xref: /linux/drivers/usb/host/ehci-q.c (revision 08ec212c0f92cbf30e3ecc7349f18151714041d6)
1 /*
2  * Copyright (C) 2001-2004 by David Brownell
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the
6  * Free Software Foundation; either version 2 of the License, or (at your
7  * option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
11  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software Foundation,
16  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  */
18 
19 /* this file is part of ehci-hcd.c */
20 
21 /*-------------------------------------------------------------------------*/
22 
23 /*
24  * EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
25  *
26  * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
27  * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
28  * buffers needed for the larger number).  We use one QH per endpoint, queue
29  * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
30  *
31  * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
32  * interrupts) needs careful scheduling.  Performance improvements can be
33  * an ongoing challenge.  That's in "ehci-sched.c".
34  *
35  * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
36  * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
37  * (b) special fields in qh entries or (c) split iso entries.  TTs will
38  * buffer low/full speed data so the host collects it at high speed.
39  */
40 
41 /*-------------------------------------------------------------------------*/
42 
43 /* fill a qtd, returning how much of the buffer we were able to queue up */
44 
45 static int
46 qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf,
47 		  size_t len, int token, int maxpacket)
48 {
49 	int	i, count;
50 	u64	addr = buf;
51 
52 	/* one buffer entry per 4K ... first might be short or unaligned */
53 	qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32)addr);
54 	qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32)(addr >> 32));
55 	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
56 	if (likely (len < count))		/* ... iff needed */
57 		count = len;
58 	else {
59 		buf +=  0x1000;
60 		buf &= ~0x0fff;
61 
62 		/* per-qtd limit: from 16K to 20K (best alignment) */
63 		for (i = 1; count < len && i < 5; i++) {
64 			addr = buf;
65 			qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32)addr);
66 			qtd->hw_buf_hi[i] = cpu_to_hc32(ehci,
67 					(u32)(addr >> 32));
68 			buf += 0x1000;
69 			if ((count + 0x1000) < len)
70 				count += 0x1000;
71 			else
72 				count = len;
73 		}
74 
75 		/* short packets may only terminate transfers */
76 		if (count != len)
77 			count -= (count % maxpacket);
78 	}
79 	qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token);
80 	qtd->length = count;
81 
82 	return count;
83 }
84 
85 /*-------------------------------------------------------------------------*/
86 
87 static inline void
88 qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd)
89 {
90 	struct ehci_qh_hw *hw = qh->hw;
91 
92 	/* writes to an active overlay are unsafe */
93 	BUG_ON(qh->qh_state != QH_STATE_IDLE);
94 
95 	hw->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma);
96 	hw->hw_alt_next = EHCI_LIST_END(ehci);
97 
98 	/* Except for control endpoints, we make hardware maintain data
99 	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
100 	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
101 	 * ever clear it.
102 	 */
103 	if (!(hw->hw_info1 & cpu_to_hc32(ehci, QH_TOGGLE_CTL))) {
104 		unsigned	is_out, epnum;
105 
106 		is_out = qh->is_out;
107 		epnum = (hc32_to_cpup(ehci, &hw->hw_info1) >> 8) & 0x0f;
108 		if (unlikely (!usb_gettoggle (qh->dev, epnum, is_out))) {
109 			hw->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE);
110 			usb_settoggle (qh->dev, epnum, is_out, 1);
111 		}
112 	}
113 
114 	hw->hw_token &= cpu_to_hc32(ehci, QTD_TOGGLE | QTD_STS_PING);
115 }
116 
117 /* if it weren't for a common silicon quirk (writing the dummy into the qh
118  * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
119  * recovery (including urb dequeue) would need software changes to a QH...
120  */
121 static void
122 qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh)
123 {
124 	struct ehci_qtd *qtd;
125 
126 	if (list_empty (&qh->qtd_list))
127 		qtd = qh->dummy;
128 	else {
129 		qtd = list_entry (qh->qtd_list.next,
130 				struct ehci_qtd, qtd_list);
131 		/*
132 		 * first qtd may already be partially processed.
133 		 * If we come here during unlink, the QH overlay region
134 		 * might have reference to the just unlinked qtd. The
135 		 * qtd is updated in qh_completions(). Update the QH
136 		 * overlay here.
137 		 */
138 		if (cpu_to_hc32(ehci, qtd->qtd_dma) == qh->hw->hw_current) {
139 			qh->hw->hw_qtd_next = qtd->hw_next;
140 			qtd = NULL;
141 		}
142 	}
143 
144 	if (qtd)
145 		qh_update (ehci, qh, qtd);
146 }
147 
148 /*-------------------------------------------------------------------------*/
149 
150 static void qh_link_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
151 
152 static void ehci_clear_tt_buffer_complete(struct usb_hcd *hcd,
153 		struct usb_host_endpoint *ep)
154 {
155 	struct ehci_hcd		*ehci = hcd_to_ehci(hcd);
156 	struct ehci_qh		*qh = ep->hcpriv;
157 	unsigned long		flags;
158 
159 	spin_lock_irqsave(&ehci->lock, flags);
160 	qh->clearing_tt = 0;
161 	if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
162 			&& ehci->rh_state == EHCI_RH_RUNNING)
163 		qh_link_async(ehci, qh);
164 	spin_unlock_irqrestore(&ehci->lock, flags);
165 }
166 
167 static void ehci_clear_tt_buffer(struct ehci_hcd *ehci, struct ehci_qh *qh,
168 		struct urb *urb, u32 token)
169 {
170 
171 	/* If an async split transaction gets an error or is unlinked,
172 	 * the TT buffer may be left in an indeterminate state.  We
173 	 * have to clear the TT buffer.
174 	 *
175 	 * Note: this routine is never called for Isochronous transfers.
176 	 */
177 	if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
178 #ifdef DEBUG
179 		struct usb_device *tt = urb->dev->tt->hub;
180 		dev_dbg(&tt->dev,
181 			"clear tt buffer port %d, a%d ep%d t%08x\n",
182 			urb->dev->ttport, urb->dev->devnum,
183 			usb_pipeendpoint(urb->pipe), token);
184 #endif /* DEBUG */
185 		if (!ehci_is_TDI(ehci)
186 				|| urb->dev->tt->hub !=
187 				   ehci_to_hcd(ehci)->self.root_hub) {
188 			if (usb_hub_clear_tt_buffer(urb) == 0)
189 				qh->clearing_tt = 1;
190 		} else {
191 
192 			/* REVISIT ARC-derived cores don't clear the root
193 			 * hub TT buffer in this way...
