1 /* 2 * Copyright (C) 2001-2004 by David Brownell 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License as published by the 6 * Free Software Foundation; either version 2 of the License, or (at your 7 * option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, but 10 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 11 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software Foundation, 16 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 17 */ 18 19 /* this file is part of ehci-hcd.c */ 20 21 /*-------------------------------------------------------------------------*/ 22 23 /* 24 * EHCI hardware queue manipulation ... the core. QH/QTD manipulation. 25 * 26 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd" 27 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned 28 * buffers needed for the larger number). We use one QH per endpoint, queue 29 * multiple urbs (all three types) per endpoint. URBs may need several qtds. 30 * 31 * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with 32 * interrupts) needs careful scheduling. Performance improvements can be 33 * an ongoing challenge. That's in "ehci-sched.c". 34 * 35 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs, 36 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using 37 * (b) special fields in qh entries or (c) split iso entries. TTs will 38 * buffer low/full speed data so the host collects it at high speed. 39 */ 40 41 /*-------------------------------------------------------------------------*/ 42 43 /* fill a qtd, returning how much of the buffer we were able to queue up */ 44 45 static int 46 qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf, 47 size_t len, int token, int maxpacket) 48 { 49 int i, count; 50 u64 addr = buf; 51 52 /* one buffer entry per 4K ... first might be short or unaligned */ 53 qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32)addr); 54 qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32)(addr >> 32)); 55 count = 0x1000 - (buf & 0x0fff); /* rest of that page */ 56 if (likely (len < count)) /* ... iff needed */ 57 count = len; 58 else { 59 buf += 0x1000; 60 buf &= ~0x0fff; 61 62 /* per-qtd limit: from 16K to 20K (best alignment) */ 63 for (i = 1; count < len && i < 5; i++) { 64 addr = buf; 65 qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32)addr); 66 qtd->hw_buf_hi[i] = cpu_to_hc32(ehci, 67 (u32)(addr >> 32)); 68 buf += 0x1000; 69 if ((count + 0x1000) < len) 70 count += 0x1000; 71 else 72 count = len; 73 } 74 75 /* short packets may only terminate transfers */ 76 if (count != len) 77 count -= (count % maxpacket); 78 } 79 qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token); 80 qtd->length = count; 81 82 return count; 83 } 84 85 /*-------------------------------------------------------------------------*/ 86 87 static inline void 88 qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd) 89 { 90 struct ehci_qh_hw *hw = qh->hw; 91 92 /* writes to an active overlay are unsafe */ 93 WARN_ON(qh->qh_state != QH_STATE_IDLE); 94 95 hw->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma); 96 hw->hw_alt_next = EHCI_LIST_END(ehci); 97 98 /* Except for control endpoints, we make hardware maintain data 99 * toggle (like OHCI) ... here (re)initialize the toggle in the QH, 100 * and set the pseudo-toggle in udev. Only usb_clear_halt() will 101 * ever clear it. 102 */ 103 if (!(hw->hw_info1 & cpu_to_hc32(ehci, QH_TOGGLE_CTL))) { 104 unsigned is_out, epnum; 105 106 is_out = qh->is_out; 107 epnum = (hc32_to_cpup(ehci, &hw->hw_info1) >> 8) & 0x0f; 108 if (unlikely (!usb_gettoggle (qh->dev, epnum, is_out))) { 109 hw->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE); 110 usb_settoggle (qh->dev, epnum, is_out, 1); 111 } 112 } 113 114 hw->hw_token &= cpu_to_hc32(ehci, QTD_TOGGLE | QTD_STS_PING); 115 } 116 117 /* if it weren't for a common silicon quirk (writing the dummy into the qh 118 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault 119 * recovery (including urb dequeue) would need software changes to a QH... 120 */ 121 static void 122 qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh) 123 { 124 struct ehci_qtd *qtd; 125 126 qtd = list_entry(qh->qtd_list.next, struct ehci_qtd, qtd_list); 127 128 /* 129 * first qtd may already be partially processed. 130 * If we come here during unlink, the QH overlay region 131 * might have reference to the just unlinked qtd. The 132 * qtd is updated in qh_completions(). Update the QH 133 * overlay here. 134 */ 135 if (qh->hw->hw_token & ACTIVE_BIT(ehci)) 136 qh->hw->hw_qtd_next = qtd->hw_next; 137 else 138 qh_update(ehci, qh, qtd); 139 } 140 141 /*-------------------------------------------------------------------------*/ 142 143 static void qh_link_async(struct ehci_hcd *ehci, struct ehci_qh *qh); 144 145 static void ehci_clear_tt_buffer_complete(struct usb_hcd *hcd, 146 struct usb_host_endpoint *ep) 147 { 148 struct ehci_hcd *ehci = hcd_to_ehci(hcd); 149 struct ehci_qh *qh = ep->hcpriv; 150 unsigned long flags; 151 152 spin_lock_irqsave(&ehci->lock, flags); 153 qh->clearing_tt = 0; 154 if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list) 155 && ehci->rh_state == EHCI_RH_RUNNING) 156 qh_link_async(ehci, qh); 157 spin_unlock_irqrestore(&ehci->lock, flags); 158 } 159 160 static void ehci_clear_tt_buffer(struct ehci_hcd *ehci, struct ehci_qh *qh, 161 struct urb *urb, u32 token) 162 { 163 164 /* If an async split transaction gets an error or is unlinked, 165 * the TT buffer may be left in an indeterminate state. We 166 * have to clear the TT buffer. 