As part of low/full-speed endpoint-halt processing 488 * we must clear the TT buffer (11.17.5). 489 */ 490 if (unlikely(last_status != -EINPROGRESS && 491 last_status != -EREMOTEIO)) { 492 /* The TT's in some hubs malfunction when they 493 * receive this request following a STALL (they 494 * stop sending isochronous packets). Since a 495 * STALL can't leave the TT buffer in a busy 496 * state (if you believe Figures 11-48 - 11-51 497 * in the USB 2.0 spec), we won't clear the TT 498 * buffer in this case. Strictly speaking this 499 * is a violation of the spec. 500 */ 501 if (last_status != -EPIPE) 502 ehci_clear_tt_buffer(ehci, qh, urb, 503 token); 504 } 505 } 506 507 /* if we're removing something not at the queue head, 508 * patch the hardware queue pointer. 509 */ 510 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) { 511 last = list_entry (qtd->qtd_list.prev, 512 struct ehci_qtd, qtd_list); 513 last->hw_next = qtd->hw_next; 514 } 515 516 /* remove qtd; it's recycled after possible urb completion */ 517 list_del (&qtd->qtd_list); 518 last = qtd; 519 520 /* reinit the xacterr counter for the next qtd */ 521 qh->xacterrs = 0; 522 } 523 524 /* last urb's completion might still need calling */ 525 if (likely (last != NULL)) { 526 ehci_urb_done(ehci, last->urb, last_status); 527 count++; 528 ehci_qtd_free (ehci, last); 529 } 530 531 /* Do we need to rescan for URBs dequeued during a giveback? */ 532 if (unlikely(qh->needs_rescan)) { 533 /* If the QH is already unlinked, do the rescan now. */ 534 if (state == QH_STATE_IDLE) 535 goto rescan; 536 537 /* Otherwise we have to wait until the QH is fully unlinked. 538 * Our caller will start an unlink if qh->needs_rescan is 539 * set. But if an unlink has already started, nothing needs 540 * to be done. 541 */ 542 if (state != QH_STATE_LINKED) 543 qh->needs_rescan = 0; 544 } 545 546 /* restore original state; caller must unlink or relink */ 547 qh->qh_state = state; 548 549 /* be sure the hardware's done with the qh before refreshing 550 * it after fault cleanup, or recovering from silicon wrongly 551 * overlaying the dummy qtd (which reduces DMA chatter). 552 */ 553 if (stopped != 0 || hw->hw_qtd_next == EHCI_LIST_END(ehci)) { 554 switch (state) { 555 case QH_STATE_IDLE: 556 qh_refresh(ehci, qh); 557 break; 558 case QH_STATE_LINKED: 559 /* We won't refresh a QH that's linked (after the HC 560 * stopped the queue). That avoids a race: 561 * - HC reads first part of QH; 562 * - CPU updates that first part and the token; 563 * - HC reads rest of that QH, including token 564 * Result: HC gets an inconsistent image, and then 565 * DMAs to/from the wrong memory (corrupting it). 566 * 567 * That should be rare for interrupt transfers, 568 * except maybe high bandwidth ... 569 */ 570 571 /* Tell the caller to start an unlink */ 572 qh->needs_rescan = 1; 573 break; 574 /* otherwise, unlink already started */ 575 } 576 } 577 578 return count; 579 } 580 581 /*-------------------------------------------------------------------------*/ 582 583 // high bandwidth multiplier, as encoded in highspeed endpoint descriptors 584 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03)) 585 // ... and packet size, for any kind of endpoint descriptor 586 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff) 