1 /* 2 * Copyright (C) 2001-2004 by David Brownell 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License as published by the 6 * Free Software Foundation; either version 2 of the License, or (at your 7 * option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, but 10 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 11 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software Foundation, 16 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 17 */ 18 19 /* this file is part of ehci-hcd.c */ 20 21 /*-------------------------------------------------------------------------*/ 22 23 /* 24 * EHCI hardware queue manipulation ... the core. QH/QTD manipulation. 25 * 26 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd" 27 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned 28 * buffers needed for the larger number). We use one QH per endpoint, queue 29 * multiple urbs (all three types) per endpoint. URBs may need several qtds. 30 * 31 * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with 32 * interrupts) needs careful scheduling. Performance improvements can be 33 * an ongoing challenge. That's in "ehci-sched.c". 34 * 35 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs, 36 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using 37 * (b) special fields in qh entries or (c) split iso entries. TTs will 38 * buffer low/full speed data so the host collects it at high speed. 39 */ 40 41 /*-------------------------------------------------------------------------*/ 42 43 /* fill a qtd, returning how much of the buffer we were able to queue up */ 44 45 static int 46 qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf, 47 size_t len, int token, int maxpacket) 48 { 49 int i, count; 50 u64 addr = buf; 51 52 /* one buffer entry per 4K ... first might be short or unaligned */ 53 qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32)addr); 54 qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32)(addr >> 32)); 55 count = 0x1000 - (buf & 0x0fff); /* rest of that page */ 56 if (likely (len < count)) /* ... iff needed */ 57 count = len; 58 else { 59 buf += 0x1000; 60 buf &= ~0x0fff; 61 62 /* per-qtd limit: from 16K to 20K (best alignment) */ 63 for (i = 1; count < len && i < 5; i++) { 64 addr = buf; 65 qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32)addr); 66 qtd->hw_buf_hi[i] = cpu_to_hc32(ehci, 67 (u32)(addr >> 32)); 68 buf += 0x1000; 69 if ((count + 0x1000) < len) 70 count += 0x1000; 71 else 72 count = len; 73 } 74 75 /* short packets may only terminate transfers */ 76 if (count != len) 77 count -= (count % maxpacket); 78 } 79 qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token); 80 qtd->length = count; 81 82 return count; 83 } 84 85 /*-------------------------------------------------------------------------*/ 86 87 static inline void 88 qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd) 89 { 90 struct ehci_qh_hw *hw = qh->hw; 91 92 /* writes to an active overlay are unsafe */ 93 WARN_ON(qh->qh_state != QH_STATE_IDLE); 94 95 hw->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma); 96 hw->hw_alt_next = EHCI_LIST_END(ehci); 97 98 /* Except for control endpoints, we make hardware maintain data 99 * toggle (like OHCI) ... here (re)initialize the toggle in the QH, 100 * and set the pseudo-toggle in udev. Only usb_clear_halt() will 101 * ever clear it. 102 */ 103 if (!(hw->hw_info1 & cpu_to_hc32(ehci, QH_TOGGLE_CTL))) { 104 unsigned is_out, epnum; 105 106 is_out = qh->is_out; 107 epnum = (hc32_to_cpup(ehci, &hw->hw_info1) >> 8) & 0x0f; 108 if (unlikely(!usb_gettoggle(qh->ps.udev, epnum, is_out))) { 109 hw->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE); 110 usb_settoggle(qh->ps.udev, epnum, is_out, 1); 111 } 112 } 113 114 hw->hw_token &= cpu_to_hc32(ehci, QTD_TOGGLE | QTD_STS_PING); 115 } 116 117 /* if it weren't for a common silicon quirk (writing the dummy into the qh 118 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault 119 * recovery (including urb dequeue) would need software changes to a QH... 120 */ 121 static void 122 qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh) 123 { 124 struct ehci_qtd *qtd; 125 126 qtd = list_entry(qh->qtd_list.next, struct ehci_qtd, qtd_list); 127 128 /* 129 * first qtd may already be partially processed. 130 * If we come here during unlink, the QH overlay region 131 * might have reference to the just unlinked qtd. The 132 * qtd is updated in qh_completions(). Update the QH 133 * overlay here. 134 */ 135 if (qh->hw->hw_token & ACTIVE_BIT(ehci)) { 136 qh->hw->hw_qtd_next = qtd->hw_next; 137 if (qh->should_be_inactive) 138 ehci_warn(ehci, "qh %p should be inactive!\n", qh); 139 } else { 140 qh_update(ehci, qh, qtd); 141 } 142 qh->should_be_inactive = 0; 143 } 144 145 /*-------------------------------------------------------------------------*/ 146 147 static void qh_link_async(struct ehci_hcd *ehci, struct ehci_qh *qh); 148 149 static void ehci_clear_tt_buffer_complete(struct usb_hcd *hcd, 150 struct usb_host_endpoint *ep) 151 { 152 struct ehci_hcd *ehci = hcd_to_ehci(hcd); 153 struct ehci_qh *qh = ep->hcpriv; 154 unsigned long flags; 155 156 spin_lock_irqsave(&ehci->lock, flags); 157 qh->clearing_tt = 0; 158 if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list) 159 && ehci->rh_state == EHCI_RH_RUNNING) 160 qh_link_async(ehci, qh); 161 spin_unlock_irqrestore(&ehci->lock, flags); 162 } 163 164 static void ehci_clear_tt_buffer(struct ehci_hcd *ehci, struct ehci_qh *qh, 165 struct urb *urb, u32 token) 166 { 167 168 /* If an async split transaction gets an error or is unlinked, 169 * the TT buffer may be left in an indeterminate state. We 170 * have to clear the TT buffer. 171 * 172 * Note: this routine is never called for Isochronous transfers. 