167 * 168 * Note: this routine is never called for Isochronous transfers. 169 */ 170 if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) { 171 #ifdef DEBUG 172 struct usb_device *tt = urb->dev->tt->hub; 173 dev_dbg(&tt->dev, 174 "clear tt buffer port %d, a%d ep%d t%08x\n", 175 urb->dev->ttport, urb->dev->devnum, 176 usb_pipeendpoint(urb->pipe), token); 177 #endif /* DEBUG */ 178 if (!ehci_is_TDI(ehci) 179 || urb->dev->tt->hub != 180 ehci_to_hcd(ehci)->self.root_hub) { 181 if (usb_hub_clear_tt_buffer(urb) == 0) 182 qh->clearing_tt = 1; 183 } else { 184 185 /* REVISIT ARC-derived cores don't clear the root 186 * hub TT buffer in this way... 187 */ 188 } 189 } 190 } 191 192 static int qtd_copy_status ( 193 struct ehci_hcd *ehci, 194 struct urb *urb, 195 size_t length, 196 u32 token 197 ) 198 { 199 int status = -EINPROGRESS; 200 201 /* count IN/OUT bytes, not SETUP (even short packets) */ 202 if (likely (QTD_PID (token) != 2)) 203 urb->actual_length += length - QTD_LENGTH (token); 204 205 /* don't modify error codes */ 206 if (unlikely(urb->unlinked)) 207 return status; 208 209 /* force cleanup after short read; not always an error */ 210 if (unlikely (IS_SHORT_READ (token))) 211 status = -EREMOTEIO; 212 213 /* serious "can't proceed" faults reported by the hardware */ 214 if (token & QTD_STS_HALT) { 215 if (token & QTD_STS_BABBLE) { 216 /* FIXME "must" disable babbling device's port too */ 217 status = -EOVERFLOW; 218 /* CERR nonzero + halt --> stall */ 219 } else if (QTD_CERR(token)) { 220 status = -EPIPE; 221 222 /* In theory, more than one of the following bits can be set 223 * since they are sticky and the transaction is retried. 224 * Which to test first is rather arbitrary. 225 */ 226 } else if (token & QTD_STS_MMF) { 227 /* fs/ls interrupt xfer missed the complete-split */ 228 status = -EPROTO; 229 } else if (token & QTD_STS_DBE) { 230 status = (QTD_PID (token) == 1) /* IN ? */ 231 ? -ENOSR /* hc couldn't read data */ 232 : -ECOMM; /* hc couldn't write data */ 233 } else if (token & QTD_STS_XACT) { 234 /* timeout, bad CRC, wrong PID, etc */ 235 ehci_dbg(ehci, "devpath %s ep%d%s 3strikes\n", 236 urb->dev->devpath, 237 usb_pipeendpoint(urb->pipe), 238 usb_pipein(urb->pipe) ? "in" : "out"); 239 status = -EPROTO; 240 } else { /* unknown */ 241 status = -EPROTO; 242 } 243 244 ehci_vdbg (ehci, 245 "dev%d ep%d%s qtd token %08x --> status %d\n", 246 usb_pipedevice (urb->pipe), 247 usb_pipeendpoint (urb->pipe), 248 usb_pipein (urb->pipe) ? "in" : "out", 249 token, status); 250 } 251 252 return status; 253 } 254 255 static void 256 ehci_urb_done(struct ehci_hcd *ehci, struct urb *urb, int status) 257 __releases(ehci->lock) 258 __acquires(ehci->lock) 259 { 260 if (usb_pipetype(urb->pipe) == PIPE_INTERRUPT) { 261 /* ... update hc-wide periodic stats */ 262 ehci_to_hcd(ehci)->self.bandwidth_int_reqs--; 263 } 264 265 if (unlikely(urb->unlinked)) { 266 COUNT(ehci->stats.unlink); 267 } else { 268 /* report non-error and short read status as zero */ 269 if (status == -EINPROGRESS || status == -EREMOTEIO) 270 status = 0; 271 COUNT(ehci->stats.complete); 272 } 273 274 #ifdef EHCI_URB_TRACE 275 ehci_dbg (ehci, 276 "%s %s urb %p ep%d%s status %d len %d/%d\n", 277 __func__, urb->dev->devpath, urb, 278 usb_pipeendpoint (urb->pipe), 279 usb_pipein (urb->pipe) ? "in" : "out", 280 status, 281 urb->actual_length, urb->transfer_buffer_length); 282 #endif 283 284 /* complete() can reenter this HCD */ 285 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); 286 spin_unlock (&ehci->lock); 287 usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb, status); 288 spin_lock (&ehci->lock); 289 } 290 291 static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh); 292 293 /* 294 * Process and free completed qtds for a qh, returning URBs to drivers. 295 * Chases up to qh->hw_current. Returns nonzero if the caller should 296 * unlink qh. 297 */ 298 static unsigned 299 qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh) 300 { 301 struct ehci_qtd *last, *end = qh->dummy; 302 struct list_head *entry, *tmp; 303 int last_status; 304 int stopped; 305 u8 state; 306 struct ehci_qh_hw *hw = qh->hw; 307 308 /* completions (or tasks on other cpus) must never clobber HALT 309 * till we've gone through and cleaned everything up, even when 310 * they add urbs to this qh's queue or mark them for unlinking. 311 * 312 * NOTE: unlinking expects to be done in queue order. 313 * 314 * It's a bug for qh->qh_state to be anything other than 315 * QH_STATE_IDLE, unless our caller is scan_async() or 316 * scan_intr(). 317 */ 318 state = qh->qh_state; 319 qh->qh_state = QH_STATE_COMPLETING; 320 stopped = (state == QH_STATE_IDLE); 321 322 rescan: 323 last = NULL; 324 last_status = -EINPROGRESS; 325 qh->dequeue_during_giveback = 0; 326 327 /* remove de-activated QTDs from front of queue. 328 * after faults (including short reads), cleanup this urb 329 * then let the queue advance. 