587 588 /* 589 * reverse of qh_urb_transaction: free a list of TDs. 590 * used for cleanup after errors, before HC sees an URB's TDs. 591 */ 592 static void qtd_list_free ( 593 struct ehci_hcd *ehci, 594 struct urb *urb, 595 struct list_head *qtd_list 596 ) { 597 struct list_head *entry, *temp; 598 599 list_for_each_safe (entry, temp, qtd_list) { 600 struct ehci_qtd *qtd; 601 602 qtd = list_entry (entry, struct ehci_qtd, qtd_list); 603 list_del (&qtd->qtd_list); 604 ehci_qtd_free (ehci, qtd); 605 } 606 } 607 608 /* 609 * create a list of filled qtds for this URB; won't link into qh. 610 */ 611 static struct list_head * 612 qh_urb_transaction ( 613 struct ehci_hcd *ehci, 614 struct urb *urb, 615 struct list_head *head, 616 gfp_t flags 617 ) { 618 struct ehci_qtd *qtd, *qtd_prev; 619 dma_addr_t buf; 620 int len, this_sg_len, maxpacket; 621 int is_input; 622 u32 token; 623 int i; 624 struct scatterlist *sg; 625 626 /* 627 * URBs map to sequences of QTDs: one logical transaction 628 */ 629 qtd = ehci_qtd_alloc (ehci, flags); 630 if (unlikely (!qtd)) 631 return NULL; 632 list_add_tail (&qtd->qtd_list, head); 633 qtd->urb = urb; 634 635 token = QTD_STS_ACTIVE; 636 token |= (EHCI_TUNE_CERR << 10); 637 /* for split transactions, SplitXState initialized to zero */ 638 639 len = urb->transfer_buffer_length; 640 is_input = usb_pipein (urb->pipe); 641 if (usb_pipecontrol (urb->pipe)) { 642 /* SETUP pid */ 643 qtd_fill(ehci, qtd, urb->setup_dma, 644 sizeof (struct usb_ctrlrequest), 645 token | (2 /* "setup" */ << 8), 8); 646 647 /* ... and always at least one more pid */ 648 token ^= QTD_TOGGLE; 649 qtd_prev = qtd; 650 qtd = ehci_qtd_alloc (ehci, flags); 651 if (unlikely (!qtd)) 652 goto cleanup; 653 qtd->urb = urb; 654 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma); 655 list_add_tail (&qtd->qtd_list, head); 656 657 /* for zero length DATA stages, STATUS is always IN */ 658 if (len == 0) 659 token |= (1 /* "in" */ << 8); 660 } 661 662 /* 663 * data transfer stage: buffer setup 664 */ 665 i = urb->num_mapped_sgs; 666 if (len > 0 && i > 0) { 667 sg = urb->sg; 668 buf = sg_dma_address(sg); 669 670 /* urb->transfer_buffer_length may be smaller than the 671 * size of the scatterlist (or vice versa) 672 */ 673 this_sg_len = min_t(int, sg_dma_len(sg), len); 674 } else { 675 sg = NULL; 676 buf = urb->transfer_dma; 677 this_sg_len = len; 678 } 679 680 if (is_input) 681 token |= (1 /* "in" */ << 8); 682 /* else it's already initted to "out" pid (0 << 8) */ 683 684 maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input)); 685 686 /* 687 * buffer gets wrapped in one or more qtds; 688 * last one may be "short" (including zero len) 689 * and may serve as a control status ack 690 */ 691 for (;;) { 692 int this_qtd_len; 693 694 this_qtd_len = qtd_fill(ehci, qtd, buf, this_sg_len, token, 695 maxpacket); 696 this_sg_len -= this_qtd_len; 697 len -= this_qtd_len; 698 buf += this_qtd_len; 699 700 /* 701 * short reads advance to a "magic" dummy instead of the next 702 * qtd ... that forces the queue to stop, for manual cleanup. 703 * (this will usually be overridden later.) 