173 */ 174 if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) { 175 #ifdef CONFIG_DYNAMIC_DEBUG 176 struct usb_device *tt = urb->dev->tt->hub; 177 dev_dbg(&tt->dev, 178 "clear tt buffer port %d, a%d ep%d t%08x\n", 179 urb->dev->ttport, urb->dev->devnum, 180 usb_pipeendpoint(urb->pipe), token); 181 #endif /* CONFIG_DYNAMIC_DEBUG */ 182 if (!ehci_is_TDI(ehci) 183 || urb->dev->tt->hub != 184 ehci_to_hcd(ehci)->self.root_hub) { 185 if (usb_hub_clear_tt_buffer(urb) == 0) 186 qh->clearing_tt = 1; 187 } else { 188 189 /* REVISIT ARC-derived cores don't clear the root 190 * hub TT buffer in this way... 191 */ 192 } 193 } 194 } 195 196 static int qtd_copy_status ( 197 struct ehci_hcd *ehci, 198 struct urb *urb, 199 size_t length, 200 u32 token 201 ) 202 { 203 int status = -EINPROGRESS; 204 205 /* count IN/OUT bytes, not SETUP (even short packets) */ 206 if (likely (QTD_PID (token) != 2)) 207 urb->actual_length += length - QTD_LENGTH (token); 208 209 /* don't modify error codes */ 210 if (unlikely(urb->unlinked)) 211 return status; 212 213 /* force cleanup after short read; not always an error */ 214 if (unlikely (IS_SHORT_READ (token))) 215 status = -EREMOTEIO; 216 217 /* serious "can't proceed" faults reported by the hardware */ 218 if (token & QTD_STS_HALT) { 219 if (token & QTD_STS_BABBLE) { 220 /* FIXME "must" disable babbling device's port too */ 221 status = -EOVERFLOW; 222 /* CERR nonzero + halt --> stall */ 223 } else if (QTD_CERR(token)) { 224 status = -EPIPE; 225 226 /* In theory, more than one of the following bits can be set 227 * since they are sticky and the transaction is retried. 228 * Which to test first is rather arbitrary. 229 */ 230 } else if (token & QTD_STS_MMF) { 231 /* fs/ls interrupt xfer missed the complete-split */ 232 status = -EPROTO; 233 } else if (token & QTD_STS_DBE) { 234 status = (QTD_PID (token) == 1) /* IN ? */ 235 ? -ENOSR /* hc couldn't read data */ 236 : -ECOMM; /* hc couldn't write data */ 237 } else if (token & QTD_STS_XACT) { 238 /* timeout, bad CRC, wrong PID, etc */ 239 ehci_dbg(ehci, "devpath %s ep%d%s 3strikes\n", 240 urb->dev->devpath, 241 usb_pipeendpoint(urb->pipe), 242 usb_pipein(urb->pipe) ? "in" : "out"); 243 status = -EPROTO; 244 } else { /* unknown */ 245 status = -EPROTO; 246 } 247 } 248 249 return status; 250 } 251 252 static void 253 ehci_urb_done(struct ehci_hcd *ehci, struct urb *urb, int status) 254 { 255 if (usb_pipetype(urb->pipe) == PIPE_INTERRUPT) { 256 /* ... update hc-wide periodic stats */ 257 ehci_to_hcd(ehci)->self.bandwidth_int_reqs--; 258 } 259 260 if (unlikely(urb->unlinked)) { 261 COUNT(ehci->stats.unlink); 262 } else { 263 /* report non-error and short read status as zero */ 264 if (status == -EINPROGRESS || status == -EREMOTEIO) 265 status = 0; 266 COUNT(ehci->stats.complete); 267 } 268 269 #ifdef EHCI_URB_TRACE 270 ehci_dbg (ehci, 271 "%s %s urb %p ep%d%s status %d len %d/%d\n", 272 __func__, urb->dev->devpath, urb, 273 usb_pipeendpoint (urb->pipe), 274 usb_pipein (urb->pipe) ? "in" : "out", 275 status, 276 urb->actual_length, urb->transfer_buffer_length); 277 #endif 278 279 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); 280 usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb, status); 281 } 282 283 static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh); 284 285 /* 286 * Process and free completed qtds for a qh, returning URBs to drivers. 287 * Chases up to qh->hw_current. Returns nonzero if the caller should 288 * unlink qh. 289 */ 290 static unsigned 291 qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh) 292 { 293 struct ehci_qtd *last, *end = qh->dummy; 294 struct list_head *entry, *tmp; 295 int last_status; 296 int stopped; 297 u8 state; 298 struct ehci_qh_hw *hw = qh->hw; 299 300 /* completions (or tasks on other cpus) must never clobber HALT 301 * till we've gone through and cleaned everything up, even when 302 * they add urbs to this qh's queue or mark them for unlinking. 303 * 304 * NOTE: unlinking expects to be done in queue order. 305 * 306 * It's a bug for qh->qh_state to be anything other than 307 * QH_STATE_IDLE, unless our caller is scan_async() or 308 * scan_intr(). 309 */ 310 state = qh->qh_state; 311 qh->qh_state = QH_STATE_COMPLETING; 312 stopped = (state == QH_STATE_IDLE); 313 314 rescan: 315 last = NULL; 316 last_status = -EINPROGRESS; 317 qh->dequeue_during_giveback = 0; 318 319 /* remove de-activated QTDs from front of queue. 320 * after faults (including short reads), cleanup this urb 321 * then let the queue advance. 322 * if queue is stopped, handles unlinks. 323 */ 324 list_for_each_safe (entry, tmp, &qh->qtd_list) { 325 struct ehci_qtd *qtd; 326 struct urb *urb; 327 u32 token = 0; 328 329 qtd = list_entry (entry, struct ehci_qtd, qtd_list); 330 urb = qtd->urb; 331 332 /* clean up any state from previous QTD ...*/ 333 if (last) { 334 if (likely (last->urb != urb)) { 335 ehci_urb_done(ehci, last->urb, last_status); 336 last_status = -EINPROGRESS; 337 } 338 ehci_qtd_free (ehci, last); 339 last = NULL; 340 } 341 342 /* ignore urbs submitted during completions we reported */ 343 if (qtd == end) 344 break; 345 346 /* hardware copies qtd out of qh overlay */ 347 rmb (); 348 token = hc32_to_cpu(ehci, qtd->hw_token); 349 350 /* always clean up qtds the hc de-activated */ 351 retry_xacterr: 352 if ((token & QTD_STS_ACTIVE) == 0) { 353 354 /* Report Data Buffer Error: non-fatal but useful */ 355 if (token & QTD_STS_DBE) 356 ehci_dbg(ehci, 357 "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n", 358 urb, 359 usb_endpoint_num(&urb->ep->desc), 360 usb_endpoint_dir_in(&urb->ep->desc) ? "in" : "out", 361 urb->transfer_buffer_length, 362 qtd, 363 qh); 364 365 /* on STALL, error, and short reads this urb must 366 * complete and all its qtds must be recycled. 