330 * if queue is stopped, handles unlinks. 331 */ 332 list_for_each_safe (entry, tmp, &qh->qtd_list) { 333 struct ehci_qtd *qtd; 334 struct urb *urb; 335 u32 token = 0; 336 337 qtd = list_entry (entry, struct ehci_qtd, qtd_list); 338 urb = qtd->urb; 339 340 /* clean up any state from previous QTD ...*/ 341 if (last) { 342 if (likely (last->urb != urb)) { 343 ehci_urb_done(ehci, last->urb, last_status); 344 last_status = -EINPROGRESS; 345 } 346 ehci_qtd_free (ehci, last); 347 last = NULL; 348 } 349 350 /* ignore urbs submitted during completions we reported */ 351 if (qtd == end) 352 break; 353 354 /* hardware copies qtd out of qh overlay */ 355 rmb (); 356 token = hc32_to_cpu(ehci, qtd->hw_token); 357 358 /* always clean up qtds the hc de-activated */ 359 retry_xacterr: 360 if ((token & QTD_STS_ACTIVE) == 0) { 361 362 /* Report Data Buffer Error: non-fatal but useful */ 363 if (token & QTD_STS_DBE) 364 ehci_dbg(ehci, 365 "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n", 366 urb, 367 usb_endpoint_num(&urb->ep->desc), 368 usb_endpoint_dir_in(&urb->ep->desc) ? "in" : "out", 369 urb->transfer_buffer_length, 370 qtd, 371 qh); 372 373 /* on STALL, error, and short reads this urb must 374 * complete and all its qtds must be recycled. 375 */ 376 if ((token & QTD_STS_HALT) != 0) { 377 378 /* retry transaction errors until we 379 * reach the software xacterr limit 380 */ 381 if ((token & QTD_STS_XACT) && 382 QTD_CERR(token) == 0 && 383 ++qh->xacterrs < QH_XACTERR_MAX && 384 !urb->unlinked) { 385 ehci_dbg(ehci, 386 "detected XactErr len %zu/%zu retry %d\n", 387 qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs); 388 389 /* reset the token in the qtd and the 390 * qh overlay (which still contains 391 * the qtd) so that we pick up from 392 * where we left off 393 */ 394 token &= ~QTD_STS_HALT; 395 token |= QTD_STS_ACTIVE | 396 (EHCI_TUNE_CERR << 10); 397 qtd->hw_token = cpu_to_hc32(ehci, 398 token); 399 wmb(); 400 hw->hw_token = cpu_to_hc32(ehci, 401 token); 402 goto retry_xacterr; 403 } 404 stopped = 1; 405 406 /* magic dummy for some short reads; qh won't advance. 407 * that silicon quirk can kick in with this dummy too. 408 * 409 * other short reads won't stop the queue, including 410 * control transfers (status stage handles that) or 411 * most other single-qtd reads ... the queue stops if 412 * URB_SHORT_NOT_OK was set so the driver submitting 413 * the urbs could clean it up. 414 */ 415 } else if (IS_SHORT_READ (token) 416 && !(qtd->hw_alt_next 417 & EHCI_LIST_END(ehci))) { 418 stopped = 1; 419 } 420 421 /* stop scanning when we reach qtds the hc is using */ 422 } else if (likely (!stopped 423 && ehci->rh_state >= EHCI_RH_RUNNING)) { 424 break; 425 426 /* scan the whole queue for unlinks whenever it stops */ 427 } else { 428 stopped = 1; 429 430 /* cancel everything if we halt, suspend, etc */ 431 if (ehci->rh_state < EHCI_RH_RUNNING) 432 last_status = -ESHUTDOWN; 433 434 /* this qtd is active; skip it unless a previous qtd 435 * for its urb faulted, or its urb was canceled. 436 */ 437 else if (last_status == -EINPROGRESS && !urb->unlinked) 438 continue; 439 440 /* 441 * If this was the active qtd when the qh was unlinked 442 * and the overlay's token is active, then the overlay 443 * hasn't been written back to the qtd yet so use its 444 * token instead of the qtd's. After the qtd is 445 * processed and removed, the overlay won't be valid 446 * any more. 447 */ 448 if (state == QH_STATE_IDLE && 449 qh->qtd_list.next == &qtd->qtd_list && 450 (hw->hw_token & ACTIVE_BIT(ehci))) { 451 token = hc32_to_cpu(ehci, hw->hw_token); 452 hw->hw_token &= ~ACTIVE_BIT(ehci); 453 454 /* An unlink may leave an incomplete 455 * async transaction in the TT buffer. 456 * We have to clear it. 457 */ 458 ehci_clear_tt_buffer(ehci, qh, urb, token); 459 } 460 } 461 462 /* unless we already know the urb's status, collect qtd status 463 * and update count of bytes transferred. in common short read 464 * cases with only one data qtd (including control transfers), 465 * queue processing won't halt. but with two or more qtds (for 466 * example, with a 32 KB transfer), when the first qtd gets a 467 * short read the second must be removed by hand. 468 */ 469 if (last_status == -EINPROGRESS) { 470 last_status = qtd_copy_status(ehci, urb, 471 qtd->length, token); 472 if (last_status == -EREMOTEIO 473 && (qtd->hw_alt_next 474 & EHCI_LIST_END(ehci))) 475 last_status = -EINPROGRESS; 476 477 /* As part of low/full-speed endpoint-halt processing 478 * we must clear the TT buffer (11.17.5). 479 */ 480 if (unlikely(last_status != -EINPROGRESS && 481 last_status != -EREMOTEIO)) { 482 /* The TT's in some hubs malfunction when they 483 * receive this request following a STALL (they 484 * stop sending isochronous packets). Since a 485 * STALL can't leave the TT buffer in a busy 486 * state (if you believe Figures 11-48 - 11-51 487 * in the USB 2.0 spec), we won't clear the TT 488 * buffer in this case. Strictly speaking this 489 * is a violation of the spec. 490 */ 491 if (last_status != -EPIPE) 492 ehci_clear_tt_buffer(ehci, qh, urb, 493 token); 494 } 495 } 496 497 /* if we're removing something not at the queue head, 498 * patch the hardware queue pointer. 