704 */ 705 if (is_input) 706 qtd->hw_alt_next = ehci->async->hw->hw_alt_next; 707 708 /* qh makes control packets use qtd toggle; maybe switch it */ 709 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0) 710 token ^= QTD_TOGGLE; 711 712 if (likely(this_sg_len <= 0)) { 713 if (--i <= 0 || len <= 0) 714 break; 715 sg = sg_next(sg); 716 buf = sg_dma_address(sg); 717 this_sg_len = min_t(int, sg_dma_len(sg), len); 718 } 719 720 qtd_prev = qtd; 721 qtd = ehci_qtd_alloc (ehci, flags); 722 if (unlikely (!qtd)) 723 goto cleanup; 724 qtd->urb = urb; 725 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma); 726 list_add_tail (&qtd->qtd_list, head); 727 } 728 729 /* 730 * unless the caller requires manual cleanup after short reads, 731 * have the alt_next mechanism keep the queue running after the 732 * last data qtd (the only one, for control and most other cases). 733 */ 734 if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 735 || usb_pipecontrol (urb->pipe))) 736 qtd->hw_alt_next = EHCI_LIST_END(ehci); 737 738 /* 739 * control requests may need a terminating data "status" ack; 740 * other OUT ones may need a terminating short packet 741 * (zero length). 742 */ 743 if (likely (urb->transfer_buffer_length != 0)) { 744 int one_more = 0; 745 746 if (usb_pipecontrol (urb->pipe)) { 747 one_more = 1; 748 token ^= 0x0100; /* "in" <--> "out" */ 749 token |= QTD_TOGGLE; /* force DATA1 */ 750 } else if (usb_pipeout(urb->pipe) 751 && (urb->transfer_flags & URB_ZERO_PACKET) 752 && !(urb->transfer_buffer_length % maxpacket)) { 753 one_more = 1; 754 } 755 if (one_more) { 756 qtd_prev = qtd; 757 qtd = ehci_qtd_alloc (ehci, flags); 758 if (unlikely (!qtd)) 759 goto cleanup; 760 qtd->urb = urb; 761 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma); 762 list_add_tail (&qtd->qtd_list, head); 763 764 /* never any data in such packets */ 765 qtd_fill(ehci, qtd, 0, 0, token, 0); 766 } 767 } 768 769 /* by default, enable interrupt on urb completion */ 770 if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT))) 771 qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC); 772 return head; 773 774 cleanup: 775 qtd_list_free (ehci, urb, head); 776 return NULL; 777 } 778 779 /*-------------------------------------------------------------------------*/ 780 781 // Would be best to create all qh's from config descriptors, 782 // when each interface/altsetting is established. Unlink 783 // any previous qh and cancel its urbs first; endpoints are 784 // implicitly reset then (data toggle too). 785 // That'd mean updating how usbcore talks to HCDs. (2.7?) 786 787 788 /* 789 * Each QH holds a qtd list; a QH is used for everything except iso. 790 * 791 * For interrupt urbs, the scheduler must set the microframe scheduling 792 * mask(s) each time the QH gets scheduled. For highspeed, that's 793 * just one microframe in the s-mask. For split interrupt transactions 794 * there are additional complications: c-mask, maybe FSTNs. 795 */ 796 static struct ehci_qh * 797 qh_make ( 798 struct ehci_hcd *ehci, 799 struct urb *urb, 800 gfp_t flags 801 ) { 802 struct ehci_qh *qh = ehci_qh_alloc (ehci, flags); 803 u32 info1 = 0, info2 = 0; 804 int is_input, type; 805 int maxp = 0; 806 struct usb_tt *tt = urb->dev->tt; 807 struct ehci_qh_hw *hw; 808 809 if (!qh) 810 return qh; 811 812 /* 813 * init endpoint/device data for this QH 814 */ 815 info1 |= usb_pipeendpoint (urb->pipe) << 8; 816 info1 |= usb_pipedevice (urb->pipe) << 0; 817 818 is_input = usb_pipein (urb->pipe); 819 type = usb_pipetype (urb->pipe); 820 maxp = usb_maxpacket (urb->dev, urb->pipe, !is_input); 821 822 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth 823 * acts like up to 3KB, but is built from smaller packets. 