194 			 */
195 		}
196 	}
197 }
198 
199 static int qtd_copy_status (
200 	struct ehci_hcd *ehci,
201 	struct urb *urb,
202 	size_t length,
203 	u32 token
204 )
205 {
206 	int	status = -EINPROGRESS;
207 
208 	/* count IN/OUT bytes, not SETUP (even short packets) */
209 	if (likely (QTD_PID (token) != 2))
210 		urb->actual_length += length - QTD_LENGTH (token);
211 
212 	/* don't modify error codes */
213 	if (unlikely(urb->unlinked))
214 		return status;
215 
216 	/* force cleanup after short read; not always an error */
217 	if (unlikely (IS_SHORT_READ (token)))
218 		status = -EREMOTEIO;
219 
220 	/* serious "can't proceed" faults reported by the hardware */
221 	if (token & QTD_STS_HALT) {
222 		if (token & QTD_STS_BABBLE) {
223 			/* FIXME "must" disable babbling device's port too */
224 			status = -EOVERFLOW;
225 		/* CERR nonzero + halt --> stall */
226 		} else if (QTD_CERR(token)) {
227 			status = -EPIPE;
228 
229 		/* In theory, more than one of the following bits can be set
230 		 * since they are sticky and the transaction is retried.
231 		 * Which to test first is rather arbitrary.
232 		 */
233 		} else if (token & QTD_STS_MMF) {
234 			/* fs/ls interrupt xfer missed the complete-split */
235 			status = -EPROTO;
236 		} else if (token & QTD_STS_DBE) {
237 			status = (QTD_PID (token) == 1) /* IN ? */
238 				? -ENOSR  /* hc couldn't read data */
239 				: -ECOMM; /* hc couldn't write data */
240 		} else if (token & QTD_STS_XACT) {
241 			/* timeout, bad CRC, wrong PID, etc */
242 			ehci_dbg(ehci, "devpath %s ep%d%s 3strikes\n",
243 				urb->dev->devpath,
244 				usb_pipeendpoint(urb->pipe),
245 				usb_pipein(urb->pipe) ? "in" : "out");
246 			status = -EPROTO;
247 		} else {	/* unknown */
248 			status = -EPROTO;
249 		}
250 
251 		ehci_vdbg (ehci,
252 			"dev%d ep%d%s qtd token %08x --> status %d\n",
253 			usb_pipedevice (urb->pipe),
254 			usb_pipeendpoint (urb->pipe),
255 			usb_pipein (urb->pipe) ? "in" : "out",
256 			token, status);
257 	}
258 
259 	return status;
260 }
261 
262 static void
263 ehci_urb_done(struct ehci_hcd *ehci, struct urb *urb, int status)
264 __releases(ehci->lock)
265 __acquires(ehci->lock)
266 {
267 	if (likely (urb->hcpriv != NULL)) {
268 		struct ehci_qh	*qh = (struct ehci_qh *) urb->hcpriv;
269 
270 		/* S-mask in a QH means it's an interrupt urb */
271 		if ((qh->hw->hw_info2 & cpu_to_hc32(ehci, QH_SMASK)) != 0) {
272 
273 			/* ... update hc-wide periodic stats (for usbfs) */
274 			ehci_to_hcd(ehci)->self.bandwidth_int_reqs--;
275 		}
276 	}
277 
278 	if (unlikely(urb->unlinked)) {
279 		COUNT(ehci->stats.unlink);
280 	} else {
281 		/* report non-error and short read status as zero */
282 		if (status == -EINPROGRESS || status == -EREMOTEIO)
283 			status = 0;
284 		COUNT(ehci->stats.complete);
285 	}
286 
287 #ifdef EHCI_URB_TRACE
288 	ehci_dbg (ehci,
289 		"%s %s urb %p ep%d%s status %d len %d/%d\n",
290 		__func__, urb->dev->devpath, urb,
291 		usb_pipeendpoint (urb->pipe),
292 		usb_pipein (urb->pipe) ? "in" : "out",
293 		status,
294 		urb->actual_length, urb->transfer_buffer_length);
295 #endif
296 
297 	/* complete() can reenter this HCD */
298 	usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
299 	spin_unlock (&ehci->lock);
300 	usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb, status);
301 	spin_lock (&ehci->lock);
302 }
303 
304 static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
305 
306 /*
307  * Process and free completed qtds for a qh, returning URBs to drivers.
308  * Chases up to qh->hw_current.  Returns number of completions called,
309  * indicating how much "real" work we did.
310  */
311 static unsigned
312 qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh)
313 {
314 	struct ehci_qtd		*last, *end = qh->dummy;
315 	struct list_head	*entry, *tmp;
316 	int			last_status;
317 	int			stopped;
318 	unsigned		count = 0;
319 	u8			state;
320 	struct ehci_qh_hw	*hw = qh->hw;
321 
322 	if (unlikely (list_empty (&qh->qtd_list)))
323 		return count;
324 
325 	/* completions (or tasks on other cpus) must never clobber HALT
326 	 * till we've gone through and cleaned everything up, even when
327 	 * they add urbs to this qh's queue or mark them for unlinking.
328 	 *
329 	 * NOTE:  unlinking expects to be done in queue order.
330 	 *
331 	 * It's a bug for qh->qh_state to be anything other than
332 	 * QH_STATE_IDLE, unless our caller is scan_async() or
333 	 * scan_intr().
334 	 */
335 	state = qh->qh_state;
336 	qh->qh_state = QH_STATE_COMPLETING;
337 	stopped = (state == QH_STATE_IDLE);
338 
339  rescan:
340 	last = NULL;
341 	last_status = -EINPROGRESS;
342 	qh->needs_rescan = 0;
343 
344 	/* remove de-activated QTDs from front of queue.
345 	 * after faults (including short reads), cleanup this urb
346 	 * then let the queue advance.
347 	 * if queue is stopped, handles unlinks.
