1 /* 2 * Copyright (C) 2001-2004 by David Brownell 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License as published by the 6 * Free Software Foundation; either version 2 of the License, or (at your 7 * option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, but 10 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 11 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software Foundation, 16 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 17 */ 18 19 /* this file is part of ehci-hcd.c */ 20 21 /*-------------------------------------------------------------------------*/ 22 23 /* 24 * EHCI hardware queue manipulation ... the core. QH/QTD manipulation. 25 * 26 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd" 27 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned 28 * buffers needed for the larger number). We use one QH per endpoint, queue 29 * multiple urbs (all three types) per endpoint. URBs may need several qtds. 30 * 31 * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with 32 * interrupts) needs careful scheduling. Performance improvements can be 33 * an ongoing challenge. That's in "ehci-sched.c". 34 * 35 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs, 36 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using 37 * (b) special fields in qh entries or (c) split iso entries. TTs will 38 * buffer low/full speed data so the host collects it at high speed. 39 */ 40 41 /*-------------------------------------------------------------------------*/ 42 43 /* fill a qtd, returning how much of the buffer we were able to queue up */ 44 45 static int 46 qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf, 47 size_t len, int token, int maxpacket) 48 { 49 int i, count; 50 u64 addr = buf; 51 52 /* one buffer entry per 4K ... first might be short or unaligned */ 53 qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32)addr); 54 qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32)(addr >> 32)); 55 count = 0x1000 - (buf & 0x0fff); /* rest of that page */ 56 if (likely (len < count)) /* ... iff needed */ 57 count = len; 58 else { 59 buf += 0x1000; 60 buf &= ~0x0fff; 61 62 /* per-qtd limit: from 16K to 20K (best alignment) */ 63 for (i = 1; count < len && i < 5; i++) { 64 addr = buf; 65 qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32)addr); 66 qtd->hw_buf_hi[i] = cpu_to_hc32(ehci, 67 (u32)(addr >> 32)); 68 buf += 0x1000; 69 if ((count + 0x1000) < len) 70 count += 0x1000; 71 else 72 count = len; 73 } 74 75 /* short packets may only terminate transfers */ 76 if (count != len) 77 count -= (count % maxpacket); 78 } 79 qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token); 80 qtd->length = count; 81 82 return count; 83 } 84 85 /*-------------------------------------------------------------------------*/ 86 87 static inline void 88 qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd) 89 { 90 struct ehci_qh_hw *hw = qh->hw; 91 92 /* writes to an active overlay are unsafe */ 93 BUG_ON(qh->qh_state != QH_STATE_IDLE); 94 95 hw->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma); 96 hw->hw_alt_next = EHCI_LIST_END(ehci); 97 98 /* Except for control endpoints, we make hardware maintain data 99 * toggle (like OHCI) ... here (re)initialize the toggle in the QH, 100 * and set the pseudo-toggle in udev. Only usb_clear_halt() will 101 * ever clear it. 102 */ 103 if (!(hw->hw_info1 & cpu_to_hc32(ehci, 1 << 14))) { 104 unsigned is_out, epnum; 105 106 is_out = !(qtd->hw_token & cpu_to_hc32(ehci, 1 << 8)); 107 epnum = (hc32_to_cpup(ehci, &hw->hw_info1) >> 8) & 0x0f; 108 if (unlikely (!usb_gettoggle (qh->dev, epnum, is_out))) { 109 hw->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE); 110 usb_settoggle (qh->dev, epnum, is_out, 1); 111 } 112 } 113 114 /* HC must see latest qtd and qh data before we clear ACTIVE+HALT */ 115 wmb (); 116 hw->hw_token &= cpu_to_hc32(ehci, QTD_TOGGLE | QTD_STS_PING); 117 } 118 119 /* if it weren't for a common silicon quirk (writing the dummy into the qh 120 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault 121 * recovery (including urb dequeue) would need software changes to a QH... 122 */ 123 static void 124 qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh) 125 { 126 struct ehci_qtd *qtd; 127 128 if (list_empty (&qh->qtd_list)) 129 qtd = qh->dummy; 130 else { 131 qtd = list_entry (qh->qtd_list.next, 132 struct ehci_qtd, qtd_list); 133 /* first qtd may already be partially processed */ 134 if (cpu_to_hc32(ehci, qtd->qtd_dma) == qh->hw->hw_current) 135 qtd = NULL; 136 } 137 138 if (qtd) 139 qh_update (ehci, qh, qtd); 140 } 141 142 /*-------------------------------------------------------------------------*/ 143 144 static void qh_link_async(struct ehci_hcd *ehci, struct ehci_qh *qh); 145 146 static void ehci_clear_tt_buffer_complete(struct usb_hcd *hcd, 147 struct usb_host_endpoint *ep) 148 { 149 struct ehci_hcd *ehci = hcd_to_ehci(hcd); 150 struct ehci_qh *qh = ep->hcpriv; 151 unsigned long flags; 152 153 spin_lock_irqsave(&ehci->lock, flags); 154 qh->clearing_tt = 0; 155 if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list) 156 && HC_IS_RUNNING(hcd->state)) 157 qh_link_async(ehci, qh); 158 spin_unlock_irqrestore(&ehci->lock, flags); 159 } 160 161 static void ehci_clear_tt_buffer(struct ehci_hcd *ehci, struct ehci_qh *qh, 162 struct urb *urb, u32 token) 163 { 164 165 /* If an async split transaction gets an error or is unlinked, 166 * the TT buffer may be left in an indeterminate state. We 167 * have to clear the TT buffer. 