824 */ 825 if (max_packet(maxp) > 1024) { 826 ehci_dbg(ehci, "bogus qh maxpacket %d\n", max_packet(maxp)); 827 goto done; 828 } 829 830 /* Compute interrupt scheduling parameters just once, and save. 831 * - allowing for high bandwidth, how many nsec/uframe are used? 832 * - split transactions need a second CSPLIT uframe; same question 833 * - splits also need a schedule gap (for full/low speed I/O) 834 * - qh has a polling interval 835 * 836 * For control/bulk requests, the HC or TT handles these. 837 */ 838 if (type == PIPE_INTERRUPT) { 839 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH, 840 is_input, 0, 841 hb_mult(maxp) * max_packet(maxp))); 842 qh->start = NO_FRAME; 843 844 if (urb->dev->speed == USB_SPEED_HIGH) { 845 qh->c_usecs = 0; 846 qh->gap_uf = 0; 847 848 qh->period = urb->interval >> 3; 849 if (qh->period == 0 && urb->interval != 1) { 850 /* NOTE interval 2 or 4 uframes could work. 851 * But interval 1 scheduling is simpler, and 852 * includes high bandwidth. 853 */ 854 urb->interval = 1; 855 } else if (qh->period > ehci->periodic_size) { 856 qh->period = ehci->periodic_size; 857 urb->interval = qh->period << 3; 858 } 859 } else { 860 int think_time; 861 862 /* gap is f(FS/LS transfer times) */ 863 qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed, 864 is_input, 0, maxp) / (125 * 1000); 865 866 /* FIXME this just approximates SPLIT/CSPLIT times */ 867 if (is_input) { // SPLIT, gap, CSPLIT+DATA 868 qh->c_usecs = qh->usecs + HS_USECS (0); 869 qh->usecs = HS_USECS (1); 870 } else { // SPLIT+DATA, gap, CSPLIT 871 qh->usecs += HS_USECS (1); 872 qh->c_usecs = HS_USECS (0); 873 } 874 875 think_time = tt ? tt->think_time : 0; 876 qh->tt_usecs = NS_TO_US (think_time + 877 usb_calc_bus_time (urb->dev->speed, 878 is_input, 0, max_packet (maxp))); 879 qh->period = urb->interval; 880 if (qh->period > ehci->periodic_size) { 881 qh->period = ehci->periodic_size; 882 urb->interval = qh->period; 883 } 884 } 885 } 886 887 /* support for tt scheduling, and access to toggles */ 888 qh->dev = urb->dev; 889 890 /* using TT? */ 891 switch (urb->dev->speed) { 892 case USB_SPEED_LOW: 893 info1 |= QH_LOW_SPEED; 894 /* FALL THROUGH */ 895 896 case USB_SPEED_FULL: 897 /* EPS 0 means "full" */ 898 if (type != PIPE_INTERRUPT) 899 info1 |= (EHCI_TUNE_RL_TT << 28); 900 if (type == PIPE_CONTROL) { 901 info1 |= QH_CONTROL_EP; /* for TT */ 902 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */ 903 } 904 info1 |= maxp << 16; 905 906 info2 |= (EHCI_TUNE_MULT_TT << 30); 907 908 /* Some Freescale processors have an erratum in which the 909 * port number in the queue head was 0..N-1 instead of 1..N. 910 */ 911 if (ehci_has_fsl_portno_bug(ehci)) 912 info2 |= (urb->dev->ttport-1) << 23; 913 else 914 info2 |= urb->dev->ttport << 23; 915 916 /* set the address of the TT; for TDI's integrated 917 * root hub tt, leave it zeroed. 