367 */ 368 if ((token & QTD_STS_HALT) != 0) { 369 370 /* retry transaction errors until we 371 * reach the software xacterr limit 372 */ 373 if ((token & QTD_STS_XACT) && 374 QTD_CERR(token) == 0 && 375 ++qh->xacterrs < QH_XACTERR_MAX && 376 !urb->unlinked) { 377 ehci_dbg(ehci, 378 "detected XactErr len %zu/%zu retry %d\n", 379 qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs); 380 381 /* reset the token in the qtd and the 382 * qh overlay (which still contains 383 * the qtd) so that we pick up from 384 * where we left off 385 */ 386 token &= ~QTD_STS_HALT; 387 token |= QTD_STS_ACTIVE | 388 (EHCI_TUNE_CERR << 10); 389 qtd->hw_token = cpu_to_hc32(ehci, 390 token); 391 wmb(); 392 hw->hw_token = cpu_to_hc32(ehci, 393 token); 394 goto retry_xacterr; 395 } 396 stopped = 1; 397 qh->unlink_reason |= QH_UNLINK_HALTED; 398 399 /* magic dummy for some short reads; qh won't advance. 400 * that silicon quirk can kick in with this dummy too. 401 * 402 * other short reads won't stop the queue, including 403 * control transfers (status stage handles that) or 404 * most other single-qtd reads ... the queue stops if 405 * URB_SHORT_NOT_OK was set so the driver submitting 406 * the urbs could clean it up. 407 */ 408 } else if (IS_SHORT_READ (token) 409 && !(qtd->hw_alt_next 410 & EHCI_LIST_END(ehci))) { 411 stopped = 1; 412 qh->unlink_reason |= QH_UNLINK_SHORT_READ; 413 } 414 415 /* stop scanning when we reach qtds the hc is using */ 416 } else if (likely (!stopped 417 && ehci->rh_state >= EHCI_RH_RUNNING)) { 418 break; 419 420 /* scan the whole queue for unlinks whenever it stops */ 421 } else { 422 stopped = 1; 423 424 /* cancel everything if we halt, suspend, etc */ 425 if (ehci->rh_state < EHCI_RH_RUNNING) { 426 last_status = -ESHUTDOWN; 427 qh->unlink_reason |= QH_UNLINK_SHUTDOWN; 428 } 429 430 /* this qtd is active; skip it unless a previous qtd 431 * for its urb faulted, or its urb was canceled. 432 */ 433 else if (last_status == -EINPROGRESS && !urb->unlinked) 434 continue; 435 436 /* 437 * If this was the active qtd when the qh was unlinked 438 * and the overlay's token is active, then the overlay 439 * hasn't been written back to the qtd yet so use its 440 * token instead of the qtd's. After the qtd is 441 * processed and removed, the overlay won't be valid 442 * any more. 443 */ 444 if (state == QH_STATE_IDLE && 445 qh->qtd_list.next == &qtd->qtd_list && 446 (hw->hw_token & ACTIVE_BIT(ehci))) { 447 token = hc32_to_cpu(ehci, hw->hw_token); 448 hw->hw_token &= ~ACTIVE_BIT(ehci); 449 qh->should_be_inactive = 1; 450 451 /* An unlink may leave an incomplete 452 * async transaction in the TT buffer. 453 * We have to clear it. 454 */ 455 ehci_clear_tt_buffer(ehci, qh, urb, token); 456 } 457 } 458 459 /* unless we already know the urb's status, collect qtd status 460 * and update count of bytes transferred. in common short read 461 * cases with only one data qtd (including control transfers), 462 * queue processing won't halt. but with two or more qtds (for 463 * example, with a 32 KB transfer), when the first qtd gets a 464 * short read the second must be removed by hand. 465 */ 466 if (last_status == -EINPROGRESS) { 467 last_status = qtd_copy_status(ehci, urb, 468 qtd->length, token); 469 if (last_status == -EREMOTEIO 470 && (qtd->hw_alt_next 471 & EHCI_LIST_END(ehci))) 472 last_status = -EINPROGRESS; 473 474 /* As part of low/full-speed endpoint-halt processing 475 * we must clear the TT buffer (11.17.5). 476 */ 477 if (unlikely(last_status != -EINPROGRESS && 478 last_status != -EREMOTEIO)) { 479 /* The TT's in some hubs malfunction when they 480 * receive this request following a STALL (they 481 * stop sending isochronous packets). Since a 482 * STALL can't leave the TT buffer in a busy 483 * state (if you believe Figures 11-48 - 11-51 484 * in the USB 2.0 spec), we won't clear the TT 485 * buffer in this case. Strictly speaking this 486 * is a violation of the spec. 487 */ 488 if (last_status != -EPIPE) 489 ehci_clear_tt_buffer(ehci, qh, urb, 490 token); 491 } 492 } 493 494 /* if we're removing something not at the queue head, 495 * patch the hardware queue pointer. 496 */ 497 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) { 498 last = list_entry (qtd->qtd_list.prev, 499 struct ehci_qtd, qtd_list); 500 last->hw_next = qtd->hw_next; 501 } 502 503 /* remove qtd; it's recycled after possible urb completion */ 504 list_del (&qtd->qtd_list); 505 last = qtd; 506 507 /* reinit the xacterr counter for the next qtd */ 508 qh->xacterrs = 0; 509 } 510 511 /* last urb's completion might still need calling */ 512 if (likely (last != NULL)) { 513 ehci_urb_done(ehci, last->urb, last_status); 514 ehci_qtd_free (ehci, last); 515 } 516 517 /* Do we need to rescan for URBs dequeued during a giveback? */ 518 if (unlikely(qh->dequeue_during_giveback)) { 519 /* If the QH is already unlinked, do the rescan now. */ 520 if (state == QH_STATE_IDLE) 521 goto rescan; 522 523 /* Otherwise the caller must unlink the QH. */ 524 } 525 526 /* restore original state; caller must unlink or relink */ 527 qh->qh_state = state; 528 529 /* be sure the hardware's done with the qh before refreshing 530 * it after fault cleanup, or recovering from silicon wrongly 531 * overlaying the dummy qtd (which reduces DMA chatter). 532 * 533 * We won't refresh a QH that's linked (after the HC 534 * stopped the queue). That avoids a race: 535 * - HC reads first part of QH; 536 * - CPU updates that first part and the token; 537 * - HC reads rest of that QH, including token 538 * Result: HC gets an inconsistent image, and then 539 * DMAs to/from the wrong memory (corrupting it). 540 * 541 * That should be rare for interrupt transfers, 542 * except maybe high bandwidth ... 