348 	 */
349 	list_for_each_safe (entry, tmp, &qh->qtd_list) {
350 		struct ehci_qtd	*qtd;
351 		struct urb	*urb;
352 		u32		token = 0;
353 
354 		qtd = list_entry (entry, struct ehci_qtd, qtd_list);
355 		urb = qtd->urb;
356 
357 		/* clean up any state from previous QTD ...*/
358 		if (last) {
359 			if (likely (last->urb != urb)) {
360 				ehci_urb_done(ehci, last->urb, last_status);
361 				count++;
362 				last_status = -EINPROGRESS;
363 			}
364 			ehci_qtd_free (ehci, last);
365 			last = NULL;
366 		}
367 
368 		/* ignore urbs submitted during completions we reported */
369 		if (qtd == end)
370 			break;
371 
372 		/* hardware copies qtd out of qh overlay */
373 		rmb ();
374 		token = hc32_to_cpu(ehci, qtd->hw_token);
375 
376 		/* always clean up qtds the hc de-activated */
377  retry_xacterr:
378 		if ((token & QTD_STS_ACTIVE) == 0) {
379 
380 			/* Report Data Buffer Error: non-fatal but useful */
381 			if (token & QTD_STS_DBE)
382 				ehci_dbg(ehci,
383 					"detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
384 					urb,
385 					usb_endpoint_num(&urb->ep->desc),
386 					usb_endpoint_dir_in(&urb->ep->desc) ? "in" : "out",
387 					urb->transfer_buffer_length,
388 					qtd,
389 					qh);
390 
391 			/* on STALL, error, and short reads this urb must
392 			 * complete and all its qtds must be recycled.
393 			 */
394 			if ((token & QTD_STS_HALT) != 0) {
395 
396 				/* retry transaction errors until we
397 				 * reach the software xacterr limit
398 				 */
399 				if ((token & QTD_STS_XACT) &&
400 						QTD_CERR(token) == 0 &&
401 						++qh->xacterrs < QH_XACTERR_MAX &&
402 						!urb->unlinked) {
403 					ehci_dbg(ehci,
404 	"detected XactErr len %zu/%zu retry %d\n",
405 	qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs);
406 
407 					/* reset the token in the qtd and the
408 					 * qh overlay (which still contains
409 					 * the qtd) so that we pick up from
410 					 * where we left off
411 					 */
412 					token &= ~QTD_STS_HALT;
413 					token |= QTD_STS_ACTIVE |
414 							(EHCI_TUNE_CERR << 10);
415 					qtd->hw_token = cpu_to_hc32(ehci,
416 							token);
417 					wmb();
418 					hw->hw_token = cpu_to_hc32(ehci,
419 							token);
420 					goto retry_xacterr;
421 				}
422 				stopped = 1;
423 
424 			/* magic dummy for some short reads; qh won't advance.
425 			 * that silicon quirk can kick in with this dummy too.
426 			 *
427 			 * other short reads won't stop the queue, including
428 			 * control transfers (status stage handles that) or
429 			 * most other single-qtd reads ... the queue stops if
430 			 * URB_SHORT_NOT_OK was set so the driver submitting
431 			 * the urbs could clean it up.
432 			 */
433 			} else if (IS_SHORT_READ (token)
434 					&& !(qtd->hw_alt_next
435 						& EHCI_LIST_END(ehci))) {
436 				stopped = 1;
437 			}
438 
439 		/* stop scanning when we reach qtds the hc is using */
440 		} else if (likely (!stopped
441 				&& ehci->rh_state >= EHCI_RH_RUNNING)) {
442 			break;
443 
444 		/* scan the whole queue for unlinks whenever it stops */
445 		} else {
446 			stopped = 1;
447 
448 			/* cancel everything if we halt, suspend, etc */
449 			if (ehci->rh_state < EHCI_RH_RUNNING)
450 				last_status = -ESHUTDOWN;
451 
452 			/* this qtd is active; skip it unless a previous qtd
453 			 * for its urb faulted, or its urb was canceled.
454 			 */
455 			else if (last_status == -EINPROGRESS && !urb->unlinked)
456 				continue;
457 
458 			/* qh unlinked; token in overlay may be most current */
459 			if (state == QH_STATE_IDLE
460 					&& cpu_to_hc32(ehci, qtd->qtd_dma)
461 						== hw->hw_current) {
462 				token = hc32_to_cpu(ehci, hw->hw_token);
463 
464 				/* An unlink may leave an incomplete
465 				 * async transaction in the TT buffer.
466 				 * We have to clear it.
467 				 */
468 				ehci_clear_tt_buffer(ehci, qh, urb, token);
469 			}
470 		}
471 
472 		/* unless we already know the urb's status, collect qtd status
473 		 * and update count of bytes transferred.  in common short read
474 		 * cases with only one data qtd (including control transfers),
475 		 * queue processing won't halt.  but with two or more qtds (for
476 		 * example, with a 32 KB transfer), when the first qtd gets a
477 		 * short read the second must be removed by hand.
478 		 */
479 		if (last_status == -EINPROGRESS) {
480 			last_status = qtd_copy_status(ehci, urb,
481 					qtd->length, token);
482 			if (last_status == -EREMOTEIO
483 					&& (qtd->hw_alt_next
484 						& EHCI_LIST_END(ehci)))
485 				last_status = -EINPROGRESS;
486 
487 			/* As part of low/full-speed endpoint-halt processing
488 			 * we must clear the TT buffer (11.17.5).
489 			 */
490 			if (unlikely(last_status != -EINPROGRESS &&
491 					last_status != -EREMOTEIO)) {
492 				/* The TT's in some hubs malfunction when they
493 				 * receive this request following a STALL (they
494 				 * stop sending isochronous packets).  Since a
495 				 * STALL can't leave the TT buffer in a busy
496 				 * state (if you believe Figures 11-48 - 11-51
497 				 * in the USB 2.0 spec), we won't clear the TT
498 				 * buffer in this case.  Strictly speaking this
499 				 * is a violation of the spec.
500 				 */
501 				if (last_status != -EPIPE)
502 					ehci_clear_tt_buffer(ehci, qh, urb,
503 							token);
504 			}
505 		}
506 
507 		/* if we're removing something not at the queue head,
508 		 * patch the hardware queue pointer.
509 		 */
510 		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
511 			last = list_entry (qtd->qtd_list.prev,
512 					struct ehci_qtd, qtd_list);
513 			last->hw_next = qtd->hw_next;
514 		}
515 
516 		/* remove qtd; it's recycled after possible urb completion */
517 		list_del (&qtd->qtd_list);
518 		last = qtd;
519 
520 		/* reinit the xacterr counter for the next qtd */
521 		qh->xacterrs = 0;
522 	}
523 
524 	/* last urb's completion might still need calling */
525 	if (likely (last != NULL)) {
526 		ehci_urb_done(ehci, last->urb, last_status);
527 		count++;
528 		ehci_qtd_free (ehci, last);
529 	}
530 
531 	/* Do we need to rescan for URBs dequeued during a giveback? */
532 	if (unlikely(qh->needs_rescan)) {
533 		/* If the QH is already unlinked, do the rescan now. */
534 		if (state == QH_STATE_IDLE)
535 			goto rescan;
536 
537 		/* Otherwise we have to wait until the QH is fully unlinked.