499 */ 500 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) { 501 last = list_entry (qtd->qtd_list.prev, 502 struct ehci_qtd, qtd_list); 503 last->hw_next = qtd->hw_next; 504 } 505 506 /* remove qtd; it's recycled after possible urb completion */ 507 list_del (&qtd->qtd_list); 508 last = qtd; 509 510 /* reinit the xacterr counter for the next qtd */ 511 qh->xacterrs = 0; 512 } 513 514 /* last urb's completion might still need calling */ 515 if (likely (last != NULL)) { 516 ehci_urb_done(ehci, last->urb, last_status); 517 ehci_qtd_free (ehci, last); 518 } 519 520 /* Do we need to rescan for URBs dequeued during a giveback? */ 521 if (unlikely(qh->dequeue_during_giveback)) { 522 /* If the QH is already unlinked, do the rescan now. */ 523 if (state == QH_STATE_IDLE) 524 goto rescan; 525 526 /* Otherwise the caller must unlink the QH. */ 527 } 528 529 /* restore original state; caller must unlink or relink */ 530 qh->qh_state = state; 531 532 /* be sure the hardware's done with the qh before refreshing 533 * it after fault cleanup, or recovering from silicon wrongly 534 * overlaying the dummy qtd (which reduces DMA chatter). 535 * 536 * We won't refresh a QH that's linked (after the HC 537 * stopped the queue). That avoids a race: 538 * - HC reads first part of QH; 539 * - CPU updates that first part and the token; 540 * - HC reads rest of that QH, including token 541 * Result: HC gets an inconsistent image, and then 542 * DMAs to/from the wrong memory (corrupting it). 543 * 544 * That should be rare for interrupt transfers, 545 * except maybe high bandwidth ... 546 */ 547 if (stopped != 0 || hw->hw_qtd_next == EHCI_LIST_END(ehci)) 548 qh->exception = 1; 549 550 /* Let the caller know if the QH needs to be unlinked. */ 551 return qh->exception; 552 } 553 554 /*-------------------------------------------------------------------------*/ 555 556 // high bandwidth multiplier, as encoded in highspeed endpoint descriptors 557 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03)) 558 // ... and packet size, for any kind of endpoint descriptor 559 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff) 560 561 /* 562 * reverse of qh_urb_transaction: free a list of TDs. 563 * used for cleanup after errors, before HC sees an URB's TDs. 564 */ 565 static void qtd_list_free ( 566 struct ehci_hcd *ehci, 567 struct urb *urb, 568 struct list_head *qtd_list 569 ) { 570 struct list_head *entry, *temp; 571 572 list_for_each_safe (entry, temp, qtd_list) { 573 struct ehci_qtd *qtd; 574 575 qtd = list_entry (entry, struct ehci_qtd, qtd_list); 576 list_del (&qtd->qtd_list); 577 ehci_qtd_free (ehci, qtd); 578 } 579 } 580 581 /* 582 * create a list of filled qtds for this URB; won't link into qh. 583 */ 584 static struct list_head * 585 qh_urb_transaction ( 586 struct ehci_hcd *ehci, 587 struct urb *urb, 588 struct list_head *head, 589 gfp_t flags 590 ) { 591 struct ehci_qtd *qtd, *qtd_prev; 592 dma_addr_t buf; 593 int len, this_sg_len, maxpacket; 594 int is_input; 595 u32 token; 596 int i; 597 struct scatterlist *sg; 598 599 /* 600 * URBs map to sequences of QTDs: one logical transaction 601 */ 602 qtd = ehci_qtd_alloc (ehci, flags); 603 if (unlikely (!qtd)) 604 return NULL; 605 list_add_tail (&qtd->qtd_list, head); 606 qtd->urb = urb; 607 608 token = QTD_STS_ACTIVE; 609 token |= (EHCI_TUNE_CERR << 10); 610 /* for split transactions, SplitXState initialized to zero */ 611 612 len = urb->transfer_buffer_length; 613 is_input = usb_pipein (urb->pipe); 614 if (usb_pipecontrol (urb->pipe)) { 615 /* SETUP pid */ 616 qtd_fill(ehci, qtd, urb->setup_dma, 617 sizeof (struct usb_ctrlrequest), 618 token | (2 /* "setup" */ << 8), 8); 619 620 /* ... and always at least one more pid */ 621 token ^= QTD_TOGGLE; 622 qtd_prev = qtd; 623 qtd = ehci_qtd_alloc (ehci, flags); 624 if (unlikely (!qtd)) 625 goto cleanup; 626 qtd->urb = urb; 627 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma); 628 list_add_tail (&qtd->qtd_list, head); 629 630 /* for zero length DATA stages, STATUS is always IN */ 631 if (len == 0) 632 token |= (1 /* "in" */ << 8); 633 } 634 635 /* 636 * data transfer stage: buffer setup 637 */ 638 i = urb->num_mapped_sgs; 639 if (len > 0 && i > 0) { 640 sg = urb->sg; 641 buf = sg_dma_address(sg); 642 643 /* urb->transfer_buffer_length may be smaller than the 644 * size of the scatterlist (or vice versa) 645 */ 646 this_sg_len = min_t(int, sg_dma_len(sg), len); 647 } else { 648 sg = NULL; 649 buf = urb->transfer_dma; 650 this_sg_len = len; 651 } 652 653 if (is_input) 654 token |= (1 /* "in" */ << 8); 655 /* else it's already initted to "out" pid (0 << 8) */ 656 657 maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input)); 658 659 /* 660 * buffer gets wrapped in one or more qtds; 661 * last one may be "short" (including zero len) 662 * and may serve as a control status ack 663 */ 664 for (;;) { 665 int this_qtd_len; 666 667 this_qtd_len = qtd_fill(ehci, qtd, buf, this_sg_len, token, 668 maxpacket); 669 this_sg_len -= this_qtd_len; 670 len -= this_qtd_len; 671 buf += this_qtd_len; 672 673 /* 674 * short reads advance to a "magic" dummy instead of the next 675 * qtd ... that forces the queue to stop, for manual cleanup. 