543 */ 544 if (stopped != 0 || hw->hw_qtd_next == EHCI_LIST_END(ehci)) 545 qh->unlink_reason |= QH_UNLINK_DUMMY_OVERLAY; 546 547 /* Let the caller know if the QH needs to be unlinked. */ 548 return qh->unlink_reason; 549 } 550 551 /*-------------------------------------------------------------------------*/ 552 553 /* 554 * reverse of qh_urb_transaction: free a list of TDs. 555 * used for cleanup after errors, before HC sees an URB's TDs. 556 */ 557 static void qtd_list_free ( 558 struct ehci_hcd *ehci, 559 struct urb *urb, 560 struct list_head *qtd_list 561 ) { 562 struct list_head *entry, *temp; 563 564 list_for_each_safe (entry, temp, qtd_list) { 565 struct ehci_qtd *qtd; 566 567 qtd = list_entry (entry, struct ehci_qtd, qtd_list); 568 list_del (&qtd->qtd_list); 569 ehci_qtd_free (ehci, qtd); 570 } 571 } 572 573 /* 574 * create a list of filled qtds for this URB; won't link into qh. 575 */ 576 static struct list_head * 577 qh_urb_transaction ( 578 struct ehci_hcd *ehci, 579 struct urb *urb, 580 struct list_head *head, 581 gfp_t flags 582 ) { 583 struct ehci_qtd *qtd, *qtd_prev; 584 dma_addr_t buf; 585 int len, this_sg_len, maxpacket; 586 int is_input; 587 u32 token; 588 int i; 589 struct scatterlist *sg; 590 591 /* 592 * URBs map to sequences of QTDs: one logical transaction 593 */ 594 qtd = ehci_qtd_alloc (ehci, flags); 595 if (unlikely (!qtd)) 596 return NULL; 597 list_add_tail (&qtd->qtd_list, head); 598 qtd->urb = urb; 599 600 token = QTD_STS_ACTIVE; 601 token |= (EHCI_TUNE_CERR << 10); 602 /* for split transactions, SplitXState initialized to zero */ 603 604 len = urb->transfer_buffer_length; 605 is_input = usb_pipein (urb->pipe); 606 if (usb_pipecontrol (urb->pipe)) { 607 /* SETUP pid */ 608 qtd_fill(ehci, qtd, urb->setup_dma, 609 sizeof (struct usb_ctrlrequest), 610 token | (2 /* "setup" */ << 8), 8); 611 612 /* ... and always at least one more pid */ 613 token ^= QTD_TOGGLE; 614 qtd_prev = qtd; 615 qtd = ehci_qtd_alloc (ehci, flags); 616 if (unlikely (!qtd)) 617 goto cleanup; 618 qtd->urb = urb; 619 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma); 620 list_add_tail (&qtd->qtd_list, head); 621 622 /* for zero length DATA stages, STATUS is always IN */ 623 if (len == 0) 624 token |= (1 /* "in" */ << 8); 625 } 626 627 /* 628 * data transfer stage: buffer setup 629 */ 630 i = urb->num_mapped_sgs; 631 if (len > 0 && i > 0) { 632 sg = urb->sg; 633 buf = sg_dma_address(sg); 634 635 /* urb->transfer_buffer_length may be smaller than the 636 * size of the scatterlist (or vice versa) 637 */ 638 this_sg_len = min_t(int, sg_dma_len(sg), len); 639 } else { 640 sg = NULL; 641 buf = urb->transfer_dma; 642 this_sg_len = len; 643 } 644 645 if (is_input) 646 token |= (1 /* "in" */ << 8); 647 /* else it's already initted to "out" pid (0 << 8) */ 648 649 maxpacket = usb_maxpacket(urb->dev, urb->pipe, !is_input); 650 651 /* 652 * buffer gets wrapped in one or more qtds; 653 * last one may be "short" (including zero len) 654 * and may serve as a control status ack 655 */ 656 for (;;) { 657 int this_qtd_len; 658 659 this_qtd_len = qtd_fill(ehci, qtd, buf, this_sg_len, token, 660 maxpacket); 661 this_sg_len -= this_qtd_len; 662 len -= this_qtd_len; 663 buf += this_qtd_len; 664 665 /* 666 * short reads advance to a "magic" dummy instead of the next 667 * qtd ... that forces the queue to stop, for manual cleanup. 668 * (this will usually be overridden later.) 669 */ 670 if (is_input) 671 qtd->hw_alt_next = ehci->async->hw->hw_alt_next; 672 673 /* qh makes control packets use qtd toggle; maybe switch it */ 674 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0) 675 token ^= QTD_TOGGLE; 676 677 if (likely(this_sg_len <= 0)) { 678 if (--i <= 0 || len <= 0) 679 break; 680 sg = sg_next(sg); 681 buf = sg_dma_address(sg); 682 this_sg_len = min_t(int, sg_dma_len(sg), len); 683 } 684 685 qtd_prev = qtd; 686 qtd = ehci_qtd_alloc (ehci, flags); 687 if (unlikely (!qtd)) 688 goto cleanup; 689 qtd->urb = urb; 690 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma); 691 list_add_tail (&qtd->qtd_list, head); 692 } 693 694 /* 695 * unless the caller requires manual cleanup after short reads, 696 * have the alt_next mechanism keep the queue running after the 697 * last data qtd (the only one, for control and most other cases). 698 */ 699 if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 700 || usb_pipecontrol (urb->pipe))) 701 qtd->hw_alt_next = EHCI_LIST_END(ehci); 702 703 /* 704 * control requests may need a terminating data "status" ack; 705 * other OUT ones may need a terminating short packet 706 * (zero length). 707 */ 708 if (likely (urb->transfer_buffer_length != 0)) { 709 int one_more = 0; 710 711 if (usb_pipecontrol (urb->pipe)) { 712 one_more = 1; 713 token ^= 0x0100; /* "in" <--> "out" */ 714 token |= QTD_TOGGLE; /* force DATA1 */ 715 } else if (usb_pipeout(urb->pipe) 716 && (urb->transfer_flags & URB_ZERO_PACKET) 717 && !(urb->transfer_buffer_length % maxpacket)) { 718 one_more = 1; 719 } 720 if (one_more) { 721 qtd_prev = qtd; 722 qtd = ehci_qtd_alloc (ehci, flags); 723 if (unlikely (!qtd)) 724 goto cleanup; 725 qtd->urb = urb; 726 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma); 727 list_add_tail (&qtd->qtd_list, head); 728 729 /* never any data in such packets */ 730 qtd_fill(ehci, qtd, 0, 0, token, 0); 731 } 732 } 733 734 /* by default, enable interrupt on urb completion */ 735 if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT))) 736 qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC); 737 return head; 738 739 cleanup: 740 qtd_list_free (ehci, urb, head); 741 return NULL; 742 } 743 744 /*-------------------------------------------------------------------------*/ 745 746 // Would be best to create all qh's from config descriptors, 747 // when each interface/altsetting is established. Unlink 748 // any previous qh and cancel its urbs first; endpoints are 749 // implicitly reset then (data toggle too). 750 // That'd mean updating how usbcore talks to HCDs. (2.7?) 751 752 753 /* 754 * Each QH holds a qtd list; a QH is used for everything except iso. 755 * 756 * For interrupt urbs, the scheduler must set the microframe scheduling 757 * mask(s) each time the QH gets scheduled. For highspeed, that's 758 * just one microframe in the s-mask. For split interrupt transactions 759 * there are additional complications: c-mask, maybe FSTNs. 