168 * 169 * Note: this routine is never called for Isochronous transfers. 170 */ 171 if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) { 172 #ifdef DEBUG 173 struct usb_device *tt = urb->dev->tt->hub; 174 dev_dbg(&tt->dev, 175 "clear tt buffer port %d, a%d ep%d t%08x\n", 176 urb->dev->ttport, urb->dev->devnum, 177 usb_pipeendpoint(urb->pipe), token); 178 #endif /* DEBUG */ 179 if (!ehci_is_TDI(ehci) 180 || urb->dev->tt->hub != 181 ehci_to_hcd(ehci)->self.root_hub) { 182 if (usb_hub_clear_tt_buffer(urb) == 0) 183 qh->clearing_tt = 1; 184 } else { 185 186 /* REVISIT ARC-derived cores don't clear the root 187 * hub TT buffer in this way... 188 */ 189 } 190 } 191 } 192 193 static int qtd_copy_status ( 194 struct ehci_hcd *ehci, 195 struct urb *urb, 196 size_t length, 197 u32 token 198 ) 199 { 200 int status = -EINPROGRESS; 201 202 /* count IN/OUT bytes, not SETUP (even short packets) */ 203 if (likely (QTD_PID (token) != 2)) 204 urb->actual_length += length - QTD_LENGTH (token); 205 206 /* don't modify error codes */ 207 if (unlikely(urb->unlinked)) 208 return status; 209 210 /* force cleanup after short read; not always an error */ 211 if (unlikely (IS_SHORT_READ (token))) 212 status = -EREMOTEIO; 213 214 /* serious "can't proceed" faults reported by the hardware */ 215 if (token & QTD_STS_HALT) { 216 if (token & QTD_STS_BABBLE) { 217 /* FIXME "must" disable babbling device's port too */ 218 status = -EOVERFLOW; 219 /* CERR nonzero + halt --> stall */ 220 } else if (QTD_CERR(token)) { 221 status = -EPIPE; 222 223 /* In theory, more than one of the following bits can be set 224 * since they are sticky and the transaction is retried. 225 * Which to test first is rather arbitrary. 226 */ 227 } else if (token & QTD_STS_MMF) { 228 /* fs/ls interrupt xfer missed the complete-split */ 229 status = -EPROTO; 230 } else if (token & QTD_STS_DBE) { 231 status = (QTD_PID (token) == 1) /* IN ? */ 232 ? -ENOSR /* hc couldn't read data */ 233 : -ECOMM; /* hc couldn't write data */ 234 } else if (token & QTD_STS_XACT) { 235 /* timeout, bad CRC, wrong PID, etc */ 236 ehci_dbg(ehci, "devpath %s ep%d%s 3strikes\n", 237 urb->dev->devpath, 238 usb_pipeendpoint(urb->pipe), 239 usb_pipein(urb->pipe) ? "in" : "out"); 240 status = -EPROTO; 241 } else { /* unknown */ 242 status = -EPROTO; 243 } 244 245 ehci_vdbg (ehci, 246 "dev%d ep%d%s qtd token %08x --> status %d\n", 247 usb_pipedevice (urb->pipe), 248 usb_pipeendpoint (urb->pipe), 249 usb_pipein (urb->pipe) ? "in" : "out", 250 token, status); 251 } 252 253 return status; 254 } 255 256 static void 257 ehci_urb_done(struct ehci_hcd *ehci, struct urb *urb, int status) 258 __releases(ehci->lock) 259 __acquires(ehci->lock) 260 { 261 if (likely (urb->hcpriv != NULL)) { 262 struct ehci_qh *qh = (struct ehci_qh *) urb->hcpriv; 263 264 /* S-mask in a QH means it's an interrupt urb */ 265 if ((qh->hw->hw_info2 & cpu_to_hc32(ehci, QH_SMASK)) != 0) { 266 267 /* ... update hc-wide periodic stats (for usbfs) */ 268 ehci_to_hcd(ehci)->self.bandwidth_int_reqs--; 269 } 270 qh_put (qh); 271 } 272 273 if (unlikely(urb->unlinked)) { 274 COUNT(ehci->stats.unlink); 275 } else { 276 /* report non-error and short read status as zero */ 277 if (status == -EINPROGRESS || status == -EREMOTEIO) 278 status = 0; 279 COUNT(ehci->stats.complete); 280 } 281 282 #ifdef EHCI_URB_TRACE 283 ehci_dbg (ehci, 284 "%s %s urb %p ep%d%s status %d len %d/%d\n", 285 __func__, urb->dev->devpath, urb, 286 usb_pipeendpoint (urb->pipe), 287 usb_pipein (urb->pipe) ? "in" : "out", 288 status, 289 urb->actual_length, urb->transfer_buffer_length); 290 #endif 291 292 /* complete() can reenter this HCD */ 293 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); 294 spin_unlock (&ehci->lock); 295 usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb, status); 296 spin_lock (&ehci->lock); 297 } 298 299 static void start_unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh); 300 static void unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh); 301 302 static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh); 303 304 /* 305 * Process and free completed qtds for a qh, returning URBs to drivers. 