676 * (this will usually be overridden later.) 677 */ 678 if (is_input) 679 qtd->hw_alt_next = ehci->async->hw->hw_alt_next; 680 681 /* qh makes control packets use qtd toggle; maybe switch it */ 682 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0) 683 token ^= QTD_TOGGLE; 684 685 if (likely(this_sg_len <= 0)) { 686 if (--i <= 0 || len <= 0) 687 break; 688 sg = sg_next(sg); 689 buf = sg_dma_address(sg); 690 this_sg_len = min_t(int, sg_dma_len(sg), len); 691 } 692 693 qtd_prev = qtd; 694 qtd = ehci_qtd_alloc (ehci, flags); 695 if (unlikely (!qtd)) 696 goto cleanup; 697 qtd->urb = urb; 698 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma); 699 list_add_tail (&qtd->qtd_list, head); 700 } 701 702 /* 703 * unless the caller requires manual cleanup after short reads, 704 * have the alt_next mechanism keep the queue running after the 705 * last data qtd (the only one, for control and most other cases). 706 */ 707 if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 708 || usb_pipecontrol (urb->pipe))) 709 qtd->hw_alt_next = EHCI_LIST_END(ehci); 710 711 /* 712 * control requests may need a terminating data "status" ack; 713 * other OUT ones may need a terminating short packet 714 * (zero length). 715 */ 716 if (likely (urb->transfer_buffer_length != 0)) { 717 int one_more = 0; 718 719 if (usb_pipecontrol (urb->pipe)) { 720 one_more = 1; 721 token ^= 0x0100; /* "in" <--> "out" */ 722 token |= QTD_TOGGLE; /* force DATA1 */ 723 } else if (usb_pipeout(urb->pipe) 724 && (urb->transfer_flags & URB_ZERO_PACKET) 725 && !(urb->transfer_buffer_length % maxpacket)) { 726 one_more = 1; 727 } 728 if (one_more) { 729 qtd_prev = qtd; 730 qtd = ehci_qtd_alloc (ehci, flags); 731 if (unlikely (!qtd)) 732 goto cleanup; 733 qtd->urb = urb; 734 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma); 735 list_add_tail (&qtd->qtd_list, head); 736 737 /* never any data in such packets */ 738 qtd_fill(ehci, qtd, 0, 0, token, 0); 739 } 740 } 741 742 /* by default, enable interrupt on urb completion */ 743 if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT))) 744 qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC); 745 return head; 746 747 cleanup: 748 qtd_list_free (ehci, urb, head); 749 return NULL; 750 } 751 752 /*-------------------------------------------------------------------------*/ 753 754 // Would be best to create all qh's from config descriptors, 755 // when each interface/altsetting is established. Unlink 756 // any previous qh and cancel its urbs first; endpoints are 757 // implicitly reset then (data toggle too). 758 // That'd mean updating how usbcore talks to HCDs. (2.7?) 759 760 761 /* 762 * Each QH holds a qtd list; a QH is used for everything except iso. 763 * 764 * For interrupt urbs, the scheduler must set the microframe scheduling 765 * mask(s) each time the QH gets scheduled. For highspeed, that's 766 * just one microframe in the s-mask. For split interrupt transactions 767 * there are additional complications: c-mask, maybe FSTNs. 768 */ 769 static struct ehci_qh * 770 qh_make ( 771 struct ehci_hcd *ehci, 772 struct urb *urb, 773 gfp_t flags 774 ) { 775 struct ehci_qh *qh = ehci_qh_alloc (ehci, flags); 776 u32 info1 = 0, info2 = 0; 777 int is_input, type; 778 int maxp = 0; 779 struct usb_tt *tt = urb->dev->tt; 780 struct ehci_qh_hw *hw; 781 782 if (!qh) 783 return qh; 784 785 /* 786 * init endpoint/device data for this QH 787 */ 788 info1 |= usb_pipeendpoint (urb->pipe) << 8; 789 info1 |= usb_pipedevice (urb->pipe) << 0; 790 791 is_input = usb_pipein (urb->pipe); 792 type = usb_pipetype (urb->pipe); 793 maxp = usb_maxpacket (urb->dev, urb->pipe, !is_input); 794 795 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth 796 * acts like up to 3KB, but is built from smaller packets. 797 */ 798 if (max_packet(maxp) > 1024) { 799 ehci_dbg(ehci, "bogus qh maxpacket %d\n", max_packet(maxp)); 800 goto done; 801 } 802 803 /* Compute interrupt scheduling parameters just once, and save. 804 * - allowing for high bandwidth, how many nsec/uframe are used? 805 * - split transactions need a second CSPLIT uframe; same question 806 * - splits also need a schedule gap (for full/low speed I/O) 807 * - qh has a polling interval 808 * 809 * For control/bulk requests, the HC or TT handles these. 810 */ 811 if (type == PIPE_INTERRUPT) { 812 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH, 813 is_input, 0, 814 hb_mult(maxp) * max_packet(maxp))); 815 qh->start = NO_FRAME; 816 817 if (urb->dev->speed == USB_SPEED_HIGH) { 818 qh->c_usecs = 0; 819 qh->gap_uf = 0; 820 821 qh->period = urb->interval >> 3; 822 if (qh->period == 0 && urb->interval != 1) { 823 /* NOTE interval 2 or 4 uframes could work. 824 * But interval 1 scheduling is simpler, and 825 * includes high bandwidth. 