760 */ 761 static struct ehci_qh * 762 qh_make ( 763 struct ehci_hcd *ehci, 764 struct urb *urb, 765 gfp_t flags 766 ) { 767 struct ehci_qh *qh = ehci_qh_alloc (ehci, flags); 768 struct usb_host_endpoint *ep; 769 u32 info1 = 0, info2 = 0; 770 int is_input, type; 771 int maxp = 0; 772 int mult; 773 struct usb_tt *tt = urb->dev->tt; 774 struct ehci_qh_hw *hw; 775 776 if (!qh) 777 return qh; 778 779 /* 780 * init endpoint/device data for this QH 781 */ 782 info1 |= usb_pipeendpoint (urb->pipe) << 8; 783 info1 |= usb_pipedevice (urb->pipe) << 0; 784 785 is_input = usb_pipein (urb->pipe); 786 type = usb_pipetype (urb->pipe); 787 ep = usb_pipe_endpoint (urb->dev, urb->pipe); 788 maxp = usb_endpoint_maxp (&ep->desc); 789 mult = usb_endpoint_maxp_mult (&ep->desc); 790 791 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth 792 * acts like up to 3KB, but is built from smaller packets. 793 */ 794 if (maxp > 1024) { 795 ehci_dbg(ehci, "bogus qh maxpacket %d\n", maxp); 796 goto done; 797 } 798 799 /* Compute interrupt scheduling parameters just once, and save. 800 * - allowing for high bandwidth, how many nsec/uframe are used? 801 * - split transactions need a second CSPLIT uframe; same question 802 * - splits also need a schedule gap (for full/low speed I/O) 803 * - qh has a polling interval 804 * 805 * For control/bulk requests, the HC or TT handles these. 806 */ 807 if (type == PIPE_INTERRUPT) { 808 unsigned tmp; 809 810 qh->ps.usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH, 811 is_input, 0, mult * maxp)); 812 qh->ps.phase = NO_FRAME; 813 814 if (urb->dev->speed == USB_SPEED_HIGH) { 815 qh->ps.c_usecs = 0; 816 qh->gap_uf = 0; 817 818 if (urb->interval > 1 && urb->interval < 8) { 819 /* NOTE interval 2 or 4 uframes could work. 820 * But interval 1 scheduling is simpler, and 821 * includes high bandwidth. 822 */ 823 urb->interval = 1; 824 } else if (urb->interval > ehci->periodic_size << 3) { 825 urb->interval = ehci->periodic_size << 3; 826 } 827 qh->ps.period = urb->interval >> 3; 828 829 /* period for bandwidth allocation */ 830 tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE, 831 1 << (urb->ep->desc.bInterval - 1)); 832 833 /* Allow urb->interval to override */ 834 qh->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval); 835 qh->ps.bw_period = qh->ps.bw_uperiod >> 3; 836 } else { 837 int think_time; 838 839 /* gap is f(FS/LS transfer times) */ 840 qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed, 841 is_input, 0, maxp) / (125 * 1000); 842 843 /* FIXME this just approximates SPLIT/CSPLIT times */ 844 if (is_input) { // SPLIT, gap, CSPLIT+DATA 845 qh->ps.c_usecs = qh->ps.usecs + HS_USECS(0); 846 qh->ps.usecs = HS_USECS(1); 847 } else { // SPLIT+DATA, gap, CSPLIT 848 qh->ps.usecs += HS_USECS(1); 849 qh->ps.c_usecs = HS_USECS(0); 850 } 851 852 think_time = tt ? tt->think_time : 0; 853 qh->ps.tt_usecs = NS_TO_US(think_time + 854 usb_calc_bus_time (urb->dev->speed, 855 is_input, 0, maxp)); 856 if (urb->interval > ehci->periodic_size) 857 urb->interval = ehci->periodic_size; 858 qh->ps.period = urb->interval; 859 860 /* period for bandwidth allocation */ 861 tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES, 862 urb->ep->desc.bInterval); 863 tmp = rounddown_pow_of_two(tmp); 864 865 /* Allow urb->interval to override */ 866 qh->ps.bw_period = min_t(unsigned, tmp, urb->interval); 867 qh->ps.bw_uperiod = qh->ps.bw_period << 3; 868 } 869 } 870 871 /* support for tt scheduling, and access to toggles */ 872 qh->ps.udev = urb->dev; 873 qh->ps.ep = urb->ep; 874 875 /* using TT? */ 876 switch (urb->dev->speed) { 877 case USB_SPEED_LOW: 878 info1 |= QH_LOW_SPEED; 879 /* FALL THROUGH */ 880 881 case USB_SPEED_FULL: 882 /* EPS 0 means "full" */ 883 if (type != PIPE_INTERRUPT) 884 info1 |= (EHCI_TUNE_RL_TT << 28); 885 if (type == PIPE_CONTROL) { 886 info1 |= QH_CONTROL_EP; /* for TT */ 887 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */ 888 } 889 info1 |= maxp << 16; 890 891 info2 |= (EHCI_TUNE_MULT_TT << 30); 892 893 /* Some Freescale processors have an erratum in which the 894 * port number in the queue head was 0..N-1 instead of 1..N. 895 */ 896 if (ehci_has_fsl_portno_bug(ehci)) 897 info2 |= (urb->dev->ttport-1) << 23; 898 else 899 info2 |= urb->dev->ttport << 23; 900 901 /* set the address of the TT; for TDI's integrated 902 * root hub tt, leave it zeroed. 903 */ 904 if (tt && tt->hub != ehci_to_hcd(ehci)->self.root_hub) 905 info2 |= tt->hub->devnum << 16; 906 907 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */ 908 909 break; 910 911 case USB_SPEED_HIGH: /* no TT involved */ 912 info1 |= QH_HIGH_SPEED; 913 if (type == PIPE_CONTROL) { 914 info1 |= (EHCI_TUNE_RL_HS << 28); 915 info1 |= 64 << 16; /* usb2 fixed maxpacket */ 916 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */ 917 info2 |= (EHCI_TUNE_MULT_HS << 30); 918 } else if (type == PIPE_BULK) { 919 info1 |= (EHCI_TUNE_RL_HS << 28); 920 /* The USB spec says that high speed bulk endpoints 921 * always use 512 byte maxpacket. But some device 922 * vendors decided to ignore that, and MSFT is happy 923 * to help them do so. So now people expect to use 924 * such nonconformant devices with Linux too; sigh. 925 */ 926 info1 |= maxp << 16; 927 info2 |= (EHCI_TUNE_MULT_HS << 30); 928 } else { /* PIPE_INTERRUPT */ 929 info1 |= maxp << 16; 930 info2 |= mult << 30; 931 } 932 break; 933 default: 934 ehci_dbg(ehci, "bogus dev %p speed %d\n", urb->dev, 935 urb->dev->speed); 936 done: 937 qh_destroy(ehci, qh); 938 return NULL; 939 } 940 941 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */ 942 943 /* init as live, toggle clear */ 944 qh->qh_state = QH_STATE_IDLE; 945 hw = qh->hw; 946 hw->hw_info1 = cpu_to_hc32(ehci, info1); 947 hw->hw_info2 = cpu_to_hc32(ehci, info2); 948 qh->is_out = !is_input; 949 usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1); 950 return qh; 951 } 952 953 /*-------------------------------------------------------------------------*/ 954 955 static void enable_async(struct ehci_hcd *ehci) 956 { 957 if (ehci->async_count++) 958 return; 959 960 /* Stop waiting to turn off the async schedule */ 961 ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_ASYNC); 962 963 /* Don't start the schedule until ASS is 0 */ 964 ehci_poll_ASS(ehci); 965 turn_on_io_watchdog(ehci); 966 } 967 968 static void disable_async(struct ehci_hcd *ehci) 969 { 970 if (--ehci->async_count) 971 return; 972 973 /* The async schedule and unlink lists are supposed to be empty */ 974 WARN_ON(ehci->async->qh_next.qh || !list_empty(&ehci->async_unlink) || 975 !list_empty(&ehci->async_idle)); 976 977 /* Don't turn off the schedule until ASS is 1 */ 978 ehci_poll_ASS(ehci); 979 } 980 981 /* move qh (and its qtds) onto async queue; maybe enable queue. */ 982 983 static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh) 984 { 985 __hc32 dma = QH_NEXT(ehci, qh->qh_dma); 986 struct ehci_qh *head; 987 988 /* Don't link a QH if there's a Clear-TT-Buffer pending */ 989 if (unlikely(qh->clearing_tt)) 990 return; 991 992 WARN_ON(qh->qh_state != QH_STATE_IDLE); 993 994 /* clear halt and/or toggle; and maybe recover from silicon quirk */ 995 qh_refresh(ehci, qh); 996 997 /* splice right after start */ 998 head = ehci->async; 999 qh->qh_next = head->qh_next; 1000 qh->hw->hw_next = head->hw->hw_next; 1001 wmb (); 1002 1003 head->qh_next.qh = qh; 1004 head->hw->hw_next = dma; 1005 1006 qh->qh_state = QH_STATE_LINKED; 1007 qh->xacterrs = 0; 1008 qh->unlink_reason = 0; 1009 /* qtd completions reported later by interrupt */ 1010 1011 enable_async(ehci); 1012 } 1013 1014 /*-------------------------------------------------------------------------*/ 1015 1016 /* 1017 * For control/bulk/interrupt, return QH with these TDs appended. 1018 * Allocates and initializes the QH if necessary. 1019 * Returns null if it can't allocate a QH it needs to. 1020 * If the QH has TDs (urbs) already, that's great. 1021 */ 1022 static struct ehci_qh *qh_append_tds ( 1023 struct ehci_hcd *ehci, 1024 struct urb *urb, 1025 struct list_head *qtd_list, 1026 int epnum, 1027 void **ptr 1028 ) 1029 { 1030 struct ehci_qh *qh = NULL; 1031 __hc32 qh_addr_mask = cpu_to_hc32(ehci, 0x7f); 1032 1033 qh = (struct ehci_qh *) *ptr; 1034 if (unlikely (qh == NULL)) { 1035 /* can't sleep here, we have ehci->lock... */ 1036 qh = qh_make (ehci, urb, GFP_ATOMIC); 1037 *ptr = qh; 1038 } 1039 if (likely (qh != NULL)) { 1040 struct ehci_qtd *qtd; 1041 1042 if (unlikely (list_empty (qtd_list))) 1043 qtd = NULL; 1044 else 1045 qtd = list_entry (qtd_list->next, struct ehci_qtd, 1046 qtd_list); 1047 1048 /* control qh may need patching ... */ 1049 if (unlikely (epnum == 0)) { 1050 1051 /* usb_reset_device() briefly reverts to address 0 */ 1052 if (usb_pipedevice (urb->pipe) == 0) 1053 qh->hw->hw_info1 &= ~qh_addr_mask; 1054 } 1055 1056 /* just one way to queue requests: swap with the dummy qtd. 1057 * only hc or qh_refresh() ever modify the overlay. 1058 */ 1059 if (likely (qtd != NULL)) { 1060 struct ehci_qtd *dummy; 1061 dma_addr_t dma; 1062 __hc32 token; 1063 1064 /* to avoid racing the HC, use the dummy td instead of 1065 * the first td of our list (becomes new dummy). both 1066 * tds stay deactivated until we're done, when the 1067 * HC is allowed to fetch the old dummy (4.10.2). 1068 */ 1069 token = qtd->hw_token; 1070 qtd->hw_token = HALT_BIT(ehci); 1071 1072 dummy = qh->dummy; 1073 1074 dma = dummy->qtd_dma; 1075 *dummy = *qtd; 1076 dummy->qtd_dma = dma; 1077 1078 list_del (&qtd->qtd_list); 1079 list_add (&dummy->qtd_list, qtd_list); 1080 list_splice_tail(qtd_list, &qh->qtd_list); 1081 1082 ehci_qtd_init(ehci, qtd, qtd->qtd_dma); 1083 qh->dummy = qtd; 1084 1085 /* hc must see the new dummy at list end */ 1086 dma = qtd->qtd_dma; 1087 qtd = list_entry (qh->qtd_list.prev, 1088 struct ehci_qtd, qtd_list); 1089 qtd->hw_next = QTD_NEXT(ehci, dma); 1090 1091 /* let the hc process these next qtds */ 1092 wmb (); 1093 dummy->hw_token = token; 1094 1095 urb->hcpriv = qh; 1096 } 1097 } 1098 return qh; 1099 } 1100 1101 /*-------------------------------------------------------------------------*/ 1102 1103 static int 1104 submit_async ( 1105 struct ehci_hcd *ehci, 1106 struct urb *urb, 1107 struct list_head *qtd_list, 1108 gfp_t mem_flags 1109 ) { 1110 int epnum; 1111 unsigned long flags; 1112 struct ehci_qh *qh = NULL; 1113 int rc; 1114 1115 epnum = urb->ep->desc.bEndpointAddress; 1116 1117 #ifdef EHCI_URB_TRACE 1118 { 1119 struct ehci_qtd *qtd; 1120 qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list); 1121 ehci_dbg(ehci, 1122 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n", 1123 __func__, urb->dev->devpath, urb, 1124 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out", 1125 urb->transfer_buffer_length, 1126 qtd, urb->ep->hcpriv); 1127 } 1128 #endif 1129 1130 spin_lock_irqsave (&ehci->lock, flags); 1131 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) { 1132 rc = -ESHUTDOWN; 1133 goto done; 1134 } 1135 rc = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb); 1136 if (unlikely(rc)) 1137 goto done; 1138 1139 qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv); 1140 if (unlikely(qh == NULL)) { 1141 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); 1142 rc = -ENOMEM; 1143 goto done; 1144 } 1145 1146 /* Control/bulk operations through TTs don't need scheduling, 1147 * the HC and TT handle it when the TT has a buffer ready. 