918 */ 919 if (tt && tt->hub != ehci_to_hcd(ehci)->self.root_hub) 920 info2 |= tt->hub->devnum << 16; 921 922 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */ 923 924 break; 925 926 case USB_SPEED_HIGH: /* no TT involved */ 927 info1 |= QH_HIGH_SPEED; 928 if (type == PIPE_CONTROL) { 929 info1 |= (EHCI_TUNE_RL_HS << 28); 930 info1 |= 64 << 16; /* usb2 fixed maxpacket */ 931 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */ 932 info2 |= (EHCI_TUNE_MULT_HS << 30); 933 } else if (type == PIPE_BULK) { 934 info1 |= (EHCI_TUNE_RL_HS << 28); 935 /* The USB spec says that high speed bulk endpoints 936 * always use 512 byte maxpacket. But some device 937 * vendors decided to ignore that, and MSFT is happy 938 * to help them do so. So now people expect to use 939 * such nonconformant devices with Linux too; sigh. 940 */ 941 info1 |= max_packet(maxp) << 16; 942 info2 |= (EHCI_TUNE_MULT_HS << 30); 943 } else { /* PIPE_INTERRUPT */ 944 info1 |= max_packet (maxp) << 16; 945 info2 |= hb_mult (maxp) << 30; 946 } 947 break; 948 default: 949 ehci_dbg(ehci, "bogus dev %p speed %d\n", urb->dev, 950 urb->dev->speed); 951 done: 952 qh_destroy(ehci, qh); 953 return NULL; 954 } 955 956 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */ 957 958 /* init as live, toggle clear, advance to dummy */ 959 qh->qh_state = QH_STATE_IDLE; 960 hw = qh->hw; 961 hw->hw_info1 = cpu_to_hc32(ehci, info1); 962 hw->hw_info2 = cpu_to_hc32(ehci, info2); 963 qh->is_out = !is_input; 964 usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1); 965 qh_refresh (ehci, qh); 966 return qh; 967 } 968 969 /*-------------------------------------------------------------------------*/ 970 971 static void enable_async(struct ehci_hcd *ehci) 972 { 973 if (ehci->async_count++) 974 return; 975 976 /* Stop waiting to turn off the async schedule */ 977 ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_ASYNC); 978 979 /* Don't start the schedule until ASS is 0 */ 980 ehci_poll_ASS(ehci); 981 turn_on_io_watchdog(ehci); 982 } 983 984 static void disable_async(struct ehci_hcd *ehci) 985 { 986 if (--ehci->async_count) 987 return; 988 989 /* The async schedule and async_unlink list are supposed to be empty */ 990 WARN_ON(ehci->async->qh_next.qh || ehci->async_unlink); 991 992 /* Don't turn off the schedule until ASS is 1 */ 993 ehci_poll_ASS(ehci); 994 } 995 996 /* move qh (and its qtds) onto async queue; maybe enable queue. */ 997 998 static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh) 999 { 1000 __hc32 dma = QH_NEXT(ehci, qh->qh_dma); 1001 struct ehci_qh *head; 1002 1003 /* Don't link a QH if there's a Clear-TT-Buffer pending */ 1004 if (unlikely(qh->clearing_tt)) 1005 return; 1006 1007 WARN_ON(qh->qh_state != QH_STATE_IDLE); 1008 1009 /* clear halt and/or toggle; and maybe recover from silicon quirk */ 1010 qh_refresh(ehci, qh); 1011 1012 /* splice right after start */ 1013 head = ehci->async; 1014 qh->qh_next = head->qh_next; 1015 qh->hw->hw_next = head->hw->hw_next; 1016 wmb (); 1017 1018 head->qh_next.qh = qh; 1019 head->hw->hw_next = dma; 1020 1021 qh->xacterrs = 0; 1022 qh->qh_state = QH_STATE_LINKED; 1023 /* qtd completions reported later by interrupt */ 1024 1025 enable_async(ehci); 1026 } 1027 1028 /*-------------------------------------------------------------------------*/ 1029 1030 /* 1031 * For control/bulk/interrupt, return QH with these TDs appended. 