538 		 * Our caller will start an unlink if qh->needs_rescan is
539 		 * set.  But if an unlink has already started, nothing needs
540 		 * to be done.
541 		 */
542 		if (state != QH_STATE_LINKED)
543 			qh->needs_rescan = 0;
544 	}
545 
546 	/* restore original state; caller must unlink or relink */
547 	qh->qh_state = state;
548 
549 	/* be sure the hardware's done with the qh before refreshing
550 	 * it after fault cleanup, or recovering from silicon wrongly
551 	 * overlaying the dummy qtd (which reduces DMA chatter).
552 	 */
553 	if (stopped != 0 || hw->hw_qtd_next == EHCI_LIST_END(ehci)) {
554 		switch (state) {
555 		case QH_STATE_IDLE:
556 			qh_refresh(ehci, qh);
557 			break;
558 		case QH_STATE_LINKED:
559 			/* We won't refresh a QH that's linked (after the HC
560 			 * stopped the queue).  That avoids a race:
561 			 *  - HC reads first part of QH;
562 			 *  - CPU updates that first part and the token;
563 			 *  - HC reads rest of that QH, including token
564 			 * Result:  HC gets an inconsistent image, and then
565 			 * DMAs to/from the wrong memory (corrupting it).
566 			 *
567 			 * That should be rare for interrupt transfers,
568 			 * except maybe high bandwidth ...
569 			 */
570 
571 			/* Tell the caller to start an unlink */
572 			qh->needs_rescan = 1;
573 			break;
574 		/* otherwise, unlink already started */
575 		}
576 	}
577 
578 	return count;
579 }
580 
581 /*-------------------------------------------------------------------------*/
582 
583 // high bandwidth multiplier, as encoded in highspeed endpoint descriptors
584 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
585 // ... and packet size, for any kind of endpoint descriptor
586 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
587 
588 /*
589  * reverse of qh_urb_transaction:  free a list of TDs.
590  * used for cleanup after errors, before HC sees an URB's TDs.
591  */
592 static void qtd_list_free (
593 	struct ehci_hcd		*ehci,
594 	struct urb		*urb,
595 	struct list_head	*qtd_list
596 ) {
597 	struct list_head	*entry, *temp;
598 
599 	list_for_each_safe (entry, temp, qtd_list) {
600 		struct ehci_qtd	*qtd;
601 
602 		qtd = list_entry (entry, struct ehci_qtd, qtd_list);
603 		list_del (&qtd->qtd_list);
604 		ehci_qtd_free (ehci, qtd);
605 	}
606 }
607 
608 /*
609  * create a list of filled qtds for this URB; won't link into qh.
610  */
611 static struct list_head *
612 qh_urb_transaction (
613 	struct ehci_hcd		*ehci,
614 	struct urb		*urb,
615 	struct list_head	*head,
616 	gfp_t			flags
617 ) {
618 	struct ehci_qtd		*qtd, *qtd_prev;
619 	dma_addr_t		buf;
620 	int			len, this_sg_len, maxpacket;
621 	int			is_input;
622 	u32			token;
623 	int			i;
624 	struct scatterlist	*sg;
625 
626 	/*
627 	 * URBs map to sequences of QTDs:  one logical transaction
628 	 */
629 	qtd = ehci_qtd_alloc (ehci, flags);
630 	if (unlikely (!qtd))
631 		return NULL;
632 	list_add_tail (&qtd->qtd_list, head);
633 	qtd->urb = urb;
634 
635 	token = QTD_STS_ACTIVE;
636 	token |= (EHCI_TUNE_CERR << 10);
637 	/* for split transactions, SplitXState initialized to zero */
638 
639 	len = urb->transfer_buffer_length;
640 	is_input = usb_pipein (urb->pipe);
641 	if (usb_pipecontrol (urb->pipe)) {
642 		/* SETUP pid */
643 		qtd_fill(ehci, qtd, urb->setup_dma,
644 				sizeof (struct usb_ctrlrequest),
645 				token | (2 /* "setup" */ << 8), 8);
646 
647 		/* ... and always at least one more pid */
648 		token ^= QTD_TOGGLE;
649 		qtd_prev = qtd;
650 		qtd = ehci_qtd_alloc (ehci, flags);
651 		if (unlikely (!qtd))
652 			goto cleanup;
653 		qtd->urb = urb;
654 		qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
655 		list_add_tail (&qtd->qtd_list, head);
656 
657 		/* for zero length DATA stages, STATUS is always IN */
658 		if (len == 0)
659 			token |= (1 /* "in" */ << 8);
660 	}
661 
662 	/*
663 	 * data transfer stage:  buffer setup
664 	 */
665 	i = urb->num_mapped_sgs;
666 	if (len > 0 && i > 0) {
667 		sg = urb->sg;
668 		buf = sg_dma_address(sg);
669 
670 		/* urb->transfer_buffer_length may be smaller than the
671 		 * size of the scatterlist (or vice versa)
672 		 */
673 		this_sg_len = min_t(int, sg_dma_len(sg), len);
674 	} else {
675 		sg = NULL;
676 		buf = urb->transfer_dma;
677 		this_sg_len = len;
678 	}
679 
680 	if (is_input)
681 		token |= (1 /* "in" */ << 8);
682 	/* else it's already initted to "out" pid (0 << 8) */
683 
684 	maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
685 
686 	/*
687 	 * buffer gets wrapped in one or more qtds;
688 	 * last one may be "short" (including zero len)
689 	 * and may serve as a control status ack
690 	 */
691 	for (;;) {
692 		int this_qtd_len;
693 
694 		this_qtd_len = qtd_fill(ehci, qtd, buf, this_sg_len, token,
695 				maxpacket);
696 		this_sg_len -= this_qtd_len;
697 		len -= this_qtd_len;
698 		buf += this_qtd_len;
699 
700 		/*
701 		 * short reads advance to a "magic" dummy instead of the next
702 		 * qtd ... that forces the queue to stop, for manual cleanup.
703 		 * (this will usually be overridden later.)