826 */ 827 urb->interval = 1; 828 } else if (qh->period > ehci->periodic_size) { 829 qh->period = ehci->periodic_size; 830 urb->interval = qh->period << 3; 831 } 832 } else { 833 int think_time; 834 835 /* gap is f(FS/LS transfer times) */ 836 qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed, 837 is_input, 0, maxp) / (125 * 1000); 838 839 /* FIXME this just approximates SPLIT/CSPLIT times */ 840 if (is_input) { // SPLIT, gap, CSPLIT+DATA 841 qh->c_usecs = qh->usecs + HS_USECS (0); 842 qh->usecs = HS_USECS (1); 843 } else { // SPLIT+DATA, gap, CSPLIT 844 qh->usecs += HS_USECS (1); 845 qh->c_usecs = HS_USECS (0); 846 } 847 848 think_time = tt ? tt->think_time : 0; 849 qh->tt_usecs = NS_TO_US (think_time + 850 usb_calc_bus_time (urb->dev->speed, 851 is_input, 0, max_packet (maxp))); 852 qh->period = urb->interval; 853 if (qh->period > ehci->periodic_size) { 854 qh->period = ehci->periodic_size; 855 urb->interval = qh->period; 856 } 857 } 858 } 859 860 /* support for tt scheduling, and access to toggles */ 861 qh->dev = urb->dev; 862 863 /* using TT? */ 864 switch (urb->dev->speed) { 865 case USB_SPEED_LOW: 866 info1 |= QH_LOW_SPEED; 867 /* FALL THROUGH */ 868 869 case USB_SPEED_FULL: 870 /* EPS 0 means "full" */ 871 if (type != PIPE_INTERRUPT) 872 info1 |= (EHCI_TUNE_RL_TT << 28); 873 if (type == PIPE_CONTROL) { 874 info1 |= QH_CONTROL_EP; /* for TT */ 875 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */ 876 } 877 info1 |= maxp << 16; 878 879 info2 |= (EHCI_TUNE_MULT_TT << 30); 880 881 /* Some Freescale processors have an erratum in which the 882 * port number in the queue head was 0..N-1 instead of 1..N. 883 */ 884 if (ehci_has_fsl_portno_bug(ehci)) 885 info2 |= (urb->dev->ttport-1) << 23; 886 else 887 info2 |= urb->dev->ttport << 23; 888 889 /* set the address of the TT; for TDI's integrated 890 * root hub tt, leave it zeroed. 891 */ 892 if (tt && tt->hub != ehci_to_hcd(ehci)->self.root_hub) 893 info2 |= tt->hub->devnum << 16; 894 895 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */ 896 897 break; 898 899 case USB_SPEED_HIGH: /* no TT involved */ 900 info1 |= QH_HIGH_SPEED; 901 if (type == PIPE_CONTROL) { 902 info1 |= (EHCI_TUNE_RL_HS << 28); 903 info1 |= 64 << 16; /* usb2 fixed maxpacket */ 904 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */ 905 info2 |= (EHCI_TUNE_MULT_HS << 30); 906 } else if (type == PIPE_BULK) { 907 info1 |= (EHCI_TUNE_RL_HS << 28); 908 /* The USB spec says that high speed bulk endpoints 909 * always use 512 byte maxpacket. But some device 910 * vendors decided to ignore that, and MSFT is happy 911 * to help them do so. So now people expect to use 912 * such nonconformant devices with Linux too; sigh. 913 */ 914 info1 |= max_packet(maxp) << 16; 915 info2 |= (EHCI_TUNE_MULT_HS << 30); 916 } else { /* PIPE_INTERRUPT */ 917 info1 |= max_packet (maxp) << 16; 918 info2 |= hb_mult (maxp) << 30; 919 } 920 break; 921 default: 922 ehci_dbg(ehci, "bogus dev %p speed %d\n", urb->dev, 923 urb->dev->speed); 924 done: 925 qh_destroy(ehci, qh); 926 return NULL; 927 } 928 929 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */ 930 931 /* init as live, toggle clear */ 932 qh->qh_state = QH_STATE_IDLE; 933 hw = qh->hw; 934 hw->hw_info1 = cpu_to_hc32(ehci, info1); 935 hw->hw_info2 = cpu_to_hc32(ehci, info2); 936 qh->is_out = !is_input; 937 usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1); 938 return qh; 939 } 940 941 /*-------------------------------------------------------------------------*/ 942 943 static void enable_async(struct ehci_hcd *ehci) 944 { 945 if (ehci->async_count++) 946 return; 947 948 /* Stop waiting to turn off the async schedule */ 949 ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_ASYNC); 950 951 /* Don't start the schedule until ASS is 0 */ 952 ehci_poll_ASS(ehci); 953 turn_on_io_watchdog(ehci); 954 } 955 956 static void disable_async(struct ehci_hcd *ehci) 957 { 958 if (--ehci->async_count) 959 return; 960 961 /* The async schedule and unlink lists are supposed to be empty */ 962 WARN_ON(ehci->async->qh_next.qh || !list_empty(&ehci->async_unlink) || 963 !list_empty(&ehci->async_idle)); 964 965 /* Don't turn off the schedule until ASS is 1 */ 966 ehci_poll_ASS(ehci); 967 } 968 969 /* move qh (and its qtds) onto async queue; maybe enable queue. */ 970 971 static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh) 972 { 973 __hc32 dma = QH_NEXT(ehci, qh->qh_dma); 974 struct ehci_qh *head; 975 976 /* Don't link a QH if there's a Clear-TT-Buffer pending */ 977 if (unlikely(qh->clearing_tt)) 978 return; 979 980 WARN_ON(qh->qh_state != QH_STATE_IDLE); 981 982 /* clear halt and/or toggle; and maybe recover from silicon quirk */ 983 qh_refresh(ehci, qh); 984 985 /* splice right after start */ 986 head = ehci->async; 987 qh->qh_next = head->qh_next; 988 qh->hw->hw_next = head->hw->hw_next; 989 wmb (); 990 991 head->qh_next.qh = qh; 992 head->hw->hw_next = dma; 993 994 qh->qh_state = QH_STATE_LINKED; 995 qh->xacterrs = 0; 996 qh->exception = 0; 997 /* qtd completions reported later by interrupt */ 998 999 enable_async(ehci); 1000 } 1001 1002 /*-------------------------------------------------------------------------*/ 1003 1004 /* 1005 * For control/bulk/interrupt, return QH with these TDs appended. 1006 * Allocates and initializes the QH if necessary. 1007 * Returns null if it can't allocate a QH it needs to. 1008 * If the QH has TDs (urbs) already, that's great. 