1032 * Allocates and initializes the QH if necessary. 1033 * Returns null if it can't allocate a QH it needs to. 1034 * If the QH has TDs (urbs) already, that's great. 1035 */ 1036 static struct ehci_qh *qh_append_tds ( 1037 struct ehci_hcd *ehci, 1038 struct urb *urb, 1039 struct list_head *qtd_list, 1040 int epnum, 1041 void **ptr 1042 ) 1043 { 1044 struct ehci_qh *qh = NULL; 1045 __hc32 qh_addr_mask = cpu_to_hc32(ehci, 0x7f); 1046 1047 qh = (struct ehci_qh *) *ptr; 1048 if (unlikely (qh == NULL)) { 1049 /* can't sleep here, we have ehci->lock... */ 1050 qh = qh_make (ehci, urb, GFP_ATOMIC); 1051 *ptr = qh; 1052 } 1053 if (likely (qh != NULL)) { 1054 struct ehci_qtd *qtd; 1055 1056 if (unlikely (list_empty (qtd_list))) 1057 qtd = NULL; 1058 else 1059 qtd = list_entry (qtd_list->next, struct ehci_qtd, 1060 qtd_list); 1061 1062 /* control qh may need patching ... */ 1063 if (unlikely (epnum == 0)) { 1064 1065 /* usb_reset_device() briefly reverts to address 0 */ 1066 if (usb_pipedevice (urb->pipe) == 0) 1067 qh->hw->hw_info1 &= ~qh_addr_mask; 1068 } 1069 1070 /* just one way to queue requests: swap with the dummy qtd. 1071 * only hc or qh_refresh() ever modify the overlay. 1072 */ 1073 if (likely (qtd != NULL)) { 1074 struct ehci_qtd *dummy; 1075 dma_addr_t dma; 1076 __hc32 token; 1077 1078 /* to avoid racing the HC, use the dummy td instead of 1079 * the first td of our list (becomes new dummy). both 1080 * tds stay deactivated until we're done, when the 1081 * HC is allowed to fetch the old dummy (4.10.2). 1082 */ 1083 token = qtd->hw_token; 1084 qtd->hw_token = HALT_BIT(ehci); 1085 1086 dummy = qh->dummy; 1087 1088 dma = dummy->qtd_dma; 1089 *dummy = *qtd; 1090 dummy->qtd_dma = dma; 1091 1092 list_del (&qtd->qtd_list); 1093 list_add (&dummy->qtd_list, qtd_list); 1094 list_splice_tail(qtd_list, &qh->qtd_list); 1095 1096 ehci_qtd_init(ehci, qtd, qtd->qtd_dma); 1097 qh->dummy = qtd; 1098 1099 /* hc must see the new dummy at list end */ 1100 dma = qtd->qtd_dma; 1101 qtd = list_entry (qh->qtd_list.prev, 1102 struct ehci_qtd, qtd_list); 1103 qtd->hw_next = QTD_NEXT(ehci, dma); 1104 1105 /* let the hc process these next qtds */ 1106 wmb (); 1107 dummy->hw_token = token; 1108 1109 urb->hcpriv = qh; 1110 } 1111 } 1112 return qh; 1113 } 1114 1115 /*-------------------------------------------------------------------------*/ 1116 1117 static int 1118 submit_async ( 1119 struct ehci_hcd *ehci, 1120 struct urb *urb, 1121 struct list_head *qtd_list, 1122 gfp_t mem_flags 1123 ) { 1124 int epnum; 1125 unsigned long flags; 1126 struct ehci_qh *qh = NULL; 1127 int rc; 1128 1129 epnum = urb->ep->desc.bEndpointAddress; 1130 1131 #ifdef EHCI_URB_TRACE 1132 { 1133 struct ehci_qtd *qtd; 1134 qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list); 1135 ehci_dbg(ehci, 1136 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n", 1137 __func__, urb->dev->devpath, urb, 1138 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out", 1139 urb->transfer_buffer_length, 1140 qtd, urb->ep->hcpriv); 1141 } 1142 #endif 1143 1144 spin_lock_irqsave (&ehci->lock, flags); 1145 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) { 1146 rc = -ESHUTDOWN; 1147 goto done; 1148 } 1149 rc = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb); 1150 if (unlikely(rc)) 1151 goto done; 1152 1153 qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv); 1154 if (unlikely(qh == NULL)) { 1155 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); 1156 rc = -ENOMEM; 1157 goto done; 1158 } 1159 1160 /* Control/bulk operations through TTs don't need scheduling, 1161 * the HC and TT handle it when the TT has a buffer ready. 