704 		 */
705 		if (is_input)
706 			qtd->hw_alt_next = ehci->async->hw->hw_alt_next;
707 
708 		/* qh makes control packets use qtd toggle; maybe switch it */
709 		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
710 			token ^= QTD_TOGGLE;
711 
712 		if (likely(this_sg_len <= 0)) {
713 			if (--i <= 0 || len <= 0)
714 				break;
715 			sg = sg_next(sg);
716 			buf = sg_dma_address(sg);
717 			this_sg_len = min_t(int, sg_dma_len(sg), len);
718 		}
719 
720 		qtd_prev = qtd;
721 		qtd = ehci_qtd_alloc (ehci, flags);
722 		if (unlikely (!qtd))
723 			goto cleanup;
724 		qtd->urb = urb;
725 		qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
726 		list_add_tail (&qtd->qtd_list, head);
727 	}
728 
729 	/*
730 	 * unless the caller requires manual cleanup after short reads,
731 	 * have the alt_next mechanism keep the queue running after the
732 	 * last data qtd (the only one, for control and most other cases).
733 	 */
734 	if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
735 				|| usb_pipecontrol (urb->pipe)))
736 		qtd->hw_alt_next = EHCI_LIST_END(ehci);
737 
738 	/*
739 	 * control requests may need a terminating data "status" ack;
740 	 * other OUT ones may need a terminating short packet
741 	 * (zero length).
742 	 */
743 	if (likely (urb->transfer_buffer_length != 0)) {
744 		int	one_more = 0;
745 
746 		if (usb_pipecontrol (urb->pipe)) {
747 			one_more = 1;
748 			token ^= 0x0100;	/* "in" <--> "out"  */
749 			token |= QTD_TOGGLE;	/* force DATA1 */
750 		} else if (usb_pipeout(urb->pipe)
751 				&& (urb->transfer_flags & URB_ZERO_PACKET)
752 				&& !(urb->transfer_buffer_length % maxpacket)) {
753 			one_more = 1;
754 		}
755 		if (one_more) {
756 			qtd_prev = qtd;
757 			qtd = ehci_qtd_alloc (ehci, flags);
758 			if (unlikely (!qtd))
759 				goto cleanup;
760 			qtd->urb = urb;
761 			qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
762 			list_add_tail (&qtd->qtd_list, head);
763 
764 			/* never any data in such packets */
765 			qtd_fill(ehci, qtd, 0, 0, token, 0);
766 		}
767 	}
768 
769 	/* by default, enable interrupt on urb completion */
770 	if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT)))
771 		qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
772 	return head;
773 
774 cleanup:
775 	qtd_list_free (ehci, urb, head);
776 	return NULL;
777 }
778 
779 /*-------------------------------------------------------------------------*/
780 
781 // Would be best to create all qh's from config descriptors,
782 // when each interface/altsetting is established.  Unlink
783 // any previous qh and cancel its urbs first; endpoints are
784 // implicitly reset then (data toggle too).
785 // That'd mean updating how usbcore talks to HCDs. (2.7?)
786 
787 
788 /*
789  * Each QH holds a qtd list; a QH is used for everything except iso.
790  *
791  * For interrupt urbs, the scheduler must set the microframe scheduling
792  * mask(s) each time the QH gets scheduled.  For highspeed, that's
793  * just one microframe in the s-mask.  For split interrupt transactions
794  * there are additional complications: c-mask, maybe FSTNs.
795  */
796 static struct ehci_qh *
797 qh_make (
798 	struct ehci_hcd		*ehci,
799 	struct urb		*urb,
800 	gfp_t			flags
801 ) {
802 	struct ehci_qh		*qh = ehci_qh_alloc (ehci, flags);
803 	u32			info1 = 0, info2 = 0;
804 	int			is_input, type;
805 	int			maxp = 0;
806 	struct usb_tt		*tt = urb->dev->tt;
807 	struct ehci_qh_hw	*hw;
808 
809 	if (!qh)
810 		return qh;
811 
812 	/*
813 	 * init endpoint/device data for this QH
814 	 */
815 	info1 |= usb_pipeendpoint (urb->pipe) << 8;
816 	info1 |= usb_pipedevice (urb->pipe) << 0;
817 
818 	is_input = usb_pipein (urb->pipe);
819 	type = usb_pipetype (urb->pipe);
820 	maxp = usb_maxpacket (urb->dev, urb->pipe, !is_input);
821 
822 	/* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
823 	 * acts like up to 3KB, but is built from smaller packets.
824 	 */
825 	if (max_packet(maxp) > 1024) {
826 		ehci_dbg(ehci, "bogus qh maxpacket %d\n", max_packet(maxp));
827 		goto done;
828 	}
829 
830 	/* Compute interrupt scheduling parameters just once, and save.
831 	 * - allowing for high bandwidth, how many nsec/uframe are used?
832 	 * - split transactions need a second CSPLIT uframe; same question
833 	 * - splits also need a schedule gap (for full/low speed I/O)
834 	 * - qh has a polling interval
835 	 *
836 	 * For control/bulk requests, the HC or TT handles these.
837 	 */
838 	if (type == PIPE_INTERRUPT) {
839 		qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
840 				is_input, 0,
841 				hb_mult(maxp) * max_packet(maxp)));
842 		qh->start = NO_FRAME;
843 
844 		if (urb->dev->speed == USB_SPEED_HIGH) {
845 			qh->c_usecs = 0;
846 			qh->gap_uf = 0;
847 
848 			qh->period = urb->interval >> 3;
849 			if (qh->period == 0 && urb->interval != 1) {
850 				/* NOTE interval 2 or 4 uframes could work.
851 				 * But interval 1 scheduling is simpler, and
852 				 * includes high bandwidth.