1148 */ 1149 if (likely (qh->qh_state == QH_STATE_IDLE)) 1150 qh_link_async(ehci, qh); 1151 done: 1152 spin_unlock_irqrestore (&ehci->lock, flags); 1153 if (unlikely (qh == NULL)) 1154 qtd_list_free (ehci, urb, qtd_list); 1155 return rc; 1156 } 1157 1158 /*-------------------------------------------------------------------------*/ 1159 #ifdef CONFIG_USB_HCD_TEST_MODE 1160 /* 1161 * This function creates the qtds and submits them for the 1162 * SINGLE_STEP_SET_FEATURE Test. 1163 * This is done in two parts: first SETUP req for GetDesc is sent then 1164 * 15 seconds later, the IN stage for GetDesc starts to req data from dev 1165 * 1166 * is_setup : i/p arguement decides which of the two stage needs to be 1167 * performed; TRUE - SETUP and FALSE - IN+STATUS 1168 * Returns 0 if success 1169 */ 1170 static int submit_single_step_set_feature( 1171 struct usb_hcd *hcd, 1172 struct urb *urb, 1173 int is_setup 1174 ) { 1175 struct ehci_hcd *ehci = hcd_to_ehci(hcd); 1176 struct list_head qtd_list; 1177 struct list_head *head; 1178 1179 struct ehci_qtd *qtd, *qtd_prev; 1180 dma_addr_t buf; 1181 int len, maxpacket; 1182 u32 token; 1183 1184 INIT_LIST_HEAD(&qtd_list); 1185 head = &qtd_list; 1186 1187 /* URBs map to sequences of QTDs: one logical transaction */ 1188 qtd = ehci_qtd_alloc(ehci, GFP_KERNEL); 1189 if (unlikely(!qtd)) 1190 return -1; 1191 list_add_tail(&qtd->qtd_list, head); 1192 qtd->urb = urb; 1193 1194 token = QTD_STS_ACTIVE; 1195 token |= (EHCI_TUNE_CERR << 10); 1196 1197 len = urb->transfer_buffer_length; 1198 /* 1199 * Check if the request is to perform just the SETUP stage (getDesc) 1200 * as in SINGLE_STEP_SET_FEATURE test, DATA stage (IN) happens 1201 * 15 secs after the setup 1202 */ 1203 if (is_setup) { 1204 /* SETUP pid */ 1205 qtd_fill(ehci, qtd, urb->setup_dma, 1206 sizeof(struct usb_ctrlrequest), 1207 token | (2 /* "setup" */ << 8), 8); 1208 1209 submit_async(ehci, urb, &qtd_list, GFP_ATOMIC); 1210 return 0; /*Return now; we shall come back after 15 seconds*/ 1211 } 1212 1213 /* 1214 * IN: data transfer stage: buffer setup : start the IN txn phase for 1215 * the get_Desc SETUP which was sent 15seconds back 1216 */ 1217 token ^= QTD_TOGGLE; /*We need to start IN with DATA-1 Pid-sequence*/ 1218 buf = urb->transfer_dma; 1219 1220 token |= (1 /* "in" */ << 8); /*This is IN stage*/ 1221 1222 maxpacket = usb_maxpacket(urb->dev, urb->pipe, 0); 1223 1224 qtd_fill(ehci, qtd, buf, len, token, maxpacket); 1225 1226 /* 1227 * Our IN phase shall always be a short read; so keep the queue running 1228 * and let it advance to the next qtd which zero length OUT status 1229 */ 1230 qtd->hw_alt_next = EHCI_LIST_END(ehci); 1231 1232 /* STATUS stage for GetDesc control request */ 1233 token ^= 0x0100; /* "in" <--> "out" */ 1234 token |= QTD_TOGGLE; /* force DATA1 */ 1235 1236 qtd_prev = qtd; 1237 qtd = ehci_qtd_alloc(ehci, GFP_ATOMIC); 1238 if (unlikely(!qtd)) 1239 goto cleanup; 1240 qtd->urb = urb; 1241 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma); 1242 list_add_tail(&qtd->qtd_list, head); 1243 1244 /* dont fill any data in such packets */ 1245 qtd_fill(ehci, qtd, 0, 0, token, 0); 1246 1247 /* by default, enable interrupt on urb completion */ 1248 if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT))) 1249 qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC); 1250 1251 submit_async(ehci, urb, &qtd_list, GFP_KERNEL); 1252 1253 return 0; 1254 1255 cleanup: 1256 qtd_list_free(ehci, urb, head); 1257 return -1; 1258 } 1259 #endif /* CONFIG_USB_HCD_TEST_MODE */ 1260 1261 /*-------------------------------------------------------------------------*/ 1262 1263 static void single_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh) 1264 { 1265 struct ehci_qh *prev; 1266 1267 /* Add to the end of the list of QHs waiting for the next IAAD */ 1268 qh->qh_state = QH_STATE_UNLINK_WAIT; 1269 list_add_tail(&qh->unlink_node, &ehci->async_unlink); 1270 1271 /* Unlink it from the schedule */ 1272 prev = ehci->async; 1273 while (prev->qh_next.qh != qh) 1274 prev = prev->qh_next.qh; 1275 1276 prev->hw->hw_next = qh->hw->hw_next; 1277 prev->qh_next = qh->qh_next; 1278 if (ehci->qh_scan_next == qh) 1279 ehci->qh_scan_next = qh->qh_next.qh; 1280 } 1281 1282 static void start_iaa_cycle(struct ehci_hcd *ehci) 1283 { 1284 /* If the controller isn't running, we don't have to wait for it */ 1285 if (unlikely(ehci->rh_state < EHCI_RH_RUNNING)) { 1286 end_unlink_async(ehci); 1287 1288 /* Otherwise start a new IAA cycle if one isn't already running */ 1289 } else if (ehci->rh_state == EHCI_RH_RUNNING && 1290 !ehci->iaa_in_progress) { 1291 1292 /* Make sure the unlinks are all visible to the hardware */ 1293 wmb(); 1294 1295 ehci_writel(ehci, ehci->command | CMD_IAAD, 1296 &ehci->regs->command); 1297 ehci_readl(ehci, &ehci->regs->command); 1298 ehci->iaa_in_progress = true; 1299 ehci_enable_event(ehci, EHCI_HRTIMER_IAA_WATCHDOG, true); 1300 } 1301 } 1302 1303 static void end_iaa_cycle(struct ehci_hcd *ehci) 1304 { 1305 if (ehci->has_synopsys_hc_bug) 1306 ehci_writel(ehci, (u32) ehci->async->qh_dma, 1307 &ehci->regs->async_next); 1308 1309 /* The current IAA cycle has ended */ 1310 ehci->iaa_in_progress = false; 1311 1312 end_unlink_async(ehci); 1313 } 1314 1315 /* See if the async qh for the qtds being unlinked are now gone from the HC */ 1316 1317 static void end_unlink_async(struct ehci_hcd *ehci) 1318 { 1319 struct ehci_qh *qh; 1320 bool early_exit; 1321 1322 if (list_empty(&ehci->async_unlink)) 1323 return; 1324 qh = list_first_entry(&ehci->async_unlink, struct ehci_qh, 1325 unlink_node); /* QH whose IAA cycle just ended */ 1326 1327 /* 1328 * If async_unlinking is set then this routine is already running, 1329 * either on the stack or on another CPU. 1330 */ 1331 early_exit = ehci->async_unlinking; 1332 1333 /* If the controller isn't running, process all the waiting QHs */ 1334 if (ehci->rh_state < EHCI_RH_RUNNING) 1335 list_splice_tail_init(&ehci->async_unlink, &ehci->async_idle); 1336 1337 /* 1338 * Intel (?) bug: The HC can write back the overlay region even 1339 * after the IAA interrupt occurs. In self-defense, always go 1340 * through two IAA cycles for each QH. 1341 */ 1342 else if (qh->qh_state == QH_STATE_UNLINK) { 1343 /* 1344 * Second IAA cycle has finished. Process only the first 1345 * waiting QH (NVIDIA (?) bug). 