306 * Chases up to qh->hw_current. Returns number of completions called, 307 * indicating how much "real" work we did. 308 */ 309 static unsigned 310 qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh) 311 { 312 struct ehci_qtd *last, *end = qh->dummy; 313 struct list_head *entry, *tmp; 314 int last_status; 315 int stopped; 316 unsigned count = 0; 317 u8 state; 318 const __le32 halt = HALT_BIT(ehci); 319 struct ehci_qh_hw *hw = qh->hw; 320 321 if (unlikely (list_empty (&qh->qtd_list))) 322 return count; 323 324 /* completions (or tasks on other cpus) must never clobber HALT 325 * till we've gone through and cleaned everything up, even when 326 * they add urbs to this qh's queue or mark them for unlinking. 327 * 328 * NOTE: unlinking expects to be done in queue order. 329 * 330 * It's a bug for qh->qh_state to be anything other than 331 * QH_STATE_IDLE, unless our caller is scan_async() or 332 * scan_periodic(). 333 */ 334 state = qh->qh_state; 335 qh->qh_state = QH_STATE_COMPLETING; 336 stopped = (state == QH_STATE_IDLE); 337 338 rescan: 339 last = NULL; 340 last_status = -EINPROGRESS; 341 qh->needs_rescan = 0; 342 343 /* remove de-activated QTDs from front of queue. 344 * after faults (including short reads), cleanup this urb 345 * then let the queue advance. 346 * if queue is stopped, handles unlinks. 347 */ 348 list_for_each_safe (entry, tmp, &qh->qtd_list) { 349 struct ehci_qtd *qtd; 350 struct urb *urb; 351 u32 token = 0; 352 353 qtd = list_entry (entry, struct ehci_qtd, qtd_list); 354 urb = qtd->urb; 355 356 /* clean up any state from previous QTD ...*/ 357 if (last) { 358 if (likely (last->urb != urb)) { 359 ehci_urb_done(ehci, last->urb, last_status); 360 count++; 361 last_status = -EINPROGRESS; 362 } 363 ehci_qtd_free (ehci, last); 364 last = NULL; 365 } 366 367 /* ignore urbs submitted during completions we reported */ 368 if (qtd == end) 369 break; 370 371 /* hardware copies qtd out of qh overlay */ 372 rmb (); 373 token = hc32_to_cpu(ehci, qtd->hw_token); 374 375 /* always clean up qtds the hc de-activated */ 376 retry_xacterr: 377 if ((token & QTD_STS_ACTIVE) == 0) { 378 379 /* on STALL, error, and short reads this urb must 380 * complete and all its qtds must be recycled. 381 */ 382 if ((token & QTD_STS_HALT) != 0) { 383 384 /* retry transaction errors until we 385 * reach the software xacterr limit 386 */ 387 if ((token & QTD_STS_XACT) && 388 QTD_CERR(token) == 0 && 389 ++qh->xacterrs < QH_XACTERR_MAX && 390 !urb->unlinked) { 391 ehci_dbg(ehci, 392 "detected XactErr len %zu/%zu retry %d\n", 393 qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs); 394 395 /* reset the token in the qtd and the 396 * qh overlay (which still contains 397 * the qtd) so that we pick up from 398 * where we left off 399 */ 400 token &= ~QTD_STS_HALT; 401 token |= QTD_STS_ACTIVE | 402 (EHCI_TUNE_CERR << 10); 403 qtd->hw_token = cpu_to_hc32(ehci, 404 token); 405 wmb(); 406 hw->hw_token = cpu_to_hc32(ehci, 407 token); 408 goto retry_xacterr; 409 } 410 stopped = 1; 411 412 /* magic dummy for some short reads; qh won't advance. 413 * that silicon quirk can kick in with this dummy too. 414 * 415 * other short reads won't stop the queue, including 416 * control transfers (status stage handles that) or 417 * most other single-qtd reads ... the queue stops if 418 * URB_SHORT_NOT_OK was set so the driver submitting 419 * the urbs could clean it up. 420 */ 421 } else if (IS_SHORT_READ (token) 422 && !(qtd->hw_alt_next 423 & EHCI_LIST_END(ehci))) { 424 stopped = 1; 425 goto halt; 426 } 427 428 /* stop scanning when we reach qtds the hc is using */ 429 } else if (likely (!stopped 430 && HC_IS_RUNNING (ehci_to_hcd(ehci)->state))) { 431 break; 432 433 /* scan the whole queue for unlinks whenever it stops */ 434 } else { 435 stopped = 1; 436 437 /* cancel everything if we halt, suspend, etc */ 438 if (!HC_IS_RUNNING(ehci_to_hcd(ehci)->state)) 439 last_status = -ESHUTDOWN; 440 441 /* this qtd is active; skip it unless a previous qtd 442 * for its urb faulted, or its urb was canceled. 443 */ 444 else if (last_status == -EINPROGRESS && !urb->unlinked) 445 continue; 446 447 /* qh unlinked; token in overlay may be most current */ 448 if (state == QH_STATE_IDLE 449 && cpu_to_hc32(ehci, qtd->qtd_dma) 450 == hw->hw_current) { 451 token = hc32_to_cpu(ehci, hw->hw_token); 452 453 /* An unlink may leave an incomplete 454 * async transaction in the TT buffer. 455 * We have to clear it. 456 */ 457 ehci_clear_tt_buffer(ehci, qh, urb, token); 458 } 459 460 /* force halt for unlinked or blocked qh, so we'll 461 * patch the qh later and so that completions can't 462 * activate it while we "know" it's stopped. 