1009 */ 1010 static struct ehci_qh *qh_append_tds ( 1011 struct ehci_hcd *ehci, 1012 struct urb *urb, 1013 struct list_head *qtd_list, 1014 int epnum, 1015 void **ptr 1016 ) 1017 { 1018 struct ehci_qh *qh = NULL; 1019 __hc32 qh_addr_mask = cpu_to_hc32(ehci, 0x7f); 1020 1021 qh = (struct ehci_qh *) *ptr; 1022 if (unlikely (qh == NULL)) { 1023 /* can't sleep here, we have ehci->lock... */ 1024 qh = qh_make (ehci, urb, GFP_ATOMIC); 1025 *ptr = qh; 1026 } 1027 if (likely (qh != NULL)) { 1028 struct ehci_qtd *qtd; 1029 1030 if (unlikely (list_empty (qtd_list))) 1031 qtd = NULL; 1032 else 1033 qtd = list_entry (qtd_list->next, struct ehci_qtd, 1034 qtd_list); 1035 1036 /* control qh may need patching ... */ 1037 if (unlikely (epnum == 0)) { 1038 1039 /* usb_reset_device() briefly reverts to address 0 */ 1040 if (usb_pipedevice (urb->pipe) == 0) 1041 qh->hw->hw_info1 &= ~qh_addr_mask; 1042 } 1043 1044 /* just one way to queue requests: swap with the dummy qtd. 1045 * only hc or qh_refresh() ever modify the overlay. 1046 */ 1047 if (likely (qtd != NULL)) { 1048 struct ehci_qtd *dummy; 1049 dma_addr_t dma; 1050 __hc32 token; 1051 1052 /* to avoid racing the HC, use the dummy td instead of 1053 * the first td of our list (becomes new dummy). both 1054 * tds stay deactivated until we're done, when the 1055 * HC is allowed to fetch the old dummy (4.10.2). 1056 */ 1057 token = qtd->hw_token; 1058 qtd->hw_token = HALT_BIT(ehci); 1059 1060 dummy = qh->dummy; 1061 1062 dma = dummy->qtd_dma; 1063 *dummy = *qtd; 1064 dummy->qtd_dma = dma; 1065 1066 list_del (&qtd->qtd_list); 1067 list_add (&dummy->qtd_list, qtd_list); 1068 list_splice_tail(qtd_list, &qh->qtd_list); 1069 1070 ehci_qtd_init(ehci, qtd, qtd->qtd_dma); 1071 qh->dummy = qtd; 1072 1073 /* hc must see the new dummy at list end */ 1074 dma = qtd->qtd_dma; 1075 qtd = list_entry (qh->qtd_list.prev, 1076 struct ehci_qtd, qtd_list); 1077 qtd->hw_next = QTD_NEXT(ehci, dma); 1078 1079 /* let the hc process these next qtds */ 1080 wmb (); 1081 dummy->hw_token = token; 1082 1083 urb->hcpriv = qh; 1084 } 1085 } 1086 return qh; 1087 } 1088 1089 /*-------------------------------------------------------------------------*/ 1090 1091 static int 1092 submit_async ( 1093 struct ehci_hcd *ehci, 1094 struct urb *urb, 1095 struct list_head *qtd_list, 1096 gfp_t mem_flags 1097 ) { 1098 int epnum; 1099 unsigned long flags; 1100 struct ehci_qh *qh = NULL; 1101 int rc; 1102 1103 epnum = urb->ep->desc.bEndpointAddress; 1104 1105 #ifdef EHCI_URB_TRACE 1106 { 1107 struct ehci_qtd *qtd; 1108 qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list); 1109 ehci_dbg(ehci, 1110 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n", 1111 __func__, urb->dev->devpath, urb, 1112 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out", 1113 urb->transfer_buffer_length, 1114 qtd, urb->ep->hcpriv); 1115 } 1116 #endif 1117 1118 spin_lock_irqsave (&ehci->lock, flags); 1119 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) { 1120 rc = -ESHUTDOWN; 1121 goto done; 1122 } 1123 rc = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb); 1124 if (unlikely(rc)) 1125 goto done; 1126 1127 qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv); 1128 if (unlikely(qh == NULL)) { 1129 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); 1130 rc = -ENOMEM; 1131 goto done; 1132 } 1133 1134 /* Control/bulk operations through TTs don't need scheduling, 1135 * the HC and TT handle it when the TT has a buffer ready. 1136 */ 1137 if (likely (qh->qh_state == QH_STATE_IDLE)) 1138 qh_link_async(ehci, qh); 1139 done: 1140 spin_unlock_irqrestore (&ehci->lock, flags); 1141 if (unlikely (qh == NULL)) 1142 qtd_list_free (ehci, urb, qtd_list); 1143 return rc; 1144 } 1145 1146 /*-------------------------------------------------------------------------*/ 1147 1148 static void single_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh) 1149 { 1150 struct ehci_qh *prev; 1151 1152 /* Add to the end of the list of QHs waiting for the next IAAD */ 1153 qh->qh_state = QH_STATE_UNLINK_WAIT; 1154 list_add_tail(&qh->unlink_node, &ehci->async_unlink); 1155 1156 /* Unlink it from the schedule */ 1157 prev = ehci->async; 1158 while (prev->qh_next.qh != qh) 1159 prev = prev->qh_next.qh; 1160 1161 prev->hw->hw_next = qh->hw->hw_next; 1162 prev->qh_next = qh->qh_next; 1163 if (ehci->qh_scan_next == qh) 1164 ehci->qh_scan_next = qh->qh_next.qh; 1165 } 1166 1167 static void start_iaa_cycle(struct ehci_hcd *ehci) 1168 { 1169 /* Do nothing if an IAA cycle is already running */ 1170 if (ehci->iaa_in_progress) 1171 return; 1172 ehci->iaa_in_progress = true; 1173 1174 /* If the controller isn't running, we don't have to wait for it */ 1175 if (unlikely(ehci->rh_state < EHCI_RH_RUNNING)) { 1176 end_unlink_async(ehci); 1177 1178 /* Otherwise start a new IAA cycle */ 1179 } else if (likely(ehci->rh_state == EHCI_RH_RUNNING)) { 1180 1181 /* Make sure the unlinks are all visible to the hardware */ 1182 wmb(); 1183 1184 ehci_writel(ehci, ehci->command | CMD_IAAD, 1185 &ehci->regs->command); 1186 ehci_readl(ehci, &ehci->regs->command); 1187 ehci_enable_event(ehci, EHCI_HRTIMER_IAA_WATCHDOG, true); 1188 } 1189 } 1190 1191 /* the async qh for the qtds being unlinked are now gone from the HC */ 1192 1193 static void end_unlink_async(struct ehci_hcd *ehci) 1194 { 1195 struct ehci_qh *qh; 1196 bool early_exit; 1197 1198 if (ehci->has_synopsys_hc_bug) 1199 ehci_writel(ehci, (u32) ehci->async->qh_dma, 