1346 */ 1347 list_move_tail(&qh->unlink_node, &ehci->async_idle); 1348 } 1349 1350 /* 1351 * AMD/ATI (?) bug: The HC can continue to use an active QH long 1352 * after the IAA interrupt occurs. To prevent problems, QHs that 1353 * may still be active will wait until 2 ms have passed with no 1354 * change to the hw_current and hw_token fields (this delay occurs 1355 * between the two IAA cycles). 1356 * 1357 * The EHCI spec (4.8.2) says that active QHs must not be removed 1358 * from the async schedule and recommends waiting until the QH 1359 * goes inactive. This is ridiculous because the QH will _never_ 1360 * become inactive if the endpoint NAKs indefinitely. 1361 */ 1362 1363 /* Some reasons for unlinking guarantee the QH can't be active */ 1364 else if (qh->unlink_reason & (QH_UNLINK_HALTED | 1365 QH_UNLINK_SHORT_READ | QH_UNLINK_DUMMY_OVERLAY)) 1366 goto DelayDone; 1367 1368 /* The QH can't be active if the queue was and still is empty... */ 1369 else if ((qh->unlink_reason & QH_UNLINK_QUEUE_EMPTY) && 1370 list_empty(&qh->qtd_list)) 1371 goto DelayDone; 1372 1373 /* ... or if the QH has halted */ 1374 else if (qh->hw->hw_token & cpu_to_hc32(ehci, QTD_STS_HALT)) 1375 goto DelayDone; 1376 1377 /* Otherwise we have to wait until the QH stops changing */ 1378 else { 1379 __hc32 qh_current, qh_token; 1380 1381 qh_current = qh->hw->hw_current; 1382 qh_token = qh->hw->hw_token; 1383 if (qh_current != ehci->old_current || 1384 qh_token != ehci->old_token) { 1385 ehci->old_current = qh_current; 1386 ehci->old_token = qh_token; 1387 ehci_enable_event(ehci, 1388 EHCI_HRTIMER_ACTIVE_UNLINK, true); 1389 return; 1390 } 1391 DelayDone: 1392 qh->qh_state = QH_STATE_UNLINK; 1393 early_exit = true; 1394 } 1395 ehci->old_current = ~0; /* Prepare for next QH */ 1396 1397 /* Start a new IAA cycle if any QHs are waiting for it */ 1398 if (!list_empty(&ehci->async_unlink)) 1399 start_iaa_cycle(ehci); 1400 1401 /* 1402 * Don't allow nesting or concurrent calls, 1403 * or wait for the second IAA cycle for the next QH. 1404 */ 1405 if (early_exit) 1406 return; 1407 1408 /* Process the idle QHs */ 1409 ehci->async_unlinking = true; 1410 while (!list_empty(&ehci->async_idle)) { 1411 qh = list_first_entry(&ehci->async_idle, struct ehci_qh, 1412 unlink_node); 1413 list_del(&qh->unlink_node); 1414 1415 qh->qh_state = QH_STATE_IDLE; 1416 qh->qh_next.qh = NULL; 1417 1418 if (!list_empty(&qh->qtd_list)) 1419 qh_completions(ehci, qh); 1420 if (!list_empty(&qh->qtd_list) && 1421 ehci->rh_state == EHCI_RH_RUNNING) 1422 qh_link_async(ehci, qh); 1423 disable_async(ehci); 1424 } 1425 ehci->async_unlinking = false; 1426 } 1427 1428 static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh); 1429 1430 static void unlink_empty_async(struct ehci_hcd *ehci) 1431 { 1432 struct ehci_qh *qh; 1433 struct ehci_qh *qh_to_unlink = NULL; 1434 int count = 0; 1435 1436 /* Find the last async QH which has been empty for a timer cycle */ 1437 for (qh = ehci->async->qh_next.qh; qh; qh = qh->qh_next.qh) { 1438 if (list_empty(&qh->qtd_list) && 1439 qh->qh_state == QH_STATE_LINKED) { 1440 ++count; 1441 if (qh->unlink_cycle != ehci->async_unlink_cycle) 1442 qh_to_unlink = qh; 1443 } 1444 } 1445 1446 /* If nothing else is being unlinked, unlink the last empty QH */ 1447 if (list_empty(&ehci->async_unlink) && qh_to_unlink) { 1448 qh_to_unlink->unlink_reason |= QH_UNLINK_QUEUE_EMPTY; 1449 start_unlink_async(ehci, qh_to_unlink); 1450 --count; 1451 } 1452 1453 /* Other QHs will be handled later */ 1454 if (count > 0) { 1455 ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true); 1456 ++ehci->async_unlink_cycle; 1457 } 1458 } 1459 1460 #ifdef CONFIG_PM 1461 1462 /* The root hub is suspended; unlink all the async QHs */ 1463 static void unlink_empty_async_suspended(struct ehci_hcd *ehci) 1464 { 1465 struct ehci_qh *qh; 1466 1467 while (ehci->async->qh_next.qh) { 1468 qh = ehci->async->qh_next.qh; 1469 WARN_ON(!list_empty(&qh->qtd_list)); 1470 single_unlink_async(ehci, qh); 1471 } 1472 } 1473 1474 #endif 1475 1476 /* makes sure the async qh will become idle */ 1477 /* caller must own ehci->lock */ 1478 1479 static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh) 1480 { 1481 /* If the QH isn't linked then there's nothing we can do. */ 1482 if (qh->qh_state != QH_STATE_LINKED) 1483 return; 1484 1485 single_unlink_async(ehci, qh); 1486 start_iaa_cycle(ehci); 1487 } 1488 1489 /*-------------------------------------------------------------------------*/ 1490 1491 static void scan_async (struct ehci_hcd *ehci) 1492 { 1493 struct ehci_qh *qh; 1494 bool check_unlinks_later = false; 1495 1496 ehci->qh_scan_next = ehci->async->qh_next.qh; 1497 while (ehci->qh_scan_next) { 1498 qh = ehci->qh_scan_next; 1499 ehci->qh_scan_next = qh->qh_next.qh; 1500 1501 /* clean any finished work for this qh */ 1502 if (!list_empty(&qh->qtd_list)) { 1503 int temp; 1504 1505 /* 1506 * Unlinks could happen here; completion reporting 1507 * drops the lock. That's why ehci->qh_scan_next 1508 * always holds the next qh to scan; if the next qh 1509 * gets unlinked then ehci->qh_scan_next is adjusted 1510 * in single_unlink_async(). 1511 */ 1512 temp = qh_completions(ehci, qh); 1513 if (unlikely(temp)) { 1514 start_unlink_async(ehci, qh); 1515 } else if (list_empty(&qh->qtd_list) 1516 && qh->qh_state == QH_STATE_LINKED) { 1517 qh->unlink_cycle = ehci->async_unlink_cycle; 1518 check_unlinks_later = true; 1519 } 1520 } 1521 } 1522 1523 /* 1524 * Unlink empty entries, reducing DMA usage as well 1525 * as HCD schedule-scanning costs. Delay for any qh 1526 * we just scanned, there's a not-unusual case that it 1527 * doesn't stay idle for long. 1528 */ 1529 if (check_unlinks_later && ehci->rh_state == EHCI_RH_RUNNING && 1530 !(ehci->enabled_hrtimer_events & 1531 BIT(EHCI_HRTIMER_ASYNC_UNLINKS))) { 1532 ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true); 1533 ++ehci->async_unlink_cycle; 1534 } 1535 } 1536