463 */ 464 if ((halt & hw->hw_token) == 0) { 465 halt: 466 hw->hw_token |= halt; 467 wmb (); 468 } 469 } 470 471 /* unless we already know the urb's status, collect qtd status 472 * and update count of bytes transferred. in common short read 473 * cases with only one data qtd (including control transfers), 474 * queue processing won't halt. but with two or more qtds (for 475 * example, with a 32 KB transfer), when the first qtd gets a 476 * short read the second must be removed by hand. 477 */ 478 if (last_status == -EINPROGRESS) { 479 last_status = qtd_copy_status(ehci, urb, 480 qtd->length, token); 481 if (last_status == -EREMOTEIO 482 && (qtd->hw_alt_next 483 & EHCI_LIST_END(ehci))) 484 last_status = -EINPROGRESS; 485 486 /* As part of low/full-speed endpoint-halt processing 487 * we must clear the TT buffer (11.17.5). 488 */ 489 if (unlikely(last_status != -EINPROGRESS && 490 last_status != -EREMOTEIO)) 491 ehci_clear_tt_buffer(ehci, qh, urb, token); 492 } 493 494 /* if we're removing something not at the queue head, 495 * patch the hardware queue pointer. 496 */ 497 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) { 498 last = list_entry (qtd->qtd_list.prev, 499 struct ehci_qtd, qtd_list); 500 last->hw_next = qtd->hw_next; 501 } 502 503 /* remove qtd; it's recycled after possible urb completion */ 504 list_del (&qtd->qtd_list); 505 last = qtd; 506 507 /* reinit the xacterr counter for the next qtd */ 508 qh->xacterrs = 0; 509 } 510 511 /* last urb's completion might still need calling */ 512 if (likely (last != NULL)) { 513 ehci_urb_done(ehci, last->urb, last_status); 514 count++; 515 ehci_qtd_free (ehci, last); 516 } 517 518 /* Do we need to rescan for URBs dequeued during a giveback? */ 519 if (unlikely(qh->needs_rescan)) { 520 /* If the QH is already unlinked, do the rescan now. */ 521 if (state == QH_STATE_IDLE) 522 goto rescan; 523 524 /* Otherwise we have to wait until the QH is fully unlinked. 525 * Our caller will start an unlink if qh->needs_rescan is 526 * set. But if an unlink has already started, nothing needs 527 * to be done. 528 */ 529 if (state != QH_STATE_LINKED) 530 qh->needs_rescan = 0; 531 } 532 533 /* restore original state; caller must unlink or relink */ 534 qh->qh_state = state; 535 536 /* be sure the hardware's done with the qh before refreshing 537 * it after fault cleanup, or recovering from silicon wrongly 538 * overlaying the dummy qtd (which reduces DMA chatter). 539 */ 540 if (stopped != 0 || hw->hw_qtd_next == EHCI_LIST_END(ehci)) { 541 switch (state) { 542 case QH_STATE_IDLE: 543 qh_refresh(ehci, qh); 544 break; 545 case QH_STATE_LINKED: 546 /* We won't refresh a QH that's linked (after the HC 547 * stopped the queue). That avoids a race: 548 * - HC reads first part of QH; 549 * - CPU updates that first part and the token; 550 * - HC reads rest of that QH, including token 551 * Result: HC gets an inconsistent image, and then 552 * DMAs to/from the wrong memory (corrupting it). 553 * 554 * That should be rare for interrupt transfers, 555 * except maybe high bandwidth ... 556 */ 557 558 /* Tell the caller to start an unlink */ 559 qh->needs_rescan = 1; 560 break; 561 /* otherwise, unlink already started */ 562 } 563 } 564 565 return count; 566 } 567 568 /*-------------------------------------------------------------------------*/ 569 570 // high bandwidth multiplier, as encoded in highspeed endpoint descriptors 571 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03)) 572 // ... and packet size, for any kind of endpoint descriptor 573 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff) 574 575 /* 576 * reverse of qh_urb_transaction: free a list of TDs. 577 * used for cleanup after errors, before HC sees an URB's TDs. 578 */ 579 static void qtd_list_free ( 580 struct ehci_hcd *ehci, 581 struct urb *urb, 582 struct list_head *qtd_list 583 ) { 584 struct list_head *entry, *temp; 585 586 list_for_each_safe (entry, temp, qtd_list) { 587 struct ehci_qtd *qtd; 588 589 qtd = list_entry (entry, struct ehci_qtd, qtd_list); 590 list_del (&qtd->qtd_list); 591 ehci_qtd_free (ehci, qtd); 592 } 593 } 594 595 /* 596 * create a list of filled qtds for this URB; won't link into qh. 597 */ 598 static struct list_head * 599 qh_urb_transaction ( 600 struct ehci_hcd *ehci, 601 struct urb *urb, 602 struct list_head *head, 603 gfp_t flags 604 ) { 605 struct ehci_qtd *qtd, *qtd_prev; 606 dma_addr_t buf; 607 int len, maxpacket; 608 int is_input; 609 u32 token; 610 611 /* 612 * URBs map to sequences of QTDs: one logical transaction 613 */ 614 qtd = ehci_qtd_alloc (ehci, flags); 615 if (unlikely (!qtd)) 616 return NULL; 617 list_add_tail (&qtd->qtd_list, head); 618 qtd->urb = urb; 619 620 token = QTD_STS_ACTIVE; 621 token |= (EHCI_TUNE_CERR << 10); 622 /* for split transactions, SplitXState initialized to zero */ 623 624 len = urb->transfer_buffer_length; 625 is_input = usb_pipein (urb->pipe); 626 if (usb_pipecontrol (urb->pipe)) { 627 /* SETUP pid */ 628 qtd_fill(ehci, qtd, urb->setup_dma, 629 sizeof (struct usb_ctrlrequest), 630 token | (2 /* "setup" */ << 8), 8); 631 632 /* ... and always at least one more pid */ 633 token ^= QTD_TOGGLE; 634 qtd_prev = qtd; 635 qtd = ehci_qtd_alloc (ehci, flags); 636 if (unlikely (!qtd)) 637 goto cleanup; 638 qtd->urb = urb; 639 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma); 640 list_add_tail (&qtd->qtd_list, head); 641 642 /* for zero length DATA stages, STATUS is always IN */ 643 if (len == 0) 644 token |= (1 /* "in" */ << 8); 645 } 646 647 /* 648 * data transfer stage: buffer setup 649 */ 650 buf = urb->transfer_dma; 651 652 if (is_input) 653 token |= (1 /* "in" */ << 8); 654 /* else it's already initted to "out" pid (0 << 8) */ 655 656 maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input)); 657 658 /* 659 * buffer gets wrapped in one or more qtds; 660 * last one may be "short" (including zero len) 661 * and may serve as a control status ack 662 */ 663 for (;;) { 664 int this_qtd_len; 665 666 this_qtd_len = qtd_fill(ehci, qtd, buf, len, token, maxpacket); 667 len -= this_qtd_len; 668 buf += this_qtd_len; 669 670 /* 671 * short reads advance to a "magic" dummy instead of the next 672 * qtd ... that forces the queue to stop, for manual cleanup. 673 * (this will usually be overridden later.) 674 */ 675 if (is_input) 676 qtd->hw_alt_next = ehci->async->hw->hw_alt_next; 677 678 /* qh makes control packets use qtd toggle; maybe switch it */ 679 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0) 680 token ^= QTD_TOGGLE; 681 682 if (likely (len <= 0)) 683 break; 684 685 qtd_prev = qtd; 686 qtd = ehci_qtd_alloc (ehci, flags); 687 if (unlikely (!qtd)) 688 goto cleanup; 689 qtd->urb = urb; 690 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma); 691 list_add_tail (&qtd->qtd_list, head); 692 } 693 694 /* 695 * unless the caller requires manual cleanup after short reads, 696 * have the alt_next mechanism keep the queue running after the 697 * last data qtd (the only one, for control and most other cases). 698 */ 699 if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 700 || usb_pipecontrol (urb->pipe))) 701 qtd->hw_alt_next = EHCI_LIST_END(ehci); 702 703 /* 704 * control requests may need a terminating data "status" ack; 705 * bulk ones may need a terminating short packet (zero length). 706 */ 707 if (likely (urb->transfer_buffer_length != 0)) { 708 int one_more = 0; 709 710 if (usb_pipecontrol (urb->pipe)) { 711 one_more = 1; 712 token ^= 0x0100; /* "in" <--> "out" */ 713 token |= QTD_TOGGLE; /* force DATA1 */ 714 } else if (usb_pipebulk (urb->pipe) 715 && (urb->transfer_flags & URB_ZERO_PACKET) 716 && !(urb->transfer_buffer_length % maxpacket)) { 717 one_more = 1; 718 } 719 if (one_more) { 720 qtd_prev = qtd; 721 qtd = ehci_qtd_alloc (ehci, flags); 722 if (unlikely (!qtd)) 723 goto cleanup; 724 qtd->urb = urb; 725 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma); 726 list_add_tail (&qtd->qtd_list, head); 727 728 /* never any data in such packets */ 729 qtd_fill(ehci, qtd, 0, 0, token, 0); 730 } 731 } 732 733 /* by default, enable interrupt on urb completion */ 734 if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT))) 735 qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC); 736 return head; 737 738 cleanup: 739 qtd_list_free (ehci, urb, head); 740 return NULL; 741 } 742 743 /*-------------------------------------------------------------------------*/ 744 745 // Would be best to create all qh's from config descriptors, 746 // when each interface/altsetting is established. Unlink 747 // any previous qh and cancel its urbs first; endpoints are 748 // implicitly reset then (data toggle too). 749 // That'd mean updating how usbcore talks to HCDs. (2.7?) 750 751 752 /* 753 * Each QH holds a qtd list; a QH is used for everything except iso. 754 * 755 * For interrupt urbs, the scheduler must set the microframe scheduling 756 * mask(s) each time the QH gets scheduled. For highspeed, that's 757 * just one microframe in the s-mask. For split interrupt transactions 758 * there are additional complications: c-mask, maybe FSTNs. 759 */ 760 static struct ehci_qh * 761 qh_make ( 762 struct ehci_hcd *ehci, 763 struct urb *urb, 764 gfp_t flags 765 ) { 766 struct ehci_qh *qh = ehci_qh_alloc (ehci, flags); 767 u32 info1 = 0, info2 = 0; 768 int is_input, type; 769 int maxp = 0; 770 struct usb_tt *tt = urb->dev->tt; 771 struct ehci_qh_hw *hw; 772 773 if (!qh) 774 return qh; 775 776 /* 777 * init endpoint/device data for this QH 778 */ 779 info1 |= usb_pipeendpoint (urb->pipe) << 8; 780 info1 |= usb_pipedevice (urb->pipe) << 0; 781 782 is_input = usb_pipein (urb->pipe); 783 type = usb_pipetype (urb->pipe); 784 maxp = usb_maxpacket (urb->dev, urb->pipe, !is_input); 785 786 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth 787 * acts like up to 3KB, but is built from smaller packets. 