1162 */ 1163 if (likely (qh->qh_state == QH_STATE_IDLE)) 1164 qh_link_async(ehci, qh); 1165 done: 1166 spin_unlock_irqrestore (&ehci->lock, flags); 1167 if (unlikely (qh == NULL)) 1168 qtd_list_free (ehci, urb, qtd_list); 1169 return rc; 1170 } 1171 1172 /*-------------------------------------------------------------------------*/ 1173 1174 static void single_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh) 1175 { 1176 struct ehci_qh *prev; 1177 1178 /* Add to the end of the list of QHs waiting for the next IAAD */ 1179 qh->qh_state = QH_STATE_UNLINK; 1180 if (ehci->async_unlink) 1181 ehci->async_unlink_last->unlink_next = qh; 1182 else 1183 ehci->async_unlink = qh; 1184 ehci->async_unlink_last = qh; 1185 1186 /* Unlink it from the schedule */ 1187 prev = ehci->async; 1188 while (prev->qh_next.qh != qh) 1189 prev = prev->qh_next.qh; 1190 1191 prev->hw->hw_next = qh->hw->hw_next; 1192 prev->qh_next = qh->qh_next; 1193 if (ehci->qh_scan_next == qh) 1194 ehci->qh_scan_next = qh->qh_next.qh; 1195 } 1196 1197 static void start_iaa_cycle(struct ehci_hcd *ehci, bool nested) 1198 { 1199 /* 1200 * Do nothing if an IAA cycle is already running or 1201 * if one will be started shortly. 1202 */ 1203 if (ehci->async_iaa || ehci->async_unlinking) 1204 return; 1205 1206 /* Do all the waiting QHs at once */ 1207 ehci->async_iaa = ehci->async_unlink; 1208 ehci->async_unlink = NULL; 1209 1210 /* If the controller isn't running, we don't have to wait for it */ 1211 if (unlikely(ehci->rh_state < EHCI_RH_RUNNING)) { 1212 if (!nested) /* Avoid recursion */ 1213 end_unlink_async(ehci); 1214 1215 /* Otherwise start a new IAA cycle */ 1216 } else if (likely(ehci->rh_state == EHCI_RH_RUNNING)) { 1217 /* Make sure the unlinks are all visible to the hardware */ 1218 wmb(); 1219 1220 ehci_writel(ehci, ehci->command | CMD_IAAD, 1221 &ehci->regs->command); 1222 ehci_readl(ehci, &ehci->regs->command); 1223 ehci_enable_event(ehci, EHCI_HRTIMER_IAA_WATCHDOG, true); 1224 } 1225 } 1226 1227 /* the async qh for the qtds being unlinked are now gone from the HC */ 1228 1229 static void end_unlink_async(struct ehci_hcd *ehci) 1230 { 1231 struct ehci_qh *qh; 1232 1233 if (ehci->has_synopsys_hc_bug) 1234 ehci_writel(ehci, (u32) ehci->async->qh_dma, 1235 &ehci->regs->async_next); 1236 1237 /* Process the idle QHs */ 1238 restart: 1239 ehci->async_unlinking = true; 1240 while (ehci->async_iaa) { 1241 qh = ehci->async_iaa; 1242 ehci->async_iaa = qh->unlink_next; 1243 qh->unlink_next = NULL; 1244 1245 qh->qh_state = QH_STATE_IDLE; 1246 qh->qh_next.qh = NULL; 1247 1248 qh_completions(ehci, qh); 1249 if (!list_empty(&qh->qtd_list) && 1250 ehci->rh_state == EHCI_RH_RUNNING) 1251 qh_link_async(ehci, qh); 1252 disable_async(ehci); 1253 } 1254 ehci->async_unlinking = false; 1255 1256 /* Start a new IAA cycle if any QHs are waiting for it */ 1257 if (ehci->async_unlink) { 