853 				 */
854 				urb->interval = 1;
855 			} else if (qh->period > ehci->periodic_size) {
856 				qh->period = ehci->periodic_size;
857 				urb->interval = qh->period << 3;
858 			}
859 		} else {
860 			int		think_time;
861 
862 			/* gap is f(FS/LS transfer times) */
863 			qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed,
864 					is_input, 0, maxp) / (125 * 1000);
865 
866 			/* FIXME this just approximates SPLIT/CSPLIT times */
867 			if (is_input) {		// SPLIT, gap, CSPLIT+DATA
868 				qh->c_usecs = qh->usecs + HS_USECS (0);
869 				qh->usecs = HS_USECS (1);
870 			} else {		// SPLIT+DATA, gap, CSPLIT
871 				qh->usecs += HS_USECS (1);
872 				qh->c_usecs = HS_USECS (0);
873 			}
874 
875 			think_time = tt ? tt->think_time : 0;
876 			qh->tt_usecs = NS_TO_US (think_time +
877 					usb_calc_bus_time (urb->dev->speed,
878 					is_input, 0, max_packet (maxp)));
879 			qh->period = urb->interval;
880 			if (qh->period > ehci->periodic_size) {
881 				qh->period = ehci->periodic_size;
882 				urb->interval = qh->period;
883 			}
884 		}
885 	}
886 
887 	/* support for tt scheduling, and access to toggles */
888 	qh->dev = urb->dev;
889 
890 	/* using TT? */
891 	switch (urb->dev->speed) {
892 	case USB_SPEED_LOW:
893 		info1 |= QH_LOW_SPEED;
894 		/* FALL THROUGH */
895 
896 	case USB_SPEED_FULL:
897 		/* EPS 0 means "full" */
898 		if (type != PIPE_INTERRUPT)
899 			info1 |= (EHCI_TUNE_RL_TT << 28);
900 		if (type == PIPE_CONTROL) {
901 			info1 |= QH_CONTROL_EP;		/* for TT */
902 			info1 |= QH_TOGGLE_CTL;		/* toggle from qtd */
903 		}
904 		info1 |= maxp << 16;
905 
906 		info2 |= (EHCI_TUNE_MULT_TT << 30);
907 
908 		/* Some Freescale processors have an erratum in which the
909 		 * port number in the queue head was 0..N-1 instead of 1..N.
910 		 */
911 		if (ehci_has_fsl_portno_bug(ehci))
912 			info2 |= (urb->dev->ttport-1) << 23;
913 		else
914 			info2 |= urb->dev->ttport << 23;
915 
916 		/* set the address of the TT; for TDI's integrated
917 		 * root hub tt, leave it zeroed.
918 		 */
919 		if (tt && tt->hub != ehci_to_hcd(ehci)->self.root_hub)
920 			info2 |= tt->hub->devnum << 16;
921 
922 		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
923 
924 		break;
925 
926 	case USB_SPEED_HIGH:		/* no TT involved */
927 		info1 |= QH_HIGH_SPEED;
928 		if (type == PIPE_CONTROL) {
929 			info1 |= (EHCI_TUNE_RL_HS << 28);
930 			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
931 			info1 |= QH_TOGGLE_CTL;	/* toggle from qtd */
932 			info2 |= (EHCI_TUNE_MULT_HS << 30);
933 		} else if (type == PIPE_BULK) {
934 			info1 |= (EHCI_TUNE_RL_HS << 28);
935 			/* The USB spec says that high speed bulk endpoints
936 			 * always use 512 byte maxpacket.  But some device
937 			 * vendors decided to ignore that, and MSFT is happy
938 			 * to help them do so.  So now people expect to use
939 			 * such nonconformant devices with Linux too; sigh.
940 			 */
941 			info1 |= max_packet(maxp) << 16;
942 			info2 |= (EHCI_TUNE_MULT_HS << 30);
943 		} else {		/* PIPE_INTERRUPT */
944 			info1 |= max_packet (maxp) << 16;
945 			info2 |= hb_mult (maxp) << 30;
946 		}
947 		break;
948 	default:
949 		ehci_dbg(ehci, "bogus dev %p speed %d\n", urb->dev,
950 			urb->dev->speed);
951 done:
952 		qh_destroy(ehci, qh);
953 		return NULL;
954 	}
955 
956 	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
957 
958 	/* init as live, toggle clear, advance to dummy */
959 	qh->qh_state = QH_STATE_IDLE;
960 	hw = qh->hw;
961 	hw->hw_info1 = cpu_to_hc32(ehci, info1);
962 	hw->hw_info2 = cpu_to_hc32(ehci, info2);
963 	qh->is_out = !is_input;
964 	usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1);
965 	qh_refresh (ehci, qh);
966 	return qh;
967 }
968 
969 /*-------------------------------------------------------------------------*/
970 
971 static void enable_async(struct ehci_hcd *ehci)
972 {
973 	if (ehci->async_count++)
974 		return;
975 
976 	/* Stop waiting to turn off the async schedule */
977 	ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_ASYNC);
978 
979 	/* Don't start the schedule until ASS is 0 */
980 	ehci_poll_ASS(ehci);
981 	turn_on_io_watchdog(ehci);
982 }
983 
984 static void disable_async(struct ehci_hcd *ehci)
985 {
986 	if (--ehci->async_count)
987 		return;
988 
989 	/* The async schedule and async_unlink list are supposed to be empty */
990 	WARN_ON(ehci->async->qh_next.qh || ehci->async_unlink);
991 
992 	/* Don't turn off the schedule until ASS is 1 */
993 	ehci_poll_ASS(ehci);
994 }
995 
996 /* move qh (and its qtds) onto async queue; maybe enable queue.  */
997 
998 static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
999 {
1000 	__hc32		dma = QH_NEXT(ehci, qh->qh_dma);
1001 	struct ehci_qh	*head;
1002 
1003 	/* Don't link a QH if there's a Clear-TT-Buffer pending */
1004 	if (unlikely(qh->clearing_tt))
1005 		return;
1006 
1007 	WARN_ON(qh->qh_state != QH_STATE_IDLE);
1008 
1009 	/* clear halt and/or toggle; and maybe recover from silicon quirk */
1010 	qh_refresh(ehci, qh);
1011 
1012 	/* splice right after start */
1013 	head = ehci->async;
1014 	qh->qh_next = head->qh_next;
1015 	qh->hw->hw_next = head->hw->hw_next;
1016 	wmb ();
1017 
1018 	head->qh_next.qh = qh;
1019 	head->hw->hw_next = dma;
1020 
1021 	qh->xacterrs = 0;
1022 	qh->qh_state = QH_STATE_LINKED;
1023 	/* qtd completions reported later by interrupt */
1024 
1025 	enable_async(ehci);
1026 }
1027 
1028 /*-------------------------------------------------------------------------*/
1029 
1030 /*
1031  * For control/bulk/interrupt, return QH with these TDs appended.
1032  * Allocates and initializes the QH if necessary.
1033  * Returns null if it can't allocate a QH it needs to.
1034  * If the QH has TDs (urbs) already, that's great.