788 */ 789 if (max_packet(maxp) > 1024) { 790 ehci_dbg(ehci, "bogus qh maxpacket %d\n", max_packet(maxp)); 791 goto done; 792 } 793 794 /* Compute interrupt scheduling parameters just once, and save. 795 * - allowing for high bandwidth, how many nsec/uframe are used? 796 * - split transactions need a second CSPLIT uframe; same question 797 * - splits also need a schedule gap (for full/low speed I/O) 798 * - qh has a polling interval 799 * 800 * For control/bulk requests, the HC or TT handles these. 801 */ 802 if (type == PIPE_INTERRUPT) { 803 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH, 804 is_input, 0, 805 hb_mult(maxp) * max_packet(maxp))); 806 qh->start = NO_FRAME; 807 808 if (urb->dev->speed == USB_SPEED_HIGH) { 809 qh->c_usecs = 0; 810 qh->gap_uf = 0; 811 812 qh->period = urb->interval >> 3; 813 if (qh->period == 0 && urb->interval != 1) { 814 /* NOTE interval 2 or 4 uframes could work. 815 * But interval 1 scheduling is simpler, and 816 * includes high bandwidth. 817 */ 818 dbg ("intr period %d uframes, NYET!", 819 urb->interval); 820 goto done; 821 } 822 } else { 823 int think_time; 824 825 /* gap is f(FS/LS transfer times) */ 826 qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed, 827 is_input, 0, maxp) / (125 * 1000); 828 829 /* FIXME this just approximates SPLIT/CSPLIT times */ 830 if (is_input) { // SPLIT, gap, CSPLIT+DATA 831 qh->c_usecs = qh->usecs + HS_USECS (0); 832 qh->usecs = HS_USECS (1); 833 } else { // SPLIT+DATA, gap, CSPLIT 834 qh->usecs += HS_USECS (1); 835 qh->c_usecs = HS_USECS (0); 836 } 837 838 think_time = tt ? tt->think_time : 0; 839 qh->tt_usecs = NS_TO_US (think_time + 840 usb_calc_bus_time (urb->dev->speed, 841 is_input, 0, max_packet (maxp))); 842 qh->period = urb->interval; 843 } 844 } 845 846 /* support for tt scheduling, and access to toggles */ 847 qh->dev = urb->dev; 848 849 /* using TT? */ 850 switch (urb->dev->speed) { 851 case USB_SPEED_LOW: 852 info1 |= (1 << 12); /* EPS "low" */ 853 /* FALL THROUGH */ 854 855 case USB_SPEED_FULL: 856 /* EPS 0 means "full" */ 857 if (type != PIPE_INTERRUPT) 858 info1 |= (EHCI_TUNE_RL_TT << 28); 859 if (type == PIPE_CONTROL) { 860 info1 |= (1 << 27); /* for TT */ 861 info1 |= 1 << 14; /* toggle from qtd */ 862 } 863 info1 |= maxp << 16; 864 865 info2 |= (EHCI_TUNE_MULT_TT << 30); 866 867 /* Some Freescale processors have an erratum in which the 868 * port number in the queue head was 0..N-1 instead of 1..N. 869 */ 870 if (ehci_has_fsl_portno_bug(ehci)) 871 info2 |= (urb->dev->ttport-1) << 23; 872 else 873 info2 |= urb->dev->ttport << 23; 874 875 /* set the address of the TT; for TDI's integrated 876 * root hub tt, leave it zeroed. 877 */ 878 if (tt && tt->hub != ehci_to_hcd(ehci)->self.root_hub) 879 info2 |= tt->hub->devnum << 16; 880 881 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */ 882 883 break; 884 885 case USB_SPEED_HIGH: /* no TT involved */ 886 info1 |= (2 << 12); /* EPS "high" */ 887 if (type == PIPE_CONTROL) { 888 info1 |= (EHCI_TUNE_RL_HS << 28); 889 info1 |= 64 << 16; /* usb2 fixed maxpacket */ 890 info1 |= 1 << 14; /* toggle from qtd */ 891 info2 |= (EHCI_TUNE_MULT_HS << 30); 892 } else if (type == PIPE_BULK) { 893 info1 |= (EHCI_TUNE_RL_HS << 28); 894 /* The USB spec says that high speed bulk endpoints 895 * always use 512 byte maxpacket. But some device 896 * vendors decided to ignore that, and MSFT is happy 897 * to help them do so. So now people expect to use 898 * such nonconformant devices with Linux too; sigh. 899 */ 900 info1 |= max_packet(maxp) << 16; 901 info2 |= (EHCI_TUNE_MULT_HS << 30); 902 } else { /* PIPE_INTERRUPT */ 903 info1 |= max_packet (maxp) << 16; 904 info2 |= hb_mult (maxp) << 30; 905 } 906 break; 907 default: 908 dbg ("bogus dev %p speed %d", urb->dev, urb->dev->speed); 909 done: 910 qh_put (qh); 911 return NULL; 912 } 913 914 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */ 915 916 /* init as live, toggle clear, advance to dummy */ 917 qh->qh_state = QH_STATE_IDLE; 918 hw = qh->hw; 919 hw->hw_info1 = cpu_to_hc32(ehci, info1); 920 hw->hw_info2 = cpu_to_hc32(ehci, info2); 921 usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1); 922 qh_refresh (ehci, qh); 923 return qh; 924 } 925 926 /*-------------------------------------------------------------------------*/ 927 928 /* move qh (and its qtds) onto async queue; maybe enable queue. */ 929 930 static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh) 931 { 932 __hc32 dma = QH_NEXT(ehci, qh->qh_dma); 933 struct ehci_qh *head; 934 935 /* Don't link a QH if there's a Clear-TT-Buffer pending */ 936 if (unlikely(qh->clearing_tt)) 937 return; 938 939 WARN_ON(qh->qh_state != QH_STATE_IDLE); 940 941 /* (re)start the async schedule? */ 942 head = ehci->async; 943 timer_action_done (ehci, TIMER_ASYNC_OFF); 944 if (!head->qh_next.qh) { 945 u32 cmd = ehci_readl(ehci, &ehci->regs->command); 946 947 if (!