1200 &ehci->regs->async_next); 1201 1202 /* The current IAA cycle has ended */ 1203 ehci->iaa_in_progress = false; 1204 1205 if (list_empty(&ehci->async_unlink)) 1206 return; 1207 qh = list_first_entry(&ehci->async_unlink, struct ehci_qh, 1208 unlink_node); /* QH whose IAA cycle just ended */ 1209 1210 /* 1211 * If async_unlinking is set then this routine is already running, 1212 * either on the stack or on another CPU. 1213 */ 1214 early_exit = ehci->async_unlinking; 1215 1216 /* If the controller isn't running, process all the waiting QHs */ 1217 if (ehci->rh_state < EHCI_RH_RUNNING) 1218 list_splice_tail_init(&ehci->async_unlink, &ehci->async_idle); 1219 1220 /* 1221 * Intel (?) bug: The HC can write back the overlay region even 1222 * after the IAA interrupt occurs. In self-defense, always go 1223 * through two IAA cycles for each QH. 1224 */ 1225 else if (qh->qh_state == QH_STATE_UNLINK_WAIT) { 1226 qh->qh_state = QH_STATE_UNLINK; 1227 early_exit = true; 1228 } 1229 1230 /* Otherwise process only the first waiting QH (NVIDIA bug?) */ 1231 else 1232 list_move_tail(&qh->unlink_node, &ehci->async_idle); 1233 1234 /* Start a new IAA cycle if any QHs are waiting for it */ 1235 if (!list_empty(&ehci->async_unlink)) 1236 start_iaa_cycle(ehci); 1237 1238 /* 1239 * Don't allow nesting or concurrent calls, 1240 * or wait for the second IAA cycle for the next QH. 1241 */ 1242 if (early_exit) 1243 return; 1244 1245 /* Process the idle QHs */ 1246 ehci->async_unlinking = true; 1247 while (!list_empty(&ehci->async_idle)) { 1248 qh = list_first_entry(&ehci->async_idle, struct ehci_qh, 1249 unlink_node); 1250 list_del(&qh->unlink_node); 1251 1252 qh->qh_state = QH_STATE_IDLE; 1253 qh->qh_next.qh = NULL; 1254 1255 if (!list_empty(&qh->qtd_list)) 1256 qh_completions(ehci, qh); 1257 if (!list_empty(&qh->qtd_list) && 1258 ehci->rh_state == EHCI_RH_RUNNING) 1259 qh_link_async(ehci, qh); 1260 disable_async(ehci); 1261 } 1262 ehci->async_unlinking = false; 1263 } 1264 1265 static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh); 1266 1267 static void unlink_empty_async(struct ehci_hcd *ehci) 1268 { 1269 struct ehci_qh *qh; 1270 struct ehci_qh *qh_to_unlink = NULL; 1271 int count = 0; 1272 1273 /* Find the last async QH which has been empty for a timer cycle */ 1274 for (qh = ehci->async->qh_next.qh; qh; qh = qh->qh_next.qh) { 1275 if (list_empty(&qh->qtd_list) && 1276 qh->qh_state == QH_STATE_LINKED) { 1277 ++count; 1278 if (qh->unlink_cycle != ehci->async_unlink_cycle) 1279 qh_to_unlink = qh; 1280 } 1281 } 1282 1283 /* If nothing else is being unlinked, unlink the last empty QH */ 1284 if (list_empty(&ehci->async_unlink) && qh_to_unlink) { 1285 start_unlink_async(ehci, qh_to_unlink); 1286 --count; 1287 } 1288 1289 /* Other QHs will be handled later */ 1290 if (count > 0) { 1291 ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true); 1292 ++ehci->async_unlink_cycle; 1293 } 1294 } 1295 1296 /* The root hub is suspended; unlink all the async QHs */ 1297 static void __maybe_unused unlink_empty_async_suspended(struct ehci_hcd *ehci) 1298 { 1299 struct ehci_qh *qh; 1300 1301 while (ehci->async->qh_next.qh) { 1302 qh = ehci->async->qh_next.qh; 1303 WARN_ON(!list_empty(&qh->qtd_list)); 1304 single_unlink_async(ehci, qh); 1305 } 1306 start_iaa_cycle(ehci); 1307 } 1308 1309 /* makes sure the async qh will become idle */ 1310 /* caller must own ehci->lock */ 1311 1312 static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh) 1313 { 1314 /* If the QH isn't linked then there's nothing we can do. */ 1315 if (qh->qh_state != QH_STATE_LINKED) 1316 return; 1317 1318 single_unlink_async(ehci, qh); 1319 start_iaa_cycle(ehci); 1320 } 1321 1322 /*-------------------------------------------------------------------------*/ 1323 1324 static void scan_async (struct ehci_hcd *ehci) 1325 { 1326 struct ehci_qh *qh; 1327 bool check_unlinks_later = false; 1328 1329 ehci->qh_scan_next = ehci->async->qh_next.qh; 1330 while (ehci->qh_scan_next) { 1331 qh = ehci->qh_scan_next; 1332 ehci->qh_scan_next = qh->qh_next.qh; 1333 1334 /* clean any finished work for this qh */ 1335 if (!list_empty(&qh->qtd_list)) { 1336 int temp; 1337 1338 /* 1339 * Unlinks could happen here; completion reporting 1340 * drops the lock. That's why ehci->qh_scan_next 1341 * always holds the next qh to scan; if the next qh 1342 * gets unlinked then ehci->qh_scan_next is adjusted 1343 * in single_unlink_async(). 1344 */ 1345 temp = qh_completions(ehci, qh); 1346 if (unlikely(temp)) { 1347 start_unlink_async(ehci, qh); 1348 } else if (list_empty(&qh->qtd_list) 1349 && qh->qh_state == QH_STATE_LINKED) { 1350 qh->unlink_cycle = ehci->async_unlink_cycle; 1351 check_unlinks_later = true; 1352 } 1353 } 1354 } 1355 1356 /* 1357 * Unlink empty entries, reducing DMA usage as well 1358 * as HCD schedule-scanning costs. Delay for any qh 1359 * we just scanned, there's a not-unusual case that it 1360 * doesn't stay idle for long. 1361 */ 1362 if (check_unlinks_later && ehci->rh_state == EHCI_RH_RUNNING && 1363 !(ehci->enabled_hrtimer_events & 1364 BIT(EHCI_HRTIMER_ASYNC_UNLINKS))) { 1365 ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true); 1366 ++ehci->async_unlink_cycle; 1367 } 1368 } 1369