1035  */
1036 static struct ehci_qh *qh_append_tds (
1037 	struct ehci_hcd		*ehci,
1038 	struct urb		*urb,
1039 	struct list_head	*qtd_list,
1040 	int			epnum,
1041 	void			**ptr
1042 )
1043 {
1044 	struct ehci_qh		*qh = NULL;
1045 	__hc32			qh_addr_mask = cpu_to_hc32(ehci, 0x7f);
1046 
1047 	qh = (struct ehci_qh *) *ptr;
1048 	if (unlikely (qh == NULL)) {
1049 		/* can't sleep here, we have ehci->lock... */
1050 		qh = qh_make (ehci, urb, GFP_ATOMIC);
1051 		*ptr = qh;
1052 	}
1053 	if (likely (qh != NULL)) {
1054 		struct ehci_qtd	*qtd;
1055 
1056 		if (unlikely (list_empty (qtd_list)))
1057 			qtd = NULL;
1058 		else
1059 			qtd = list_entry (qtd_list->next, struct ehci_qtd,
1060 					qtd_list);
1061 
1062 		/* control qh may need patching ... */
1063 		if (unlikely (epnum == 0)) {
1064 
1065                         /* usb_reset_device() briefly reverts to address 0 */
1066                         if (usb_pipedevice (urb->pipe) == 0)
1067 				qh->hw->hw_info1 &= ~qh_addr_mask;
1068 		}
1069 
1070 		/* just one way to queue requests: swap with the dummy qtd.
1071 		 * only hc or qh_refresh() ever modify the overlay.
1072 		 */
1073 		if (likely (qtd != NULL)) {
1074 			struct ehci_qtd		*dummy;
1075 			dma_addr_t		dma;
1076 			__hc32			token;
1077 
1078 			/* to avoid racing the HC, use the dummy td instead of
1079 			 * the first td of our list (becomes new dummy).  both
1080 			 * tds stay deactivated until we're done, when the
1081 			 * HC is allowed to fetch the old dummy (4.10.2).
1082 			 */
1083 			token = qtd->hw_token;
1084 			qtd->hw_token = HALT_BIT(ehci);
1085 
1086 			dummy = qh->dummy;
1087 
1088 			dma = dummy->qtd_dma;
1089 			*dummy = *qtd;
1090 			dummy->qtd_dma = dma;
1091 
1092 			list_del (&qtd->qtd_list);
1093 			list_add (&dummy->qtd_list, qtd_list);
1094 			list_splice_tail(qtd_list, &qh->qtd_list);
1095 
1096 			ehci_qtd_init(ehci, qtd, qtd->qtd_dma);
1097 			qh->dummy = qtd;
1098 
1099 			/* hc must see the new dummy at list end */
1100 			dma = qtd->qtd_dma;
1101 			qtd = list_entry (qh->qtd_list.prev,
1102 					struct ehci_qtd, qtd_list);
1103 			qtd->hw_next = QTD_NEXT(ehci, dma);
1104 
1105 			/* let the hc process these next qtds */
1106 			wmb ();
1107 			dummy->hw_token = token;
1108 
1109 			urb->hcpriv = qh;
1110 		}
1111 	}
1112 	return qh;
1113 }
1114 
1115 /*-------------------------------------------------------------------------*/
1116 
1117 static int
1118 submit_async (
1119 	struct ehci_hcd		*ehci,
1120 	struct urb		*urb,
1121 	struct list_head	*qtd_list,
1122 	gfp_t			mem_flags
1123 ) {
1124 	int			epnum;
1125 	unsigned long		flags;
1126 	struct ehci_qh		*qh = NULL;
1127 	int			rc;
1128 
1129 	epnum = urb->ep->desc.bEndpointAddress;
1130 
1131 #ifdef EHCI_URB_TRACE
1132 	{
1133 		struct ehci_qtd *qtd;
1134 		qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
1135 		ehci_dbg(ehci,
1136 			 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1137 			 __func__, urb->dev->devpath, urb,
1138 			 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
1139 			 urb->transfer_buffer_length,
1140 			 qtd, urb->ep->hcpriv);
1141 	}
1142 #endif
1143 
1144 	spin_lock_irqsave (&ehci->lock, flags);
1145 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1146 		rc = -ESHUTDOWN;
1147 		goto done;
1148 	}
1149 	rc = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1150 	if (unlikely(rc))
1151 		goto done;
1152 
1153 	qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
1154 	if (unlikely(qh == NULL)) {
1155 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1156 		rc = -ENOMEM;
1157 		goto done;
1158 	}
1159 
1160 	/* Control/bulk operations through TTs don't need scheduling,
1161 	 * the HC and TT handle it when the TT has a buffer ready.
1162 	 */
1163 	if (likely (qh->qh_state == QH_STATE_IDLE))
1164 		qh_link_async(ehci, qh);
1165  done:
1166 	spin_unlock_irqrestore (&ehci->lock, flags);
1167 	if (unlikely (qh == NULL))
1168 		qtd_list_free (ehci, urb, qtd_list);
1169 	return rc;
1170 }
1171 
1172 /*-------------------------------------------------------------------------*/
1173 
1174 static void single_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
1175 {
1176 	struct ehci_qh		*prev;
1177 
1178 	/* Add to the end of the list of QHs waiting for the next IAAD */
1179 	qh->qh_state = QH_STATE_UNLINK;
1180 	if (ehci->async_unlink)
1181 		ehci->async_unlink_last->unlink_next = qh;
1182 	else
1183 		ehci->async_unlink = qh;
1184 	ehci->async_unlink_last = qh;
1185 
1186 	/* Unlink it from the schedule */
1187 	prev = ehci->async;
1188 	while (prev->qh_next.qh != qh)
1189 		prev = prev->qh_next.qh;
1190 
1191 	prev->hw->hw_next = qh->hw->hw_next;
1192 	prev->qh_next = qh->qh_next;
1193 	if (ehci->qh_scan_next == qh)
1194 		ehci->qh_scan_next = qh->qh_next.qh;
1195 }
1196 
1197 static void start_iaa_cycle(struct ehci_hcd *ehci, bool nested)
1198 {
1199 	/*
1200 	 * Do nothing if an IAA cycle is already running or
1201 	 * if one will be started shortly.