(cmd & CMD_ASE)) { 948 /* in case a clear of CMD_ASE didn't take yet */ 949 (void)handshake(ehci, &ehci->regs->status, 950 STS_ASS, 0, 150); 951 cmd |= CMD_ASE | CMD_RUN; 952 ehci_writel(ehci, cmd, &ehci->regs->command); 953 ehci_to_hcd(ehci)->state = HC_STATE_RUNNING; 954 /* posted write need not be known to HC yet ... */ 955 } 956 } 957 958 /* clear halt and/or toggle; and maybe recover from silicon quirk */ 959 qh_refresh(ehci, qh); 960 961 /* splice right after start */ 962 qh->qh_next = head->qh_next; 963 qh->hw->hw_next = head->hw->hw_next; 964 wmb (); 965 966 head->qh_next.qh = qh; 967 head->hw->hw_next = dma; 968 969 qh_get(qh); 970 qh->xacterrs = 0; 971 qh->qh_state = QH_STATE_LINKED; 972 /* qtd completions reported later by interrupt */ 973 } 974 975 /*-------------------------------------------------------------------------*/ 976 977 /* 978 * For control/bulk/interrupt, return QH with these TDs appended. 979 * Allocates and initializes the QH if necessary. 980 * Returns null if it can't allocate a QH it needs to. 981 * If the QH has TDs (urbs) already, that's great. 982 */ 983 static struct ehci_qh *qh_append_tds ( 984 struct ehci_hcd *ehci, 985 struct urb *urb, 986 struct list_head *qtd_list, 987 int epnum, 988 void **ptr 989 ) 990 { 991 struct ehci_qh *qh = NULL; 992 __hc32 qh_addr_mask = cpu_to_hc32(ehci, 0x7f); 993 994 qh = (struct ehci_qh *) *ptr; 995 if (unlikely (qh == NULL)) { 996 /* can't sleep here, we have ehci->lock... */ 997 qh = qh_make (ehci, urb, GFP_ATOMIC); 998 *ptr = qh; 999 } 1000 if (likely (qh != NULL)) { 1001 struct ehci_qtd *qtd; 1002 1003 if (unlikely (list_empty (qtd_list))) 1004 qtd = NULL; 1005 else 1006 qtd = list_entry (qtd_list->next, struct ehci_qtd, 1007 qtd_list); 1008 1009 /* control qh may need patching ... */ 1010 if (unlikely (epnum == 0)) { 1011 1012 /* usb_reset_device() briefly reverts to address 0 */ 1013 if (usb_pipedevice (urb->pipe) == 0) 1014 qh->hw->hw_info1 &= ~qh_addr_mask; 1015 } 1016 1017 /* just one way to queue requests: swap with the dummy qtd. 1018 * only hc or qh_refresh() ever modify the overlay. 1019 */ 1020 if (likely (qtd != NULL)) { 1021 struct ehci_qtd *dummy; 1022 dma_addr_t dma; 1023 __hc32 token; 1024 1025 /* to avoid racing the HC, use the dummy td instead of 1026 * the first td of our list (becomes new dummy). both 1027 * tds stay deactivated until we're done, when the 1028 * HC is allowed to fetch the old dummy (4.10.2). 1029 */ 1030 token = qtd->hw_token; 1031 qtd->hw_token = HALT_BIT(ehci); 1032 wmb (); 1033 dummy = qh->dummy; 1034 1035 dma = dummy->qtd_dma; 1036 *dummy = *qtd; 1037 dummy->qtd_dma = dma; 1038 1039 list_del (&qtd->qtd_list); 1040 list_add (&dummy->qtd_list, qtd_list); 1041 list_splice_tail(qtd_list, &qh->qtd_list); 1042 1043 ehci_qtd_init(ehci, qtd, qtd->qtd_dma); 1044 qh->dummy = qtd; 1045 1046 /* hc must see the new dummy at list end */ 1047 dma = qtd->qtd_dma; 1048 qtd = list_entry (qh->qtd_list.prev, 1049 struct ehci_qtd, qtd_list); 1050 qtd->hw_next = QTD_NEXT(ehci, dma); 1051 1052 /* let the hc process these next qtds */ 1053 wmb (); 1054 dummy->hw_token = token; 1055 1056 urb->hcpriv = qh_get (qh); 1057 } 1058 } 1059 return qh; 1060 } 1061 1062 /*-------------------------------------------------------------------------*/ 1063 1064 static int 1065 submit_async ( 1066 struct ehci_hcd *ehci, 1067 struct urb *urb, 1068 struct list_head *qtd_list, 1069 gfp_t mem_flags 1070 ) { 1071 struct ehci_qtd *qtd; 1072 int epnum; 1073 unsigned long flags; 1074 struct ehci_qh *qh = NULL; 1075 int rc; 1076 1077 qtd = list_entry (qtd_list->next, struct ehci_qtd, qtd_list); 1078 epnum = urb->ep->desc.bEndpointAddress; 1079 1080 #ifdef EHCI_URB_TRACE 1081 ehci_dbg (ehci, 1082 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n", 1083 __func__, urb->dev->devpath, urb, 1084 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out", 1085 urb->transfer_buffer_length, 1086 qtd, urb->ep->hcpriv); 1087 #endif 1088 1089 spin_lock_irqsave (&ehci->lock, flags); 1090 if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE, 1091 &ehci_to_hcd(ehci)->flags))) { 1092 rc = -ESHUTDOWN; 1093 goto done; 1094 } 1095 rc = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb); 1096 if (unlikely(rc)) 1097 goto done; 1098 1099 qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv); 1100 if (unlikely(qh == NULL)) { 1101 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); 1102 rc = -ENOMEM; 1103 goto done; 1104 } 1105 1106 /* Control/bulk operations through TTs don't need scheduling, 1107 * the HC and TT handle it when the TT has a buffer ready. 