1258 start_iaa_cycle(ehci, true); 1259 if (unlikely(ehci->rh_state < EHCI_RH_RUNNING)) 1260 goto restart; 1261 } 1262 } 1263 1264 static void unlink_empty_async(struct ehci_hcd *ehci) 1265 { 1266 struct ehci_qh *qh, *next; 1267 bool stopped = (ehci->rh_state < EHCI_RH_RUNNING); 1268 bool check_unlinks_later = false; 1269 1270 /* Unlink all the async QHs that have been empty for a timer cycle */ 1271 next = ehci->async->qh_next.qh; 1272 while (next) { 1273 qh = next; 1274 next = qh->qh_next.qh; 1275 1276 if (list_empty(&qh->qtd_list) && 1277 qh->qh_state == QH_STATE_LINKED) { 1278 if (!stopped && qh->unlink_cycle == 1279 ehci->async_unlink_cycle) 1280 check_unlinks_later = true; 1281 else 1282 single_unlink_async(ehci, qh); 1283 } 1284 } 1285 1286 /* Start a new IAA cycle if any QHs are waiting for it */ 1287 if (ehci->async_unlink) 1288 start_iaa_cycle(ehci, false); 1289 1290 /* QHs that haven't been empty for long enough will be handled later */ 1291 if (check_unlinks_later) { 1292 ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true); 1293 ++ehci->async_unlink_cycle; 1294 } 1295 } 1296 1297 /* makes sure the async qh will become idle */ 1298 /* caller must own ehci->lock */ 1299 1300 static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh) 1301 { 1302 /* 1303 * If the QH isn't linked then there's nothing we can do 1304 * unless we were called during a giveback, in which case 1305 * qh_completions() has to deal with it. 1306 */ 1307 if (qh->qh_state != QH_STATE_LINKED) { 1308 if (qh->qh_state == QH_STATE_COMPLETING) 1309 qh->needs_rescan = 1; 1310 return; 1311 } 1312 1313 single_unlink_async(ehci, qh); 1314 start_iaa_cycle(ehci, false); 1315 } 1316 1317 /*-------------------------------------------------------------------------*/ 1318 1319 static void scan_async (struct ehci_hcd *ehci) 1320 { 1321 struct ehci_qh *qh; 1322 bool check_unlinks_later = false; 1323 1324 ehci->qh_scan_next = ehci->async->qh_next.qh; 1325 while (ehci->qh_scan_next) { 1326 qh = ehci->qh_scan_next; 1327 ehci->qh_scan_next = qh->qh_next.qh; 1328 rescan: 1329 /* clean any finished work for this qh */ 1330 if (!list_empty(&qh->qtd_list)) { 1331 int temp; 1332 1333 /* 1334 * Unlinks could happen here; completion reporting 1335 * drops the lock. That's why ehci->qh_scan_next 1336 * always holds the next qh to scan; if the next qh 1337 * gets unlinked then ehci->qh_scan_next is adjusted 1338 * in single_unlink_async(). 1339 */ 1340 temp = qh_completions(ehci, qh); 1341 if (qh->needs_rescan) { 1342 start_unlink_async(ehci, qh); 1343 } else if (list_empty(&qh->qtd_list) 1344 && qh->qh_state == QH_STATE_LINKED) { 1345 qh->unlink_cycle = ehci->async_unlink_cycle; 1346 check_unlinks_later = true; 1347 } else if (temp != 0) 1348 goto rescan; 1349 } 1350 } 1351 1352 /* 1353 * Unlink empty entries, reducing DMA usage as well 1354 * as HCD schedule-scanning costs. Delay for any qh 1355 * we just scanned, there's a not-unusual case that it 1356 * doesn't stay idle for long. 1357 */ 1358 if (check_unlinks_later && ehci->rh_state == EHCI_RH_RUNNING && 1359 !(ehci->enabled_hrtimer_events & 1360 BIT(EHCI_HRTIMER_ASYNC_UNLINKS))) { 1361 ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true); 1362 ++ehci->async_unlink_cycle; 1363 } 1364 } 1365