1202 	 */
1203 	if (ehci->async_iaa || ehci->async_unlinking)
1204 		return;
1205 
1206 	/* Do all the waiting QHs at once */
1207 	ehci->async_iaa = ehci->async_unlink;
1208 	ehci->async_unlink = NULL;
1209 
1210 	/* If the controller isn't running, we don't have to wait for it */
1211 	if (unlikely(ehci->rh_state < EHCI_RH_RUNNING)) {
1212 		if (!nested)		/* Avoid recursion */
1213 			end_unlink_async(ehci);
1214 
1215 	/* Otherwise start a new IAA cycle */
1216 	} else if (likely(ehci->rh_state == EHCI_RH_RUNNING)) {
1217 		/* Make sure the unlinks are all visible to the hardware */
1218 		wmb();
1219 
1220 		ehci_writel(ehci, ehci->command | CMD_IAAD,
1221 				&ehci->regs->command);
1222 		ehci_readl(ehci, &ehci->regs->command);
1223 		ehci_enable_event(ehci, EHCI_HRTIMER_IAA_WATCHDOG, true);
1224 	}
1225 }
1226 
1227 /* the async qh for the qtds being unlinked are now gone from the HC */
1228 
1229 static void end_unlink_async(struct ehci_hcd *ehci)
1230 {
1231 	struct ehci_qh		*qh;
1232 
1233 	if (ehci->has_synopsys_hc_bug)
1234 		ehci_writel(ehci, (u32) ehci->async->qh_dma,
1235 			    &ehci->regs->async_next);
1236 
1237 	/* Process the idle QHs */
1238  restart:
1239 	ehci->async_unlinking = true;
1240 	while (ehci->async_iaa) {
1241 		qh = ehci->async_iaa;
1242 		ehci->async_iaa = qh->unlink_next;
1243 		qh->unlink_next = NULL;
1244 
1245 		qh->qh_state = QH_STATE_IDLE;
1246 		qh->qh_next.qh = NULL;
1247 
1248 		qh_completions(ehci, qh);
1249 		if (!list_empty(&qh->qtd_list) &&
1250 				ehci->rh_state == EHCI_RH_RUNNING)
1251 			qh_link_async(ehci, qh);
1252 		disable_async(ehci);
1253 	}
1254 	ehci->async_unlinking = false;
1255 
1256 	/* Start a new IAA cycle if any QHs are waiting for it */
1257 	if (ehci->async_unlink) {
1258 		start_iaa_cycle(ehci, true);
1259 		if (unlikely(ehci->rh_state < EHCI_RH_RUNNING))
1260 			goto restart;
1261 	}
1262 }
1263 
1264 static void unlink_empty_async(struct ehci_hcd *ehci)
1265 {
1266 	struct ehci_qh		*qh, *next;
1267 	bool			stopped = (ehci->rh_state < EHCI_RH_RUNNING);
1268 	bool			check_unlinks_later = false;
1269 
1270 	/* Unlink all the async QHs that have been empty for a timer cycle */
1271 	next = ehci->async->qh_next.qh;
1272 	while (next) {
1273 		qh = next;
1274 		next = qh->qh_next.qh;
1275 
1276 		if (list_empty(&qh->qtd_list) &&
1277 				qh->qh_state == QH_STATE_LINKED) {
1278 			if (!stopped && qh->unlink_cycle ==
1279 					ehci->async_unlink_cycle)
1280 				check_unlinks_later = true;
1281 			else
1282 				single_unlink_async(ehci, qh);
1283 		}
1284 	}
1285 
1286 	/* Start a new IAA cycle if any QHs are waiting for it */
1287 	if (ehci->async_unlink)
1288 		start_iaa_cycle(ehci, false);
1289 
1290 	/* QHs that haven't been empty for long enough will be handled later */
1291 	if (check_unlinks_later) {
1292 		ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
1293 		++ehci->async_unlink_cycle;
1294 	}
1295 }
1296 
1297 /* makes sure the async qh will become idle */
1298 /* caller must own ehci->lock */
1299 
1300 static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
1301 {
1302 	/*
1303 	 * If the QH isn't linked then there's nothing we can do
1304 	 * unless we were called during a giveback, in which case
1305 	 * qh_completions() has to deal with it.
1306 	 */
1307 	if (qh->qh_state != QH_STATE_LINKED) {
1308 		if (qh->qh_state == QH_STATE_COMPLETING)
1309 			qh->needs_rescan = 1;
1310 		return;
1311 	}
1312 
1313 	single_unlink_async(ehci, qh);
1314 	start_iaa_cycle(ehci, false);
1315 }
1316 
1317 /*-------------------------------------------------------------------------*/
1318 
1319 static void scan_async (struct ehci_hcd *ehci)
1320 {
1321 	struct ehci_qh		*qh;
1322 	bool			check_unlinks_later = false;
1323 
1324 	ehci->qh_scan_next = ehci->async->qh_next.qh;
1325 	while (ehci->qh_scan_next) {
1326 		qh = ehci->qh_scan_next;
1327 		ehci->qh_scan_next = qh->qh_next.qh;
1328  rescan:
1329 		/* clean any finished work for this qh */
1330 		if (!list_empty(&qh->qtd_list)) {
1331 			int temp;
1332 
1333 			/*
1334 			 * Unlinks could happen here; completion reporting
1335 			 * drops the lock.  That's why ehci->qh_scan_next
1336 			 * always holds the next qh to scan; if the next qh
1337 			 * gets unlinked then ehci->qh_scan_next is adjusted
1338 			 * in single_unlink_async().
1339 			 */
1340 			temp = qh_completions(ehci, qh);
1341 			if (qh->needs_rescan) {
1342 				start_unlink_async(ehci, qh);
1343 			} else if (list_empty(&qh->qtd_list)
1344 					&& qh->qh_state == QH_STATE_LINKED) {
1345 				qh->unlink_cycle = ehci->async_unlink_cycle;
1346 				check_unlinks_later = true;
1347 			} else if (temp != 0)
1348 				goto rescan;
1349 		}
1350 	}
1351 
1352 	/*
1353 	 * Unlink empty entries, reducing DMA usage as well
1354 	 * as HCD schedule-scanning costs.  Delay for any qh
1355 	 * we just scanned, there's a not-unusual case that it
1356 	 * doesn't stay idle for long.
1357 	 */
1358 	if (check_unlinks_later && ehci->rh_state == EHCI_RH_RUNNING &&
1359 			!(ehci->enabled_hrtimer_events &
1360 				BIT(EHCI_HRTIMER_ASYNC_UNLINKS))) {
1361 		ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
1362 		++ehci->async_unlink_cycle;
1363 	}
1364 }
1365