1108 */ 1109 if (likely (qh->qh_state == QH_STATE_IDLE)) 1110 qh_link_async(ehci, qh); 1111 done: 1112 spin_unlock_irqrestore (&ehci->lock, flags); 1113 if (unlikely (qh == NULL)) 1114 qtd_list_free (ehci, urb, qtd_list); 1115 return rc; 1116 } 1117 1118 /*-------------------------------------------------------------------------*/ 1119 1120 /* the async qh for the qtds being reclaimed are now unlinked from the HC */ 1121 1122 static void end_unlink_async (struct ehci_hcd *ehci) 1123 { 1124 struct ehci_qh *qh = ehci->reclaim; 1125 struct ehci_qh *next; 1126 1127 iaa_watchdog_done(ehci); 1128 1129 // qh->hw_next = cpu_to_hc32(qh->qh_dma); 1130 qh->qh_state = QH_STATE_IDLE; 1131 qh->qh_next.qh = NULL; 1132 qh_put (qh); // refcount from reclaim 1133 1134 /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */ 1135 next = qh->reclaim; 1136 ehci->reclaim = next; 1137 qh->reclaim = NULL; 1138 1139 qh_completions (ehci, qh); 1140 1141 if (!list_empty (&qh->qtd_list) 1142 && HC_IS_RUNNING (ehci_to_hcd(ehci)->state)) 1143 qh_link_async (ehci, qh); 1144 else { 1145 /* it's not free to turn the async schedule on/off; leave it 1146 * active but idle for a while once it empties. 1147 */ 1148 if (HC_IS_RUNNING (ehci_to_hcd(ehci)->state) 1149 && ehci->async->qh_next.qh == NULL) 1150 timer_action (ehci, TIMER_ASYNC_OFF); 1151 } 1152 qh_put(qh); /* refcount from async list */ 1153 1154 if (next) { 1155 ehci->reclaim = NULL; 1156 start_unlink_async (ehci, next); 1157 } 1158 } 1159 1160 /* makes sure the async qh will become idle */ 1161 /* caller must own ehci->lock */ 1162 1163 static void start_unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh) 1164 { 1165 int cmd = ehci_readl(ehci, &ehci->regs->command); 1166 struct ehci_qh *prev; 1167 1168 #ifdef DEBUG 1169 assert_spin_locked(&ehci->lock); 1170 if (ehci->reclaim 1171 || (qh->qh_state != QH_STATE_LINKED 1172 && qh->qh_state != QH_STATE_UNLINK_WAIT) 1173 ) 1174 BUG (); 1175 #endif 1176 1177 /* stop async schedule right now? */ 1178 if (unlikely (qh == ehci->async)) { 1179 /* can't get here without STS_ASS set */ 1180 if (ehci_to_hcd(ehci)->state != HC_STATE_HALT 1181 && !ehci->reclaim) { 1182 /* ... and CMD_IAAD clear */ 1183 ehci_writel(ehci, cmd & ~CMD_ASE, 1184 &ehci->regs->command); 1185 wmb (); 1186 // handshake later, if we need to 1187 timer_action_done (ehci, TIMER_ASYNC_OFF); 1188 } 1189 return; 1190 } 1191 1192 qh->qh_state = QH_STATE_UNLINK; 1193 ehci->reclaim = qh = qh_get (qh); 1194 1195 prev = ehci->async; 1196 while (prev->qh_next.qh != qh) 1197 prev = prev->qh_next.qh; 1198 1199 prev->hw->hw_next = qh->hw->hw_next; 1200 prev->qh_next = qh->qh_next; 1201 wmb (); 1202 1203 /* If the controller isn't running, we don't have to wait for it */ 1204 if (unlikely(!HC_IS_RUNNING(ehci_to_hcd(ehci)->state))) { 1205 /* if (unlikely (qh->reclaim != 0)) 1206 * this will recurse, probably not much 1207 */ 1208 end_unlink_async (ehci); 1209 return; 1210 } 1211 1212 cmd |= CMD_IAAD; 1213 ehci_writel(ehci, cmd, &ehci->regs->command); 1214 (void)ehci_readl(ehci, &ehci->regs->command); 1215 iaa_watchdog_start(ehci); 1216 } 1217 1218 /*-------------------------------------------------------------------------*/ 1219 1220 static void scan_async (struct ehci_hcd *ehci) 1221 { 1222 struct ehci_qh *qh; 1223 enum ehci_timer_action action = TIMER_IO_WATCHDOG; 1224 1225 ehci->stamp = ehci_readl(ehci, &ehci->regs->frame_index); 1226 timer_action_done (ehci, TIMER_ASYNC_SHRINK); 1227 rescan: 1228 qh = ehci->async->qh_next.qh; 1229 if (likely (qh != NULL)) { 1230 do { 1231 /* clean any finished work for this qh */ 1232 if (!list_empty (&qh->qtd_list) 1233 && qh->stamp != ehci->stamp) { 1234 int temp; 1235 1236 /* unlinks could happen here; completion 1237 * reporting drops the lock. rescan using 1238 * the latest schedule, but don't rescan 1239 * qhs we already finished (no looping). 1240 */ 1241 qh = qh_get (qh); 1242 qh->stamp = ehci->stamp; 1243 temp = qh_completions (ehci, qh); 1244 if (qh->needs_rescan) 1245 unlink_async(ehci, qh); 1246 qh_put (qh); 1247 if (temp != 0) { 1248 goto rescan; 1249 } 1250 } 1251 1252 /* unlink idle entries, reducing DMA usage as well 1253 * as HCD schedule-scanning costs. delay for any qh 1254 * we just scanned, there's a not-unusual case that it 1255 * doesn't stay idle for long. 1256 * (plus, avoids some kind of re-activation race.) 1257 */ 1258 if (list_empty(&qh->qtd_list) 1259 && qh->qh_state == QH_STATE_LINKED) { 1260 if (!ehci->reclaim 1261 && ((ehci->stamp - qh->stamp) & 0x1fff) 1262 >= (EHCI_SHRINK_FRAMES * 8)) 1263 start_unlink_async(ehci, qh); 1264 else 1265 action = TIMER_ASYNC_SHRINK; 1266 } 1267 1268 qh = qh->qh_next.qh; 1269 } while (qh); 1270 } 1271 if (action == TIMER_ASYNC_SHRINK) 1272 timer_action (ehci, TIMER_ASYNC_SHRINK); 1273 } 1274